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FOURIER EXPANSION OF EISENSTEIN SERIES ON THE

HILBERT MODULAR GROUP AND HILBERT CLASS FIELDS

CLAUS MAZANTI SORENSEN

Abstract. In this paper we consider the Eisenstein series for the Hilbert modular

group of a general number �eld. We compute the Fourier expansion at each cusp

explicitly. The Fourier coeÆcients are given in terms of completed partial Hecke

L-series, and from their functional equations we get the functional equation for the

Eisenstein vector. That is, we identify the scattering matrix. When we compute

the determinant of the scattering matrix in the principal case, the Dedekind �-

function of the Hilbert class �eld shows up. A proof in the imaginary quadratic

case was given in [2], and for totally real �elds with class number one a proof was

given in [1].
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2 CLAUS MAZANTI SORENSEN

1. Introduction

Let us consider the group G = SL(2;R). It acts transitively on the upper half-plane

X = H2 = fz = x+ iy 2 C : y > 0g;

by linear fractional transformations. Thus for a g 2 G and a z 2 X, we have

gz =
az + b

cz + d
where g =

0
@a b

c d

1
A 2 G:

The stabilizer at the point z = i is SO(2), and hence there is a homeomorphism

H2 � SL(2;R)= SO(2):

We equip H2 with the Poincare metric, so as to get a Riemannian manifold:

ds(z)2 =
dx2 + dy2

y2
:

Then G acts by isometries. The associated G-invariant measure on H2 is given by

d�(z) =
dxdy

y2
:

The theory of automorphic forms emerged from the study of functions on H2 that

are invariant/automorphic under some discrete subgroup of G = SL(2;R). The �rst

such that comes to mind, is the full elliptic modular group

� = SL(2;Z) = f
 =

0
@a b

c d

1
A : a; b; c; d 2 Z and ad� bc = 1g:

The group � is not too small to be of interest. Any fundamental domain has �nite

measure. A concrete fundamental domain for � is the famous

F = fz 2 H2 : �1

2
< Re(z) < +

1

2
and jzj > 1g:

By the Gauss-Bonnet theorem �(F ) = �=3. As one can see, F is not compact. It

has a geodesic ray that stretch out to 1. This is called a cusp. The fact that there

is only one such cusp, is in fact equivalent to the fundamental theorem of arithmetic
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about unique factorization of integers. The space of automorphic functions we are

interested in is

L2(�nX) = square integrable �-automorphic functions:

From the metric ds(z) on H2, we have a corresponding invariant Laplacian

� = y2(
@2

@x2
+

@2

@y2
):

It acts on a dense subspace of L2(�nX) and admits a unique positive self-adjoint

extension L = � ��. This di�erential operator has a continuous spectrum, and in

order to determine it completely one introduces the Eisenstein series

E(z; s) =
X


2�1n�

y(
z)s;

absolutely convergent for Re(s) > 1. This is not square integrable, but it de�nes a

�-automorphic generalized eigenfunction for L:

LE(z; s) = s(1� s)E(z; s):

Now, s(1 � s) is a nonnegative real number if and only if either s is real and 0 �
s � 1 or Re(s) = 1=2. Therefore we need to show that E(z; s) has meromorphic

continuation to this region. In our case, where � = SL(2;Z), this continuation

is accomplished by the Fourier expansion of E(z; s). Clearly, for each y > 0 the

Eisenstein series is invariant under x 7! x + 1 and hence has a Fourier expansion

E(z; s) =
X
l2Z

al(y; s)e
2�ilx:

Using LE(z; s) = s(1� s)E(z; s) we �nd that the al(y; s) satisfy the Bessel equation

a00l (y; s) = f4�2l2 � s(1� s)

y2
gal(y; s):

When l = 0 the space of solutions is spanned by ys and y1�s. Therefore, by looking

at the leading term of E(z; s) we �nd that for some �(s)

a0(y; s) = ys + �(s)y1�s:

This �(s) is called the scattering matrix/coeÆcient. When l 6= 0 the Bessel equation

has two independent solutions. One that increases asymptotically as e2�jljy as y!1,
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and one that decays as e�2�jljy as y!1. Only the decaying solution can appear in

al(y; s), by the polynomial growth of the Eisenstein series. This is
p
yKs�1=2(2�jljy),

where Ks(y) is the Macdonald-Bessel function

Ks(y) =
1

2

Z 1

0

expf�1

2
y(t+

1

t
)gtsdt

t
;

de�ned for y > 0 and all s 2 C . Therefore, when l 6= 0 for some al(s) we have

al(y; s) = al(s)
p
yKs�1=2(2�jljy):

Using the integral representations of al(y; s) as Fourier coeÆcients one can justify

the above, and �nd �(s) and al(s) explicitly. One gets

�(s) =
�(2s� 1)

�(2s)
;

where �(s) = ��s=2�(s=2)�(s) is the completed Riemann zeta-function. It satis�es

the functional equation

�(1� s) = �(s):

Therefore �(s) satis�es �(s)�(1� s) = 1. One also �nds the expression for al(s):

al(s) =
2jljs�1=2�1�2s(l)

�(2s)
;

where �s(l) =
P

djl d
s is the sum of divisors function. Using that �(s) has ana-

lytic continuation we can now use the Fourier expansion to continue E(z; s) to a

meromorphic function on the whole s-plane. Furthermore, using the easy facts that

Ks(y) and jlj�s=2�s(l) are both invariant under s 7! �s, we �nd that E(z; s) satis�es

a functional equation

E(z; s) = �(s)E(z; 1� s):

In this paper we generalize the above to an arbitrary number �eld K. Let r1 be

the number of real places and let r2 be the number of complex places. There is an

associated symmetric space

X = Hr1
2 �Hr2

3 ;

on which G = SL(2;R)r1 � SL(2; C )r2 acts transitively. We consider SL(2; O) as

a discrete co�nite irreducible subgroup � of isometries, by applying the complex
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embeddings of K. This is the Hilbert modular group. The action of G extends to

an action on

P = P1(R)r1 � P1(C )r2 :

The cusps are by de�nition the parabolic �xpoints in P. One can easily check that

these are exactly the image of the natural map P1(K)! P. There are only �nitely

many inequivalent cusps. In fact, there is a canonical bijection

�nfcuspsg � Cl;

denoted by � 7! C�. For each cusp � 2 P we have an Eisenstein series. To de�ne

them we choose a matrix � 2 SL(2; K) � G such that �1 = � and

��1��� = f
0
@u b

0 u�1

1
A : u 2 O� and b 2 a�2g;

for some integral ideal a 2 C�. Also, we �x an ordered basis for O�. Then for each

m 2 Z�, where � = rkO�, we have a character

�m : (R�)r1 � (C �)r2 ! S1

which is trivial on O�. Hence it de�nes a character on the group of principal ideals.

Now, for z 2 X, s 2 C , m 2 Z� and a Grossencharakter � modulo m = O extending

�m the Eisenstein series E�(z; s;m; �) are de�ned as

E�(z; s;m; �) =
NK=Q(a)

2s

�(a)

X

2��n�

nY
i=1

yi(�
�1
z)si;

where si = si(s;m) are given explicitly from the basis for O�. The de�nition is

independent of the choice of �. The Eisenstein series converges absolutely for Re(s)

suÆciently large. We want to study the asymptotics of E�(z; s;m; �) as z ! �0.

We do this by choosing a �0 as above and look at E�(�
0z; s;m; �) as z ! 1. Only

the dependence of y = (y1; : : : ; yn) 2 Rn+ is important, since x = (x1; : : : ; xn) 2
Rr1 � C r2 is bounded within a fundamental domain. Thus we �x a y 2 Rn+ , and

look at E�(�
0z; s;m; �) as a function of x 2 Rr1 � C r2 . Since Eisenstein series are
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automorphic, we �nd that it is b0-periodic where b0 = a0�2. Hence it has a Fourier

expansion

E�(�
0z; s;m; �) =

X
l2b0�

a�;�
0

l (y; s;m; �)e2�iTrK=Q(lx);

where b0� = fl 2 K : TrK=Q(lb
0) � Zg is the dual module and

TrK=Q(x) =
X
i�r1

xi +
X
i>r1

2Re(xi)

for x = (x1; : : : ; xn) 2 Rr1 � C r2 . The Fourier coeÆcients are given by

a�;�
0

l (y; s;m; �) =
2r2

NK=Q(b0)
pjDj

Z
F
b0

E�(�
0z; s;m; �)e�2�iTrK=Q(lx)dx;

where Fb0 is a fundamental mesh for the lattice, D is the discriminant of K and

dx is the usual Lebesgue measure on Rr1 � C r2 . We use this notation keeping in

mind that a�;�
0

l (y; s;m; �) depends on the choice of a scaling matrix �0. In this

paper we compute these. To state the results we introduce some notation. Let us

recall the de�nition of the partial Hecke L-series L(s; �; C), where � : I!S1 is a

Grossencharakter modulo m = O extending �m, and C 2 Cl is an ideal class:

L(s; �; C) =
X
a2C

integral

�(a)

NK=Q(a)s
:

The series is absolutely convergent for Re(s) > 1, and uniformly in Re(s) > 1+ � for

every � > 0. Thus L(s; �; C) de�nes an analytic function for Re(s) > 1. We de�ne

the completed partial L-series by

�(2s; �; C) = 2r2+(s1+���+sr1)(2�)�dsjDjsf
nY
i=1

�(si)gL(2s; �; C);

where si = si(s;m). It is shown in [5] that �(s; �; C) has a meromorphic continuation

to the whole complex plane, and a functional equation

�(s; �; C) = �(d)�(1� s; ��;C 0);

where CC 0 = [d] is the class of the di�erent d. Recall that by de�nition d�1 = O�.

We put an order on the set of cusps and arrange the �(s; �; C�1
� C�0) in a matrix

�̂(s; �) = f�(s; �; C�1
� C�0)g:
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Then the constant term a�;�
0

0 (y; s;m; �) is the �'th entry of the column vector

a�
0

0 (y; s;m; �) = e�
0NK=Q(a

0)s

�(a0)
ys11 � � � ysnn +

�(a0)

NK=Q(a0)2s�2
��

0

(s;m; �)y1�s11 � � �y2�snn ;

where ��
0

(s;m; �) is the �0-th column of

�(s;m; �) = �̂(2s; �)�1�̂(2s� 1; �)P;

where P denotes the permutation matrix corresponding to inversion on Cl. For

nonzero l 2 b0� the Fourier coeÆcient a�;�
0

l (y; s;m; �) is the �'th entry of the column

vector

a�
0

l (y; s;m; �) =
�(a0)

NK=Q(a0)2s�2
a�

0

l (s;m; �)
p
y1 � � �y2nKs�1=2(y; l;m);

where

a�
0

l (s;m; �) = 2dNK=Q(dl)
s�1=2�m=2(l)

�1�̂(2s; �)�1��
0

1�2s(�; l):

Here ��
0

s (�; l) is a column vector whose entries are analogous to the sum of divisor

function, and Ks(y; l;m) is a product of Macdonald-Bessel functions

Ks(y; l;m) = Ks1(2�jl(1)jy1) � � �Ksn(4�jl(n)jyn):

This gives us the analytic continuation of the Eisenstein series. In addition, from

the functional equation for partial L-series we get that

E(z; s;m; �) = �(s;m; �)E(z; 1� s;�m; ��);

where E(z; s;m; �) is the Eisenstein vector with entries E�(z; s;m; �). Therefore

�(s;m; �) is the scattering matrix for the Hilbert modular group. If we conjugate

it by the character table of Cl we get a permuted diagonal matrix. Then it is easy

to see that

det �(s;m; �) = sign(Cl)
Y
 

�(2s� 1;  )

�(2s;  )
;

where  varies over all Grossencharacters modulo m = O extending �m and sign(Cl)

denotes the sign of the inversion map on Cl. For m = 0 we use class �eld theory

and the Artin factorization formula to see that

det �(s; 0; �) = sign(Cl)
�H(2s� 1)

�H(2s)
;
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where �H(s) is the Dedekind �-function of the Hilbert class �eld H. In particular

det �(1=2; 0; �) = �sign(Cl):

We also compute the trace of �(s; 0; �). It is given by

tr �(s;m; �) =
X
 real

�(2s� 1;  
 �)

�(2s;  
 �)
;

where  varies over all real characters of Cl. For s = 1=2 we see that

tr�(1=2; 0; �) = h[2]� 2;

using the analytic properties of �(s;  ) at s = 0, the orthogonality relations for

Cl =Cl2 and the result of Hecke that [d] 2 Cl2.

2. The Hilbert modular group and its cusps

Let us recall a few basic facts about hyperbolic 2-space H2 and hyperbolic 3-space

H3. We always think of H2 as the upper half-plane of C . Points of H2 are denoted

by z = x + iy, and we equip H2 with the Poincare metric

ds(z)2 =
dx2 + dy2

y2
:

The group SL(2;R) acts transitively on H2 by linear fractional transformations, and

these are isometries. The isotropy group at i is SO(2), and we obtain a homeomor-

phism

H2 � SL(2;R)= SO(2):

From the metric on H2 we obtain a measure, which is invariant under the action of

SL(2;R). It is given by

d�(z) =
dxdy

y2
:

Similarly, we always think of H3 as the upper half-space C � (0;1) inside the

quaternions. Points of H3 are denoted by z = x + jy, and we put the following

metric on H3:

ds(z)2 =
djxj2 + dy2

y2
:
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The group SL(2; C ) acts transitively on H3 by linear fractional transformations, and

these are isometries. The isotropy group at j is SU(2), and we obtain a homeomor-

phism

H3 � SL(2; C )= SU(2):

As before, we obtain a measure d�(z) on H3 which is invariant under the action of

SL(2; C ). It is given by

d�(z) =
dxdy

y3
;

where dx is the usual Lebesgue measure on C . In this paper we consider the space

X = Hr1
2 �Hr2

3 :

Points of X are denoted by z = (z1; : : : ; zn), where n = r1 + r2. As a product of

Riemannian manifolds the space X has a metric ds(z)2 and a corresponding measure

d�(z). The group

G = SL(2;R)r1 � SL(2; C )r2

acts transitively on X by isometries. The isotropy group at the point (i; : : : ; j) is

the maximal compact subgroup SO(2)r1�SU(2)r2, and we obtain a homeomorphism

between X and the quotient of G by this subgroup. Throughout this paper we �x a

number �eld K with r1 real primes and r2 complex primes. Hence the degree is

d = (K : Q) = r1 + 2r2:

The in�nite primes are represented by a certain set of embeddings K ! C that

we also �x. In addition we put a total order on this set, such that the �rst r1

embeddings represent the real primes and the remaining r2 embeddings represent

the complex primes. If a 2 K we denote by a(i) the i'th embedding of a. We may

list the embeddings representing the in�nite primes:

a(1); : : : ; a(r1)| {z }
r1 real

; a(r1+1); : : : ; a(n)| {z }
r2 complex

;

where n is the number of in�nite primes of K. We let O denote the ring of integers

in K. Using the embeddings we may identify SL(2; O) with its image � � G under
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the injective homomorphism SL(2; K) ,! G de�ned by0
@a b

c d

1
A 7! (

0
@a(1) b(1)

c(1) d(1)

1
A ; : : : ;

0
@a(n) b(n)

c(n) d(n)

1
A):

The image � � G is called the Hilbert modular group associated to the �eld K. One

can show that � is a discrete, co�nite and irreducible subgroup of G. To explain the

notion of irreducibility, we recall the notion of commensurable groups:

De�nition 2.1. Two subgroups � � G and �0 � G are said to be strictly commen-

surable if the intersection � \ �0 has �nite index in both � and �0. They are said to

be commensurable if �0 is strictly commensurable to g�g�1 for some g 2 G.
Commensurability and strict commensurability de�ne equivalence relations on the

set of subgroups of G. That � is irreducible then means that it is not commensurable

to a direct product �1��2, where �1 � G1 and �2 � G2 are discrete, G1 and G2 are

non-trivial and G = G1�G2. Conversely, in [7] it is shown that any discrete co�nite

irreducible subgroup of G is commensurable to a Hilbert modular group when n > 1.

There is a natural left action of G on

P = P1(R)r1 � P1(C )r2 :

The cusps of � are by de�nition the parabolic �xpoints in P. It is easy to see that

the set of cusps is exactly the image of the map P1(K) ! P. The group � acts on

the set of cusps, and in fact there are only �nitely many inequivalent cusps. Indeed

this number is equal to the ideal class number h.

Proposition 2.2. The number of inequivalent cusps for � is equal to h.

Proof. As we have noted the set of cusps is the image of the map P1(K) ! P. We

thus have a bijection

SL(2; O)nP1(K) � �nfcuspsg:

We are going to establish a bijection between SL(2; O)nP1(K) and the ideal class

group Cl: Each (a : b) 2 P1(K) is mapped to the class of the nonzero fractional

ideal aO + bO. It is easy to see that this map factors and gives a surjective map

SL(2; O)nP1(K)! Cl :
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To prove that this is injective, look at (a : b) 2 P1(K) and (a0 : b0) 2 P1(K) with

aO + bO = a0O + b0O in Cl. We may assume that aO + bO = a0O + b0O = a. Then

we can �nd c; d 2 a�1 and c0; d0 2 a�1 such that

� =

0
@a c

b d

1
A 2 SL(2; K) and �0 =

0
@a0 c0

b0 d0

1
A 2 SL(2; K):

Now we have the following:

(a0; b0)T = �0(1; 0)T = �0��1(a; b)T ;

and by multiplication we see that �0��1 has entries in O and determinant 1. �

The proof gives us a canonical bijection �nfcuspsg � Cl mapping the class of (a :

b) 2 P1(K) to the ideal class of aO + bO. We will denote by C� the ideal class

associated to the cusp �. The following proposition says that we may move an

arbitrary cusp � to1 such that the isotropy groups �� and �1 almost are conjugate.

In many cases, this allows us to consider only the cusp 1.

Proposition 2.3. Let � 2 P be a cusp. Then there exists a � 2 SL(2; K) � G such

that �1 = � and

��1��� = f
0
@u b

0 u�1

1
A : u 2 O� and b 2 a�2g;

for some integral ideal a 2 C�. If �� is another such matrix and �a is the corresponding

ideal, then �� has the form

�� = �

0
@a �
0 a�1

1
A ;

where a is a generator of the principal ideal a�1�a.

Proof. Write � = (a : b) where a; b 2 O and put a = aO+bO. There exists c; d 2 a�1

such that

� =

0
@a c

b d

1
A 2 SL(2; K):
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Clearly �1 = �. To prove the statement about ��1��� consider �rst a 
 2 ��.

Then

��1
� =

0
@u b0

0 u�1

1
A ;

for some u 2 K� and b0 2 K. By looking at the trace we conclude that u 2 O�:

u+ u�1 = tr 
 2 O) u; u�1 2 O) u 2 O�:

By computing the upper right entry of ��1
� it is straightforward to verify that

b0 2 a�2. Conversely, let u 2 O� and b0 2 a�2. Again, by doing the multiplications,

it is straightforward to see that

�

0
@u b0

0 u�1

1
A ��1

�xes �, has entries in O and determinant 1. Thus

��1��� = f
0
@u b0

0 u�1

1
A : u 2 O� and b0 2 a�2g:

It is also clear that the ideal class of a is the class C� associated to �. This proves

the existence. Now suppose �� is another matrix with the desired properties and let

�a be the corresponding ideal. Then

�� = �

0
@a b0

0 a�1

1
A ;

for some a 2 K� and b0 2 K. If we use this to express ���1���� as a conjugate of

��1���, we �nd that a�2�a2 � (a)2. Doing this the other way around we �nd that

a�2�a2 � (a)2. By unique factorization we have a�1�a = (a). �

Any such matrix � as in the proposition is called a scaling matrix for the cusp �.

The integral ideal a is uniquely determined by �. Indeed it is easy to see that a is

the ideal generated by the last row of ��1. We will denote the ideal a�2 by b.
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3. Eisenstein series

In this section we will introduce the Eisenstein series on � essentially as in [1]. Let

us begin by considering the cusp 1. For z 2 X we should look at the series

X

2�1n�

nY
i=1

yi(
z)
si ;

for complex parameters si. However, for this to be wellde�ned the si should satisfy

some condition. Let us explore this further. What we need is that each term should

depend only on the class of 
 in �1n�. This happens if and only if

ju(1)j2s1 � � � ju(n)j2sn = 1;

for all u 2 O�. This is suÆcient to check on some basis u1; : : : ; u� for O
�, where we

have introduced the notation

� = rkO� = r1 + r2 � 1 = n� 1:

We �x this basis for O� (and its ordering). Then the condition we need is that

0
BBB@
log ju(1)1 j � � � log ju(n)1 j
� � � � � � � � �

log ju(1)� j � � � log ju(n)� j

1
CCCA

0
BBB@
s1

� � �
sn

1
CCCA 2 �iZ�:

Hence consider �xed s 2 C and m 2 Z�. Then we want to solve the equation

0
BBBBBB@

log ju(1)1 j � � � log ju(n)1 j
� � � � � � � � �

log ju(1)� j � � � log ju(n)� j
1 � � � 1

1
CCCCCCA

0
BBB@
s1

� � �
sn

1
CCCA =

0
BBBBBB@

�im1

� � �
�im�

ds

1
CCCCCCA
:

There is a unique solution. Indeed the matrix in the equation is invertible as follows

from

Lemma 3.1. Let A = faijg be an n�nmatrix with real entries such that
Pn

j=1 aij =

0 for all i 6= n. Then det(A) does not change if the last row is replaced by any row

with the same coordinate sum.
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Proof. Let B be the new matrix with the replaced row. We claim that det(B) =

det(A) so look at the di�erence:

det(A)� det(B) =
nX
j=1

(�1)n+j(anj � bnj) det(Anj) = det(C);

where C is a matrix where all rows have coodinate sum 0. Thus the columns are

not independent and hence C is singular. �

We can apply the lemma to the above matrix with the last r2 columns multiplied

by 2. We replace the last row by (0; : : : ; 0; d). Then it is easy to see that the

determinant of the above matrix is �2�r2dR where R is the regulator of K. Thus

we may de�ne real numbers eij as follows:

0
BBB@
e11 � � � e1� 1=d

� � � � � � � � � � � �
en1 � � � en� 2=d

1
CCCA =

0
BBBBBB@

log ju(1)1 j � � � log ju(n)1 j
� � � � � � � � �

log ju(1)� j � � � log ju(n)� j
1 � � � 1

1
CCCCCCA

�1

:

The computation of ein deserves an argument: Let v = (e1n; : : : ; enn)
T be the last

column. Clearly it is orthogonal to the vectors

vi = (log ju(1)i j; : : : ; log ju(n)i j)T ;

where i = 1; : : : ; �. However, we have just seen that v1; : : : ; v� are independent.

Clearly Spanfv1; : : : ; v�g is contained in the complement of (1; : : : ; 2)T . Looking at

dimensions we see that Spanfv1; : : : ; v�g in fact is the complement of (1; : : : ; 2)T .

Thus v is a multiple of (1; : : : ; 2)T , and since < v; (1; : : : ; 1)T >= 1 we have v =

1=d(1; : : : ; 2)T . With this notation the solution to the above equation is given by

si = si(s;m) = s+ �i < m; ei >= s+ �i
�X
j=1

mjeij;

when i � r, where ei is the i'th row of the left n � � block of feijg. When i > r

we must replace s by 2s. Thus the Eisenstein series should have parameters z 2 X,

s 2 C , m 2 Z� and be given as

X

2�1n�

nY
i=1

yi(
z)
si ; where si = si(s;m):
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When we consider an arbitrary cusp �, the Eisenstein series should be

X

2��n�

nY
i=1

yi(�
�1
z)si ; where si = si(s;m);

and � is a scaling matrix for �. This still makes sense as a series. However, the

series should not depend on the choice of �. If �� is another scaling matrix for � we

have seen that it has the form

�� = �

0
@a �
0 a�1

1
A ;

where a is a generator of the principal ideal a�1�a. Then (formally at least)

X

2��n�

nY
i=1

yi(��
�1
z)si =

�m(a)

NK=Q(a)2s

X

2��n�

nY
i=1

yi(�
�1
z)si ;

where we have introduced the character �m : (R�)r1 � (C �)r2 ! C 1 by

�m(x1; : : : ; xn) =
nY
i=1

jxij�2�i<m;ei>:

This is trivial on O�, and hence we may consider �m as a character on the group

of principal ideals P . We may extend this character (in h ways) to a character

� : I ! S1. This is a Grossencharakter modulo m = O. No matter what extension

we choose, we have the equality

NK=Q(�a)
2s

�(�a)

X

2��n�

nY
i=1

yi(��
�1
z)si =

NK=Q(a)
2s

�(a)

X

2��n�

nY
i=1

yi(�
�1
z)si:

Thus we are led to the following de�nition of the Eisenstein series

De�nition 3.2. Let � 2 P be a cusp. For z 2 X, s 2 C , m 2 Z� and a Grossen-

charakter � modulo m = O extending �m the Eisenstein series E�(z; s;m; �) are de-

�ned as follows. Choose a scaling matrix � for � with ideal a, and put si = si(s;m).

Then

E�(z; s;m; �) =
NK=Q(a)

2s

�(a)

X

2��n�

nY
i=1

yi(�
�1
z)si;

where 
 runs through a complete set of inequivalent coset representatives of ��n�.
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This de�nition is slightly di�erent from the one in [1]. Note that E�(z; s;m; �)

depend on the ordered basis for O� that we have chosen. If we choose another

ordered basis u01; : : : ; u
0
� and de�ne �0m and Eisenstein series E 0

�(z; s;m; �) as above.

Then it is easy to see that there exists A 2 GL�(Z) such that �0m = �Am and

E 0
�(z; s;m; �) = E�(z; s; Am; �) for any � extending �0m. It is also straightforward

to verify that if � and �0 are equivalent cusps then E�0(z; s;m; �) = E�(z; s;m; �). By

the same arguments as in [1], one can show that the Eisenstein series E�(z; s;m; �)

converges absolutely for Re(s) >> 0 uniformly on compact subsets. E�(z; s;m; �)

has meromorphic continuation to all s 2 C and they satisfy a functional equation:

Choose a complete set of inequivalent cusps, put an order on them and arrange them

in a column vector

E(z; s;m; �) = fE�(z; s;m; �)g:

Then one can show that there exists a matrix �(s;m; �) with meromorphic entries,

such that

E(z; s;m; �) = �(s;m; �)E(z; 1� s;�m; ��):

In fact we shall derive this from the corresponding properties of partial Hecke L-

series. The matrix �(s;m; �) is called the scattering matrix (or Eisenstein matrix),

and it plays a fundamental role in the spectral theory of automorphic forms. From

the functional equation it follows immediately that �(s;m; �) itself satis�es a func-

tional equation:

�(s;m; �)�(1� s;�m; ��) = Ih:

Later we identify the entries of �(s;m; �) in the constant terms of the Fourier

expansions of the Eisenstein series.

4. Normalization of the Eisenstein series

As a function of z 2 X the Eisenstein series E�(z; s;m; �) is a �-automorphic smooth

eigenfunction of the Laplacians in each coordinate. For i � r1 these are given by

�i = y2i (
@2

@x2i
+

@2

@y2i
);
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while for i > r1 they are given by

�i = y2i (
@2

@xi@�xi
+

@2

@y2i
)� yi

@

@yi
:

They are clearly invariant. A general theorem says that a di�eomorphism of a

Riemannian manifold is an isometry if and only if it leaves the Laplace operator

invariant. They are the fundamental operators in the terminology of [6]. We want

to study the asymptotics of E�(z; s;m; �) as z ! �0 within a fundamental domain.

We do this by choosing a scaling matrix �0 for �0, and look at E�(�
0z; s;m; �) as

z ! 1. Only the dependence of y = (y1; : : : ; yn) 2 Rn+ is important, since x =

(x1; : : : ; xn) 2 Rr1 � C r2 is bounded within a fundamental domain. Thus we �x a

y 2 Rn+ , and look at E�(�
0z; s;m; �) as a function of x 2 Rr1 � C r2 . Since Eisenstein

series are automorphic, we �nd that it is b0-periodic where b0 is the ideal of �0 thought

of as a complete lattice in Rr1 � C r2 . Hence it has a Fourier expansion

E�(�
0z; s;m; �) =

X
l2b0�

a�;�
0

l (y; s;m; �)e2�iTrK=Q(lx);

where b0� = fl 2 K : TrK=Q(lb
0) � Zg is the dual module and

TrK=Q(x) =
X
i�r1

xi +
X
i>r1

2Re(xi)

for x = (x1; : : : ; xn) 2 Rr1 � C r2 . The Fourier coeÆcients are given by

a�;�
0

l (y; s;m; �) =
2r2

NK=Q(b0)
pjDj

Z
F
b0

E�(�
0z; s;m; �)e�2�iTrK=Q(lx)dx;

where Fb0 is a fundamental mesh for the lattice, D is the discriminant of K and dx

is the usual Lebesgue measure on Rr1 � C r2 . We use this notation keeping in mind

that a�;�
0

l (y; s;m; �) depends on the choice of a scaling matrix

�0 =

0
@a0 c0

b0 d0

1
A 2 SL(2; K) � G;

for �0. The main result of this paper is the computation of the Fourier coeÆcients

above.
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Lemma 4.1. Let � be a scaling matrix for � with ideal a. Then

E�(�
0z; s;m; �) =

NK=Q(a)
2s

�(a)

X
(C;D)�

(Cd0�Db0;Cc0�Da0)=a

nY
i=1

ysii
jC(i)zi +D(i)j2si

where (C;D)� denotes O�-equivalence.

Proof. Note that the group ��1��� acts on the set ��1��0, and we can write

E�(�
0z; s;m; �) =

NK=Q(a)
2s

�(a)

X

2��1���n��1��0

nY
i=1

yi(
z)
si :

The map that associates the last row to a 
 2 ��1��0, factors and gives a bijection

��1���n��1��0 �
�Pairs (C;D) of C;D 2 K
s.t. (A;B;C;D) 2 ��1��0

for some A;B 2 K

�
=O�:

Thus, we may write

E�(�
0z; s;m; �) =

NK=Q(a)
2s

�(a)

X
(C;D)�

(A;B;C;D)2��1��0

nY
i=1

ysii
jC(i)zi +D(i)j2si :

Now, from the section on the cusps we know that

9A;B :

0
@A B

C D

1
A 2 ��1��0 , (Cd0 �Db0; Cc0 �Da0) = a;

since a is the ideal generated by the last row of ��1. �

Let us brie
y recall the de�nition of the partial L-series L(s; �; C), where � : I!S1

is a Grossencharakter modulo m = O extending �m, and C 2 Cl is an ideal class:

L(s; �; C) =
X
a2C

integral

�(a)

NK=Q(a)s
:

The series is absolutely convergent for Re(s) > 1, and uniformly in Re(s) > 1+ � for

every � > 0. Thus L(s; �; C) de�nes an analytic function for Re(s) > 1. We de�ne

the completed partial L-series by

�(2s; �; C) = 2r2+(s1+���+sr1)(2�)�dsjDjsf
nY
i=1

�(si)gL(2s; �; C);
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where si = si(s;m). It is shown in [5] that �(s; �; C) has a meromorphic continuation

to the whole complex plane, and a functional equation

�(s; �; C) = �(d)�(1� s; ��;C 0);

where CC 0 = [d] is the class of the di�erent d. Recall that by de�nition d�1 = O�.

We �x a complete set of inequivalent cusps, put an order on it and arrange the

partial L-series in an h� h-matrix as follows:

L(s; �) = fL(s; �; C�1
� C�0)g:

We also �x scaling matrices for each of the cusps, and put

E (z; s;m; �) = fE�(�0z; s;m; �)g:

We always assume that 1 is in our set of inequivalent cusps, and that the �xed

scaling matrix there is 1. Then we have the following analogue of proposition 2.5 in

[2]:

Lemma 4.2. Let � be a scaling matrix for � with ideal a. Then

(L(2s; �)E (z; s;m; �))��0 =
NK=Q(a)

2s

�(a)

X
(C;D)�

06=(Cd0�Db0;Cc0�Da0)�a

nY
i=1

ysii
jC(i)zi +D(i)j2si

where (C;D)� denotes O�-equivalence.

Proof. The right hand side is equal to

NK=Q(a)
2s

�(a)

X
ajq

X
(C;D)�

(Cd0�Db0;Cc0�Da0)=q

nY
i=1

ysii
jC(i)zi +D(i)j2si :

We divide the �rst sum into ideal classes, and obtain

NK=Q(a)
2s

�(a)

X
�00

X
ajq

q2C�00

X
(C;D)�

(Cd0�Db0;Cc0�Da0)=q

nY
i=1

ysii
jC(i)zi +D(i)j2si ;

where �00 runs through the complete set of inequivalent cusps. Writing q as q = a00(�),

where � 2 a00�1a, we �nd that this equals

NK=Q(a)
2s

�m(a)

X
�00

X
(�)6=0
�2a00�1a

X
(C;D)�

(Cd0�Db0;Cc0�Da0)=a00(�)

nY
i=1

ysii
jC(i)zi +D(i)j2si :
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Changing variables C ! C=� and D! D=�, we get

NK=Q(a)
2s

�(a)

X
�00

X
(�)6=0
�2a00�1a

�(�)

NK=Q(�)2s

X
(C;D)�

(Cd0�Db0;Cc0�Da0)=a00

nY
i=1

ysii
jC(i)zi +D(i)j2si :

Using the lemma above, and the fact that a�1a00(�) runs through all integral ideals

in the class C�1
� C�00 as � 2 a00�1a, we see that this is equal to the left hand side. �

As we see from lemma 4.1 the Eisenstein series can be written as

E�(z; s;m; �) =
NK=Q(a)

2s

�(a)

X
(C;D)�

(C;D)=a

nY
i=1

ysii
jC(i)zi +D(i)j2si :

We de�ne the normalized Eisenstein series to be

E�
�(z; s;m; �) =

NK=Q(a)
2s

�(a)

X
(C;D)�

06=(C;D)�a

nY
i=1

ysii
jC(i)zi +D(i)j2si :

From lemma 4.2 it follows that

E �(z; s;m; �) = L(2s; �)E (z; s;m; �);

where E �(z; s;m; �) is the matrix with entries E�
�(�

0z; s;m; �). We also de�ne the

completed Eisenstein series to be

Ê�(z; s;m; �) = 2r2+(s1+���+sr1)(2�)�dsjDjsf
nY
i=1

�(si)gE�
�(z; s;m; �):

Then we have the identity

Ê (z; s;m; �) = �̂(2s; �)E (z; s;m; �);

where Ê (z; s;m; �) is the matrix with entries Ê�(�
0z; s;m; �), and

�̂(s; �) = f�(s; �; C�1
� C�0)g:

In particular Ê�(�
0z; s;m; �) is b0-periodic. We compute the Fourier expansion of

it, and from this we get the Fourier expansion of E�(�
0z; s;m; �).



FOURIER EXPANSION OF EISENSTEIN SERIES ON THE HILBERT MODULAR GROUP AND HILBERT CLASS FIE

5. The constant term of the Eisenstein series

We consider the normalized Eisenstein series at the cusp �0. We have

E�
�(�

0z; s;m; �) =
NK=Q(a)

2s

�(a)

X
(C;D)�

06=(Cd0�Db0;Cc0�Da0)�a

nY
i=1

ysii
jC(i)zi +D(i)j2si :

Since E �(z; s;m; �) = L(2s; �)E (z; s;m; �) this is b0-periodic. Hence

E�
�(�

0z; s;m; �) =
X
l2b0�

a�;�
0

l (y; s;m; �)�e2�iTrK=Q(lx);

where the Fourier coeÆcients are given by

a�;�
0

l (y; s;m; �)� =
2r2

NK=Q(b0)
pjDj

Z
F
b0

E�
�(�

0z; s;m; �)e�2�iTrK=Q(lx)dx:

To compute this we divide the series E�
�(�

0z; s;m; �) into the terms with C = 0 and

those with C 6= 0. The terms with C = 0 gives a contribution

NK=Q(a
0)2s

�(a0)
L(2s; �; C�1

� C�0)y
s1
1 � � �ysnn

to E�
�(�

0z; s;m; �). Now consider the terms with C 6= 0. We have a bijection

�Pairs (C;D) of C;D 2 K s.t.
(Cd0 �Db0; Cc0 �Da0) � a

and C 6= 0

�
=O� �

� Pairs (q; �) with
0 6= q � aa0 principal
and � 2 aa0�1q�1

�
;

de�ned by mapping (C;D)� to ((C); D=C). Thus we change variables, and the

contribution from the terms with C 6= 0 can be written

NK=Q(a)
2s

�(a)

X
(C)6=0
C2aa0

�(C)

NK=Q(C)2s

X
�2aa0�1(C)�1

nY
i=1

ysii
jzi + �(i)j2si :

Since C 2 aa0 we have b0 � aa0�1(C)�1. We �x some set of representatives � 2
aa0�1(C)�1=b0, and we write the above as

NK=Q(a)
2s

�(a)

X
(C)6=0
C2aa0

�(C)

NK=Q(C)2s

X
�2aa0�1(C)�1=b0

X
�2b0

nY
i=1

ysii
jzi + �(i) + �(i)j2si :

Now we can compute the constant term a�;�
0

0 (y; s;m; �)�. The contribution from the

terms with C = 0 does not depend on x, so that when we integrate it to get the

Fourier coeÆcient we obtain

NK=Q(a
0)2s

�(a0)
L(2s; �; C�1

� C�0)y
s1
1 � � � ysnn :
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However, when we integrate the contribution from the terms with C 6= 0 we get

�(a0)

NK=Q(a0)2s�2
� 2r2pjDjL(2s� 1; �; C�1

� C�1
�0 )

nY
i=1

Z
ysii dxi

(jxij2 + y2i )
si
:

To end the computation we need to compute the integrals. For i � r1 we haveZ +1

�1

ysii dxi
(x2i + y2i )

si
= �1=2

�(si � 1=2)

�(si)
y1�sii :

See for example [4]. The case i > r1 is much easier:

Z 2�

0

d�i

Z 1

0

ysii ridri
(r2i + y2i )

si
=

�

si � 1
y2�sii :

Thus the contribution to �a�;�
0

0 (y; s;m; �) from the terms with C 6= 0 is

�(a0)

NK=Q(a0)2s�2
�2
r2�d=2pjDj f

Y
i�r1

�(si � 1=2)

�(si)

Y
i>r1

1

si � 1
gL(2s�1; �; C�1

� C�1
�0 )y

1�s1
1 � � � y2�snn :

Thus we have computed �a�;�
0

0 (y; s;m; �). We rewrite this in terms of the completed

partial L-series. It is easy to see that for any ideal class C

�(2s� 1; �; C)

�(2s; �; C)
=

2r2�d=2pjDj f
Y
i�r1

�(si � 1=2)

�(si)

Y
i>r1

1

si � 1
gL(2s� 1; �; C)

L(2s; �; C)
:

If we let â�;�
0

0 (y; s;m; �) denote the constant term of Ê�(�
0z; s;m; �), then the above

shows that it is a sum of a contribution

NK=Q(a
0)2s

�(a0)
�(2s; �; C�1

� C�0)y
s1
1 � � �ysnn ;

and a contribution from the terms with C 6= 0 given by

�(a0)

NK=Q(a0)2s�2
� �(2s� 1; �; C�1

� C�1
�0 )y

1�s1
1 � � � y2�snn :

To get a�;�
0

0 (y; s;m; �) we interpret the above as a matrix equation. We arrange all

the constant terms in a matrix

a0(y; s;m; �) = fa�;�00 (y; s;m; �)g;

and similarly we de�ne â0(y; s;m; �). We let P denote the permutation matrix

corresponding to inversion on Cl,

P = fÆ��(�0)g;
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where � is the permutation of the f�g corresponding to inversion on the class group:

C�(�) = C�1
� :

Then what we have proved above is the following

Lemma 5.1. Let �0 be a �xed cusp. The constant terms are given by

a�
0

0 (y; s;m; �) = e�
0NK=Q(a

0)s

�(a0)
ys11 � � � ysnn +

�(a0)

NK=Q(a0)2s�2
��

0

(s;m; �)y1�s11 � � �y2�snn ;

where ��
0

(s;m; �) is the �0-th column of

�(s;m; �) = �̂(2s; �)�1�̂(2s� 1; �)P;

with notation as above.

Later, when we have computed the remaining terms of the Eisenstein series, we �nd

that the matrix �(s;m; �) in fact is the scattering matrix.

6. The remaining terms of the Eisenstein series

We now compute the Fourier coeÆcients a�;�
0

l (y; s;m; �)� for nonzero l 2 b0�. As

before we divide the series E�
�(�

0z; s;m; �) into the terms with C = 0 and those with

C 6= 0. The terms with C = 0 gives no contribution. The other terms gives

�(a0)

NK=Q(a0)2s�2
� 2r2pjDj��;�

0

1�2s(�; l)

Z nY
i=1

ysii e
�2�iTrK=Q(lx)

(jxij2 + y2i )
si

dx;

where we have introduced the notation

��;�
0

s (�; l) =
X

q2C�1
� C�1

�0

integral
qjb0dl

�(q) NK=Q(q)
s:

To see this note that a� = a�1O�. Note also that b0dl is integral. In particular this

sum is �nite. The integral equals

f
Z +1

�1

ys11 e
�2�il(1)x1dx1

(x21 + y21)
s1

g � � � f
Z
C

ysnn e
�4�iRe(l(n)xn)dxn
(jxnj2 + y2n)

sn
g:

Using the well-known result thatZ +1

�1

e�2�iAt

(1 + t2)s
dt =

2�sjAjs�1=2Ks�1=2(2�jAj)
�(s)

;
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see for example [4], it follows that for i � r1 we haveZ +1

�1

ysii e
�2�il(i)xidxi

(x2i + y2i )
si

=
2�sijl(i)jsi�1=2pyiKsi�1=2(2�jl(i)jyi)

�(si)
:

To compute the last r2 factors we apply the following integralZ +1

�1

Z +1

�1

e�2�i(Au�Bv)

(1 + u2 + v2)s
dudv =

2�sjCjs�1Ks�1(2�jCj)
�(s)

;

where A2 + B2 = C2. To prove this, make a linear change of variables and apply

the integral above. Then for i > r1 we haveZ
C

ysii e
�4�iRe(l(i)xi)dxi
(jxij2 + y2i )

si
=

(2�)sijl(i)jsi�1yiKsi�1(4�jl(i)jyi)
�(si)

:

Now we can put all this together and obtain an expression for a�;�
0

l (y; s;m; �)�. The

best way to state the result is that

â�;�
0

l (y; s;m; �) =
�(a0)

NK=Q(a0)2s�2
�2dNK=Q(dl)

s�1=2�m=2(l)
�1��;�

0

1�2s(�; l)
p
y1 � � �y2nKs�1=2(y; l;m);

where d is the di�erent,

�m=2(l) =
nY
i=1

jl(i)j��i<m;ei>;

and

Ks(y; l;m) = Ks1(2�jl(1)jy1) � � �Ksn(4�jl(n)jyn):

To get a�;�
0

l (y; s;m; �) we arrange them in a column vector

a�
0

l (y; s;m; �) = fa�;�0l (y; s;m; �)g;

and similarly we de�ne â�
0

l (y; s;m; �). We also put

��
0

s (�; l) = f��;�0s (�; l)g:

Then what we have shown is the following

Lemma 6.1. Let �0 be a �xed cusp. For a nonzero l 2 b0� we have

a�
0

l (y; s;m; �) =
�(a0)

NK=Q(a0)2s�2
a�

0

l (s;m; �)
p
y1 � � � y2nKs�1=2(y; l;m);

where

a�
0

l (s;m; �) = 2dNK=Q(dl)
s�1=2�m=2(l)

�1�̂(2s; �)�1��
0

1�2s(�; l)

with notation as above.
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7. The scattering matrix

In the previous two sections we have computed the Fourier expansion of the Eisen-

stein vector E(z; s;m; �) around a cusp �0. We have

E(�0z; s;m; �) =
X
l2b0�

a�
0

l (y; s;m; �)e
2�iTrK=Q(lx);

where the constant term is

a�
0

0 (y; s;m; �) = e�
0NK=Q(a

0)s

�(a0)
ys11 � � � ysnn +

�(a0)

NK=Q(a0)2s�2
��

0

(s;m; �)y1�s11 � � �y2�snn ;

where ��
0

(s;m; �) is the �0-th column of

�(s;m; �) = �̂(2s; �)�1�̂(2s� 1; �)P:

For nonzero l 2 b0� the Fourier coeÆcients are

a�
0

l (y; s;m; �) =
�(a0)

NK=Q(a0)2s�2
a�

0

l (s;m; �)
p
y1 � � �y2nKs�1=2(y; l;m);

where

a�
0

l (s;m; �) = 2dNK=Q(dl)
s�1=2�m=2(l)

�1�̂(2s; �)�1��
0

1�2s(�; l):

Let us put �0 = 1. Using the exponential decay of the Macdonald-Bessel function

and the meromorphic continuation of partial Hecke L-series we see that this gives the

meromorphic continuation of the Eisenstein series. Using the functional equation of

partial Hecke L-series we shall now derive the functional equation of the Eisenstein

vector. First we check that

�(s;m; �)�(1� s;�m; ��) = Ih:

This follows immediately from the relation

�̂(s; �)P = �(d)Pd�̂(1� s; ��);

where Pd is the permutation matrix

Pd = fÆ�(�);�0g;

where � is the permutation of the f�g given by

C�1
�(�) = [d]C�:
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Macdonald-Bessel functions are even in the s variable, and hence

K�s(y; l;�m) = Ks(y; l;m):

The last relation we need in order to prove the functional equation is

Lemma 7.1. Pd�
�0

s (�; l) = NK=Q(b
0dl)s�(b0dl)��

0

�s(��; l):

Proof. By de�nition of � we see that

(Pd�
�0

s (�; l))� =
X

q2[d]C�C
�1
�0

integral
qjb0dl

�(q) NK=Q(q)
s:

There is a bijection

�q 2 [d]C�C
�1
�0

integral
qjb0dl

�
�
�q 2 C�1

� C�1
�0

integral
qjb0dl

�
;

given by q 7! q�1b0dl. Hence

(Pd�
�0

s (�; l))� =
X

q2C�1
� C�1

�0

integral
qjb0dl

�(q�1b0dl) NK=Q(q
�1b0dl)s;

and the claim follows immediately. �

Now a straightforward calculation gives us the functional equation

E(z; s;m; �) = �(s;m; �)E(z; 1� s;�m; ��):

Thus we have �nally identi�ed the scattering matrix.

Theorem 7.2. The scattering matrix for the Hilbert modular group is

�(s;m; �) = �̂(2s; �)�1�̂(2s� 1; �)P;

with notation as above.
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8. The scattering determinant

In this section we compute the scattering determinant det �(s;m; �) in terms of

Hecke L-series. In order to do so we must compute det �̂(s; �). For this purpose we

have the following well-known result:

Proposition 8.1. Let G be a �nite abelian group, and f any function. Then

det
a;b

f(a�1b) =
Y
 2G�

X
a2G

 (a)f(a);

where G� = f g is the group of characters.

Proof. Let X(G) denote the jGj-dimensional complex vector space of functions on

G. It has two canonical bases:

(1) The characters f :  2 G�g,

(2) The functions fÆb : b 2 Gg where Æb(x) = Æx;b.

For each a 2 G we have the linear map Ta on X(G) de�ned by Taf(x) = f(ax). We

weight all these Ta using f and consider the linear map

T =
X
a2G

f(a�1)Ta:

To derive the Dedekind determinant relation we compute detT using the two canon-

ical bases. It is clear that

T = f
X
a2G

 (a)f(a�1)g ;

for every  2 G�. Hence the �rst basis is a basis of eigenvectors, so that

detT =
Y
 2G�

X
a2G

 (a)f(a�1) =
Y
 2G�

X
a2G

 (a)f(a):

On the other hand a straightforward computation shows that

TÆb =
X
a2G

f(a�1b)Æa:

Thus we also have

detT = det
a;b

f(a�1b):

Comparing these two expressions for detT �nishes the proof. �
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Using this proposition we can now proceed with our calculation. It follows that

det �̂(s; �) =
Y
 2Cl�

�(s;  
 �):

As  varies over Cl� the product  
 � varies over all Grossencharacters modulo

m = O extending �m. We thus have

Corollary 8.2. The scattering determinant for the Hilbert modular group is

det �(s;m; �) = sign(Cl)
Y
 

�(2s� 1;  )

�(2s;  )
;

where  varies over all Grossencharacters modulo m = O extending �m.

As we see det �(s;m; �) does not depend on �, so we use the notation

�(s;m) = det�(s;m; �):

In the corollary sign(Cl) denotes the sign of the inversion map on Cl. This is given

by

sign(Cl) = (�1)(h�h[2])=2;

where h[2] = ]Cl[2]. In the case where K is an imaginary quadratic �eld (as in [2]),

the 2-torsion h[2] can be expressed via genus theory as

h[2] = 2t�1; where t is the number of primes dividing D.

See for example [3]. We now consider the particularly interesting case where m = 0.

Then

�(s; 0) = sign(Cl)
Y
 2Cl�

�(2s� 1;  )

�(2s;  )
;

and via class �eld theory we can interpret this in terms of the Hilbert class �eld

H = the maximal unrami�ed abelian extension of K.

Here unrami�ed means everywhere unrami�ed, also at the in�nite places (so real

places stay real). The Artin map induces an isomorphism

r : Cl � Gal(H=K)



FOURIER EXPANSION OF EISENSTEIN SERIES ON THE HILBERT MODULAR GROUP AND HILBERT CLASS FIE

mapping p 7! Frp. It is known that the Artin L-function

�(s;  Æ r�1; H=K) = �(s;  ):

See for example [5]. Then the Artin factorization formula gives

�H(s) =
Y
 2Cl�

�(s;  );

where �H(s) is the Dedekind �-function of H. Recall that for a number �eld K we

have

�K(s) = 2r2(1�s)��ds=2jDjs=2�(s=2)r1�(s)r2�K(s):

This satis�es the functional equation �K(1 � s) = �K(s). Since H is everywhere

unrami�ed, real places stay real, so the Dedekind �-function of H is then given by

�H(s) = 2hr2(1�s)��hds=2jDH js=2�(s=2)hr1�(s)hr2�H(s):

Then what we have shown is the following

Corollary 8.3. For m = 0 the scattering determinant is given by

�(s; 0) = sign(Cl)
�H(2s� 1)

�H(2s)
;

with notation as above.

Using this corollary we can give the following analytic interpretation of sign(Cl) in

terms of the central critical value of �(s; 0):

Corollary 8.4. �(1=2; 0) = �sign(Cl).

Proof. It is a fact that the only poles of �H(s) are s = 0 and s = 1. They are known

to be simple, and their residues are given as follows:

Ress=0 �H(s) = �2hr1hHRH

wH
and Ress=1 �H(s) = +

2hr1hHRH

wH
:

For the proof of these facts see [5]. Then we have

�(s=2; 0) = sign(Cl)
(s� 1)�H(s� 1)

(s� 1)�H(s)
!� sign(Cl);

as s!1. Hence �(1=2; 0) = �sign(Cl) as we claimed. �
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9. The scattering trace

In this section we compute the scattering trace tr�(s;m; �) in terms of Hecke L-

series. To compute the trace of

�(s;m; �) = �̂(2s; �)�1�̂(2s� 1; �)P;

we diagonalize �̂(s; �). From the proof of the Dedekind determinant, we get that

�̂(s; �) =M�1 diag(: : : ;�(s;  
 �); : : :)M;

where M is the unitary matrix given by the character table

M = f 1p
h
� (C�)g:

It follows from this that we may write the scattering matrix as

�(s;m; �) =M�1 diag(: : : ;
�(2s� 1;  
 �)

�(2s;  
 �)
; : : :)PMM;

where PM = MPM�1. Using the fact that M is unitary and the orthogonality

relations, we see that PM is the permutation matrix corresponding to inversion on

Cl�. From this the following corollary follows immediately.

Corollary 9.1. The scattering trace for the Hilbert modular group is

tr �(s;m; �) =
X
 real

�(2s� 1;  
 �)

�(2s;  
 �)
;

where  varies over all real characters of Cl.

We want to compute the central scattering trace tr �(1=2; 0; �), the main motivation

being that (at least for totally real �elds) it occurs in the trace formula. See [1].

From the functional equation it follows that for real � we have

tr�(1=2; 0; �) =
X
 real

(�1)m  (d);

where m is the order of vanishing of �(s;  ) at s = 0. By the work of Hecke and

Tate we know that �(s;  ) is entire if  6= 1. By the Artin factorization formula and

the computation of residues for Dedekind �-functions, we thus see that m = 0 if
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 6= 1. If on the other hand  = 1 we know that m = �1. Using the orthogonality
relations for the group Cl =Cl2 it follows that

tr�(1=2; 0; �) = h[2]� 2;

when [d] 2 Cl2. It is a result of Hecke that this condition is always satis�ed. Thus

we have

Corollary 9.2. For real � the central scattering trace is given by

tr�(1=2; 0; �) = h[2]� 2;

with notation as above.

When K is quadratic imaginary we can rewrite this via genus theory and obtain the

expression in [2]. We note that we can easily derive the formula

�(1=2; 0) = �sign(Cl)

from the above. Let A = �(1=2; 0; �). Then A2 = Ih and hence it has eigenvalues

�1. Let m� be the multiplicities. Then we have

m+ +m� = h and m+ �m� = h[2]� 2.

From this it follows that

m+ =
1

2
(h+ h[2]� 2) and m� =

1

2
(h� h[2] + 2),

and we see that detA = (�1)m� = � sign(Cl).
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