PhD Thesis 2001

Department of Operations Research
University of Aarhus

Multicriteria Analysis
on Network and Location Problems

Anders J.V. Skriver

g’ﬂT IN
\d @ P@O

5is

s A

>

"%,
7
0)
Vsis.s1an®

Preface

In August 1997 I started working on the Bicriterion Shortest Path (BSP) problem. This
was meant as an introduction to the field of multicriteria network problems. The BSP
problem is one of the simple problems in the field, yet it is still NP complete. I wrote
down comments on the related papers in the form of a short survey paper “A Classification
of Bicriteria Shortest Path (BSP) algorithms” (Paper A). Together with my supervisor
Kim Allan Andersen, we have found a preprocessing rule for the label correcting solution
approach presented in “A label correcting approach for solving bicriterion shortest path
problems” (Paper B).

In the late spring of 1998 I started to investigate the Bicriterion Semi-obnoxious Planar
Location (BSPL) problem. This was inspired by the plans of building a new international
airport near the city of Aarhus, Denmark. Together with Kim Allan Andersen, we have
set up a bicriterion model for this problem, and adapted an approximate solution method
called Big-Square-Small-Square (BSSS). In the spring of 1999 I started to apply the same
method in the network model of the same location problem (BSNL), and we have presented
both models in “The Bicriterion Semi-obnoxious Location (BSL) Problem Solved by an
e-Approximation” (Paper C).

In the late spring of 1999 I visited professor Horst Hamacher at the University of Kaisers-
lautern, Germany, for four months. During this period I have worked together with Prof.
Hamacher on a general exact solution method for the multicriteria location problem on
a network with both pull and push objective functions. The results are presented in
“Multicriteria Semi-obnoxious Network Location (MSNL) Problems with Sum and Center
Objectives” (Paper D).

In the early spring of 2000 professor Kaj Holmberg, Linkoping Institute of Technology,
Sweden, visited our department. Together with Kim Allan Andersen we started a re-
search project on an extension of the MSNL problem, where the edge-lengths are made
criteria dependent. The resulting problem is a mix of the BSP and the MSNL problems.
The results are presented in “Bicriteria Network Location (BNL) problems with criteria
dependent lengths and minisum objectives” (Paper E).

During the spring of 2000 I started an application oriented project together with Morten
Riis, a PhD student at our department, and Jgrn Lodahl, Sonofon. During several meet-
ings at Sonofon, we formulated a two-stage stochastic programming model, to describe a
capacity expansion problem. The results are presented in “Network planning in telecom-
munications: A stochastic programming approach” (Paper F).

In the late fall 2000, Kim Allan Andersen and I invited Matthias Ehrgott, University

ii

of Auckland, New Zealand, to visit our department. During his stay Matthias and I
formulated an algorithm for the Max-ordering (MO) problem in a combinatorial context.
The results are presented in “Solving Biobjective Combinatorial Max-Ordering Problems
by Ranking Methods and a Two-Phases Approach” (Paper G).

Acknowledgments

Credits are due to Horst Hamacher, Matthias Ehrgott, Stefan Nickel, Kaj Holmberg, Jorn
Lodahl, Morten Riis, Lars Relund Nielsen, Philip Melchiors and my supervisor Kim Allan

Andersen.

Publication status

e Paper A: A Classification of Bicriteria Shortest Path (BSP) Algorithms,
Asia-Pacific Journal of Operational Research 17, (2000), 199-212. A.J.V. Skriver.

e Paper B: A label correcting approach for solving bicriterion shortest path
problems, Computers and Operations Research 27, (2000), 507-524. A.J.V. Skriver
and K.A. Andersen.

e Paper C: The Bicriterion Semi-obnoxious Location (BSL) Problem Solved

by an e-Approximation, Submitted. A.J.V. Skriver and K.A. Andersen.

e Paper D: Multicriteria Semi-obnoxious Network Location (MSNL) Prob-
lems with Sum and Center Objectives, Submitted. H.W. Hamacher, M. Labbé,
S. Nickel and A.J.V. Skriver.

e Paper E: Bicriteria Network Location (BNL) problems with criteria de-
pendent lengths and minisum objectives, Submitted. A.J.V. Skriver, K.A.
Andersen and K. Holmberg.

e Paper F: Network planning in telecommunications: A stochastic program-
ming approach, Submitted. M. Riis, A.J.V. Skriver and J. Lodahl.

e Paper G: Solving Biobjective Combinatorial Max-Ordering Problems by
Ranking Methods and a Two-Phases Approach, Submitted. M. Ehrgott and
A.J.V. Skriver.

All seven papers are expected to be published in international, reviewed journals.

Contents
Preface
Publication Status

1 Introduction

1.1 Terminology of multicriteria analysis

The Bicriterion Shortest Path (BSP) problem

2.1 Themodel.

2.2 Solution approaches L

2.3 The Brumbaugh-Smith and Shier algorithm

2.4 The improvements Lo e e
24.1 ConditionI
242 Condition IT.o

2.5 Computational results o o oo

2.6 Conclusions on the BSP problem

Bicriteria combinatorial Max-Ordering (MO) problems

3.1 Theoretical motivation L L

3.2 Two-phases algorithm oL

3.3 K-best algorithms

3.4 Phase 1 heuristic for the multiobjective case
3.4.1 Imitialization
3.4.2 Stopping criterion Lo
3.4.3 The algorithm oL

3.5 Conclusions on MO problems

Approximate solution of semi-obnoxious location problems

4.1 The planar case : The BSPL problem
4.1.1 The idea of the Big Square Small Square (BSSS) algorithm
4.1.2 Calculating lower bounds 0oL
4.1.3 Exact lower bound Lo Lo o

4.2 The network case : The BSNL problem
4.2.1 The Edge Dividing (ED) algorithm
4.2.2 Calculating lower bounds 0oL
423 Exactbounds

11
11
13

14
14
15
18
19
20
21
22
22

v

4.3 Comparison of the BSPL and the BSNL problems 31
4.4 Conclusions on approximation methods 31
5 Multicriteria Semi-obnoxious Network Location (MSNL) problems 33
5.1 Problem formulation and definitions L. 33
5.1.1 Example.o 36
5.2 General solution method for the @ criteriacase 38
5.2.1 Locating the new facility inanode 38
5.2.2 Locating the new facility on a directed network 38
5.2.3 Locating the new facility on an undirected network 38
5.3 Bicriteriacase L 41
5.4 Computational results o oo oL 42
5.5 Conclusions on the subedge comparison approach 44

6 Bicriteria Network Location (BNL) problems with criteria dependent
lengths and minisum objectives 45
6.1 Problem formulation o o0 o 45
6.2 Example 47
6.3 Two-phases approach Lo 48
6.3.1 Benders’ decomposition in Phase 1 50
6.3.2 Phase2 52
6.4 Conclusions on the BNL problem 54
7 A stochastic programming model for capacity expansion at Sonofon 55
7.1 A two-stage stochastic programming model o6
7.2 Scenario decomposition Lo oL o o7
7.3 About the Sonofon problem o oo 58
References 60
Paper A - BSP Survey 67
Paper B - BSP Label Correcting 83
Paper C - BSL Approximate 105
Paper D - MSNL Subedge Comparison 127
Paper E - BNL 151
Paper F - Sonofon 167

Paper G - MO 183

Summary 197

Introduction 1

1 Introduction

Multicriteria analysis on networks is the main theme of this thesis, but I have also looked at
two different problems. A planar location problem and a single objective network problem

arising in mobile telecommunications.

Multicriteria analysis is focused on mathematical optimization problems with more than
one objective. There is a general theory for the overall problem class, but the results
are of course very general. I try to develop this theory further for problems in which
some structural knowledge can be used to achieve a better solution procedure. Most of
the problems are network problems, and as such they can be formulated as integer pro-
gramming problems with more than one objective. Since most integer linear programming
problems are N'P-complete, these problems are at least as hard. It should be mentioned
that problems that are polynomially solvable with one objective, may be N P-complete
with two objectives. This is the case for the Shortest Path (SP) problem.

I will shortly describe the relevant problems, followed by an introduction to the basic
concepts of multicriteria analysis. The first problem is the Bicriteria Shortest Path (BSP)
problem described in more detail in Section 2. This obvious generalization of the tradi-
tional shortest path problem, in which one has to find the shortest (cheapest) path from
a source node s to a terminal node £. In the BSP problem we simply have two objectives,

namely time and cost. This model reveals the trade-off between the two objectives.

The second problem is the Max-ordering (MO) problem, examined in a combinatorial
context. Here the objective is to minimize the maximum objective value. This problem
arises as a subproblem in general multicriteria solution approaches such as the interactive

weighted Tchebycheff method. The problem is described in detail in Section 3.

The third problem is the single facility location problem where different variants are de-
scribed in Sections 4, 5 and 6. The problem is to locate one new facility in a scenario with
a number of existing facilities. The new facility will of course interact with the existing
facilities, and this interaction is assumed to depend on the distance between the new and
the existing facilities. The way this interaction takes place is represented by the objective
function(s). In the single objective case, this problem has been well studied, and the two
most common objectives are the median (minimizing the sum of weighted distances) and
the center (minimizing the maximum weighted distance). These two objectives represent
a pull effect, meaning that the new facility is favored, consequently the distance should
be minimized. If we consider an undesirable (obnoxious) facility the objective reflects

that the distance between the existing facilities and the new facility should be maximized.

2 Introduction

This is often referred to as a push effect. The two most obvious objectives for this prob-
lem is the anti-median (maximizing the sum of weighted distances) and the anti-center
(maximizing the minimum weighted distance). These problems with different objectives
have been examined both in the plane and on networks. In the plane there are different
possibilities to measure the distance, the most popular being the [P-norm. When a facility
is both favored and obnoxious it is referred to as semi-obnoxious.

The final problem is somewhat different from the above-mentioned problems. The problem
of expanding the capacity of a mobile communications network, modeled by a two stage
stochastic program, was inspired by a problem instance at Sonofon. The model is described

in Section 7.

1.1 Terminology of multicriteria analysis

I will now introduce some concepts in multicriteria analysis. For a textbook introduction
see Steuer [68] or Ehrgott [24]. Consider the following general multicriteria problem:
min f!(z)
min f2(z)
. . (1)
min f*(x)
s.t.
rx €S
S € IR™ is the set of feasible solutions, and f(z) = (f'(z),..., f*(z)). Solving the mul-
ticriteria problem means finding the optimal solution. But what is an optimal solution,
when we have k objective functions instead of one? The answer is efficient solutions.
A solution is called efficient (Pareto optimal) if we cannot improve one objective value

without worsening another. The mathematical definition of efficiency is as follows.

Definition 1 A point x € S is efficient iff there does not exist a point T € S such that

f(z) < f(z) with at least one strict inequality. Otherwise x is inefficient.

Please note that efficient points are the same as Pareto optimal points. A less restrictive

definition of efficient points, called weakly efficient points is defined as follows.

Definition 2 A point x € S is weakly efficient iff there does not exist a point T € S
such that f(z) < f(z), i.e. fY(z) < fi(z)Vi=1,...,k.

Efficient points are defined in decision space. There is a natural counterpart in criterion
space, where the criterion space Z is defined as Z = {z € R¥|3z € S,z = f(x)}. Thus the

criterion vectors correspond to the image of a mapping of all the feasible solutions to (1).

Introduction 3

Definition 3 z(z) € Z is a nondominated criterion vector iff x is an efficient solution.

Otherwise z(x) is a dominated criterion vector.

In the above Definition 3 we have used that z(z) = f(z). The set of efficient solutions
are denoted Xp,,-, and the set of nondominated criterion vectors are denoted Zp,, and is
given by Zpar = 2(Xpar).

Since the decision maker’s utility function is usually unknown (also to herself), a solution
to (1) is to find all efficient solutions (or all nondominated vectors).

The criterion vectors can be partitioned into two kinds, supported and unsupported. The
supported can then be further divided into supported extreme and supported non-extreme.

Following the terminology of Steuer [68] we define ZZ :
22 = Conv(Zpar ® {z € R¥|z > 0}) = Conv(Zpae,) @ {z € R*|z > 0}

where @ signifies set addition and C'onv means convex hull. From this set we can charac-

terize the different criterion vectors.

Definition 4 z € Zp,, is a supported nondominated criterion vector if z is on the

boundary of Z=. Otherwise z is an unsupported nondominated criterion vector.

It is important to note that unsupported nondominated criterion vectors are dominated

by a convex combination of other nondominated criterion vectors.

Definition 5 z € Zp,, is a supported extreme nondominated criterion vector if z s

an extreme point of Z=.

Among the supported nondominated criterion vectors the extreme vectors are the most
important, because they can be found as extreme point solutions when minimizing a convex
combination of the k objective functions. This is mainly interesting when the objective
functions are linear, which is often the case. We define the objective function Wz, \) as

follows:
k .
W(z,\) =) Aif'(e), A€ A (2)
1=1

where A = {\ € R¥|\; > 0, Zle Ai = 1}. The function W (z, A) is a convex combination,
or weighted sum, of the k objective functions. If S is a convex set and f* are convex
functions, then optimizing (2) with different \ vectors will give the supported (extreme)

nondominated vectors (Geoffrion [34]). Therefore, it is often referred to as the weighting

4 Introduction

method or the Parametric method. Because unsupported nondominated criterion vectors
are dominated by a convex combination of supported nondominated criterion vectors,
unsupported nondominated vectors cannot be found by the weighting method. This is
illustrated in Figure 1. The solution(s) z in decision space corresponding to a supported

(extreme) criterion vector can be referred to as a supported (extreme) solution.

It is often convenient to initially solve the problem with respect to the k£ objectives in-
dependently in order to find the respectively minimal values. Actually, it is often better
to solve a slightly perturbed version of the k problems in order to avoid weakly efficient

points. Assume € is a very small strictly positive constant. Then solve

in £t J -
glelgf(x)Jrer(x) Vi=1,...,k (3)
J#i
and denote the corresponding optimal solutions z',...,z*. Let f* = fi(2') Vi. The

pay-off table in Table 1 then lists how the individually optimal solutions are located in

relation to each other. The diagonal elements form the ideal point f* = (f*,..., f**).
:L’l :L’2 PECEEY :L’k
LM i@ e i)
VA €20 T SRR 4 O
A I A€o T A €7 BRI

Table 1: Pay-off table.

The Bicriterion Shortest Path (BSP) problem 5

2 The Bicriterion Shortest Path (BSP) problem

The BSP problem is one of the simplest problems in multicriteria integer analysis, but
nevertheless also one of great importance in many applications. One of them being trans-
portation problems with more than one objective. Furthermore, the BSP problem often
occurs as a subproblem in other problems like scheduling problems. It also occurs as a

subproblem in models for transportation of hazardous materials, see Erkut et al. [29].

2.1 The model

Let us formulate the problem mathematically. We are given a strongly connected directed
network or a digraph G = (N,€) where N' = {1,...,n} is the set of nodes and & =
{(i,7), (k,1),...,(p,q)} is a finite set of directed edges (arcs) joining nodes in A. Parallel
edges are allowed. Each edge (i,7) € € carries two attributes denoted by (c;j,1;;). Often
these coefficients are assumed to be positive, but it is enough to require that no negative
cycles exist. For simplicity assume that c;; is the cost using edge (¢, j) and #;; is the travel
time from node 4 to node j (using the edge (,7)). The objective is to find the set of
efficient paths from a particular node, the source node s € N, to another particular node,

the terminal node ¢ € N. Traditionally, the BSP problem is formulated as follows:

min c(z) = > ¢z
(i,5)€€
min t(z) = Y iz
(i,5)€€
s.t.
4
1 ifi=s @
Tij — Z Tjj = 0 if’i#s,t
{ilGi.g)ee} {ilG.ee} -1 ifi=t

Tij € {Oal}a v (’Luj) €c

The constraints in (4) yield a directed path from source node s to terminal node ¢ and the
two objectives are to find the minimum cost s — ¢ path and the minimum travel time s — ¢
path, respectively. The problem is known to be NP-complete by transformation from a
0-1 knapsack problem, Garey and Johnson [33].

It is well-known that the constraint set in (4) defines an integral polytope (the constraint-
matrix is totally unimodular). Therefore, if the linear relaxation of (4) is solved using the
weighting method, the set of supported (extreme) efficient paths is found. Unfortunately
there may be a lot of unsupported efficient paths such as D indicated in Figure 1.

Being interested in the set of efficient paths, it is not a satisfactory compromise just finding

the set of supported efficient paths.

6 The Bicriterion Shortest Path (BSP) problem

Criterion 2

Criterion 1

Figure 1: D is an unsupported, nondominated criterion vector.

2.2 Solution approaches

To our knowledge there are four survey papers including the BSP problem, Zionts [77],
Rasmussen [63], Ulungu and Teghem [73] and Paper A [65]. The first two references
survey the general multicriteria integer programming problem for which the BSP is a
special case, and both papers are relatively old. The third reference surveys many of the
papers also included in Paper A. The main contribution of Paper A is a classification of
the existing solution methods, and a ranking of the methods based on the algorithmic
structure. Ehrgott and Gandibleux [25] have recently written a bibliography paper on
Multiobjective Combinatorial Problems (MOCO) containing more than 350 references,

including also the BSP problem.

There are generally two main approaches, a path/tree approach and a node labeling
approach, see Figure 2. Each of the two main approaches are again divided into two.
The path/tree approach splits into the K’th shortest path approach and the Two-Phases
method. The node labeling approach splits into a Label Setting and a Label Correcting
approach.

In a path approach we examine different path vectors, and try to find the efficient ones.
Similarly, we investigate the m dimensional incidence vectors that characterize the dif-
ferent spanning trees in a tree approach. Since there are usually many edges compared
to the number of nodes and there may be exponentially many spanning trees, a labeling
approach that compares values in the two-dimensional criterion space at each node may be

advantageous. In a Label Setting approach one label is made permanent in each iteration

The Bicriterion Shortest Path (BSP) problem 7

Path/Tree

Node Labeling

Label Correcting

Label Setting

Figure 2: Classification of BSP algorithms.

K’th shortest path

and in a Label Correcting approach all labels are changeable until the stop criterion is
fulfilled.

K’th shortest path | Climaco and Martins [16]

Two-Phases Coutinho-Rodrigues, Climaco and Current [19]
Mote, Murthy and Olson [55]
Label Setting Hansen [40], Martins [50] algorithm 1, Tung and Chew [72]

Label Correcting | Brumbaugh-Smith and Shier [10], Corley and Moon [18],
Daellenbach and DeKluever [20], Skriver and Andersen [66]

Table 2: Classification of references.

In Table 2 we list the references that fall in the four categories. The number of references
applying a labeling approach indicates that this is the most successful approach. The
second phase in Coutinho-Rodrigues, Climaco and Current [19] is actually an K’th shortest
path approach, and the first phase solves the LP relaxation of (4). The second phase of
Mote, Murthy and Olson [55] is a Label Correcting approach, and their first phase solves
an LP relaxation of a spanning tree problem closely related to (4). In Paper A the four

different approaches are discussed in more detail.

Next we illustrate the complexity of the BSP problem by a small example. We use the
example to explain why the node-labeling approach is better than the path/tree handling
procedure. For clarity remember that efficient paths are in the (high dimensional) decision
space, and the nondominated values are in the (two-dimensional) criterion space. The
example is similar to one found in Hansen [40], and is presented in more detail in Paper
B [66].

8 The Bicriterion Shortest Path (BSP) problem

(1,32) (2,16) (4,8)

(32,1) (16,2) (8,4)

Figure 3: Example with exponentially many nondominated values.

Here we choose the edge coefficients, so that the sum of the smaller coefficients is less than
that of the next. This is achieved by the following numbers, 2¢, i = 0,1,2,...,|&| — 1.
In this example that is 1,2,4,8,16,32, which we then pair from each end of the list as
shown in Figure 3. These power of two coefficients are often used in MOCO problems to
illustrate that the problem is intractable, which means that the number of (different)
efficient solutions may grow exponentially.

The 8 paths in the network in Figure 3 are all efficient having the following 8 nondomi-
nated values: (7,56), (11,52), (21,42), (25, 38), (38,25), (42,21), (52,11) and (56,7). By
choosing the edge coefficients this way we get 2V 1l nondominated values.

From this special case of the BSP problem we make two observations. The number of
efficient paths may grow exponentially in the number of nodes, namely oV —1 and the
number of efficient paths is always greater than or equal to the number of nondominated
values, because we may have paths with the same objective function values. The last
observation can also be made from Definition 3, because Zpy, = z(Xpqr). If all edge-
weights are (1, 1), there is only one nondominated value, namely (3, 3), but all 8 paths are

efficient.

2.3 The Brumbaugh-Smith and Shier algorithm

The algorithm below is taken directly from Brumbaugh-Smith et al. [10]. It is included
to make the presentation self-contained, because the preprocessing rules in Section 2.4 are
designed for this particular algorithm.

Let D(i) = {(c1(é),t1(2)), -+, (cp(2),tp(é)) } be the label-set at node 4 containing p labels.
At each step these labels are nondominated by any other label in the set. The labels are
sorted by increasing cost values. The set Labeled is a set of nodes that needs to be exam-
ined. The FIFO principle is used to select nodes from the set Labeled as recommended in
Brumbaugh-Smith et al. [10]. By out(i) we refer to the nodes j for which (i,5) € £. The

merge operator of the sets A and B is defined as

Merge(A,B) = (AUB)\{z€ AUB |3z € AUB:z <z}

The Bicriterion Shortest Path (BSP) problem 9

This means that after the sets are joined all dominated labels are deleted.

Algorithm 2.3:

1. Initialize:

D(s) ={(0,0)};
Labeled={s};

2. while Labeled # O

choose 7 from Labeled;
Labeled=Labeled-{i};
for j € out(i)
D (j) = Merge(D(5), D(i) + (cij, tij));
If D(j) # D (j) then
D(j) = Dum(j);
If j is not in Labeled then (avoids double labeling)
Labeled = Labeled + {j};

In this algorithm the merge operation uses the main part of the computational effort. Our
intention was to discard “expensive” edges before the merge operation is carried out in
order to reduce computation time. The merge operation implemented is the “modified
merge” operation found in Brumbaugh-Smith et al. [10]. This operation is in linear time

as a function of the sizes of the two sets to be merged.

2.4 The improvements

We originally had two suggestions for improvements, referred to as Condition I and II,
that were both based on the idea of omitting “expensive” edges before the Merge in the
algorithm. At each iteration in the routine, we are looking at an edge (7,7) from some

node ¢ to another node 7, see Figure 4.

2.4.1 Condition I

The Condition I is a fast predomination check, which rules out “expensive” edges by

considering the present set of labels. Consider again two particular nodes, ¢ and j, and

10 The Bicriterion Shortest Path (BSP) problem

Figure 4: Evaluating the (7, j)-edge.

the sets of labels D(i) and D(j) at these two nodes. Assume that the two label-sets are
non-empty, and that

D(i) = {(er(2),81(2)), - (ex(8), 2 (2))} and D(5) = {(c1(5),22(9)); -+~ (¢q(9), 14 (9))}

Cl(i) < CQ(i) <0 < Ck(i) and tl(i) > tQ(i) > > tk(i)

c1(f) <caly) <--- <egld) and t1(5) > t2(4) > -+ > 1)

We are now looking at the edge from node ¢ to node j. Consider the two distinct but

similar situations:

e Assume that ¢ (i) + ¢;j > ¢4(j). In this case we have:

c1(j) <e2(y) < <eeli) < ali) +eij <o <cgld) + iy

ti(g) > ta(g) > - >te(g) 7 (@) +ty > > t(9) + by

So, if t(¢) 4 t;; > t4(7), then the set D(i) + (c;ij,t;5) is dominated by the set D(j).
In fact, the set D(i) + (c;j, ti;) is dominated by the last label ¢ of D(j). As a merge
of the two sets will return the set D(j) unchanged, we can discard the edge between

7 and 7, and proceed to the next edge.

e Assume that 5 () +t;; > t1(j). In this case we have:

ci(d) ey < - <cpli)+cj 7 clf) <ecaf) < - <cgly)

t1(7) +ily > > tr(4) +t; = t1(g) > ta(g) > -+ > tl](j)

So, if ¢1 (@) 4+ ¢ij > c1(j), then the set D(i) + (¢4, ti5) is dominated by the set D(j),
because it is dominated by the first label of D(j).

The Bicriterion Shortest Path (BSP) problem 11

This simple condition which twice compares two numbers that have already been calculated
can save a lot of cpu-time. How much time that is saved depends on the network structure.
Section 2.5 summarizes this discussion from Paper B. Paper B also includes a discussion

of how to generate random networks.

2.4.2 Condition II

The Condition II is inspired by an article by Tung and Chew [72]. The idea is to initialize
node information from the terminal node in order to find the cheapest and fastest paths
from an intermediate node j to the terminal node ¢, for all n — 1 intermediate nodes. This
initialization finds some upper bounds on the two objectives at the nodes, namely (c*, #)(4)
for the cheapest path and (¢é,t*)(j) for the fastest path. ¢*(j) is the cost of the cheapest
(4,t)-path and #(j) is the corresponding upper bound on the time. Notice that the upper
bounds on the (s,t)-path becomes (¢,%)(s). The idea is illustrated in Figure 5.

-

Figure 5: Illustrating the idea of Condition II.

If the present cheapest label at node 7, plus the cost of the (7, j)-edge, plus the least cost
for the remainder of the (j,t)-path, exceeds the upper bounds on the cost, the edge (i, 7)
can be left out of further consideration. Similarly with respect to time. Mathematically

we get the following two conditions to discard an edge:
c1(i) + cij + c*(§) > é(s) or (i) + tij +t*(4) > E(s) (5)

Unfortunately the initialization of the node information turned out to be too time-consu-
ming, and the bounds were to loose because they are upper bounds on all s —¢ paths and
not subpaths as in Condition I. The initialization is done by running Dijkstra’s shortest
path algorithm twice, with the edge orientation in the opposite direction. If Dijkstra’s
algorithm is too slow, this indicates that the Label Correcting algorithm is indeed fast.

The bounds being too loose means that there were almost never any edges discarded by

(5).
2.5 Computational results

We have tested the improved algorithm (alg2) together with the Brumbaugh-Smith algo-
rithm (brum) of Section 2.3. All algorithms are implemented in C++, and can be found

12 The Bicriterion Shortest Path (BSP) problem

on the homepage http://home.imf.au.dk/ajs/. We have used an HP 9000 series computer
with a single processor. For each size of network we have used 10 random networks,
generated with NETMAKER (see Paper B).

The objective is to evaluate the effectiveness of Condition I on networks with different
characteristics (density). The density of a network is the relationship between the number
of nodes and the number of edges. If parallel edges are not allowed, the number of edges

in a connected network is between n — 1 (tree) and n(n — 1)/2 (complete).

‘ # nodes H brum ‘ Merges H alg2 ‘ Condition I's H % Merges in alg2 ‘ % cpu-time ‘

200 9.01 761.30 4.12 208.40 46.49 45.76
400 40.38 | 1615.20 || 20.96 407.20 50.09 51.91
600 92.96 | 2502.00 || 51.40 578.15 52.95 55.29
800 187.05 | 3385.00 || 111.82 757.65 54.01 59.78
1000 280.61 | 4668.20 || 162.52 970.90 57.80 57.92

Table 3: Cpu-times, number of Merges and number of Condition I's for brum and alg2
when the number of outgoing edges are between 1 and 3 at each node.

The first comparison is made on a sparse network, where the average number of edges is
only two times the amount of nodes. The results are shown in Table 3, and the overall
conclusion is that alg?2 is considerably faster than brum.

There is one implementation detail that is important to mention. The brum algorithm is
implemented directly as it is described in Brumbaugh-Smith et al. [10]. In alg2 a node with
an empty label-set automatically gets the label-set plus the edge-weights from the first
predecessor node. When the algorithms are compared, the number of nodes (minus one)
is added to the number of Condition I's, because this is the number of Merge operations

saved. So in Table 3 with 400 nodes, the “% Merges in alg2” is calculated as

(1 407.20 + 399

100 = 50.
T30 >* 00 = 50.09

It can also be seen that, as the number of nodes increases, the fraction of Condition
I’s decreases. This is due to the fact that the probability of Condition I being fulfilled
decreases as the label-sets increase. The label-sets increase in size as we move towards the
terminal node, and in the larger networks, the average number of nondominated values
is higher and therefore the label-sets are bigger. As expected alg2 performs very well on

sparse networks, because of the small label-sets.

Next we look at less sparse networks with an average number of 3 outgoing edges per

node. The results are shown in Table 4, and as expected the fraction of Condition I's has

The Bicriterion Shortest Path (BSP) problem 13

‘ # nodes H brum ‘ Merges H alg2 ‘ Condition I's H % Merges in alg2 ‘ % cpu-time ‘

200 18.34 | 1399.65 || 12.16 303.25 64.12 66.29
300 45.37 | 22214 31.76 428.45 67.25 70.00
400 80.43 | 3080.7 58.14 487.35 71.23 72.28
500 129.77 | 4006.65 || 96.91 652.10 71.27 74.68
800 336.65 | 6801.80 || 245.77 933.95 74.52 73.00

Table 4: Cpu-times, number of Merges and number of Condition I's for brum and alg2
when the number of outgoing edges are between 2 and 4 at each node.

dropped. Because the cpu-time saved is fairly proportional to the number of Condition I's,
alg2 only performs about 25-35 % better than the brum algorithm for networks with this
density (and this size).

‘ # nodes H brum ‘ Merges H alg? ‘ Condition I'’s H % Merges in alg2 ‘ % cpu-time

100 12.59 2796.1 11.05 251 87.48 87.76
200 79.55 | 6055.40 73.50 284.4 92.02 92.40
300 195.48 | 9680.60 | 183.55 346.45 93.33 93.90
400 349.04 | 13733.30 || 329.83 430.25 93.96 94.50
500 589.84 | 17943.05 || 558.87 463.40 94.64 94.75

Table 5: Cpu-times, number of Merges and number of Condition I’s for brum and alg2
when the number of outgoing edges are between 7 and 15 at each node.

For the dense networks of Table 5 with an average of 11 outgoing edges per node, the
fraction of Condition I’s is much smaller. The cpu-times are again proportionately faster
as well. This table illustrates that even in dense networks there are still cpu-time saved
by imposing the condition. We therefore conclude that the cost in cpu-time of checking

the condition is negligible.

2.6 Conclusions on the BSP problem

It seems that the Label Correcting approach is the best for the BSP problem. FEven
though the problem is N'P-complete the solution methods are usually quite fast. As
noted, a separate first phase to find the supported solutions using the weighting method
does not seem worthwhile. However, even though the Label Correcting method is fast,
there is still space to speed up the algorithm, i.e. Condition I.

Another positive feature about the Label Correcting method, is that it easily generalizes
to more than two objectives. All that needs to be modified is the Merge operation.

Unfortunately Condition I does not generalize to more than two objectives.

14 Bicriteria combinatorial Max-Ordering (MO) problems

3 Bicriteria combinatorial Max-Ordering (MO) problems

Max-ordering (MO) problems are multicriteria optimization problems in which the goal is
to minimize the worst of several objective functions. They can be formulated as follows.

min max f(z), (6)

where f?(z) denotes the objective functions of the problem. The problem is denoted max-
ordering instead of min-max in order not to confuse terminology with single objective
problems, i.e. mingcg maxec, we which finds solutions where the largest weight is minimal,
e.g. the path where the largest edge-weight is minimal. Max-ordering problems arise in
various applications, see Rana and Vickson [62] or Warburton [76], and as subproblems
in interactive methods for the solution of multicriteria optimization problems such as
the GUESS method (Buchanan [11]), STEM (Benayoun et al. [5]), and the interactive
weighted Tchebycheff method (Steuer and Choo [69]).

In this paper we consider max-ordering problems in a combinatorial context, i.e. we assume
that S is a finite set, e.g. the set of paths between two nodes of a network or the set of
spanning trees of a graph.

There is a number of previous research papers on this topic (Ehrgott [23], Hamacher and
Ruhe [37], Murthy and Her [56], Ehrgott et al. [26]) and see Ehrgott and Gandibleux [25]
for more. Various authors observed that, even in the bicriteria case, max-ordering problems
are usually N'P-complete. The methods proposed for their solution include branch and
bound (Rana and Vickson [62]), labeling algorithms (for shortest path problems) (Murthy
and Her [56]) and ranking methods (Ehrgott [23], Hamacher and Ruhe [37]) - that is
the application of algorithms to find K best solutions of (single objective) combinatorial
problems.

We also propose methods involving ranking algorithms actually overcoming the main prob-
lem of the method proposed in Hamacher and Ruhe [37], at least for the case of two
objectives, see Remark 1. We combine the ranking method with the two-phases method
originally developed for the determination of all efficient solutions of bicriteria combina-
torial optimization problems, Ulungu and Teghem [74].

In Sections 3.1 and 3.2 we study the biobjective case, @ = 2, and in Section 3.4 we present

a heuristic for Phase 1 in the multiobjective case, @ > 2.

3.1 Theoretical motivation

We shall use the notation g(z) = max{f!(z), f(z)} for the max-ordering objective value of

a feasible solution = € S. Next we present three basic results. The first one is well-known,

Bicriteria combinatorial Max-Ordering (MO) problems 15

see e.g. Hamacher and Ruhe [37].

Lemma 1 There is at least one optimal solution of the max-ordering problem mingcg g(x)

which is efficient.

The next Lemma is specifically stated for two objectives. It formalizes the argument that
the maximum of two functions is minimal, if the objective values are as equal as possible.

Its proof is immediate from the definition of the max-ordering problem.

Lemma 2 Let Xp,,. = {z!,..., 2P} be the set of efficient solutions of a bicriteria combi-
natorial optimization problem. Assume that f'(z*) < f1(z™1) and f2(z") > f2(z*+1) for

1=1,...,p—1 and define K := min{i : f2(z*) < f'(2*)}. Then the following hold.
1. If K =1, ' solves the maz-ordering problem.
2. If K = oo, 2P solves the max-ordering problem.

3. Otherwise z¥ or z%=1 (or both) solve the maz-ordering problem.
A special case occurs if there is an efficient solution with both objectives equal.

Lemma 3 If there is an efficient solution x such that f'(z) = f%(z), then x also mini-

mizes g(x).

These three lemmas state that we can restrict our search for a solution for a minimizer of
g(x) to efficient solutions, with their two objectives as equal as possible. In other words,
efficient max-ordering solutions will be located close to the halving line f' = 2 in criterion

space.

3.2 Two-phases algorithm

First, we look for the two supported efficient solutions for which f!(z*) < f?(z') and
fL(z 1) > f2(2'*1) according to the order of Lemma 2. To do so, we start with solutions
2! and 22 minimizing objectives f! and f2, respectively. We then proceed to solutions
where the difference of objective values is smaller. When this is no longer possible, we
will either have one supported efficient solution with f!(z) = f%(z), or we end up with
two neighboring supported efficient solutions, say z' and z? such that f!(z') < f?(z!)
and f!(z?) > f?(2?). According to Lemma 3, the first case solves mingcg g(z), and any
other efficient solution must have one objective value smaller and one bigger than g(x).

Of course, it may happen that one of the objectives dominates the other completely, i.e.

16 Bicriteria combinatorial Max-Ordering (MO) problems

minges f1(z) > maxzex,,, f2(x) (cases 1 or 2 in Lemma 2). In this case the problem is
trivial, and we can easily detect it when computing ' and z? for the first time.

Should we terminate Phase 1 with two solutions, we will have to investigate unsupported
solutions in the right-angled triangle defined by the hyperplane through the point f(zcy)
with normal X and (g(zcyr), 9(Zcur)), where ¢y, is the current best solution, see Figure 7.
For this we use the ranking algorithm. In fact, f(z') and f(2?) uniquely define weights

A1, A2 such that both z'and z? are optimal solutions of
min Ay f(z) + Ao f(z).
TEeS

We can now apply a ranking algorithm to find second, third, ... best solutions for this
problem, in order to find unsupported solutions in the identified triangle. A similar proce-
dure was proposed for the identification of all unsupported efficient solutions in Coutinho-
Rodrigues et al. [19].

The algorithm will stop if we encounter a solution z with f!(z) = f?(z), as this must be
the optimal solution we are looking for, or A\; f1(z) + Ao f?(x) > g(Zcur), since no further
solution will be in the triangle and therefore no longer a candidate for a MO optimal
solution. In the latter case, the currently best solution is the optimal solution of the

max-ordering problem.

The idea of the first phase is illustrated in Figure 6. With solutions ' and z? we compute
the normal to the line connecting f(x') and f(2?). This normal serves as a weighting vector
for combining the two objectives, and its negative is the direction in which we search for

a new supported efficient solution which is eventually found at 23 with objective values

f(@).

Remark 1 The values A1, A9, identified at the end of Phase 1, are the best choice of A
in the method proposed by Hamacher and Ruhe [37] and will overcome the problem that
for an unfortunate choice of A\, that method turns out to be a complete enumeration of all

feasible solutions.

We illustrate the algorithm on an example. In Figure 7 we show the objective values of 6
feasible points indexed in the order of their generation.
In Phase 1, 2! and z? will be generated first. Weights A\; and Ay are computed corre-

sponding to the normal to a line connecting f(z') and f(2?) and ., = 2. Solution of

1

the weighted sum problem results in 2. Since f(z3) < f2(z%), z' is replaced by z®. The

3

current best z.,, is updated to x°. The second weighted sum problem uses updated \’s

3

corresponding to the normal of the line connecting f(2?) and f(z3). Assume 23 is returned

Bicriteria combinatorial Max-Ordering (MO) problems 17

f2

fl

Figure 6: Illustration of search direction in Phase 1

as an optimal solution. Thus no new supported efficient solution is found, and we continue
with Phase 2 to investigate the earlier defined triangle. Note that the supported solution
z* is not generated in Phase 1.

We know that 23 and z? are first and second best solutions of the weighted sum problem,
therefore we are searching for the third best solution by searching in direction A. This turns
out to be z*, which is discarded as not being in the triangle (f?(z%) > f3(z3) = g(zcur))-
So we set K = 4, identify z° as the next solution, and this passes all tests. In our example
25 replaces 2% as the current best solution and K is set to 5. The next solution is 25,
the combined objective value of which is larger than that of the third corner point of the
triangle. We will therefore find no further points in the triangle and stop with the optimal
solution z* = Zeyy = x°.

Remark 2 In Phase 2 the following situation may occur: The solution of the weighted

sum problem is another supported efficient solution which is, as ' and x?, optimal for

the weighted sum problem. Its objective function vector lies on the line between f(z') and

18 Bicriteria combinatorial Max-Ordering (MO) problems

f2

f(zh)
o
f(a%)
f(ﬂ:‘i.)... L%

P~ L)

f(?)
fl

Figure 7: Illustrative example

f(z?). In this case, this point creates two new and smaller triangles. We can restrict

search to the one which is intersected by the halving line f! = f2.

3.3 K-best algorithms

As we propose the use of ranking algorithms, our method is obviously restricted to such
combinatorial optimization problems for which efficient methods for finding K-best solu-
tions are available. We briefly review some of these here.

The largest amount of research on ranking solutions is available for the shortest path
problem. Algorithms developed by Azevedo et al. [3], Martins et al. [52] or Eppstein [27]
are very efficient. The best complexity known is O(m+nlogn+ K) by Eppstein’s method.
However, numerical experiments reported by Martins et al. [51] show their algorithm to
be very competitive. Its complexity is O(m + Knlogn).

The second problem for which several methods are known, is the minimum spanning tree

problem. We mention papers by Gabow [32] and Katoh et al. [46]. The best known

Bicriteria combinatorial Max-Ordering (MO) problems 19

complexity is O(Km + min(n?, mloglogn)).

In the seventies and eighties some general schemes for ranking solutions of combina-
torial optimization problems have been developed by Lawler [48] and Hamacher and
Queyranne [39]. The application of the latter led to algorithms for matroids (Hamacher
and Queyranne [39]), with the special case of uniform matroids discussed in Ehrgott [23].
The complexity of the latter is O(K (n +m) + min{n logn,nm}). Finally, an algorithm to
rank (integer) network flows was presented in Hamacher [35]. Tts complexity is O(Knm?).
We note that only algorithms allowing the construction of solutions with the same objective
function values are applicable in our method. This is evident from the fact that at the
beginning of Phase 2, we have ! and z? as optimal, i.e. first and second best solutions of

the weighted sums problem.

3.4 Phase 1 heuristic for the multiobjective case

A natural question is the extension of the algorithm to more than two objectives. With
such an endeavor we encounter two major difficulties. The first one being that problems
with at least three objectives cannot be reduced to subproblems with two objectives only.

Thus, in the multicriteria case all criteria have to be considered simultaneously.

Example 1 Consider a combinatorial problem with three objectives and the following set

of nondominated vectors

7 6 9 6
5 0,0 4], 4],]s
3 8 2 2

The unique maz-ordering solution is the first one, with g(x) = 7. However, looking at only
two of the objectives at a time, we obtain the following. For fl, f? only, the minimal value
of g(z) is attained at the second solution, for f2, f3 it is the third, and for f', f> it is the

fourth. Thus none of the bicriteria subproblems yield the true MO optimal solution.

The second major difficulty is in the generalization of Phase 1. This problem has been
observed by many researchers applying the method for the generation of all efficient solu-
tions. In contrast to the bicriteria case, there may exist supported nondominated points,
which lie above (rather than below) a previously constructed hyperplane. For a discussion
see Solanki et al. [67].

Therefore, we present a heuristic for Phase 1, when we have more than two objectives.

Since it is not known how to determine appropriate A-weights for the weighted objective

20 Bicriteria combinatorial Max-Ordering (MO) problems

function
Q

Wz, A) =Y Xifi(z)

i=1

in order to find all the supported solutions, we have to settle for a heuristic procedure to
produce a good A. We are still guaranteed to find the MO optimal solution, since the K
best procedure in Phase 2 can go through all solutions, independent of our choice of A.

The idea of the algorithm is also to search for an MO optimal solution. Remember that a
good current best solution x.y,, limits the search in Phase 2. During Phase 1 we modify
an initial A\ to search in the direction where the current best solution is found. This is
done by increasing the A;-weight for the objective where the current maximum is attained,
and decrease the \;-weight for the objectives that are currently small enough. This leads

to the following relation between the \’s in iteration p and p + 1 if arg max f(2P) = j:
7
+1 +1 .,
TR > AR and N SN Vi #£

In the following two sections we discuss some possible initialization and stopping criteria
for the Phase 1 heuristic. Pseudo code for the complete Phase 1 is presented in Section
3.4.3.

3.4.1 Initialization

First we solve the @) single objective problems, to see if any single objective dominates,
and construct the) x () pay-off table. Let € > 0 be a very small positive constant, which

is used to avoid weakly efficient solutions.
1. Fori=1to @ do
minges f(z) + € Y f/(z), with optimum in z*
J#i
The set of 2!, ..., z% solutions corresponding to the above @ optimal solutions is denoted
Xpay- If 4 € Q such that
fi(a") 2 fa') Vi #i
then stop with z* = z’ as optimal (trivial) solution, and ¢g* = f*(z*). In the rest of this
section assume this is not the case, i.e. Vi € Q 3j # i such that f*(z%) < fJ(z?).
It may be useful to have a lower and an upper bound on g. Therefore we define such

bounds during the initialization.

gL = max fi(z') and gyp= min max fi(z) = min g(z)
7 T€Xpay ¢ € Xpay

Bicriteria combinatorial Max-Ordering (MO) problems 21

The lower bound is where we have the minimal largest value of the extreme solutions,
and the upper bound is where the initial largest value is as small as possible. The z
corresponding to gy p is the current best solution z.,,. Notice that gyp is an upper bound
on all the individual objectives with respect to the MO problem. The bounds may be
used as a Phase 1 stopping criterion, see Section 3.4.2.
Finally, we need to find an initial A. We can think of \; as the weight of the 7’th objective.
Our goal of Phase 1 is a fixed best A\. We initialize bounds for \; Vi as

>\z'LB =0 and >\iUB =1W
These bounds on the A-weights will be modified during the algorithm, see Section 3.4.3.
Now we define the starting A'. We have two suggestions:

o\ = (%,,%)
o § = fi Vi, where fi = max fi(z). Let 6§ = 3.6 Now we define \' as \!' =
ZEApay i

(%, ce %). In this way the numerically large objectives get more attention initially.
To summarize the initialization, we present it in four steps:

1. Calculate pay-off table.

N

. Check for trivial solution.
3. Find initial values for z.y,, grp and gyp.

. Find initial A'.

W

3.4.2 Stopping criterion

Due to the difficulties of determining the supported solutions in Phase 1, a stopping
criterion is not straightforward in the multiobjective case. We discuss some alternatives
in this section, and it may be possible to have more than one stopping criterion in the

algorithm. Let us list some possibilities.

e If the same solution is repeated a certain number of times, 2P = P+ = ... = gP*!

for some predetermined £.

e [f the maximum deviation on the A bounds is sufficiently small, max \;yp— AL < €,
(2

for some predefined tolerance level e.

e If the gap between the upper and lower bound is sufficiently small, gyp — g5 < 9,

for some predefined tolerance level §.

22 Bicriteria combinatorial Max-Ordering (MO) problems

e Run Phase 1 for at most T iterations.

There may, of course, be other alternatives as well.

3.4.3 The algorithm
1. Initialization, see Section 3.4.1.
2. Set p =1 (iteration counter).
3. Solve mingeg >; AV fi(z) and let 2P be the optimal solution.
4. If g(2P) < g(xcur) then zoy = 2P and gyp = g(2?).
5. Check stopping criterion, see Section 3.4.2.
6. Assume arg max fi(zP) = j, i.e. the j'th objective needs more attention.
7. NjLp = A? and \iyp = A Vi # j.
8. Define A; = \jyp — Airg Vi and A = > A;.
i#]
9. Nt = Njpp+ 1A and M = Npp — JAR Vi #£ §.
10. p=p+1goto 3

This concludes Phase 1. The steps 6 - 9 modify the A-bounds to decrease the interval of
each possible \; value.
In Phase 2 we use the K best procedure with the appropriate AP from the end of phase

one. The stopping criterion in phase two is the same as in the biobjective case, namely
Z Affl(mK) > g9(Zcur)-
(3

3.5 Conclusions on MO problems

At first the max-ordering objective may not seem interesting, but it appears as a subprob-
lem in several well-known MCDM methods. Therefore, this problem is worth studying
more carefully. We have found a procedure for the solution of the max-ordering problem
for combinatorial problems. The effectiveness of the procedure depends on the particular
problem. Phase 1 works well if the single objective combinatorial problem is easy, such as
the shortest path problem. Phase 2 works well if the K best procedure works well.

In the case with more than two objectives, the Phase 1 procedure is without guarantees
of finding the best supported efficient solutions. However, the K best procedure will

(eventually) find the MO optimal solution, even with a poor choice of A.

Approximate solution of semi-obnoxious location problems 23

4 Approximate solution of semi-obnoxious location problems

In two of the traditional single facility location problems, a new facility is located (placed)
so as to minimize transportation costs (minisum), or as to minimize the distance to the
farthest customer (minimax). In the minisum problem we sum all the distances between
the new facility and the customers, multiplied by a weight depending on the individual
customer. In the minimax problem we minimize the largest weighted distance. A tradi-
tional example of the minisum model is the location of a warehouse and an example of the
minimax model is locating a fire station. These models are presented in Love et al. [49]
and Francis et al. [31], both including many references. The obnoxious location problem
is a more recent class of problems, where the two most common ones are the maxisum and
maximin models. When locating an obnoxious (undesirable) facility, the goal is to place it
as far from the existing facilities (demand points, customers) as possible. See Erkut and

Neuman [28] or Carrizosa and Plastria [14] for a review.

Instead of classifying the problem as obnoxious or desirable, the models can be divided
into planar and network models by their structure, and not their objectives. This partition
makes it more easy to list existing literature. Some references on planar models are [30],
[37], [38], [59], [60], [61] and [64], and some references on network models are [6], [7], [15],
[21], [22], [36], [41], [42], [47], [54], [67] and [58].

There is little literature combining the desirable and the obnoxious facility location models,
even though many facilities are both obnoxious and desirable. An airport is obviously
desirable for the travelers, but obnoxious for the nearby citizens. In this section we model
the combined problem as a Bicriterion Semi-obnoxious Location (BSL) problem. One
objective function is obnoxious and one is desirable. We consider both the planar case
(Section 4.1) and the network case (Section 4.2) of the problem. In the network case
where the demand points are nodes in a network and we try to locate the new facility in
a node or on an edge, we have found no references to earlier work. However, new results
are presented in Section 5 (and Paper D). In the planar case, where the feasible locations
are in R?, we have found only three references, namely two papers by Brimberg and Juel,

[8] and [9], and one paper by Carrizosa et al. [13].

The theory of the planar and network models is quite different, and the two models are
not often compared, even though they often try to describe the same real-life problem.

We briefly compare the two models in Section 4.3.

24 Approximate solution of semi-obnoxious location problems

4.1 The planar case : The BSPL problem

We formulate the Bicriterion Semi-obnoxious Planar Location (BSPL) problem in the
following way. There are n facilities (demand points) located at points aq,as, ... a,, and
the objective is to locate a semi-obnoxious facility at = so as to minimize a weighted sum
of the distances raised to a negative power, and to minimize the weighted sum of the
distances between the existing facilities and the new facility. The first criterion may be

thought of as a pollution effect and the second criterion as transportation costs.
: _ 1 —b
min f(z) =33 wi(l 2 —a;)", b>0

J

min g(z) = E w]z |z — aj ||p2 (7)
J

s.t.

res
where || — a; [|p= (|1 — a;1|P + |22 — a;2[P)/? is the usual I” norm, p > 1.

We prefer this obnoxious function, because it minimizes the overall obnoxiousness when
far from a demand-point, but reflects the local effects when close to a demand-point.
Corresponding to this objective we use the weights w'. The second objective is the stan-
dard formulation for locating an attractive facility by minimizing the weighted sum of
the distances (called minisum or median). Please note that we use weights w? with this
objective, so that the two objectives may be weighted differently with respect to each of
the n demand points. We assume that all weights are non-negative.

If we are modeling where to place a new airport (example in Paper C), the first weight w}

may depend on the population at demand point j (e.g. city), and the second weight wjz
may be the expected number of passengers on a yearly basis from demand point j.

S is the set of feasible solutions. Because of the obnoxious effects from the new semi-
obnoxious facility, we assume that it is forbidden to place it too near an existing facility.
Therefore, we require, that || © —a; ||,,> €, j = 1,...,n, where € is a small positive
number. Note that this assumption makes the two objective functions Lipschitzian in the
feasible set S.

Since the obnoxious objective function f(x), is a slightly complicated function, we will
settle for an approximation of the efficient set X'py,.. To obtain this approximation we will

apply the BSSS method first introduced by Hansen et al. [44].

4.1.1 The idea of the Big Square Small Square (BSSS) algorithm

Since we apply the BSSS method to solve the BSPL problem (and also to the BSNL

problem), we will outline the idea of the method.

Approximate solution of semi-obnoxious location problems 25

Suppose that the feasible region S is contained in a disjoint union of squares of equal
size. Each of these squares are considered separately. Consider one of the squares, say @);.
We divide @); into four sub-squares @Q;1, Qi12, Qi3 and Q;4 of equal size. For each of these
sub-squares, say (Q);1, lower bounds on the objective function values (f(z),g(x)), z € Q;1,
are found. By comparing this lower bound with a sample set of objective function values,
it may be determined that square ;1 contains only inefficient points. If this is the case,
square ;1 is called an inefficient square and may be deleted from further consideration.
The squares that cannot be classified as inefficient are put into the list and will later be
divided further into four new sub-squares. The process continues until the side-lengths of
all the remaining squares (those that are not classified as inefficient) in the list are below
a pre-specified value €. The idea is illustrated in Figure 8 below. The output from the

algorithm is an ordered set of “efficient” squares.
y

Figure 8: BSSS idea

A few comments on the procedure are appropriate. The sample list of objective func-

26 Approximate solution of semi-obnoxious location problems

tion values are used to dominate sub-squares with poor objective function value bounds.
Therefore, the values should in a way represent the objectives’ behavior over the feasi-
ble region. This is done by calculating objective function values in the centers of all the
squares, and then deleting pairs of objective function values being dominated by other
objective function values. If the center of a particular square is not in S, we simply ommit

this calculation.

It is also essential that we use good lower bounds for the objective function values over the
squares. If the bounds are poor, the convergence of the algorithm may be slow, because
we will end up with a large number of squares. Fortunately, good bounds exist. These
bounds are explained in detail in Sections 4.1.2 and 4.1.3.

Finally, we need to check if a square is contained in the feasible region, is overlapping the

region or is outside the region. For a discussion of this issue we refer to the paper by
Hansen et al. [43].

4.1.2 Calculating lower bounds

In order to calculate lower bounds on the two objectives, we use an approximation of the
weighted distances. This distance approximation is illustrated in Figure 9 for the /2 norm.
The lower bound for the distance is found in Hansen et al. [43], and the upper bound for
the distance is found in Hansen et al. [44].

The plane is divided into 9 regions, obtained by extending the four sides of ;. The regions
are the square ();, the four side regions, and the four corner regions. The square @); will

be in the center.

®a
: 2 /a3 /’GZ
/
| — / P
. / as // al
a2 a3 AN / R4
\ / s
\ / Ve
"N ’
A 7
N Ve
/N /
° / N
a1 = ay AN
,
’ \
// ' \\
/ ai \
\
/ N
az ®
2 .
A: Lower bound B: Upper bound N as
»

Figure 9: Lower and upper bounds on the distances.

Approximate solution of semi-obnoxious location problems 27

Now let a; be a particular location. With this location we associate a closest point a; € @;
and a furthest point a; € Q;, see Figure 9. We may then calculate a lower bound on the
values of f and ¢ in @); as follows:
[(@Q) = ¥ wj(ll@ —ajllp,)" CaseB in Figure 9
J
g(Q:) = > w]2- | aj —aj||p, Case A in Figure 9
; '}

Clearly, (f(Q:),9(Qs) < (mingeq, f(x), mingeq; g(y)). Therefore, we can use the bound
2(Q:) = (f(Qq),9(Q;)) for efficiency checking in the algorithm. If at some point we have
found a sample value z € S, such that (f(z),g(z)) < (f(Qi),g(Qs)), then clearly all
points in); are dominated by z. It follows that square @); contains only inefficient points.
Therefore it is not necessary to consider (); anymore. This bound approach can be used
for any p € [1;00]. Please note that the bounds obviously converge when the squares get

smaller.

4.1.3 Exact lower bound

Since the minisum objective is a nice convex function, it is possible to calculate an exact
lower bound for the squares in most situations. The level sets of a convex function are
convex sets, and the gradient can therefore be used as follows.

For a square (Q; with corners c1, ¢z, c3 and ¢4, find the corner ¢;, with the minimum function
value g(cy). If the direction of steepest descent “points away” from the square @);, then
the lower bound g(Q;) is exactly g(cp). By “pointing away” we mean that the direction
of steepest descent has an angle of at least 90 degrees with the sides of @);, see case A in
Figure 10. If this angle is less than 90 degrees then the minimum value over (); is not in

cp. Finally, if the direction points into ();, the minimum value is not in ¢, but inside Q).

Case A

Figure 10: Exact lower bound, depending on directional derivative

From the above an exact lower bound can easily be computed, if the directional derivative

points away from the square. We only need to compute four function values and the

28 Approximate solution of semi-obnoxious location problems

directional derivative in the minimum value corner. The case A will occur in most of the
evaluations, but not in all.

The directional derivative ¢'(zg,y) of g at zp € S in the direction y is defined as follows:

9'(z0,y) = V g(zo) - y

where Vg(zp) is the gradient of g evaluated in z.

If we consider the [? norm, the gradient looks as follows:

2 2
w? (zo1 — ajl) w? (zo2 — aj2)
V g(zo) = T T
D P S ErEr
Similar expressions can be found for the [? norm, for p € [1;00]. This reveals the well-
known problem; if zg is at a demand point, the gradient is undefined because of the

numerator being zero. This is not a problem in our case since || z—a; ||, > €, j=1,...,n.

Using the exact bound presented above when possible, or otherwise the bounds presented
in Section 4.1.2, we can apply the BSSS method to solve the (planar) BSPL problem. In
the next section we adapt the BSSS method also to solve the (network) BSNL problem.

4.2 The network case : The BSNL problem

In this section we adapt the BSSS method to the network case. However, instead of
dividing big squares into smaller squares, we divide edges into sub-edges. This will be
explained in detail in Section 4.2.1. Assume we have an undirected connected network
G(V, &) with node set V = {v1,v3,...,v,} where |V| = n nodes, and a finite set of edges
(arcs) € = {(vi,v5), (v, v1),. .., (Vp,vg)} With |E] = m. Edges may also be denoted by e.
All edges have a strictly positive length. Each node v; carries two non-negative weights
1,2

J wj), one for the obnoxious criterion and one for the desirable criterion.

The model is the same as (7), except that the set of possible new locations is the entire

(w

network. With our choice of obnoxious objective function, however, z cannot be located
in a node. Therefore, we again require, that d(z,v;) > €, j=1,...,n, where € is a small

positive number. The BSNL problem is then:
min f(z) =Y w} (d(z,v5))"", b>0
J
min g(z) =3 wjz d(z,v;) (8)
J

s.t.
z e GV, E)

where d(z,v;) is the shortest distance from point « to node v;. The authors are well aware

that the obnoxious objective function is not as appropriate on the network model, as in

Approximate solution of semi-obnoxious location problems 29

the planar model, but we have decided to use it for comparison purposes, see Paper C.
The approximation algorithmn is a very general and intuitive approach and can be used for

complicated objective functions.

4.2.1 The Edge Dividing (ED) algorithm

The idea of the Edge Dividing (ED) algorithm is similar to the idea behind the BSSS
algorithm. First we divide each edge into two subedges. Then bounds on the objective
function values on each subedge are calculated. Furthermore, a sample set of objective
function values are calculated. If the bounds calculated for a subedge are dominated by
one (or more) of the sample set objective function values, then the subedge is dominated
and may be deleted from further consideration.

The bounds are derived in detail in Sections 4.2.2 and 4.2.3. The sample set of objective
function values are calculated in the middle (center) of the subedges. The nondominated

criterion values are kept in a list.

The output from the algorithm is an ordered set of “efficient” subedges. This general
procedure, however, has a few disadvantages. The efficient set (or part of it) may be an
edge-segment. This subedge will obviously remain efficient, but the subedge will be divided
into smaller subedges again and again. This reveals that the list of efficient subedges will
probably almost double in size, when we half the € value, for e sufficiently small. This can

in fact be used as an alternative stopping criterion.

4.2.2 Calculating lower bounds

We need both upper and lower bounds on the distance d(z,v;), where z can be any point
on the edge (or sub-edge) e;. We refer to the lower bound of this distance by d(e;,v;) and
to the upper bound by d(T,v]) Assume e; € (vp,v), and zp, is the endpoint of e; closest
to vy, and that z; is the endpoint of e; closest to vy.

The upper bound may be calculated as
d(ei,v;) = min{d(vj,v) + d(vn, zp), d(vj,vs) + d(vg, Tk)} + d(zh, T4)
and the lower bound may be calculated as
d(e;;vj) = min{d(vj, vs) + d(vn, zp), d(vj, vi) + d(vk, T5) }-

These two bounds can easily be calculated as illustrated in Figure 11, whenever the dis-
tance matrix D, of shortest distances between all pairs of nodes, is available. A procedure

to obtain D can be found in Thulasiraman and Swamy [71].

30 Approximate solution of semi-obnoxious location problems

Figure 11: Calculating distance bounds.

Using these bounds, we can calculate the lower bounds on the objective function values

as

fle) = Z w]l (d(ei,vj))_b

J
gle) = > wid(ei,v;)
J

4.2.3 Exact bounds

In this section we derive some exact bounds, specifically for our choice of objective func-
tions. The distance function d(z,v;) is a concave function on an edge (subedge). Therefore
g(x) is a concave function on an edge, and the minimum is always in one of the (sub-edge)

endpoints. So we have an exact lower bound as follows.

g(ei) = min{g(zn), g(z)} 9)

Now, lets consider f(z). Since d(z,v;) is both positive and concave, (d(z,v;)) " is convex.
Therefore f(x) is convex on an edge. If we are looking at the sub-edge from zj, to zj as
illustrated in Figure 11, and the derivatives at the endpoints have the same sign, then an

exact lower bound is simply the smallest endpoint value. That is, if

ot ot
sign (oo) = sign (a0 (10)
then
f(ei) = min{f(zp), f (zx)} (11)
where 8@,3;%) f(z) denotes the derivative in the direction from v; towards v;, and we want

to know if the function increases or decreases at . The “*” indicates right derivative,

so even in a break-point this derivative is well-defined. If (10) does not hold, the bound

Approximate solution of semi-obnoxious location problems 31

in Section 4.2.2 has to be applied. For more general objective functions, the bounds in

Section 4.2.2 may be needed more often.

4.3 Comparison of the BSPL and the BSNL problems

Even though the planar and the network models may seem very different in structure, they
are designed to solve the same real-life problem. Often a combination of the two models
would be preferable. In [4] and [70] planar and network models are combined. Modeling
air pollution such as noise makes most sense in the planar model, whereas the network
model is a good description of a road network with distances or travel times as coefficients.
One possible combination is to embed the network on top of the plane, so that each point
on the network corresponds to a point in the plane, but not the other way round. This is

illustrated in Figure 12.

a2 = V2 as = Us
2__
1T as = v
a) = U1 3 3
0 f f f f f

0 1 2 3 4)

Figure 12: Combination of network and planar models.

The point z in Figure 12 is in the middle of edge (v1,v3), but it is also associated with a
point in the plane, namely (2.5,1), which can be used in an /P-norm calculation.
Which model is the most appropriate is not always easy to determine. The available data

will probably decide the model.

4.4 Conclusions on approximation methods

In this section we have described a powerful tool for approximating the set of efficient
solutions on both planar and network models. The method can be applied when exact
solution methods are not at hand, as is often the case when the objective functions are
nonlinear functions.

It can be seen that the two solution algorithms (presented in detail in Paper C), are

not restricted to the bicriteria case. If the dominance check routine is adapted to the

32 Approximate solution of semi-obnoxious location problems

multicriteria case, the same method can be used. The method does in fact approximate
the efficient set of the multicriteria semi-obnoxious location problem.

In Paper C an example of both the planar and the network models are examined. The
example involves the location of a new airport near the city of Aarhus, Denmark. The

experimental results presented in the paper are quite satisfactory.

Multicriteria Semi-obnoxious Network Location (MSNL) problems 33

5 Multicriteria Semi-obnoxious Network Location (MSNL)
problems

There are a number of models that deal with the problem of locating (placing) a new facility
on a network. Most of these models locate a desirable facility, such as a supermarket or
a fire station, where the objective is to keep the new facility close to its users. The
two most common ones are the minisum and minimax (weighted median and weighted
center). There are also some models describing how to locate an obnoxious (undesirable)
facility, such as a nuclear power plant or a dump cite which the users want to locate far
away. In obnoxious theory the two most common objective functions are the maxisum and
maximin (weighted anti-median and weighted anti-center). Many facilities can, however,
be thought of as semi-obnoxious. Such facilities could be airports, train stations or other
noisy service facilities. It could also be the above-mentioned dump cite that, with respect
to transportation costs, should be located centrally, but, in the neighbors’ opinion, should
be located distantly. These location problems could with obvious advantages be formulated
as Multicriteria Semi-obnoxious Network Location (MSNL) problems. In this way the
trade-off between the different objectives can be revealed, making a good basis for an
overall decision. Different aspects of the problem can be described by different objectives.
Such objectives could be transportation costs, travel time, air pollution or minimizing the
number of citizens within a certain radius of the facility. Another situation arises when
we have more decision makers, each having their own objective function. References to
related litterature are found at the beginning of Section 4.

We have found no literature describing the MSNL problem, but a general solution method
for the multicriteria median problem is presented in Hamacher et al. [36]. This problem
involves only desirable sum objective functions, but we have generalized the method to

work for more general models.

5.1 Problem formulation and definitions

We are given a (strongly) connected network G(V,&) with nodeset V = {vy,v9,...,v,}
where |V| = n nodes, and edgeset & = {(v;,v}), (Vg, 1), ..., (vp,vq)} With |E| = m edges.
If the underlying graph is directed, it is denoted G'p, and the edge e = (v, v;) has head v;
and tail v;. If the underlying graph is undirected it is just denoted G, and e = (v;,v;) =
(vj,v;) Ve € £. We define the set of objectives as @ = {1,2,...,Q}. Each node v; carries
@ weights (wil,w%,...,w-Q z

i > 0,Yqg € Q, so we may refer to the matrix of
weights by W «p. Each edge e € £ has length [(e) € IR+

)¢, where w

By d(vp,vx) we denote the distance between vy, and v which is given by the length of a

34 Multicriteria Semi-obnoxious Network Location (MSNL) problems

shortest path between v, and vg. A point x € G(V,€) can be located both at a node or
on an edge.

We define a point z on a directed edge e = (v;,v;) as a touple z = (e, t),t € [0,1], with
d(vg, z) = d(vg,v;) + tl(e) and d(z,v;) = (1 —t)l(e) + d(vj, vg)

for any v, € V. A point z on an undirected edge e = (v;,v;) is defined as a touple
z = (e, t),t € [0,1], with

d(z,v) = min{d(vg,v;) + tl(e),d(vg,v;) + (1 — t)i(e)}

for any v, € V. Notice that d(v;, z) = tl(e) and d(z,v;) = (1 —t)l(e) for z = (e, t). Since
v; = (e,0) and v; = (e, 1), all nodes in the network are also points in the network.

The set {(e,t)|t € (t1,t2),t1,t2 € [0,1]}, forming an open subedge on e, is denoted
(e, (t1,t2)) for any e € €. Of course this set is empty, unless to > ¢;. Similarly, we define
closed and half right/left open subedges.

We formulate the model with the maxisum and minisum objectives, which are obviously

negatively correlated. For the undirected problem the objective functions are defined by

fi(z) =Y wid(z,v) q€Q (12)
=1

and for the directed case they are defined by

n

fUz) =) w (d(z,0;) +d(vi,z)) g€ Q (13)

i=1
The problem is formulated as follows:

max f9(z) q€ Q
min () qe Q;
s.t.

ze GV, E)

Q = Q1 U Qy, where Q1 N Qs = . Q; is the set of obnoxious objective functions, and
Qs is the set of desirable objective functions. At most one of the sets are allowed to be
empty. If Q; = () we have the situation discussed in Hamacher, Labbé and Nickel [36].
f(2) = (F1(@), (@), .., R

For simplicity in the succeeding argumentation, we multiply all objective functions in Q

by —1 in order to minimize instead of maximize. In the remaining part of the section, we

Multicriteria Semi-obnoxious Network Location (MSNL) problems 35

assume that w? <0,7=12,...,nand g € Qq, and w? >0,7=12,...,nand g € Qs.
This gives the following problem formulation:
min f9(z) q€ Q

min f?(z) q€ Qo

s.t. (14)

zeGWV,E)

In order to find the shortest distances between z and all the nodes, we need the distance
matrix D of shortest distances between all pairs of nodes. Note that D;; = d(v;, vj). This
matrix can be calculated in O(n3) running time using Floyd’s algorithm or by applying
Dijkstra’s algorithm to all n nodes. For details on these graph procedures, see Thulasira-
man and Swamy [71]. For an undirected network the distance matrix D is symmetric.

We will now outline the concept of bottleneck-points as it is presented in Church and
Garfinkel [15]. There are two types of bottleneck-points, edge-bottleneck-points and node-
bottleneck-points. Only edge-bottleneck-points are defined here, because the nodes will be
examined anyway, whether they are bottleneck-points or not. The edge-bottleneck-points
are defined as follows, for each edge (v;,v;) € £: Let = (e,t) be on the edge (v;,v;). If

there exists a node vi # v;,v; such that
Dy; +tl(e) = Dy; + (1 —1t)l(e)

then z is an edge-bottleneck-point. It is easily seen, that edge (v;,v;) contains an

edge-bottleneck-point with respect to node vy if and only if
|Dii — Dij| < U((vi, v5))

This sets the upper bound on the number of edge-bottleneck-points on an edge to n. If we
consider the endnodes of the edges as bottleneck-points as well, we have O(n) bottleneck-
points per edge. This gives a total of O(mn) bottleneck-points on G(V,).

We will denote the edge-bottleneck-point matrix of shortest distances from all edge-
bottleneck-points to all nodes by B. So B;; is the shortest distance from edge-bottleneck-
point B; to node v;. This matrix is needed for easy calculation of the objective-values
in the bottleneck-points. When we know the shortest distance matrix D, the bottleneck-

points can be calculated in O(n log n) time, see Hansen et al. [42].

The weighted-sum objective with positive weights is a piecewise linear, concave function
on an edge, with break-points only in the edge-bottleneck-points, see Figure 13. If all
weights are negative the objective function is a piecewise linear, convex function with

break-points only in the edge-bottleneck-points.

36 Multicriteria Semi-obnoxious Network Location (MSNL) problems

f2:Z2

to

f? - local optimum

t3

flzzl

f! - local optimum

Figure 13: Illustration of the objective functions on an edge.

Note that the optimum for the maxisum need not be unique, it can be a subedge between

two (or more) bottleneck-points, or there may be points on different edges with the optimal

value. The optimum for the minisum is attained at one or more nodes.

5.1.1 Example

Now we present a small example to illustrate the structure of the undirected problem, see

Figure 14. Let the weights be w' = (-1, -2,

Let the distance matrix D be given by

N Wk = = O

oW N O -

W N woN

N OO W W

WO UL N =W

S W N W N

—1,-1,-2,-2) and w? = (2,1,2,2,2,1).

for the undirected network of Figure 14. B can be calculated as

W B W W wN

N WN W WD W

=W kR RN W

W R RPN

I N e

— DN =R W R W

Multicriteria Semi-obnoxious Network Location (MSNL) problems 37

Figure 14: The undirected network of Example 5.1.1. The bold parts constitute the set of
efficient points.

To clarify the solution to the undirected network in Figure 14 we present some objective
function values in Table 6. A solution method specifically for the bicriterion model is
described in Section 5.3. The general multicriteria method is described in Section 5.2.3.
Please note the values of p and B4. This proves that a subedge, not having endpoint at
a node or a bottleneck-point, can be efficient. We will refer to this example in Section
5.2 and 5.3. From Table 6 we note that bottleneck-point By is optimal for the maxisum

criterion (f') and node v3 is optimal for the minisum criterion (f?).

Point z | f(z) = (f'(z), f?(x))
vy (—17,19)
V9 (—16,21)
V3 (—18,17)
vy (—27,29)
vs (—24,27)
g (—15,21)
By (_27v 31)
B, (—30,33)
Bs (—25,23)
B (—28,27)
Bs (—23,29)
By (—20,27)
B (—25,25)
Bg (—23,27)
» (—28,30%)

Table 6: Criterion values for all nodes, all bottleneck-points and point p.

38 Multicriteria Semi-obnoxious Network Location (MSNL) problems

5.2 General solution method for the () criteria case

First, we solve two simple cases of the problem, namely the node problem and the directed
case of the absolute location problem. Then we present the absolute location problem on

an undirected network.

5.2.1 Locating the new facility in a node

In this case the new facility can be placed only at the nodes of the given network, and
we can determine the efficient set Xp,, = Xpar(V) by the following approach in O(Qn?)
time, given the distance matrix D.

In the solution procedure we make a pairwise comparison of all the n nodes. Initially we
classify all nodes as efficient. Then we compare, say nodes v; and v;. If f(v;) dominates
f(v;), we delete v; from the set of efficient nodes and continue the comparison. This

approach is presented in both Hamacher et al. [36] and Paper D.

5.2.2 Locating the new facility on a directed network

For this problem we have to investigate the objective function (13) of the directed case.
First we observe that the objective functions are constant on the interior of the edges.
This result is proven in Paper D, and follows from the fact that each term in the sum in
(13) is a shortest cycle multiplied by a weight.

We subsequently use the triangular inequality to prove that the obnoxious objective func-
tions, ¢ € Q1, have a higher value at the endnodes of e, and that the desirable objective
functions, ¢ € Q2, have a lower value at the endnodes of e. Thus, f? is still convex for
q € Q1 and concave for ¢ € Qo on an edge. To see this we analyze the objective function
(13) once again. This result is also proven in Paper D. This structure of the objective
functions on the directed edges is illustrated in Figure 15. The values are taken from a
directed example presented in Paper D.

The solution procedure for the directed case is very similar to the procedure for the “node”
case in Section 5.2.1. When we have observed that the objective functions are constant
on the interior of all edges, we can simply make a pairwise comparison of all nodes and
edges. When we make this comparison on the n + m nodes and edges, each taking O(Q)

time, we get a bound of O(Q(n + m)?) time.

5.2.3 Locating the new facility on an undirected network

The general solution method consists of pairwise comparison of subedges. The objective

functions are all piecewise linear, and the idea is to partition the network into subedges,

Multicriteria Semi-obnoxious Network Location (MSNL) problems 39

98 _
: , 78
¢ 62 *

1)15 V2
0 L. ¢
z o 62
. 0 g6 .

Figure 15: f((v1,v2)). Notice that f(v;) dominates f(v2).

where the objective functions are linear. The points where the piecewise linear functions
change in slope are in fact the bottleneck-points. We then make a pairwise comparison
of all these subedges, and delete the inefficient parts. The result is the complete set of
efficient solutions Xp,,. For each comparison of two subedges we will construct a linear
program, that can be solved in linear time by methods found in Megiddo [53], to detect
inefficient points.

Let 29(t) = f4(xy), z¢ = (e,t), e = (v5,v;). These () functions are all piecewise linear,
with the same set of possible breakpoints corresponding to the bottleneck-points. Assume
there are P + 1 breakpoints, including the two nodes. We then have P subedges on e.
Let these breakpoints on (e, t) be denoted by t;, j =0,1,...,P, (1 < P < n+ 1), with
to=wv;, tp =vjand tj_1 < t; Vj=1,2,...,P. Fort € [tj_i,t;], the 24(t)’s are linear
functions of the form

24(t) :mgt—i—bg- Vg=1,2,...,Q.

Let us now compare the subedge A on edge ey, (ea,|[tj—1,t;]), with subedge B on edge
en, (es,[sp—1,5p]). A point (ea,t) € (ea,[tj—1,t;]) is dominated by some point (ep,s) €
(eB,[Sp—1,5p]) if and only if

mgs + b Smgt—l—bg Vg=1,2,...,Q
where at least one inequality is strict. This comparison is illustrated in Figure 16 for two

subedges from Example 5.1.1. Subedge (B7, Bs) is compared with subedge (vs, B7).
Let us define the set 7 where the inequalities hold (for these particular subedges) by

T ={(s,t)] mg-t —mls > bl — b;l-, Vg€ QN ([sp=1,p] X [tj—1,4])

If T =0, (e, [Sp—1,5p]) does not contain a point dominating any point in (e, [t;—1,;]).

Otherwise T # () is taken as a feasible solution set of the two 2-variable linear programs:

LB =min{t|(s,t) € T} and UB =max{t| (s,t) € T}

40 Multicriteria Semi-obnoxious Network Location (MSNL) problems

ét2 (Bs) s0 (vs) 8 §S1 (Br)

Lol

.20

Figure 16: Comparing subedge (B7, Bg) with subedge (vs, Br).

Using methods described by Megiddo [53], LB and UB can be calculated in O(Q) time.
Next we determine if the points corresponding to LB and U B are only weakly dominated.
This means that none of the inequalities need to be strict as required by Definition 1. The
details of this are found in Paper D. If both LB and UB are dominated, we delete the

dominated part of (ea,[tj—1,1;]) as follows:
(BA, [tjfl’ t]]) = (BA, [t]‘*h t]]) \ (BA, [LB7 UB])

This subedge comparison is illustrated in Figure 17, where the subedge (B7, Bs) = (e, [$, 3])

from Example 5.1.1 is compared with (vs, Br) = (e, [0, 3]). Both subedges are on the same
edge. Since T is non-empty we solve the two programs and find LB = % and UB = %
Both LB and UB are dominated, so the subedge (By, Bs) is completely deleted.

In order to complete the comparison, we simply make an ordered subedge comparison.
First, we compare (eq,[tg,?1]) with all the other subedges, possibly deleting parts of
(e1,[to,t1]). Then we compare the second subedge (ei,[t1,t2]) with all the remaining
subedges, including the subedge (e, [to,%1]). This comparison continues until we have

compared the last subedge (e, [sp—_1, sp]) with all the remaining subedges.

Multicriteria Semi-obnoxious Network Location (MSNL) problems 41

T

/ t

1

wiN

1
3
Figure 17: The linear programming constraints for comparing (B7, Bg) = (e, [%, %]) with
(vs, B7) = (e, [0, 3]) on edge (vs,vs) in Example 5.1.1. T is indicated by the shaded area.

Notice that we can still use the entire subedge (ea, [tj—1,%;]) to compare with the other
subedges, even though a part of it is inefficient. It is only for the set of efficient points
Xpqr, that we have to remember what part of (ea,[tj_1,;]) which is efficient.

If we make the global pairwise comparison on the O(mn) bottleneck-point subedges, each
taking O(Q) time, we get a complexity bound of O(Qm?n?) time. This is also the bound

for the case where Q = Q, found in Hamacher et al. [36].

5.3 Bicriteria case

In this section we present an improved method for the 2-criteria case. When we have only
two criteria, we may use the image of the network mapped into criterion space Z to solve
the problem faster. This is done by calculating the lower envelope, see Hershberger [45].
The envelope can be calculated in O(p log p) time, where p is the number of line-segments
(subedges).

This procedure is best described by an example, so we present the undirected network of
Example 5.1.1 in criterion space, see Figure 18.

Since we want to find the set of efficient solutions Xpg,., we are only interested in values
between the two extreme optimal solutions, namely f1* and f2*. In criterion space we are
only interested in the region [f'*, f1(z?)] x [f?*, f2(z')], where z! and z? are defined in
Section 1.1. We have to make sure that the slope of the envelope is decreasing, when the
fl-values increase, to ensure that there are no dominated points on the envelope. This can
easily be ensured by a few technical details described in Paper D. The lower envelope now
constitutes Zpy,. The set of efficient solutions is then given by Xpg, = f 1 (Zper). The
efficient set corresponding to the nondominated set of Figure 18 is indicated in Figure 14.

We have the same complexity bound on the lower envelope calculation as in Hamacher et

42 Multicriteria Semi-obnoxious Network Location (MSNL) problems

33

17

U3

-30 -18

Figure 18: Mapping of the undirected network from Example 5.1.1 into criterion space.
The bold parts constitute the set of nondominated points.

al. [36], namely O(mn log(mn)). This bound can be rewritten by examining the log term
and using the fact that m is at worst n? for dense graphs. We therefore get the bound of

O(mn log n) time for the envelope calculation.

5.4 Computational results

In this section we present computational results from an implementation of the algorithm
outlined in Section 5.2.3. We have not used the methods of Megiddo [53] in this im-
plementation to solve the small LP’s. Instead, we have used CPLEX 6.6. The code is
programmed in C++ and the tests are run on a 700 MHz Linux PC.

We have used random networks of varying size generated using NETMAKER, see Paper
B [66]. In each group we have used 10 random networks, and the mean is reported in the

following tables.

First, we examine some semi-obnoxious bicriterion networks, having one push objective
and one pull objective. The results are presented in Table 7. It appears that the number
of subedges grows a little less than squared the number of nodes. The number of actual
comparisons made is presented in the table, and the percentage of actual comparisons to
the worst case is also presented. It is important to note that this percentage decreases as
the networks increase in size.

The number of efficient subedges is also presented in Table 7, and this number seems to

Multicriteria Semi-obnoxious Network Location (MSNL) problems 43

Nodes 50 100 150 200 250
CPU-time 40.96 229.54 774.64 1505.42 3326.37
Subedges 3033.6 9411.5 18525.2 28368.1 39540.2
Subedge comparisons (in millions) | 0.358 1.770 5.138 8.655 16.531
Efficient subedges 96.2 155.3 175.7 222.5 264.5
% Efficient subedges 3 1.6 0.95 0.78 0.67
% Comparisons 4.00 2.02 1.50 1.08 1.05
Comparisons per sec 8733 7709 6633 5749 4970

Table 7: Semi-obnoxious bicriterion results, 1 push - 1 pull objective.

grow linearly with the number of nodes. This number is in fact higher than the number
of actual efficient subedges, because more subedges may contain the same efficient point,
when this point is a node. If a node is efficient, all the subedges connected to this node
contain some efficient points (perhaps only the node which is the endpoint of the subedge).
The last row in Table 7 are the numbers of comparisons made per CPU-second. Assuming
that CPLEX performs independently of the number of problems it has to solve, this
decrease indicates that the large problems require a lot more storage of data, and accessing

this data takes an increasing amount of time.

Next we examine the effect of having more objectives. These results are all computed on
networks with 50 nodes. We reuse the results of the bicriterion (1-1) networks of Table 7,
examine two types of three objective problems and one type of four objective problems.
The three objective networks are generated with both 1 obnoxious and 2 desirable objec-
tives (1-2), and 2 obnoxious and 1 desirable objectives (2-1). The four objective networks
are all with 2 obnoxious and 2 desirable objective functions (2-2). The results are presented
in Table 8.

As expected both the number of subedges containing efficient points and the CPU-time
increase rapidly when more negatively correlated objective functions are added. With four
objectives more than 75 % of the subedges contain efficient points. It is seen that the CPU-
time for these instances is almost proportional to the number of subedge comparisons, since
the data size of the instances is approximately the same (last line in Table 8).

Finally, we conclude that the computational results are constructive in the sense that
rather large problems can be solved within a reasonable amount of time. Since location
problems are usually not of the type you have to resolve often, a longer CPU-time is
acceptable.

The most encouraging result being that for bicriterion networks with objective functions

in almost opposite directions, a very small proportion of the networks is efficient. This

44 Multicriteria Semi-obnoxious Network Location (MSNL) problems

Objectives 1-1 1-2 2-1 2-2

CPU-time 40.96 123.05 10549 870.57
Subedges 3033.6 3293.1 3158.8 2853.6
Subedge comparisons (in millions) | 0.358 1.019 0.914 6.128
Efficient subedges 96.2 359.1 3579 2237.7
% Efficient subedges 3 11 11 78

% Comparisons 4.00 9.47 9.53 75.46
Comparisons per sec 8733 8349 8720 7077

Table 8: The effect of having more objectives. All networks have 50 nodes.

indicates that this model is in fact an aid for the decision-maker, since a large part of the
network can be omitted from further consideration. On the efficient parts of the network,
the trade-off between the two objectives can then be revealed.

As a final comment, we note that with negatively correlated objectives, at most three
objective functions should be considered. Otherwise, a very large proportion of the network

will be efficient, and this method will not have helped the DM.

5.5 Conclusions on the subedge comparison approach

After having investigated the different problems in turn, we can conclude that the methods
described in Section 5.2.3 and 5.3 works for any piecewise linear objective function. The
effectiveness of the two algorithms depend on how easy the breakpoints can be found,
and on the number of resulting subedges. If E is the number of subedges, the bicriterion
method from Section 5.3 runs in O(E logFE) time and the multicriteria method from
Section 5.2.3 runs in O(QE?) time.

From the section on computational results we can conclude that the method is applicable
the problems of a fair size. We have also seen that for biobjective problems with negatively
correlated objective functions only a limited part of the network is efficient. We therefore

conclude that this model is in fact a good tool for MSNL problems.

BNL problems with criteria dependent lengths and minisum objectives 45

6 Bicriteria Network Location (BNL) problems with crite-
ria dependent lengths and minisum objectives

We begin this section by a motivating example. Assume we have to locate a money
reserve, considering the two objectives of minimizing the transportation costs and the risk
of having the transports robbed. The depot serves a number of clients varying in size,
and we are given a connected network and interpret each of the n nodes as the clients. A
relevant (node) weight for a client with respect to transportation costs is the number of
monthly deliveries, and a weight for the risk objective is the maximum value of a money-
transport. The edge-lengths with respect to transportation costs could be the distance,
and for the risk objective the edge-length could be the probability of an assault. If we
assume that the cost of opening the new facility is independent of location, this particular
cost is unimportant.

A solution to this problem consists of two decisions. The first (and probably the most
important) one is to decide where to locate the new facility (depot), and the second one
consists in determining how to route the flow from the new facility to the nodes. The
flow problem consists of n — 1 Bicriterion Shortest Path (BSP) problems (described in
Section 2).

The solution method proposed is a variant of the two-phases approach due to Ulungu
and Teghem [74] and Visée et al. [75]. In Phase 1 all (or a representative subset of) the
supported extreme solutions are found by using the weighting method. In Phase 2 a search
between the supported solutions is conducted to find unsupported efficient solutions. The

procedure is explained in details in Section 6.3.

6.1 Problem formulation

We are given a connected directed network G(V, &) with node set V = {vj,v9,...,v,}
where [V| = n nodes, and edge set & = {(v;,v}), (vg, v1), ..., (Vp,vg)} with |E] = m edges.
The underlying graph is denoted by G, and edges may be referred to by e € &, by
(vi,vj) € € or simply by (4,7) € £, where node ¢ is the tail and node j is the head. Each
node v; carries two weights (wil,wg)t, where w? € Ry, g = 1,2, so we may refer to the
matrix of weights by Way,,. Each edge e € £ has length I(e) = (I*(e),?(e)) € IR%. Let us
define a matrix of edges Ey, (1) with the following entries. Ej; is the tail of edge e;, E;
is the head, Ej;3 = I'(e;) is the length with respect to criteria one and Ejy = [%(e;) is the
length with respect to criteria two.

Notice that an undirected network can be modeled as a directed network with the double

46 BNL problems with criteria dependent lengths and minisum objectives

amount of edges. Define binary decision variables as follows:

o 1 if the facility is located in node ¢
iz 0 else
o 1 if edge (4,7) is used in the path to node k
Yigk = 0 else

We examine the so-called median objectives or weighted sum objectives:
n n n
Fy) =D 1wy q=1,2
k=1i=1 j=1

q
ijk

fily) = Zzchjkyzgk g=1,2 (15)

Combining the coefficients to c;,, = lgjwz, we get

There are two types of constraints. The first constraint ensures that exactly one facility is
located and the second set of constraints ensures the existence of paths from the facility

to the remaining nodes. This leads to the following problem:

min f(y)
min f?(y)
s.t.
3 |
T, =
i=1 (16)
n n . .
Y Yiik — 2 Yijk = —T i #Fk, Vi k
7=1 7=1

zi e {0,1} Vi
Yijk € {0’1} VZ,]7k

Notice that we have omitted the following redundant constraints
n n
Zyjik - Zyijk =1—x; Vi, where: = k.
7=1 j=1

The reason being that this part of the constraint matrix consists of n totally unimodular
sub-matrices forming the n sets of paths. Notice that one path is non-existing, since the
node in which the new facility is located, ships nothing through the network to itself.

In Paper E we prove by an example that the constraint matrix of (16) is not totally

unimodular.

BNL problems with criteria dependent lengths and minisum objectives 47

Weighting the two objective functions in (16), using the weights A and 1 — A\, A € (0;1),
results in the weighted version of (16)
min Af'(y) + (1= A)f*(y)
s.t.
n
xg =1
i=1

n n . , (17)
2. Yjik — 2o Yigk = —T i1 £k Vik
j=1 j=1

z; € {0,1} Vi
yijk € {0,1} Vi, gk
In Section 6.3.1 we describe how problem (17) can be solved in O(n?) running time using
Benders’ decomposition for a fixed A. The appropriate A\ is found as described by the
NISE method, very similar to Phase 1 in Section 3.2.

6.2 Example

We examine the network presented in Figure 19 with the following weights and undirected

edges. Each column of W consists of the two node-weights.

200 300 500 100 400 500 400

W 7 4 2 6 6 2 8

The first two columns of E are the tail and head nodes. The next two columns are the

two edge-lengths.

1 2 78 22
1 3 24 72
1 4 26 71
15 13 71
17 8 12
2 3 98 29
2 5 17 90

E = |35 20 97
3 6 87 28
37 7 69
45 4 77
47 89 5
5 6 17 92
5 7 40 74
6 7 69 12 |

The resulting 11 nondominated criterion vectors are presented in Table 9. These crite-

rion vectors are visualized in Figure 20 and it is seen that there are 6 supported and 5

48 BNL problems with criteria dependent lengths and minisum objectives

Figure 19: Network for Example 6.2.

unsupported criterion vectors. Of the 5 unsupported solutions, only one, (89200, 1868),
is locally unsupported (defined in Section 6.3). The other 4 unsupported solutions are
locally supported by the nodes indicated in Figure 20. The last nondominated solution,
(89200, 1868), is dominated by a convex combination of the following two locally supported
solutions:

%(91200, 1684) + %(80200, 2587) = (89200, 1848.18)

There are a total of 2128 feasible criterion vectors, using only efficient paths between

nodes. All these vectors are illustrated in Figure 21.

6.3 Two-phases approach

In this section the solution procedure for solving the bicriterion problem (16) is outlined.
Before stating the procedure it may be helpful to consider a naive method. One possible
way of solving the problem could be to solve problem (17) n times, namely one time for
each possible location of the new facility. Suppose that the location of the new facility is
fixed at a specific node, say node i (so z; = 1). Using the weighting method, the supported
efficient solutions (paths) with respect to node i can be revealed. We call these efficient

solutions locally efficient (with respect to node 7). Given A € (0,1) and x the corresponding

BNL problems with criteria dependent lengths and minisum objectives 49

Node ft f?
5 45500 3025
5 47100 2289
1 78200 2062
7 89200 1868
7 91200 1684
1 92600 1506
7 97200 1376
1 107500 1182
7 111600 1112
7 129300 856
7 203800 798

Table 9: Nondominated values for Example 6.2.

locally efficient solution can be found in O(n?) running time, since we are faced with n — 1
shortest path problems.

Finding the locally unsupported efficient solutions that are in fact globally efficient, con-
stitutes a more difficult problem. These cannot be found using the weighting method.

This fact is known from studying the BSP problem alone (Paper B [66]).
We thus have three types of efficient solutions:

e supported efficient solutions

e locally supported efficient solutions

e (locally) unsupported efficient solutions

The reason why locally supported efficient solutions are interesting, is that they may
be unsupported efficient solutions in the main problem (16), but possible to find by the
weighting method. These three kinds of solutions are illustrated in Figure 20.

The procedure that we propose instead of the naive method, is a variant of the two-
phases approach due to Ulungu and Teghem [74] and Visée et al. [75], and may be stated

generically as:

e Phase 1: Find all (or a representative subset of) the supported solutions.

e Phase 2: Conduct a search between the supported solutions in order to find unsup-

ported nondominated solutions.

50 BNL problems with criteria dependent lengths and minisum objectives

f2

7. (80200,2587)

Locally unsupported

fl

Figure 20: Nondominated vectors for Example 6.2. Large dots illustrate the supported
solutions, and only one solution is locally unsupported. The numbers indicate the location
node.

6.3.1 Benders’ decomposition in Phase 1

As explained in Section 6.1 all supported solutions to (16) (and the locally supported)
may be obtained by solving the weighted program (17) parametrically in A € (0,1). We
will do that by employing NISE (Non-Inferior Set Estimation), a method presented in
Cohon [17]. NISE guides the choice of A € (0,1). Details on how to compute the \’s are
presented in Paper E.

Now we explain how Benders’ decomposition can be used to find the supported solutions

given a weight A in Phase 1. Let A be fixed and define
Ccijk(A) = Awkl%j +(1- A)w,%l?j (> 0 since [,w > 0).

When z is fixed, we can use the path constraints being totally unimodular, and relax the

integrality constraints on y. Fixing = means locating the facility at a particular node. For

BNL problems with criteria dependent lengths and minisum objectives o1

5000+

4000+

3000+

2000+

1000+

<

50000 100000 150000 200000 250000 300000 350000

Figure 21: Illustration of 2128 criterion vectors for Example 6.2.

a fixed 7 satisfying) . x; =1, x; € {0,1}, we get the following Benders’ subproblem:

min 3 cijr(N)yijk

kg
s.t
. . 18
2 Yjik — D2 Yijk = —Ti 1#k Vik (18)
J J
This linear programming problem has the following dual program:
max > ok(—Ti) + > Bijk
ik kyi,j
kAi
s.t (19)
ajr — g + Bk < cijp(N) i Fk Vigk
p <0

The variables « are free variables corresponding to the path constraints in (18) and the S
variables correspond to the upper bound on y. These dual variables can be found when the

n—1 shortest path problems are solved in the Benders’ subproblem, so we need not actually

52 BNL problems with criteria dependent lengths and minisum objectives

solve the dual problem (19). The dual leads to the following Benders’ masterproblem:

min v
s.t
ik k,i,j
g 2
2t = 1
xz; €{0,1} Vi

where [is an index for the added inequalities.

The first time we generate a redundant inequality (or suggests a node picked earlier), the
solution at hand is optimal (efficient). This is true because the subproblem (18) will return
an earlier found solution.

Notice that Benders’ masterproblem (20) is easy to solve in this case. It can be reformu-
lated as a minimax problem. Let us rewrite the first constraint in (20), keeping in mind

that only one z; will be one.

v > —Zzaékiﬁi + Z ﬁ;l,]k
ik khj
k#i
v o> Z _Zaék"" Zﬁﬁjk T
i kl;l k,h,j
vo> Zcﬁxz where ¢} = — Z oly, + Z B;ij

) k k,h,j

1 k#i k 7]

If we think of these cé coefficients in a matrix, the optimal z; is to find the column ¢ where
the largest cg element is as small as possible.

Notice, that we have to solve problems (18) and (20) at most n times. Since Benders’
subproblem consists of n — 1 shortest path problems, problem (18) can be solved in O(n?)

running time. Therefore the overall running time in Phase 1, given A, is O(n?).

6.3.2 Phase 2

Here we can first find the locally supported nondominated vectors by using the weighting
method for a fixed node(s).
To find locally unsupported efficient points of (16), we use the Tchebycheff theory. Let

z = (2%, 2%) denote a fixed reference point with z < z* = (fl*, f2*), where z* is the ideal

BNL problems with criteria dependent lengths and minisum objectives 53

point. Then the augmented non-weighted Tchebycheff program (21) may be stated as

min a+p (f'(y) + 2 (y))
s.t.
fiy) —«a

n
Eﬂii =1
=1

IN
N
Q
LS
Il
—_
[\

n n (21)
2o Yjik = 2o Yijk = —T i £k Vi k
7=1 j=1

z; € {0,1} Vi
yijk € {0,1} Vi, 5, k
ac Ry
where p is a small positive constant ensuring that the solution is not just weakly efficient.
A few comments are in order. Note that instead of solving the usual weighted Tchebycheff
program as found in Steuer and Choo [69], we propose to solve the augmented non-weighted
Tchebycheff program (21). It was shown by Alves and Climaco [1] that all nondominated
solutions to (16) can be found using the non-weighted program for integer problems (IP),
and in Alves and Climaco [2] this result was generalized to mixed integer problems (MIP).
Note that the augmented Tchebycheff program (21) has the same constraints as our orig-
inal problem (16), as well as two additional constraints. The two new constraints are the
reference point constraints, linking the reference point to the objective function in (21).
These two new constraints complicate the problem, since they destroy the nice structure
of the constraint matrix. Using Lagrange relaxation of these constraints does not solve
our problem. We simply end up with the weighting method. This is derived in Appendix
2 in Paper E. However, problem (21) is a one objective MIP, which can be solved by the

usual IP methods, such as branch and bound.

Next we explain how to determine the appropriate reference point(s). Assume that we
want to search for locally unsupported solutions between the two nondominated points £

and F5. First, we determine a maximum deviation factor
0 =max {f' (%) = f1*, f*(=") — f*}

where z! and z? are defined in Section 1.1 as f! and f? optimal solutions. This deviation
factor is going to ensure that our reference point is below the ideal point z*. Next we find

reference points corresponding to our two nondominated solutions, F; and Ey:

Z(E;) = (B} = 6,E} —8)i=1,2

54 BNL problems with criteria dependent lengths and minisum objectives

The search reference point z;,e, can then be determined as the maximum of the reference
point coordinates, because this point has a maximum distance of § to both Z(E;) and
Z(E3):

Znew = (max {ZY(E)), ZH(Es) } ,max { Z*(E1), Z*(B») }) .

Using zpew in (21) can result in two things. If a new solution is returned, this solution is
nondominated and defines two new search areas. Otherwise one of the points E; or E5 is

returned, and no nondominated (unsupported) solutions exist between the two points.

For our Example 6.2 we find 6 = max{203800 — 45500, 3025 — 798} = 158300. Next we
search for locally unsupported solutions between the two points £; = (78200, 2062) and
E5 = (91200,1684) (on either side of the single locally unsupported point in Figure 20).
This leads to the reference point zpe, = (—67100, —156238), where o = 158300 can find
both E; and Es. In this case E3 = (89200, 1868) is found with oo = 158106.

6.4 Conclusions on the BNL problem

We have presented a new, interesting location problem. The formulation incorporates both
the location and the routing aspects in a multiobjective setting. We have also presented
a solution method for the problem, and illustrate the problem structure and solution
procedure by an example. The presented method can easily be made interactive, since the
procedures in both phases are easily made interactive.

Unfortunately, the solution method does not easily generalize to more than two objectives.

Difficulties exists in both phase 1 and 2 as explained in Paper E.

A stochastic programming model for capacity expansion at Sonofon 95

7 A stochastic programming model for capacity expansion
at Sonofon

In this section we study a mobile communications network. Since the description of the
problem in Paper F is very technical, we now make a less detailed presentation. This
section is also quite different from previous sections, because the modeling phase of making
a good description of a practical problem took a lot of effort. First, we will describe the
structure of a mobile communications network.

The base transceiver stations (BTSs) are each connected to one base station controller
(BSC). Each BSC serves a number of BTSs and is connected to one mobile switching
center (MSC). Finally each MSC serves a number of BSCs and the MSCs are connected

internally. The network is illustrated in Figure 22.

Figure 22: Illustration of mobile telecommunications network.

The visitor location register (VLR) of an MSC, a database handling all information about
clients, has a limited capacity, thus restricting the number of customers that can be served
(through BTSs and BSCs) by an MSC. Thus the network provider not only has to expand
the link capacities but should consider when and where to deploy new MSCs in order to
be able to serve the increasing number of customers.

We will consider the problem of deploying a number of new MSCs and allocating the BSCs
to new and existing MSCs, thus treating the number and locations of BTSs and BSCs
as exogenous. The deployment of MSCs must be done so as to minimize the incurred
costs while meeting customer demand and observing the capacity restrictions. The cost

function will include four terms:

56 A stochastic programming model for capacity expansion at Sonofon

1. The cost of new MSCs.
2. The cost of connecting BSCs to MSCs.
3. The cost of expanding the capacity of links connecting the MSCs.

4. A penalty cost for handovers that occur among BSCs that are connected to different
MSCs.

The cost of a new MSC is a known (fixed) cost including the purchase price, physical
installation in a building and a number of working hours for the installation. The cost
of connecting a BSC to an MSC is zero if the BSC is currently connected to this MSC,
otherwise the cost of moving the BSC to a new or existing MSC is estimated. The cost
of expanding link capacities is a linear function of the number of new bandwidth units
needed. Finally, a handover cost is introduced to keep BSC areas connected.

It is a fact, that the time that passes from the moment at which deployment of MSCs is
resolved on until the equipment is actually in place and available for use is rather long
(about a year). This means that at the time the decision has to be made the network
provider does not have full knowledge about several important parameters such as the
traffic matrix, the cost of expanding the capacity of links and so on. For this reason the
network provider should put off the definitive decision on allocation of BSCs to MSCs as
long as possible, allowing uncertainty to be at least partially revealed. This is the incentive
for us to model the problem as a two-stage stochastic program, the first stage consisting
of deployment of MSCs and the second stage consisting of allocation of BSCs to MSCs

and routing of traffic in the resulting network.

7.1 A two-stage stochastic programming model

As previously discussed several parameters of the model are not known with certainty at
the time the decision on deployment of MSCs has to be made. Thus we will think of
these parameters as depending on the outcome of a random variable ¢ defined on some

probability space (2, F, P). We will make the following assumption:

Assumption 1 The random variable & has a discrete distribution with finite support = =
{€',...,65) and corresponding probabilities P(¢') = nt,... P(£%) =%,

Assumption 1 allows us to speak of the parameters in terms of scenarios, a scenario being
a set of realized values of the parameters. ¢(£°) is the second stage prices, h(£%) is the
second stage right hand side and T'(£%) is the second stage effect of the first stage decision.

For notational convenience we will refer to such a scenario simply by (¢°,h°,T°). In our

A stochastic programming model for capacity expansion at Sonofon o7

case the only first stage parameters is the price vector ¢ of deploying new MSCs, since it
is possible (but not likely) to open all the possible new MSCs. The first stage (binary)
variables are denoted z = (z1,...,x,), and the second stage variables are denoted y°.
Since our second stage problem is a MIP, y is split into y; and y» where yj is a binary
vector (yj € IB™) and yj is real vector (y5 € IR™?). This gives the following model for
minimizing the expected cost:

S

min cx +) 7°Q%(z)
s=1 (22)
s.t.
z € B"

where the second stage value function Q®(x) is given by

Q*(z) = min ¢°y°
s.t.
Wsys =hS —TSg (23)

yi € B™,y5 € R™

We have not specified the details of the second stage program, but we will explain what
kind of constraints it includes. The y; binary variables connect BSCs to MSCs. One
constraint set ensures that BSCs are only connected to open MSCs, and this has to be
done in a way that the VLR capacities is not exceeded. The y5 real variables include
both flow and excess flow variables. The flow variables represent the flow on a given edge,
and the excess flow variable is used to price the installion of new link capacity. Finally,
a constraint set is needed to measure the number of handovers. A handover is when two
BSCs are connected to different MSCs.

We have omitted a commonly used set of constraints, namely the survivability constraints.
These constraints ensures that alternative routes exists in case of edge failures, or that
only a certain percentage of the traffic is lost. These constraints complicated our problem
in a way that the model did not solve in a reasonable amount of time, but it is still a very

important aspect of designing telecommunication networks.

7.2 Scenario decomposition

Even without the mentioned survivability constraints, the problem was difficult to solve.
In this section we outline the procedure used, namely scenario decomposition (also called
dual decomposition).

Scenario decomposition exploits the fact that the vast majority of variables and constraints
in the stochastic program are scenario dependent. In fact the only thing tying the scenarios

together are the first stage decisions on deployment of MSCs. For notational convenience

58 A stochastic programming model for capacity expansion at Sonofon

we define the index-set of first stage decisions V' = {1,...,n}. If we use variable splitting
on the first stage variables, defining a deployment of MSCs for each scenario z',..., z°,
problem (22) becomes separable into independent scenario subproblems. The fact that
the deployment of MSCs cannot be scenario dependent may now be represented by a

non-anticipativity constraint stating the problem as:

min i ¥ (cz® + Q°(x*))
s=1

s.t. (24)

.%'12332:...:3}5

z* € B" Vse{l,...,S}

Relaxing the non-anticipativity constraint we obtain a problem which is completely sepa-
rable into independent scenario subproblems. These subproblems are solved to obtain an
optimal deployment of MSCs for each scenario. Next, non-anticipativity is reinforced by
branching on components of these solutions which differ among scenarios. To be specific,
we introduce a branching tree, initially consisting of only the root node corresponding to
the original problem (22). In a given iteration we select a problem from the branching tree
and solve the corresponding scenario subproblems obtaining scenario solutions z!,. .., z°.
If MSC i is to be deployed in some scenario solutions and not in others we add two prob-
lems to the branching tree imposing for s = 1,...,S5 the constraints z; = 0 and zj =1
respectively. Otherwise, if all scenario solutions are equal, we have a feasible solution of
the original problem and may update the upper bound if appropriate. For a thourough de-
scription of such a procedure, including a Lagrangian relaxation of the non-anticipativity
constraints, we refer to Carge and Schultz [12].

Clearly, if the scenario subproblems are solved by means of some branch and bound pro-
cedure, some effort should be taken to put information from previous iterations in the
above procedure to use. Thus, a node which is fathomed in a given subproblem in some
iteration of the main procedure may be reconsidered in subsequent iterations since more
variables are fixed as the main procedure progresses. In fact, for the problem instance con-
sidered in Section 7.3 the number of first stage variables was so small (less than 20) that
an enumeration tree could be created a priori and used for all scenarios, thus precluding

any reevalutions of nodes.

7.3 About the Sonofon problem

In this final section we will loosely describe our problem instance at Sonofon. Because of
competitive conditions we cannot be too specific about the problem size and the input

data. The problem has between 5 and 10 existing MSCs, less than 20 potential locations

A stochastic programming model for capacity expansion at Sonofon 59

for new MSCs and less than 50 BSCs. The network interconnecting the MSCs is complete.
The number of binary variables were reduced by dividing the area of interest into three
regions and precluding from consideration certain allocations of BSCs to MSCs across
regions. In the resulting formulation each scenario subproblem has 707 binary variables,
14598 continuous variables and 12045 constraints.

The cost of a new MSC is orders of magnitude higher than any other cost. The cost of
connecting a BSC to an MSC was set to zero if the BSC is currently connected to this
particular MSC, and otherwise the total cost of a movement was estimated. The cost of
expanding link capacities is given by the total cost of installing new equipment. Finally,
the handover costs were adjusted observing their effect on solutions, so as to create geo-
graphically connected BSC areas. The current demand for bandwidth and VLR-capacity
was estimated from observations of traffic and the number of customers respectively.

The different cost terms are made scenario dependent by introducing stochastic fluctua-
tions on the future prices. Likewise, future demand is calculated using the current ob-
served demand scaled by different growth factors. We have used the following procedure

to generate demand for VLR-capacity at BSC r under scenario s:
L} = growth® - growth; - Current demand

where growth?® is a parameter, sampled from a uniform distribution, which is used to reflect
the average growth in the number of customers while growth; is a parameter, sampled from
another uniform distribution, reflecting regional fluctuations from this average growth.
We have considered a four year time horizon with respect to customer demand even though
the second stage decision is made after just one year. The reason for the four-year time
horizon is to ensure a somewhat stable solution guaranteeing sufficient network capacity
for three additional years beyond the completed deployment of new MSCs. This means
that demand is in fact only partially revealed at the time the second-stage decisions are
to be made, but since the additional information obtained at this point will provide an
improved estimate of the true rate of growth in demand, the gain of postponing some
decisions to the second stage is likely to be considerable.

The algorithm was implemented in C++ using procedures from the callable library from
CPLEX 6.6. Considering 100 scenarios the solution times were about 3.5 hours CPU-time
on a 700 MHz Linux PC. The solution suggested the deployment of one new MSC.

60

References

References

1]

3]

7]

8]

M.J. Alves and J. Climaco. Using cutting planes in an interactive reference point
approach for multiobjective integer linear programming problems. European Journal

of Operational Research, 117:565-577, 1999.

M.J. Alves and J. Climaco. An interactive reference point approach for multiob-
jective mixed-integer programming using branch-and-bound. FEuropean Journal of

Operational Research, 124:478-494, 2000.

J.A. Azevedo, M.E.O. Santos Costa, J.J.E.R. Silvestre Madeira, and E.Q.V. Martins.
An algorithm for the ranking of shortest paths. Furopean Journal of Operational
Research, 69:97-106, 1993.

R. Batta and S.S. Chiu. Optimal obnoxious paths on a network: Transportation of
hazardous materials. Operations Research, 36:84-92, 1988.

R. Benayoun, J. de Montgolfier, J. Tergny, and O. Laritchev. Linear programming
with multiple objective functions: Step method (stem). Mathematical Programming,
1(3):366-375, 1971.

O. Berman and Z. Drezner. A note on the location of an obnoxious facility on a
network. FEuropean Journal of Operational Research, 120:215-217, 2000.

O. Berman, Z. Drezner, and G.O. Wesolowsky. Routing and location on a network
with hazardous threats. Journal of the Operational Research Society, 51:1093-1099,
2000.

J. Brimberg and H. Juel. A bicriteria model for locating a semi-desirable facility in
the plane. Furopean Journal of Operational Research, 106:144-151, 1998.

J. Brimberg and H. Juel. On locating a semi-desirable facility on the continuous

plane. International Transactions in Operational Research, 5:59-66, 1998.

J. Brumbaugh-Smith and D. Shier. An empirical investigation of some bicriterion
shortest path algorithms. Furopean Journal of Operational Research, 43:216-224,
1989.

J.T. Buchanan. A naive approach for solving MCDM problems. Journal of the
Operational Research Society, 48(2):202-206, 1997.

References 61

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

23]

[24]

[25]

C.C. Carge and R. Schultz. Dual decomposition in stochastic integer programming.
Operations Research Letters, 24:37-45, 1999.

E. Carrizosa, E. Conde, and D. Romero-Morales. Location of a semiobnoxious facility.
A biobjective approach. In 1996 Torremolinos, editor, Advances in multiple objective

and goal programming, pages 338-346. Springer-Verlag, Berlin-Heidelberg, 1997.

E. Carrizosa and F. Plastria. Location of semi-obnoxious facilities. Studies in Loca-
tional Analysis, 12:1-27, 1999.

R.L. Church and R.S. Garfinkel. Locating an obnoxious facility on a network. Trans-
portation Science, 12:107-118, 1978.

J.C.N. Climaco and E.Q.V. Martins. A bicriterion shortest path algorithm. Furopean
Journal of Operational Research, 11:399-404, 1982.

J.L. Cohon. Multiobjective Programming and Planning. Academic Press, 1978.

H.W. Corley and I.D. Moon. Shortest paths in networks with vector weights. Journal
of Optimization Theory and Applications, 46:79-86, 1985.

J.M. Coutinho-Rodrigues, J.C.N. Climaco, and J.R. Current. An interactive bi-
objective shortest path approach: searching for unsupported nondominated solutions.
Computers and Operations Research, 26:789-798, 1999.

H.G. Daellenbach and C.A. De Kluyver. Note on multiple objective dynamic pro-
gramming. Journal of the Operational Research Society, 31:591-594, 1980.

Z. Drezner and G.0O. Wesolowsky. Location of multiple obnoxious facilities. Trans-
portation Sci., 19:193-202, 1985.

Z. Drezner and G.O. Wesolowsky. The weber problem on the plane with some negative
weights. INFOR, 29:87-99, 1991.

M. Ehrgott. On matroids with multiple objectives. Optimization, 38(1):73-84, 1996.

M. Ehrgott. Multicriteria Optimization, volume 491 of Lecture Notes in Economics

and Mathematical Systems. Springer, 2000.

M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multicriteria
combinatorial optimization. OR Spektrum, 22:425-460, 2000.

62

[26]

[27]

[37]

[38]

References

M. Ehrgott, S. Nickel, and H.W. Hamacher. Geometric methods to solve max-ordering
location problems. Discrete Applied Mathematics, 93:3—20, 1999.

D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing, 28(2):652—
673, 1998.

E. Erkut and S. Neuman. Analytical models for locating undesirable facilities. Euro-
pean Journal of Operational Research, 40:275-291, 1989.

E. Erkut and V. Verter. Modeling of transport risk for hazardous materials. Opera-
tions Research, 46:625-642, 1998.

J. Fernandez, P. Fernandez, and B. Pelegri’n. A continuous location model for siting
a non-noxious undesirable facility within a geographical region. European Journal of

Operational Research, 121:259-274, 2000.

R.L. Francis, L.F. McGinnis, and J.A. White. Facility layout and location: An ana-
lytical approach. Prentice Hall, New Jersey, 1992.

H.N. Gabow. Two algorithms for generating weighted spanning trees in order. SIAM
Journal of Computing, 6(1):139-150, 1977.

M.R. Garey and D.S. Johnson. Computers and Intractability. A guide to the Theory
of N'P-Completeness. W.H.Freeman, San Francisco, 1979.

A M. Geoffrion. Proper efficiency and the theory of vector maximization. Journal of
Mathematical Analysis and Applications, 22:618-630, 1968.

H.W. Hamacher. A note on K best network flows. Annals of Operations Research,
57:65-72, 1995. Special Volume “Industrial Systems”.

H.W. Hamacher, M. Labbe, and S. Nickel. Multicriteria network location problems
with sum objectives. Networks, 33:79-92, 1999.

H.W. Hamacher and S. Nickel. Combinatorial algorithms for some 1-facility median

problems in the plane. Furopean Journal of Operational Research, 79:340-351, 1994.

H.W. Hamacher and S. Nickel. Multicriteria planar location problems. Furopean
Journal of Operational Research, 94:66-86, 1996.

H.W. Hamacher and M. Queyranne. K best solutions to combinatorial optimization
problems. Annals of Operations Research, 4:123-143, 1985.

References 63

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

P. Hansen. Bicriterion path problems. In G. Fandel and T. Gal, editors, Multiple
criteria decision making: theory and applications, Lecture Notes in Economics and

Mathematical Systems 177, pages 109-127. Springer-Verlag, Heidelberg, 1980.

P. Hansen, M. Labbe, D. Peeters, and J.F. Thisse. Single facility location on networks.
Annals of Discrete Mathematics, 31:113-146, 1987.

P. Hansen, M. Labbe, and J.F. Thisse. From the median to the generalized center.
RAIRO Rech. Opér., 25:73-86, 1991.

P. Hansen, D. Peeters, D. Richard, and J.F. Thisse. The minisum and minimax

location problems revisited. Operations Research, 33:1251-1265, 1985.

P. Hansen, D. Peeters, and J.F. Thisse. On the location of an obmnoxious facility.
Sistemi Urbani, 3:299-317, 1981.

J. Hershberger. Finding the upper envelope of n line segments in O(n log n) time.
Info Process Lett, 33:169-174, 1989.

N. Katoh, T. Ibaraki, and H. Mine. An algorithm for finding k minimum spanning
trees. SIAM Journal of Computing, 10(2):247-255, 1981.

M. Labbé. Location of an obnoxious facility on a network: A voting approach. Net-
works, 20:197-207, 1990.

E.L. Lawler. A procedure for computing the k best solutions to discrete optimization
problems and its application to the shortest path problem. Management Science,
18:401-405, 1972.

R.F. Love, J.G. Morris, and G.O. Wesolowsky. Fuacilities Location : Models € Meth-
ods. North-Holland, New York, 1988.

E.Q.V. Martins. On a multicriteria shortest path problem. Furopean Journal of
Operational Research, 16:236-245, 1984.

E.Q.V. Martins, M.M.B. Pascoal, and J.L.E. Dos Santos. A new improvement for a
k shortest paths algorithm. Technical report, Universidade de Coimbra, 2000.

E.Q.V. Martins, M.M.B. Pascoal, and J.L.E. Santos. Deviation algorithms for ranking
shortest paths. International Journal of Foundations of Computer Science, 10:247—
261, 1999.

64

[53]

[54]

[55]

[62]

[63]

References

N. Megiddo. Linear-time algorithms for linear programming in R* and related prob-
lems. SIAM J. Comput, 12:759-776, 1983.

E. Minieka. Anticenters and antimedians of a network. Networks, 13:359-364, 1983.

J. Mote, I. Murthy, and D.L. Olson. A parametric approach to solving bicriterion
shortest path problems. European Journal of Operational Research, 53:81-92, 1991.

[. Murthy and S. Her. Solving min-max shortest path problems on a network. Naval
Research Logistics, 39:669—683, 1992.

S. Nickel and J. Puerto. A unified approach to network location problems. Networks,
34:283-290, 1999.

P.H. Peeters. Some new algorithms for location problems on networks. FEuropean
Journal of Operational Research, 104:299-309, 1998.

F. Plastria. The generalized big square small square method for the planar single-

facility location. European Journal of Operational Research, 62:163-174, 1992.

F. Plastria and E. Carrizosa. Undesirable facility location with minimal covering

objectives. European Journal of Operational Research, 119:158-180, 1999.

J. Puerto and F.R. Fernandez. Multi-criteria minisum facility location problems. J.
Multi-Crit. Decis. Anal., 8:268-280, 1999.

K. Rana and R.G. Vickson. A model and solution algorithm for optimal routing of a

time-chartered containership. Transportation Science, 22:83-96, 1988.

L.M. Rasmussen. Zero-one programming with multiple criteria. Furopean Journal of

Operational Research, 26:83-95, 1986.

D. Romero-Morales, E. Carrizosa, and E. Conde. Semi-obnoxious location models: A
global optimization approach. Furopean Journal of Operational Research, 102:295—
301, 1997.

A.J.V. Skriver. A classification of bicriteria shortest path (BSP) algorithms. Asia-
Pacific Journal of Operations Research, 17:199-212, 2000.

A.J.V. Skriver and K.A. Andersen. A label correcting approach for solving bicriterion
shortest path problems. Computers and Operations Research, 27:507-524, 2000.

References 65

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

R.S. Solanki, P.A. Appino, and J.L.. Cohon. Approximating the noninferior set in mul-
tiobjective linear programming problems. Furopean Journal of Operational Research,

68:356-373, 1993.

R.E. Steuer. Multiple criteria optimization: Theory, Computation, and Application.
Wiley, New York, 1986.

R.E. Steuer and E.U. Choo. An interactive weighted Tchebycheff procedure for mul-
tiple objective programming. Mathematical Programmaing, 26:326-344, 1983.

C.S. Sung and C.M. Joo. Locating an obnoxious facility on a euclidian network to

minimize neighborhood damage. Networks, 24:1-9, 1994.

K. Thulasiraman and M.N.S. Swamy. Graphs: Theory and Algorithms. Wiley, New
York, 1992.

C.T. Tung and K.L. Chew. A bicriterion pareto-optimal path algorithm. Asia-Pacific
Journal of Operations Research, 5:166-172, 1988.

E.L. Ulungu and J. Teghem. The multi-objective shortest path problem: A survey. In
Gluckaufova Cerny and Loula, editors, Proceedings of the International Workshop on
Multicriteria Decision Making: Methods - Algorithms - Applications at Liblice, pages
176-188. Czechoslovakia, 1991.

E.L. Ulungu and J. Teghem. The two-phases method: An efficient procedure to
solve biobjective combinatorial optimization problems. Foundations of Computing
and Decision Sciences, 20:149-165, 1995.

M. Visée, J. Teghem, M. Pirlot, and E.L. Ulungu. Two-phases method and branch
and bound procedures to solve the bi-objective knapsack problem. Journal of Global
Optimization, 12:139-155, 1998.

A. Warburton. Aproximation of Pareto optima in multiple-objective shortest-path
problems. Operations Research, 35(1):70 =79, 1987.

S. Zionts. A survey of multiple criteria integer programming methods. Annals of
Discrete Mathematics, 5:389-398, 1979.

66

References

A Classification of Bicriterion Shortest Path (BSP) Algorithms

ANDERS J.V. SKRIVER
Department of Operations Research
University of Aarhus, building 530
Ny Munkegade
DK - 8000 Arhus C
Denmark

August 16, 2001

Abstract

This is a survey paper with references to relevant papers in the field of the Bicri-
terion Shortest Path (BSP) problem. It classifies the algorithms by their structure to
argue theoretically how they will perform, and at least one algorithm from each class
is discussed in more detail.

Keywords: MOLP, MCDM, MOIP, Bicriterion, Shortest Path.

1 Introduction

The Bicriterion Shortest Path (BSP) problem is one of the simplest problems in multi-
criterion linear integer analysis, but nevertheless also one of great importance in many
applications. For example it is of interest to model transportation problems with more
than one objective, e.g. cost and travel time. Also, the BSP problem often occurs as
a subproblem in other problems, for example in scheduling problems. This paper is an
overview of the existing literature in the field. For previous survey papers see Zionts [19],
Rasmussen [15] and Ulungu and Teghem [18]. The first two references survey the general
multicriteria integer programming problem for which the BSP is a special case, and both
papers are now quite old. The last reference surveys many of the papers also discussed in
this paper. The main contribution of this paper is a classification of the different solution

methods, and a ranking of the procedures based on the algorithmic structure.

Let us describe the problem. We have a strongly connected directed network or a digraph
G = (N, A) where N = {1,...,n} is the set of nodes and A = {(3,5), (k,1),...,(p,q)} is
a finite set of directed edges (arcs) joining nodes in M. Assume we have |A| = m edges.
Each edge (i,5) € A carries two attributes denoted by (c;j,t;;). For simplicity assume

that c;; is the cost using edge (7,7) and ¢;; is the travel time. The objective is to find

67

68 BSP Survey

a “shortest” path from a particular node, the source node s € A, to another particular

node, the terminal node ¢t € A/. Traditionally, the BSP problem is formulated as follows:

min c(z) = 32 jyea CijTij
min ¢(z) =30 e tiTi

s.t.
1 ifi=s (1)
E{j\(i,j)EA} Tijg — Z{j|(j,i)eA} Tj; = 0 ifi#s,t
—1 ifs=t

zi; € {0,1}, V (3,7) € A
The constraints in (1) yield a directed path from source node s to terminal node ¢ and
the two objectives are to find the minimum cost s — ¢ path and the minimum travel time
s — t path, respectively.

It is highly unlikely to find a directed path from node s to node ¢ which achieves both
the minimum total cost and the minimum total travel time. We therefore have to settle
with something less, namely finding the set of efficient paths (see Definition 1) from node
s to node t.

The problem is known to be N'P-complete by transformation from a 0-1 knapsack
problem, Garey and Johnson [8], and Hansen [10] give an example with exponentially
many distinct efficient paths (intractable). Next, we define efficient points (paths) and

nondominated criterion vectors. Let z(z) = (¢(x), t(x)).

Definition 1 A point x that satisfies the constraints of (1) is efficient iff there does not
exist a point T that satisfies the constraints (1) such that z(T) < z(x) with at least one

strict inequality. Otherwise is tnefficient.

Please note that efficient points are the same as Pareto optimal points. Efficient points
are defined in decision space. There is a natural counterpart in criterion space, where the
criterion space Z is defined as Z = {z(z) € R?|x satisfies the constraints in (1)}. So the
criterion vectors correspond to the image of a linear mapping of all the feasible solutions
to (1).

Definition 2 z(z) € Z is a nondominated criterion vector iff x is an efficient solution.

Otherwise z(x) is a dominated criterion vector.
We define the combined objective function W (z, \) as follows:
Wi(z,A) =Ae(z) + (L= Nt(z) 0<A<1 (2)

The function W (z, A) is a convex combination, or weighted sum, of the two objective

functions. Optimizing this function with different \’s will give the so-called supported

BSP Survey 69

nondominated solutions and is therefore often referred to as the weighting method.
Since unsupported nondominated criterion vectors are dominated by a convex combination
of supported nondominated criterion vectors, unsupported nondominated vectors cannot
be found by the weighting method. This is illustrated in Figure 1. The solution(s) x
in decision space corresponding to a supported criterion vector can be referred to as a

supported solution.

Criterion 2

D1 e

D2

Criterion 1

Figure 1: D is an unsupported, nondominated criterion vector.

We know from basic Mathematical Programming (e.g. [1]), that the solutions to the
linear relaxation of (1) with objective function (2) are integer valued, because the uni-
modularity property holds. The points D1, D2, D3 and D4 in Figure 1 illustrate solutions
to (2), with different values of A. The shaded areas are nondominated regions defined by
those four points. The point D inside one of the shaded areas, is therefore nondominated
in (1), but it is dominated in (2). The conclusion is that we cannot, in general, find all
the efficient solutions as supported solutions. We have to search in between the supported

paths as well.

The rest of the paper is organized as follows. In Section 2 we describe some of the
contributions to solve the problem. Many of the algorithms are presented. We conclude

the paper in Section 3.

70 BSP Survey

2 Description of algorithms

Our objective is to find the complete set of efficient solutions, or the complete set of
nondominated criterion vectors. Only algorithms that fulfill this goal are included.

There are generally two main approaches, a path/tree approach and a node labeling
approach, see Figure 2. Each of the two main approaches are again divided in two.
The path/tree approach splits into the K’th shortest path approach and the Two Phases
method. The node labeling approach splits into a Label Setting and a Label Correcting
approach.

Path/Tree

Node Labeling

Label Correcting

Label Setting

Figure 2: Classification of BSP algorithms.

K’th shortest path

In a path approach we examine different path vectors, and try to find the efficient
ones. Similarly, we investigate the m dimensional incidence vectors that characterize the
different spanning trees in a tree approach. Since there are usually many edges compared
to the number of nodes and there may be exponentially many spanning trees, a labeling
approach that compares values in the two-dimensional criterion space at each node may be
advantageous. In a Label Setting approach one label is made permanent in each iteration
and in a Label Correcting approach all labels are changeable until the stop criterion is
fulfilled.

In Table 1 I list the references that fall in the four categories. The number of references
applying a labeling approach indicates that this is the most successful approach. In a joint
paper with K.A. Andersen, [16], we describe in detail, why the node labeling approach is
to be preferred for the BSP problem.

To clarify the similarities and differences between the different labeling algorithms,
I outline a generic labeling algorithm. Each node has a set of labels associated with

it. Denote the label-set at node 7 by L(:). This set contains labels of the form (c,t)

BSP Survey 71

Table 1: Classification of references.

K’th shortest path | [4
Two Phases [14]
Label Setting [10], [13] algorithm 1, [17]
Label Correcting | [2], [5],
[6], [16]

sorted by increasing c-values (and decreasing t-values). At node-level we assume that
dominated labels are deleted. Let L = U} ;L(i) be the set of all labels, again sorted by
increasing ¢ (but not necessarily decreasing ¢). Dominated labels are not deleted, because
they belong to different nodes. The merge operation on the sets A and B is defined as
Merge(A,B) = (AUB)\{z € AUB |3z € AUB : z < z}. This means that after the sets
are joined all dominated labels are deleted. Note that the set A could be just one label.

Generic labeling algorithm:
1. Initialization: Label node s, L(s) = {(0,0)}
2. Select a node ¢ by some rule
3. Generation of new labels using node 4
4. Stop or go to Step 2

The labeling algorithms differ in node/label selection rule, label generation and stop-
ping criterion, but they all have the structure of the generic algorithm. In the following
sections, the references are discussed in more detail, and when possible related to the

generic algorithm.

2.1 Climaco and Martins [4]

Some basic theory in the field is provided by Climaco and Martins [4] along with an
algorithm. They use an upper bound on the cost criterion as a stopping criterion. If we
minimize the time criterion we get the fastest path. Choose among these fastest paths
the cheapest one. This cost value is denoted ¢. Observe that ¢ is the best value of the
cost objective, given the time objective is at its global minimum. Objective vectors with

c values higher than ¢ are therefore obviously dominated.

72 BSP Survey

2.1.1 Climaco and Martins’ algorithm

Climaco and Martins’ algorithm uses an ordered search starting by minimizing the cost
criterion and searching for the best value of the time criterion. Then the cost criterion is
gradually relaxed, each time finding the best path with respect to the time criterion. This

continues until the value of the cost criterion exceeds ¢.

Algorithm 2.1.1:

1. Initialize:

Compute ¢ as upper bound on ¢
Find p; as the cheapest path
Set S ={p1} and K =2

2. Compute the K’th cheapest path pg
3. If ¢(px) > ¢ stop, S is the set of efficient paths
4. If t(pr) > t(px—1) then set K = K + 1 and go to 2

5. If t(pk) < t(pk—1) then S = SU {pk}, set K = K + 1 and go to Step 2

To keep the algorithm in a compact form, we assume that c(pxi1) > c(px) VK €
1,2,3,.... This is not a restrictive assumption.

Due to the K’th shortest path routine included, it has little hope for being fast. The
K’th shortest path problem is intractable for general K, which in this case means that we
may have to enumerate all solutions. It is, however, polynomial for fixed K, but in our
case K is unknown and expected to be very large. In Climaco and Martins [4] they refer to
Lawler [12] for the K’th shortest path algorithm. Alternative procedures are found in [3],
and more recently [7]. Lawler’s algorithm works by forbidding the K — 1 shortest paths
in order to find the K’th shortest.

2.2 Mote, Murthy and Olson [14]

A paper by Mote, Murthy and Olson [14] uses a Two-Phases method. Instead of the
K’th shortest path approach of Section 2.1, they use the unimodularity property of the
network constraints in (1) to find the Pareto optimal supported paths (Phase I). In Phase
II the unsupported solutions are found by a Label Correcting algorithm. They call their

BSP Survey 73

approach the Parametric Approach, because of their use of the weighting method in Phase

I (X is a weighting parameter).

Two important results are used. The first is the use of Geoffrion’s result, [9], to
determine the weights of the convex combination of the two objectives in order to move
from one supported solution to the next supported solution. Geoffrion’s result ensures that
no supported solutions are in between. This movement between solutions with increasing
cost and decreasing time is similar to the idea of Climaco and Martins’ algorithm. The
second important result is that a supported path uses only supported sub-paths, and that
an unsupported s — ¢ path uses a supported path from s to some node j, and then some
unsupported j — ¢t path. This result is the basis of Phase II.

In Phase I the authors find the efficient supported paths from s to all other nodes in
the network as minimal spanning tree solutions to the linear relaxation of the B P-problem

(3) explained below. Note that the spanning trees are rooted at s.

The BP problem is formulated as follows, with the same objective functions as in (1):

min c¢(x)
min t(z)
s.t.
E(z’,j)eA Tij — Z(j,i)EA Tii = { -1 ifi#s
Lij S {071,27_,.,77,— 1}

Please note that the z;; is now integer values and not just 0 and 1. If, say z;; = 3 in a
solution, this means that edge (¢,7) is used in three different paths. One of these is for

sure the path from s to j. This is illustrated in Figure 3 for a network with 5 nodes.

3212:3 .’1;'13:1

Tog =1 Tos =1
@

Figure 3: Example of a spanning tree solution for the constraints in (3).

Because of this spanning tree phase, I have classified the algorithm as a tree algorithm.
This approach (Phase I) with spanning trees is similar to algorithm 2 presented in Martins
[13]. Martins’ algorithm 2 is not included in this paper, but algorithm 1 of the paper is
presented in Section 2.3. Different procedures to obtain the supported nondominated

solutions could be used, e.g. repeated use of Dijkstra’s shortest path algorithm.

74 BSP Survey

The principle of the Phase II algorithm is to add arbitrary edges to the supported
s — 7 paths in order to create alternative unsupported paths. The objective values are
then evaluated, candidates for efficient paths are labeled, and dominated solutions are
deleted. Phase II is very similar to Brumbaugh-Smith and Shier [2] presented in Section

2.6, except for the label generation being done by expanding on only one label at a time.

2.2.1 Mote, Murthy and Olson’s algorithm

The set L(7) contains the supported nondominated labels at node 4, and the set T'(7)
contains the unsupported nondominated labels. We say a node is being scanned if it is

used to generate new labels.

Algorithm 2.2.1:
Phase I:

1. Initialize L(i) and T'(7) as empty sets
2. Find all the supported nondominated labels L(7), by use of the weighting method
3. Let T(i) = L(i) Vi € N. Go to Phase II

Phase II:

1. If all labels in T'(¢) for all ¢ € N are scanned, go to Step 3. Else select an unscanned
label (c,t)(i) € T'(7)
2. (a) Compute label (c,t)(j) = (¢, t)(2) + (cij, tij) V(i,7) € A
(b) For each (c,t)(j) found in (a), Merge (c,t)(j) with T'(j)

(c) Go to Step 1

3. Report all efficient solutions from s to ¢ found in L(t) and 7'(t)

One may think that this algorithm is fast for finding supported efficient paths, due
to unimodularity, but I have found that the Label Correcting algorithm is much more
effective, Skriver and Andersen [16]. In fact Huarng, Pulat and Shih [11] (Section 2.9)
have found the Label Correcting algorithm by Brumbaugh-Smith and Shier [2] (Section

2.6) to be significantly faster, even compared with Phase I only.

BSP Survey 75

2.3 Martins [13]

This paper presents a Label Setting algorithm. It is a multicriteria generalization of
Hansen’s bicriteria algorithm, [10], briefly mentioned in Section 2.4. The algorithm can
be seen as a generalization of Dijkstra’s shortest path algorithm to multiple criterias. It
is assumed that all edge-coefficients (c;;,t;;) are non-negative.

In each iteration in the algorithm we choose the lexicographically smallest label in the
set L of all labels. This is where the assumption of non-negative weights is needed. When
finding the lexicographically smallest vector, we first look at the first coordinates. If only
one vector has the smallest first coordinate, this is the lexicographically smallest vector.

If more vectors have equal first coordinates, we look at the second coordinates and so on.

2.3.1 Martins’ algorithm

The algorithm makes a set of labels at each node. The labels are all put in a set L, and
at each iteration one label is removed as permanently labeled.

From all the permanent labels at the terminal node ¢, the DM can choose the label
[with the cost/time combination that he/she prefers. Then this particular path can be
found by backtracking. Next I will explain Martins’ algorithm by describing the steps of

the generic algorithm.

Step 2: The selection rule is to choose the lexicographically smallest label from all
the labels and remove this label from L as permanently labeled. Assume this label is
(c,t)(7) € L(i).

Step 3: When generating new labels, the label (¢, t)(i) above is used. We generate new
labels for all the nodes that can be reached from node i. Assume edge (7,j) € A. We then
Merge the new label (c,t)(3) + (cij, tij) with L(j).

Step 4: We stop when L = ().

It can be seen that one label is labeled permanently in each iteration. By choosing
the lexicographically smallest, we ensure that this is always a nondominated label. In this
perspective it can be seen that the algorithm relies on the fact that a nondominated path
uses only nondominated sub-paths.

The complexity of the algorithm is hidden in Step 3. Here we generate new labels,
and for each new label also check for domination. Both operations are time consuming,

because they have to be done a large number of times.

In the paper by Martins [13] a second algorithm is presented. This algorithm is similar

76 BSP Survey

in structure to the first phase of the Two Phases method described in Section 2.2, in
the way that it alternates between spanning trees by looking at the reduced costs. This

algorithm is not presented here.

2.4 Hansen [10]

Hansen was one of the first to propose an algorithm for the BSP problem (back in 1980).
His algorithm is explained in detail in Section 2.3, because Martins’ algorithm is a gener-
alization of Hansen’s algorithm. The original paper by Hansen contains 10 different BSP
problems and solution procedures for these different problems. It also contains an example
that explains the complexity of the problem. His algorithm has been used for comparison
with later algorithms both in Mote, Murthy and Olson [14] and Huarng, Pulat and Shih
[11].

2.5 Tung and Chew [17]

The paper by Tung and Chew [17], suggests a forward labeling algorithm. The algorithm
starts in an optimistic manner by moving in the direction of the minimum sum of the two
criteria, and then labels the possible next steps. When visited, the labels are updated, and
finally labeled permanently. The algorithm has not been implemented for testing. The

structure of the algorithm is a Label Setting structure.

2.6 Brumbaugh-Smith and Shier [2]

The authors of this paper present a Label Correcting algorithm. They use some effort
on implementation issues, and find that the CPU-times depend heavily on the way the
different label-sets are scanned (Step 2) and deleted (Step 3). The worst principle LIFO
(Last In First Out) is more than a factor 10 slower than the fastest principle, namely
FIFO (First In First Out).

The most encouraging result is the fact that the computational effort grows linearly
with the number of edges in the networks and sub-linearly with the average number v of
labels (at the nodes). The total number of labels are therefore the number of elements in

L. The following statistical model is found to have good fit:
T = amPv? (4)

where T' is CPU-time, m is the number of edges, and v is the average number of labels per
node. « is just a constant depending on the CPU-time units. The parameter 5 is found
to be just less than one, and v is found to be just less than one half. It is, however, hard

to believe that this result is true for large networks.

BSP Survey 7

The last result is on correlation of the objectives, and states that the number of efficient
paths increase, when the objectives get more negatively correlated. This is to be expected.
The authors find the increase in the number of efficient paths as a function of correlation
to be rapidly increasing when the correlation is from -0.6 to -1. It can be noted that the
number of efficient paths is equal to the number of nodes (one efficient path from the

source to each of the other nodes including itself), when the correlation is 1.

2.6.1 Brumbaugh-Smith and Shier’s algorithm

This algorithm is also outlined by describing the different steps of the generic algorithm.

Step 1: We form a list Labeled of nodes to be scanned, initially the node s. The
selection rule is optional, but we investigate a label-set L(7) and not just a particular label
(c,t)(2) € L(7). In the paper the FIFO principle is suggested. Assume we select node
¢ € Labeled.

Step 2: When generating new labels, all labels in L(i) are used. We generate new
labels for all the nodes that can be reached from node i. Assume edge (7,j) € A. We then
Merge the new labels L() + (cij, tij) with L(j). If L(j) changes, add node j to the list
Labeled.

Step 3: We stop when Labeled = (.

The label-set L(t) contains all the nondominated labels for the efficient paths from s
to t. The time-consuming part of the algorithm is the Merge operation (in Step 3), even
though this is in linear time in the size of the two sets. Also note that in this algorithmic
structure, a node can return to the set Labeled a large number of times. In this algorithm
we have a choice of how to choose the nodes from the set Labeled. Different rules (policies)

for doing this is discussed in detail in Brumbaugh-Smith and Shier [2].

2.7 Corley and Moon [5]

I have chosen to present this Label Correcting algorithm too, because it has a different
label generation procedure than Brumbaugh-Smith and Shier [2] described in Section 2.6.
This algorithm is in fact a generalization of Ford and Bellmann’s shortest path algorithm

(see [7], p. 88-89). The paper also presents a sub-algorithm for the Merge operation.

This algorithm can detect negative cycles, and negative weights are therefore allowed.

78 BSP Survey

2.7.1 Corley and Moon’s algorithm

Let L(i) be the label-set at node i after k iterations. In each iteration k we try to improve
Ly_1(7) at each node 7 by using an intermediate node j. The algorithm terminates when
this is no longer possible (or when a negative cycle is detected). The iteration counter k

is the maximum number of edges used in a path from node 1 to node ¢ after iteration k.

Step 2: Select each node in turn by the node number, 1,2,...,n. Assume we are
looking at node 1.

Step 3: We generate new labels for node ¢ by expanding the label-sets of all nodes 7,
where edge (j,7) € A. Assume we are currently expanding from node j. We then Merge
the new labels L(j) + (cji,t5;) with L(z). When generating new labels, all labels in L(j)
are used.

Step 4: We stop when k =n — 1 or Li(i) = Ly 1(i) Vi e N.

When the algorithm stops, the label L(t) at the terminal node ¢ contains the nondom-
inated values from node 1 to node t. All efficient paths will consist of k or fewer edges, in

iteration k. If the algorithm terminates with £ = n — 1 there exists a negative cycle.

When we compare the two Label Correcting algorithms we see that they are very
similar. The main difference is that in Brumbaugh-Smith and Shier [2] we have a choice
of selection rule for the set Labeled, and only nodes with changes in their label-sets are
re-examined. In Corley and Moon [5] we each time add labels with one more edge than
in the iteration before.

If we compare the Label Setting and the two Label Correcting algorithms, the main
difference is that we only expand on one label, namely the one recently made permanent,
when we form new labels in the Label Setting algorithm. In the Label Correcting algorithm

we expand on the set L(7) at a particular node 3.

2.8 Daellenbach and DeKluyver [6]

This paper presents an algorithm similar to Brumbaugh-Smith and Shier’s algorithm de-
scribed in Section 2.6, but it is formulated in the context of dynamic programming. The
different steps of the algorithm are very generally defined, but it is essentially the same
structure. The difference being that no cycles are allowed in this dynamic programming
context. Edges are only allowed to point to nodes with higher numbers. This assumption
is not explicit in the paper, but it is essential for the algorithm.

Instead of using a set Labeled for the changing labels as in Brumbaugh-Smith and

BSP Survey 79

Shier [2], they move from one node to the next. Therefore the assumption of no cycles is

needed, and this is a very restrictive assumption.

2.9 Huarng, Pulat and Shih [11]

This paper is a comparison of some of the existing algorithms. Some of the algorithms
appear differently from the algorithms of the original papers. Their K’th shortest path
implementation of Climaco and Martins [4] does not seem to find all efficient paths, as it
is constructed to do, and the Two Phases method of Mote, Murthy and Olson [14] has a
different Phase I implementation.

Despite this criticism, their computational results suggest that the Label Correcting
approach ([2] implemented) is the fastest approach. This is in fact the approach we have
improved in [16]. They also find that the Label Setting approach is far better than both
the K’th shortest path approach and the Two Phases method.

2.10 Skriver and Andersen [16]

By imposing some preprocessing conditions to the Label Correcting algorithm by Brumbaugh-
Smith and Shier [2] (Section 2.6) in each iteration, we have saved more than 50 % in
CPU-time on some of our random networks. How much CPU-time is saved depends on
the network structure. Our algorithm is the fastest algorithm for the BSP problem at the
moment. This suggests that the Label Correcting approach is the best known for the BSP.
The paper also contains a discussion on the structure of random networks. The struc-
ture of the random networks has great impact on the computational results, and we have

made a program that generates what we believe is realistic random networks for testing.

3 Concluding remarks

With the number of algorithms implemented, and the computational results found, many
real life problems can now be modeled with more than one objective. This may lead
to a more realistic representation of the problem. Most of the algorithms discussed can
be easily modified to handle more than two objectives, making even more sophisticated
models applicable. This is in fact the case for all the labeling algorithms.

We have seen that there are generally two types of algorithms, path/tree and labeling.
I argue that the path/tree approach has been the least successful of the two. The labeling
algorithms, and the Label Correcting approach in particular, performs much better. For
the Label Correcting algorithm, the order in which the labels are selected and expanded,

can result in significant differences in the running times.

80 BSP Survey

Finally, one may think that finding the supported nondominated solutions by combin-
ing the weighting method and some shortest path algorithm can be done relatively fast.
This does not seem to be the case! The repeated use of, e.g. Dijkstra’s shortest path
algorithm, seems to be a slower approach, than applying the Label Correcting approach,

finding all nondominated solutions at once.

Acknowledgments

The author would like to thank Kim Allan Andersen, Matthias Ehrgott and Philip Mel-
chiors for constructive criticism. I would also like to thank the two anonymous reviewers

for very constructive referee reports.

References

[1] M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali. Linear Programming and Network Flows.
Wiley, New York, 2nd edition, 1990.

[2] J. Brumbaugh-Smith and D. Shier. An empirical investigation of some bicriterion
shortest path algorithms. Furopean Journal of Operational Research, 43:216-224,
1989.

[3] N. Christofides. Graph Theory: An Algorithmic Approach. Academic Press, London,
1975.

[4] J.C.N. Climaco and E.Q.V. Martins. A bicriterion shortest path algorithm. European
Journal of Operational Research, 11:399-404, 1982.

[5] H.W. Corley and I.D. Moon. Shortest paths in networks with vector weights. Journal
of Optimization Theory and Applications, 46:79-86, 1985.

[6] H.G. Daellenbach and C.A. De Kluyver. Note on multiple objective dynamic pro-
gramming. Journal of the Operational Research Society, 31:591-594, 1980.

[7] J.R. Evans and E. Minieka. Optimization Algorithms for Networks and Graphs.
Dekker, New York, 2nd edition, 1992.

[8] M.R. Garey and D.S. Johnson. Computers and Intractability. A guide to the Theory
of N'P-Completeness. W.H.Freeman, San Francisco, 1979.

9] A.M. Geoffrion. Solving bicriterion mathematical programs. Operations Research,
15:39-54, 1967.

BSP Survey 81

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

P. Hansen. Bicriterion path problems. In G. Fandel and T. Gal, editors, Multiple
criteria decision making: theory and applications, Lecture Notes in Economics and

Mathematical Systems 177, pages 109-127. Springer-Verlag, Heidelberg, 1980.

F. Huarng, P.S. Pulat, and L. Shih. A computational comparison of some bicriterion
shortest path algorithms. J. Chinese Inst. Indust. Engrs., 13:121-125, 1996.

E.L. Lawler. A procedure for computing the k best solutions to discrete optimization
problems and its application to the shortest path problem. Management Science,
18:401-405, 1972.

E.Q.V. Martins. On a multicriteria shortest path problem. Furopean Journal of
Operational Research, 16:236-245, 1984.

J. Mote, I. Murthy, and D.L. Olson. A parametric approach to solving bicriterion
shortest path problems. European Journal of Operational Research, 53:81-92, 1991.

L.M. Rasmussen. Zero-one programming with multiple criteria. Furopean Journal of

Operational Research, 26:83-95, 1986.

A.J.V. Skriver and K.A. Andersen. A label correcting approach for solving bicriterion
shortest path problems. Computers and Operations Research, 27:507-524, 2000.

C.T. Tung and K.L. Chew. A bicriterion pareto-optimal path algorithm. Asia-Pacific
Journal of Operations Research, 5:166-172, 1988.

E.L. Ulungu and J. Teghem. The multi-objective shortest path problem: A survey. In
Glickaufova Cerny and Loula, editors, Proceedings of the International Workshop on
Multicriteria Decision Making: Methods - Algorithms - Applications at Liblice, pages
176-188. Czechoslovakia, 1991.

S. Zionts. A survey of multiple criteria integer programming methods. Annals of
Discrete Mathematics, 5:389-398, 1979.

82

BSP Survey

A label correcting approach for solving bicriterion shortest
path problems

ANDERS J. V. SKRIVER *
KiM ALLAN ANDERSEN

Department of Operations Research
University of Aarhus, building 530
Ny Munkegade
DK - 8000 Arhus C
Denmark
Fax: (+45) 86 13 17 69
e-mail: ajs@imf.au.dk and kima@imf.au.dk

August 16, 2001

Abstract

This article contributes with a very fast algorithm for solving the bicriterion short-
est path problem. By imposing some simple domination conditions, we reduce the
number of iterations needed to find all the efficient (Pareto optimal) paths in the net-
work. We have implemented the algorithm and tested it with the Label Correcting
algorithm. We have also made a theoretical argument of the performance of all the
existing algorithms, in order to rank them by performance.

Included is a discussion on the structure of random generated networks, generated
with two different methods, and of the characteristics of these networks.

Keywords: MCDM, MCIP, Bicriterion, Shortest Path, Random networks.

Introduction

The bicriterion shortest path problem (BSP) is one of the simplest problems in multicrite-

rion integer analysis, but nevertheless also one of great importance in many applications.

For example it is of interest to model transportation problems with more than one objec-

tive. Also, the BSP problem often occurs as a subproblem in other problems, for example

in scheduling problems. It also occurs as a subproblem in models for transportation of

hazardous materials, see Erkut et al. [4].

*Corresponding author.

83

84 BSP Label Correcting

Let us describe the problem. We have a directed network or a digraph G = (N, A) where
N = {1,...,n} is the set of nodes and A = {(3,7), (k,1),...,(p,q)} is a finite set of
directed edges joining nodes in N. Parallel edges are allowed. Each edge (7,) € A carries
two attributes denoted by (c;;,%;;). For simplicity assume that c;; is the cost using edge
(¢,7) and t;; is the travel time from node 7 to node j (using the edge (,7)). The objective
is to find a “shortest” path from a particular node, the source node s € N, to another
particular node, the terminal node t € N. Traditionally, the BSP problem is formulated

as follows:

min Fl(.’l;') = Z(i,j)eA Cij * Tij
min F?(x) = 3 e tij - Tij

s.t.
1 ifi=s (1)
S UlieA Tl — LyiGaea i =13 0 ifi#st
1 ifi=t

Lij € {071}7 v (Za]) E'A

The constraints in (1) yield a directed path from source node s to terminal node ¢ if one
exists and the two objectives are to find the minimum cost s — ¢ path and the minimum
travel time s — ¢ path, respectively. As it is highly unlikely to find a directed path from
node s to node ¢ which achieves both the minimum total cost and the minimum total
travel time, we have to settle with something less, namely finding the set of efficient paths
(see Definition 1) from node s to node t. Several approaches for doing this has been
presented in the past, but we have only been able to find one attempt to compare the
existing algorithms, see Huarng et al. [6], and they find the Label Correcting algorithm
[2] to be the fastest.

The outline of the paper is as follows. In section 2 we describe the theory of the problem
in question and give a theoretically based argumentation for the ranking of the exist-
ing algorithms. In section 3 we present the basic Label Correcting algorithm found in
Brumbaugh-Smith et al. [2] along with our modified versions. In section 4 we discuss
the structure of randomly generated digraphs for the BSP problem, because it turns out
to have influence on the computational results. In section 5 we present our test results

together with a comparison of the most promising methods.

2 The theory of bicriterion shortest path problems

Solving the BSP problem means finding the set of efficient paths from source node s to

terminal node ¢. For basics in multiple criteria analysis see Steuer [8].

BSP Label Correcting 85

In order to make sure, that solutions do exist, we assume that the network is strongly

connected. The definition of efficiency is as follows.

Definition 1 A feasible solution x to (1) is efficient iff there does not exist another
feasible solution Z to (1) such that (F'(z),F?(z)) < (F'(z), F%(z)) and (F'(z), F%(z)) #
(F'(z), F?(x)). Otherwise x is inefficient.

Efficiency is defined in the decision space. There is a natural counterpart in the criterion
space. The criterion space is denoted by Z and is given by Z = {z(z) € R?|z(z) =
(Fl(z), F?(x)), z is feasible in (1)}.

Definition 2 z(z) € Z is a non-dominated criterion vector iff x is an efficient solution

to (1). Otherwise z(x) is a dominated criterion vector.

It is well-known that the constraint set in (1) defines an integral polytope (the constraint-
matrix is unimodular). Therefore, if the linear relaxation of (1) is solved, the set of extreme
(supported) efficient paths is found. Unfortunately, there might be (and probably are)

unsupported efficient paths as indicated in Figure 1.

Criterion 2

Criterion 1

Figure 1: D is a non-extreme, non-dominated criterion vector.

Being interested in the set of efficient paths, it is not a satisfactory compromise just

finding the set of supported efficient paths. It should, however, be noted that in practice

86 BSP Label Correcting

the decision maker (DM) might be satisfied with only the set of extreme efficient paths.
In fact, the DM will probably prefer to see the set of non-dominated values (criterion

vectors).

Basicly, there are two approaches to the problem, namely some sort of path/tree handling
procedure or some sort of node-labeling procedure. Climaco and Martin [3] and Mote et
al. [7] fall in the path/tree handling category. Below we argue that this approach has
disadvantages for the BSP problem. Hansen [5], Brumbaugh-Smith et al. [2] and the
approach in this paper fall in the labeling category. Our ranking is found in Table 1.

Now we will use a small example to illustrate the complexity of the BSP problem. By
evaluating two different sets of coefficients, we explain why the node-labeling approach is
better than the path/tree handling procedure. For clarity remember that efficient paths
are in the (high dimensional) decision space, and the non-dominated values are in the (two
dimensional) criterion space. The network in Figure 2 has parallel edges. If we split the
lower edges into two, where the edge-coefficients sum to (2,1), the example is similar to

one found in Hansen [5].

(1,2) (1,2) (1,2)

(2,1) (2,1) (2,1)

Figure 2: Illustration of complexity in efficient paths.

In Figure 2 there is a total of 8 paths. All paths are efficient, having the 4 non-dominated
values (3,6), (4,5), (5,4) and (6,3). The upper path has the value (3,6), then there
are three paths having the value (4,5), three paths having the value (5,4) and the lower
path has value (6,3). We see that the efficient paths distribute among the non-dominated
values, as in level 4 in Pascal’s triangle, see Figure 3. Note that the network in Figure 2
has 4 nodes.

From this special case of the BSP problem we make two observations. The number of
efficient paths grow exponentially in the number of nodes, namely 21l and the number
of efficient paths are always greater than or equal to the number of non-dominated values,

which is |AV]. In the above there are 8 efficient paths, and 4 non-dominated values.

Next we show an example, where the number of non-dominated values grow exponentially

BSP Label Correcting 87

Level 1 1
Level 2 1 1
Level 3 1 2 1

Level 4 1 3 3 1

Figure 3: Pascal’s triangle.

in the number of nodes. That is, all the efficient paths have distinct non-dominated values.
We use this to conclude that the node-labeling algorithms have exponential complexity.

Here we choose the edge coefficients, so that the sum of the smaller coefficients is less than
the next. This is achieved by the following numbers, 2¢, i = 0,1,2,...,|A| — 1. For the
example that is 1,2,4,8, 16,32, and then we pair them from each end of the list as shown

in Figure 4.

(1,32) (2,16) (4,8)

(32,1) (16,2) (8,4)

Figure 4: Illustration of complexity in Efficient values.

The 8 paths in the network in Figure 4 are all efficient having the following 8 non-
dominated values: (7,56), (11,52), (21,42), (25, 38), (38,25), (42,21), (52,11) and (56, 7).

By choosing the edge coefficients this way we get 2W =1l non-dominated values.

We argue that the node-labeling algorithms will outperform the path/tree algorithms
because the number of non-dominated values is always smaller than (or equal to) the
number of efficient paths. A stronger argument is that the node-labeling algorithm only
finds the list of non-dominated values at the terminal node, and not the actual efficient
paths. After the Decision Maker chooses some favourite non-dominated value(s), we only
have to backtrack for these particular efficient paths. As a final note we see that the
amount of memory needed to store the labelsets, is much smaller than the memory needed

to store all the efficient paths.

In the existing literature all algorithms, except perhaps the Parametric Approach by Mote
et al. [7], have been proven slower than the Label Correcting approach. Comparisons are

found in [2] and [6]. These algorithms are the Label Setting approach by Hansen [5], and

88 BSP Label Correcting

the K’th shortest path approach by Climaco and Martin [3].

1 || Skriver & Andersen node-labeling

2 || Brumbaugh-Smith & Shier [2] | node-labeling
3-4 || Hansen [5] node-labeling
3-4 || Mote, Murphy & Olson [7] path/tree handling procedure
5 || Climaco & Martin [3] path/tree handling procedure

Table 1: Existing BSP algorithms ranked by computational performance.

We will argue that the Parametric Approach will also be slower, due to the structure
of the algorithm. The approach is to use the weighting method (see Steuer [8]) to find
the efficient extreme paths, and then use backtracking of spanning trees to search for
non-extreme efficient paths. The weighting method means solving LP problems, but for
the shortest path problem that is done by Dijkstra’s shortest path algorithm (or a similar
algorithm). It turns out that Dijkstra’s algorithm is actually a slower approach in practice
than the Label Correcting routine, see section 5. On top of this comes the fact, that the
weighting method of the Parametric Approach by far is faster than the backtracking part
[7]. When we are backtracking, we might have to evaluate all the edges in all the spanning
trees in the worst case, resulting in an exponentially growing number of comparisons. This
structural disadvantage is also the case for Climaco and Martins [3] algorithm.

The conclusion is that the Parametric Approach and the K’th shortest path algorithm
are slower than the Label Correcting approach, and this was also found by Huarng et al.
[6]. Due to the structure of the backtracking part of the Parametric Approach, we also
believe that it is slower than Hansen’s Label Setting algorithm, especially for networks
with negatively correlated objectives, but this has not been tested.

Hansen’s algorithm is a label setting scheme with an exponentially worst case behaviour.
It uses four sets of labels instead of only two, as in the Label Correcting approach, and
it makes more set comparisons. We therefore rank it below the Label Correcting ap-
proach. The Label Correcting approach uses the well-known fact that all efficient paths
pass through efficient subpaths.

3 Algorithm with preprocessing routine

In this section we describe the label-correcting algorithm proposed by Brumbaugh-Smith
et al. [2]. The description is followed by a couple of suggestions for improvements, which

give rise to a refinement of the Brumbaugh-Smith algorithm.

BSP Label Correcting 89

The theory and idea behind this is explained in the following sections, but for simplicity

we start with some notation.

3.1 Notation

D(7) : Set of labels at node 7. Each label is a 2-tuple containing cost and time
s : source node

t : terminal node

Labeled : Set of nodes to be checked

Len(i,j) : The edge-length from node ¢ to node j (two attributes cost and time)
out(i) : Set of edges having their tail in node 4

Merge(A,B) : AU B\ (dominated elements in AU B)

c*(4) : cheapest path from node ¢ to node ¢

t*(i) : fastest path from node i to node ¢

™" (7) : cheapest path from node s to node i

™ (4) : fastest path from node s to node 4

: upper bound on cost, corresponding to ™" (t)

(o}

>

: upper bound on time, corresponding to ¢™"(t)

3.2 The Brumbaugh-Smith Algorithm

The algorithm below is taken directly from Brumbaugh-Smith et al. [2]. The boxed part of
the algorithm is the time consuming part we try to avoid when it is not needed. The FIFO
principle is used to select nodes from the set Labeled as recommended in Brumbaugh-Smith
et al. [2].

Initialize:

D(s) = {(0,0)};

Labeled={ s } ;

Routine:

while Labeled # 0
choose ¢ from Labeled (FIFO principle);
Labeled=Labeled-{ i } ;

for j € out(i)

90 BSP Label Correcting

Dai(G) = Merge(D(), DG) + lentis)

If Dy(j) # D(j) then
D(j) = D)
If j not in Labeled then (avoids double labelling)

Labeled = Labeled + { j } ;

end If;

end If;

end for;

end while;

In this algorithm the Merge operation in the box uses the main part of the computational
effort. Our intention is to discard “expensive” edges before these operations are carried out
in order to reduce computation time. The means being inducing some simple domination
conditions on the edge-candidates in order to discard “expensive” edges as soon as possible.
The Merge operation returns the labels in an ordered set as described in section 3.3.1. The
Merge operation implemented in this paper is the “modified Merge” operation found in
Brumbaugh-Smith et al. [2]. This operation is in linear time as a function of the sizes of

the two sets to be merged.

It should be noted that the algorithmic structure of the Brumbaugh-Smith algorithm is
somewhat similar to Dijkstra’s shortest path method, except the nodes can reenter in the
set Labeled. This suggests that the performance is similar. In the remainder of this paper

we refer to the Brumbaugh-Smith algorithm as brum.

3.3 The improvements

We have two suggestions for improvements that are both based on the idea of omitting
“expensive” edges before the box in the algorithm. At each iteration in the routine, we

are looking at an edge (7,) from some node i to another node j, see Figure 5.

Figure 5: Evaluating the (7, j)-edge.

BSP Label Correcting 91

The first improvement is a fast predomination check, which rules out “expensive” edges by
considering the present set of labels. This condition is implemented in two distinct ways
as -described in sections 3.4 and 3.5. The first implementation uses initialization with
Dijkstra’s shortest path method to set bounds on all labels, and the second procedure sets
the bounds during the routine.

The second improvement is inspired by an article by Tung and Chew [9]. The idea is to
initialize node information from the terminal node in order to find the cheapest and fastest
paths from an intermediate node to the terminal node. This initialization also finds some
upper bounds on the two objectives. If the present best label at node 7, plus the cost/time
of the (7, j)-edge, plus the least cost/time for the remainder of the (j,¢)-path exceeds the

upper bounds, the edge (7,7) can be left out of further consideration.

We will argue that initializing using Dijkstra’s shortest path method is too slow. This
is supported by the computational results described in section 5. The problem with
the initialization is that the bounds set on the labelsets are too loose. The bounds set
during the routine is better, and can therefore discard more “expensive” edges. The

computational results shown in section 5 support this.

3.3.1 Condition I

Consider again the two particular nodes, i and j, and the set of labels D (i) and D(j) at

these two nodes. Assume that the two labelsets are non-empty, and that

D(i) = {(c1(2),81(2)), -, (e (9), £, (8)) } and D(5) = {(c1(4), t1(4))s -5 (cq(4): 1q (7))} with

c1(7) < co(i) < -+ < (i) and t1(2) > to(i) > -+ > tx(7)

c(f) < e2(d) <+ <cq(y) and t1(j) > t2(j) > -+ > 14())
We are now looking at the edge from node ¢ to node j. Consider the two distinct but

similar situations:

e Assume that ¢ (i) + len(i, j). > cq(j). In this case we have:
c1(J) < e2(y) < <eqly) < er(d) +len(i,j)e < -+ < cili) +len(i,j)e
t1(j) > ta(g) > - > te(g) ? ti(é) +len(i, j)e > --- >ty (i) + len(s, 5);

So if t;(2) + len(i,j)¢ > tq4(j), then the set D(i) + len(i,j) is dominated by the
set D(7). In fact the set D(i) 4 len(i,) is dominated by the last label ¢ of D(j).
Therefore we can discard the edge between ¢ and j, and proceed to the next edge,

because a merge of the two sets will return the set D(j) unchanged.

92 BSP Label Correcting

e Assume that tx(i) + len(i,j); > t1(j). In this case we have:
c1(é) +len(s, j)e < -+ < (i) +len(i,j)e 7 c1(j) <c2(j) <+ <cql))
t1(2) +len(i, g)y > -+ > (i) +len(i,) > 11(5) > t2(4) > -+ > t4(J)

So if ¢1(¢) + len(i, j)e > c1(j), then the set D(i) + len(i,) is dominated by the set
D(j), because it is dominated by the first label of D(3).

The above observations give rise to the following pseudo-code:
If c1(i) +len(i,j)c < cq(j) then end if; (because (i,j) is promising)
else (That means >)
If t,(i) +len(i,j); < ty(j) then end if; (because (i,j) is promising)
else remove j from out(i); (because (i,j) is dominated)
If tx(7) +len(i,j); < t1(j) then end if; (because (i,j) is promising)
else (That means >)
If c¢1(i) +len(i,j)e < c1(j) then end if; (because (4,j) is promising)

else remove j from out(i); (because (i,j) is dominated)

The case of alternative solution possibilities is discarded in the strict inequalities. The
actual paths, alternative solutions or not, can be found by a simple backtracking algorithm.
This way we only find the path(s) that have the “best” cost/time labels (viewed from the
terminal node ¢ by the DM).

Another interesting case is when we look at the opposite conditions of the above. This
implies that all labels at node j is dominated by the paths via node %, and therefore can
be replaced by a new set of labels with the simple calculation D(j) = D(i) + len(i, j).
This operation we will call overtaking. However, not surprisingly the number of times we
can “overtake” is small, because relatively good bounds are set as we proceed through the

network. Therefore “overtaking” is used only when node j has not yet been labeled.

Notice that the sets of labels are expected to be small in the beginning (1-3 labels), but

larger as we approach node .

3.3.2 Condition II

To use the second improvement it is necessary to use Dijkstra’s shortest path method
starting at node ¢, and with all edges reversed, in the initialization. When used with both
cost and time, we find the cheapest and fastest path from any node ¢ to the terminal

node ¢. These values are denoted ¢* () and ¢*(7). The upper bounds on cost and time are

BSP Label Correcting 93

denoted ¢ and t, and are found when initializing with Dijkstra’s shortest path method is

used to find the cheapest and fastest paths.

This gives the following pseudo-code:
If ¢1(4) +len(i,j)e + ¢*(j) > ¢ then remove j from out(i)
If tx(i) +len(i,5); +t*(j) >t then remove j from out(i)

In the next sections we discuss how to implement Condition I. In section 5 we argue that
Condition II will be too slow due to the initialization with Dijkstra’s shortest path method

as mentioned in the beginning of this section.

3.4 Algorithm 1 - Initializing with Dijkstra’s shortest path procedure

We implement the Brumbaugh-Smith algorithm together with condition I. Condition I
described above is first implemented using Dijkstra’s shortest path method to initialize
the algorithm, and to set bounds on the labelsets. We refer to this algorithm as algl.

The pseudo-code is as follows:

Initialize:

D(s) ={(0,0)};

Use Dijkstra’s algorithm to minimize cost

Use Dijkstra’s algorithm to minimize time

Labeled={1, 2, ... , n } ; (all nodes need to be examined during the routine)

SLIM(D(i),Vi € Labeled);

After having used Dijkstra’s algorithm two times, all nodes have two labels, and these la-
bels are also the bounds corresponding to the two elements (¢(i), ™" (4)) and (c™" (i), £(3)).
There might be some duplicate labels, because the labels set by Dijkstra’s shortest path
method, minimizing cost and time, might be the same, especially in the beginning of the
network. If the two labels are equal, one of them is deleted. We refer to this procedure as
SLIM in pseudo-code.

Routine:

while Labeled # 0
choose ¢ from Labeled (FIFO principle);
Labeled=Labeled-{ i } ;
for j € out(7)

Condition I

If (i) +len(i,j)ec < cq(j) then end if; (because (i,j) is promising)

94 BSP Label Correcting

else (That means >)
If t(i) +len(i,j); < ty(j) then end if; (because (i,j) is promising)
else remove j from out(i); (because (i,j) is dominated)
If tx(7) +len(i,j)¢ < t1(j) then end if; (because (i,j) is promising)
else (That means >)
If ¢1(i) +len(i,j)c < ci(j) then end if; (because (%,j) is promising)
else remove j from out(i); (because (i,j) is dominated)

Condition I ended

2

The box is only carried out if the (i,j)-edge looks promising
D (j) = Merge(D(j), D(4) + len(i, j))
If Dp(j) # D(j) then
D(j) = Dn(j5);
If j not in Labeled then (avoids double labelling)
Labeled = Labeled + { j } ;
end If;
end If;
end for;

end while;

The computational performance of the algorithm can be seen in Table 4.

3.5 Algorithm 2 - A direct approach

This implementation of Condition I is without initialization, but with “overtaking” of
nonlabeled nodes. The algorithm is referred to as alg2. The pseudo-code is as follows:
Initialize:
D(s) = {(0,0)};
Labeled={ s } ;
Routine:
while Labeled # 0
choose ¢ from Labeled (FIFO principle);
Labeled=Labeled-{ i } ;
for j € out(7)
If j not in Labeled then D(j) = D(i) +len(i,j) (‘‘overtaking’’)
else
Condition I
If ¢1(i) +len(i,j)e < ¢g(j) then end if; (because (4,j) is promising)
else (That means >)

If t(i) +len(i,j); < ty(j) then end if; (because (i,j) is promising)

BSP Label Correcting 95

else remove j from out(i); (because (i,j) is dominated)
If tx(i) +len(i,j)¢ < t1(j) then end if; (because (i,j) is promising)
else (That means >)
If c¢1(i) +len(i,j). < c1(j) then end if; (because (i,j) is promising)
else remove j from out(:); (because (i,j) is dominated)

Condition I ended

The box is only carried out if there is no °

looks promising.

D (j) = Merge(D(j), D(i) + len(i, j));

If Dy(j) # D(j) then
D(j) = Dm(5);
If j not in Labeled then (avoids double labelling)

Labeled = Labeled + { j } ;

end If;

end If;

end for;

end while;

4 Random networks

In this section we compare two different approaches for generating random networks.
The reason being that the structure of the random networks has a large effect on the
computational results.

First we discuss how NETGEN! works and what problems this gives. Then we introduce
our own random network generator NETMAKER? and explain in detail how it works.

Finally, we compare the two approaches computationally to illustrate the differences.

Our first approach was to use NETGEN to generate random networks (without the
cost/time coefficients). On these networks we ran a small program to generate the cost
and time coeflicients. These coefficients are generated in the same way as in NETMAKER

described below.

We generated ten random networks with NETGEN, each having 100 nodes and 900 edges.
In average, there were only 7.5 non-dominated values (see Table 2), and four of the net-
works had only 2 or 3 non-dominated values.

At first it seemed a little strange that the average number of non-dominated values gen-

erated with NETGEN was so low. In an effort to explain this, we drew all the efficient

!'shareware software found on the Internet and used in Huarng et al. [6]
%available in C++ on the webpage http://www.imf.au.dk/~ajs/

‘overtaking’’ or if the (i,j)-edge

96 BSP Label Correcting

paths in a NETGEN generated network. The structure shown in Figure 6 was found.

O—W)—B)—)—W—O—O—®)
@

Figure 6: Structure of efficient paths in NETGEN network with 15 nodes.

The network is being run through on a single efficient subpath, and then somewhere there
is a few alternative subpaths between a few nodes, before the paths again use the same
subpath to the terminal node. The efficient paths are not spread out through the network.
This network structure is due to the generation of a Hamiltonian cycle in NETGEN that
is deterministic, and because the generation of random edges are uncontrolled. Before any
random edges are generated, a Hamiltonian cycle is made as shown in Figure 7, to make

sure that the network is strongly connected.

Figure 7: Hamiltonian cycle in NETGEN.

Because of this deterministic structure of the Hamiltonian cycle, a single efficient subpath

is used, in the beginning as well as in the end of the network.

We find this an unrealistic structure for real life problems. For this reason we developed
the NETMAKER program in order to generate alternative efficient paths that run through
the whole network having a structure similar to that shown in Figure 8. This structure is
actually found in the NETMAKER networks.

BSP Label Correcting 97

Figure 8: Structure of efficient paths in NETMAKER networks.

Next we describe how NETMAKER works. First a random Hamiltonian cycle starting
at the source node s is generated in order to secure that the network is strongly connected.
Then we uniformly generate a random number of edges out of each node. This random
number of edges belongs to a certain interval, say 1 to 3 edges, to control the total number
of edges. These edges are only allowed to reach a certain number of nodes forward and
backwards. This omits paths with very few edges, unless they are generated in the random
Hamiltonian cycle. This edge interval is essential to get the structure of Figure 8, with

efficient paths spread out through the network.

To illustrate this, we assume that we are allowed to generate between 1 and 3 edges out of
node 5, within a node-interval of 6 nodes. We want node 5 in the middle of the interval,
so the edges may reach 3 nodes in each direction. From node 5 these edges are allowed to

go into nodes 2, 3, 4, 6, 7 and 8. The 6 possible edges are shown in Figure 9.

Figure 9: The 6 possible random edges in which 1, 2 or 3 must be picked.

The cost/time coefficients are generated negatively correlated so that one coefficient is an

integer between 1 and 33, and the other is between 67 and 100. This coefficient generating

98 BSP Label Correcting

approach was found in Andersen, Jornsten and Lind [1]. We use negatively correlated
objectives because it is accepted to be most realistic and interesting, and because it implies

more efficient paths [2].

In Table 2 it is seen that the number of non-dominated values is much higher in the
networks generated by NETMAKER. One could think that this is only because of the
random Hamiltonian cycle in NETMAKER, but as illustrated in Table 3 the edge intervals

are important.

‘ generator ‘ # nodes ‘ # edges ‘ non-dominated values ‘
NETGEN 100 900 7.5
NETMAKER 100 =~ 900 13
NETGEN 50 250 4.7
NETMAKER 50 ~ 250 8.9

Table 2: Average number of non-dominated values in NETGEN and NETMAKER

To get an idea of the number of non-dominated values in networks generated with NET-
MAKER compared with the number of non-dominated values in networks generated with
NETGEN we generated networks with 200 nodes. The results are shown in Table 3. Each
column in table 3 presents the number of outgoing edges for each node in the networks
generated. The 3-6 column, for example, indicates that from each node between 3 and 6,
outgoing edges are generated, 6 being the max. The rows in the table give the interval
between which these edges are allowed to go. The first row (2 - max) shows that the edges
generated are distributed uniformly in an interval of “2 - max” length around each node
where “max” is the maximum number of edges generated. Consider the 3-6 column and
the (2 - max) row. From a particular node, say 10, between 3 and 6 outgoing edges are
generated. These edges can go into nodes with numbers between 4 and 16 (the interval
length is 2 times the maximum number of edges generated, 2-6 = 12). As another example
consider the 7-15 column and the (3 - max) row. From a particular node, say 25, between
7 and 15 outgoing edges are generated. These edges can go into nodes with numbers
between 3 and 47 (the interval length is approximately 3 times the maximum number of
edges generated).

In Table 3 we have found that the average number of non-dominated values depend on
the degree of each node and on the edge interval size. All cells in the tables are with a

sample size of 10 networks.

BSP Label Correcting 99

| 200 nodes [1-3 [24 | 3-6 [510 | 7-15 | 10-20 |
2 - max 35[55[102]124 131 143
3 - max 39 48] 96 [127 [138] 13.9
4 - max 31[49] 79 [129133 147
8 - max 35[55] 8 [108[122] 15
no restriction || 2.5 | 4.3 | 6.4 8 9.8 10
200 interval [34 [51] 74] 99 [9.2 | 13.1

| NETGEN [2.7[48] 67 [79 | 82 [103 |

Table 3: Average number of non-dominated values generated by NETMAKER

It is of no surprise that the average number of non-dominated values increases with the
total number of edges. The total number of edges varies around its mean being the average
number of edges created at each node times the number of nodes. For example, 2-4 edges
implies an average of 3 edges per node, and with 200 nodes this results in approximately
600 edges in each network of this kind. This is the fixed number of edges generated for
the NETGEN networks in the last row of Table 3 for the 2-4 edges case. We see that
NETGEN generates the same number of non-dominated values that NETMAKER does
without interval restrictions. This means that when you run NETMAKER with no interval

restriction, the probability of a short path is high, as explained with NETGEN.

The next observation is on the interval size. We claimed earlier that the number of non-
dominated values will be larger if paths using very few edges are omitted. This claim
holds, as the number of non-dominated values is larger when there is a restriction on the
interval size. Since the interval length itself is not so important, we have used the 8 - max

interval length for all the networks in section 5.

As mentioned earlier, the structure of the random networks shown in Figure 6 is an
unrealistic structure for testing shortest path algorithms, and it also favours one type
of algorithm, namely the Parametric Approach [7]. The reason for this is that the Label
Correcting algorithm (brum) has to evaluate all nodes at least once, and thereby evaluates
all edges. Therefore the computational effort is very dependent on the size of the network,
even in networks with only one efficient path. The Parametric Approach uses simple
objective weighting in the first phase, and then backtracking of spanning trees as explained
in section 2. But in case of a large network with only one or two efficient paths there is
little backtracking, and the algorithm will perform well. But if the network has many
efficient paths and perhaps negative correlation between the objectives, there is much

more backtracking to be done, and this is what takes time in the Parametric algorithm [7].

100 BSP Label Correcting

Mote et al. [7] have computational results in their article showing that with negatively
correlated objectives, their algorithm has cpu-times similar to those of Hansen’s label
setting approach [5]. This illustrates how much cpu-time is consumed by the backtracking

part, if there are many efficient paths.

5 Computational results

We have tested the two algorithms described in sections 3.4 (algl) and 3.5 (alg2) together
with the Brumbaugh-Smith algorithm (brum) of section 3.2. All algorithms are imple-
mented in C++, and can be found on the homepage http://www.imf.au.dk/~ajs. We
have used an HP 9000 series computer with a single processor. For each size of network

we have used 10 random networks, so in Table 4 we have used a total of 50 networks.

In the previous section, we argued that NETMAKER generates reasonably random net-
works for testing bicriterion shortest path algorithms. In this section we compare the
Brumbaugh-Smith approach and the modified versions of section 3.4 (algl) and section

3.5 (alg2).

‘ # nodes H brum H algl init ‘ algl routine ‘ algl total H alg?2 ‘

100 2.52 0.22 2.11 7.33 1.84

200 18.27 41.32 16.54 57.86 13.59
300 44.37 139.76 40.81 180.57 35.11
400 76.26 327.98 70.52 398.50 58.29
500 133.22 | 640.29 123.96 764.25 108.33

Table 4: Cpu-times for brum, algl and alg2 when the number of edges are between 2 and
4 at each node.

In Table 4 we see that the initialization phase in algl, where Dijkstra’s shortest path
algorithm is run through twice, takes more than double the amount of cpu-time used by
brum. Our implementation of Dijkstra’s shortest path algorithm is seen to be a little
slower than the Label Correcting routine. Remember that they are expected to be fairly
similar.

The difference in cpu-time between the algl routine part and alg2 occurs because all nodes
in the algl routine part has a label from initialization so there is no “overtaking”.

The slow initialization times are the reason why Condition II in section 3.3.2, suggested by
Tung et al. [9] is not being implemented. It requires that Dijkstra’s shortest path method

is run through twice. The brum algorithm is always outperformed by the alg2.

BSP Label Correcting 101

It can also be seen that running Dijkstra’s shortest path method twice takes somewhat
the double cpu-time as running brum. This supports our argument from section 3.3, that

the Label Correcting algorithm has the same computational performance as Dijkstra’s.

The rest of the comparisons are done with only the brum and alg2 algorithms. The
objective is to evaluate the effectiveness of Condition I on networks with different charac-

teristics.

‘ # nodes H brum ‘ Merges H alg2 ‘ Condition I's H % Merges in alg2 ‘ % cpu-time ‘

200 9.01 761.30 4.12 208.40 46.49 45.76
400 40.38 | 1615.20 || 20.96 407.20 50.09 51.91
600 92.96 | 2502.00 || 51.40 078.15 52.95 95.29
800 187.05 | 3385.00 || 111.82 757.65 54.01 59.78
1000 280.61 | 4668.20 || 162.52 970.90 57.80 57.92

Table 5: Cpu-times, number of Merges and number of Condition I’s for brum and alg2
when the number of edges are between 1 and 3 at each node.

The first comparison is made on a thin network, where the average number of edges is
only two times the amount of nodes. The results are shown in Table 5, and the overall
conclusion is that alg2 is considerably faster than brum. On these thin networks, Condition
I is active in about 25 % of the set comparisons. On top of this the “overtake” procedure
labels (#nodes— 1) times, this being the number of times we look at a node with an empty
labelset. If we add the number of nodes to the number of Condition I's, we get half the
number of merges carried out in the brum algorithm. This explains why the cpu-time is
half, and supports that the boxed part of the algorithms is the computationally heavy
part.

It can also be seen, that as the number of nodes increases, the fraction of Condition I’s
decreases. This is due to the fact that the probability of the Condition I being fulfilled
decreases as the labelsets increase. The labelsets increase in size as we move towards the
terminal node, and in the larger networks the average number of non-dominated values
is a little higher and therefore the labelsets are bigger. The Condition I is more often
fulfilled in the first half of the merges, while the labelsets are fairly small. As expected

alg2 performs very well on thin networks, because of the small size of the labelsets.

Next we look at less thin networks with an average number of 3 edges per node. The results
are shown in Table 6, and as expected the fraction of Condition I’s has dropped. Because

the cpu-time saved is fairly proportional to the number of Condition I’s and “overtakes”,

102 BSP Label Correcting

| # nodes | brum | Merges | alg2 [Condition I's || % Merges in alg2 | % cpu-time |

200 18.34 | 1399.65 || 12.16 303.25 64.12 66.29
300 45.37 | 22214 31.76 428.45 67.25 70.00
400 80.43 | 3080.7 58.14 487.35 71.23 72.28
500 129.77 | 4006.65 || 96.91 652.10 71.27 74.68
800 336.65 | 6801.80 || 245.77 933.95 74.52 73.00

Table 6: Cpu-times, number of Merges and number of Condition I’s for brum and alg2
when the number of edges are between 2 and 4 at each node.

alg2 only performs about 25-35 % better than the brum algorithm for networks with this
density (and this size).

| # nodes | brum | Merges || alg2 | Condition I's || % Merges in alg2 | % cpu-time

100 12.59 2796.1 11.05 251 87.48 87.76
200 79.55 | 6055.40 73.50 284.4 92.02 92.40
300 195.48 | 9680.60 || 183.55 346.45 93.33 93.90
400 349.04 | 13733.30 || 329.83 430.25 93.96 94.50
500 589.84 | 17943.05 || 558.87 463.40 94.64 94.75

Table 7: Cpu-times, number of Merges and number of Condition I’s for brum and alg2
when the number of edges are between 7 and 15 at each node.

For the thick networks of Table 7 with an average of 11 edges per node, we see that the
fraction of Condition I's and “overtakes” is down to 5-12 %. The cpu-times are again
proportionately faster as well. This Table illustrates that even in thick networks there are
still cpu-time saved by imposing the condition. We therefore conclude that the cost in

cpu-time of checking the condition is close to zero.

A little investigation revealed that for random networks, the number of merges is (almost)
a linear function of the number of edges. For small networks the number of merges is
double the amount of edges, and for larger networks the number of merges was found to

be three times the number of edges.

6 Concluding remarks

We have investigated both the structure of random networks for the BSP problem, and the
performance of the existing algorithms. Only the most promising algorithm so far, namely
the Label Correcting algorithm has been implemented here. However, with reference to

other articles, we argue that this approach is indeed the fastest. We have also imposed

BSP Label Correcting 103

a condition to be checked during the routine, that saves up to 50 % cpu-time. Thus we

conclude that even large BSP problems can be solved to optimality in reasonable time.

Well-known methods for choosing among the non-dominated solutions can then be applied.

References

[1]

K.A. Andersen, K. Jornsten, and M. Lind. On bicriterion spanning trees: An approx-
imation. Computers and Operations Research, 23:1171-1182, 1996.

J. Brumbaugh-Smith and D. Shier. An empirical investigation of some bicriterion

shortest path algorithms. Furopean Journal of Operational Research, 43:216-224, 1989.

J.C.N. Climaco and E.Q.V. Martins. A bicriterion shortest path algorithm. European
Journal of Operational Research, 11:399-404, 1982.

E. Erkut and V. Verter. Modeling of transport risk for hazardous materials. Operations
Research, 46:625-642, 1998.

P. Hansen. Bicriterion path problems. In G. Fandel and T. Gal, editors, Multiple
criteria decision making: theory and applications, Lecture Notes in Economics and

Mathematical Systems 177, pages 109-127. Springer-Verlag, Heidelberg, 1980.

F. Huarng, P.S. Pulat, and L. Shih. A computational comparison of some bicriterion

shortest path algorithms. J. Chinese Inst. Indust. Engrs., 13:121-125, 1996.

J. Mote, I. Murthy, and D.L. Olson. A parametric approach to solving bicriterion
shortest path problems. European Journal of Operational Research, 53:81-92, 1991.

R.E. Steuer. Multiple criteria optimization: Theory, Computation, and Application.
Wiley, New York, 1986.

C.T. Tung and K.L. Chew. A bicriterion pareto-optimal path algorithm. Asia-Pacific
Journal of Operations Research, 5:166-172, 1988.

104 BSP Label Correcting

The Bicriterion Semi-obnoxious Location (BSL) Problem Solved by
an e-Approximation

ANDERS J.V. SKRIVER AND KiM ALLAN ANDERSEN*
Department of Operations Research
University of Aarhus, building 530
Ny Munkegade
DK - 8000 Arhus C
Denmark

August 16, 2001

Abstract

Locating an obnoxious (undesirable) facility is often modeled by the maximin
or maxisum problem. But the obnoxious facility is often placed unrealistically far
away from the demand points (nodes), resulting in prohibitively high transportation
cost/time. One solution is to model the problem as a semi-obnoxious location problem.

Here we model the problem as a bicriterion problem, not in advance determining
the importance of the obnoxious objective compared to the cost/time objective.

We consider this model for both the planar and the network case. The two problems
are solved by an approximation algorithm, and the models are briefly compared by
means of a real-life example.

Keywords: Multiple criteria analysis, Semi-obnoxious, Location, Planar, Networks.

1 Introduction

In the two traditional single facility location problems, a new facility is located (placed)
so as to minimize transportation costs (minisum), or as to minimize the distance to the
farthest customer (minimax). In the minisum problem we sum all the distances between
the new facility and the customers, multiplied by a weight depending on the individual
customer. In the minimax problem we minimize the largest weighted distance. The
minisum model can be relevant when locating a warehouse and the minimax model can be
used to locate a fire station. These models are presented in Love et al. [12] and Francis et
al. [8], both including many references. The obnoxious location problem is a more recent
class of problems, where the two most common are the maxisum and maximin models.

When locating an obnoxious (undesirable) facility the goal is to place it as far from the

*Corresponding author. Email: kima@imf.au.dk

105

106 BSL Approximate

existing facilities (demand points, customers) as possible. See Erkut and Neuman [7] or
Carrizosa and Plastria [5] for a review.

There is little literature combining the desirable and the obnoxious facility location
models. In this paper we model the combined problem as a Bicriterion Semi-obnoxious
Location (BSL) problem. One objective function is obnoxious and one is desirable. We
also consider both the network case and the planar case of the problem. In biobjective
optimization our goal is to find the set of efficient solutions. These solutions are such
that there does not exist another solution that has a better value in one objective without
having a worse value in the other objective. The concept of efficient solutions is the same
as Pareto optimal solutions. In the network case, where the demand points are nodes in a
network and we try to locate the new facility in a node or on an edge, we have found no
references, but ongoing research is presented in Hamacher et al. [9]. In the planar case,
where the feasible locations are in IR?, we have found only three references, namely two
papers by Brimberg and Juel, [1] and [2], and a paper by Carrizosa et al. [4].

In the bicriterion model, developed in the first paper by Brimberg and Juel [1], the
first objective is the minisum objective and the second objective (the obnoxious criterion)
is the minisum objective, where the Euclidean distance is raised to a negative power. It is
proposed to solve the problem (finding the efficient solutions) in two steps. First a convex
combination with parameter A € [0, 1] of the two objectives (weighting method, Steuer
[14]) is formed. The resulting objective is neither convex nor concave. By varying A a
trajectory of efficient solutions may be determined. In the paper an algorithm based on
this is outlined. A numerical example is presented.

In the second paper by Brimberg and Juel [2] a different bicriterion model is considered.
In this model the first objective is again the minisum objective, but the second objective
(obnoxious) is now the maximin objective. They present two different solution methods
for this model, but only one of them is guaranteed to find the complete set of efficient
solutions.

In the bicriterion model developed in the third paper by Carrizosa et al. [4], the first
objective (the obnoxious criterion) is modeled as the maxisum, and the second objec-
tive is modeled as the minisum problem. A solution procedure based on the BSSS (Big
Square Small Square) approach is suggested. The procedure finds an approximation of
the set of efficient solutions but no computational experience is reported. It should also

be mentioned, that the approximation is in value space, and not in decision space.

The theory of the planar and network models is quite different, and the two models

are not often compared, even though they try to describe the same real-life problem. We

BSL Approximate 107

apply the two models on a real-life example in Section 4.

Next we present the basic model for the (BSL) problem. We assume that there are n ex-
isting facilities (demand points). In the planar case they are denoted a; = (aj1,4a52), j =
1,...,n. In the network case they are denoted wvy,vs,...,v,. We want to place a new
facility at location z in order to minimize both the (transportation) costs and the obnox-
iousness. Let S denote the set of feasible solutions, f(x) the obnoxious objective function
and g(x) the cost objective function. The general model looks as follows:

min f(z)

min ¢g(z)
s.t. ’ (1)

rz €S

We assume f depends negatively on the distance function and g depends positively on the
distance function. This means, when we increase the distance between the new facility
and an existing facility, this will have a decreasing effect on f and an increasing effect on

g, e.g. less obnoxiousness but higher transportation costs.

Definition 1 A feasible solution x to (1) is efficient iff there does not exist another fea-

sible solution T to (1) such that f(z) < f(x), g(Z) < g(z) and (f(Z),9(Z)) # (f(x), g(x)).
Otherwise x is inefficient.

Efficiency is defined in the decision space. There is a natural counterpart in the
criterion space. The feasible region in criterion space is denoted by Z and is given by
Z ={z(z) € R?|2(z) = (f(x),g(x)), z is feasible in (1)}.

Definition 2 z(z) € Z is a nondominated criterion vector iff x is an efficient solution

to (1). Otherwise z(x) is a dominated criterion vector.

For a textbook introduction to multicriteria analysis see Steuer [14] or more recently
Ehrgott [6]. We note that several efficient solutions may correspond to the same nondom-

inated criterion vector.

As mentioned we consider two cases of the problem. The planar case, denoted the
BSPL problem, where the feasible solutions form a region in the plane, and the network
case, denoted the BSNL problem, where the set of demand points are vertices in a network.

The BSPL problem is solved using the BSSS method described by Hansen et al. [10],
and we use the idea of this method to solve the BSNL problem as well. The method is

described in Section 2.1 for the planar case and in Section 3.1 for the network case.

108 BSL Approximate

The remaining part of the paper is organized as follows. In Section 2 we describe the
BSPL problem and the solution approximation algorithm, and in Section 3 the BSNL
problem and its solution method is described. In Section 4 an application of the two

models is presented. Section 5 contains the conclusions.

2 The planar case : The BSPL problem

The BSPL problem is formulated in the following way. There are n facilities (demand
points) located at points ai,as,...ay,, and the objective is to locate a semi-obnoxious
facility at « so as to minimize a weighted sum of the distances raised to a negative power,
and to minimize the weighted sum of the distances between the existing facilities and the
new facility. The first criterion f(z) may be thought of as a pollution effect and the second
criterion ¢g(z) as transportation costs. This model was first introduced in Brimberg and

Juel [1], where a discussion of the objective functions can also be found.

min f(z) = -21 wi(l| z = aj lp,)~" b>0
J:
min g(z) = 3 w? || = aj [lp, (2)
]:
S.t.
€S

where || — a; [|,= (|1 — a;1|” + |22 — a;2[P)}/? be the usual I” norm, p > 1.

We prefer this obnoxious function, because it minimizes the overall obnoxiousness
when far from a demand-point, but reflects the local effects when close to a demand-
point. Corresponding to this objective we use the non-negative weights w'. The second
objective is the standard formulation for locating an attractive facility by minimizing
the weighted sum of the distances (called minisum or median). Please note that we use
non-negative weights w? with this objective, so that the two objectives may be weighted
differently with respect to each of the n demand points. We may also use two different
norms, p1 7% ps.

If we are modeling where to place a new airport (the example in Section 4), the first
weight wjl- may depend on the population at demand point j (e.g. city), and the second
weight w]2- may be the expected number of passengers on a yearly basis from demand
point 7.

S is the set of feasible solutions. Because of the obnoxious effects from the new semi-
obnoxious facility, we assume that it is forbidden to place it too near an existing facility.

Therefore, we require, that || © —a; ||,,> €, j = 1,...,n, where € is a small positive

BSL Approximate 109

number. Notice, that this assumption makes the two objective functions Lipschitzian in
the feasible set S.

An obvious question for this model would be, if all feasible points are efficient? The
answer is that there does exist examples where all feasible points are efficient, but that

will probably not be the case in a realistic set-up.

2.1 The idea of the BSSS algorithm

In this paper the idea behind the BSSS method will be applied to the BSPL problem (and
also to the BSNL problem). Therefore we briefly review the method below.

Suppose that the feasible region S is contained in a disjoint union of squares of equal
size. We put these squares into a list named ES. Next each of these squares are considered
separately. Consider one of the squares, say @Q);. We divide); into four sub-squares
Qi1, Qi12, Qi3 and Q44 of equal size. For each of these sub-squares, say @;1, lower bounds
on the objective function values (f(z),g(z)), z € Q;1, are found. By comparing this lower
bound with a sample set of objective function values (stored in a list called EFV) it may be
determined that square);; contains only inefficient points (this is done by the Dominance
Check Routine DCR(Q);1)). If this is the case square ();; is called an inefficient square
and may be deleted from further consideration. The squares that cannot be classified as
inefficient are put into the ES list and will later be divided further into four new sub-
squares. The process continues until the side-lengths of all the remaining squares (those
that are not classified as inefficient) in ES are below some pre-specified value e. This
procedure is justified provided the two objective functions f(z) and g(z) are Lipschitzian
in the feasible set S (which is the case in the present paper).

A few comments on the procedure are appropriate. The sample list of objective func-
tion values kept in (the sorted) list EFV (Efficient Function Value) are used to dominate
sub-squares with poor objective function value bounds. Therefore the values should in a
way represent the objectives’ behavior over the feasible region. This is done by calculating
objective function values in the centers of all the squares, if the center is in the feasible
region S, and otherwise in some other feasible point, and then deleting pairs of objective
function values being dominated by other objective function values in the EFV list. It
is also essential that we use good lower bounds for the objective function values over the
squares. If the bounds are poor, the convergence of the algorithm may be slow, because
we will end up with a large number of squares. These bounds are explained in detail in
Sections 2.2 and 2.3. Finally, we need to check if a square is contained in the feasible

region, is overlapping the region or is outside the region. For a discussion of this issue we

110 BSL Approximate

refer to the paper by Hansen et al. [10].

The output from the algorithm is an ordered set of “efficient” squares. By “efficient”
we mean that we have not been able to dominate them for this particular choice of e.
This is why the procedure is only an approximation. The “efficient” squares can be
associated with a certain objective function value, to illustrate the trade-off between the
two objectives. This can be done by giving the squares a color corresponding to the value
of the first objective. This will illustrate how one objective improves as the other gets
worse, and visualize the objective function values being favored in the different “efficient”
regions. In the remaining part of this section we assume to have an initial approximation

of the feasible region S by equal size squares.

2.2 Calculating lower bounds

In order to calculate lower bounds on the two objectives, we use an approximation of the
weighted distances. This distance approximation is illustrated in Figure 1 for the {2 norm.
The lower bound for the distance is found in Hansen et al. [10], and the upper bound for
the distance is an obvious extension of the same idea, found in Hansen et al. [11].

The plane is divided into 9 regions, obtained by extending the four sides of ();. The
regions are the square @);, the four side regions, and the four corner regions. The square

Q; will be in the center.

®a
: 2 /a3 /’GZ
/
| — / P
. / as // al
az 2 AN) it
\ ,
\ / Ve
"N ’
A 7
N Ve
/N /
° N
a1 = a1 // ’ \\
,
’ \
// ' \\
/ ai \
\
/ N
az A
2 .
A: Lower bound B: Upper bound N as
»

Figure 1: Lower and upper bounds on the distances.

Now let a; be a particular location. With this location we associate a closest point

a; € (Q; and a furthest point @; € ();, see Figure 1. We may then calculate a lower bound

BSL Approximate 111

on the values of f and ¢ in @; as follows:

~
&
I

> w;(H a; — aj le)—b Case B in Figure 1
J
9(Qi) = > w]2- | aj —aj |lp, Case A in Figure 1

J
Clearly, (f(Qi),g(Q;) < (mingeq, f(x), minyecq, g(y)). Therefore we can use the bound
2(Qs) = (f(Q4),9(Q;)) for efficiency checking in the algorithm. If we at some point have
found a sample value z € S, such that (f(z),g(x)) < (f(Qi),g(Qi)), then, clearly all
points in (); are dominated by z. It follows that square @); contains only inefficient points.
Therefore it is not necessary to consider (); anymore. This bound approach can be used
for any p € [1;00]. Please note that the bounds obviously converge when the squares get

smaller.

2.3 Exact lower bound

Since the minisum objective is a nice convex function, it is possible to calculate an exact
lower bound for the squares in most situations. The level sets of a convex function are
convex sets, and the gradient can therefore be used as follows.

For a square (Q; with corners cq,c2,c3 and ¢4, find the corner ¢, with the minimum
function value g(cp). If the direction of steepest descent “points away” from the square
Qi, then the lower bound g(Q;) is exactly g(cy). By “pointing away” we mean that the
direction of steepest descent has an angle of at least 90 degrees with the sides of @);, see
case A in Figure 2. If this angle is less than 90 degrees, the minimum value over @); is
not in ¢y, but on the line segment between c¢;, and the corner, the direction points out, see
case B in Figure 2. Finally, if the direction points into ();, the minimum value is not in

cp, but inside Q;.

Case A Case B

G ¢

Figure 2: Exact lower bound, depending on directional derivative

112 BSL Approximate

From the above, an exact lower bound can easily be computed, if the directional
derivative points away from the square. We only need to compute four function values
and the directional derivative in the minimum value corner. Case A in Figure 3 will occur
in most evaluations, but not in all.

The directional derivative ¢'(zg, y) of g at zy € S in the direction y is defined as follows:

9'(z0,y) = V g(zo) - y

where Vg(z) is the gradient of g evaluated in zg.

If we consider the [? norm, the gradient looks as follows:

B w]z(xgl — aj1) UJJQ-(.’L‘[)Q — ajo)
MRl O sy by ey

This reveals the well-known problem; if z(is at a demand point, the gradient is undefined
because of the denominator being zero. In this case we also have to use the lower bound
of Section 2.2.

Expressions for the gradient for general [P norms, can be derived for any p € [1; o]
Actually, the only assumption needed for the exact lower bound to be valid, is that the
level sets are convex. The reason for deriving tighter bounds is to speed up convergence

of the algorithm.

2.4 BSSS algorithm for the BSPL problem

Notation:

Qi Square number %

2(Qs) = (f(Qi),9(Qs)) Lower bounds for Q;.

ES List of Efficient Squares. Note that this is only a name for
squares that have not been proven inefficient.

ECL Efficient Candidate List (of squares of equal size). It consists
of the four sub squares of all the squares in ES.

EFV List of Efficient Function Values. Function values are calculated
at different points in the feasible region, and the nondominated ones
(at this time in the routine) are in this list.

DCR(Qy) Dominance Check Routine for @Q; (with EFV). Is briefly explained

in Section 2.1.
The idea for the DCR routine was found in [3], and earlier used by the authors in [13].

Planar Algorithm:

1. Initialize

Find an equal size square approximation Q1,Q2,...,Q N of S

BSL Approximate 113

Put Q; in ESVi=1,2,...,N.
Let L be the length of a side of Q1

Define the tolerance level €
2. Creating New Squares

For each @); € ES do

Create 4 sub-squares (0j,7 = 1,2,3,4, put the @;’s in ECL and delete Q;
from ES

L
Set L = 3
3. Efficiency Update

Update EFV by calculating some function values from the @;’s
For each (); € ECL do

Calculate z(Q;) = (f(Q;),g(Q;)) using exact lower bounds when possible
Make DCR(Q;) with EFV
If Q; is efficient compared with EFV then add Q; to ES

4. Termination Test

If L < € Terminate with ES as the solution list

Else go to Step 2

3 The network case : The BSNL problem

In this section we adapt the BSSS method to the network case. However, instead of
dividing big squares into smaller squares, we divide edges into sub-edges. This will be
explained in detail in Section 3.1. Assume we have an undirected connected network
G(V, &) with node set V = {v1,vs,...,v,} where |V| = n nodes, and a finite set of edges
(arcs) € = {(vi,vj), (v, v1), ..., (vp,vg)} With |E] = m. Edges may also be denoted by e.
All edges have a strictly positive length. Each node v; carries two non-negative weights
(wjl-, w]?), one for the obnoxious criterion and one for the desirable criterion.

The model is the same as (2), except that the set of possible new locations is the entire

network. With our choice of obnoxious objective function, however, z cannot be located

114 BSL Approximate

in a node. The BSNL problem is then:

min f(z) =Y w} (d(z,0;)7", b>0

min ¢(z) = Z]: wjz d(z,v;) (3)
s.t. ’
z e GV, E)

where d(z,v;) is the shortest distance from point z to node v;. The authors are well aware
that the obnoxious objective function is not as appropriate on the network model, as in
the planar model, but we have decided to use it for comparison purposes, see Section 4.
The solution procedure is described shortly in Section 3.1 and the algorithm is presented
in Section 3.4. The approximation algorithm is a very general and intuitive approach and

can be used for complicated objective functions.

3.1 The Edge Dividing algorithm

The idea of the Edge Dividing (ED) algorithm is similar to the idea behind the BSSS
algorithm. First we divide each edge into two sub-edges. Then bounds on the objective
function values on each sub-edge are calculated. Furthermore, a sample set of objective
function values are calculated. If the bounds calculated for a sub-edge are dominated by
one (or more) of the sample set objective function values then the sub-edge is dominated
and may be deleted from further consideration.

The bounds are derived in detail in Sections 3.2 and 3.3. The sample set of objective
function values are calculated in the middle (center) of the sub-edges. Nondominated
criterion values are kept in the EFV list. Please note that only an approximation of the
efficient set is found.

The output from the algorithm is an ordered set of “efficient” sub-edges. This general
procedure, however, has a few disadvantages. The efficient set (or part of it) may be an
edge-segment. This sub-edge will obviously remain in the ES list, but the sub-edge will
be divided into sub-edges again and again. This reveals that the ES set will probably
almost double in size, when we half the € value. This can in fact be used as an alternative

stopping criterion.

3.2 Calculating lower bounds

We need both upper and lower bounds on the distance d(z,v;), where z can be any point
on the edge (or sub-edge) e;. We refer to the lower bound of this distance by d(e;,v;) and

to the upper bound by d(e;,v;). Assume e; € (vp, Vi), and z, is the endpoint of e; closest

to vy, and that zj is the endpoint of e; closest to vy.

BSL Approximate 115

The upper-bound may be calculated as follows:
d(ei,v;) = min{d(vj,v) + d(vs, zp), d(vj,vs) + d(vg, Tk)} + d(zh, T4)
and the lower-bound may be calculated as follows:
d(ei, vj) = min{d(vj, vp) + d(vp, zp), d(vj, v) + d(vg, zr) }

These two bounds can be easily calculated as illustrated in Figure 3, whenever the

distance matrix D, of shortest distances between all pairs of nodes, is available.

Figure 3: Calculating distance bounds.

Using these bounds we can calculate the lower bounds on the objective function values

as

—b

fle) = Z wjl- (d(ei,vj)>
J

gle) = Y wjdlei,v))
J

3.3 Exact bounds

In this section we derive some exact bounds, specifically for our choice of objective func-
tions.

The distance function d(z,v;) is a concave functions on an edge (subedge). Therefore,
g(x) is a concave function on an edge, and the minimum is always in one of the (sub-edge)

endpoints. So we have an exact lower bound as follows.

g(ei) = min{g(zn), g(zr)} (4)

b

Now lets consider f(z). Since d(z,v;) is both positive and concave, (d(z,v;))" is convex.

Therefore, f(z) is convex on an edge. If we are looking at the sub-edge from z; to zjy as

116 BSL Approximate

illustrated in Figure 3, and the derivatives at the endpoints have the same sign, then an

exact lower bound is simply the smallest endpoint value. That is, if

) 78+ = sign L T
Szgn(ax<vh,vk>f($h)>‘ g (ax(vh,%)f(k>) 5)
then
f(ei)) = min{ f(z), f(zk)} (6)

+
where -~~~ —
&D(Uiqvj)
want to know if the function increases or decreases. The “T” indicates right derivative,

f(z) denotes the derivative in the direction from v; towards v;, and we

so even in a break-point this derivative is well-defined. If (5) does not hold, the bound in
Section 3.2 has to be applied. For more general objective functions, the bounds in Section

3.2 may be needed more often.

3.4 ED algorithm for the BSNL problem

Notation:

€; Sub-edge number ¢

z(e;) = (f(ei),g(ei)) Lower bounds for e;.

ES List of Efficient Sub-edge. Note that this is only a name for
sub-edges that have not been proven inefficient.

ECL Efficient Candidate List (of sub-edges). It consists
of the two sub-edges of all the sub-edges in ES.

EFV List of Efficient Function Values. Function values are calculated
at different points on the network, and the nondominated ones
(at this time in the routine) are in this list.

DCR(e;) Dominance Check Routine for e; (with EFV).

L Length of a longest edge in ES.

Network Algorithm:

1. Initialize

Find the shortest path matrix D.

Put all edges ey, es,..., ey in ECL.

Let L be the length of a longest edge in ECL.
Define the tolerance level e.

Calculate criterion values in all midpoints to make an initial EFV list.
2. Efficiency Update

For each e; € ECL do

BSL Approximate 117

Calculate z(e;) = (f(ei), g(e;)) using (4) and the exact bound (6) if possible

Make DCR(e;) with EFV
If ¢; is Efficient compared with EFV then add e; to ES

Update L (as a longest sub-edge in ES)
3. Termination Test

If L < € Terminate with ES as the solution list
4. Creating New Sub-edges

For each e; € ES do
Split e; into two sub-edges e;1 and ejo of equal length.
Add e;; and e;5 to ECL and delete e; from ES

Update EFV by calculating criterion values on the middle of all sub-edges e;
in ECL

Go to Step 2

4 An airport example

To illustrate the usefulness of the two models we present an application. Currently, there
is a debate in Denmark as to the location of a new international airport in the mainland
Jutland in order to replace an existing one. The existing airport is located near a small
city called Tirstrup approximately 45 km to the North-East of Arhus, the largest city in
Jutland (with about 215.000 inhabitants). The existing airport is located in an area where
not many people are living and where not many companies are based. Furthermore, the
infrastructure of this area is not too good. For example it takes about 1 hour to go from
Arhus to Tirstrup. Many companies (and people) think that this is too much time to
spend on transportation to the airport.

It is believed that a new international airport located not too far away from Arhus
would be attractive to a lot of companies (and people). However, customers (compa-
nies/people) living nearby Arhus are more likely to use the new airport than customers
living far away from Arhus. Therefore, we will consider only a region of potential loca-
tions with z-coordinates between 60 and 140, and y-coordinates between 100 and 180, see
Figure 4. Furthermore, we have divided Jutland into three zones, namely a 100% zone,
a 50% zone, and a 20% zone, see Figure 4. The weighting zones should reflect the fact

that customers far away from the chosen region will use the new airport less frequently

118 BSL Approximate

than customers close by or within this region. These three weighting zones will be used
when defining the transportation objectives later in this section. We have chosen 42 cities
to represent the customers in Jutland, ranging in population from 2574 (Hanstholm) to
215587 (Arhus) inhabitants as demand points. Distance is measured in kilometers, and
the e-value used is 0.15 km (150 meters) for both the planar case and the network case.
Origo is placed on the German island of Sylt.

Next, let us describe the parameters for the two objective functions. For the planar
model we have used the Euclidean distance and a b-value of two. For the network model,
the distance is always the shortest distance in the network. The b-value is two. The edge
lengths are road distances collected from an intercity distance table. All input data is
available from the corresponding author.

For the obnoxious criterion we have used weights wjl- =“population in city 5”. This
is a simple form of letting the larger cities count more than the smaller cities. For the
transportation cost objective we have used weights w]2- =“population in city j multiplied
by the weight of the zone in which the city is located”. This means that cities nearby
Arhus count much more than cities far away from Arhus, reflecting the fact that customers
far away from Arhus are likely to use the new airport less frequently than customers living
nearby Arhus.

Whether the city population is an appropriate measure of passengers is not an issue
here. The data for the example is presented in Table 1, and it is used for both the planar
and the network problem. The three dummy-nodes in Table 1 are introduced only to make
the road-network in Figure 7 more realistic, and are located right to the west of Arhus.

These nodes are introduced because the main highway follows a half-circle around Arhus.

First we present the results of the planar model. The norm to the negative power
function is illustrated in Figure 5, covering the region of [60, 140] x [100, 180]. The peaks
indicate the cities, with function values going to infinity. As can be seen from Figure 5 it
may be hard to find an exact lower bound for this function. The minisum global optimum
is attained in (110, 145) with a value of 3,27 - 107. The minisum function is not plotted
since it is just a convex function.

The efficient region is illustrated on the map in Figure 6. For clarity, we have drawn
two minisum level curves. The inner level curve is minisum values 10% above the global
minisum minimum (3,6 - 107), and the outer level curve is 20% above (3,92 - 107).

Figure 6 reveals three efficient regions. The central region just west-north-west of
Arhus containing the global minisum minimum, and with minisum-values within 10%

of the minimum. The central region reflects in which direction the obnoxious objective

BSL Approximate 119

A * 47 Skagen
ot Hirtshals /‘?{‘*ﬁs
@
]
Ge H]ﬂrrm { s ““‘%Fredenksh
*’IP‘ J; |]
S Bm;,déﬁslév {_ﬁ

Hansrhulm i d‘/-l \ '!, P g / 20 %

250 1 ; =]
] il jef SEV ""j \\ _.'
I /éﬁ(Aalbn}g AAT

\¥ / m @m 50 %
i # _ o
GL N A
200 41 ‘z?ivf N\ &iw ﬂ“\gHahp
Lfs,,vis‘-'ﬁ,\.). m;{gki'ﬁg‘ I - 100 %
" ST i Raf{ders ;..l.

k 't'iSt:ru'ep B 2 i
E\Hnl‘ﬁﬁtuehm_'. ?ﬁ\é_:” Ha&é}en iﬁrenaa;-f

150r—\l ;\\ QP/ A

balmi
.J’

mn'éka vl
\i Sk }ql‘ !
IE? | rF'-,- j"'}‘\‘ N, k!

:-:' B L I . ; |
50 HenshurdOO 150

Figure 4: Jutland divided into three weighting-zones. Coordinates are in kilometers.

120

BSL Approximate

City (5) aji ajo w71- w?
Esbjerg 717 69.31 73422 14684.4
Tender 34.416 8.126 8161 1632.2
Ribe 28.202 52.102 8046 1609.2
Kolding 72.178 68.832 53012 26506
Vejle 76.002 93.21 47839 23919.5
Horsens 95.122 110.418 48410 48410
Skanderborg 99.902 130.494 12067 12067
Arhus 118.066 142.922 215587 215587
Randers 106.116 177.338 56123 56123
Viborg 67.876 175.904 31872 31872
Silkeborg 76.958 146.746 36762 36762
Tkast 52.102 141.01 14014 7007
Herning 40.63 141.966 29231 14615.5
Holstebro 18.642 166.344 30770 15385
Struer 17.208 181.206 11272 5636
Skive 44.454 188.332 20557 10278.5
Hadsten 108.028 162.042 6616 6616
Grena 158.696 172.08 14441 14441
Hobro 91.298 196.936 10704 5352
Aars 74.568 216.056 7066 3533
Alborg 98.468 240.434 119157 59578.5
Fredericia 88.43 78.392 29376 14688
Haderslev 74.09 42.064 21106 4221.2
Aabenra 69.31 20.076 16218 3243.6
Vejen 52.58 66.442 8507 1701.4
Bronderslev 99.902 267.202 11365 2273
Hjgrring 103.248 289.668 24889 4977.8
Frederikshavn 135.274 288.234 24768 4953.6
Bjerringbro 83.547 169.246 7201 7201
Varde 10.994 83.172 12478 2495.6
Grindsted 38.718 97.034 9497 1899.4
Skjern 11.95 119.978 6949 1389.8
Ringkgbing -4.302 135.274 9166 1833.2
Brande 50.668 119.022 6214 3107
Lemvig 0 185.464 7302 1460.4
Nykgbing 33.46 212.71 9319 1863.8
Thisted 25.334 231.352 12609 2521.8
Hanstholm 19.12 249.516 2574 514.8
Fjerritslev 58.316 244.736 3332 666.4
Hirtshals 100.858 301.14 6949 1389.8
Skagen 136.708 315.958 10674 2134.8
Ebeltoft 146.746 144.834 4396 4396
Dummi North 113 152 0 0
Dummi West 109 144 0 0
Dummi South 109 137 0 0

]7

Table 1: Locations a; = (a1, a;2) and weights (w} w]2) of 42 cities in Jutland.

BSL Approximate 121

Silkeborg Hadsten
Bjerringbro
Jermng Randers skanderborg
: Aarhus
5000 - B
‘ I " it Horsens
4000 ‘ 1
2000 ": ‘ \
1'. W"““\\\?
1y,
AR
2“,,,{/% ‘\‘“\\\\\‘

S5

0

AN
SIS

<

=
A —

Figure 5: Surface-plot of the obnoxious objective-function.

122 BSL Approximate

180

140

7

- Hiane By Kalsenakke

L H]algw_ ih um_i;_‘_\ i

100 b

Figure 6: Efficient regions for airport location

BSL Approximate 123

Region f-value g-value (-107)

A Joo ; 3772] [3.63 ; 3.80]
B 3756 ; 2244] [3.86 ; 3.92]
C (713 ;570] [4.29 ; 4.4]
D [568 ; 419] [4.49 ; 4.70]
E [419 ; 316] [4.77 ; 4.93]
F 316 ;222] [5.18 ; 5.71]
G (222 ;193] [5.91 ; 6.34]

Table 2: Objective function values for the regions indicated in Figure 7.

decreases, namely north-west. This region has the highest obnoxious values, ranging from
3400 (at the minisum optimum) to 675 in the north-western part of the region. The south-
west region has minisum values from approximately 10% to 25% above the minimum. This
region has obnoxious values from 675 to 440. The last efficient region is the north-east
region with minisum values more the 25% above the minimum. This region has the lowest
obnoxious values, below 440, simply because there are no major cities in this part of the
country as can be seen in Figure 4. As a matter of fact the existing airport at Tirstrup
is nearby this region. Potential locations for a new airport should be found within these

efficient regions.

Next we present the results of the network model. For this model only the resulting
network, with the efficient sub-edges, is presented, see Figure 7. The minisum objective
function has its global minimum in the node representing the city of Arhus. The obnoxious
objective function has its global minimum outside the target region.

In Figure 7 the seven efficient regions are indicated by the letters A, B, ..., G, and the
corresponding objective function value intervals are presented in Table 2. The region A
around Arhus has the lowest transportation costs, but also quite high obnoxious values.
The most deserted subedge, region G, has the lowest obnoxious values, but almost two
times the lowest transportation cost. The trade-off between the two objectives is well
represented by Table 2. Figure 7 reveals that a possible location of the new airport could

be in an area north-west of Arhus.

5 Concluding remarks

In this paper we have set up two bicriterion location models for locating one obnoxious
facility, namely one for the planar case and one for the network case. Efficient (well-

working) solution algorithms based on the well-known BSSS algorithm has been proposed.

124 BSL Approximate

Figure 7: Road-network of Jutland. Bold parts constitute the efficient set.

BSL Approximate 125

Both models are easily extended to multiple criteria. All that needs to be changed is the
DCR operation.

Even though the planar and the network model may seem distinct in structure, they
are designed to solve the same real-life problem. Often a combination of the two models
would be preferable. For example, modeling air pollution such as noise makes most sense
in the planar model, whereas the network model would be the correct description of a
road network with distances or travel times as coefficients. One possible combination is
to embed the network on top of the plane, so that each point on the network corresponds
to a point in the plane, but not necessarily the other way around.

Another issue is the choice of obnoxious criterion functions. We have used the negative
power function also used in Brimberg and Juel [1]. Of course, many other functions may
be used, and for more complicated functions, the approximation approach described in
this paper may be the only applicable approach.

It may also be appropriate to have weights depending on distance. However, in most
exact models this will cause mathematical difficulties. In the airport example presented
in Section 4, the number of yearly passengers from a city using the new airport, most
probably depends negatively on the distance.

It should also be considered what kind of pull objective (cost function) is appropriate.
We have only considered the minisum. It should also be noted that for some objectives
an exact bound, or at least an improved bound, may be applied.

The output of the models reveal the trade-off between the two negatively correlated
criteria. We conclude that the two proposed models are good tools for obnoxious location

decisions. Finally, we have illustrated the models on a real-life application.

References

[1] J. Brimberg and H. Juel. A bicriteria model for locating a semi-desirable facility in
the plane. European Journal of Operational Research, 106:144-151, 1998.

[2] J. Brimberg and H. Juel. On locating a semi-desirable facility on the continuous

plane. International Transactions in Operational Research, 5:59-66, 1998.

[3] J. Brumbaugh-Smith and D. Shier. An empirical investigation of some bicriterion
shortest path algorithms. Furopean Journal of Operational Research, 43:216-224,
1989.

126

[4]

[9]

[10]

[11]

BSL Approximate

E. Carrizosa, E. Conde, and D. Romero-Morales. Location of a semiobnoxious facility.
A biobjective approach. In 1996 Torremolinos, editor, Advances in multiple objective

and goal programming, pages 338-346. Springer-Verlag, Berlin-Heidelberg, 1997.

E. Carrizosa and F. Plastria. Location of semi-obnoxious facilities. Studies in Loca-
tional Analysis, 12:1-27, 1999.

M. Ehrgott. Multicriteria Optimization, volume 491 of Lecture Notes in Economics

and Mathematical Systems. Springer, 2000.

E. Erkut and S. Neuman. Analytical models for locating undesirable facilities. Euro-
pean Journal of Operational Research, 40:275-291, 1989.

R.L. Francis, L.F. McGinnis, and J.A. White. Facility layout and location: An ana-
lytical approach. Prentice Hall, New Jersey, 1992.

H.W. Hamacher, M. Labbé, S. Nickel, and A.J.V. Skriver. Multicriteria semi-
obnoxious network location problems (MSNLP) with sum and center objectives.
Working paper, 2000-6, 2000. Department of Operations Research, University of

Aarhus, Denmark.

P. Hansen, D. Peeters, D. Richard, and J.F. Thisse. The minisum and minimax

location problems revisited. Operations Research, 33:1251-1265, 1985.

P. Hansen, D. Peeters, and J.F. Thisse. On the location of an obnoxious facility.
Sistemi Urbani, 3:299-317, 1981.

R.F. Love, J.G. Morris, and G.O. Wesolowsky. Fucilities Location : Models € Meth-
ods. North-Holland, New York, 1988.

A.J.V. Skriver and K.A. Andersen. A label correcting approach for solving bicriterion
shortest path problems. Computers and Operations Research, 27:507-524, 2000.

R.E. Steuer. Multiple criteria optimization: Theory, Computation, and Application.
Wiley, New York, 1986.

Multicriteria Semi-obnoxious Network Location (MSNL) Problems
with Sum and Center Objectives

Horst W. HAMACHER MARTINE LABBE
Fachbereich Mathematik Service de Mathématiques de la Gestion
Universitdt Kaiserslautern Université Libré de Bruxelles
Kurt-Schumacher-Strasse 26 Brussels
67663 Kaiserslautern Belgium
Germany
STEFAN NICKEL ANDERS J. V. SKRIVER*
ITWM Department of Operations Research
Universitit Kaiserslautern University of Aarhus
Ottlieb-Daimler-Strasse Building 530, Ny Munkegade
Gebéude 49 DK - 8000 Arhus C
67663 Kaiserslautern Denmark
Germany

August 16, 2001

Abstract

Locating a facility is often modeled as either the maxisum or the minisum prob-
lem, reflecting whether the facility is undesirable (obnoxious) or desirable. But many
facilities are both desirable and undesirable at the same time, e.g. an airport. This
can be modeled as a multicriteria network location problem, where some of the sum-
objectives are maximized (push effect) and some of the sum-objectives are minimized
(pull effect).

We present a polynomial time algorithm for this model along with some basic
theoretical results, and generalize the results also to incorporate maximin and minimax
objectives. In fact, the method works for any piecewise linear objective functions.
Finally, we present some computational results.

Keywords: MCDM, Multicriteria, Obnoxious, Semi-obnoxious, Facility Location, Net-
works.

1 Introduction

There are a number of models that deal with the problem of locating (placing) a new facility

on a network. Most of these models locate a desirable facility, such as a supermarket or a

*Corresponding author.

127

128 MSNL Subedge Comparison

fire station, where the objective is to keep the new facility close to its users (pull effect).
There are also some models describing how to locate an obnoxious (undesirable) facility
such as a nuclear power plant or a dump site which the users want to locate far away (push
effect). Many facilities can, however, be thought of as semi-obnoxious. Such facilities
could be airports, train stations or other noisy service facilities. It could also be the
above-mentioned dump site that, with respect to transportation costs, should be located
centrally, but, in the opinion of the citizens, should be located distantly. These location
problems could with obvious advantages be formulated as multicriteria network location
problems. In this way the trade-off between the different objectives can be revealed,
making a good basis for an overall decision. Different aspects of the problem can be
described by different objectives. Such objectives could be transportation costs, travel
time, air pollution or minimizing the number of citizens within a certain radius of the
facility. Another situation arises when we have more decision makers, each having their
own objective function. When we solve a problem with more than one objective, it is
highly unlikely that one solution is optimal for all objectives. Instead, the solution is the
set of efficient or Pareto locations, i.e. solutions where we cannot improve any objective

without at least one other objective being worsened.

Bicriterion models for the planar case of the problem is presented in Brimberg and Juel
[1], Carrizosa et al. [2] and Andersen and Skriver [10]. In Andersen and Skriver [10]
an approximation solution method for the bicriterion network location problem is also
presented. A general solution method for the multicriterion median-problem is presented

in Hamacher et al. [5].

As one notices, the terminology for location problems is not unique. Therefore we intro-
duce in the following a classification scheme for location problems that should help get an
overview over the manifold area of location problems.

We use a scheme which is analogous to the one introduced successfully in scheduling theory.
The presented scheme for location problems was developed in Hamacher and Nickel [6]
and Hamacher et al. [5].

We have the following five position classification

posl/pos2/pos3[posd/posd ,

where the meaning of each position is explained in Table 1:

If we do not make any special assumptions in a position, we indicate this by a e.

The rest of the paper is organized as follows. In Section 2 we give some definitions and

MSNL Subedge Comparison 129

| Position | Meaning | Usage (Examples) |

1 number of new facilities

P planar location problem

2 type of problem D discrete location problem
G network location problem
wpy,, =1 all weights are equal

3 ial ti d) .
Specia’ asSUIpHons an R a forbidden region
restrictions

l1 Manhattan metric
4 type of distance function d(V,V) node to node distance
d(V,G) node to point distance
> median problem
" i ti-medi bl

) type of objective function 2obnos anti-median problem

max center problem

MmaXypner anti-center problem

Table 1: Classification scheme for location problems.

describe the problem. The general solution procedure is described in Section 3, and in
Section 4 we present a different approach that works only in the bicriteria case. In Section
5 we discuss how the general solution procedure can also be used with center objectives.

Computational results are presented in Section 6, and we conclude the paper in Section 7.

2 Problem formulation and definitions

We are given a (strongly) connected network G(V,€) with nodeset V = {vy,v9,...,v,}
where V| = n nodes, and edgeset £ = {(v;,v}), (Vg, V1), ..., (Vp,vg)} With |E] = m edges.
If the underlying graph is directed it is denoted G p, and the edge e = (v;,v;) has head v;
and tail v;. If the underlying graph is undirected, it is just denoted G, and e = (v;,v;) =
(vj,v;) Ve € £. We define the set of objectives as @ = {1,2,...,Q}. Each node v; carries
Q weights (wil,wi?,...,w?)t, where w] > 0,Vg € Q, so we may refer to the matrix of
weights by Wo,. Each edge e € £ has length I(e) € R..

By d(vp, v) we denote the distance between vy, and vy, is given by the length of a shortest
path between v, and vg. A point z € G(V,€) can be located both at a node or on an

edge. This is often referred to as absolute location.

We define a point z on a directed edge e = (v;,v;) as a tuple z = (e, t),t € [0, 1], with
d(vk,z) = d(vg,v;) +tl(e) and d(z,v;) = (1 —t)l(e) + d(vj,vx)

for any vy € V. A point z on an undirected edge e = (v;,v;) is defined as a touple

130 MSNL Subedge Comparison

z = (e, t),t € [0,1], with
d(z,vg) = min{d(vg, v;) + tl(e), d(vg,v;) + (1 — t)l(e)}

for any v, € V. Notice that d(v;, z) = tl(e) and d(z,v;) = (1 —t)l(e) for z = (e,). Since
v; = (e,0) and v; = (e, 1), all nodes of the network are also points of the network.

The set {(e,t)|t € (t1,t2),t1,t2 € [0,1]}, forming an open subedge on e, is denoted
(e,(t1,t2)) for any e € €. Of course this set is empty, unless to > ¢;. Similarly, we define
closed and half right/left open subedges.

We formulate the model with the maxisum and minisum objectives, which are obviously
negatively correlated. These objective functions are often referred to as the weighted
anti-median and median of a network. In Section 5 we discuss the maximin and minimax

objectives. For the undirected problem the objective functions are defined by

n
fila) =) wid(z,v) q€Q (1)
i=1
and for the directed case they are defined by
n
fi(x) = wi (d(z,0:) +d(vi, 7)) q€Q (2)
i=1

In (2) observe that we for each node v; make a round-trip from z to v; and back to z. In
some applications it may be more appropriate to look only at the distances out of « or into
x. The general undirected problem 1/G/e/d(V,G)/(Q1-D_ spnows @2-2_)Par is formulated
as follows:

max f9(z) q€ Q
min f9(z) q€ Qs
s.t.

(3)
z e GV, E)

Q = Q1 U Qy, where Q1 N Qy = (. Q; is the set of obnoxious objective functions, and

Qs is the set of desirable objective functions. At most one of the sets are allowed to be

empty. If Q; = () we have the situation discussed in Hamacher, Labbé and Nickel [5].

f@) = (1), f2 (@), ..., [2 (@),

For simplicity in the succeeding argumentation we multiply all objective functions in Q;
by —1 in order to minimize instead of maximize. Thus, in the remaining part of the paper

we assume that w! < 0,Vi = 1,2,...,n and ¢ € Q, and w] > 0,Vi = 1,2,...,n and

i
q € Q2. We now have a multicriteria minimization model:
min fi(z) q€ Q1

min f%(z) g€ Qy
s.t. (4)

zeGWV,E)

MSNL Subedge Comparison 131

In order to find the shortest distances between z and all the nodes, we need the distance
matrix D of shortest distances between all pairs of nodes. Note that D;; = d(v;,vj). This
matrix can be calculated in O(n?) running time using Floyd’s algorithm or by applying Di-
jkstra’s algorithm to all n nodes. For details on these graph procedures, see Thulasiraman

and Swamy [13]. For an undirected network the distance matrix D is symmetric.

This model is a combination of two well-known models. The minisum and the maxisum
models. The solution procedures for these two models are similar, but we will explain the
most important details here. For the maxisum problem, some interesting theory is found
in Church and Garfinkel [3]. They introduce the concept of bottleneck points, and refer
to nodes with degree one as dangling nodes (often called pendant nodes). The minisum

problem has been well studied, and we refer to Daskin [4] for details.

We will now outline the concept of bottleneck-points as it is presented in Church and
Garfinkel [3]. There are two types of bottleneck-points. The edge-bottleneck-points are
defined as follows, for each edge (v;,v;) € £: Let = be on the edge (v;,v;). If there exists

a node vy # v;,v; such that
Dy; + d(x,v;) = Dy; + d(z,v;)

then z is an edge-bottleneck-point. It is easily seen, that edge (v;,v;) contains an

edge-bottleneck-point with respect to node vy if and only if
|Dii — Dij| < U((vi, v5))

This sets the upper bound for the number of edge-bottleneck-points on an edge to n — 2.
Now we define the node-bottleneck-points. Assume there exists distinct nodes v;,v;, and

vg. If there exists a node v; # v;, vp, v), such that
Dy + ij =D, + Dhj

then node v; is a node-bottleneck-point with respect to node v; (and v; to v;). Consid-
ering the whole edge (v;,v;) including the nodes, it contains at most n bottleneck-points.
Since there are m edges in G, the total number of bottleneck-points is bounded by mn.

It is important to note that the bottleneck-points are independent of the weights. They
only depend on the network structure including the edge-lengths. We will denote the
edge-bottleneck-point matrix of shortest distances from all edge-bottleneck-points to
all nodes by B. So B;; is the shortest distance from edge-bottleneck-point B; to node v;.

This matrix is needed for easy calculation of the objective-values in the bottleneck-points.

132 MSNL Subedge Comparison

When we know the shortest distance matrix D, the bottleneck-points can be calculated
in O(mn) running time, because for each edge we have to evaluate all nodes. This can be

improved to an algorithm that takes O(n log n) time, see Hansen et al. [7].

In Church and Garfinkel [3] it is shown that there exists a point z, that is either a
bottleneck-point or a dangling node that solves the maxisum problem. This is true be-
cause the weighted-sum objective is a piecewise linear, concave function on the edges,
with break-points only in the edge-bottleneck-points. This corresponds to minimizing the
weighted sum where all weights are negative. The objective function is then a piecewise
linear, convex function with break-points only in the edge-bottleneck-points, see f' in
Figure 1. Note that the optimum need not be unique, it can be a subedge between two (or
more) bottleneck-points, or the optimum value may also be obtained on a different edge.
It is well-known that the optimum for the minisum problem is found in a node (f? in
Figure 1). The standard way of solving this problem is to sum the rows of the distance
matrix D multiplied by the weights. The row with the smallest weighted sum corresponds

to the minisum optimum node. For further details see Daskin [4].

ZQ

Zl

Figure 1: Illustration of the objective functions on an edge.

We denote the set of optimal solutions to a single-objective problem by X'?. The cor-
responding objective values are denoted by Z9. Note that these sets of objective-values
only contain one value, namely the optimal value, but the notation generalizes to the

nondominated set Zp,, defined below.

Solving the Q-criteria semi-obnoxious network location problem means finding the set of
efficient points. For an introduction to multiple criteria analysis see Steuer [12].

The definition of efficiency is as follows.

MSNL Subedge Comparison 133

Definition 1 A solution x € G(V, &) to (4) is efficient (Pareto optimal) iff there does
not ezist another solution x € G(V,€) to (4) such that f1(z) < fl(z) Vg € Q and
dg € Q s.t. fU(z) < fi(z). Otherwise = is inefficient.

The set of all efficient/Pareto optimal solutions are denoted by Xp,,. Efficiency is defined
in the decision space. There is a natural counterpart in the criterion space. The criterion
space is denoted by Z and is given by Z = {f(z) € R%|z € G(V,&)}.

Definition 2 f(z) € Z is a nondominated criterion vector iff x is an efficient solution

to (4). Otherwise f(zx) is a dominated criterion vector.

The set of all nondominated criterion vectors are denoted by Zpg, where Zpg, = f(Xpar).
We use the Pareto optimality notation for both decision and criterion space.

Let S be a subset of G(V, £). We will define the set of locally efficient solutions, denoted
Xpar(S), to be the solutions that are efficient with respect to all other solutions in the
subset S. Similarly, Zp,,(S) denotes the set of criterion vectors from f(S) that are locally

nondominated by any other criterion vector in f(S).

2.1 Example

Now we present two small examples to illustrate the structure of the directed and the

undirected problem, see Figure 2 and 3. Let the distance matrix Dgjrecteq be given by

01 54 3 6
7 0 6 3 10 5
1 2 05 4 7
Ddirected 4 330 7 2
34 2 7 0 3
|8 1 7 4 11 0 |

for the directed network of Figure 2. Let the weights be w! = (-1,-2, -1, -1, -2, —2)
and w? = (2,1,2,2,2,1).

The solution procedure for the directed network in Figure 2 is explained in Section 3.2,
and the criterion values are presented in Table 3.

Let the distance matrix D be given by

N OO W W
WO UL N =W

N Wk == O
oW NN O
W N WO -
O W N W N

134 MSNL Subedge Comparison

(va
3
2
1
V6

Figure 2: The directed network of Example 2.1. The bold parts constitute the set of
efficient points.

for the undirected network of Figure 3. B can be calculated as

72 3 36 1 47
32416 3
2 312 3 4
342143
B=1lg3 14114
3241 41
433 41 2
|3 243 2 1]
B; By

Bs C) Bg

()EJ

Bg
O, o——)

Figure 3: The undirected network of Example 2.1. The bold parts constitute the set of
efficient points.

To clarify the solution to the undirected network in Figure 3 we present some function
values in Table 2. The solution method for this bicriterion model is described in Section
4. Please note the values of p and B4. This proves that a subedge, not having endpoint
at a node or a bottleneck-point, can be efficient. We will refer to this example in Section
3 and 4.

MSNL Subedge Comparison 135

Point z | f(z) = (f!(z), f*(x))
vy (—17,19)
V9 (—16,21)
U3 (—18,17)
V4 (—27,29)
vs (—24,27)
vg (—15,21)
By (_27v 31)
By (—30,33)
Bs (—25,23)
By (~28,27)
Bs (—23,29)
By (—20,27)
B (—25,25)
By (~23,27)
D (—28,30%)

Table 2: Criterion values for all nodes, all bottleneck-points and point p.

From Table 2 we note that bottleneck-point Bs is optimal for the maxisum criterion (f!)

and node v3 is optimal for the minisum criterion (f?).

3 General solution method for the () criteria case

First, we solve two simple cases of the problem, namely the node problem and the directed
case of the absolute location problem. Then we present the absolute location problem on

an undirected network.

3.1 The easy case: 1/G,Gp/e/d(V,V)/(Q1-D_ sonows @2-D_) Par

In this case the new facility can be placed only at the nodes of the given network, and
we can determine the efficient set Xpq = Xpq,(V) by the following approach in O(Qn?)

time, given the distance matrix D. This approach is presented in [5].

Algorithm 3.1:
1. Xpm«(V) = V;
2. fori=1ton do

for j =1tondo
if f(v;) dominates f(v;) then Xpa, (V) = Xpa, (V) \ {vi};

136 MSNL Subedge Comparison

3. Output Xpg,(V);

3.2 The easy case: 1/Gp/e/d(V,G)/(Q1-Y_ sonow> @2-2_) Par

For this problem we have to investigate the objective function (2) of the directed case.
First, we observe that the objective functions are constant on the interior of the edges.
This is true because each term in the sum in (2) consists of a shortest cycle multiplied by

a weight.

Theorem 1 The directed objective function f(x) defined in (2) is constant on (e, (0, 1))
for all e € £ and for all g € Q.

Proof :

Assume e = (v;,v;) € €. In the objective function
fi(z) = i wi (d(z,vr) + d(vg,x)) g€ Q
k=1
we observe that
d(z,vy) = d(z,v;)+d(vj,v) VE€EV
dvg,z) = d(vg,v;) +d(vy,z) Yk eV

on the interior of e, and that
d(z,v;) = (1 —t)l(e) and d(v;,z) = tl(e)

for some ¢ € (0,1). After substituting the distance terms we get

n

Fiw) = wi (d(vs, ve) + d(vk, vi) +1(e)) (5)
k=1
which is independent of ¢, and thus of z, on the interior of e. [

Next we use the triangular inequality to prove that the obnoxious objective functions,
q € Q1, have a higher value at the endnodes of ¢, and that the desirable objective functions,
q € Q2, have a lower value at the endnodes of e. To see this we analyze the objective

function (2) once again.

Theorem 2 Let e = (v;,v;) € € be given. The obnozious objective function values f9(v;)

and f(v;) are higher than f%(x), where x is an interior point on e for all ¢ € Q;.

MSNL Subedge Comparison 137

Proof :
WLOG we prove that f?(z) — f9(v;) < 0. Remember that w! < 0,Vi = 1,2,...,n and
q € Q1. Let us examine the two sums in

n n
FU@) = fov) = wi (dz,) — d(vi,or)) + Y wf (d(vg, 2) — d(ve,v:) (6)
k=1 k=1
Starting at the second sum of (6) we use that d(vg,z) = d(vg,v;) + d(v;, z) to get

n n

Z w} (d(vg,) — d(vg,v;)) = Z w} d(vi,z) = Z wi ti(e)
k=1 k=1

k=1
In the first sum of (6) we use the triangular inequality d(v;, vy) < d(v;,v;) + d(vj,vi) and
that d(z,v;) = d(z,v;) + d(vj, vx). Remembering w! < 0, we get

n n

Z wi (d(z,vp) — d(vi,vp)) = Z wi (d(z,vi) — d(vi,vp)) + w! (d(z,v5) + d(vj,v;))
k=1

ol

ol
SEN
LN

IA

wy (d(z,v5) = d(vi,v5)) + wi (1 = 1)i(e) + d(vj, vi))

Eak
SN
NN

I
(]

—w? tl(e) + w? (1 —t)i(e) + d(v;, v;))

Eak
SERNI
NN

— —wi tl(e) +w! (I(e) + d(vj,v;)).

ES
Il
—

Hence,
fU=z) = fUvi) < wi (Ue) + d(vj,vi)) <O

because w < 0. The proof that f9(z) — f9(v;) < 0 is similar, apart from the triangular

inequality being used in the second sum of (6). (]

Theorem 3 Let e = (v;,vj) € € be given. The desirable objective function values f2(v;)

and f(v;) are lower than f(x), where x is an interior point on e for all ¢ € Qs.

Proof :
Similar to the proof of Theorem 2, except w{ > 0,Vi =1,2,...,n and ¢ € Q. [

Using Theorem 3, we observe that the function values on int(e) cannot dominate the
function values at the nodes v; and v;, because the desirable function values at the nodes
are lower. Similarly, the function values at the nodes cannot dominate the function value

on the interior of e, because the obnoxious function value is lower on int(e) by Theorem

138 MSNL Subedge Comparison

2. This observation cannot, however, be used to conclude that nodes and edges cannot
dominate each other. The objective function values on edge e;2 in the directed network

in Figure 2 are illustrated in Figure 4.

98 _
: > 78
o 62 ?
1)15 0 1 V2
N
: . -62
° -0 96 :

Figure 4: f((v1,v2)). Notice that f(v;) dominates f(vs).

In Algorithm 3.2 we have to compare all nodes and edges, but we only need one vector of
function values on each edge, calculated easily by (5).
To present a compact form of the algorithm, we define the n + m points a; on G(V,€) as

the n nodes and the midpoints on the m edges:
a; = v; ViZI,Z,...,n

1
An+i = Ii:(ei’ﬁ) Vi:1,2,...,m

Algorithm 3.2:
1. Xpm« = G(V,g),
2. fori =1 ton+m do

forj=1ton+mdo
if f(a;) dominates f(a;) then
if i < n then Xpg, = Xpgr \ {vi};
if i > n then Xpor = Xpar \ (€i—n, (0,1));

3. Output Xpg,;

When we make the pairwise comparison on the n + m points, each taking O(Q) time, we

get a complexity bound of O(Q(n + m)?) time.

MSNL Subedge Comparison 139

For the directed example in Figure 2, using (2) and (5), we get the criterion values of
Table 3. The optimal value for the obnoxious function is —126 attained on (vs,vs) and
the optimal desirable function value is 62 attained at v; and v3. After running Algorithm

3.2 we have determined the efficient nodes and edges as indicated in the table and the

figure.
Point z | f(z) = (f1(z), f%(x))
vy (—70,62) Efficient
vy (—62,78)
v3 (—70,62) Efficient
V4 (—68,72)
vs (—82,80) Efficient
v (—74,102)
(v1,v2) (—96,98)
(v1,v5) (—94,92) Efficient
(v2,v4) (—74,84)
(v3,v1) (—76,74) Efficient
(vy,v3) (—96,98)
(v, v6) (—98,120)
(vs, v3) (—106,98) Efficient
(vs, v6) (126, 140) Efficient
(ve, v2) (—86,108)

Table 3: Criterion values for all nodes and all edges.

3.3 Solving 1/G/e/d(V,G)/(Q1-Y_ spnow: @2-2_) Par

The general solution method consists of pairwise comparison of subedges. The objective
functions are all piecewise linear, and the idea is to partition the network into subedges,
where the objective functions are linear. The points where the piecewise linear functions
change in slope are in fact the bottleneck-points. We then make a pairwise comparison
of all these subedges and delete the inefficient parts. The result is the complete set of
efficient solutions Xpg;-.

It is important to note that part of a subedge may be efficient, starting at a point that is
not a node or an edge-bottleneck-point (see Example 2.1 at point p).

For each comparison of two subedges we will construct a linear program to detect inefficient

points (segments), that can be solved in linear time by methods found in Megiddo [9].

Let 29(t) = f%(=z;), = = (e,t). These @ functions are all piecewise linear with the same

set of possible breakpoints corresponding to the bottleneck-points. Assume there are P+ 1

140 MSNL Subedge Comparison

breakpoints including the two nodes. We then have P subedges. Let these breakpoints
on (e, t) be denoted by ¢;, j =0,1,...,P, (1 < P <n—1), with ty = v;, tp = v; and
tji1<tjVj=12,...,P. Fortel[tj_i,t;], the 29(t)’s are linear functions of the form

zq(t):mg-t—l—bg Vg=1,2,...,Q with

3
IN
IN

.<m i>bvl>...>bh qeQ

— =

vV
NQ R

m
Mo > ...2>2mMm

3

q
P
L, bI<bl<...<bL g€

This is illustrated in Figure 1. Let us now compare the subedge A on edge e, (ea, [tj—1,t;])
with subedge B on edge ep, (eB,[sp—1,5p]). A point (ea,t) € (ea,[tj—1,t;]) is dominated

by some point (ep,s) € (ep, [sp—1,sp]) if and only if
q q _
mys +bj <mjt+b; Vg=12,...,Q
where at least one inequality is strict. This comparison is illustrated in Figure 5 for two
subedges from Example 2.1. Subedge (B7, Bg) is compared with subedge (vs, By).
22
29

étl (B7) t étg (Bg) S0 (’05) S 581 (B7)

Figure 5: Comparing subedge (B7, Bg) with subedge (vs, B7).

MSNL Subedge Comparison 141

Let us define the set 7 where the inequalities hold (for these particular subedges) by
T ={(s,1)] mgt —mls > bl — bg, Vge QYN ([sp—1,5p) X [tj—1,1;])

If T =0, (e, [sp—1,5p]) does not contain a point dominating any point in (ea, [t;—_1,1;]).

Otherwise T # () is taken as a feasible solution set of the two 2-variable linear programs:
LB =min{t|(s,t) € T} and UB =max{t]| (s,t) € T}

Using methods described by Megiddo [9], LB and UB can be calculated in O(Q) time.
We now check if we have only weak dominance. This means that none of the inequali-
ties need to be strict as required by Definition 1. Note that points with weak dominated
objective function values may be efficient. Let s;p and syp be optimal values of s cor-
responding to LB and UB. These s-values are not necessarily unique as illustrated in

Figure 6, where 5,5 can be any point in [0, £]. In the case where s.p (and/or syp) is not

1
2

nance in the subedge endnodes. To check for weak dominance, we examine the subedge
endnodes. If myspp + by = miLB +b] ¥ g € Q, then LB is only weakly dominated and
can therefore still be efficient. Similarly, if misyp + b = m?UB + bg Vqé€ Q, then UB

unique (spp € [Sq, Sp]), we choose spp = 5(sq + sp) to avoid problems with weak domi-

is only weakly dominated. If both LB and UB are only weakly dominated, the entire
subedge (e, [tj—1,t;]) is only weakly dominated by (ep,[sp—1,5p]). This means that all
the inequalities in T are in fact equalities. Otherwise the inefficient part of the subedge
is deleted. If both LB and UB are dominated, then

(ea, [tj-1,]) = (ea, [tj—1,;]) \ (e, [LB,UB])
and if, say LB is only weakly dominated, then
(GA, [t]‘*h t]]) = (6147 [tj*h t]]) \ (GA, (LB7 UB])

This comparison can also be done in linear time. The approach is simplified if one or both
subedges consists of a single point (ea,t') (or (ep,s”)). If (ea,[tj—1,t;]) = (ea,t’) = =,
then LB=UB =t and

T, = {8| - mgs Z bg - fq(x)a v q€ Q} N [Sp—lasp]
If (eB, [sp-1,%]) = (eB,s") =y, then
T" = {tl mit > fi(y) = bf, Vg € Q} N[tj_1,t)]

and
LB=min{t|teT"} and UB=max{t|te T"}

142 MSNL Subedge Comparison

S

14

2]

3

1]

3

i

1 2 t
3 3 1

Figure 6: The linear programming constraints for comparing (B7, Bg) = (e, [%,%) with
(vs, B7) = (e, [0, 3]) on edge (vs,vs) in Example 2.1. T is indicated by the shaded area.

This subedge comparison is illustrated in Figure 6, where the subedge (B7, Bg) = (e, [%, %])
from Example 2.1 is compared with (vs, B7) = (e, [0, %]) Both subedges are on the same
edge. Since T is non-empty, we solve the two programs and find LB = % and UB = %
Both LB and UB are dominated, so the subedge (B7, Bs) is completely deleted.

Since we are removing a connected piece of (e4, [t;_1,1;]), three things can happen. First,
(ea,[tj—1,t]) can be completely deleted if t;_1 = LB and t; = UB are both dominated.
Second, a piece of (e4, [tj—1,1;]) that includes one of the endpoints ¢;_; or ¢; can be deleted,
in which case one connected subedge remains, say (e, [tj—1, LB)) or (ea, [tj—1,LB]). The
third case is when an interior part of (ea, [tj—1,t;]) is deleted, so we end up with the two
subedges (e, [tj—1,LB)) and (ea, (UB,t;]), possibly including one of the points LB or
UB. The third case is illustrated in Figure 7 where UB is not deleted, because z(UB) =
z(t2).

In order to complete the comparison, we simply make an ordered subedge comparison.
First, we compare (e, [to,t1]) with all the other subedges, possibly dividing (ey, [to, t1])
into new subedges. Then we compare the second subedge (eq, [¢1, t2]) with all the remaining
subedges. If (ey, [to,?1]) is not completely dominated, we also compare with this subedge.
This comparison continues until we have compared the last subedge (e, [sp-1, sp]) with
all the remaining subedges.

Notice that we can still use the entire subedge (ea, [tj—1,t;]) to compare with the other
subedges, even though a part of it is inefficient. It is only for the set of efficient points
Xpqr, that we have to remember what part of (ea,[t;—1,1;]) is efficient. But if the whole
subedge (e4, [tj—1,t;]) is inefficient, we should delete it from further consideration, also in

the comparison process.

Assume that edge e; € £ is divided into P; bottleneck-point subedges.

MSNL Subedge Comparison 143

to

Zl

Figure 7: There are 4 breakpoints (P = 3) and 4 efficient subedges. Locally Pareto optimal
subedges are indicated in bold on the ¢ axes. Note that (e, [t2,t3]) dominates an interior
part of (e, [to, t1])-

Algorithm 3.3:
1. Xpor = G(V,E);
2. forv=1tom do
for x =1 to P; do

for j =1 tom do
for y =1 to Pj do
compare (e;, [tz—1,t.]) with (ej, [ty—1,1y])
Xpqr unchanged if no points are dominated
Xpar = Xpar \ (€5, [LB,UB])) if LB and UB are dominated,;
Xpar = Xpar \ (ei, (LB,UB]) if only UB is dominated;
Xpar = Xpar \ (ei,[LB,UB)) if only LB is dominated;

3. Output Xpgr;

This general algorithm has been implemented, and computational results are reported in
Section 6. Each of the m edges may consist of up to n — 1 bottleneck-point subedges,
giving at most O(mn) subedges. If we make the global pairwise comparison on the
O(mn) bottleneck-point subedges, each taking O(Q) time, we get a complexity bound
of O(Qm?n?) time. This is also the bound for the case where @ = Q5 found in Hamacher

et al. [5].

144 MSNL Subedge Comparison

4 Bicriteria case

In the case where we only have two criteria, we may use the image of the network mapped

into criterion space Z to solve the problem faster. This is done by calculating the lower
envelope, see Hershberger [8]. This can be done in O(p log p) time, where p is the
number of line-segments. There are three different situations. Q; = () denoted min-min
(1/G/o/d(V,G)[2-(X) par); Q1] = Q2] = 1 denoted max-min (1/G/o/d(V, G) /(X ypops) rar)
and Qy =) denoted max-max (1/G/e/d(V,G)/2-(>_ spnow) Par)- All three cases are solved

by the same method.

4.1 Direct mapping of the network into criterion space

This procedure is best described by an example, so we present the undirected network of

Example 2.1 in criterion space.

33 | 22

17

U3

-30 -18

Figure 8: Mapping of the undirected network from Example 2.1 into criterion space. The
bold parts constitute the set of nondominated points.

Since we want to find the set of efficient solutions Xp,,., we are only interested in values
between the two extreme optimal solutions, namely Z' and Z?. We therefore investigate
the region [fél,féz] X [f%z, f%l], denoted S.

We have to make sure that the slope of the envelope is decreasing, when the f!-values
increase, to ensure that there are no dominated points on the envelope. This can be done

by adding horizontal lines to all nodes and bottleneck-points in S, with the horizontal

MSNL Subedge Comparison 145

lines ending at f 52. This will at worst double the number of line-segments in the region S.
Alternatively we could add the horizontal line to bottleneck-points that does not have a
subedge with negative slope leaving the point. In the example of Figure 8 none of the points
in S would need the horizontal line added. After the lower envelope is determined, we
delete the horizontal parts (if any), because the points on a horizontal line are dominated
by the left endpoint. The result is Zpq,. The set of efficient solutions are then given by
Xpar = f YH(Zpar). The efficient set corresponding to the nondominated set of Figure 8

is indicated in Figure 3.

We have the same complexity bound on the lower envelope calculation, as in Hamacher et
al. [5], namely O(mn log(mn)). This bound can be rewritten by examining the log term
and using the fact that m is at most n? for dense graphs. We therefore get the bound of

O(mn log n) time for the envelope calculation.

5 Center objectives - 1/G/e/d(V,G)/(Qs-maxXypnor, Q4-max) py,

We now investigate the maximin and minimax objectives. These criterion functions are
often referred to as the weighted anti-center and center of a network. The problem is

formulated as follows:

max f?(z) = min; w! - d(z,v;) q€ Qs

min f%(z) = max; w} - d(z,v;) g€ Q4 (1)
s.t.

ze GV, E)

Q3 is the set of obnoxious objective functions, and Q4 is the set of attraction objective

functions. At most one of the sets are allowed to be empty.

For simplicity we again multiply all objective functions in Q3 by —1 in order to minimize

in stead of maximize. This gives the following formulation:

min f9(z) = max; —w) - d(z,v;) ¢€ Q3

min f9(z) = max; w - d(z,v;) g€ Q (8)
s.t.

zeGWV,E)

We notice that the objective functions are again piecewise linear, but the breakpoints are
now weight dependent, see Figure 9. If we find these breakpoints, we can apply the same
solution approach as in Section 3.3 for the multicriteria case, and the envelope method

of Section 4 for the bicriteria case. When we only have center objective functions, the

146 MSNL Subedge Comparison

new breakpoints are the only ones needed. If we combine these objectives with the sum
objectives, we may get a lot more breakpoints, because the bottleneck-point breakpoints

are also needed.

1
6

3

1
< 3

Figure 9: f((v3,v4)). There are two edge-bottleneck-points on this edge, and we find two
new breakpoints. f3 and f* are indicated with a bold lines.

In the following we expand Example 2.1 to illustrate what the center objectives look

like. In Figure 9 we illustrate the locally efficient points on (v3,v4), where w® = w! and

wt = 'w2, as XPar((v37v4)) = ((’03,’04), [%7 %])

In this example both objective functions turn out to be convex, but this is not the general
case. The center objective is known to be neither convex nor concave. But the anti-center
(maximin) objective is a concave function (so in problem (8) it is convex). This is true,
because it is the minimum of piecewise linear concave functions. When we convert the
problem to a minimax with negative weights, we get a piecewise linear convex function.
This fact leaves little hope for finding an improved approach for this general case where we
combine both sum and center objectives. After having investigated the different problems
in turn, we can conclude that the method described in Section 3.3 works for any piecewise

linear objective functions.

MSNL Subedge Comparison 147

6 Computational results

In this section we present computational results from an implementation of Algorithm 3.3.
We have not used the methods of Megiddo [9] in this implementation to solve the small
LP’s. Instead, we have used CPLEX 6.6. The code is programmed in C++ and the tests
are run on a 700 MHz Linux PC.

We have used random networks of varying size generated using NETMAKER. A descrip-
tion of NETMAKER can be found in Skriver and Andersen [11]. All the random networks
have a fixed number of nodes and a random number of edges with mean 4 times the num-
ber of nodes, i.e. a 50 node network has approximately 200 edges. Each network contains
a random Hamiltonian cycle, and for each node three random edges are generated. The
weights are generated negatively correlated. If one weight is in the integer interval from
1 to 33, the other is in the integer interval of 67 to 100. The same holds for the negative
weights for the obnoxious objective functions (except for the sign). In each group we have

used 10 random networks, and the mean is reported in the following tables.

First, we examine some semi-obnoxious bicriterion networks, having one push objective
and one pull objective. The results are presented in Table 4. It appears that the number
of subedges grows a little less than squared the number of nodes. The number of subedges
is important, because in worst case we have to make a pairwise comparison of all these
subedges, (# Subedges)?. The number of actual comparisons made is presented in the
table, and the percentage of actual comparisons to the worst case is also presented. It is

important to note that this percentage decreases as the networks increase in size.

Nodes 50 100 150 200 250
CPU-time 40.96 229.54 774.64 1505.42 3326.37
Subedges 3033.6 9411.5 18525.2 28368.1 39540.2
Subedge comparisons (in millions) | 0.358 1.770 5.138 8.655 16.531
Efficient subedges 96.2 155.3 175.7 222.5 264.5
% Efficient subedges 3 1.6 0.95 0.78 0.67
% Comparisons 4.00 2.02 1.50 1.08 1.05
Comparisons per sec 8733 7709 6633 5749 4970

Table 4: Semi-obnoxious bicriterion results, 1 push - 1 pull objective.

The number of efficient subedges is also presented in Table 4, and this number seems to
grow linearly with the number of nodes. This number is in fact higher than the number
of actual efficient subedges, because more subedges may contain the same efficient point,

when this point is a node. If a node is efficient, all the subedges connected to this node

148 MSNL Subedge Comparison

contain some efficient points (perhaps only the node which is the endpoint of the subedge).
The last row in Table 4 are the numbers of comparisons made per CPU-second. Assuming
that CPLEX performs independently of the number of problems it has to solve, this
decrease indicates that the large problems require a lot more storage of data, and accessing

this data takes an increasing amount of time.

Next we examine the effect of having more objectives. These results are all computed on
networks with 50 nodes. We reuse the results of the bicriterion (1-1) networks of Table
4, examine two types of three objective problems and one type of four objective prob-
lems. The three objective networks are generated with both 1 obnoxious and 2 desirable
objectives (1-2), and 2 obnoxious and 1 desirable objectives (2-1). The four objective
networks are all with 2 obnoxious and 2 desirable objective functions (2-2). The results
are presented in Table 5.

As expected both the number of subedges containing efficient points and the CPU-time
increase rapidly when more negatively correlated objective functions are added. With four
objectives more than 75 % of the subedges contain efficient points. It is seen that the CPU-
time for these instances is almost proportional to the number of subedge comparisons, since

the data size of the instances is approximately the same (last line in Table 5).

Objectives 1-1 1-2 2-1 2-2

CPU-time 40.96 123.05 105.49 870.57
Subedges 3033.6 3293.1 3158.8 2853.6
Subedge comparisons (in millions) | 0.358 1.019 0.914 6.128
Efficient subedges 96.2 359.1 3579 2237.7
% Efficient subedges 3 11 11 78

% Comparisons 4.00 9.47 9.53 75.46
Comparisons per sec 8733 8349 8720 7077

Table 5: The effect of having more objectives. All networks have 50 nodes.

Finally, we conclude that the computational results are constructive in the sence that
rather large problems can be solved within a reasonable amount of time. Since location
problems are usually not of the type you have to resolve often, a longer CPU-time is
acceptable.

The most encouraging result being that for bicriterion networks with objective functions
in almost opposite directions, a very small proportion of the networks is efficient. This
indicates that this model is in fact an aid for the decision-maker, since a large part of the
network can be omitted from further consideration. On the efficient parts of the network,

the trade-off between the two objectives can then be revealed.

MSNL Subedge Comparison 149

As a final comment, we note that with negatively correlated objectives, at most three
objective functions should be considered. Otherwise the results are inconclusive, since a

large proportion of the network will be efficient.

7 Concluding remarks

In this paper we have set up a multicriterion network location model for locating a (semi)
obnoxious facility. We have proposed an efficient solution algorithm based on ideas from
the multicriterion median network location problem presented in Hamacher et al. [5].

In the bicriterion case we have found an improved method, but this method has not been
implemented. The general method presented in this paper works for all piecewise linear
objective functions, and has been implemented in C++ using CPLEX as a solver. The
computational results show that networks of realistic size can be solved in a reasonable
amount of time. We thus conclude that this model is a good tool for general network

location decisions.

References

[1] J. Brimberg and H. Juel. A bicriteria model for locating a semi-desirable facility in

the plane. European Journal of Operational Research, 106:144-151, 1998.

[2] E. Carrizosa, E. Conde, and D. Romero-Morales. Location of a semiobnoxious facility.
A biobjective approach. In 1996 Torremolinos, editor, Advances in multiple objective

and goal programming, pages 338-346. Springer-Verlag, Berlin-Heidelberg, 1997.

[3] R.L. Church and R.S. Garfinkel. Locating an obnoxious facility on a network. Trans-
portation Science, 12:107-118, 1978.

[4] M.S. Daskin. Network and Discrete Location. Wiley, New York, 1995.

[5] H.W. Hamacher, M. Labbe, and S. Nickel. Multicriteria network location problems
with sum objectives. Networks, 33:79-92, 1999.

[6] H-W. Hamacher and S. Nickel. Multicriteria planar location problems. FEuropean
Journal of Operational Research, 94:66-86, 1996.

[7] P. Hansen, M. Labbe, and J.F. Thisse. From the median to the generalized center.
RAIRO Rech. Opér., 25:73-86, 1991.

150

8]

[9]

[10]

MSNL Subedge Comparison

J. Hershberger. Finding the upper envelope of n line segments in O(n log n) time.
Info Process Lett, 33:169-174, 1989.

N. Megiddo. Linear-time algorithms for linear programming in R* and related prob-
lems. SIAM J. Comput, 12:759-776, 1983.

A.J.V. Skriver and K.A. Andersen. A bicriterion semi-obnoxious facility location
model solved by an e-approximation. Technical Report 2000-1, Department of Oper-

ations Research, University of Aarhus, Denmark, 2000.

A.J.V. Skriver and K.A. Andersen. A label correcting approach for solving bicriterion
shortest path problems. Computers and Operations Research, 27:507-524, 2000.

R.E. Steuer. Multiple criteria optimization: Theory, Computation, and Application.
Wiley, New York, 1986.

K. Thulasiraman and M.N.S. Swamy. Graphs: Theory and Algorithms. Wiley, New
York, 1992.

Bicriteria Network Location (BNL) problems with criteria dependent
lengths and minisum objectives

ANDERS J.V. SKRIVER AND KIM ALLAN ANDERSEN*
Department of Operations Research
University of Aarhus
Ny Munkegade, Building 530
DK - 8000 Arhus C
Denmark

KAJ HOLMBERG
Department of Mathematics, Division of Optimization
Link6ping Institute of Technology
S-581 83 Linkoping
Sweden

August 17, 2001

Abstract

We present a new model, which is a generalization of the bicriterion median prob-
lem. We introduce two sum objectives and criteria dependent edge lengths. For this
NP complete problem a solution method finding all the efficient solutions is presented.
The method is a two-phases approach, which can easily be applied as an interactive
method.

In Phase 1 the supported solutions are found, and in Phase 2 the unsupported
solutions are found. This method can be thought of as a general approach to BOCO
(Bi-objective Combinatorial Optimization) problems.

Keywords: MCDM, biobjective optimization, facility location, networks, MOCO.

1 Introduction

We begin by a motivating example. Assume we have to locate a money reserve, consider-
ing the two objectives of minimizing the transportation costs and the risk of having the
transports robbed. The depot serves a number of clients varying in size, and we are given
a connected network and interpret each of the n nodes as the clients. A relevant (node)
weight for a client with respect to transportation costs is the number of monthly deliver-

ies, and a weight for the risk objective is the maximum value of a money-transport. The

*Corresponding author. Email: kima@imf.au.dk

151

152 BNL

edge-lengths with respect to transportation costs could be the distance, and for the risk
objective the edge-length could be the probability of an assault. If we assume that the cost
of opening the new facility is independent of location, this particular cost is unimportant.
A solution to this problem consists of two decisions. The first (and probably the most
important) one is to decide where to locate the new facility (depot), and the second one
consists in determining how to route the flow from the new facility to the nodes. The
flow problem consists of n — 1 Bicriterion Shortest Path (BSP) problems, which is a NP
complete problem.

If each edge has only one length, we have the usual median problem. Now that we have
one length for each criterion, the BSP problem becomes a subproblem. Therefore, this

refinement has severe consequences on the complexity of the problem.

Before presenting the ideas behind the proposed solution method, some concepts from
bicriterion analysis are reviewed. For a textbook introduction see Steuer [7] or Ehrgott
[4]. Suppose we want to simultaneously minimize two functions f!(x) and f?(x) over some

feasible set S. In our case S is a finite set of solutions.

min f;ga;;

min f“(z

s.t. (1)
x €S

It is generally accepted, that solving (1) means finding the set of efficient (or Pareto
optimal) solutions. A solution z € S is called efficient if one of the objective function
values cannot be improved without worsening the other. Let f(z) = (f!(z), f?(z))?,

where ¢ denotes transpose. The mathematical definition of efficiency is as follows.

Definition 1 A point x € S is efficient iff there does not exist a point T € S such that

f(z) < f(z) with at least one strict inequality. Otherwise x is inefficient.

Efficient points are defined in decision space. There is a natural counterpart in criterion
space Z = {z € R}|3x € S,z = f(x)}.

Definition 2 z(z) € Z is a nondominated criterion vector iff x is an efficient solution.

Otherwise z(x) is a dominated criterion vector.

In Definition 2 we have used that z(z) = f(z). The set of efficient (E) solutions is denoted
S and the set of nondominated (ND) criterion vectors is denoted ZNP, and is given by
ZND = »(SF).

BNL 153

The criterion vectors can be partitioned into two kinds, namely supported and unsup-

ported. Define the weighted objective function W (z, \) as:
W (z,A) = Af' () + (1= X) f2(2), A€ (0;1). (2)

The function W (z, A) is a convex combination, or weighted sum, of the two objective
functions. Optimizing this function over the feasible set S parametrically in A € (0,1)
will give all the supported nondominated solutions to (1). The method is therefore often
referred to as the weighting method.

It is important to note that each unsupported nondominated criterion vector is domi-
nated by a convex combination of some set of nondominated criterion vectors. Supported
nondominated (SND) criterion vectors are denoted Z°NP and the corresponding set of

solutions are denoted S5%.

The solution method proposed is a variant of the two-phases approach due to Ulungu
and Teghem [9] and Visée et al. [10]. In Phase 1 all (or a representative subset of) the
supported extreme solutions are found by using the weighting method. In Phase 2 a search
between the supported solutions is conducted to find unsupported efficient solutions. The

procedure is explained in details in Section 3.

The remaining parts of the paper is organized as follows. In Section 2 the bicriterion
problem is presented, and some properties of the problem is given. In Section 3 the solution
procedure is outlined, and an example is presented. In Section 4 the generalization to more

than two criteria is discussed, and finally Section 5 contains the conclusions.

2 Problem formulation

We are given a connected directed network G(V,€) with node set V = {vy,ve,...,v,}
where [V| = n nodes, and edge set & = {(v;,v}), (vg,v1),. .., (vp,vy)} With |E] = m edges.
The underlying graph is denoted by G, and edges may be referred to by e € &, by
(vi,vj) € € or simply by (4,5) € £, where node i is the tail and node j is the head. Each
node v; carries two weights (w}, w?)!, where w! € IRy, ¢ = 1,2, so we may refer to the
matrix of weights by Way,,. Each edge e € € has length I(e) = (I*(e),(%(e)) € RZ. Let us
define a matrix of edges E,,,(4) with the following entries. Ej; is the tail of edge e;, F;
is the head, E;3 = I'(e;) is the length with respect to criteria one and Ejy = [%(e;) is the
length with respect to criteria two.

Notice that an undirected network can be modeled as a directed network with the double

154 BNL

amount of edges. Define binary decision variables as follows:

.’L'i:{
yijk:{

We examine the so-called median objectives or weighted sum objectives:

Fly) =D D> wlygr a=1,2

k=1i=1 j=1

if the facility is located in node ¢
else

if edge (4,7) is used in the path to node k
else

O = O =

Combining the coeflicients to cgj = lgjwz, we get

P =3 ik a=1,2 (3)

k=1i=1 j=1

There are two types of constraints. The first constraint ensures that exactly one facility is
located and the second set of constraints ensures the existence of paths from the facility

to the remaining nodes. This leads to the following problem:

min f(y)
min f%(y)
s.t.
3 |
€T; =
=1 ' (4)
o Yiik — 2 Yijk = —T i #Fk, Vi k
7=1 7=1

z; € {0,1} Vi
Yijk € {0,1} Vi, ik
Notice that we have omitted the following redundant constraints

n

n

Zyjik - Zyijk =1—-x; Vi, where¢=k.
j=1 j=1

The reason being that this part of the constraint matrix consists of n totally unimodular

sub-matrices forming the n sets of paths, see (5). Notice that one path is non-existing,

since the node in which the new facility is located, ships nothing through the network.

To understand the structure of the constraint matrix of (4), we write it out. We define
the vector y;;;, (in bold) as the vector of all combinations of ¢ and j, but with a fixed

k. This way y;;; contains all edge variables for node 1 and so forth. The matrix My, is

BNL 155

the totally unimodular sub-matrix forming paths from node z; to node k. These matrices

have dimension (n — 1) x n?. I_j is an (n — 1) X n identity matrix with the k’th row

deleted.

1...1 0 --- o --- o 1Tl = T [1]
I, M, --- 0 - 0 Yijl
: : . : : : B I 5
I, 0 - Mg -- 0 Yijk 0 (5)
i I—TL 0 0 MTL _Yijn_ _0_

It turns out that this matrix is not totally unimodular.
Theorem 1 The constraint matriz in (5) is not totally unimodular.

An example of a sub-matrix of (5) with determinant two is given in the appendix. Since
the constraint matrix is not totally unimodular, solving the LP relaxation of (4) is not
guaranteed to return integer solutions, as is often the case in network problems.
Weighting the two objective functions in (4), using the weights A and 1 — X, A € (0;1),
results in the weighted version of (4)
min AfH(y) + (1 - A)f2(y)
s.t.
n
oxp = 1
i=1
\ . | | (6)
> Yjik = 2 Yigk =~ i Fk Yk
i=1

Jj=1

zie{0,1} Vi
Yiik € {071} V’L,j,k

In Section 3.4 we describe how problem (6) can be solved in O(n') running time using

Benders’ decomposition for a fixed A.

3 Solution procedure

In this section the solution procedure for solving the bicriterion problem (4) is outlined.

Before stating the procedure it may be helpful to consider a naive method. One possible
way of solving the problem could be to solve problem (6) n times, namely one time for
each possible location of the new facility. Suppose that the location of the new facility is
fixed at a specific node, say node i (so z; = 1). Using the weighting method, the supported

efficient solutions (paths) with respect to node i can be revealed. We call these efficient

156 BNL

solutions locally efficient with respect to node i. Given X € (0,1) and z the corresponding
locally efficient solution can be found in O(n?3) running time, since we are faced with n — 1

shortest path problems.

Finding the locally unsupported efficient solutions that are in fact globally efficient, con-
stitutes a more difficult problem. These cannot be found using the weighting method.

This fact is known from studying the BSP problem alone [5].

We thus have three types of efficient solutions:

e supported efficient solutions
e locally supported efficient solutions

e (locally) unsupported efficient solutions

The reason why locally supported efficient solutions are interesting, is that they may be
unsupported efficient solutions in the main problem (4). These three kinds of solutions

are illustrated in Example 3.1.

3.1 Example

We examine the network presented in Figure 1 with the following weights and edges. Each

column of W consists of the two node-weights.

200 300 500 100 400 500 400

W 7 4 2 6 6 2 8

The first two columns of E are the tail and head nodes. The next two columns are the

two edge-lengths.

12 78 22
1 3 24 72
14 26 71
15 13 71
1 7 8 12
2 3 98 29
2 5 17 90

E = |35 29 97
3 6 87 28
37 7 69
45 4 717
47 8 5
5 6 17 92
5 7 40 74
6 7 69 12

BNL 157

Figure 1: Network for Example 3.1.

The resulting 11 nondominated criterion vectors are presented in Table 1. These crite-
rion vectors are visualized in Figure 2 and it is seen that there are 6 supported and 5
unsupported criterion vectors. Of the 5 unsupported solutions, only one, (89200, 1868), is
locally unsupported. The other four unsupported solutions are locally supported by the
nodes indicated in Figure 2. The last nondominated solution, (89200, 1868), is dominated

by a convex combination of the following two locally supported solutions:
9 2
H(QIZOO, 1684) + ﬁ(80200,2587) = (89200, 1848.18)

There are a total of 2128 feasible criterion vectors, using only efficient paths between

nodes. All these vectors are illustrated in Figure 3.

3.2 Two-phases approach

The procedure that we propose instead of the naive method, is a variant of the two-
phases approach due to Ulungu and Teghem [9] and Visée et al. [10], and may be stated

generically as:

e Phase 1: Find all (or a representative subset of) the supported solutions.

158 BNL

Node ft f?
5 45500 3025
5 47100 2289
1 78200 2062
7 89200 1868
7 91200 1684
1 92600 1506
7 97200 1376
1 107500 1182
7 111600 1112
7 129300 856
7 203800 798

Table 1: Nondominated values for Example 3.1.

e Phase 2: Conduct a search between the supported solutions in order to find unsup-

ported nondominated solutions.

3.3 Phase 1

As explained in Section 2 all supported solutions to (4) may be obtained by solving the
weighted program (6) parametrically in A € (0,1). We will do that by employing NISE
(Non-Inferior Set Estimation), a method presented in Cohon [3]. NISE guides the choice
of A € (0,1).

First, the weighted program (6) is solved using A = 1 and A = 0. This results in the
minimum values f'* and f?* of the two objectives f! and f? respectively. Say there
are alternative optima for the problem with A = 1, then we choose a solution with the
lowest objective function value of the second objective f2. This automatically gives upper
bounds, f_ 2 and f_ 1 on the other objective. The initial nondominated criterion vectors (in
Z3NDY are By = (™, f2) and Ey = (f1, f2*).

Next we find the outward normal, n = (n1,n2), to the line between the two initial points,

E; and E. Using \ = ﬁ1ﬁ+1ﬁ2 in solving (6), may result in two cases. We either get a

new unique solution FEs3, or we get Fy or Fy again. In the first case, the point Fj is in
ZSND , and we continue by examining the two line-segments £; — E3 and Fo — E3. In
the latter case we know that there does not exist a supported (extreme) criterion vector
between E; and F,. The procedure proceeds until no new supported criterion vectors
are found, or until a desired number of solutions are found. The outward normal to the
line-segment between two points can easily be found as differences between the objective

function values.

BNL

f2

159

7. (80200,2587)

Locally unsupported

fl

Figure 2: Nondominated vectors for Example 3.1. Large dots illustrate the supported
solutions, and only one solution is locally unsupported. The numbers indicate the location

node.

3.4 Benders’ decomposition in Phase 1

In this section we present how Benders’ decomposition can be used to find the supported

solutions given a weight A in Phase 1. Let A be fixed and define

cijk(A) = Awkl}j +(1- A)w,%l,‘?j (> 0 since [, w > 0).

When z is fixed, we can use the path constraints being totally unimodular, and relax the

integrality constraints on y. Fixing z means locating the facility at a particular node. For

a fixed 7 satisfying) . x; = 1, x; € {0,1}, we get the following Benders’ subproblem:

min Y ¢ik(N)yijk
kg

s.t
Zyjik_z_yijk = —-I; 1#k Vi,k
J J

160 BNL

5000+

4000+

3000+

2000+

1000+

<

50000 100000 150000 200000 250000 300000 350000

Figure 3: Illustration of 2128 criterion vectors for Example 3.1.

This linear programming problem has the following dual program:

max Y aik(—Ti) + 3 Biji

i,k ksi,g
ik
s.t (8)
ajk — i + Bk < cijg(XN) i #Fk Vi gk
B < 0

The variables « are free variables corresponding to the path constraints in (7) and the
variables correspond to the upper bound on y. These dual variables can be found when
the n — 1 shortest path problems are solved in the Benders’ subproblem, so we need not

actually solve the dual problem (8). The dual leads to the following Benders’ master

BNL 161

problem:
min v
s.t
Wk kyi,g 9)
£k
>z = 1
xz; €{0,1} Vi

where [is an index for the added inequalities.

The first time we generate a redundant inequality (or suggests a node picked earlier), the
solution at hand is optimal (efficient). This is true because the subproblem (7) will return
an earlier found solution.

Notice that Benders’ master problem (9) is easy to solve in this case. It can be reformulated
as a minimax problem. Let us rewrite the first constraint in (9), keeping in mind that

only one x; will be one.

l !
v o2 =)D st) B
ik k,h,j
ik
l !
vz 3| =D ant) B | @
i k k,h,j
ik
v > Z céa;i
i
where ¢t = — > ol + 3 ﬁ,lljk. If we think of these c coeflicients in a matrix, the optimal

z; is to find the column where the largest element cg is as small as possible.

Notice, that we have to solve problems (7) and (9) at most n — 1 times. Since Benders’
subproblem consists of n — 1 shortest path problems, problem (7) can be solved in O(n?)
running time. Therefore the overall running time in Phase 1, given), is O(n*) running

time.

3.5 Phase 2

Here we can first find the locally supported nondominated vectors by using the weighting
method for a fixed node(s).
To find locally unsupported efficient points of (4), we use the Tchebycheff theory. Let

z = (2%, 2%) denote a fixed reference point with z < z* = (fl*, f2*), where z* is the ideal

162 BNL

point. Then the augmented non-weighted Tchebycheff program (10) may be stated as

min a+p (1Y) + f2(y))
s.t.
fily) —a < 2 q=1,2
n
E Ty = 1
=1
. " (10)
> yjik — 2 Yigk = —xi 1#k Vik
7j=1 j=1

z; € {0,1} Vi
yijk € {0,1} Vi, 5, k
ac Ry

where p is a small positive constant ensuring that the solution found is in fact efficient.

A few comments are in order. Note that instead of solving the usual weighted Tchebycheff
program as found in Steuer and Choo [8], we propose to solve the augmented non-weighted
Tchebycheff program (10). It was shown by Alves and Climaco [1] that all nondominated
solutions to (4) can be found using the non-weighted program for integer problems (IP),
and in Alves and Climaco [2] this result was generalized to mixed integer problems (MIP).
Note that the augmented Tchebycheff program (10) has the same constraints as our orig-
inal problem (4), as well as two additional constraints. The two new constraints are the
reference point constraints, linking the reference point to the objective function in (10).
These two new constraints complicate the problem, since they destroy the nice structure
of the constraint matrix. Using Lagrange relaxation of these constraints does not solve our
problem, as described in Appendix 2. We simply end up with the weighting method. How-
ever, problem (10) is a one objective MIP, which can be solved by the usual IP methods,

such as branch and bound.

Next we explain how to determine the appropriate reference point(s). Assume that we
want to search for locally unsupported solutions between the two nondominated points £

and F5. First, we determine a maximum deviation factor
0= max{51,52}

where §¢ = f4 — f9 ¢ = 1,2. This deviation factor is going to ensure that our reference
point is below the ideal point z*. Next we find reference points corresponding to our two

nondominated solutions, F; and Es:

2(E) = (B} —6,B; —6)i=1,2

BNL 163

The search reference point z,¢, can then be determined as the maximum of the reference
point coordinates, because this point has a maximum distance of § to both z(E;) and
z(Es):

Znew = (max {2 (E1), 2" (E2) } ,max {2?(E1), 2°(E») }) .
Using zpeyw in (10) can result in two things. If a new solution is returned, this solution is

nondominated and defines two new search areas. Otherwise one of the points E; or E5 is

returned, and no nondominated (unsupported) solutions exist between the two points.

For our Example 3.1 we find § = max{203800 — 45500, 3025 — 798} = 158300. Next we
search for locally unsupported solutions between the two points £ = (78200,2062) and
Es = (91200,1684) (on either side of the single locally unsupported point in Figure 2).
This leads to the reference point zpe, = (—67100, —156238), where o = 158300 can find
both £ and FEs. In this case E3 = (89200, 1868) is found with o = 158106.

4 Generalization to multiple criteria

Most of the ingredients in our approach easily generalize to more than two criteria. How-
ever, the NISE procedure used in Phase 1 to find supported nondominated points in a
“spread-out” way, does not generalize. In two dimensions we find upper bounds on the
objectives by minimizing the other objective alone. Forming the hyperplane between these
two upper bounds, and then moving this hyperplane, we are guaranteed not to miss any
supported nondominated solution. In three dimensions we may set upper bounds as the
highest value from minimizing the other two objectives. The problem is that we may
have supported nondominated solutions above this hyperplane. In Solanki et al. [6] these
difficulties are explained.

Using another way to set the weights in Phase 1 in order to find the supported nondomi-
nated solutions, will leave us with a similar problem in Phase 2. Near the borders of the
efficient frontier it may be difficult to determine a reference point in order to search for

unsupported solutions.

5 Concluding remarks

In this paper we present a new, interesting location problem. This formulation incorporates
both the location and the routing aspects in a multiobjective setting. We also present
a solution method for the problem, and illustrate the problem structure and solution
procedure by an example. The presented method can easily be made interactive, since the

procedures in both phases are easily made interactive.

164 BNL

Appendix 1

Proof of Theorem 1:

Consider the complete directed network with 4 nodes (n = 4). This includes both directed
edges between all nodes given k: (i,7,k) and (4,14, k) Vi, j,k where i # j. From (5) choose
the first 4 columns corresponding to the x variables. Choose also the three columns
corresponding to y124,Y132 and y143. Next we specify the seven rows. Choose the first row
corresponding to the sum of x; constraint. From I 4 choose rows 1 and 2, from I 5 choose
rows 1 and 2 and from I_3 choose rows 1 and 3. This lead to the following 7 x 7 matrix

with determinant two:

1111 0 0 O
1000 -1 0 O
0100 1 0 O
1000 O -1 0 = 2
0010 0O 1 O
1000 O 0 -1
0001 0 0 1

Appendix 2

Lagrange relaxation in the augmented Tchebycheff problem

As we will show, this approach does not help! We end up with the weighting method, if
we relax the reference point constraints.

Let 8 be the Lagrange multiplier on the reference point constraints of problem (10). We
are then left with the constraints of our original problem (4), and the constraint 5 > 0.
Let’s assume that £ is fixed at 4. 5 can then be updated using for example a subgradient.

The new objective function is given by
flay)=a+p (f{y) + @) + B () —a—2") + () —a—2%).
Rearranging terms, we get
fla,y) = (1 =g =B)a+ (p+ B8N (W) + (0 +B°)f*(y) - Bl = 222 (11)

Let’s evaluate the optimal value of a. If 1 — 8! — 82 > 0, we choose @ = 0, and if
1 —B' — p% < 0, we choose @ = co. Neither solution is good, because & = 0 makes no

improvement when we update 3 using the usual sub-gradient direction

d=(f'(y) —a—2" f2(y) —a— 2%

BNL 165

Since z is a reference point f(y) > z, and we will simply increase 3 until we get the

situation where a = co. We therefore conclude that 5! 4+ 32 = 1, so « can be any positive

number. Since p is almost zero, we recognize this to be the weighting method applied in
Phase 1.

References

1]

[10]

M.J. Alves and J. Climaco. Using cutting planes in an interactive reference point
approach for multiobjective integer linear programming problems. European Journal

of Operational Research, 117:565-577, 1999.

M.J. Alves and J. Climaco. An interactive reference point approach for multiob-
jective mixed-integer programming using branch-and-bound. FEuropean Journal of
Operational Research, 124:478-494, 2000.

J.L. Cohon. Multiobjective Programming and Planning. Academic Press, 1978.

M. Ehrgott. Multicriteria Optimization, volume 491 of Lecture Notes in Economics

and Mathematical Systems. Springer, 2000.

A.J.V. Skriver and K.A. Andersen. A label correcting approach for solving bicriterion
shortest path problems. Computers and Operations Research, 27:507-524, 2000.

R.S. Solanki, P.A. Appino, and J.L. Cohon. Approximating the noninferior set in mul-
tiobjective linear programming problems. Furopean Journal of Operational Research,
68:356-373, 1993.

R.E. Steuer. Multiple criteria optimization: Theory, Computation, and Application.
Wiley, New York, 1986.

R.E. Steuer and E.U. Choo. An interactive weighted Tchebycheff procedure for mul-
tiple objective programming. Mathematical Programming, 26:326-344, 1983.

E.L. Ulungu and J. Teghem. The two-phases method: An efficient procedure to
solve biobjective combinatorial optimization problems. Foundations of Computing
and Decision Sciences, 20:149-165, 1995.

M. Visée, J. Teghem, M. Pirlot, and E.L. Ulungu. Two-phases method and branch
and bound procedures to solve the bi-objective knapsack problem. Journal of Global
Optimization, 12:139-155, 1998.

166 BNL

Network planning in telecommunications: A stochastic
programming approach

MORTEN RIIS*AND ANDERS J.V. SKRIVER
Department of Operations Research
University of Aarhus, Building 530

Ny Munkegade
DK - 8000 Arhus C
Denmark

JORN LODAHL
Sonofon
Skelagervej 1
DK - 9100 Alborg
Denmark

August 16, 2001

Abstract

We consider a network design problem arising in mobile communications. The
problem consists in deploying a number of new MSCs and allocating existing BSCs to
MSCs, so as to minimize the incurred costs while meeting customer demand and ob-
serving the capacity restrictions. We formulate this problem as a two-stage stochastic
program with mixed-integer recourse. To solve the problem we apply a dual decom-
position procedure, solving scenario subproblems by means of branch and cut. The
solution procedure has been tested on a real life problem instance provided by Sono-
fon, a Danish mobile communication network provider, and we report some results of

our computational experiments.

Keywords: Network planning; Telecommunication; Stochastic Programming; Dual

Decomposition; Branch and Cut.

1 Introduction

Mobile telecommunication network providers have been facing a rapid growth in demand

for several years and this trend seems likely to continue. This forces the network provider

*Corresponding author. Email: riis@imf.au.dk

167

168 Sonofon

to constantly expand the capacity of the network in order to provide an acceptable grade
of service to customers. There is a vast amount of literature concerning the optimal
expansion of link capacities in a telecommunications network. We refer to papers by
e.g. Balakrishnan, Magnanti and Wong [1], Bienstock and Gunliik [2], Chang and Gavish
[4] and Dahl and Stoer [5] for different approaches to such types of problems. The link
capacities do not constitute the only potential bottleneck in a telecommunications network,
however, since capacity restrictions may be imposed not only on traffic but also on the
number of customers served by the network. In this paper we study a network design
problem in which some capacity constraints are imposed to restrict traffic on links in the
network while others are imposed to restrict the number of customers served by nodes in
the network.

We study a mobile communications network. The base transceiver stations (BTSs) are
each connected to one base station controller (BSC). Each BSC serves a number of BTSs
and is connected to one mobile switching center (MSC). Finally each MSC serves a number

of BSCs and the MSCs are connected internally. The network is illustrated in Figure 1.

Figure 1: Tlustration of a mobile telecommunications network.

The visitor location register (VLR) of an MSC, a database handling all information about
clients, has a limited capacity, thus restricting the number of customers that can be served
(through BTSs and BSCs) by an MSC. Thus the network provider not only has to expand
the link capacities but should consider when and where to deploy new MSCs in order to
be able to serve the increasing number of customers.

We will consider the problem of deploying a number of new MSCs and allocating the BSCs

Sonofon 169

to new and existing MSCs, thus treating the number and locations of BTSs and BSCs as
exogenous. The deployment of MSCs must be carried out so as to minimize the incurred
costs while meeting customer demand and observing the capacity restrictions. The cost

function will include four terms:
1. The cost of new MSCs.
2. The cost of connecting BSCs to MSCs.

3. The cost of expanding the capacity of links connecting the MSCs.

W

. A penalty cost for handovers that occur among BSCs that are connected to different
MSCs.

Tzifa et al. [17] study a similar problem in which only the access network is considered, thus
ignoring the third cost term mentioned above. Also, the problem of optimally assigning
BSCs to MSCs has been addressed by several authors such as Saha, Mukherjee and Bhat-
tacharya [15] and Merchant and Sengupta [8]. Apart from minimizing the incurred costs of
connecting BSCs to MSCs and the handover cost, it is customary to enforce some degree
of load balancing among the MSCs. Tzifa et al. and Saha, Mukherjee and Bhattacharya
explicitly include a penalty cost on uneven loads in the objective function, whereas Mer-
chant and Sengupta propose to handle the load balancing problem parametrically. We
do not explicitly consider load balancing but the parametric approach of Merchant and
Sengupta may easily be adopted in our setting.

All of the above-mentioned authors follow a deterministic approach in the sense that the
cost parameters, the number of customers and the demand for bandwidth are all assumed
to be known at the point of decision. It is a fact, however, that the time that passes from
the moment at which deployment of MSCs is resolved on, until the equipment is actually
in place and available for use, is rather long (about a year). This means that at the time
the decision has to be made, the network provider does not have full knowledge of several
important parameters of the model. For this reason the network provider should put off
the definitive decision on allocation of BSCs to MSCs for as long as possible, allowing
uncertainty to be at least partially revealed. This is the incentive for us to model the
problem as a two-stage stochastic program. In this formulation uncertain parameters are
replaced by random variables and decisions are organized in two stages. The first stage
consists of deployment of MSCs which must be resolved on before uncertainty has been
revealed and hence must be based on the distribution of random parameters only. In

the second stage outcomes of all random parameters have been observed and an optimal

170 Sonofon

allocation of BSCs to MSCs and a corresponding routing of traffic in the resulting network
is determined.

The importance of including uncertainty in the problem formulation when modeling ca-
pacity expansion problems is well recognized. Stochastic programming has been used as
a modeling tool for such problems in telecommunications by several authors. Sen, Dover-
spike and Cosares [16] study a capacity expansion problem in which the expected number
of unserved requests is minimized subject to limitations on the total capacity expansion.
Riis and Andersen [11, 12] use stochastic programming to solve two different capacity ex-
pansion problems in which additional capacity, required to meet customer demand, should
be installed on edges of the network in modularities of fixed batch sizes. Finally, Demp-
ster, Medova and Thompson [6] use chance-constrained programming to solve a capacity
expansion problem subject to certain grade of service constraints assuming that the arrival
process of calls is known. The main emphasis in previous studies has been on the capacity
expansion of links, while less has been said about the network design problem considered
in this paper.

This paper is organized as follows. We start out by formalizing the problem formulation
and describing the parameters involved in Section 2. Extensions of the basic model to
hedge against potential node and edge failures by imposing survivability constraints are
discussed in Section 3. Next, in Section 4 we briefly outline the concept of dual decompo-
sition (or scenario decomposition). Dual decomposition techniques have been applied in
the context of stochastic programming by numerous authors including Carge and Schultz
[3], Mulvey and Ruszczynski [9] and Rockafellar and Wets [14]. The seminal idea is to use
variable splitting to make the problem separable into independent subproblems which are
easily solved. In our case, the subproblems are solved by means of branch and cut, using
valid inequalities derived in Section 5 as cutting planes. In Section 6 our application is
described along with some of the practical difficulties concerning implementation of the

algorithm. Finally, we give some concluding remarks in Section 7.

2 Problem Formulation

To give a formal formulation of the capacity expansion problem introduced in the previous
section, we will consider a finite number of potential locations for new MSCs and hence
the basic setup will be described by three finite sets of nodes representing the locations of

MSCs and BSCs:

- V1 The set of locations of existing MSCs.

Sonofon 171

- Vo The set of potential locations for new MSCs.

- W The set of locations of BSCs.

Note that a given location may very well be represented as a node in more than one of the
sets (even in all of them). In fact, the model allows for a single location to be represented
as several nodes in one set, for example if we wish to deploy more than one MSC at a
location.

The network interconnecting the MSCs is modeled as an undirected graph G = (V, E).
The nodeset V' = V; UV, represents the existing and potential locations of MSCs, and the
edge set E represents the existing and potential links {,j} between nodes 4,5 € V. We
will consider demand at BSC level. Even though we assume that traffic is bidirectional, we
will find it convenient to use directed flow for modeling purposes. Hence we shall assign an
arbitrary direction to each point-to-point demand and refer to its origin and destination.
Also, each undirected edge {7,j} € E will correspond to two (conceptual) directed edges
(,7) and (j, 1), each of which can carry flow. Still, to allow for the appropriate bidirectional
traffic, edge capacities are dimensioned with respect to the total traffic on the given edge,
disregarding the arbitrarily assigned directions of flow.

Demand for bandwidth on the connections will be described by a set K of commodities.
Two main approaches for defining such commodities have been used in the literature. One
possibility is to define a commodity for each point-to-point demand resulting in a total
of O(|W1?) commodities. In general we find it more convenient, though, to reduce the
number of variables by working with an aggregated formulation containing a total of only
O(|]W|) commodities. This is achieved by letting each commodity k£ € K correspond to
demand originating at a given BSC with respect to the arbitrary directions assigned to
traffic. If one wishes to impose survivability constraints, however, it turns out that the
disaggregated formulation may be more convenient. We will return to this issue in Section
3.

As previously discussed, several parameters of the model are not known with certainty
at the time the decision on deployment of MSCs has to be made. In particular, the
only information about future demand available at the point of decision, comes from
past observations and some form of forecast model. This inherent uncertainty will be
incorporated in the problem formulation by introducing some probability space (€2, F, P)
and allowing the parameters in question to be dependent on the outcome of a random
event w € (). Here, the probability distribution P is meant to reflect information about

uncertain parameters coming from the above-mentioned forecasts. Thus the demand for

172 Sonofon

bandwidth on edges and VLR-capacity at nodes will be described by the following sets of

parameters:

- Dy (w) The net demand for commodity k& at BSC r. (k€ K,r € W)

- Ly(w) Theload of BSC r on the VLR in the MSC to which it is connected. (r € W)

We emphasize that Dy, (w) is the net demand for commodity k& at BSC r and hence, in
particular, that it is negative if and only if BSC r is the origin of commodity & and that
> rew Dir(w) = 0. The parameter Dy, (w) is directly related to the traffic between the
origin of commodity k& and BSC r, whereas the load L,(w) should rather be thought of as
depending on the number of customers in the area served by BSC r.

Corresponding to the two types of demand, we have two types of existing capacity in
the network - capacity restricting flow on edges of the network and capacity restricting
the number of customers served by nodes in the network. These are summarized in the

following sets of parameters:
- C;; Flow-capacity on edge {i,7}. ({i,j} € E)
- M; VLR-capacity of the MSC located at node i. (i € V)

The cost structure is described by the following sets of parameters some of which are
treated as exogenous, while others are assumed to be uncertain at the point in time at

which the decision has to be made, thus depending on the random event w:

¢ The cost of deploying an MSC at node i. (i € V3)
- pij(w) The cost of adding one unit of capacity on edge {i,j}. ({1,j} € F)
- gri(w) The cost of connecting BSC r to node i. (r e W, i € V)

- hyt(w) The penalty cost (for supporting handovers) incurred if BSC r and ¢ are
connected to different MSCs. (r,t € W)

Note that we assume the cost of expanding the capacity of a connection to be linear and
that we do not include a fixed cost for establishing the connection. The reason for this is
the fact that the company, in cooperation with which this research project was engaged
upon, had already available a physical network with sufficient link capacities. In order to
utilize this capacity, however, it may be necessary to install additional equipment at the
end-points of the connection, and this cost is assumed to be linear with respect to the

capacity provided.

Sonofon 173

The main decisions to be taken are deployment of new MSCs and allocation of BSCs to
MSCs. These decisions are represented by the following two sets of binary variables:

{1 if an MSC is deployed in node i. (i € V2)

0 otherwise

1 if BSC r is connected to MSC 4. (re W, i€ V)
i) = {0 otherwise

As indicated by the dependency of the variables y,; on the random event w, the allocation
of BSCs to MSCs is allowed to depend on the outcome of the random parameters. That
is, the decision on allocation of BSCs to MSCs is postponed to the second stage to take
full advantage of the additional information which is available at this point.

Finally, the following sets of variables are used to describe flow in the network, and the
capacity expansion of links needed to carry this flow. Since flow does not occur until

demand is realized, these variables all belong in the second stage.

- fijk(w) Flow of commodity k on edge {4, j} in direction from i to j. (k € K, {i,j} €
E)

- fjik(w) Flow of commodity k on edge {4, j} in direction from j to i. (k € K, {i,j} €
E)

-vii(w) Aggregate flow on edge {7,7} in excess of current capacity Cy;. ({1,j} € F)

To be capable of handling the model computationally, we will assume that there is only a

finite number of possible outcomes of random parameters.

(A1) The probability distribution P is discrete and has finite support, say Q = {w', ..., wS}
with corresponding probabilities P({w'}) = «!,..., P({w”}) = =°.

A possible outcome of random parameters (p(w®), g(w®), h(w®), D(w®), L(w?®)) correspond-
ing to some elementary event w® € Q will be referred to as a scenario. For notational
convenience we will refer to such a scenario simply by (p®, ¢°, h®, D*, L®). Likewise, we will
use a superscript s on second-stage variables to indicate that these decisions are allowed
to differ for different scenarios.

We are now ready to formulate the problem of optimally deploying a number of new MSCs
and allocating BSCs to MSCs as a two-stage stochastic program. The first-stage objective

is to minimize the sum of the cost of new MSCs and the expected value of the cost incurred

174 Sonofon

in the second stage,

S
z = min Z cizi + ZWSQS(:E) (1)
1

1€V 5=
s.t. z € B2, (2)

Here, the second-stage value function Q*(z) is given by

@Q’(z) = min Z pijvi; + Z Z(Iﬁz’yﬁi + Z Ry Z(yii —)" (3)

{i,j}€E reW i€V riteW eV
r<t
st Y Liys < M; Vi € V1, (4)

rew
> Ly < Mz Vi € Va, (5)
rew

doyn=1 vrew, (6)
i€V
Z fiik — Z fiin = ZDZryfi VieV, keK, (7)

j{igteE j{igteE rew
Z (fik + fi) < Cij + 03 Y{i,j} € E, (8)
keK

y* e BWIVI o e RIFIKL oo e RIP (9)

We have used the notation z* to denote max{0,z} for z € IR, and hence the third term
of the second-stage objective (3) includes the handover cost between BSCs r and ¢ if and
only if these BSCs are allocated to different MSCs. The constraints (4) and (5) ensure
that the total load from the BSCs connected to an MSC does not exceed the capacity of
the VLR. Moreover, the constraint (5) ensures that a BSC can only be connected to an
MSC if this is actually deployed (z;=1) while the constraint (6) ensures that all BSCs are
connected to exactly one MSC. The constraint (7) is a flow conservation constraint stating
that the net flow of commodity & into MSC ¢ should equal the aggregate net demand for
commodity k& from BSCs connected to MSC 4. Finally, the constraint (8) states that the
aggregate flow on an edge {i,j} € E cannot exceed the total capacity installed on the
edge.

We note that the nonlinear term in the second-stage objective may easily be replaced by
a linear one. Hence let H;, be a variable representing the handover cost incurred between

BSCs r and t under scenario s. Then Hj, may be defined using V' linear constraints,

HE > Byl —vi) VieV, (10)

Sonofon 175

and the nonlinear term may be replaced by a simple summation of the variables H;;,. Thus

if the constraints (10) are added, the third objective term may be replaced by

E Hﬁt.
rteWw
r<t

3 Survivability

There is an entirely different side to the issue of designing a telecommunications network
under uncertainty besides the one we have considered this far. Thus it is possible that not
only the parameters of the model, such as demand and prices, are subject to uncertainty.
To be specific, we will consider a situation in which nodes and/or edges are subject to
potential failures. This forces us to impose different kinds of survivability constraints
to ensure that the network is not too vulnerable in case of such failures. The concept of
survivability has previously been considered in the context of telecommunication networks
by numerous authors. (See e.g. Dahl and Stoer [5] and Rios, Marianov and Gutierrez
[13].) In general survivability may be achieved either by diversification or by reservation
depending on the assurance required and the ability to restructure the solution in case of
failures. In this section we discuss some possible formulations in the context of problem
(1)-(9).

By diversification we mean routing demand using two or more edge- and/or node-disjoint
paths. Diversification constraints are easily imposed if we are working with the disaggre-
gate formulation in which each commodity & € K corresponds to a unique point-to-point
demand. Hence we may let O(k) and D(k) denote the origin and destination of commod-
ity k, and dj the demand for commodity k under some scenario s so that Dj equals dj
for r = D(k), —dj for r = O(k) and zero otherwise. If o}, is a parameter equal to the
maximum fraction of demand for commodity & that is allowed to flow through any given

node or edge of the network, we may impose the following diversification constraints:

ik + Tjie < okdy Vi, j} €E, ke K (11)
Mo k< ondi + (1 —op)diydyy, VieV,keK (12)
Jig)eE

If paths are not required to be node disjoint the constraints defined by (12) are ignored.
When working with the aggregate formulation on the other hand, we cannot impose such
exact diversification constraints. One possibility is to use the following constraint, stating

that at most a fraction of o of the aggregate net flow of a commodity into a given MSC

176 Sonofon

can arrive through one connection.

fiie < on Z Di, i + Z fine V{i.j} €E, keK
rew hi{ih}€E

As mentioned, another way to achieve survivability is by reservation. That is, to ensure
the possibility of rerouting a given fraction of demand in the network resulting after a node
or edge failure. To include reservation in the problem formulation each scenario should
correspond not only to an outcome of the random parameters, but also to a specific failure
state (possibly no failure). If all second-stage decisions may be modified in the light of
a failure such an extension is easily included in the formulation, simply by modifying
the node and/or edge set for each scenario according to the corresponding failure. It
is more realistic, however, to assume that only rerouting of traffic is possible, whereas
a swift reallocation of BSCs to MSCs or capacity expansion is not practicable. Such a
situation would correspond to a three-stage stochastic program. In the first stage, as
before, the deployment of MSCs is decided upon. In the second stage the outcome of
random parameters is revealed and allocation of BSCs to MSCs and appropriate capacity
expansion is carried out. Finally, in the third stage a failure possibly occurs and traffic
is rerouted accordingly. Note that a node (MSC) failure in this situation would result in
the loss of some demand, since BSCs allocated to the MSC in question would be cut off
from the rest. We do not pursue this issue further in the present paper. It should be
noted, however, that in theory such a three-stage problem could be solved by the solution
procedure presented in the subsequent sections, but in practice the computational overhead

involved would render such an approach intractable even for networks of moderate size.

4 Dwual Decomposition

In this section we briefly outline the dual decomposition procedure which we are going
to apply to problem (1)-(9). Dual decomposition, or scenario decomposition, exploits
the fact that the vast majority of variables and constraints in the stochastic program are
scenario dependent. In fact the only thing tying the scenarios together are the first-stage
decisions on deployment of MSCs. Hence, if we use variable splitting on the first-stage
variables, defining a deployment of MSCs for each scenario z',...,z°, problem (1)-(9)
becomes separable into independent scenario subproblems. The fact that the deployment

of MSCs cannot be scenario dependent may now be represented by a non-anticipativity

Sonofon 177

constraint stating the problem as

S
z = min Zws (Z Gy + QS($S)>
s=1 1eVa
13
s.t.a;lz...:a;s, (13)

z* € B2 Vs e{l,...,S}.

Relaxing the non-anticipativity constraint we obtain a problem which is completely sepa-
rable into independent scenario subproblems. These subproblems are solved to obtain an
optimal deployment of MSCs for each scenario. Next non-anticipativity is reinforced by
branching on components of these solutions which differ among scenarios. To be specific,
we introduce a branching tree initially consisting of only the root node corresponding to
the original problem (13). In a given iteration we select a problem from the branching tree
and solve the corresponding scenario subproblems obtaining scenario solutions ', ..., z%.
If MSC i is to be deployed in some scenario solutions and not in others, we add two prob-
lems to the branching tree imposing for s = 1,...,S the constraints z{ = 0 and zj =1
respectively. Otherwise, if all scenario solutions are equal, we have a feasible solution of
the original problem and may update the upper bound if appropriate. For a thorough de-
scription of such a procedure, including a Lagrangian relaxation of the non-anticipativity
constraints, we refer to Carge and Schultz [3].

Clearly, if the scenario subproblems are solved by means of some branch and bound proce-
dure, some effort should be taken to put information from previous iterations in the above
procedure to use. Thus a node which is fathomed in a given subproblem in some iteration
of the main procedure may be reconsidered in subsequent iterations since more variables
are fixed as the main procedure progresses. In fact, for the problem instance considered
in Section 6, the number of first-stage variables was so small (less than 20) that an enu-
meration tree could be created a priori and used for all scenarios, thus precluding any

re-evalutions of nodes.

5 Valid Inequalities

In order to solve problem (1)-(9) using the dual decomposition procedure outlined in the
previous section we need an efficient procedure for solving the scenario subproblems. To
this end we will apply the concept of branch and cut which have proven to be a powerful
tool for the solution of (mixed-) integer programming problems. As in ordinary branch
and bound we start with the LP-relaxation of the mixed-integer programming problem

and build a partitioning of the solution space in order to obtain an integral solution. The

178 Sonofon

crucial idea in branch and cut is to combine this approach with a continuous generation of
cutting planes tightening the formulation and thus reducing the size of the branching tree.
For a thorough discussion of the branch and cut approach we refer to Padberg and Rinaldi
[10] and Giinliik [7]. As cutting planes we will use valid inequalities derived through simple
polyhedral considerations.

First, we consider an inequality based on the total VLR-capacity installed through de-
ployment of new MSCs. The inequality simply states that the total capacity of all VLRs
in the resulting network should exceed the total demand from all BSCs. Formally the

inequality is derived by summing the constraints (4)-(5), rearranging and rounding.

S o> [%(ZLﬁ—ZMi)] Vse{1,...,S}

1€Va rew %
Here we have defined M := max;cy, M;. Since the deployment of MSCs is not allowed to

be scenario dependent this inequality may be strengthened further:

Proposition 1 The following inequality is wvalid for the feasible region of all scenario
subproblems, s =1,...,5.
5 > i(T)] _
Saiz oo (303w

This inequality may be viewed as a global constraint in the sense that it is valid for all
scenarios. As mentioned in the previous section we used an enumeration tree to solve
subproblems for the instance considered in Section 6. Hence the above inequality was
not actually included in the formulation but was merely used to reduce the size of the
enumeration tree.

Next we consider a local constraint which is only guaranteed to be valid for the particular
scenario from which it was derived. This inequality is based on the VLR-capacity of the
individual MSCs and is used to enforce the fact that each BSC must be allocated to a
unique MSC. Once again the underlying idea is simple. If the total demand from a group
of BSCs exceeds the VLR-capacity of an MSC, we cannot allocate all of these BSCs to

the MSC in question. This is formalized in the following proposition.

Proposition 2 Let U be a subset of W such that >, ., LS > M; for some MSC i € V

and some scenario s € {1,...,S}. Then the following inequality is valid for the feasible

relU

region of the s'th scenario subproblem.

Zyii <|Ul-1.

reU

Sonofon 179

Naturally, this inequality will only be useful when the subset U of W is minimal in the
sense that ZreU\ wy Lr < M; for all t € U, since it is otherwise dominated by other

inequalities of the same type.

6 Numerical Results

In this section we will describe the practical application of our model. We have imple-
mented our model on a real problem provided by Sonofon, a Danish mobile communication
network provider. In this section we briefly describe the problem instance, the structure of
costs and demand, and the practical collection and estimation of data. Due to competitive
conditions, however, we cannot be too specific about the problem size and the input data.
Finally, we report our computational results.

The problem under consideration has between 5 and 10 existing MSCs, less than 20 po-
tential locations for new MSCs and less than 50 BSCs. The network interconnecting the
MSCs is complete. The number of binary variables were reduced by dividing the area of
interest into a number of regions and precluding from consideration certain allocations of
BSCs to MSCs across regions. In the resulting formulation each scenario subproblem has
707 binary variables, 14598 continuous variables and 12045 constraints.

The cost of a new MSC is orders of magnitude higher than any other cost parameter. The
cost of connecting a BSC to an MSC was set to zero if the BSC is currently connected
to this particular MSC, and otherwise the total cost of a movement was estimated. Fur-
thermore, the cost of expanding link capacities is given by the total cost of installing new
equipment. The issue of determining an appropriate level for the artificial penalty cost for
handovers, however, is a more complicated matter. Setting this level too low, may result
in solutions with a large number of handovers which are not acceptable from a practical
viewpoint. A high level, on the other hand, may result in configurations for which the
gained practicability obtained by reducing the number of handovers is not sufficient to
justify the increased cost. As a side effect computation time is likely to be increased in
this case due to the large number of movements of BSCs required to reduce the number
of handovers. In practice we chose to adjust the handover costs, observing their effect on
solutions, so as to create geographically connected BSC areas.

The current demand for bandwidth and VLR-capacity was estimated from observations of
traffic and the number of customers respectively. Future demand was then calculated using
the estimates of current demand scaled by different scenario dependent growth factors. We

have used the following procedure to generate demand for VLR-capacity at BSC r under

180 Sonofon

scenario s,
Ly =p*-pi-Ly.

Here L, is the current demand for VLR-capacity at BSC r, u° is a parameter reflecting
the average growth in the number of customers, while p; is a parameter reflecting regional
fluctuations from this average growth. To capture the correlation between the demand for
VLR-capacity and the demand for bandwidth, the net demand for commodity k& at BSC r
under scenario s was calculated using current demand Dy,, the above-mentioned param-
eters reflecting growth in the number of customers, and a third parameter o° reflecting

growth in the demand for bandwidth per customer,
‘DZT:IU’S. plsfpgo'sDkr

Note that we have used the geometric average of the regional fluctuations pj and p;.
Likewise the different cost terms were made scenario dependent by introducing stochastic
fluctuations on future prices. The growth factors were all sampled from uniform distri-
butions reflecting the expectations of Sonofon for the time horizon under consideration.
As pointed out in Section 1, the second-stage decision of allocation of BSCs to MSCs is
to be made after one year, and this was the time horizon used when estimating growth
factors for the cost terms. As for customer demand, however, we have used a four-year
time horizon when estimating the appropriate growth factors. This was done to ensure
a somewhat stable solution guaranteeing sufficient network capacity for three additional
years beyond the completed deployment of new MSCs. This means that demand is in fact
only partially revealed at the time the second-stage decisions are to be made, but since
the additional information obtained at this point will provide an improved estimate of the
true rate of growth in demand, the gain of postponing some decisions to the second stage
is likely to be considerable.

The algorithm was implemented in C++ using procedures from the callable library from
CPLEX 6.6. Considering 100 scenarios, the solution times were about 3.5 hours CPU-time
on a 700 MHz Linux PC. The solution suggested the deployment of one new MSC. Due
to the complexity of the problem, the survivability constraints of Section 3 have not been
implemented in the application. The valid inequalities of Section 5, however, have speeded

up the solution times considerably.

7 Conclusions

In this paper we have set up a model for the optimal deployment of new MSCs in a mobile

communications network. The model takes into account the cost of new MSCs, the cost

Sonofon 181

of allocating BSCs to MSCs, and the cost of expanding capacities of links connecting
the MSCs. Furthermore, a penalty cost was introduced to limit the number of handovers,
inducing connected BSC areas. Since the deployment of MSCs involves a planning horizon
of about a year, a number of important parameters of the model are not known with
certainty at the point of decision. This lead us to a two-stage stochastic programming
formulation of the problem. Considering 100 possible scenarios for the random parameters,
the resulting formulation of a real-life problem contained more than a million variables
and constraints and hence decompostion methods were called for. We chose to solve the
problem using a dual decomposition procedure, solving scenario subproblems by means
of branch and cut. The algorithm was implemented in C++ and the problem could be
solved to optimality within a few hours of CPU time. We conclude that our model has
been successfully implemented, and that it incorporates the most important details of the
problem. We also conclude that the stochastic programming model is an important tool

in the decision process, giving insight of the dynamics of the expansion problem.

References

[1] A. Balakrishnan, T.L. Magnanti, and R.T. Wong. A dual-ascent procedure for large-
scale uncapacitated network design. Operations Research, 37:716-740, 1989.

[2] D. Bienstock and O. Gunliikk. Capacitated network design. Polyhedral structure and
computation. INFORMS Journal on Computing, 8(3):243-259, 1996.

[3] C.C. Carge and R. Schultz. Dual decomposition in stochastic integer programming.

Operations Research Letters, 24:37-45, 1999.

[4] S.-G. Chang and B. Gavish. Telecommunications network topological design and
capacity expansion: Formulations and algorithms. Telecommunication Systems, 1:99—
131, 1993.

[5] G. Dahl and M. Stoer. A cutting plane algorithm for multicommodity survivable
network design problems. INFORMS Journal on Computing, 10(1):1-11, 1998.

[6] M.A.H. Dempster, E.A. Medova, and R.T. Thompson. A stochastic programming
approach to network planning. Teletraffic Contributions for the Information Age.

Proceedings of the 15th International Teletraffic Congress - ITC 15, 1:329-339, 1997.

[7] O. Ginlik. A branch-and-cut algorithm for capacitated network design. Mathematical
Programming, 86:17-39, 1999.

182

8]

[9]

[10]

[11]

[12]

[14]

[15]

Sonofon

A. Merchant and B. Sengupta. Assignment of cells to switches in PCS networks.
IEEE/ACM Transactions on networking, 3(5):521-526, 1995.

J.M. Mulvey and A. Ruszczynski. A new scenario decomposition method for large-

scale stochastic optimization. Operations Research, 43:477-490, 1995.

M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-
scale symmetric travelling salesman problems. SIAM Review, 33(1):60-100, 1991.

M. Riis and K.A. Andersen. Capacitated network design with uncertain demand.
Working Paper 2000/5, University of Aarhus, Department of Operations Research,
2000.

M. Riis and K.A. Andersen. On using stochastic programming to plan the multiperiod
capacity expansion of one connection in telecommunications. Working Paper 2000/2,

University of Aarhus, Department of Operations Research, 2000.

M. Rios, V. Marianov, and M. Gutierrez. Survivable capacitated network design
problem: new formulation and Lagrangean relaxation. Journal of the Operational
Research Society, 51:574-582, 2000.

R.T. Rockafellar and R.J-B Wets. Scenarios and policy aggregation in optimization
under uncertainty. Mathematics of Operations Research, 16:119-147, 1991.

D. Saha, A. Mukherjee, and P.S. Bhattacharya. A simple heuristic for assignment of
cells to switches in a PCS network. Wireless Personal Communications, 12:209-224,

2000.

S. Sen, R.D. Doverspike, and S. Cosares. Network planning with random demand.

Telecommunication Systems, 3:11-30, 1994.

E.C. Tzifa, V.P. Demestichas, M.E. Theologou, and M.E. Anagnostou. Design of the
access network segment of future mobile communications systems. Wireless Personal

Communications, 11:247-268, 1999.

Solving Biobjective Combinatorial Max-Ordering Problems
by Ranking Methods and a T'wo-Phases Approach

MATTHIAS EHRGOTT* ANDERS J.V. SKRIVER
Department of Engineering Science Department of Operations Research
University of Auckland University of Aarhus, Building 530
Private Bag 92019 Ny Munkegade
Auckland DK - 8000 Arhus C
New Zealand Denmark

August 16, 2001

Abstract

In this paper we propose a new method to solve biobjective combinatorial optimization
problems of the max-ordering type. The method is based on the two-phases method
and ranking algorithms to efficiently construct K best solutions for the underlying
(single objective) combinatorial problem. We show that the method overcomes some
of the difficulties of procedures proposed earlier. We illustrate this by an example and
discuss the difficulties in extending it to more than two objectives.

Keywords: MCDM, biobjective optimization, max-ordering problems, ranking meth-
ods, combinatorial optimization.

1 Introduction

Max-ordering (MO) problems are multicriteria optimization problems in which the goal is
to minimize the worst of several objective functions. They can be formulated as follows.

. | X
min max fi(z), (1)

where f;(z) denotes the objective functions of the problem. The problem is denoted max-
ordering instead of min-max in order not to confuse terminology with single objective
problems, i.e. mingcg maxecy we, which finds solutions where the largest weight is minimal,
e.g. the path where the largest edge-weight is minimal. Max-ordering problems arise in
various applications, see Rana and Vickson [23] or Warburton [29], and as subproblems

in interactive methods for the solution of multicriteria optimization problems such as the

*Corresponding author. Email: m.ehrgott@auckland.ac.nz

183

184 MO

GUESS method (Buchanan [3]), STEM (Benayoun et al. [2]), and the interactive weighted
Tchebycheff method (Steuer and Choo [25]).

In this paper we consider max-ordering problems in a combinatorial context, i.e. we assume
that S is a finite set, e.g. the set of paths between two nodes of a network, or the set of
spanning trees of a graph.

There is a number of previous research papers on this topic (Ehrgott [5], Hamacher and
Ruhe [15], Murthy and Her [21], Ehrgott et al. [9]). See also Ehrgott and Gandibleux
[8] for more references. Various authors observed that, even in the bicriteria case, max-
ordering problems are usually NP-complete. The methods proposed for their solution
include branch and bound (Rana and Vickson [23]), labeling algorithms (for shortest path
problems, Murthy and Her [21]) and ranking methods (Ehrgott [5], Hamacher and Ruhe
[15]), that is the application of algorithms to find K best solutions of (single objective)
combinatorial problems.

We also propose methods involving ranking algorithms actually overcoming the main prob-
lem of the method proposed in Hamacher and Ruhe [15], at least for the case of two objec-
tives, see the discussion after Algorithm 1. Our method also overcomes a weakness of the
method proposed in Murthy and Her [21], see Section 4. We combine the ranking method
with the two-phases method originally developed for the determination of all Pareto opti-
mal solutions of bicriteria combinatorial optimization problems, Ulungu and Teghem [27],
and so far, successfully applied to a number of such problems. We mention Ehrgott [6],
Lee and Pulat [18] for network flow, Ulungu and Teghem [26] and Visée et al. [28] for
knapsack, Ulungu and Teghem [27] for assignment, and Ramos et al. [22] for spanning

tree problems.

2 Basic Results

In this section we introduce some notation for multicriteria (combinatorial) optimization
and we prove some basic results which will justify the correctness of our method.

Consider a multicriteria optimization problem

Ia%g{fl(x), . folo)}

We use the notation f(z) = (fi(z),..., fo(x)) for the vector of objective functions. A
feasible solution z* is called Pareto optimal, if there is no x € S such that f(z) < f(z*)
and f(x) # f(x*), where < is understood component-wise. The set of Pareto optimal

solutions of S is denoted Par(S). If z* is Pareto optimal, f(z*) is called efficient.

MO 185

In multiobjective combinatorial optimization, Pareto optimal solutions can be classified
into supported and unsupported Pareto optimal solutions. The former are those z* for

which there exists a weighting vector A = (A1,...,Ag) such that

TES “4

Q
f(@*) = min Y " Aifi().
=1

The existence of unsupported Pareto optimal solutions is a characteristic property of
multiobjective combinatorial optimization problems.

We shall also use the notation g(z) = max;—; . ¢ fi(z) for the max-ordering objective
value of a feasible solution z € S. With these definitions we are ready to prove some basic
results. The first one is wellknown, see e.g. Hamacher and Ruhe [15]. We state the proof

for completeness.

Lemma 1 There is at least one optimal solution of the max-ordering problem mingcg g(x)

which is Pareto optimal.

Proof : Suppose z* is an optimal solution of the max-ordering problem, but is not Pareto
optimal. Since S is finite, there must then exist a feasible solution x € S dominating
z*, i.e. such that fj(z) < fi(z*) for i = 1,...,Q with one strict inequality. Because

g(z) < g(x*), it follows that z also solves the max-ordering problem optimally.]

The next Lemma is specifically stated for two objectives. It formalizes the argument that
the maximum of two functions is minimal, if the objective values are as equal as possible.

Its proof is immediate from the definition of the max-ordering problem and Lemma 1.

Lemma 2 Let Par(S) = {z1,...,z,} be the set of Pareto optimal solutions of a bicriteria
combinatorial optimization problem. Assume that fi(x;) < fi(xi11) and fo(z;) > fo(xiy1)
for1=1,...,p—1 and define K := min{i : fo(z;) < f1(z;)}. Then the following hold.

1. If K =1, =1 solves the mazx-ordering problem.
2. If K = oo, x, solves the max-ordering problem.

3. Otherwise xg or xx_1 (or both) solve the maz-ordering problem.
A special case occurs if there is a Pareto optimal solution with both objectives equal.

Lemma 3 If there is a Pareto optimal solution such that fi(x) = fo(x) then z also

minimizes g(z).

186 MO

These three lemmas state that we can restrict our search for a solution for a minimizer of
g(z) to Pareto optimal solutions, with their two objectives as equal as possible. In other
words, Pareto optimal max-ordering solutions will be located close to the halving line
f1 = fo in criterion space. Lemma 2 suggests to rank Pareto optimal solutions according
to increasing values of fi (or fy). This strategy would, however, imply the generation of
supported and unsupported Pareto optimal solutions. And with the desired max-ordering
solutions expected to be centrally located in the Pareto set, we would expect to enumerate
half of all Pareto optimal solutions, involving excessive computational effort. Taking the
difficulty of generating unsupported solutions into account (see Ehrgott [7]), we propose
a different approach.

Our algorithm makes use of the information of Lemmas 1 to 3 in a more intelligent way

and proceeds in two phases.

3 The Algorithm

First, we look for the two supported Pareto optimal solutions for which f(z;) < fo(z;) and
fi(z;) > fa(zj), j > i, according to the order of Lemma 2. We shall call them z; and x5
in the algorithm. To do so, we start with solutions z; and z3 minimizing objectives f; and
fo, respectively. We then proceed to solutions where the difference of objective values is
smaller. When this is no longer possible, we will either have one supported Pareto optimal
solution with f1(z) = fo(x), or we end up with two neighboring supported Pareto optimal
solutions, say 1 and xe such that fi(x1) < fo(z1) and fi(z2) > fo(ze). According to
Lemma 3, the first case solves min,cs g(x), and any other Pareto optimal solution must
have one objective value smaller and one bigger than z. Of course, it may happen that one
of the objectives dominates the other completely, i.e. minges f1(7) > max,eper(s) f2(7)
(cases 1 or 2 in Lemma 2). In this case the problem is trivial, and we can easily detect it
when computing 1 and zs for the first time.

Should we terminate Phase 1 with two solutions, we will have to investigate unsupported
solutions in the right-angled triangle defined by the hyperplane through the point f(z*)
with normal X\ and (g(z*),g(x*)), where z* is the current best solution, see Figure 2. For
this we use the ranking algorithm. In fact, f(z1) and f(z2) uniquely define weights A;, A2

such that both zjand z9 are optimal solutions of

min)\1f1 (.’L’) +)\2f2(.’13').
z€eSs

We can now apply a ranking algorithm to find second, third, ... best solutions for this

problem, in order to find unsupported solutions in the identified triangle. A similar pro-

MO 187

cedure was proposed for the identification of all unsupported Pareto optimal solutions in
Coutinho-Rodrigues et al. [4].

The algorithm will stop if we encounter a solution z with fi(z) = f2(x), as this must be
the optimal solution we are looking for, or A1 f1(x) + Aafo(z) > g(z*), because any further
solutions will no longer be in the triangle and therefore no longer a candidate for a MO
optimal solution. In the latter case, the currently best solution is the optimal solution of

the max-ordering problem.

Algorithm - Phase 1
1. Solve mingeg f1(z), let z1 be the optimal solution and let fi = fi(z1), f3 = fa(z1).
2. If f{ > f1 STOP, z* = z1 is an optimal solution.
3. Solve mingeg fa(x), let o be the optimal solution and let f2:= f1(z2), f2 = fa(z2).
4. If f3 > f? STOP, z* = x5 is an optimal solution.
5. If f(z1) = f(xe) STOP, x* = x1 (or x2) is an optimal solution.
6. Let z* := argmin{g(x1),g(z2)} be the currently best solution.
7. Let Ay == f} — f2, 09 := fZ — f{.

8. Solve minges A1 f1(x) + Aafa(z), let w3 be the optimal solution and let f3 := fi(x3),
f3 = fa(z3).

9. If f} = f3 STOP, x* = z3 is an optimal solution.
10. If x5 = w2 or x3 = x1 call Phase 2(A\1, \2).
11. If f3 < f3 then oy = w3, f} = [}, f3 = f3.
12. If f3 > f3 then zo = z3, f2 = f3, f2 = f3.

13. Go to 6.

The idea of the first phase is illustrated in Figure 1. With solutions z1 and xo we compute
the normal to the line connecting (f1, f5) and (f2, f3). This normal serves as a weighting
vector for combining the two objectives, and its negative is the direction in which we
search for a new supported Pareto optimal solution which is eventually found at z3 with

objective values (f3, f3).

188 MO

2

(fi: f2)

n=(fy — 3, ft - f)

(ff)u f23) ..'..

(/1. f3)

h

Figure 1: Illustration of Search Direction in Phase 1

We remark that the values A1, Ao, identified at the end of Phase 1, are the best choice of A
in the method proposed by Hamacher and Ruhe [15] and will overcome the problem that
for an unfortunate choice of A, that method turns out to be complete enumeration of all

feasible solutions.

Algorithm - Phase 2
1. K:=3.

2. Use a K-best algorithm to find the K-best solution of mingeg A1 f1(x) + Aafa(z).

Denote this solution .

8. If M fi(z®) + Ao fo(a®) > g(x*) STOP, z* is an optimal solution.
4. If f1(z®) = fo(2®) STOP, z* = z¥ is an optimal solution.

5. If fi(a®) > f2 then K .= K + 1, go to 2.

MO 189
6. If fo(x®) > f} then K := K + 1, go to 2.
7. K := K +1, If g(z%) < g(z*) then z* := 2%, go to 2.

We illustrate the algorithm on an example. In Figure 2 we show the objective values of 6

feasible points indexed in the order of their generation.

f2
f(z1)
(]
.. e f(xﬁ)
[IEALST o
F (g~ ()
f(x2)
fi

Figure 2: Illustrative Example

In Phase 1, z; and zo will be generated first. Weights Ay and A2 are computed corre-
sponding to the normal to a line connecting f(z1) and f(z2) and z* = z3. Solution of
the weighted sum problem in Step 8 results in z3. Since fi(z3) < f2(z3), fi and f? are
replaced by the objective values of 3. The current best z* is updated to xz3. The second
weighted sum problem uses updated \’s corresponding to the normal to the line connect-
ing f(xz2) and f(x3). Assume x3 is returned as optimal solution. Thus no new supported
Pareto optimal solution is found, and we continue with Phase 2 to investigate the earlier
defined triangle. Note that the supported solution x4 is not generated in Phase 1.

We know that x5 and z are first and second best solutions of the weighted sum problem,

190 MO

therefore we are searching for the third best by searching in direction A. This turns out to
be x4, which is discarded as not being in the triangle (fao(z4) > fo(z3) = g(z*)). So we set
K =4, identify z5 as the next solution, which passes all tests. In our example x5 replaces
x3 as the current best solution and K is set to 5. The next solution is zg, the combined
objective value of which is larger than that of the third corner point of the triangle. We
will therefore find no further points in the triangle and stop with the optimal solution

¥ = x5.

Remark 1 In Phase 2 the following situation might occur: The solution of the weighted
sum problem is another supported Pareto optimal solution which is, as T1 and x5, optimal
for the weighted sum problem. Its objective function vector lies on the line between f(x1)
and f(x3). In this case, this point creates two new and smaller triangles. We can restrict

search to the one which is intersected by the halving line f1 = fo.

4 Lagrange Relaxation of Max-Ordering Problems

In this section we describe why Lagrange relaxation of max-ordering problems with linear
objective functions does not work. This approach has earlier been suggested as a pruning
method for a label correcting approach in Murthy and Her [21].

Consider the usual reformulation of (1)

min 2z

st. z > filz) Vi=1,...,Q
z € S 2)
z € IR.

A Lagrange relaxation of the first set of constraints in (2) is an appealing thing to do,
as it simplifies the constraints to the original ones. This leads to the following problem,

where A is the vector of Lagrange multipliers:

min z + ZZQ:l Ai(fi(z) — 2)
st. z € S
A > 0.

Rearranging the objective function leads to

Q
Iwnelfql (1 - ;M) z+ ;Aifi(w),

where), A\; = 1 to avoid an unbounded problem (since z € IR). We thus end up with the

MO 191

following simple problem

min - Y2, A fi(e)

s.t. S

0 3)
1.

T
A
E?:l Ai

The multipliers are determined in the Lagrangian dual of (2), which has the objective

v m

function
Q
i i fs 4
mgxglelg; ifi(), (4)

where the multipliers still have to fulfill the convexity constraints. (4) is easily solved by
minimizing f;(x) for all 4, and then setting \; = 1 for the largest f;(x).

We conclude that this approach will in fact return the worst possible Pareto optimal
solution to our original problem (1) in the bicriteria case. With more than two objectives,

worse solutions may exist.

5 K-best Algorithms

As we propose the use of ranking algorithms, our method is obviously restricted to such
combinatorial optimization problems for which efficient methods for finding K-best solu-
tions are available. We briefly review some of these here.

The largest amount of research on ranking solutions is available for the shortest path
problem. Algorithms developed by Azevedo et al. [1], Martins et al. [19] or Eppstein [11]
are very efficient. The best complexity known is O(m+nlogn+ K) by Eppstein’s method.
However, numerical experiments reported by Martins et al. [20] show their algorithm to
be very competitive. Its complexity is O(m + Knlogn).

The second problem for which several methods are known, is the minimum spanning tree
problem. We mention papers by Gabow [12] and Katoh et al. [16]. The best known
complexity is O(Km + min(n?, mloglogn)).

In the seventies and eighties some general schemes for ranking solutions of combina-
torial optimization problems have been developed by Lawler [17] and Hamacher and
Queyranne [14]. The application of the latter led to algorithms for matroids (Hamacher
and Queyranne [14]), with the special case of uniform matroids discussed in Ehrgott [5].
The complexity of the latter is O(K (n +m) + min{nlogn,nm}). Finally, an algorithm to
rank (integer) network flows was presented in Hamacher [13]. Its complexity is O(Knm?).
We note that only algorithms allowing the construction of solutions with the same objective

function values are applicable in our method. This is evident from the fact that at the

192 MO

beginning of Phase 2, we have 1 and 2 as optimal, i.e. first and second best solutions of

the weighted sums problem.

6 Discussion

The algorithm we propose solves the max-ordering problem for two criteria. It works
efficiently, as it restricts search (in general) to a small subset of feasible solutions, where
max-ordering solutions can be found. As it starts its search from supported Pareto optimal
solutions which are much easier to generate than unsupported ones, it will in general
enumerate only few solutions. It thereby resolves the difficulties of the ranking method
proposed by Hamacher and Ruhe [15] in which the construction of an appropriate A\ was
an open question.

In addition, for large scale problems, when even the intelligent search applied in our
algorithm might result in the enumeration of many feasible solutions (after all the problem
is N'P-complete), the algorithm can be stopped at any time with the current best as an
approximate solution. By computing g(z*)—gr 5, where g, p is a lower bound on g, we even
have a bound on the distance from the real optimal solution. g7 p can easily be calculated
and updated in Phase 1 in a straightforward manner. Initially, g, 5 = max{f{, f3} with
updates occurring whenever x; or z3 is updated.

A natural question is the extension of the algorithm to more than two objectives. With
such an endeavor we encounter two major difficulties. The first one is that problems with
at least three objectives cannot be reduced to subproblems with two objectives only. Thus,

in the multicriteria case all criteria have to be considered simultaneously.

Example 1 Consider a combinatorial problem with three objectives and the following set

of efficient vectors (objective vectors of Pareto optimal solutions)

7 6 9 6
5 0,0 4], 4],]8
3 8 2 2

The unique maz-ordering solution is the first one, with g(x) = 7. However, looking at only
two of the objectives at a time, we obtain the following. For fi, fo only, the minimal value
of g(x) is attained at the second solution, for fa, fs it is the third, and for fi, f3 it is the

fourth. Thus none of the bicriteria subproblems yields the true optimal solution.

The second major difficulty is in the generalization of Phase 1. This problem has been

observed by many researchers applying the method for the generation of all Pareto optimal

MO 193

solutions. In contrast to the bicriteria case, there may exist supported efficient points,
which lie above (rather than below) a previously constructed hyperplane. For a discussion
see Solanki et al. [24]. This kind of problem is very similar to the problem encountered
in computing Nadir points for problems with at least three objectives see Ehrgott and
Tenfelde [10] for a recent discussion. Further work is required to generalize our method
in order to develop at least a heuristic to find a good A in Phase 1 that will enable an

efficient application of the ranking algorithms in Phase 2.

References

[1] J.A. Azevedo, M.E.O. Santos Costa, J.J.E.R. Silvestre Madeira, and E.Q.V. Martins.
An algorithm for the ranking of shortest paths. Furopean Journal of Operational
Research, 69:97-106, 1993.

[2] R. Benayoun, J. de Montgolfier, J. Tergny, and O. Laritchev. Linear programming
with multiple objective functions: Step method (stem). Mathematical Programming,
1(3):366-375, 1971.

[3] J.T. Buchanan. A naive approach for solving MCDM problems. Journal of the
Operational Research Society, 48(2):202-206, 1997.

[4] J.M. Coutinho-Rodrigues, J.C.N. Climaco, and J.R. Current. An intercative bi-
objective shortest path approach: Searching for unsupported nondominated solutions.
Computers and Operations Research, 26(8):789-798, 1999.

[5] M. Ehrgott. On matroids with multiple objectives. Optimization, 38(1):73-84, 1996.

[6] M. Ehrgott. Integer solutions of multicriteria network flow problems. Investigacao
Operacional, 19:229-243, 1999.

[7] M. Ehrgott. Approximation algorithms for combinatorial multicriteria optimization

problems. International Transcations in Operational Research, 7:5-31, 2000.

[8] M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjec-
tive combinatorial optimization. Operations Research Spektrum, 22:425-460, 2000.

[9] M. Ehrgott, S. Nickel, and H-W. Hamacher. Geometric methods to solve max-ordering
location problems. Discrete Applied Mathematics, 93:3-20, 1999.

194

[10]

[12]

[13]

[14]

MO

M. Ehrgott and D. Tenfelde. Nadir values: Computation and use in compromise
programming. Technical report, University of Kaiserslautern, Department of Mathe-
matics, 2000. Report in Wirtschaftsmathematik Nr. 60/2000, submitted to European

Journal of Operational Research.

D. Eppstein. Finding the & shortest paths. SIAM Journal on Computing, 28(2):652—
673, 1998.

H.N. Gabow. Two algorithms for generating weighted spanning trees in order. SIAM
Journal of Computing, 6(1):139-150, 1977.

H.W. Hamacher. A note on K best network flows. Annals of Operations Research,
57:65-72, 1995. Special Volume “Industrial Systems”.

H.W. Hamacher and M. Queyranne. K best solutions to combinatorial optimization
problems. Annals of Operations Research, 4:123-143, 1985.

H.W. Hamacher and G. Ruhe. On spanning tree problems with multiple objectives.
Annals of Operations Research, 52:209-230, 1994.

N. Katoh, T. Ibaraki, and H. Mine. An algorithm for finding k minimum spanning
trees. SIAM Journal of Computing, 10(2):247-255, 1981.

E.L. Lawler. A procedure for computing the k best solutions to discrete optimization
problems and its application to the shortest path problem. Management Science,
18:401-405, 1972.

H. Lee and P.S. Pulat. Bicriteria network flow problems: Integer case. FEuropean
Journal of Operational Research, 66:148-157, 1993.

E.Q.V. Martins, M.M.B. Pascoal, and J.L.E. Dos Santos. Deviation algorithms for
ranking shortest paths. International Journal of Foundations of Computer Science,
10(3):247-261, 1999.

E.Q.V. Martins, M.M.B. Pascoal, and J.L.E. Dos Santos. A new improvement for a
k shortest paths algorithm. Technical report, Universidade de Coimbra, 2000.

[. Murthy and S.S. Her. Solving min-max shortest-path problems on a network. Naval
Research Logistics, 39:669-683, 1992.

MO 195

[22] R.M. Ramos, S. Alonso, J. Sicilia, and C. Gonzilez. The problem of the optimal
biobjective spanning tree. European Journal of Operational Research, 111:617-628,
1998.

[23] K. Rana and R.G. Vickson. A model and solution algorithm for optimal routing of a

time-chartered containership. Transportation Science, 22:83-96, 1988.

[24] R.S. Solanki, P.A. Appino, and J.L. Cohon. Approximating the noninferior set in mul-
tiobjective linear programming problems. Furopean Journal of Operational Research,
68:356-373, 1993.

[25] R.E. Steuer and E.U. Choo. An interactive weighted Tchebycheff procedure for mul-
tiple objective programming. Mathematical Programming, 26:326-344, 1983.

[26] E.L. Ulungu and J. Teghem. Application of the two phases method to solve the
bi-objective knapsack problem. Technical report, Faculté Polytechnique de Mons,
Belgium, 1994.

[27] E.L. Ulungu and J. Teghem. The two-phases method: An efficient procedure to solve
bi-objective combinatorial optimization problems. Foundations of Computing and
Decision Sciences, 20(2):149-165, 1994.

[28] M. Visée, J. Teghem, M. Pirlot, and E.L. Ulungu. Two-phases method and branch
and bound procedures to solve the bi-obective knapsack problem. Journal of Global
Optimization, 12:139-155, 1998.

[29] A. Warburton. Aproximation of Pareto optima in multiple-objective shortest-path
problems. Operations Research, 35(1):70 —79, 1987.

196

MO

Summary 197

Summary

This thesis is on specific problems in the field of operations research, an area within math-
ematical economics. I focus on network and location problems combined with the area of
multicriteria analysis. Multicriteria analysis is mathematical programming problems for-
mulated with several (often conflicting) objective functions (goals). Therefore, the concept
of optimality is broadened to Pareto optimality, also known from micro economics. With
the concept of Pareto optimality a whole set of solutions can be “optimal”, instead of just
a single point. Since network and location problems are often combinatorial optimization
problems, the complexity of the problems is an important issue. Many well-known combi-
natorial optimization problems are easy to solve (require polynomial solution time), but
with more than one objective function they often become hard (require exponential solu-
tion time). In this thesis I develop methods for solving multicriteria network and location

problems.

The thesis is built around seven papers, which should be read separately. The first part
of the thesis is a seven chapter overview of my (and coauthors) work, and the second part
contains the seven complete papers. Chapter 1 is a short introduction, Chapter 2 describes

two closely related papers and the remaining five chapters cover one paper each.

Paper A is “A Classification of Bicriteria Shortest Path (BSP) Algorithms”, which de-
scribes the four main solution approaches for the BSP problem. By examining the algo-
rithmic structures, we argue why the Label Correcting method is believed to be the most
effective method for this problem.

Paper B is “A label correcting approach for solving bicriterion shortest path problems”,
in which a preprocessing rule is introduced to the Label Correcting method to reduce
the solution time. Computational experiments support the usefulness of the preprocessing
rule. The last part of the paper contains a discussion on how to generate random networks
for computational experiments on the BSP problem.

Paper C is “The Bicriterion Semi-obnoxious Location (BSL) Problem Solved by an e-
Approximation”. This paper introduces a bicriterion model to describe the problem of
locating a new airport. Two similar models are built for both the planar and the network
case of the problem, and an approximation solution method is adapted. Computational
experiments were performed on the real-life example of where to locate a new airport
around the city of Aarhus, Denmark.

Paper D is “Multicriteria Semi-obnoxious Network Location (MSNL) Problems with Sum

and Center Objectives”. We present how a known, but rather new solution method works

198 Summary

by means of an illustrative example, and moreover discuss the generalization to a broader
class of problems. The impact on the complexity of the algorithm by generalizing the
problem is also presented. Finally a simple and very effective bicriterion approach is
described and visualized.

Paper E is “Bicriteria Network Location (BNL) problems with criteria dependent lengths
and minisum objectives” in which two well-known problems are combined. The result is
a new problem, and possible applications are indicated. A two-phases solution method is
adapted for the new problem, and the mathematical difficulties at different steps of the
solution approach are discussed. The method is presented on an example illustrating the
exact complications of the solution process.

Paper F is “Network planning in telecommunications: A stochastic programming ap-
proach” in which a capacity expansion problem arising in telecommunication is presented.
The work is based on a research project with Sonofon. A stochastic programming model
is built to describe when to expand capacity in order to meet required goals of service.
Computational experiments were performed on data provided by Sonofon.

Paper G is “Solving Biobjective Combinatorial Max-Ordering Problems by Ranking Meth-
ods and a Two-Phases Approach”, in which a two-phases solution method is adapted for
the max-ordering problem. The max-ordering problem occurs as a subproblem in many
well-known multicriteria solution methods. Therefore a good solution method for this
problem is important. Ranking methods are used in Phase 2. The method is illustrated

on an example.

