UNIVERSITY OF AARHUS DEPARTMENT OF MATHEMATICS

ISSN: 1397-4076

THE LIFTING PROPERTY FOR CROSSED PRODUCTS BY A DISCRETE GROUP

By Klaus Thomsen

Preprint Series No.: 5

August 2001

Ny Munkegade, Bldg. 530 DK-8000 Aarhus C, Denmark http://www.imf.au.dk institut@imf.au.dk

THE LIFTING PROPERTY FOR CROSSED PRODUCTS BY A DISCRETE GROUP

KLAUS THOMSEN

ABSTRACT. We prove that the lifting property of Kirchberg is preserved by the crossed product construction for actions of countable discrete groups. It follows that the full group C^* -algebra of a countable discrete group has the lifting property. In combination with Kirchberg's work this provides counterexamples to a series of conjectures formulated and shown by him to be equivalent. In particular, it follows that there exists a separable II_1 -factor which is not a subfactor of an ultrapower of the hyperfinite II_1 -factor.

1. Introduction

In a recent paper the author clarified the excision properties of equivariant KKtheory by proving a general result on G-extensions, which roughly says that a completely positive, but not necessarily equivariant, section for an equivariant surjective *-homomorphism between C^* -algebras, equipped with continuous actions of a locally compact group, can be exchanged with one which is equivariant, after the whole picture has been tensored with the regular representation. See [T] or the proof of Lemma 2.6 below for the precise statement. In this paper we will use this result to show that the lifting property (LP) of Kirchberg, [Ki1], is preserved under full crossed products by discrete groups. More precisely, our main result says that the full crossed product $A \times_{\alpha} G$ has the lifting property when G is a countable discrete group and A is a separable C^* -algebra with the lifting property. This result has several interesting consequences, but the most prominent is probably that it combines easily with Kirchberg's work in [Ki1] and [Ki2] to show that Connes' 'approximate embedding problem' from his work on injective factors, see p. 105 of [Co], has a negative answer: When H is a countable discrete group which does not have property (F) of Kirchberg, [Ki3], - and such groups exist by [Ki2] - then the central decomposition of the corresponding group von Neumann algebra must contain a II_1 -factor which does not embed into an ultrapower of the hyperfinite II_1 -factor.

2. Proofs

Definition 2.1. A C^* -algebra A has the lifting property when the following holds: For every C^* -algebra B with an ideal $J \subseteq B$, and every completely positive contraction $A \to B/J$, there is a completely positive contractive lift $A \to B$.

In a slightly different guise this notion was introduced by Kirchberg in [Ki1]. Since our definition is not explicitly the same as that of Kirchberg, we begin by proving that they agree, at least for separable C^* -algebras. In the following we let \mathbb{K} denote the compact operators on a separable infinite dimensional Hilbert space.

Version: August 10, 2001.

Lemma 2.2. For separable C^* -algebras the lifting property as defined in Definition 2.1 is the same as the one considered by Kirchberg in [Ki1].

Proof. It is fundamental to the argument that the unitization of a completely positive contraction is completely positive, cf. Lemma 3.9 of [CE]. First the case when A is non-unital: Assume that A satisfies Kirchbergs condition, cf. p. 453 in [Ki1]. Let $\varphi: A \to B/J$ be a completely positive contraction. By Kirchbergs condition the unitization $\varphi^+: A^+ \to B^+/J$ admits a unital completely positive lift $s: A^+ \to B^+$. Then $s|_A$ is a completely positive contractive lift of φ . Conversely, assume that A satisfies the condition of Definition 2.1 and let $\varphi: A^+ \to B/J$ be a completely positive unital map, where B is also unital. Then $\varphi|_A$ admits a completely positive contractive lift $A \to B$. The unitization of this lift is also completely positive and hence a unital completely positive lift of φ .

A unital: Assume that A satisfies Kirchbergs condition, cf. p. 451 in [Ki1], and consider a completely positive contraction $\varphi:A\to B/J$. If we can lift the composition $A \to B/J \to B^+/J$ to a completely positive contraction $A \to B^+$, this lift will automatically take values in B, so we assume that B is unital. Consider the map $A \to (B/J) \otimes \mathbb{K}$ given by $a \mapsto \varphi(a) \otimes e_{11}$. By Kasparov's Stinespring theorem, cf. Theorem 3 of [Ka], there is a unital *-homomorphism $\pi:A\to M((B/J)\otimes\mathbb{K})$ and an element $W \in M((B/J) \otimes \mathbb{K}), ||W|| \leq 1$, such that $\varphi(\cdot) \otimes e_{11} = W^*\pi(\cdot)W$. By [OP] the map $M(B \otimes \mathbb{K}) \to M((B/J) \otimes \mathbb{K})$ induced by $B \otimes \mathbb{K} \to (B/J) \otimes \mathbb{K}$ is surjective so there is a completely positive unital lift $s: A \to M(B \otimes \mathbb{K})$ of π because A has the lifting property of Kirchberg. Let $X \in M(B \otimes \mathbb{K})$ be a lift of $W, ||X|| \leq 1$, and note that $(1_B \otimes e_{11})X^*s(\cdot)X(1_B \otimes e_{11}): A \to B \otimes e_{11}$ gives us a completely positive contractive lift of φ . Assume next that A satisfies the condition in Definition 2.1 and consider a unital C^* -algebra B with ideal $J \subseteq B$ and a completely positive unital map $\varphi: A \to B/J$. By assumption there is a completely positive contractive lift $s:A\to B$ of φ . Let ω be a state of A and set $\tilde{s}(a)=s(a)+\omega(a)(1-s(1))$. Then \tilde{s} is a completely positive unital lift of φ .

The last proof suggests the following weakening of the condition for a separable C^* -algebra to have the lifting property.

Lemma 2.3. A separable C^* -algebra A has the lifting property when the following holds: For every C^* -algebra B with an ideal $J \subseteq B$, and every *-homomorphism $A \to B/J$, there is a completely positive contractive lift $A \to B$.

Proof. Assume that A meets the condition in the lemma and consider a completely positive contraction $s:A\to B/J$. Compose the unitization $s^+:A^+\to B^+/J$ with the canonical *-homomorphism $B^+/J\ni x\mapsto x\otimes e_{11}\in (B^+/J)\otimes \mathbb{K}$ to get the completely positive contraction $\tilde{s}:A^+\to (B^+/J)\otimes \mathbb{K}$. From Kasparov's Stinespring theorem we get a *-homomorphism $\pi:A^+\to M((B^+/J)\otimes \mathbb{K})$ and an element $W\in M((B^+/J)\otimes \mathbb{K})$, $\|W\|\le 1$, such that $\tilde{s}(\cdot)=W^*\pi(\cdot)W$. It follows from [OP] that the *-homomorphism $M(B^+\otimes \mathbb{K})\to M((B^+/J)\otimes \mathbb{K})$ induced by the obvious map $B^+\otimes \mathbb{K}\to (B^+/J)\otimes \mathbb{K}$ is surjective. Since A satisfies the condition of the lemma, there is a completely positive contraction $\varphi:A\to M(B^+\otimes \mathbb{K})$ which lifts $\pi|_A$. Let $X\in M(B^+\otimes \mathbb{K})$ be a lift of W, $\|X\|\le 1$. By identifying B^+ with $B^+\otimes e_{11}\subseteq B^+\otimes \mathbb{K}$ we see that $(1_{B^+}\otimes e_{11})X^*\varphi(\cdot)X(1_{B^+}\otimes e_{11}):A\to B^+$ is a

completely positive contractive lift of s. Since $s(A) \subseteq B/J$, it follows that this lift takes values in B.

Proposition 2.4. Let A be a separable C^* -algebra. The following conditions are equivalent:

- 1) A has the lifting property.
- 2) $\operatorname{Ext}(A, B \otimes \mathbb{K})$ is a group for every σ -unital C^* -algebra B.
- 3) Every extension

$$0 \longrightarrow B \longrightarrow E \stackrel{p}{\longrightarrow} A \longrightarrow 0$$

is semi-split, i.e. there is a completely positive contraction $s: A \to E$ such that $p \circ s = \mathrm{id}_A$.

Proof. 1) \Rightarrow 3) is trivial. 3) \Rightarrow 2) follows from [A], [Ka]. 2) \Rightarrow 1) : Consider a *-homomorphism $\pi:A\to B/J$. To show that π admits a completely positive contractive lift we may assume that B is separable since A is. The pull-back along $\pi(\cdot)\otimes e_{11}$ of the extension $0\to J\otimes \mathbb{K}\to B\otimes \mathbb{K}\to (B/J)\otimes \mathbb{K}\to 0$ is an extension of A by $J\otimes \mathbb{K}$ which is semi-split by assumption. It follows that there is a completely positive contractive map $s:A\to B\otimes \mathbb{K}$ which lifts $\pi(\cdot)\otimes e_{11}$. Then $(1_{M(B)}\otimes e_{11})s(\cdot)(1_{M(B)}\otimes e_{11})$ gives us a completely positive contractive lift of π . By Lemma 2.3, A has the lifting property.

We need one more lemma on the lifting property.

Lemma 2.5. Let A be a separable C^* -algebra with the lifting property. It follows that $A \otimes \mathbb{K}$ has the lifting property.

Proof. Consider an extension

$$0 \longrightarrow B \longrightarrow E \stackrel{p}{\longrightarrow} A \otimes \mathbb{K} \longrightarrow 0$$

By Propostion 2.4 we must produce a completely positive contractive section for p. Since A is separable we may assume that E is also. Let $P_n: A \otimes \mathbb{K} \to A \otimes M_n(\mathbb{C}) \subseteq A \otimes \mathbb{K}$ be a sequence of conditional expectations such that $\lim_{n\to\infty} P_n(x) = x$ for all $x \in A \otimes \mathbb{K}$. It follows from [A] that the set of liftable completely positive contractions is closed, so it suffices to lift each P_n to a completely positive contraction, or, alternatively, to find a completely positive contractive section for p over each $A \otimes M_n(\mathbb{C})$. Since A has the lifting property there is a completely positive contractive lift $s: A \to E$ of the identity over $A = A \otimes e_{11} \subseteq A \otimes \mathbb{K}$. By [OP] p extends to a surjective *-homomorphism $M(E) \to M(A \otimes \mathbb{K})$. Choose pre-images $d_i \in M(E)$ of $1_{M(A)} \otimes e_{1i} \in M(A \otimes \mathbb{K})$, $i = 1, 2, \cdots, n$, under this extension and set $S(\sum_{i,j} x_{ij} \otimes e_{ij}) = \sum_{i,j} d_i^* s(x_{ij}) d_j$. Then S is a completely positive section for p over $A \otimes M_n(\mathbb{C})$. By Remark 2.5 of [CS], we can find another which is contractive. \square

Let G be a second countable locally compact group. We shall only need the following consequence of the main result in [T] when G is discrete, but the proof in the general case is the same.

Lemma 2.6. Let

$$0 \longrightarrow B \longrightarrow E \longrightarrow A \longrightarrow 0 \tag{2.1}$$

be a G-extension, i.e. B, E and A are separable C^* -algebras equipped with continuous actions of G by automorphisms, and all maps are equivariant.

Assume that (2.1) is semi-split, i.e. that there is a completely positive section for the quotient map. It follows that the same is true for the extension

$$0 \longrightarrow B \rtimes G \longrightarrow E \rtimes G \longrightarrow A \rtimes G \longrightarrow 0 \tag{2.2}$$

of full crossed products.

Proof. Let λ be the left regular representation of G on $L^2(G)$. Consider the G-extension

$$0 \longrightarrow B \otimes \mathcal{K}(L^2(G)) \longrightarrow E \otimes \mathcal{K}(L^2(G)) \longrightarrow A \otimes \mathcal{K}(L^2(G)) \longrightarrow 0, \tag{2.3}$$

where all actions have been tensored with Ad λ . The content of Theorem 1.1 in [T] is that the extension (2.3) admits a completely positive contractive section for the quotient map which is also equivariant. Thanks to the equivariant Stinespring construction this equivariant completely positive contraction induces a completely positive contraction $(A \otimes \mathcal{K}(L^2(G))) \rtimes G \to (E \otimes \mathcal{K}(L^2(G))) \rtimes G$ which is a section for the quotient map in the extension

$$0 \longrightarrow (B \otimes \mathcal{K}(L^{2}(G))) \rtimes G \longrightarrow (E \otimes \mathcal{K}(L^{2}(G))) \rtimes G \longrightarrow (A \otimes \mathcal{K}(L^{2}(G))) \rtimes G \longrightarrow 0.$$

$$(2.4)$$

For any action α , the tensor product action $\alpha \otimes \operatorname{Ad} \lambda$ is obviously exterior equivalent to $\alpha \otimes \operatorname{id}$ and the full crossed products corresponding to the two actions are thus isomorphic in the natural way. There is therefore a commuting diagram

$$0 \longrightarrow (B \otimes \mathcal{K}(L^{2}(G))) \rtimes G \longrightarrow (E \otimes \mathcal{K}(L^{2}(G))) \rtimes G \longrightarrow (A \otimes \mathcal{K}(L^{2}(G))) \rtimes G \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow (B \rtimes G) \otimes \mathcal{K}(L^{2}(G)) \longrightarrow (E \rtimes G) \otimes \mathcal{K}(L^{2}(G)) \longrightarrow (A \rtimes G) \otimes \mathcal{K}(L^{2}(G)) \longrightarrow 0$$

where the vertical arrows are isomorphisms. It follows first that the lower extension is semi-split since (2.4) is, and then that (2.2) is semi-split.

Lemma 2.6 is the analogue for full crossed products of Corollory 1.2 of [T]. What we really need is a version of Lemma 2.6 for twisted actions of discrete groups.

Assume now that G is discrete and countable. We shall in the following consider twisted actions of G in the sense of Packer and Raeburn, [PR]. Thus a twisted action of G on A is a pair (α, w) of maps $\alpha : G \to \operatorname{Aut} A$ and $w : G \times G \to UM(A)$ (= the unitary group of the multiplier algebra M(A) of A), such that

- 1) $\alpha_e = id, w(s, e) = w(e, s) = 1 \text{ for } s \in G,$
- 2) $\alpha_s \circ \alpha_t = \operatorname{Ad} w(s,t) \circ \alpha_{st} \text{ for } s,t \in G$,
- 3) $\alpha_r(w(s,t))w(r,st) = w(r,s)w(rs,t)$ for $s,t \in G$.

Given such a twisted action (α, w) one defines the crossed product C^* -algebra $A \times_{\alpha, w} G$ as follows, cf. [PR]. Represent a function $f: G \to A$ of finite support as a formal sum $\sum_{t \in G} f(t)u_t$. We can then turn the finitely supported functions $G \to A$ into a *-algebra such that

$$(\sum_{t \in G} f(t)u_t)(\sum_{t \in G} h(t)u_t) = \sum_{s,t \in G} f(s)\alpha_s(g(t))w(s,t)u_{st}$$
$$= \sum_{x \in G} [\sum_{s \in G} f(s)\alpha_s(g(s^{-1}x))w(s,s^{-1}x)]u_x$$

and

$$(\sum_{t \in G} f(t)u_t)^* = \sum_{t \in G} w(t, t^{-1})^* \alpha_t (f(t^{-1})^*) u_t.$$

The crossed product C^* -algebra $A \times_{\alpha,w} G$ is then by definition the enveloping C^* algebra of this *-algebra, cf. [PR]. Note that when $w=1, \alpha$ is a homomorphism and $A \times_{\alpha,w} G$ is just the ordinary (full) crossed product $A \times_{\alpha} G$.

An extension

$$0 \longrightarrow B \xrightarrow{i} E \xrightarrow{p} A \longrightarrow 0 \tag{2.5}$$

of C^* -algebras will be called a twisted G-extension when there are twisted actions (β^B, w^B) , (β^E, w^E) and (β^A, w^A) on B, E and A, respectively, such that

- 1) $\beta_t^E|_B = \beta_t^B, t \in G,$ 2) $p \circ \beta_t^E = \beta_t^A \circ p, t \in G,$ 3) $w^E(s,t)b = w^B(s,t)b, b \in B, s, t \in G,$
- 4) $w^{A}(s,t)p(e) = p(w^{E}(s,t)e), e \in E, s, t \in G.$

In this case there are *-homomorphisms $\hat{i}: B \times_{\beta^B, w^B} G \to E \times_{\beta^E, w^E} \times G$ and $\hat{p}: E \times_{\beta^E, w^E} \times G \to A \times_{\beta^A, w^A} G$ given by

$$\hat{i}(\sum_{t \in G} f(t)u_t) = \sum_{t \in G} i(f(t))u_t$$

and

$$\hat{p}(\sum_{t \in G} f(t)u_t) = \sum_{t \in G} p(f(t))u_t,$$

in the notation from above.

Lemma 2.7. Assume that (2.5) is a twisted G-extension. It follows that

$$0 \longrightarrow B \times_{\beta^B, w^B} G \xrightarrow{\hat{i}} E \times_{\beta^E, w^E} \times G \xrightarrow{\hat{p}} A \times_{\beta^A, w^A} G \longrightarrow 0$$
 (2.6)

is an extension, which is semi-split when (2.5) is.

Proof. By Theorem 3.4 of [PR] there is a genuine, untwisted action α^E of G on $E \otimes \mathcal{K}(L^2(G))$ and a map $v^E : G \to UM(E \otimes \mathcal{K}(L^2(G)))$ such that $\alpha_s^E = \operatorname{Ad} v_s^E \circ \mathcal{K}(L^2(G))$ $(\beta_s^E \otimes \operatorname{id})$ and $v_s^E(\beta_s^E \otimes \operatorname{id})(v_t^E)(w^E(s,t) \otimes 1)v_{st}^{E^*} = 1_{M(E \otimes \mathcal{K}(L^2(G)))}$ for all $s, t \in G$. It follows that we can define actions α^B and α^A on $B \otimes \mathcal{K}(L^2(G))$ and $A \otimes \mathcal{K}(L^2(G))$, respectively, such that $\alpha_s^B = \alpha_s^E|_B$ and $\alpha_s^A \circ (p \otimes id) = (p \otimes id) \circ \alpha_s^E$ for all $s \in G$. Similarly, there are maps $v^B: G \to UM(B \otimes \mathcal{K}(L^2(G)))$ and $v^A: G \to UM(A \otimes \mathcal{K}(L^2(G)))$ $\mathcal{K}(L^2(G))$ such that $v_s^B b = v_s^E b$ for all $b \in B \otimes \mathcal{K}(L^2(G))$ and $(p \otimes \mathrm{id})(v_s^E e) =$ $v_s^A(p \otimes \mathrm{id})(e)$ for all $e \in E \otimes \mathcal{K}(L^2(G)), s \in G$. There is then a *-isomorphism $\varphi_E: (E \otimes \mathcal{K}(L^2(G))) \times_{\beta^E \otimes \mathrm{id}, w^E \otimes 1} G \to (E \otimes \mathcal{K}(L^2(G))) \times_{\alpha^E, 1} G$ such that

$$\varphi_E(\sum_{t \in G} f(t)u_t) = \sum_{t \in G} f(t)v_t^{E^*}u_t.$$
(2.7)

cf. Lemma 3.3 of [PR]. Since we also have the identities $v_s^B(\beta_s^B\otimes \mathrm{id})(v_t^B)(w^B(s,t)\otimes v_s^B)$ $1)v_{st}^{B^*} = 1_{M(B \otimes \mathcal{K}(L^2(G)))} \text{ and } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)v_{st}^{A^*} = 1_{M(A \otimes \mathcal{K}(L^2(G)))} \text{ for all } v_s^A(\beta_s^A \otimes \mathrm{id})(v_t^A)(w^A(s,t) \otimes 1)$ $s, t \in G$, there are also *-isomorphisms $\varphi_B : (B \otimes \mathcal{K}(L^2(G))) \times_{\beta^B \otimes \mathrm{id}, w^E \otimes 1} G \to (B \otimes \mathcal{K}(L^2(G)))$

 $\mathcal{K}(L^2(G))) \times_{\alpha^B,1} G$ and $\varphi_A : (A \otimes \mathcal{K}(L^2(G))) \times_{\beta^A \otimes \mathrm{id}, w^A \otimes 1} G \to (A \otimes \mathcal{K}(L^2(G))) \times_{\alpha^A,1} G$ given by the formulas analogous to (2.7). Then

$$(B \otimes \mathcal{K}(L^{2}(G))) \times_{\beta^{B} \otimes \mathrm{id}, w^{E} \otimes 1} G \xrightarrow{\varphi_{B}} (B \otimes \mathcal{K}(L^{2}(G))) \times_{\alpha^{B}} G$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(E \otimes \mathcal{K}(L^{2}(G))) \times_{\beta^{E} \otimes \mathrm{id}, w^{E} \otimes 1} G \xrightarrow{\varphi_{E}} (E \otimes \mathcal{K}(L^{2}(G))) \times_{\alpha^{E}} G$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(A \otimes \mathcal{K}(L^{2}(G))) \times_{\beta^{A} \otimes \mathrm{id}, w^{A} \otimes 1} G \xrightarrow{\varphi_{A}} (A \otimes \mathcal{K}(L^{2}(G))) \times_{\alpha^{A}} G$$

commutes. Since there is a natural isomorphism $(E \otimes \mathcal{K}(L^2(G))) \times_{\beta^E \otimes \mathrm{id}, w^E \otimes 1} G \simeq (E \times_{\beta^E, w^E} G) \otimes \mathcal{K}(L^2(G))$, cf. Corollary 3.7 of [PR], we conclude that there is commuting diagram

$$(B \times_{\beta^{B},w^{B}} G) \otimes \mathcal{K}(L^{2}(G)) \longrightarrow (B \otimes \mathcal{K}(L^{2}(G))) \times_{\alpha^{B}} G$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(E \times_{\beta^{E},w^{E}} G) \otimes \mathcal{K}(L^{2}(G)) \longrightarrow (E \otimes \mathcal{K}(L^{2}(G))) \times_{\alpha^{E}} G$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(A \times_{\beta^{A},w^{A}} G) \otimes \mathcal{K}(L^{2}(G)) \longrightarrow (A \otimes \mathcal{K}(L^{2}(G))) \times_{\alpha^{A}} G$$

where the horizontal maps are *-isomorphisms. Since we are talking about full crossed products, the column on the right hand side is an extension. It follows from Lemma 2.6 that this extension is semi-split when (2.5) is. The conclusion follows straightforwardly from this.

Theorem 2.8. Let A be a separable C^* -algebra with the lifting property and let $\alpha: G \to \operatorname{Aut} A$ be an action of the countable discrete group G by automorphisms of A. It follows that the full crossed product C^* -algebra, $A \times_{\alpha} G$, has the lifting property.

Proof. Consider an extension

$$0 \longrightarrow B \longrightarrow E \stackrel{p}{\longrightarrow} A \times_{\alpha} G \longrightarrow 0. \tag{2.8}$$

By Proposition 2.4 we must show that there is a completely positive contractive section for p. Since $A \times_{\alpha} G$ is separable we can assume without loss of generality that E is separable. By tensoring through with \mathbb{K} we may also assume that B, E, A and $A \times_{\alpha} G$ are all stable, thanks to Lemma 2.5. Set $E_0 = p^{-1}(A) \subseteq E$. Let $u_g \in M(A \times_{\alpha} G)$, $g \in G$, be the canonical unitaries arising from the crossed product. By [CH] the unitary group of the multiplier algebra of a stable separable C^* -algebra is contractible in norm. In particular, the unitary group of $M(A \times_{\alpha} G)$ is norm-connected. Furthermore, the *-homomorphism $M(E) \to M(A \times_{\alpha} G)$ induced by p is surjective by [OP]. For each p we can therefore choose a unitary lift p course, we choose p set p and p is an automorphism of p of p such that p is an automorphism of p of p such that p is an automorphism of p of p such that p is an automorphism of p of p such that p is an automorphism of p of p such that p is an automorphism of p of p such that p is an automorphism of p of p such that p is an automorphism of p of p such that p is an automorphism of p of p such that p is an automorphism of p of p such that p is an automorphism of p of p such that p is an automorphism of p of p such that p is an automorphism of p of p such that p is an automorphism of p of p such that p is an automorphism of p of p such that p is an automorphism of p of p such that p is an automorphism of p of p such that p is an automorphism of p of p such that p is an automorphism of p of p such that p is a constant.

$$w'(g,h) = v_g v_h v_{gh}^*.$$

Then (β', w') is a twisted action of G on E_0 . This twisted action induces in the obvious way twisted actions (β, w) and (β'', w'') of G on $B \subseteq E_0$ and $A = p(E_0)$, respectively, in such a way that

$$0 \longrightarrow B \longrightarrow E_0 \stackrel{p}{\longrightarrow} A \longrightarrow 0$$

becomes a twisted G-extension. Since A has the lifting property we conclude from Lemma 2.7 that

$$0 \longrightarrow B \times_{\beta,w} G \longrightarrow E_0 \times_{\beta',w'} G \longrightarrow A \times_{\beta'',w''} G \longrightarrow 0$$
 (2.9)

is a semi-split extension. By the universal property of the twisted crossed product there is a *-homomorphism $\chi: E_0 \times_{\beta',w'} G \to E$ such that

$$\chi(\sum_{t \in G} f(t)u_t) = \sum_{t \in G} f(t)v_t.$$

This map sends $B \times_{\beta,w} G \subseteq E_0 \times_{\beta',w'} G$ to $B \subseteq E$ and hence it induces a *homomorphism $\chi': A \times_{\beta'',w''} G \to A \times_{\alpha} G$ such that

$$E_{0} \times_{\beta',w'} G \longrightarrow A \times_{\beta'',w''} G$$

$$\downarrow^{\chi'}$$

$$E \xrightarrow{p} A \times_{\alpha} G$$

$$(2.10)$$

commutes. But now note that $\beta'' = \alpha$ and that w'' = 1 by construction. Diagram (2.10) is therefore the square on the right hand side of a commuting diagram of the form

$$0 \longrightarrow B \times_{\beta,u} G \longrightarrow E_0 \times_{\beta',u'} G \longrightarrow A \times_{\alpha} G \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Since the upper extension is semi-split, it follows that the lower one is also.

Since \mathbb{C} obviously has the lifting property we obtain

Corollary 2.9. $C^*(G)$ has the lifting property for any countable discrete group G. In particular, $\operatorname{Ext}(C^*(G))$ is always a group. The same is true for $\operatorname{Ext}(SC^*(G))$

and $\operatorname{Ext}(\operatorname{cone}(C^*(G)))$, in contrast with what is the case for the reduced group C^* -algebras, cf. [Ki1].

Now we consider the conjectures (B1)-(B7) from [Ki1]. Conjecture (B6) says that the local lifting property (LLP) implies the weak expectation property (WEP) of Lance, cf. [L]. Since the local lifting property is weaker than the lifting property itself, (B6) in combination with Corollary 2.6 implies that $C^*(G)$ has the WEP for any discrete countable group G. By combining Corollary 2.6 with Proposition 1.1(i) of [Ki1] we conclude from this that

$$C^*(G) \otimes_{min} C^*(G) = C^*(G) \otimes_{max} C^*(G)$$

for every countable discrete group G, if (B6) holds. In particular, it follows that any countable discrete group has property (F), a property originally introduced by Kirchberg in [Ki3], provided (B6) is true. However, according to [Ki2] there exist countable discrete groups which do not have property (F). Consequently (B6) can

not be true. Since Kirchberg has shown that (B1)-(B7) are all equivalent we have obtained the following result.

Corollary 2.10. The conjectures (B1)-(B7) of [Ki1] are all false. In particular, there exists a separable II_1 -factor which is not a subfactor of an ultrapower R_{ω} of the hyperfinite II_1 -factor R.

There are other ways to use Corollary 2.6 as the key to obtain Corollary 2.10 from the web of implications established by Kirchberg in [Ki1]. For example, one can now deduce from Theorem 4.1, Proposition 1.3 and Corollary 3.7 in [Ki1], that when H is a countable discrete group without property (F), the group von Neumann algebra VN(H) will contain a separable II_1 -factor in its central decomposition which is not a subfactor of the ultrapower of the hyperfinite II_1 -factor. By Theorem 4.1 of [Ki1] the same II_1 -factor is an example of a C^* -algebra which is not the quotient of a C^* -algebra with the WEP.

Finally, we observe that we have also falsified conjectures (C1), C(2) and (F) from [Ki1].

References

- [A] W. Arveson, Notes on extensions, Duke Math. J. 44 (1977), 329-355.
- [Co] A. Connes, Classification of injective factors, Ann. Math. 104 (1976), 73-115.
- [CE] M.-D. Choi, E.G. Effros, The completely positive lifting problem for C*-algebras, Ann. of Math. 104 (1976), 585-609.
- [CH] J. Cuntz, N. Higson, Kuiper's theorem for Hilbert modules, in Operator Algebras and Mathematical Physics, Contemporary Mathematics 62, Amer. Math. Soc., Providence, 1987.
- [CS] J. Cuntz and G. Skandalis, Mapping cones and exact sequences in KK-theory, J. Operator Theory 15 (1986), 163–180.
- [Ka] G.G. Kasparov, Hilbert C*-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), 133-150.
- [Ki1] E. Kirchberg, On non-semisplit extensions, tensor products and exactness of group C^* -algebras, Invent. Math. 112 (1993), 449-489.
- [Ki2] _____, Discrete groups with Kazhdan's property T and factorization property are residually finite, Math. Ann. 299 (1994), 551-563.
- [Ki3] _____, Positive maps and C*-nuclear algebras, Proc. Inter. Conference on Operator Algebras, Ideals and their Applications in Theoretical Physics, Leipzig, 1977 (pp. 255-257), Leipzig, Teubner 1978.
- [L] E. C. Lance, On nuclear C*-algebras, J. Func. Anal. 12 (1973), 157-176.
- [OP] C. Olsen, G.K. Pedersen, Corona C*-algebras and their applications to lifting problems, Math. Scand. **64** (1989), 63-86.
- [PR] J. Packer, I. Raeburn, Twisted Crossed products of C*-algebras, Math. Proc. Camb. Phil. Soc. 106 (1989), 293-311.
- [T] K. Thomsen, Excision in equivariant KK-theory, Preprint, Aarhus (2001).

E-mail address: matkt@imf.au.dk

Institut for matematiske fag, Ny Munkegade, 8000 Aarhus C, Denmark