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Prefa
e

In August 1997 I started working on the Bi
riterion Shortest Path (BSP) problem. This

was meant as an introdu
tion to the �eld of multi
riteria network problems. The BSP

problem is one of the simple problems in the �eld, yet it is still NP 
omplete. I wrote

down 
omments on the related papers in the form of a short survey paper \A Classi�
ation

of Bi
riteria Shortest Path (BSP) algorithms" (Paper A). Together with my supervisor

Kim Allan Andersen, we have found a prepro
essing rule for the label 
orre
ting solution

approa
h presented in \A label 
orre
ting approa
h for solving bi
riterion shortest path

problems" (Paper B).

In the late spring of 1998 I started to investigate the Bi
riterion Semi-obnoxious Planar

Lo
ation (BSPL) problem. This was inspired by the plans of building a new international

airport near the 
ity of Aarhus, Denmark. Together with Kim Allan Andersen, we have

set up a bi
riterion model for this problem, and adapted an approximate solution method


alled Big-Square-Small-Square (BSSS). In the spring of 1999 I started to apply the same

method in the network model of the same lo
ation problem (BSNL), and we have presented

both models in \The Bi
riterion Semi-obnoxious Lo
ation (BSL) Problem Solved by an

�-Approximation" (Paper C).

In the late spring of 1999 I visited professor Horst Hama
her at the University of Kaisers-

lautern, Germany, for four months. During this period I have worked together with Prof.

Hama
her on a general exa
t solution method for the multi
riteria lo
ation problem on

a network with both pull and push obje
tive fun
tions. The results are presented in

\Multi
riteria Semi-obnoxious Network Lo
ation (MSNL) Problems with Sum and Center

Obje
tives" (Paper D).

In the early spring of 2000 professor Kaj Holmberg, Link�oping Institute of Te
hnology,

Sweden, visited our department. Together with Kim Allan Andersen we started a re-

sear
h proje
t on an extension of the MSNL problem, where the edge-lengths are made


riteria dependent. The resulting problem is a mix of the BSP and the MSNL problems.

The results are presented in \Bi
riteria Network Lo
ation (BNL) problems with 
riteria

dependent lengths and minisum obje
tives" (Paper E).

During the spring of 2000 I started an appli
ation oriented proje
t together with Morten

Riis, a PhD student at our department, and J�rn Lodahl, Sonofon. During several meet-

ings at Sonofon, we formulated a two-stage sto
hasti
 programming model, to des
ribe a


apa
ity expansion problem. The results are presented in \Network planning in tele
om-

muni
ations: A sto
hasti
 programming approa
h" (Paper F).

In the late fall 2000, Kim Allan Andersen and I invited Matthias Ehrgott, University



ii

of Au
kland, New Zealand, to visit our department. During his stay Matthias and I

formulated an algorithm for the Max-ordering (MO) problem in a 
ombinatorial 
ontext.

The results are presented in \Solving Biobje
tive Combinatorial Max-Ordering Problems

by Ranking Methods and a Two-Phases Approa
h" (Paper G).

A
knowledgments

Credits are due to Horst Hama
her, Matthias Ehrgott, Stefan Ni
kel, Kaj Holmberg, J�rn

Lodahl, Morten Riis, Lars Relund Nielsen, Philip Mel
hiors and my supervisor Kim Allan

Andersen.

Publi
ation status

� Paper A: A Classi�
ation of Bi
riteria Shortest Path (BSP) Algorithms,

Asia-Pa
i�
 Journal of Operational Resear
h 17, (2000), 199-212. A.J.V. Skriver.

� Paper B: A label 
orre
ting approa
h for solving bi
riterion shortest path

problems, Computers and Operations Resear
h 27, (2000), 507-524. A.J.V. Skriver

and K.A. Andersen.

� Paper C: The Bi
riterion Semi-obnoxious Lo
ation (BSL) Problem Solved

by an �-Approximation, Submitted. A.J.V. Skriver and K.A. Andersen.

� Paper D: Multi
riteria Semi-obnoxious Network Lo
ation (MSNL) Prob-

lems with Sum and Center Obje
tives, Submitted. H.W. Hama
her, M. Labb�e,

S. Ni
kel and A.J.V. Skriver.

� Paper E: Bi
riteria Network Lo
ation (BNL) problems with 
riteria de-

pendent lengths and minisum obje
tives, Submitted. A.J.V. Skriver, K.A.

Andersen and K. Holmberg.

� Paper F: Network planning in tele
ommuni
ations: A sto
hasti
 program-

ming approa
h, Submitted. M. Riis, A.J.V. Skriver and J. Lodahl.

� Paper G: Solving Biobje
tive Combinatorial Max-Ordering Problems by

Ranking Methods and a Two-Phases Approa
h, Submitted. M. Ehrgott and

A.J.V. Skriver.

All seven papers are expe
ted to be published in international, reviewed journals.



iii

Contents

Prefa
e i

Publi
ation Status ii

1 Introdu
tion 1

1.1 Terminology of multi
riteria analysis . . . . . . . . . . . . . . . . . . . . . . 2

2 The Bi
riterion Shortest Path (BSP) problem 5

2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Solution approa
hes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 The Brumbaugh-Smith and Shier algorithm . . . . . . . . . . . . . . . . . . 8

2.4 The improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Condition I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.2 Condition II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Con
lusions on the BSP problem . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Bi
riteria 
ombinatorial Max-Ordering (MO) problems 14

3.1 Theoreti
al motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Two-phases algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 K-best algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Phase 1 heuristi
 for the multiobje
tive 
ase . . . . . . . . . . . . . . . . . . 19

3.4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.2 Stopping 
riterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.3 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Con
lusions on MO problems . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Approximate solution of semi-obnoxious lo
ation problems 23

4.1 The planar 
ase : The BSPL problem . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 The idea of the Big Square Small Square (BSSS) algorithm . . . . . 24

4.1.2 Cal
ulating lower bounds . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.3 Exa
t lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 The network 
ase : The BSNL problem . . . . . . . . . . . . . . . . . . . . 28

4.2.1 The Edge Dividing (ED) algorithm . . . . . . . . . . . . . . . . . . . 29

4.2.2 Cal
ulating lower bounds . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.3 Exa
t bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



iv

4.3 Comparison of the BSPL and the BSNL problems . . . . . . . . . . . . . . 31

4.4 Con
lusions on approximation methods . . . . . . . . . . . . . . . . . . . . 31

5 Multi
riteria Semi-obnoxious Network Lo
ation (MSNL) problems 33

5.1 Problem formulation and de�nitions . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 General solution method for the Q 
riteria 
ase . . . . . . . . . . . . . . . . 38

5.2.1 Lo
ating the new fa
ility in a node . . . . . . . . . . . . . . . . . . . 38

5.2.2 Lo
ating the new fa
ility on a dire
ted network . . . . . . . . . . . . 38

5.2.3 Lo
ating the new fa
ility on an undire
ted network . . . . . . . . . . 38

5.3 Bi
riteria 
ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5 Con
lusions on the subedge 
omparison approa
h . . . . . . . . . . . . . . . 44

6 Bi
riteria Network Lo
ation (BNL) problems with 
riteria dependent

lengths and minisum obje
tives 45

6.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Two-phases approa
h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3.1 Benders' de
omposition in Phase 1 . . . . . . . . . . . . . . . . . . . 50

6.3.2 Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4 Con
lusions on the BNL problem . . . . . . . . . . . . . . . . . . . . . . . . 54

7 A sto
hasti
 programming model for 
apa
ity expansion at Sonofon 55

7.1 A two-stage sto
hasti
 programming model . . . . . . . . . . . . . . . . . . 56

7.2 S
enario de
omposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3 About the Sonofon problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Referen
es 60

Paper A - BSP Survey 67

Paper B - BSP Label Corre
ting 83

Paper C - BSL Approximate 105

Paper D - MSNL Subedge Comparison 127

Paper E - BNL 151

Paper F - Sonofon 167

Paper G - MO 183



v

Summary 197



Introdu
tion 1

1 Introdu
tion

Multi
riteria analysis on networks is the main theme of this thesis, but I have also looked at

two di�erent problems. A planar lo
ation problem and a single obje
tive network problem

arising in mobile tele
ommuni
ations.

Multi
riteria analysis is fo
used on mathemati
al optimization problems with more than

one obje
tive. There is a general theory for the overall problem 
lass, but the results

are of 
ourse very general. I try to develop this theory further for problems in whi
h

some stru
tural knowledge 
an be used to a
hieve a better solution pro
edure. Most of

the problems are network problems, and as su
h they 
an be formulated as integer pro-

gramming problems with more than one obje
tive. Sin
e most integer linear programming

problems are NP-
omplete, these problems are at least as hard. It should be mentioned

that problems that are polynomially solvable with one obje
tive, may be NP-
omplete

with two obje
tives. This is the 
ase for the Shortest Path (SP) problem.

I will shortly des
ribe the relevant problems, followed by an introdu
tion to the basi



on
epts of multi
riteria analysis. The �rst problem is the Bi
riteria Shortest Path (BSP)

problem des
ribed in more detail in Se
tion 2. This obvious generalization of the tradi-

tional shortest path problem, in whi
h one has to �nd the shortest (
heapest) path from

a sour
e node s to a terminal node t. In the BSP problem we simply have two obje
tives,

namely time and 
ost. This model reveals the trade-o� between the two obje
tives.

The se
ond problem is the Max-ordering (MO) problem, examined in a 
ombinatorial


ontext. Here the obje
tive is to minimize the maximum obje
tive value. This problem

arises as a subproblem in general multi
riteria solution approa
hes su
h as the intera
tive

weighted T
heby
he� method. The problem is des
ribed in detail in Se
tion 3.

The third problem is the single fa
ility lo
ation problem where di�erent variants are de-

s
ribed in Se
tions 4, 5 and 6. The problem is to lo
ate one new fa
ility in a s
enario with

a number of existing fa
ilities. The new fa
ility will of 
ourse intera
t with the existing

fa
ilities, and this intera
tion is assumed to depend on the distan
e between the new and

the existing fa
ilities. The way this intera
tion takes pla
e is represented by the obje
tive

fun
tion(s). In the single obje
tive 
ase, this problem has been well studied, and the two

most 
ommon obje
tives are the median (minimizing the sum of weighted distan
es) and

the 
enter (minimizing the maximum weighted distan
e). These two obje
tives represent

a pull e�e
t, meaning that the new fa
ility is favored, 
onsequently the distan
e should

be minimized. If we 
onsider an undesirable (obnoxious) fa
ility the obje
tive re
e
ts

that the distan
e between the existing fa
ilities and the new fa
ility should be maximized.
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This is often referred to as a push e�e
t. The two most obvious obje
tives for this prob-

lem is the anti-median (maximizing the sum of weighted distan
es) and the anti-
enter

(maximizing the minimum weighted distan
e). These problems with di�erent obje
tives

have been examined both in the plane and on networks. In the plane there are di�erent

possibilities to measure the distan
e, the most popular being the l

p

-norm. When a fa
ility

is both favored and obnoxious it is referred to as semi-obnoxious.

The �nal problem is somewhat di�erent from the above-mentioned problems. The problem

of expanding the 
apa
ity of a mobile 
ommuni
ations network, modeled by a two stage

sto
hasti
 program, was inspired by a problem instan
e at Sonofon. The model is des
ribed

in Se
tion 7.

1.1 Terminology of multi
riteria analysis

I will now introdu
e some 
on
epts in multi
riteria analysis. For a textbook introdu
tion

see Steuer [68℄ or Ehrgott [24℄. Consider the following general multi
riteria problem:

min f

1

(x)

min f

2

(x)

.

.

.

.

.

.

min f

k

(x)

s.t.

x 2 S

(1)

S 2 IR

n

is the set of feasible solutions, and f(x) = (f

1

(x); : : : ; f

k

(x)). Solving the mul-

ti
riteria problem means �nding the optimal solution. But what is an optimal solution,

when we have k obje
tive fun
tions instead of one? The answer is eÆ
ient solutions.

A solution is 
alled eÆ
ient (Pareto optimal) if we 
annot improve one obje
tive value

without worsening another. The mathemati
al de�nition of eÆ
ien
y is as follows.

De�nition 1 A point x 2 S is eÆ
ient i� there does not exist a point �x 2 S su
h that

f(�x) � f(x) with at least one stri
t inequality. Otherwise x is ineÆ
ient.

Please note that eÆ
ient points are the same as Pareto optimal points. A less restri
tive

de�nition of eÆ
ient points, 
alled weakly eÆ
ient points is de�ned as follows.

De�nition 2 A point x 2 S is weakly eÆ
ient i� there does not exist a point �x 2 S

su
h that f(�x) < f(x), i.e. f

i

(�x) < f

i

(x) 8i = 1; : : : ; k.

EÆ
ient points are de�ned in de
ision spa
e. There is a natural 
ounterpart in 
riterion

spa
e, where the 
riterion spa
e Z is de�ned as Z = fz 2 R

k

j9x 2 S; z = f(x)g. Thus the


riterion ve
tors 
orrespond to the image of a mapping of all the feasible solutions to (1).
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De�nition 3 z(x) 2 Z is a nondominated 
riterion ve
tor i� x is an eÆ
ient solution.

Otherwise z(x) is a dominated 
riterion ve
tor.

In the above De�nition 3 we have used that z(x) = f(x). The set of eÆ
ient solutions

are denoted X

Par

, and the set of nondominated 
riterion ve
tors are denoted Z

Par

, and is

given by Z

Par

= z(X

Par

).

Sin
e the de
ision maker's utility fun
tion is usually unknown (also to herself), a solution

to (1) is to �nd all eÆ
ient solutions (or all nondominated ve
tors).

The 
riterion ve
tors 
an be partitioned into two kinds, supported and unsupported. The

supported 
an then be further divided into supported extreme and supported non-extreme.

Following the terminology of Steuer [68℄ we de�ne Z

�

:

Z

�

= Conv(Z

Par

� fz 2 R

k

jz � 0g) = Conv(Z

Par

)� fz 2 R

k

jz � 0g

where � signi�es set addition and Conv means 
onvex hull. From this set we 
an 
hara
-

terize the di�erent 
riterion ve
tors.

De�nition 4 z 2 Z

Par

is a supported nondominated 
riterion ve
tor if z is on the

boundary of Z

�

. Otherwise z is an unsupported nondominated 
riterion ve
tor.

It is important to note that unsupported nondominated 
riterion ve
tors are dominated

by a 
onvex 
ombination of other nondominated 
riterion ve
tors.

De�nition 5 z 2 Z

Par

is a supported extreme nondominated 
riterion ve
tor if z is

an extreme point of Z

�

.

Among the supported nondominated 
riterion ve
tors the extreme ve
tors are the most

important, be
ause they 
an be found as extreme point solutions when minimizing a 
onvex


ombination of the k obje
tive fun
tions. This is mainly interesting when the obje
tive

fun
tions are linear, whi
h is often the 
ase. We de�ne the obje
tive fun
tion W (x; �) as

follows:

W (x; �) =

k

X

i=1

�

i

f

i

(x); � 2 � (2)

where � = f� 2 R

k

j�

i

> 0;

P

k

i=1

�

i

= 1g. The fun
tion W (x; �) is a 
onvex 
ombination,

or weighted sum, of the k obje
tive fun
tions. If S is a 
onvex set and f

i

are 
onvex

fun
tions, then optimizing (2) with di�erent � ve
tors will give the supported (extreme)

nondominated ve
tors (Geo�rion [34℄). Therefore, it is often referred to as the weighting
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method or the Parametri
 method. Be
ause unsupported nondominated 
riterion ve
tors

are dominated by a 
onvex 
ombination of supported nondominated 
riterion ve
tors,

unsupported nondominated ve
tors 
annot be found by the weighting method. This is

illustrated in Figure 1. The solution(s) x in de
ision spa
e 
orresponding to a supported

(extreme) 
riterion ve
tor 
an be referred to as a supported (extreme) solution.

It is often 
onvenient to initially solve the problem with respe
t to the k obje
tives in-

dependently in order to �nd the respe
tively minimal values. A
tually, it is often better

to solve a slightly perturbed version of the k problems in order to avoid weakly eÆ
ient

points. Assume � is a very small stri
tly positive 
onstant. Then solve

min

x2S

f

i

(x) + �

X

j 6=i

f

j

(x) 8i = 1; : : : ; k (3)

and denote the 
orresponding optimal solutions x

1

; : : : ; x

k

. Let f

i�

= f

i

(x

i

) 8i. The

pay-o� table in Table 1 then lists how the individually optimal solutions are lo
ated in

relation to ea
h other. The diagonal elements form the ideal point f

�

= (f

1�

; : : : ; f

k�

).

x

1

x

2

� � � x

k

f

1

f

1�

f

1

(x

2

) � � � f

1

(x

k

)

f

2

f

2

(x

1

) f

2�

� � � f

2

(x

k

)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f

k

f

k

(x

1

) f

k

(x

2

) � � � f

k�

Table 1: Pay-o� table.
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2 The Bi
riterion Shortest Path (BSP) problem

The BSP problem is one of the simplest problems in multi
riteria integer analysis, but

nevertheless also one of great importan
e in many appli
ations. One of them being trans-

portation problems with more than one obje
tive. Furthermore, the BSP problem often

o

urs as a subproblem in other problems like s
heduling problems. It also o

urs as a

subproblem in models for transportation of hazardous materials, see Erkut et al. [29℄.

2.1 The model

Let us formulate the problem mathemati
ally. We are given a strongly 
onne
ted dire
ted

network or a digraph G = (N ; E) where N = f1; : : : ; ng is the set of nodes and E =

f(i; j); (k; l); : : : ; (p; q)g is a �nite set of dire
ted edges (ar
s) joining nodes in N . Parallel

edges are allowed. Ea
h edge (i; j) 2 E 
arries two attributes denoted by (


ij

; t

ij

). Often

these 
oeÆ
ients are assumed to be positive, but it is enough to require that no negative


y
les exist. For simpli
ity assume that 


ij

is the 
ost using edge (i; j) and t

ij

is the travel

time from node i to node j (using the edge (i; j)). The obje
tive is to �nd the set of

eÆ
ient paths from a parti
ular node, the sour
e node s 2 N , to another parti
ular node,

the terminal node t 2 N . Traditionally, the BSP problem is formulated as follows:

min 
(x) =

P

(i;j)2E




ij

x

ij

min t(x) =

P

(i;j)2E

t

ij

x

ij

s.t.

P

fjj(i;j)2Eg

x

ij

�

P

fjj(j;i)2Eg

x

ji

=

8

<

:

1 if i = s

0 if i 6= s; t

�1 if i = t

x

ij

2 f0; 1g; 8 (i; j) 2 E

(4)

The 
onstraints in (4) yield a dire
ted path from sour
e node s to terminal node t and the

two obje
tives are to �nd the minimum 
ost s� t path and the minimum travel time s� t

path, respe
tively. The problem is known to be NP-
omplete by transformation from a

0-1 knapsa
k problem, Garey and Johnson [33℄.

It is well-known that the 
onstraint set in (4) de�nes an integral polytope (the 
onstraint-

matrix is totally unimodular). Therefore, if the linear relaxation of (4) is solved using the

weighting method, the set of supported (extreme) eÆ
ient paths is found. Unfortunately

there may be a lot of unsupported eÆ
ient paths su
h as D indi
ated in Figure 1.

Being interested in the set of eÆ
ient paths, it is not a satisfa
tory 
ompromise just �nding

the set of supported eÆ
ient paths.
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Criterion 1

Criterion 2

�

�

�

�

�

D

Figure 1: D is an unsupported, nondominated 
riterion ve
tor.

2.2 Solution approa
hes

To our knowledge there are four survey papers in
luding the BSP problem, Zionts [77℄,

Rasmussen [63℄, Ulungu and Teghem [73℄ and Paper A [65℄. The �rst two referen
es

survey the general multi
riteria integer programming problem for whi
h the BSP is a

spe
ial 
ase, and both papers are relatively old. The third referen
e surveys many of the

papers also in
luded in Paper A. The main 
ontribution of Paper A is a 
lassi�
ation of

the existing solution methods, and a ranking of the methods based on the algorithmi


stru
ture. Ehrgott and Gandibleux [25℄ have re
ently written a bibliography paper on

Multiobje
tive Combinatorial Problems (MOCO) 
ontaining more than 350 referen
es,

in
luding also the BSP problem.

There are generally two main approa
hes, a path/tree approa
h and a node labeling

approa
h, see Figure 2. Ea
h of the two main approa
hes are again divided into two.

The path/tree approa
h splits into the K'th shortest path approa
h and the Two-Phases

method. The node labeling approa
h splits into a Label Setting and a Label Corre
ting

approa
h.

In a path approa
h we examine di�erent path ve
tors, and try to �nd the eÆ
ient ones.

Similarly, we investigate the m dimensional in
iden
e ve
tors that 
hara
terize the dif-

ferent spanning trees in a tree approa
h. Sin
e there are usually many edges 
ompared

to the number of nodes and there may be exponentially many spanning trees, a labeling

approa
h that 
ompares values in the two-dimensional 
riterion spa
e at ea
h node may be

advantageous. In a Label Setting approa
h one label is made permanent in ea
h iteration
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BSP

Path/Tree Node Labeling

K'th shortest path

Two-Phases

Label Setting

Label Corre
ting

Figure 2: Classi�
ation of BSP algorithms.

and in a Label Corre
ting approa
h all labels are 
hangeable until the stop 
riterion is

ful�lled.

K'th shortest path Clima
o and Martins [16℄

Two-Phases Coutinho-Rodrigues, Clima
o and Current [19℄

Mote, Murthy and Olson [55℄

Label Setting Hansen [40℄, Martins [50℄ algorithm 1, Tung and Chew [72℄

Label Corre
ting Brumbaugh-Smith and Shier [10℄, Corley and Moon [18℄,

Daellenba
h and DeKluever [20℄, Skriver and Andersen [66℄

Table 2: Classi�
ation of referen
es.

In Table 2 we list the referen
es that fall in the four 
ategories. The number of referen
es

applying a labeling approa
h indi
ates that this is the most su

essful approa
h. The

se
ond phase in Coutinho-Rodrigues, Clima
o and Current [19℄ is a
tually an K'th shortest

path approa
h, and the �rst phase solves the LP relaxation of (4). The se
ond phase of

Mote, Murthy and Olson [55℄ is a Label Corre
ting approa
h, and their �rst phase solves

an LP relaxation of a spanning tree problem 
losely related to (4). In Paper A the four

di�erent approa
hes are dis
ussed in more detail.

Next we illustrate the 
omplexity of the BSP problem by a small example. We use the

example to explain why the node-labeling approa
h is better than the path/tree handling

pro
edure. For 
larity remember that eÆ
ient paths are in the (high dimensional) de
ision

spa
e, and the nondominated values are in the (two-dimensional) 
riterion spa
e. The

example is similar to one found in Hansen [40℄, and is presented in more detail in Paper

B [66℄.
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1 2 3 4

(1; 32)

(32; 1)

(2; 16)

(16; 2)

(4; 8)

(8; 4)

Figure 3: Example with exponentially many nondominated values.

Here we 
hoose the edge 
oeÆ
ients, so that the sum of the smaller 
oeÆ
ients is less than

that of the next. This is a
hieved by the following numbers, 2

i

; i = 0; 1; 2; : : : ; jEj � 1.

In this example that is 1; 2; 4; 8; 16; 32, whi
h we then pair from ea
h end of the list as

shown in Figure 3. These power of two 
oeÆ
ients are often used in MOCO problems to

illustrate that the problem is intra
table, whi
h means that the number of (di�erent)

eÆ
ient solutions may grow exponentially.

The 8 paths in the network in Figure 3 are all eÆ
ient having the following 8 nondomi-

nated values: (7; 56), (11; 52), (21; 42), (25; 38), (38; 25), (42; 21), (52; 11) and (56; 7). By


hoosing the edge 
oeÆ
ients this way we get 2

jN�1j

nondominated values.

From this spe
ial 
ase of the BSP problem we make two observations. The number of

eÆ
ient paths may grow exponentially in the number of nodes, namely 2

jN�1j

, and the

number of eÆ
ient paths is always greater than or equal to the number of nondominated

values, be
ause we may have paths with the same obje
tive fun
tion values. The last

observation 
an also be made from De�nition 3, be
ause Z

Par

= z(X

Par

). If all edge-

weights are (1; 1), there is only one nondominated value, namely (3; 3), but all 8 paths are

eÆ
ient.

2.3 The Brumbaugh-Smith and Shier algorithm

The algorithm below is taken dire
tly from Brumbaugh-Smith et al. [10℄. It is in
luded

to make the presentation self-
ontained, be
ause the prepro
essing rules in Se
tion 2.4 are

designed for this parti
ular algorithm.

Let D(i) = f(


1

(i); t

1

(i)); � � � ; (


p

(i); t

p

(i))g be the label-set at node i 
ontaining p labels.

At ea
h step these labels are nondominated by any other label in the set. The labels are

sorted by in
reasing 
ost values. The set Labeled is a set of nodes that needs to be exam-

ined. The FIFO prin
iple is used to sele
t nodes from the set Labeled as re
ommended in

Brumbaugh-Smith et al. [10℄. By out(i) we refer to the nodes j for whi
h (i; j) 2 E . The

merge operator of the sets A and B is de�ned as

Merge(A;B) = (A [B) n fz 2 A [B j 9 x 2 A [B : x � zg
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This means that after the sets are joined all dominated labels are deleted.

Algorithm 2.3:

1. Initialize:

D(s) = f(0; 0)g;

Labeled=fsg;

2. while Labeled 6= �


hoose i from Labeled;

Labeled=Labeled-fig;

for j 2 out(i)

D

M

(j) =Merge(D(j);D(i) + (


ij

; t

ij

));

If D(j) 6= D

M

(j) then

D(j) = D

M

(j);

If j is not in Labeled then (avoids double labeling)

Labeled = Labeled + fjg;

In this algorithm the merge operation uses the main part of the 
omputational e�ort. Our

intention was to dis
ard \expensive" edges before the merge operation is 
arried out in

order to redu
e 
omputation time. The merge operation implemented is the \modi�ed

merge" operation found in Brumbaugh-Smith et al. [10℄. This operation is in linear time

as a fun
tion of the sizes of the two sets to be merged.

2.4 The improvements

We originally had two suggestions for improvements, referred to as Condition I and II,

that were both based on the idea of omitting \expensive" edges before the Merge in the

algorithm. At ea
h iteration in the routine, we are looking at an edge (i; j) from some

node i to another node j, see Figure 4.

2.4.1 Condition I

The Condition I is a fast predomination 
he
k, whi
h rules out \expensive" edges by


onsidering the present set of labels. Consider again two parti
ular nodes, i and j, and
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j

i

Figure 4: Evaluating the (i; j)-edge.

the sets of labels D(i) and D(j) at these two nodes. Assume that the two label-sets are

non-empty, and that

D(i) = f(


1

(i); t

1

(i)); � � � ; (


k

(i); t

k

(i))g and D(j) = f(


1

(j); t

1

(j)); � � � ; (


q

(j); t

q

(j))g

with




1

(i) < 


2

(i) < � � � < 


k

(i) and t

1

(i) > t

2

(i) > � � � > t

k

(i)




1

(j) < 


2

(j) < � � � < 


q

(j) and t

1

(j) > t

2

(j) > � � � > t

q

(j)

We are now looking at the edge from node i to node j. Consider the two distin
t but

similar situations:

� Assume that 


1

(i) + 


ij

� 


q

(j). In this 
ase we have:




1

(j) < 


2

(j) < � � � < 


q

(j) � 


1

(i) + 


ij

< � � � < 


k

(i) + 


ij

t

1

(j) > t

2

(j) > � � � > t

q

(j) ? t

1

(i) + t

ij

> � � � > t

k

(i) + t

ij

So, if t

k

(i) + t

ij

� t

q

(j), then the set D(i) + (


ij

; t

ij

) is dominated by the set D(j).

In fa
t, the set D(i) + (


ij

; t

ij

) is dominated by the last label q of D(j). As a merge

of the two sets will return the set D(j) un
hanged, we 
an dis
ard the edge between

i and j, and pro
eed to the next edge.

� Assume that t

k

(i) + t

ij

� t

1

(j). In this 
ase we have:




1

(i) + 


ij

< � � � < 


k

(i) + 


ij

? 


1

(j) < 


2

(j) < � � � < 


q

(j)

t

1

(i) + t

ij

> � � � > t

k

(i) + t

ij

� t

1

(j) > t

2

(j) > � � � > t

q

(j)

So, if 


1

(i) + 


ij

� 


1

(j), then the set D(i) + (


ij

; t

ij

) is dominated by the set D(j),

be
ause it is dominated by the �rst label of D(j).
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This simple 
ondition whi
h twi
e 
ompares two numbers that have already been 
al
ulated


an save a lot of 
pu-time. How mu
h time that is saved depends on the network stru
ture.

Se
tion 2.5 summarizes this dis
ussion from Paper B. Paper B also in
ludes a dis
ussion

of how to generate random networks.

2.4.2 Condition II

The Condition II is inspired by an arti
le by Tung and Chew [72℄. The idea is to initialize

node information from the terminal node in order to �nd the 
heapest and fastest paths

from an intermediate node j to the terminal node t, for all n�1 intermediate nodes. This

initialization �nds some upper bounds on the two obje
tives at the nodes, namely (


�

;

^

t)(j)

for the 
heapest path and (
̂; t

�

)(j) for the fastest path. 


�

(j) is the 
ost of the 
heapest

(j; t)-path and

^

t(j) is the 
orresponding upper bound on the time. Noti
e that the upper

bounds on the (s; t)-path be
omes (
̂;

^

t)(s). The idea is illustrated in Figure 5.

j

i

s

t

Figure 5: Illustrating the idea of Condition II.

If the present 
heapest label at node i, plus the 
ost of the (i; j)-edge, plus the least 
ost

for the remainder of the (j; t)-path, ex
eeds the upper bounds on the 
ost, the edge (i; j)


an be left out of further 
onsideration. Similarly with respe
t to time. Mathemati
ally

we get the following two 
onditions to dis
ard an edge:




1

(i) + 


ij

+ 


�

(j) > 
̂(s) or t

k

(i) + t

ij

+ t

�

(j) >

^

t(s) (5)

Unfortunately the initialization of the node information turned out to be too time-
onsu-

ming, and the bounds were to loose be
ause they are upper bounds on all s� t paths and

not subpaths as in Condition I. The initialization is done by running Dijkstra's shortest

path algorithm twi
e, with the edge orientation in the opposite dire
tion. If Dijkstra's

algorithm is too slow, this indi
ates that the Label Corre
ting algorithm is indeed fast.

The bounds being too loose means that there were almost never any edges dis
arded by

(5).

2.5 Computational results

We have tested the improved algorithm (alg2) together with the Brumbaugh-Smith algo-

rithm (brum) of Se
tion 2.3. All algorithms are implemented in C++, and 
an be found



12 The Bi
riterion Shortest Path (BSP) problem

on the homepage http://home.imf.au.dk/ajs/. We have used an HP 9000 series 
omputer

with a single pro
essor. For ea
h size of network we have used 10 random networks,

generated with NETMAKER (see Paper B).

The obje
tive is to evaluate the e�e
tiveness of Condition I on networks with di�erent


hara
teristi
s (density). The density of a network is the relationship between the number

of nodes and the number of edges. If parallel edges are not allowed, the number of edges

in a 
onne
ted network is between n� 1 (tree) and n(n� 1)=2 (
omplete).

# nodes brum Merges alg2 Condition I's % Merges in alg2 % 
pu-time

200 9.01 761.30 4.12 208.40 46.49 45.76

400 40.38 1615.20 20.96 407.20 50.09 51.91

600 92.96 2502.00 51.40 578.15 52.95 55.29

800 187.05 3385.00 111.82 757.65 54.01 59.78

1000 280.61 4668.20 162.52 970.90 57.80 57.92

Table 3: Cpu-times, number of Merges and number of Condition I's for brum and alg2

when the number of outgoing edges are between 1 and 3 at ea
h node.

The �rst 
omparison is made on a sparse network, where the average number of edges is

only two times the amount of nodes. The results are shown in Table 3, and the overall


on
lusion is that alg2 is 
onsiderably faster than brum.

There is one implementation detail that is important to mention. The brum algorithm is

implemented dire
tly as it is des
ribed in Brumbaugh-Smith et al. [10℄. In alg2 a node with

an empty label-set automati
ally gets the label-set plus the edge-weights from the �rst

prede
essor node. When the algorithms are 
ompared, the number of nodes (minus one)

is added to the number of Condition I's, be
ause this is the number of Merge operations

saved. So in Table 3 with 400 nodes, the \% Merges in alg2" is 
al
ulated as

�

1�

407:20 + 399

1615:20

�

� 100 = 50:09

It 
an also be seen that, as the number of nodes in
reases, the fra
tion of Condition

I's de
reases. This is due to the fa
t that the probability of Condition I being ful�lled

de
reases as the label-sets in
rease. The label-sets in
rease in size as we move towards the

terminal node, and in the larger networks, the average number of nondominated values

is higher and therefore the label-sets are bigger. As expe
ted alg2 performs very well on

sparse networks, be
ause of the small label-sets.

Next we look at less sparse networks with an average number of 3 outgoing edges per

node. The results are shown in Table 4, and as expe
ted the fra
tion of Condition I's has
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# nodes brum Merges alg2 Condition I's % Merges in alg2 % 
pu-time

200 18.34 1399.65 12.16 303.25 64.12 66.29

300 45.37 2221.4 31.76 428.45 67.25 70.00

400 80.43 3080.7 58.14 487.35 71.23 72.28

500 129.77 4006.65 96.91 652.10 71.27 74.68

800 336.65 6801.80 245.77 933.95 74.52 73.00

Table 4: Cpu-times, number of Merges and number of Condition I's for brum and alg2

when the number of outgoing edges are between 2 and 4 at ea
h node.

dropped. Be
ause the 
pu-time saved is fairly proportional to the number of Condition I's,

alg2 only performs about 25-35 % better than the brum algorithm for networks with this

density (and this size).

# nodes brum Merges alg2 Condition I's % Merges in alg2 % 
pu-time

100 12.59 2796.1 11.05 251 87.48 87.76

200 79.55 6055.40 73.50 284.4 92.02 92.40

300 195.48 9680.60 183.55 346.45 93.33 93.90

400 349.04 13733.30 329.83 430.25 93.96 94.50

500 589.84 17943.05 558.87 463.40 94.64 94.75

Table 5: Cpu-times, number of Merges and number of Condition I's for brum and alg2

when the number of outgoing edges are between 7 and 15 at ea
h node.

For the dense networks of Table 5 with an average of 11 outgoing edges per node, the

fra
tion of Condition I's is mu
h smaller. The 
pu-times are again proportionately faster

as well. This table illustrates that even in dense networks there are still 
pu-time saved

by imposing the 
ondition. We therefore 
on
lude that the 
ost in 
pu-time of 
he
king

the 
ondition is negligible.

2.6 Con
lusions on the BSP problem

It seems that the Label Corre
ting approa
h is the best for the BSP problem. Even

though the problem is NP-
omplete the solution methods are usually quite fast. As

noted, a separate �rst phase to �nd the supported solutions using the weighting method

does not seem worthwhile. However, even though the Label Corre
ting method is fast,

there is still spa
e to speed up the algorithm, i.e. Condition I.

Another positive feature about the Label Corre
ting method, is that it easily generalizes

to more than two obje
tives. All that needs to be modi�ed is the Merge operation.

Unfortunately Condition I does not generalize to more than two obje
tives.
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3 Bi
riteria 
ombinatorial Max-Ordering (MO) problems

Max-ordering (MO) problems are multi
riteria optimization problems in whi
h the goal is

to minimize the worst of several obje
tive fun
tions. They 
an be formulated as follows.

min

x2S

max

i=1;:::;Q

f

i

(x); (6)

where f

i

(x) denotes the obje
tive fun
tions of the problem. The problem is denoted max-

ordering instead of min-max in order not to 
onfuse terminology with single obje
tive

problems, i.e. min

x2S

max

e2x

w

e

whi
h �nds solutions where the largest weight is minimal,

e.g. the path where the largest edge-weight is minimal. Max-ordering problems arise in

various appli
ations, see Rana and Vi
kson [62℄ or Warburton [76℄, and as subproblems

in intera
tive methods for the solution of multi
riteria optimization problems su
h as

the GUESS method (Bu
hanan [11℄), STEM (Benayoun et al. [5℄), and the intera
tive

weighted T
heby
he� method (Steuer and Choo [69℄).

In this paper we 
onsider max-ordering problems in a 
ombinatorial 
ontext, i.e. we assume

that S is a �nite set, e.g. the set of paths between two nodes of a network or the set of

spanning trees of a graph.

There is a number of previous resear
h papers on this topi
 (Ehrgott [23℄, Hama
her and

Ruhe [37℄, Murthy and Her [56℄, Ehrgott et al. [26℄) and see Ehrgott and Gandibleux [25℄

for more. Various authors observed that, even in the bi
riteria 
ase, max-ordering problems

are usually NP-
omplete. The methods proposed for their solution in
lude bran
h and

bound (Rana and Vi
kson [62℄), labeling algorithms (for shortest path problems) (Murthy

and Her [56℄) and ranking methods (Ehrgott [23℄, Hama
her and Ruhe [37℄) - that is

the appli
ation of algorithms to �nd K best solutions of (single obje
tive) 
ombinatorial

problems.

We also propose methods involving ranking algorithms a
tually over
oming the main prob-

lem of the method proposed in Hama
her and Ruhe [37℄, at least for the 
ase of two

obje
tives, see Remark 1. We 
ombine the ranking method with the two-phases method

originally developed for the determination of all eÆ
ient solutions of bi
riteria 
ombina-

torial optimization problems, Ulungu and Teghem [74℄.

In Se
tions 3.1 and 3.2 we study the biobje
tive 
ase, Q = 2, and in Se
tion 3.4 we present

a heuristi
 for Phase 1 in the multiobje
tive 
ase, Q > 2.

3.1 Theoreti
al motivation

We shall use the notation g(x) = maxff

1

(x); f

2

(x)g for the max-ordering obje
tive value of

a feasible solution x 2 S. Next we present three basi
 results. The �rst one is well-known,
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see e.g. Hama
her and Ruhe [37℄.

Lemma 1 There is at least one optimal solution of the max-ordering problem min

x2S

g(x)

whi
h is eÆ
ient.

The next Lemma is spe
i�
ally stated for two obje
tives. It formalizes the argument that

the maximum of two fun
tions is minimal, if the obje
tive values are as equal as possible.

Its proof is immediate from the de�nition of the max-ordering problem.

Lemma 2 Let X

Par

= fx

1

; : : : ; x

p

g be the set of eÆ
ient solutions of a bi
riteria 
ombi-

natorial optimization problem. Assume that f

1

(x

i

) � f

1

(x

i+1

) and f

2

(x

i

) � f

2

(x

i+1

) for

1 = 1; : : : ; p� 1 and de�ne K := minfi : f

2

(x

i

) < f

1

(x

i

)g. Then the following hold.

1. If K = 1, x

1

solves the max-ordering problem.

2. If K =1, x

p

solves the max-ordering problem.

3. Otherwise x

K

or x

K�1

(or both) solve the max-ordering problem.

A spe
ial 
ase o

urs if there is an eÆ
ient solution with both obje
tives equal.

Lemma 3 If there is an eÆ
ient solution x su
h that f

1

(x) = f

2

(x), then x also mini-

mizes g(x).

These three lemmas state that we 
an restri
t our sear
h for a solution for a minimizer of

g(x) to eÆ
ient solutions, with their two obje
tives as equal as possible. In other words,

eÆ
ient max-ordering solutions will be lo
ated 
lose to the halving line f

1

= f

2

in 
riterion

spa
e.

3.2 Two-phases algorithm

First, we look for the two supported eÆ
ient solutions for whi
h f

1

(x

i

) � f

2

(x

i

) and

f

1

(x

i+1

) > f

2

(x

i+1

) a

ording to the order of Lemma 2. To do so, we start with solutions

x

1

and x

2

minimizing obje
tives f

1

and f

2

, respe
tively. We then pro
eed to solutions

where the di�eren
e of obje
tive values is smaller. When this is no longer possible, we

will either have one supported eÆ
ient solution with f

1

(x) = f

2

(x), or we end up with

two neighboring supported eÆ
ient solutions, say x

1

and x

2

su
h that f

1

(x

1

) < f

2

(x

1

)

and f

1

(x

2

) > f

2

(x

2

). A

ording to Lemma 3, the �rst 
ase solves min

x2S

g(x), and any

other eÆ
ient solution must have one obje
tive value smaller and one bigger than g(x).

Of 
ourse, it may happen that one of the obje
tives dominates the other 
ompletely, i.e.
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min

x2S

f

1

(x) � max

x2X

Par

f

2

(x) (
ases 1 or 2 in Lemma 2). In this 
ase the problem is

trivial, and we 
an easily dete
t it when 
omputing x

1

and x

2

for the �rst time.

Should we terminate Phase 1 with two solutions, we will have to investigate unsupported

solutions in the right-angled triangle de�ned by the hyperplane through the point f(x


ur

)

with normal � and (g(x


ur

); g(x


ur

)), where x


ur

is the 
urrent best solution, see Figure 7.

For this we use the ranking algorithm. In fa
t, f(x

1

) and f(x

2

) uniquely de�ne weights

�

1

; �

2

su
h that both x

1

and x

2

are optimal solutions of

min

x2S

�

1

f

1

(x) + �

2

f

2

(x):

We 
an now apply a ranking algorithm to �nd se
ond, third, ... best solutions for this

problem, in order to �nd unsupported solutions in the identi�ed triangle. A similar pro
e-

dure was proposed for the identi�
ation of all unsupported eÆ
ient solutions in Coutinho-

Rodrigues et al. [19℄.

The algorithm will stop if we en
ounter a solution x with f

1

(x) = f

2

(x), as this must be

the optimal solution we are looking for, or �

1

f

1

(x) + �

2

f

2

(x) � g(x


ur

), sin
e no further

solution will be in the triangle and therefore no longer a 
andidate for a MO optimal

solution. In the latter 
ase, the 
urrently best solution is the optimal solution of the

max-ordering problem.

The idea of the �rst phase is illustrated in Figure 6. With solutions x

1

and x

2

we 
ompute

the normal to the line 
onne
ting f(x

1

) and f(x

2

). This normal serves as a weighting ve
tor

for 
ombining the two obje
tives, and its negative is the dire
tion in whi
h we sear
h for

a new supported eÆ
ient solution whi
h is eventually found at x

3

with obje
tive values

f(x

3

).

Remark 1 The values �

1

; �

2

, identi�ed at the end of Phase 1, are the best 
hoi
e of �

in the method proposed by Hama
her and Ruhe [37℄ and will over
ome the problem that

for an unfortunate 
hoi
e of �, that method turns out to be a 
omplete enumeration of all

feasible solutions.

We illustrate the algorithm on an example. In Figure 7 we show the obje
tive values of 6

feasible points indexed in the order of their generation.

In Phase 1, x

1

and x

2

will be generated �rst. Weights �

1

and �

2

are 
omputed 
orre-

sponding to the normal to a line 
onne
ting f(x

1

) and f(x

2

) and x


ur

= x

2

. Solution of

the weighted sum problem results in x

3

. Sin
e f

1

(x

3

) < f

2

(x

3

), x

1

is repla
ed by x

3

. The


urrent best x


ur

is updated to x

3

. The se
ond weighted sum problem uses updated �'s


orresponding to the normal of the line 
onne
ting f(x

2

) and f(x

3

). Assume x

3

is returned
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f

2

f

1

n =

�

f

2

(x

1

)� f

2

(x

2

); f

1

(x

2

)� f

1

(x

1

)

�

f(x

1

)

f(x

2

)

f(x

3

)

Figure 6: Illustration of sear
h dire
tion in Phase 1

as an optimal solution. Thus no new supported eÆ
ient solution is found, and we 
ontinue

with Phase 2 to investigate the earlier de�ned triangle. Note that the supported solution

x

4

is not generated in Phase 1.

We know that x

3

and x

2

are �rst and se
ond best solutions of the weighted sum problem,

therefore we are sear
hing for the third best solution by sear
hing in dire
tion �. This turns

out to be x

4

, whi
h is dis
arded as not being in the triangle

�

f

2

(x

4

) > f

2

(x

3

) = g(x


ur

)

�

.

So we set K = 4, identify x

5

as the next solution, and this passes all tests. In our example

x

5

repla
es x

3

as the 
urrent best solution and K is set to 5. The next solution is x

6

,

the 
ombined obje
tive value of whi
h is larger than that of the third 
orner point of the

triangle. We will therefore �nd no further points in the triangle and stop with the optimal

solution x

�

= x


ur

= x

5

.

Remark 2 In Phase 2 the following situation may o

ur: The solution of the weighted

sum problem is another supported eÆ
ient solution whi
h is, as x

1

and x

2

, optimal for

the weighted sum problem. Its obje
tive fun
tion ve
tor lies on the line between f(x

1

) and
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f

2

f

1

f(x

1

)

f(x

2

)

f(x

3

)

f(x

4

)

f(x

5

)

f(x

6

)

Figure 7: Illustrative example

f(x

2

). In this 
ase, this point 
reates two new and smaller triangles. We 
an restri
t

sear
h to the one whi
h is interse
ted by the halving line f

1

= f

2

.

3.3 K-best algorithms

As we propose the use of ranking algorithms, our method is obviously restri
ted to su
h


ombinatorial optimization problems for whi
h eÆ
ient methods for �nding K-best solu-

tions are available. We brie
y review some of these here.

The largest amount of resear
h on ranking solutions is available for the shortest path

problem. Algorithms developed by Azevedo et al. [3℄, Martins et al. [52℄ or Eppstein [27℄

are very eÆ
ient. The best 
omplexity known is O(m+n logn+K) by Eppstein's method.

However, numeri
al experiments reported by Martins et al. [51℄ show their algorithm to

be very 
ompetitive. Its 
omplexity is O(m+Kn logn).

The se
ond problem for whi
h several methods are known, is the minimum spanning tree

problem. We mention papers by Gabow [32℄ and Katoh et al. [46℄. The best known
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omplexity is O(Km+min(n

2

;m log logn)).

In the seventies and eighties some general s
hemes for ranking solutions of 
ombina-

torial optimization problems have been developed by Lawler [48℄ and Hama
her and

Queyranne [39℄. The appli
ation of the latter led to algorithms for matroids (Hama
her

and Queyranne [39℄), with the spe
ial 
ase of uniform matroids dis
ussed in Ehrgott [23℄.

The 
omplexity of the latter is O(K(n+m)+minfn log n; nmg). Finally, an algorithm to

rank (integer) network 
ows was presented in Hama
her [35℄. Its 
omplexity is O(Knm

2

):

We note that only algorithms allowing the 
onstru
tion of solutions with the same obje
tive

fun
tion values are appli
able in our method. This is evident from the fa
t that at the

beginning of Phase 2, we have x

1

and x

2

as optimal, i.e. �rst and se
ond best solutions of

the weighted sums problem.

3.4 Phase 1 heuristi
 for the multiobje
tive 
ase

A natural question is the extension of the algorithm to more than two obje
tives. With

su
h an endeavor we en
ounter two major diÆ
ulties. The �rst one being that problems

with at least three obje
tives 
annot be redu
ed to subproblems with two obje
tives only.

Thus, in the multi
riteria 
ase all 
riteria have to be 
onsidered simultaneously.

Example 1 Consider a 
ombinatorial problem with three obje
tives and the following set

of nondominated ve
tors

8

<

:

0

�

7

5

3

1

A

;

0

�

6

4

8

1

A

;

0

�

9

4

2

1

A

;

0

�

6

8

2

1

A

9

=

;

The unique max-ordering solution is the �rst one, with g(x) = 7. However, looking at only

two of the obje
tives at a time, we obtain the following. For f

1

; f

2

only, the minimal value

of g(x) is attained at the se
ond solution, for f

2

; f

3

it is the third, and for f

1

; f

3

it is the

fourth. Thus none of the bi
riteria subproblems yield the true MO optimal solution.

The se
ond major diÆ
ulty is in the generalization of Phase 1. This problem has been

observed by many resear
hers applying the method for the generation of all eÆ
ient solu-

tions. In 
ontrast to the bi
riteria 
ase, there may exist supported nondominated points,

whi
h lie above (rather than below) a previously 
onstru
ted hyperplane. For a dis
ussion

see Solanki et al. [67℄.

Therefore, we present a heuristi
 for Phase 1, when we have more than two obje
tives.

Sin
e it is not known how to determine appropriate �-weights for the weighted obje
tive
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fun
tion

W (x; �) =

Q

X

i=1

�

i

f

i

(x)

in order to �nd all the supported solutions, we have to settle for a heuristi
 pro
edure to

produ
e a good �. We are still guaranteed to �nd the MO optimal solution, sin
e the K

best pro
edure in Phase 2 
an go through all solutions, independent of our 
hoi
e of �.

The idea of the algorithm is also to sear
h for an MO optimal solution. Remember that a

good 
urrent best solution x


ur

, limits the sear
h in Phase 2. During Phase 1 we modify

an initial � to sear
h in the dire
tion where the 
urrent best solution is found. This is

done by in
reasing the �

j

-weight for the obje
tive where the 
urrent maximum is attained,

and de
rease the �

i

-weight for the obje
tives that are 
urrently small enough. This leads

to the following relation between the �'s in iteration p and p+ 1 if argmax

i

f

i

(x

p

) = j:

�

p+1

j

> �

p

j

and �

p+1

i

� �

p

i

8i 6= j

In the following two se
tions we dis
uss some possible initialization and stopping 
riteria

for the Phase 1 heuristi
. Pseudo 
ode for the 
omplete Phase 1 is presented in Se
tion

3.4.3.

3.4.1 Initialization

First we solve the Q single obje
tive problems, to see if any single obje
tive dominates,

and 
onstru
t the Q�Q pay-o� table. Let � > 0 be a very small positive 
onstant, whi
h

is used to avoid weakly eÆ
ient solutions.

1. For i = 1 to Q do

min

x2S

f

i

(x) + �

P

j 6=i

f

j

(x), with optimum in x

i

The set of x

1

; : : : ; x

Q

solutions 
orresponding to the above Q optimal solutions is denoted

X

pay

. If 9 i 2 Q su
h that

f

i

(x

i

) � f

j

(x

i

) 8j 6= i

then stop with x

�

= x

i

as optimal (trivial) solution, and g

�

= f

i

(x

�

). In the rest of this

se
tion assume this is not the 
ase, i.e. 8i 2 Q 9j 6= i su
h that f

i

(x

i

) < f

j

(x

i

).

It may be useful to have a lower and an upper bound on g. Therefore we de�ne su
h

bounds during the initialization.

g

LB

= max

i

f

i

(x

i

) and g

UB

= min

x2X

pay

max

i

f

i

(x) = min

x2X

pay

g(x)
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The lower bound is where we have the minimal largest value of the extreme solutions,

and the upper bound is where the initial largest value is as small as possible. The x


orresponding to g

UB

is the 
urrent best solution x


ur

. Noti
e that g

UB

is an upper bound

on all the individual obje
tives with respe
t to the MO problem. The bounds may be

used as a Phase 1 stopping 
riterion, see Se
tion 3.4.2.

Finally, we need to �nd an initial �. We 
an think of �

i

as the weight of the i'th obje
tive.

Our goal of Phase 1 is a �xed best �. We initialize bounds for �

i

8i as

�

iLB

= 0 and �

iUB

= 1 8i

These bounds on the �-weights will be modi�ed during the algorithm, see Se
tion 3.4.3.

Now we de�ne the starting �

1

. We have two suggestions:

� �

1

= (

1

Q

; : : : ;

1

Q

).

� Æ

i

=

�

f

i

8i, where

�

f

i

= max

x2X

pay

f

i

(x). Let Æ =

P

i

Æ

i

. Now we de�ne �

1

as �

1

=

(

Æ

1

Æ

; : : : ;

Æ

Q

Æ

). In this way the numeri
ally large obje
tives get more attention initially.

To summarize the initialization, we present it in four steps:

1. Cal
ulate pay-o� table.

2. Che
k for trivial solution.

3. Find initial values for x


ur

, g

LB

and g

UB

.

4. Find initial �

1

.

3.4.2 Stopping 
riterion

Due to the diÆ
ulties of determining the supported solutions in Phase 1, a stopping


riterion is not straightforward in the multiobje
tive 
ase. We dis
uss some alternatives

in this se
tion, and it may be possible to have more than one stopping 
riterion in the

algorithm. Let us list some possibilities.

� If the same solution is repeated a 
ertain number of times, x

p

= x

p+1

= : : : = x

p+t

for some predetermined t.

� If the maximum deviation on the � bounds is suÆ
iently small, max

i

�

iUB

��

iLB

< �,

for some prede�ned toleran
e level �.

� If the gap between the upper and lower bound is suÆ
iently small, g

UB

� g

LB

< Æ,

for some prede�ned toleran
e level Æ.
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� Run Phase 1 for at most T iterations.

There may, of 
ourse, be other alternatives as well.

3.4.3 The algorithm

1. Initialization, see Se
tion 3.4.1.

2. Set p = 1 (iteration 
ounter).

3. Solve min

x2S

P

i

�

p

i

f

i

(x) and let x

p

be the optimal solution.

4. If g(x

p

) < g(x


ur

) then x


ur

= x

p

and g

UB

= g(x

p

).

5. Che
k stopping 
riterion, see Se
tion 3.4.2.

6. Assume argmax

i

f

i

(x

p

) = j, i.e. the j'th obje
tive needs more attention.

7. �

jLB

= �

p

j

and �

iUB

= �

p

i

8i 6= j.

8. De�ne �

i

= �

iUB

� �

iLB

8i and � =

P

i 6=j

�

i

.

9. �

p+1

j

= �

jLB

+

1

2

�

j

and �

p+1

i

= �

iUB

�

1

2

�

j

�

i

�

8i 6= j.

10. p=p+1 go to 3

This 
on
ludes Phase 1. The steps 6 - 9 modify the �-bounds to de
rease the interval of

ea
h possible �

i

value.

In Phase 2 we use the K best pro
edure with the appropriate �

p

from the end of phase

one. The stopping 
riterion in phase two is the same as in the biobje
tive 
ase, namely

P

i

�

p

i

f

i

(x

K

) � g(x


ur

).

3.5 Con
lusions on MO problems

At �rst the max-ordering obje
tive may not seem interesting, but it appears as a subprob-

lem in several well-known MCDM methods. Therefore, this problem is worth studying

more 
arefully. We have found a pro
edure for the solution of the max-ordering problem

for 
ombinatorial problems. The e�e
tiveness of the pro
edure depends on the parti
ular

problem. Phase 1 works well if the single obje
tive 
ombinatorial problem is easy, su
h as

the shortest path problem. Phase 2 works well if the K best pro
edure works well.

In the 
ase with more than two obje
tives, the Phase 1 pro
edure is without guarantees

of �nding the best supported eÆ
ient solutions. However, the K best pro
edure will

(eventually) �nd the MO optimal solution, even with a poor 
hoi
e of �.



Approximate solution of semi-obnoxious lo
ation problems 23

4 Approximate solution of semi-obnoxious lo
ation problems

In two of the traditional single fa
ility lo
ation problems, a new fa
ility is lo
ated (pla
ed)

so as to minimize transportation 
osts (minisum), or as to minimize the distan
e to the

farthest 
ustomer (minimax). In the minisum problem we sum all the distan
es between

the new fa
ility and the 
ustomers, multiplied by a weight depending on the individual


ustomer. In the minimax problem we minimize the largest weighted distan
e. A tradi-

tional example of the minisum model is the lo
ation of a warehouse and an example of the

minimax model is lo
ating a �re station. These models are presented in Love et al. [49℄

and Fran
is et al. [31℄, both in
luding many referen
es. The obnoxious lo
ation problem

is a more re
ent 
lass of problems, where the two most 
ommon ones are the maxisum and

maximin models. When lo
ating an obnoxious (undesirable) fa
ility, the goal is to pla
e it

as far from the existing fa
ilities (demand points, 
ustomers) as possible. See Erkut and

Neuman [28℄ or Carrizosa and Plastria [14℄ for a review.

Instead of 
lassifying the problem as obnoxious or desirable, the models 
an be divided

into planar and network models by their stru
ture, and not their obje
tives. This partition

makes it more easy to list existing literature. Some referen
es on planar models are [30℄,

[37℄, [38℄, [59℄, [60℄, [61℄ and [64℄, and some referen
es on network models are [6℄, [7℄, [15℄,

[21℄, [22℄, [36℄, [41℄, [42℄, [47℄, [54℄, [57℄ and [58℄.

There is little literature 
ombining the desirable and the obnoxious fa
ility lo
ation models,

even though many fa
ilities are both obnoxious and desirable. An airport is obviously

desirable for the travelers, but obnoxious for the nearby 
itizens. In this se
tion we model

the 
ombined problem as a Bi
riterion Semi-obnoxious Lo
ation (BSL) problem. One

obje
tive fun
tion is obnoxious and one is desirable. We 
onsider both the planar 
ase

(Se
tion 4.1) and the network 
ase (Se
tion 4.2) of the problem. In the network 
ase

where the demand points are nodes in a network and we try to lo
ate the new fa
ility in

a node or on an edge, we have found no referen
es to earlier work. However, new results

are presented in Se
tion 5 (and Paper D). In the planar 
ase, where the feasible lo
ations

are in R

2

, we have found only three referen
es, namely two papers by Brimberg and Juel,

[8℄ and [9℄, and one paper by Carrizosa et al. [13℄.

The theory of the planar and network models is quite di�erent, and the two models are

not often 
ompared, even though they often try to des
ribe the same real-life problem.

We brie
y 
ompare the two models in Se
tion 4.3.
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4.1 The planar 
ase : The BSPL problem

We formulate the Bi
riterion Semi-obnoxious Planar Lo
ation (BSPL) problem in the

following way. There are n fa
ilities (demand points) lo
ated at points a

1

; a

2

; : : : a

n

, and

the obje
tive is to lo
ate a semi-obnoxious fa
ility at x so as to minimize a weighted sum

of the distan
es raised to a negative power, and to minimize the weighted sum of the

distan
es between the existing fa
ilities and the new fa
ility. The �rst 
riterion may be

thought of as a pollution e�e
t and the se
ond 
riterion as transportation 
osts.

min f(x) =

P

j

w

1

j

(k x� a

j

k

p

1

)

�b

; b > 0

min g(x) =

P

j

w

2

j

k x� a

j

k

p

2

s.t.

x 2 S

(7)

where k x� a

j

k

p

= (jx

1

� a

j1

j

p

+ jx

2

� a

j2

j

p

)

1=p

is the usual l

p

norm, p � 1.

We prefer this obnoxious fun
tion, be
ause it minimizes the overall obnoxiousness when

far from a demand-point, but re
e
ts the lo
al e�e
ts when 
lose to a demand-point.

Corresponding to this obje
tive we use the weights w

1

. The se
ond obje
tive is the stan-

dard formulation for lo
ating an attra
tive fa
ility by minimizing the weighted sum of

the distan
es (
alled minisum or median). Please note that we use weights w

2

with this

obje
tive, so that the two obje
tives may be weighted di�erently with respe
t to ea
h of

the n demand points. We assume that all weights are non-negative.

If we are modeling where to pla
e a new airport (example in Paper C), the �rst weight w

1

j

may depend on the population at demand point j (e.g. 
ity), and the se
ond weight w

2

j

may be the expe
ted number of passengers on a yearly basis from demand point j.

S is the set of feasible solutions. Be
ause of the obnoxious e�e
ts from the new semi-

obnoxious fa
ility, we assume that it is forbidden to pla
e it too near an existing fa
ility.

Therefore, we require, that k x � a

j

k

p

1

> �; j = 1; : : : ; n, where � is a small positive

number. Note that this assumption makes the two obje
tive fun
tions Lips
hitzian in the

feasible set S.

Sin
e the obnoxious obje
tive fun
tion f(x), is a slightly 
ompli
ated fun
tion, we will

settle for an approximation of the eÆ
ient set X

Par

. To obtain this approximation we will

apply the BSSS method �rst introdu
ed by Hansen et al. [44℄.

4.1.1 The idea of the Big Square Small Square (BSSS) algorithm

Sin
e we apply the BSSS method to solve the BSPL problem (and also to the BSNL

problem), we will outline the idea of the method.
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Suppose that the feasible region S is 
ontained in a disjoint union of squares of equal

size. Ea
h of these squares are 
onsidered separately. Consider one of the squares, say Q

i

.

We divide Q

i

into four sub-squares Q

i1

; Q

i12

; Q

i3

and Q

i4

of equal size. For ea
h of these

sub-squares, say Q

i1

, lower bounds on the obje
tive fun
tion values (f(x); g(x)); x 2 Q

i1

,

are found. By 
omparing this lower bound with a sample set of obje
tive fun
tion values,

it may be determined that square Q

i1


ontains only ineÆ
ient points. If this is the 
ase,

square Q

i1

is 
alled an ineÆ
ient square and may be deleted from further 
onsideration.

The squares that 
annot be 
lassi�ed as ineÆ
ient are put into the list and will later be

divided further into four new sub-squares. The pro
ess 
ontinues until the side-lengths of

all the remaining squares (those that are not 
lassi�ed as ineÆ
ient) in the list are below

a pre-spe
i�ed value �. The idea is illustrated in Figure 8 below. The output from the

algorithm is an ordered set of \eÆ
ient" squares.

x

y

�

�

�

�

�

�

�

�

Figure 8: BSSS idea

A few 
omments on the pro
edure are appropriate. The sample list of obje
tive fun
-
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tion values are used to dominate sub-squares with poor obje
tive fun
tion value bounds.

Therefore, the values should in a way represent the obje
tives' behavior over the feasi-

ble region. This is done by 
al
ulating obje
tive fun
tion values in the 
enters of all the

squares, and then deleting pairs of obje
tive fun
tion values being dominated by other

obje
tive fun
tion values. If the 
enter of a parti
ular square is not in S, we simply ommit

this 
al
ulation.

It is also essential that we use good lower bounds for the obje
tive fun
tion values over the

squares. If the bounds are poor, the 
onvergen
e of the algorithm may be slow, be
ause

we will end up with a large number of squares. Fortunately, good bounds exist. These

bounds are explained in detail in Se
tions 4.1.2 and 4.1.3.

Finally, we need to 
he
k if a square is 
ontained in the feasible region, is overlapping the

region or is outside the region. For a dis
ussion of this issue we refer to the paper by

Hansen et al. [43℄.

4.1.2 Cal
ulating lower bounds

In order to 
al
ulate lower bounds on the two obje
tives, we use an approximation of the

weighted distan
es. This distan
e approximation is illustrated in Figure 9 for the l

2

norm.

The lower bound for the distan
e is found in Hansen et al. [43℄, and the upper bound for

the distan
e is found in Hansen et al. [44℄.

The plane is divided into 9 regions, obtained by extending the four sides of Q

i

. The regions

are the square Q

i

, the four side regions, and the four 
orner regions. The square Q

i

will

be in the 
enter.

�

�

�

� �

a

1

= a

1

a

2

a

2

a

3

a

3
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B: Upper bound

Figure 9: Lower and upper bounds on the distan
es.



Approximate solution of semi-obnoxious lo
ation problems 27

Now let a

j

be a parti
ular lo
ation. With this lo
ation we asso
iate a 
losest point a

j

2 Q

i

and a furthest point a

j

2 Q

i

, see Figure 9. We may then 
al
ulate a lower bound on the

values of f and g in Q

i

as follows:

f(Q

i

) =

P

j

w

1

j

(k a

j

� a

j

k

p

1

)

�b

Case B in Figure 9

g(Q

i

) =

P

j

w

2

j

k a

j

� a

j

k

p

2

Case A in Figure 9

Clearly, (f(Q

i

); g(Q

i

) � (min

x2Q

i

f(x);min

y2Q

i

g(y)). Therefore, we 
an use the bound

z(Q

i

) = (f(Q

i

); g(Q

i

)) for eÆ
ien
y 
he
king in the algorithm. If at some point we have

found a sample value x 2 S, su
h that (f(x); g(x)) < (f(Q

i

); g(Q

i

)), then 
learly all

points in Q

i

are dominated by x. It follows that square Q

i


ontains only ineÆ
ient points.

Therefore it is not ne
essary to 
onsider Q

i

anymore. This bound approa
h 
an be used

for any p 2 [1;1℄. Please note that the bounds obviously 
onverge when the squares get

smaller.

4.1.3 Exa
t lower bound

Sin
e the minisum obje
tive is a ni
e 
onvex fun
tion, it is possible to 
al
ulate an exa
t

lower bound for the squares in most situations. The level sets of a 
onvex fun
tion are


onvex sets, and the gradient 
an therefore be used as follows.

For a square Q

i

with 
orners 


1

; 


2

; 


3

and 


4

, �nd the 
orner 


h

with the minimum fun
tion

value g(


h

). If the dire
tion of steepest des
ent \points away" from the square Q

i

, then

the lower bound g(Q

i

) is exa
tly g(


h

). By \pointing away" we mean that the dire
tion

of steepest des
ent has an angle of at least 90 degrees with the sides of Q

i

, see 
ase A in

Figure 10. If this angle is less than 90 degrees then the minimum value over Q

i

is not in




h

. Finally, if the dire
tion points into Q

i

, the minimum value is not in 


h

but inside Q

i

.

Case A




i

Figure 10: Exa
t lower bound, depending on dire
tional derivative

From the above an exa
t lower bound 
an easily be 
omputed, if the dire
tional derivative

points away from the square. We only need to 
ompute four fun
tion values and the
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dire
tional derivative in the minimum value 
orner. The 
ase A will o

ur in most of the

evaluations, but not in all.

The dire
tional derivative g

0

(x

0

; y) of g at x

0

2 S in the dire
tion y is de�ned as follows:

g

0

(x

0

; y) = r g(x

0

) � y

where rg(x

0

) is the gradient of g evaluated in x

0

.

If we 
onsider the l

2

norm, the gradient looks as follows:

r g(x

0

) =

0

�

X

j

w

2

j

(x

01

� a

j1

)

k x

0

� a

j

k

;

X

j

w

2

j

(x

02

� a

j2

)

k x

0

� a

j

k

1

A

Similar expressions 
an be found for the l

p

norm, for p 2 [1;1℄. This reveals the well-

known problem; if x

0

is at a demand point, the gradient is unde�ned be
ause of the

numerator being zero. This is not a problem in our 
ase sin
e k x�a

j

k

p

1

> �; j = 1; : : : ; n.

Using the exa
t bound presented above when possible, or otherwise the bounds presented

in Se
tion 4.1.2, we 
an apply the BSSS method to solve the (planar) BSPL problem. In

the next se
tion we adapt the BSSS method also to solve the (network) BSNL problem.

4.2 The network 
ase : The BSNL problem

In this se
tion we adapt the BSSS method to the network 
ase. However, instead of

dividing big squares into smaller squares, we divide edges into sub-edges. This will be

explained in detail in Se
tion 4.2.1. Assume we have an undire
ted 
onne
ted network

G(V; E) with node set V = fv

1

; v

2

; : : : ; v

n

g where jVj = n nodes, and a �nite set of edges

(ar
s) E = f(v

i

; v

j

); (v

k

; v

l

); : : : ; (v

p

; v

q

)g with jEj = m. Edges may also be denoted by e.

All edges have a stri
tly positive length. Ea
h node v

j


arries two non-negative weights

(w

1

j

; w

2

j

), one for the obnoxious 
riterion and one for the desirable 
riterion.

The model is the same as (7), ex
ept that the set of possible new lo
ations is the entire

network. With our 
hoi
e of obnoxious obje
tive fun
tion, however, x 
annot be lo
ated

in a node. Therefore, we again require, that d(x; v

j

) > �; j = 1; : : : ; n, where � is a small

positive number. The BSNL problem is then:

min f(x) =

P

j

w

1

j

(d(x; v

j

))

�b

; b > 0

min g(x) =

P

j

w

2

j

d(x; v

j

)

s.t.

x 2 G(V; E)

(8)

where d(x; v

j

) is the shortest distan
e from point x to node v

j

. The authors are well aware

that the obnoxious obje
tive fun
tion is not as appropriate on the network model, as in
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the planar model, but we have de
ided to use it for 
omparison purposes, see Paper C.

The approximation algorithm is a very general and intuitive approa
h and 
an be used for


ompli
ated obje
tive fun
tions.

4.2.1 The Edge Dividing (ED) algorithm

The idea of the Edge Dividing (ED) algorithm is similar to the idea behind the BSSS

algorithm. First we divide ea
h edge into two subedges. Then bounds on the obje
tive

fun
tion values on ea
h subedge are 
al
ulated. Furthermore, a sample set of obje
tive

fun
tion values are 
al
ulated. If the bounds 
al
ulated for a subedge are dominated by

one (or more) of the sample set obje
tive fun
tion values, then the subedge is dominated

and may be deleted from further 
onsideration.

The bounds are derived in detail in Se
tions 4.2.2 and 4.2.3. The sample set of obje
tive

fun
tion values are 
al
ulated in the middle (
enter) of the subedges. The nondominated


riterion values are kept in a list.

The output from the algorithm is an ordered set of \eÆ
ient" subedges. This general

pro
edure, however, has a few disadvantages. The eÆ
ient set (or part of it) may be an

edge-segment. This subedge will obviously remain eÆ
ient, but the subedge will be divided

into smaller subedges again and again. This reveals that the list of eÆ
ient subedges will

probably almost double in size, when we half the � value, for � suÆ
iently small. This 
an

in fa
t be used as an alternative stopping 
riterion.

4.2.2 Cal
ulating lower bounds

We need both upper and lower bounds on the distan
e d(x; v

j

), where x 
an be any point

on the edge (or sub-edge) e

i

. We refer to the lower bound of this distan
e by d(e

i

; v

j

) and

to the upper bound by d(e

i

; v

j

). Assume e

i

2 (v

h

; v

k

), and x

h

is the endpoint of e

i


losest

to v

h

, and that x

k

is the endpoint of e

i


losest to v

k

.

The upper bound may be 
al
ulated as

d(e

i

; v

j

) = minfd(v

j

; v

h

) + d(v

h

; x

h

); d(v

j

; v

k

) + d(v

k

; x

k

)g+ d(x

h

; x

k

)

and the lower bound may be 
al
ulated as

d(e

i

; v

j

) = minfd(v

j

; v

h

) + d(v

h

; x

h

); d(v

j

; v

k

) + d(v

k

; x

k

)g:

These two bounds 
an easily be 
al
ulated as illustrated in Figure 11, whenever the dis-

tan
e matrix D, of shortest distan
es between all pairs of nodes, is available. A pro
edure

to obtain D 
an be found in Thulasiraman and Swamy [71℄.
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v

j

v

h

v

k

x

h

x

k

e

i

Figure 11: Cal
ulating distan
e bounds.

Using these bounds, we 
an 
al
ulate the lower bounds on the obje
tive fun
tion values

as

f(e

i

) =

X

j

w

1

j

�

d(e

i

; v

j

)

�

�b

g(e

i

) =

X

j

w

2

j

d(e

i

; v

j

)

4.2.3 Exa
t bounds

In this se
tion we derive some exa
t bounds, spe
i�
ally for our 
hoi
e of obje
tive fun
-

tions. The distan
e fun
tion d(x; v

j

) is a 
on
ave fun
tion on an edge (subedge). Therefore

g(x) is a 
on
ave fun
tion on an edge, and the minimum is always in one of the (sub-edge)

endpoints. So we have an exa
t lower bound as follows.

g(e

i

) = minfg(x

h

); g(x

k

)g (9)

Now, lets 
onsider f(x). Sin
e d(x; v

j

) is both positive and 
on
ave, (d(x; v

j

))

�b

is 
onvex.

Therefore f(x) is 
onvex on an edge. If we are looking at the sub-edge from x

h

to x

k

as

illustrated in Figure 11, and the derivatives at the endpoints have the same sign, then an

exa
t lower bound is simply the smallest endpoint value. That is, if

sign

�

�

+

�x

(v

h

;v

k

)

f(x

h

)

�

= sign

�

�

+

�x

(v

h

;v

k

)

f(x

k

)

�

(10)

then

f(e

i

) = minff(x

h

); f(x

k

)g (11)

where

�

+

�x

(v

i

;v

j

)

f(x) denotes the derivative in the dire
tion from v

i

towards v

j

, and we want

to know if the fun
tion in
reases or de
reases at x. The \

+

" indi
ates right derivative,

so even in a break-point this derivative is well-de�ned. If (10) does not hold, the bound
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in Se
tion 4.2.2 has to be applied. For more general obje
tive fun
tions, the bounds in

Se
tion 4.2.2 may be needed more often.

4.3 Comparison of the BSPL and the BSNL problems

Even though the planar and the network models may seem very di�erent in stru
ture, they

are designed to solve the same real-life problem. Often a 
ombination of the two models

would be preferable. In [4℄ and [70℄ planar and network models are 
ombined. Modeling

air pollution su
h as noise makes most sense in the planar model, whereas the network

model is a good des
ription of a road network with distan
es or travel times as 
oeÆ
ients.

One possible 
ombination is to embed the network on top of the plane, so that ea
h point

on the network 
orresponds to a point in the plane, but not the other way round. This is

illustrated in Figure 12.
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= v
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4

a

5

= v

5

x

Figure 12: Combination of network and planar models.

The point x in Figure 12 is in the middle of edge (v

1

; v

3

), but it is also asso
iated with a

point in the plane, namely (2:5; 1), whi
h 
an be used in an l

p

-norm 
al
ulation.

Whi
h model is the most appropriate is not always easy to determine. The available data

will probably de
ide the model.

4.4 Con
lusions on approximation methods

In this se
tion we have des
ribed a powerful tool for approximating the set of eÆ
ient

solutions on both planar and network models. The method 
an be applied when exa
t

solution methods are not at hand, as is often the 
ase when the obje
tive fun
tions are

nonlinear fun
tions.

It 
an be seen that the two solution algorithms (presented in detail in Paper C), are

not restri
ted to the bi
riteria 
ase. If the dominan
e 
he
k routine is adapted to the
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multi
riteria 
ase, the same method 
an be used. The method does in fa
t approximate

the eÆ
ient set of the multi
riteria semi-obnoxious lo
ation problem.

In Paper C an example of both the planar and the network models are examined. The

example involves the lo
ation of a new airport near the 
ity of Aarhus, Denmark. The

experimental results presented in the paper are quite satisfa
tory.
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5 Multi
riteria Semi-obnoxious Network Lo
ation (MSNL)

problems

There are a number of models that deal with the problem of lo
ating (pla
ing) a new fa
ility

on a network. Most of these models lo
ate a desirable fa
ility, su
h as a supermarket or

a �re station, where the obje
tive is to keep the new fa
ility 
lose to its users. The

two most 
ommon ones are the minisum and minimax (weighted median and weighted


enter). There are also some models des
ribing how to lo
ate an obnoxious (undesirable)

fa
ility, su
h as a nu
lear power plant or a dump 
ite whi
h the users want to lo
ate far

away. In obnoxious theory the two most 
ommon obje
tive fun
tions are the maxisum and

maximin (weighted anti-median and weighted anti-
enter). Many fa
ilities 
an, however,

be thought of as semi-obnoxious. Su
h fa
ilities 
ould be airports, train stations or other

noisy servi
e fa
ilities. It 
ould also be the above-mentioned dump 
ite that, with respe
t

to transportation 
osts, should be lo
ated 
entrally, but, in the neighbors' opinion, should

be lo
ated distantly. These lo
ation problems 
ould with obvious advantages be formulated

as Multi
riteria Semi-obnoxious Network Lo
ation (MSNL) problems. In this way the

trade-o� between the di�erent obje
tives 
an be revealed, making a good basis for an

overall de
ision. Di�erent aspe
ts of the problem 
an be des
ribed by di�erent obje
tives.

Su
h obje
tives 
ould be transportation 
osts, travel time, air pollution or minimizing the

number of 
itizens within a 
ertain radius of the fa
ility. Another situation arises when

we have more de
ision makers, ea
h having their own obje
tive fun
tion. Referen
es to

related litterature are found at the beginning of Se
tion 4.

We have found no literature des
ribing the MSNL problem, but a general solution method

for the multi
riteria median problem is presented in Hama
her et al. [36℄. This problem

involves only desirable sum obje
tive fun
tions, but we have generalized the method to

work for more general models.

5.1 Problem formulation and de�nitions

We are given a (strongly) 
onne
ted network G(V; E) with nodeset V = fv

1

; v

2

; : : : ; v

n

g

where jVj = n nodes, and edgeset E = f(v

i

; v

j

); (v

k

; v

l

); : : : ; (v

p

; v

q

)g with jEj = m edges.

If the underlying graph is dire
ted, it is denoted G

D

, and the edge e = (v

i

; v

j

) has head v

j

and tail v

i

. If the underlying graph is undire
ted it is just denoted G, and e = (v

i

; v

j

) =

(v

j

; v

i

) 8e 2 E . We de�ne the set of obje
tives as Q = f1; 2; : : : ; Qg. Ea
h node v

i


arries

Q weights (w

1

i

; w

2

i

; : : : ; w

Q

i

)

t

, where w

q

i

> 0;8q 2 Q, so we may refer to the matrix of

weights by W

Q�n

. Ea
h edge e 2 E has length l(e) 2 IR

+

.

By d(v

h

; v

k

) we denote the distan
e between v

h

and v

k

whi
h is given by the length of a
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shortest path between v

h

and v

k

. A point x 2 G(V; E) 
an be lo
ated both at a node or

on an edge.

We de�ne a point x on a dire
ted edge e = (v

i

; v

j

) as a touple x = (e; t); t 2 [0; 1℄, with

d(v

k

; x) = d(v

k

; v

i

) + tl(e) and d(x; v

k

) = (1� t)l(e) + d(v

j

; v

k

)

for any v

k

2 V. A point x on an undire
ted edge e = (v

i

; v

j

) is de�ned as a touple

x = (e; t); t 2 [0; 1℄, with

d(x; v

k

) = minfd(v

k

; v

i

) + tl(e); d(v

k

; v

j

) + (1� t)l(e)g

for any v

k

2 V. Noti
e that d(v

i

; x) = tl(e) and d(x; v

j

) = (1� t)l(e) for x = (e; t). Sin
e

v

i

= (e; 0) and v

j

= (e; 1), all nodes in the network are also points in the network.

The set f(e; t)jt 2 (t

1

; t

2

); t

1

; t

2

2 [0; 1℄g, forming an open subedge on e, is denoted

(e; (t

1

; t

2

)) for any e 2 E . Of 
ourse this set is empty, unless t

2

> t

1

. Similarly, we de�ne


losed and half right/left open subedges.

We formulate the model with the maxisum and minisum obje
tives, whi
h are obviously

negatively 
orrelated. For the undire
ted problem the obje
tive fun
tions are de�ned by

f

q

(x) =

n

X

i=1

w

q

i

d(x; v

i

) q 2 Q (12)

and for the dire
ted 
ase they are de�ned by

f

q

(x) =

n

X

i=1

w

q

i

(d(x; v

i

) + d(v

i

; x)) q 2 Q (13)

The problem is formulated as follows:

max f

q

(x) q 2 Q

1

min f

q

(x) q 2 Q

2

s.t.

x 2 G(V; E)

Q = Q

1

[ Q

2

, where Q

1

\ Q

2

= ;. Q

1

is the set of obnoxious obje
tive fun
tions, and

Q

2

is the set of desirable obje
tive fun
tions. At most one of the sets are allowed to be

empty. If Q

1

= ; we have the situation dis
ussed in Hama
her, Labb�e and Ni
kel [36℄.

f(x) = (f

1

(x); f

2

(x); : : : ; f

Q

(x))

t

.

For simpli
ity in the su

eeding argumentation, we multiply all obje
tive fun
tions in Q

1

by �1 in order to minimize instead of maximize. In the remaining part of the se
tion, we
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assume that w

q

i

< 0; i = 1; 2; : : : ; n and q 2 Q

1

, and w

q

i

> 0; i = 1; 2; : : : ; n and q 2 Q

2

.

This gives the following problem formulation:

min f

q

(x) q 2 Q

1

min f

q

(x) q 2 Q

2

s.t.

x 2 G(V; E)

(14)

In order to �nd the shortest distan
es between x and all the nodes, we need the distan
e

matrix D of shortest distan
es between all pairs of nodes. Note that D

ij

= d(v

i

; v

j

). This

matrix 
an be 
al
ulated in O(n

3

) running time using Floyd's algorithm or by applying

Dijkstra's algorithm to all n nodes. For details on these graph pro
edures, see Thulasira-

man and Swamy [71℄. For an undire
ted network the distan
e matrix D is symmetri
.

We will now outline the 
on
ept of bottlene
k-points as it is presented in Chur
h and

Gar�nkel [15℄. There are two types of bottlene
k-points, edge-bottlene
k-points and node-

bottlene
k-points. Only edge-bottlene
k-points are de�ned here, be
ause the nodes will be

examined anyway, whether they are bottlene
k-points or not. The edge-bottlene
k-points

are de�ned as follows, for ea
h edge (v

i

; v

j

) 2 E : Let x = (e; t) be on the edge (v

i

; v

j

). If

there exists a node v

k

6= v

i

; v

j

su
h that

D

ki

+ tl(e) = D

kj

+ (1� t)l(e)

then x is an edge-bottlene
k-point. It is easily seen, that edge (v

i

; v

j

) 
ontains an

edge-bottlene
k-point with respe
t to node v

k

if and only if

jD

ki

�D

kj

j < l((v

i

; v

j

))

This sets the upper bound on the number of edge-bottlene
k-points on an edge to n. If we


onsider the endnodes of the edges as bottlene
k-points as well, we have O(n) bottlene
k-

points per edge. This gives a total of O(mn) bottlene
k-points on G(V; E).

We will denote the edge-bottlene
k-point matrix of shortest distan
es from all edge-

bottlene
k-points to all nodes by B. So B

ij

is the shortest distan
e from edge-bottlene
k-

point B

i

to node v

j

. This matrix is needed for easy 
al
ulation of the obje
tive-values

in the bottlene
k-points. When we know the shortest distan
e matrix D, the bottlene
k-

points 
an be 
al
ulated in O(n log n) time, see Hansen et al. [42℄.

The weighted-sum obje
tive with positive weights is a pie
ewise linear, 
on
ave fun
tion

on an edge, with break-points only in the edge-bottlene
k-points, see Figure 13. If all

weights are negative the obje
tive fun
tion is a pie
ewise linear, 
onvex fun
tion with

break-points only in the edge-bottlene
k-points.
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Figure 13: Illustration of the obje
tive fun
tions on an edge.

Note that the optimum for the maxisum need not be unique, it 
an be a subedge between

two (or more) bottlene
k-points, or there may be points on di�erent edges with the optimal

value. The optimum for the minisum is attained at one or more nodes.

5.1.1 Example

Now we present a small example to illustrate the stru
ture of the undire
ted problem, see

Figure 14. Let the weights be w

1

= (�1;�2;�1;�1;�2;�2) and w

2

= (2; 1; 2; 2; 2; 1).

Let the distan
e matrix D be given by

D =

2

6

6

6

6

6

6

4

0 1 1 4 3 2

1 0 2 3 4 1

1 2 0 3 2 3

4 3 3 0 5 2

3 4 2 5 0 3

2 1 3 2 3 0

3

7

7

7

7

7

7

5

for the undire
ted network of Figure 14. B 
an be 
al
ulated as

B =

2

6

6

6

6

6

6

6

6

6

6

4

2 3 3 6 1 4

3 2 4 1 6 3

2 3 1 2 3 4

3 4 2 1 4 3

2 3 1 4 1 4

3 2 4 1 4 1

4 3 3 4 1 2

3 2 4 3 2 1

3

7

7

7

7

7

7

7

7

7

7

5

:
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1

1

3
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3
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Figure 14: The undire
ted network of Example 5.1.1. The bold parts 
onstitute the set of

eÆ
ient points.

To 
larify the solution to the undire
ted network in Figure 14 we present some obje
tive

fun
tion values in Table 6. A solution method spe
i�
ally for the bi
riterion model is

des
ribed in Se
tion 5.3. The general multi
riteria method is des
ribed in Se
tion 5.2.3.

Please note the values of p and B

4

. This proves that a subedge, not having endpoint at

a node or a bottlene
k-point, 
an be eÆ
ient. We will refer to this example in Se
tion

5.2 and 5.3. From Table 6 we note that bottlene
k-point B

2

is optimal for the maxisum


riterion (f

1

) and node v

3

is optimal for the minisum 
riterion (f

2

).

Point x f(x) = (f

1

(x); f

2

(x))

v

1

(�17; 19)

v

2

(�16; 21)

v

3

(�18; 17)

v

4

(�27; 29)

v

5

(�24; 27)

v

6

(�15; 21)

B

1

(�27; 31)

B

2

(�30; 33)

B

3

(�25; 23)

B

4

(�28; 27)

B

5

(�23; 29)

B

6

(�20; 27)

B

7

(�25; 25)

B

8

(�23; 27)

p (�28; 30

1

3

)

Table 6: Criterion values for all nodes, all bottlene
k-points and point p.
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5.2 General solution method for the Q 
riteria 
ase

First, we solve two simple 
ases of the problem, namely the node problem and the dire
ted


ase of the absolute lo
ation problem. Then we present the absolute lo
ation problem on

an undire
ted network.

5.2.1 Lo
ating the new fa
ility in a node

In this 
ase the new fa
ility 
an be pla
ed only at the nodes of the given network, and

we 
an determine the eÆ
ient set X

Par

= X

Par

(V) by the following approa
h in O(Qn

2

)

time, given the distan
e matrix D.

In the solution pro
edure we make a pairwise 
omparison of all the n nodes. Initially we


lassify all nodes as eÆ
ient. Then we 
ompare, say nodes v

i

and v

j

. If f(v

j

) dominates

f(v

i

), we delete v

i

from the set of eÆ
ient nodes and 
ontinue the 
omparison. This

approa
h is presented in both Hama
her et al. [36℄ and Paper D.

5.2.2 Lo
ating the new fa
ility on a dire
ted network

For this problem we have to investigate the obje
tive fun
tion (13) of the dire
ted 
ase.

First we observe that the obje
tive fun
tions are 
onstant on the interior of the edges.

This result is proven in Paper D, and follows from the fa
t that ea
h term in the sum in

(13) is a shortest 
y
le multiplied by a weight.

We subsequently use the triangular inequality to prove that the obnoxious obje
tive fun
-

tions, q 2 Q

1

, have a higher value at the endnodes of e, and that the desirable obje
tive

fun
tions, q 2 Q

2

, have a lower value at the endnodes of e. Thus, f

q

is still 
onvex for

q 2 Q

1

and 
on
ave for q 2 Q

2

on an edge. To see this we analyze the obje
tive fun
tion

(13) on
e again. This result is also proven in Paper D. This stru
ture of the obje
tive

fun
tions on the dire
ted edges is illustrated in Figure 15. The values are taken from a

dire
ted example presented in Paper D.

The solution pro
edure for the dire
ted 
ase is very similar to the pro
edure for the \node"


ase in Se
tion 5.2.1. When we have observed that the obje
tive fun
tions are 
onstant

on the interior of all edges, we 
an simply make a pairwise 
omparison of all nodes and

edges. When we make this 
omparison on the n+m nodes and edges, ea
h taking O(Q)

time, we get a bound of O(Q(n+m)

2

) time.

5.2.3 Lo
ating the new fa
ility on an undire
ted network

The general solution method 
onsists of pairwise 
omparison of subedges. The obje
tive

fun
tions are all pie
ewise linear, and the idea is to partition the network into subedges,
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t
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v

1

v

2

62

78

98

-70

-62

-96

Figure 15: f((v

1

; v

2

)). Noti
e that f(v

1

) dominates f(v

2

).

where the obje
tive fun
tions are linear. The points where the pie
ewise linear fun
tions


hange in slope are in fa
t the bottlene
k-points. We then make a pairwise 
omparison

of all these subedges, and delete the ineÆ
ient parts. The result is the 
omplete set of

eÆ
ient solutions X

Par

. For ea
h 
omparison of two subedges we will 
onstru
t a linear

program, that 
an be solved in linear time by methods found in Megiddo [53℄, to dete
t

ineÆ
ient points.

Let z

q

(t) = f

q

(x

t

); x

t

= (e; t); e = (v

i

; v

j

). These Q fun
tions are all pie
ewise linear,

with the same set of possible breakpoints 
orresponding to the bottlene
k-points. Assume

there are P + 1 breakpoints, in
luding the two nodes. We then have P subedges on e.

Let these breakpoints on (e; t) be denoted by t

j

; j = 0; 1; : : : ; P , (1 � P � n + 1), with

t

0

= v

i

, t

P

= v

j

and t

j�1

< t

j

8 j = 1; 2; : : : ; P . For t 2 [t

j�1

; t

j

℄, the z

q

(t)'s are linear

fun
tions of the form

z

q

(t) = m

q

j

t+ b

q

j

8 q = 1; 2; : : : ; Q:

Let us now 
ompare the subedge A on edge e

A

, (e

A

; [t

j�1

; t

j

℄), with subedge B on edge

e

B

, (e

B

; [s

p�1

; s

p

℄). A point (e

A

; t) 2 (e

A

; [t

j�1

; t

j

℄) is dominated by some point (e

B

; s) 2

(e

B

; [s

p�1

; s

p

℄) if and only if

m

q

p

s+ b

q

p

� m

q

j

t+ b

q

j

8 q = 1; 2; : : : ; Q

where at least one inequality is stri
t. This 
omparison is illustrated in Figure 16 for two

subedges from Example 5.1.1. Subedge (B

7

; B

8

) is 
ompared with subedge (v

5

; B

7

).

Let us de�ne the set T where the inequalities hold (for these parti
ular subedges) by

T = f(s; t)j m

q

j

t�m

q

p

s � b

q

p

� b

q

j

; 8 q 2 Qg \ ([s

p�1

; s

p

℄� [t

j�1

; t

j

℄)

If T = ;, (e

B

; [s

p�1

; s

p

℄) does not 
ontain a point dominating any point in (e

A

; [t

j�1

; t

j

℄).

Otherwise T 6= ; is taken as a feasible solution set of the two 2-variable linear programs:

LB = minf t j (s; t) 2 T g and UB = maxf t j (s; t) 2 T g



40 Multi
riteria Semi-obnoxious Network Lo
ation (MSNL) problems

1

3

0

2

3

1

3

z

2

z

1

t

1

(B

7

) t

2

(B

8

) s

0

(v

5

) s

1

(B

7

)t s

29

�23 �23

29

27 27

�20

�24

Figure 16: Comparing subedge (B

7

; B

8

) with subedge (v

5

; B

7

).

Using methods des
ribed by Megiddo [53℄, LB and UB 
an be 
al
ulated in O(Q) time.

Next we determine if the points 
orresponding to LB and UB are only weakly dominated.

This means that none of the inequalities need to be stri
t as required by De�nition 1. The

details of this are found in Paper D. If both LB and UB are dominated, we delete the

dominated part of (e

A

; [t

j�1

; t

j

℄) as follows:

(e

A

; [t

j�1

; t

j

℄) = (e

A

; [t

j�1

; t

j

℄) n (e

A

; [LB;UB℄)

This subedge 
omparison is illustrated in Figure 17, where the subedge (B

7

; B

8

) = (e; [

1

3

;

2

3

℄)

from Example 5.1.1 is 
ompared with (v

5

; B

7

) = (e; [0;

1

3

℄). Both subedges are on the same

edge. Sin
e T is non-empty we solve the two programs and �nd LB =

1

3

and UB =

2

3

.

Both LB and UB are dominated, so the subedge (B

7

; B

8

) is 
ompletely deleted.

In order to 
omplete the 
omparison, we simply make an ordered subedge 
omparison.

First, we 
ompare (e

1

; [t

0

; t

1

℄) with all the other subedges, possibly deleting parts of

(e

1

; [t

0

; t

1

℄). Then we 
ompare the se
ond subedge (e

1

; [t

1

; t

2

℄) with all the remaining

subedges, in
luding the subedge (e

1

; [t

0

; t

1

℄). This 
omparison 
ontinues until we have


ompared the last subedge (e

m

; [s

P�1

; s

P

℄) with all the remaining subedges.
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t

s

1

1

2

3

2

3

1

3

1

3

T

Figure 17: The linear programming 
onstraints for 
omparing (B

7

; B

8

) = (e; [

1

3

;

2

3

℄) with

(v

5

; B

7

) = (e; [0;

1

3

℄) on edge (v

5

; v

6

) in Example 5.1.1. T is indi
ated by the shaded area.

Noti
e that we 
an still use the entire subedge (e

A

; [t

j�1

; t

j

℄) to 
ompare with the other

subedges, even though a part of it is ineÆ
ient. It is only for the set of eÆ
ient points

X

Par

, that we have to remember what part of (e

A

; [t

j�1

; t

j

℄) whi
h is eÆ
ient.

If we make the global pairwise 
omparison on the O(mn) bottlene
k-point subedges, ea
h

taking O(Q) time, we get a 
omplexity bound of O(Qm

2

n

2

) time. This is also the bound

for the 
ase where Q = Q

2

found in Hama
her et al. [36℄.

5.3 Bi
riteria 
ase

In this se
tion we present an improved method for the 2-
riteria 
ase. When we have only

two 
riteria, we may use the image of the network mapped into 
riterion spa
e Z to solve

the problem faster. This is done by 
al
ulating the lower envelope, see Hershberger [45℄.

The envelope 
an be 
al
ulated in O(p log p) time, where p is the number of line-segments

(subedges).

This pro
edure is best des
ribed by an example, so we present the undire
ted network of

Example 5.1.1 in 
riterion spa
e, see Figure 18.

Sin
e we want to �nd the set of eÆ
ient solutions X

Par

, we are only interested in values

between the two extreme optimal solutions, namely f

1�

and f

2�

. In 
riterion spa
e we are

only interested in the region [f

1�

; f

1

(x

2

)℄ � [f

2�

; f

2

(x

1

)℄, where x

1

and x

2

are de�ned in

Se
tion 1.1. We have to make sure that the slope of the envelope is de
reasing, when the

f

1

-values in
rease, to ensure that there are no dominated points on the envelope. This 
an

easily be ensured by a few te
hni
al details des
ribed in Paper D. The lower envelope now


onstitutes Z

Par

. The set of eÆ
ient solutions is then given by X

Par

= f

�1

(Z

Par

). The

eÆ
ient set 
orresponding to the nondominated set of Figure 18 is indi
ated in Figure 14.

We have the same 
omplexity bound on the lower envelope 
al
ulation as in Hama
her et
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3

Figure 18: Mapping of the undire
ted network from Example 5.1.1 into 
riterion spa
e.

The bold parts 
onstitute the set of nondominated points.

al. [36℄, namely O(mn log(mn)). This bound 
an be rewritten by examining the log term

and using the fa
t that m is at worst n

2

for dense graphs. We therefore get the bound of

O(mn log n) time for the envelope 
al
ulation.

5.4 Computational results

In this se
tion we present 
omputational results from an implementation of the algorithm

outlined in Se
tion 5.2.3. We have not used the methods of Megiddo [53℄ in this im-

plementation to solve the small LP's. Instead, we have used CPLEX 6.6. The 
ode is

programmed in C++ and the tests are run on a 700 MHz Linux PC.

We have used random networks of varying size generated using NETMAKER, see Paper

B [66℄. In ea
h group we have used 10 random networks, and the mean is reported in the

following tables.

First, we examine some semi-obnoxious bi
riterion networks, having one push obje
tive

and one pull obje
tive. The results are presented in Table 7. It appears that the number

of subedges grows a little less than squared the number of nodes. The number of a
tual


omparisons made is presented in the table, and the per
entage of a
tual 
omparisons to

the worst 
ase is also presented. It is important to note that this per
entage de
reases as

the networks in
rease in size.

The number of eÆ
ient subedges is also presented in Table 7, and this number seems to
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# Nodes 50 100 150 200 250

CPU-time 40.96 229.54 774.64 1505.42 3326.37

# Subedges 3033.6 9411.5 18525.2 28368.1 39540.2

# Subedge 
omparisons (in millions) 0.358 1.770 5.138 8.655 16.531

# EÆ
ient subedges 96.2 155.3 175.7 222.5 264.5

% EÆ
ient subedges 3 1.6 0.95 0.78 0.67

% Comparisons 4.00 2.02 1.50 1.08 1.05

# Comparisons per se
 8733 7709 6633 5749 4970

Table 7: Semi-obnoxious bi
riterion results, 1 push - 1 pull obje
tive.

grow linearly with the number of nodes. This number is in fa
t higher than the number

of a
tual eÆ
ient subedges, be
ause more subedges may 
ontain the same eÆ
ient point,

when this point is a node. If a node is eÆ
ient, all the subedges 
onne
ted to this node


ontain some eÆ
ient points (perhaps only the node whi
h is the endpoint of the subedge).

The last row in Table 7 are the numbers of 
omparisons made per CPU-se
ond. Assuming

that CPLEX performs independently of the number of problems it has to solve, this

de
rease indi
ates that the large problems require a lot more storage of data, and a

essing

this data takes an in
reasing amount of time.

Next we examine the e�e
t of having more obje
tives. These results are all 
omputed on

networks with 50 nodes. We reuse the results of the bi
riterion (1-1) networks of Table 7,

examine two types of three obje
tive problems and one type of four obje
tive problems.

The three obje
tive networks are generated with both 1 obnoxious and 2 desirable obje
-

tives (1-2), and 2 obnoxious and 1 desirable obje
tives (2-1). The four obje
tive networks

are all with 2 obnoxious and 2 desirable obje
tive fun
tions (2-2). The results are presented

in Table 8.

As expe
ted both the number of subedges 
ontaining eÆ
ient points and the CPU-time

in
rease rapidly when more negatively 
orrelated obje
tive fun
tions are added. With four

obje
tives more than 75 % of the subedges 
ontain eÆ
ient points. It is seen that the CPU-

time for these instan
es is almost proportional to the number of subedge 
omparisons, sin
e

the data size of the instan
es is approximately the same (last line in Table 8).

Finally, we 
on
lude that the 
omputational results are 
onstru
tive in the sense that

rather large problems 
an be solved within a reasonable amount of time. Sin
e lo
ation

problems are usually not of the type you have to resolve often, a longer CPU-time is

a

eptable.

The most en
ouraging result being that for bi
riterion networks with obje
tive fun
tions

in almost opposite dire
tions, a very small proportion of the networks is eÆ
ient. This
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# Obje
tives 1-1 1-2 2-1 2-2

CPU-time 40.96 123.05 105.49 870.57

# Subedges 3033.6 3293.1 3158.8 2853.6

# Subedge 
omparisons (in millions) 0.358 1.019 0.914 6.128

# EÆ
ient subedges 96.2 359.1 357.9 2237.7

% EÆ
ient subedges 3 11 11 78

% Comparisons 4.00 9.47 9.53 75.46

# Comparisons per se
 8733 8349 8720 7077

Table 8: The e�e
t of having more obje
tives. All networks have 50 nodes.

indi
ates that this model is in fa
t an aid for the de
ision-maker, sin
e a large part of the

network 
an be omitted from further 
onsideration. On the eÆ
ient parts of the network,

the trade-o� between the two obje
tives 
an then be revealed.

As a �nal 
omment, we note that with negatively 
orrelated obje
tives, at most three

obje
tive fun
tions should be 
onsidered. Otherwise, a very large proportion of the network

will be eÆ
ient, and this method will not have helped the DM.

5.5 Con
lusions on the subedge 
omparison approa
h

After having investigated the di�erent problems in turn, we 
an 
on
lude that the methods

des
ribed in Se
tion 5.2.3 and 5.3 works for any pie
ewise linear obje
tive fun
tion. The

e�e
tiveness of the two algorithms depend on how easy the breakpoints 
an be found,

and on the number of resulting subedges. If E is the number of subedges, the bi
riterion

method from Se
tion 5.3 runs in O(E logE) time and the multi
riteria method from

Se
tion 5.2.3 runs in O(QE

2

) time.

From the se
tion on 
omputational results we 
an 
on
lude that the method is appli
able

the problems of a fair size. We have also seen that for biobje
tive problems with negatively


orrelated obje
tive fun
tions only a limited part of the network is eÆ
ient. We therefore


on
lude that this model is in fa
t a good tool for MSNL problems.
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6 Bi
riteria Network Lo
ation (BNL) problems with 
rite-

ria dependent lengths and minisum obje
tives

We begin this se
tion by a motivating example. Assume we have to lo
ate a money

reserve, 
onsidering the two obje
tives of minimizing the transportation 
osts and the risk

of having the transports robbed. The depot serves a number of 
lients varying in size,

and we are given a 
onne
ted network and interpret ea
h of the n nodes as the 
lients. A

relevant (node) weight for a 
lient with respe
t to transportation 
osts is the number of

monthly deliveries, and a weight for the risk obje
tive is the maximum value of a money-

transport. The edge-lengths with respe
t to transportation 
osts 
ould be the distan
e,

and for the risk obje
tive the edge-length 
ould be the probability of an assault. If we

assume that the 
ost of opening the new fa
ility is independent of lo
ation, this parti
ular


ost is unimportant.

A solution to this problem 
onsists of two de
isions. The �rst (and probably the most

important) one is to de
ide where to lo
ate the new fa
ility (depot), and the se
ond one


onsists in determining how to route the 
ow from the new fa
ility to the nodes. The


ow problem 
onsists of n � 1 Bi
riterion Shortest Path (BSP) problems (des
ribed in

Se
tion 2).

The solution method proposed is a variant of the two-phases approa
h due to Ulungu

and Teghem [74℄ and Vis�ee et al. [75℄. In Phase 1 all (or a representative subset of) the

supported extreme solutions are found by using the weighting method. In Phase 2 a sear
h

between the supported solutions is 
ondu
ted to �nd unsupported eÆ
ient solutions. The

pro
edure is explained in details in Se
tion 6.3.

6.1 Problem formulation

We are given a 
onne
ted dire
ted network G(V; E) with node set V = fv

1

; v

2

; : : : ; v

n

g

where jVj = n nodes, and edge set E = f(v

i

; v

j

); (v

k

; v

l

); : : : ; (v

p

; v

q

)g with jEj = m edges.

The underlying graph is denoted by G, and edges may be referred to by e 2 E , by

(v

i

; v

j

) 2 E or simply by (i; j) 2 E , where node i is the tail and node j is the head. Ea
h

node v

i


arries two weights (w

1

i

; w

2

i

)

t

, where w

q

i

2 IR

+

; q = 1; 2, so we may refer to the

matrix of weights by W

2�n

. Ea
h edge e 2 E has length l(e) = (l

1

(e); l

2

(e)) 2 IR

2

+

. Let us

de�ne a matrix of edges E

m�(4)

with the following entries. E

i1

is the tail of edge e

i

, E

i2

is the head, E

i3

= l

1

(e

i

) is the length with respe
t to 
riteria one and E

i4

= l

2

(e

i

) is the

length with respe
t to 
riteria two.

Noti
e that an undire
ted network 
an be modeled as a dire
ted network with the double
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amount of edges. De�ne binary de
ision variables as follows:

x

i

=

�

1 if the fa
ility is lo
ated in node i

0 else

y

ijk

=

�

1 if edge (i; j) is used in the path to node k

0 else

We examine the so-
alled median obje
tives or weighted sum obje
tives:

f

q

(y) =

n

X

k=1

n

X

i=1

n

X

j=1

l

q

ij

w

q

k

y

ijk

q = 1; 2

Combining the 
oeÆ
ients to 


q

ijk

= l

q

ij

w

q

k

, we get

f

q

(y) =

n

X

k=1

n

X

i=1

n

X

j=1




q

ijk

y

ijk

q = 1; 2 (15)

There are two types of 
onstraints. The �rst 
onstraint ensures that exa
tly one fa
ility is

lo
ated and the se
ond set of 
onstraints ensures the existen
e of paths from the fa
ility

to the remaining nodes. This leads to the following problem:

min f

1

(y)

min f

2

(y)

s.t.

n

P

i=1

x

i

= 1

n

P

j=1

y

jik

�

n

P

j=1

y

ijk

= �x

i

i 6= k; 8 i; k

x

i

2 f0; 1g 8i

y

ijk

2 f0; 1g 8 i; j; k

(16)

Noti
e that we have omitted the following redundant 
onstraints

n

X

j=1

y

jik

�

n

X

j=1

y

ijk

= 1� x

i

8 i; where i = k:

The reason being that this part of the 
onstraint matrix 
onsists of n totally unimodular

sub-matri
es forming the n sets of paths. Noti
e that one path is non-existing, sin
e the

node in whi
h the new fa
ility is lo
ated, ships nothing through the network to itself.

In Paper E we prove by an example that the 
onstraint matrix of (16) is not totally

unimodular.
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Weighting the two obje
tive fun
tions in (16), using the weights � and 1 � �; � 2 (0; 1),

results in the weighted version of (16)

min �f

1

(y) + (1� �)f

2

(y)

s.t.

n

P

i=1

x

i

= 1

n

P

j=1

y

jik

�

n

P

j=1

y

ijk

= �x

i

i 6= k 8 i; k

x

i

2 f0; 1g 8i

y

ijk

2 f0; 1g 8 i; j; k

(17)

In Se
tion 6.3.1 we des
ribe how problem (17) 
an be solved in O(n

4

) running time using

Benders' de
omposition for a �xed �. The appropriate � is found as des
ribed by the

NISE method, very similar to Phase 1 in Se
tion 3.2.

6.2 Example

We examine the network presented in Figure 19 with the following weights and undire
ted

edges. Ea
h 
olumn of W 
onsists of the two node-weights.

W =

�

200 300 500 100 400 500 400

7 4 2 6 6 2 8

�

The �rst two 
olumns of E are the tail and head nodes. The next two 
olumns are the

two edge-lengths.

E =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 2 78 22

1 3 24 72

1 4 26 71

1 5 13 71

1 7 86 12

2 3 98 29

2 5 17 90

3 5 29 97

3 6 87 28

3 7 7 69

4 5 4 77

4 7 89 5

5 6 17 92

5 7 40 74

6 7 69 12

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

The resulting 11 nondominated 
riterion ve
tors are presented in Table 9. These 
rite-

rion ve
tors are visualized in Figure 20 and it is seen that there are 6 supported and 5
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1 2 3

4 5 6

7

Figure 19: Network for Example 6.2.

unsupported 
riterion ve
tors. Of the 5 unsupported solutions, only one, (89200; 1868),

is lo
ally unsupported (de�ned in Se
tion 6.3). The other 4 unsupported solutions are

lo
ally supported by the nodes indi
ated in Figure 20. The last nondominated solution,

(89200; 1868), is dominated by a 
onvex 
ombination of the following two lo
ally supported

solutions:

9

11

(91200; 1684) +

2

11

(80200; 2587) = (89200; 1848:18)

There are a total of 2128 feasible 
riterion ve
tors, using only eÆ
ient paths between

nodes. All these ve
tors are illustrated in Figure 21.

6.3 Two-phases approa
h

In this se
tion the solution pro
edure for solving the bi
riterion problem (16) is outlined.

Before stating the pro
edure it may be helpful to 
onsider a na��ve method. One possible

way of solving the problem 
ould be to solve problem (17) n times, namely one time for

ea
h possible lo
ation of the new fa
ility. Suppose that the lo
ation of the new fa
ility is

�xed at a spe
i�
 node, say node i (so x

i

= 1). Using the weighting method, the supported

eÆ
ient solutions (paths) with respe
t to node i 
an be revealed. We 
all these eÆ
ient

solutions lo
ally eÆ
ient (with respe
t to node i). Given � 2 (0; 1) and x the 
orresponding
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Node f

1

f

2

5 45500 3025

5 47100 2289

1 78200 2062

7 89200 1868

7 91200 1684

1 92600 1506

7 97200 1376

1 107500 1182

7 111600 1112

7 129300 856

7 203800 798

Table 9: Nondominated values for Example 6.2.

lo
ally eÆ
ient solution 
an be found in O(n

3

) running time, sin
e we are fa
ed with n�1

shortest path problems.

Finding the lo
ally unsupported eÆ
ient solutions that are in fa
t globally eÆ
ient, 
on-

stitutes a more diÆ
ult problem. These 
annot be found using the weighting method.

This fa
t is known from studying the BSP problem alone (Paper B [66℄).

We thus have three types of eÆ
ient solutions:

� supported eÆ
ient solutions

� lo
ally supported eÆ
ient solutions

� (lo
ally) unsupported eÆ
ient solutions

The reason why lo
ally supported eÆ
ient solutions are interesting, is that they may

be unsupported eÆ
ient solutions in the main problem (16), but possible to �nd by the

weighting method. These three kinds of solutions are illustrated in Figure 20.

The pro
edure that we propose instead of the na��ve method, is a variant of the two-

phases approa
h due to Ulungu and Teghem [74℄ and Vis�ee et al. [75℄, and may be stated

generi
ally as:

� Phase 1: Find all (or a representative subset of) the supported solutions.

� Phase 2: Condu
t a sear
h between the supported solutions in order to �nd unsup-

ported nondominated solutions.
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f

2

f

1

Lo
ally unsupported

5

5

1

7

7

1

7

1

7

7

7

7 (80200,2587)

Figure 20: Nondominated ve
tors for Example 6.2. Large dots illustrate the supported

solutions, and only one solution is lo
ally unsupported. The numbers indi
ate the lo
ation

node.

6.3.1 Benders' de
omposition in Phase 1

As explained in Se
tion 6.1 all supported solutions to (16) (and the lo
ally supported)

may be obtained by solving the weighted program (17) parametri
ally in � 2 (0; 1). We

will do that by employing NISE (Non-Inferior Set Estimation), a method presented in

Cohon [17℄. NISE guides the 
hoi
e of � 2 (0; 1). Details on how to 
ompute the �'s are

presented in Paper E.

Now we explain how Benders' de
omposition 
an be used to �nd the supported solutions

given a weight � in Phase 1. Let � be �xed and de�ne




ijk

(�) = �w

1

k

l

1

ij

+ (1� �)w

2

k

l

2

ij

(� 0 sin
e l; w � 0):

When x is �xed, we 
an use the path 
onstraints being totally unimodular, and relax the

integrality 
onstraints on y. Fixing x means lo
ating the fa
ility at a parti
ular node. For
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35000030000025000020000015000010000050000
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Figure 21: Illustration of 2128 
riterion ve
tors for Example 6.2.

a �xed x satisfying

P

i

x

i

= 1; x

i

2 f0; 1g, we get the following Benders' subproblem:

min

P

k;i;j




ijk

(�)y

ijk

s:t

P

j

y

jik

�

P

j

y

ijk

= �x

i

i 6= k 8i; k

0 � y

ijk

� 1 8i; j; k

(18)

This linear programming problem has the following dual program:

max

P

i;k

k 6=i

�

ik

(�x

i

) +

P

k;i;j

�

ijk

s:t

�

jk

� �

ik

+ �

ijk

� 


ijk

(�) i 6= k 8i; j; k

� � 0

(19)

The variables � are free variables 
orresponding to the path 
onstraints in (18) and the �

variables 
orrespond to the upper bound on y. These dual variables 
an be found when the

n�1 shortest path problems are solved in the Benders' subproblem, so we need not a
tually
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solve the dual problem (19). The dual leads to the following Benders' masterproblem:

min v

s:t

v � �

P

i;k

k 6=i

�

l

ik

x

i

+

P

k;i;j

�

l

ijk

8l

P

i

x

i

= 1

x

i

2 f0; 1g 8i

(20)

where l is an index for the added inequalities.

The �rst time we generate a redundant inequality (or suggests a node pi
ked earlier), the

solution at hand is optimal (eÆ
ient). This is true be
ause the subproblem (18) will return

an earlier found solution.

Noti
e that Benders' masterproblem (20) is easy to solve in this 
ase. It 
an be reformu-

lated as a minimax problem. Let us rewrite the �rst 
onstraint in (20), keeping in mind

that only one x

i

will be one.

v � �

X

i

X

k

k 6=i

�

l

ik

x

i

+

X

k;h;j

�

l

hjk

v �

X

i

0

B

B

�

�

X

k

k 6=i

�

l

ik

+

X

k;h;j

�

l

hjk

1

C

C

A

x

i

v �

X

i




l

i

x

i

where 


l

i

= �

X

k

k 6=i

�

l

ik

+

X

k;h;j

�

l

hjk

If we think of these 


l

i


oeÆ
ients in a matrix, the optimal x

i

is to �nd the 
olumn i where

the largest 


l

i

element is as small as possible.

Noti
e, that we have to solve problems (18) and (20) at most n times. Sin
e Benders'

subproblem 
onsists of n� 1 shortest path problems, problem (18) 
an be solved in O(n

3

)

running time. Therefore the overall running time in Phase 1, given �, is O(n

4

).

6.3.2 Phase 2

Here we 
an �rst �nd the lo
ally supported nondominated ve
tors by using the weighting

method for a �xed node(s).

To �nd lo
ally unsupported eÆ
ient points of (16), we use the T
heby
he� theory. Let

z = (z

1

; z

2

) denote a �xed referen
e point with z � z

�

=

�

f

1�

; f

2�

�

, where z

�

is the ideal
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point. Then the augmented non-weighted T
heby
he� program (21) may be stated as

min �+ �

�

f

1

(y) + f

2

(y)

�

s.t.

f

q

(y)� � � z

q

q = 1; 2

n

P

i=1

x

i

= 1

n

P

j=1

y

jik

�

n

P

j=1

y

ijk

= �x

i

i 6= k 8i; k

x

i

2 f0; 1g 8i

y

ijk

2 f0; 1g 8i; j; k

� 2 IR

+

(21)

where � is a small positive 
onstant ensuring that the solution is not just weakly eÆ
ient.

A few 
omments are in order. Note that instead of solving the usual weighted T
heby
he�

program as found in Steuer and Choo [69℄, we propose to solve the augmented non-weighted

T
heby
he� program (21). It was shown by Alves and Clima
o [1℄ that all nondominated

solutions to (16) 
an be found using the non-weighted program for integer problems (IP),

and in Alves and Clima
o [2℄ this result was generalized to mixed integer problems (MIP).

Note that the augmented T
heby
he� program (21) has the same 
onstraints as our orig-

inal problem (16), as well as two additional 
onstraints. The two new 
onstraints are the

referen
e point 
onstraints, linking the referen
e point to the obje
tive fun
tion in (21).

These two new 
onstraints 
ompli
ate the problem, sin
e they destroy the ni
e stru
ture

of the 
onstraint matrix. Using Lagrange relaxation of these 
onstraints does not solve

our problem. We simply end up with the weighting method. This is derived in Appendix

2 in Paper E. However, problem (21) is a one obje
tive MIP, whi
h 
an be solved by the

usual IP methods, su
h as bran
h and bound.

Next we explain how to determine the appropriate referen
e point(s). Assume that we

want to sear
h for lo
ally unsupported solutions between the two nondominated points E

1

and E

2

. First, we determine a maximum deviation fa
tor

Æ = max

�

f

1

(x

2

)� f

1�

; f

2

(x

1

)� f

2�

	

where x

1

and x

2

are de�ned in Se
tion 1.1 as f

1

and f

2

optimal solutions. This deviation

fa
tor is going to ensure that our referen
e point is below the ideal point z

�

. Next we �nd

referen
e points 
orresponding to our two nondominated solutions, E

1

and E

2

:

Z(E

i

) = (E

1

i

� Æ; E

2

i

� Æ) i = 1; 2
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The sear
h referen
e point z

new


an then be determined as the maximum of the referen
e

point 
oordinates, be
ause this point has a maximum distan
e of Æ to both Z(E

1

) and

Z(E

2

):

z

new

=

�

max

�

Z

1

(E

1

); Z

1

(E

2

)

	

;max

�

Z

2

(E

1

); Z

2

(E

2

)

	�

:

Using z

new

in (21) 
an result in two things. If a new solution is returned, this solution is

nondominated and de�nes two new sear
h areas. Otherwise one of the points E

1

or E

2

is

returned, and no nondominated (unsupported) solutions exist between the two points.

For our Example 6.2 we �nd Æ = maxf203800 � 45500; 3025 � 798g = 158300. Next we

sear
h for lo
ally unsupported solutions between the two points E

1

= (78200; 2062) and

E

2

= (91200; 1684) (on either side of the single lo
ally unsupported point in Figure 20).

This leads to the referen
e point z

new

= (�67100;�156238), where � = 158300 
an �nd

both E

1

and E

2

. In this 
ase E

3

= (89200; 1868) is found with � = 158106.

6.4 Con
lusions on the BNL problem

We have presented a new, interesting lo
ation problem. The formulation in
orporates both

the lo
ation and the routing aspe
ts in a multiobje
tive setting. We have also presented

a solution method for the problem, and illustrate the problem stru
ture and solution

pro
edure by an example. The presented method 
an easily be made intera
tive, sin
e the

pro
edures in both phases are easily made intera
tive.

Unfortunately, the solution method does not easily generalize to more than two obje
tives.

DiÆ
ulties exists in both phase 1 and 2 as explained in Paper E.
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7 A sto
hasti
 programming model for 
apa
ity expansion

at Sonofon

In this se
tion we study a mobile 
ommuni
ations network. Sin
e the des
ription of the

problem in Paper F is very te
hni
al, we now make a less detailed presentation. This

se
tion is also quite di�erent from previous se
tions, be
ause the modeling phase of making

a good des
ription of a pra
ti
al problem took a lot of e�ort. First, we will des
ribe the

stru
ture of a mobile 
ommuni
ations network.

The base trans
eiver stations (BTSs) are ea
h 
onne
ted to one base station 
ontroller

(BSC). Ea
h BSC serves a number of BTSs and is 
onne
ted to one mobile swit
hing


enter (MSC). Finally ea
h MSC serves a number of BSCs and the MSCs are 
onne
ted

internally. The network is illustrated in Figure 22.

MSC

MSC

MSC

BSC

BSC

BSC

BSC

BSC

BSC

BTS

BTS

Figure 22: Illustration of mobile tele
ommuni
ations network.

The visitor lo
ation register (VLR) of an MSC, a database handling all information about


lients, has a limited 
apa
ity, thus restri
ting the number of 
ustomers that 
an be served

(through BTSs and BSCs) by an MSC. Thus the network provider not only has to expand

the link 
apa
ities but should 
onsider when and where to deploy new MSCs in order to

be able to serve the in
reasing number of 
ustomers.

We will 
onsider the problem of deploying a number of new MSCs and allo
ating the BSCs

to new and existing MSCs, thus treating the number and lo
ations of BTSs and BSCs

as exogenous. The deployment of MSCs must be done so as to minimize the in
urred


osts while meeting 
ustomer demand and observing the 
apa
ity restri
tions. The 
ost

fun
tion will in
lude four terms:
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1. The 
ost of new MSCs.

2. The 
ost of 
onne
ting BSCs to MSCs.

3. The 
ost of expanding the 
apa
ity of links 
onne
ting the MSCs.

4. A penalty 
ost for handovers that o

ur among BSCs that are 
onne
ted to di�erent

MSCs.

The 
ost of a new MSC is a known (�xed) 
ost in
luding the pur
hase pri
e, physi
al

installation in a building and a number of working hours for the installation. The 
ost

of 
onne
ting a BSC to an MSC is zero if the BSC is 
urrently 
onne
ted to this MSC,

otherwise the 
ost of moving the BSC to a new or existing MSC is estimated. The 
ost

of expanding link 
apa
ities is a linear fun
tion of the number of new bandwidth units

needed. Finally, a handover 
ost is introdu
ed to keep BSC areas 
onne
ted.

It is a fa
t, that the time that passes from the moment at whi
h deployment of MSCs is

resolved on until the equipment is a
tually in pla
e and available for use is rather long

(about a year). This means that at the time the de
ision has to be made the network

provider does not have full knowledge about several important parameters su
h as the

traÆ
 matrix, the 
ost of expanding the 
apa
ity of links and so on. For this reason the

network provider should put o� the de�nitive de
ision on allo
ation of BSCs to MSCs as

long as possible, allowing un
ertainty to be at least partially revealed. This is the in
entive

for us to model the problem as a two-stage sto
hasti
 program, the �rst stage 
onsisting

of deployment of MSCs and the se
ond stage 
onsisting of allo
ation of BSCs to MSCs

and routing of traÆ
 in the resulting network.

7.1 A two-stage sto
hasti
 programming model

As previously dis
ussed several parameters of the model are not known with 
ertainty at

the time the de
ision on deployment of MSCs has to be made. Thus we will think of

these parameters as depending on the out
ome of a random variable � de�ned on some

probability spa
e (�;F ; P ). We will make the following assumption:

Assumption 1 The random variable � has a dis
rete distribution with �nite support � =

f�

1

; : : : ; �

S

g and 
orresponding probabilities P (�

1

) = �

1

; : : : ; P (�

S

) = �

S

.

Assumption 1 allows us to speak of the parameters in terms of s
enarios, a s
enario being

a set of realized values of the parameters. q(�

s

) is the se
ond stage pri
es, h(�

s

) is the

se
ond stage right hand side and T (�

s

) is the se
ond stage e�e
t of the �rst stage de
ision.

For notational 
onvenien
e we will refer to su
h a s
enario simply by (q

s

; h

s

; T

s

). In our
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ase the only �rst stage parameters is the pri
e ve
tor 
 of deploying new MSCs, sin
e it

is possible (but not likely) to open all the possible new MSCs. The �rst stage (binary)

variables are denoted x = (x

1

; : : : ; x

n

), and the se
ond stage variables are denoted y

s

.

Sin
e our se
ond stage problem is a MIP, y is split into y

1

and y

2

where y

s

1

is a binary

ve
tor (y

s

1

2 IB

m

1

) and y

s

2

is real ve
tor (y

s

2

2 IR

m

2

). This gives the following model for

minimizing the expe
ted 
ost:

min 
x+

S

P

s=1

�

s

Q

s

(x)

s.t.

x 2 IB

n

(22)

where the se
ond stage value fun
tion Q

s

(x) is given by

Q

s

(x) = min q

s

y

s

s.t.

W

s

y

s

= h

s

� T

s

x

y

s

1

2 IB

m

1

; y

s

2

2 IR

m

2

(23)

We have not spe
i�ed the details of the se
ond stage program, but we will explain what

kind of 
onstraints it in
ludes. The y

s

1

binary variables 
onne
t BSCs to MSCs. One


onstraint set ensures that BSCs are only 
onne
ted to open MSCs, and this has to be

done in a way that the VLR 
apa
ities is not ex
eeded. The y

s

2

real variables in
lude

both 
ow and ex
ess 
ow variables. The 
ow variables represent the 
ow on a given edge,

and the ex
ess 
ow variable is used to pri
e the installion of new link 
apa
ity. Finally,

a 
onstraint set is needed to measure the number of handovers. A handover is when two

BSCs are 
onne
ted to di�erent MSCs.

We have omitted a 
ommonly used set of 
onstraints, namely the survivability 
onstraints.

These 
onstraints ensures that alternative routes exists in 
ase of edge failures, or that

only a 
ertain per
entage of the traÆ
 is lost. These 
onstraints 
ompli
ated our problem

in a way that the model did not solve in a reasonable amount of time, but it is still a very

important aspe
t of designing tele
ommuni
ation networks.

7.2 S
enario de
omposition

Even without the mentioned survivability 
onstraints, the problem was diÆ
ult to solve.

In this se
tion we outline the pro
edure used, namely s
enario de
omposition (also 
alled

dual de
omposition).

S
enario de
omposition exploits the fa
t that the vast majority of variables and 
onstraints

in the sto
hasti
 program are s
enario dependent. In fa
t the only thing tying the s
enarios

together are the �rst stage de
isions on deployment of MSCs. For notational 
onvenien
e
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we de�ne the index-set of �rst stage de
isions V = f1; : : : ; ng. If we use variable splitting

on the �rst stage variables, de�ning a deployment of MSCs for ea
h s
enario x

1

; : : : ; x

S

,

problem (22) be
omes separable into independent s
enario subproblems. The fa
t that

the deployment of MSCs 
annot be s
enario dependent may now be represented by a

non-anti
ipativity 
onstraint stating the problem as:

min

S

P

s=1

�

s

(
x

s

+Q

s

(x

s

))

s.t.

x

1

= x

2

= : : : = x

S

x

s

2 IB

n

8s 2 f1; : : : ; Sg

(24)

Relaxing the non-anti
ipativity 
onstraint we obtain a problem whi
h is 
ompletely sepa-

rable into independent s
enario subproblems. These subproblems are solved to obtain an

optimal deployment of MSCs for ea
h s
enario. Next, non-anti
ipativity is reinfor
ed by

bran
hing on 
omponents of these solutions whi
h di�er among s
enarios. To be spe
i�
,

we introdu
e a bran
hing tree, initially 
onsisting of only the root node 
orresponding to

the original problem (22). In a given iteration we sele
t a problem from the bran
hing tree

and solve the 
orresponding s
enario subproblems obtaining s
enario solutions x

1

; : : : ; x

S

.

If MSC i is to be deployed in some s
enario solutions and not in others we add two prob-

lems to the bran
hing tree imposing for s = 1; : : : ; S the 
onstraints x

s

i

= 0 and x

s

i

= 1

respe
tively. Otherwise, if all s
enario solutions are equal, we have a feasible solution of

the original problem and may update the upper bound if appropriate. For a thourough de-

s
ription of su
h a pro
edure, in
luding a Lagrangian relaxation of the non-anti
ipativity


onstraints, we refer to Car�e and S
hultz [12℄.

Clearly, if the s
enario subproblems are solved by means of some bran
h and bound pro-


edure, some e�ort should be taken to put information from previous iterations in the

above pro
edure to use. Thus, a node whi
h is fathomed in a given subproblem in some

iteration of the main pro
edure may be re
onsidered in subsequent iterations sin
e more

variables are �xed as the main pro
edure progresses. In fa
t, for the problem instan
e 
on-

sidered in Se
tion 7.3 the number of �rst stage variables was so small (less than 20) that

an enumeration tree 
ould be 
reated a priori and used for all s
enarios, thus pre
luding

any reevalutions of nodes.

7.3 About the Sonofon problem

In this �nal se
tion we will loosely des
ribe our problem instan
e at Sonofon. Be
ause of


ompetitive 
onditions we 
annot be too spe
i�
 about the problem size and the input

data. The problem has between 5 and 10 existing MSCs, less than 20 potential lo
ations
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for new MSCs and less than 50 BSCs. The network inter
onne
ting the MSCs is 
omplete.

The number of binary variables were redu
ed by dividing the area of interest into three

regions and pre
luding from 
onsideration 
ertain allo
ations of BSCs to MSCs a
ross

regions. In the resulting formulation ea
h s
enario subproblem has 707 binary variables,

14598 
ontinuous variables and 12045 
onstraints.

The 
ost of a new MSC is orders of magnitude higher than any other 
ost. The 
ost of


onne
ting a BSC to an MSC was set to zero if the BSC is 
urrently 
onne
ted to this

parti
ular MSC, and otherwise the total 
ost of a movement was estimated. The 
ost of

expanding link 
apa
ities is given by the total 
ost of installing new equipment. Finally,

the handover 
osts were adjusted observing their e�e
t on solutions, so as to 
reate geo-

graphi
ally 
onne
ted BSC areas. The 
urrent demand for bandwidth and VLR-
apa
ity

was estimated from observations of traÆ
 and the number of 
ustomers respe
tively.

The di�erent 
ost terms are made s
enario dependent by introdu
ing sto
hasti
 
u
tua-

tions on the future pri
es. Likewise, future demand is 
al
ulated using the 
urrent ob-

served demand s
aled by di�erent growth fa
tors. We have used the following pro
edure

to generate demand for VLR-
apa
ity at BSC r under s
enario s:

L

s

r

= growth

s

� growth

s

r

� Current demand

where growth

s

is a parameter, sampled from a uniform distribution, whi
h is used to re
e
t

the average growth in the number of 
ustomers while growth

s

r

is a parameter, sampled from

another uniform distribution, re
e
ting regional 
u
tuations from this average growth.

We have 
onsidered a four year time horizon with respe
t to 
ustomer demand even though

the se
ond stage de
ision is made after just one year. The reason for the four-year time

horizon is to ensure a somewhat stable solution guaranteeing suÆ
ient network 
apa
ity

for three additional years beyond the 
ompleted deployment of new MSCs. This means

that demand is in fa
t only partially revealed at the time the se
ond-stage de
isions are

to be made, but sin
e the additional information obtained at this point will provide an

improved estimate of the true rate of growth in demand, the gain of postponing some

de
isions to the se
ond stage is likely to be 
onsiderable.

The algorithm was implemented in C++ using pro
edures from the 
allable library from

CPLEX 6.6. Considering 100 s
enarios the solution times were about 3.5 hours CPU-time

on a 700 MHz Linux PC. The solution suggested the deployment of one new MSC.
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Abstra
t

This is a survey paper with referen
es to relevant papers in the �eld of the Bi
ri-

terion Shortest Path (BSP) problem. It 
lassi�es the algorithms by their stru
ture to

argue theoreti
ally how they will perform, and at least one algorithm from ea
h 
lass

is dis
ussed in more detail.

Keywords: MOLP, MCDM, MOIP, Bi
riterion, Shortest Path.

1 Introdu
tion

The Bi
riterion Shortest Path (BSP) problem is one of the simplest problems in multi-


riterion linear integer analysis, but nevertheless also one of great importan
e in many

appli
ations. For example it is of interest to model transportation problems with more

than one obje
tive, e.g. 
ost and travel time. Also, the BSP problem often o

urs as

a subproblem in other problems, for example in s
heduling problems. This paper is an

overview of the existing literature in the �eld. For previous survey papers see Zionts [19℄,

Rasmussen [15℄ and Ulungu and Teghem [18℄. The �rst two referen
es survey the general

multi
riteria integer programming problem for whi
h the BSP is a spe
ial 
ase, and both

papers are now quite old. The last referen
e surveys many of the papers also dis
ussed in

this paper. The main 
ontribution of this paper is a 
lassi�
ation of the di�erent solution

methods, and a ranking of the pro
edures based on the algorithmi
 stru
ture.

Let us des
ribe the problem. We have a strongly 
onne
ted dire
ted network or a digraph

G = (N ;A) where N = f1; : : : ; ng is the set of nodes and A = f(i; j); (k; l); : : : ; (p; q)g is

a �nite set of dire
ted edges (ar
s) joining nodes in N . Assume we have jAj = m edges.

Ea
h edge (i; j) 2 A 
arries two attributes denoted by (


ij

; t

ij

). For simpli
ity assume

that 


ij

is the 
ost using edge (i; j) and t

ij

is the travel time. The obje
tive is to �nd

67
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a \shortest" path from a parti
ular node, the sour
e node s 2 N , to another parti
ular

node, the terminal node t 2 N . Traditionally, the BSP problem is formulated as follows:

min 
(x) =

P

(i;j)2A




ij

x

ij

min t(x) =

P

(i;j)2A

t

ij

x

ij

s.t.

P

fjj(i;j)2Ag

x

ij

�

P

fjj(j;i)2Ag

x

ji

=

8

<

:

1 if i = s

0 if i 6= s; t

�1 if i = t

x

ij

2 f0; 1g; 8 (i; j) 2 A

(1)

The 
onstraints in (1) yield a dire
ted path from sour
e node s to terminal node t and

the two obje
tives are to �nd the minimum 
ost s� t path and the minimum travel time

s� t path, respe
tively.

It is highly unlikely to �nd a dire
ted path from node s to node t whi
h a
hieves both

the minimum total 
ost and the minimum total travel time. We therefore have to settle

with something less, namely �nding the set of eÆ
ient paths (see De�nition 1) from node

s to node t.

The problem is known to be NP-
omplete by transformation from a 0-1 knapsa
k

problem, Garey and Johnson [8℄, and Hansen [10℄ give an example with exponentially

many distin
t eÆ
ient paths (intra
table). Next, we de�ne eÆ
ient points (paths) and

nondominated 
riterion ve
tors. Let z(x) = (
(x); t(x)).

De�nition 1 A point x that satis�es the 
onstraints of (1) is eÆ
ient i� there does not

exist a point x that satis�es the 
onstraints (1) su
h that z(x) � z(x) with at least one

stri
t inequality. Otherwise x is ineÆ
ient.

Please note that eÆ
ient points are the same as Pareto optimal points. EÆ
ient points

are de�ned in de
ision spa
e. There is a natural 
ounterpart in 
riterion spa
e, where the


riterion spa
e Z is de�ned as Z = fz(x) 2 R

2

jx satis�es the 
onstraints in (1)g. So the


riterion ve
tors 
orrespond to the image of a linear mapping of all the feasible solutions

to (1).

De�nition 2 z(x) 2 Z is a nondominated 
riterion ve
tor i� x is an eÆ
ient solution.

Otherwise z(x) is a dominated 
riterion ve
tor.

We de�ne the 
ombined obje
tive fun
tion W (x; �) as follows:

W (x; �) = �
(x) + (1� �)t(x) 0 < � < 1 (2)

The fun
tion W (x; �) is a 
onvex 
ombination, or weighted sum, of the two obje
tive

fun
tions. Optimizing this fun
tion with di�erent �'s will give the so-
alled supported
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nondominated solutions and is therefore often referred to as the weighting method.

Sin
e unsupported nondominated 
riterion ve
tors are dominated by a 
onvex 
ombination

of supported nondominated 
riterion ve
tors, unsupported nondominated ve
tors 
annot

be found by the weighting method. This is illustrated in Figure 1. The solution(s) x

in de
ision spa
e 
orresponding to a supported 
riterion ve
tor 
an be referred to as a

supported solution.

Criterion 1

Criterion 2

�

�

�

�

�

D

D1

D2

D3

D4

Figure 1: D is an unsupported, nondominated 
riterion ve
tor.

We know from basi
 Mathemati
al Programming (e.g. [1℄), that the solutions to the

linear relaxation of (1) with obje
tive fun
tion (2) are integer valued, be
ause the uni-

modularity property holds. The points D1;D2;D3 and D4 in Figure 1 illustrate solutions

to (2), with di�erent values of �. The shaded areas are nondominated regions de�ned by

those four points. The point D inside one of the shaded areas, is therefore nondominated

in (1), but it is dominated in (2). The 
on
lusion is that we 
annot, in general, �nd all

the eÆ
ient solutions as supported solutions. We have to sear
h in between the supported

paths as well.

The rest of the paper is organized as follows. In Se
tion 2 we des
ribe some of the


ontributions to solve the problem. Many of the algorithms are presented. We 
on
lude

the paper in Se
tion 3.
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2 Des
ription of algorithms

Our obje
tive is to �nd the 
omplete set of eÆ
ient solutions, or the 
omplete set of

nondominated 
riterion ve
tors. Only algorithms that ful�ll this goal are in
luded.

There are generally two main approa
hes, a path/tree approa
h and a node labeling

approa
h, see Figure 2. Ea
h of the two main approa
hes are again divided in two.

The path/tree approa
h splits into the K'th shortest path approa
h and the Two Phases

method. The node labeling approa
h splits into a Label Setting and a Label Corre
ting

approa
h.

BSP

Path/Tree Node Labeling

K'th shortest path

Two Phases

Label Setting

Label Corre
ting

Figure 2: Classi�
ation of BSP algorithms.

In a path approa
h we examine di�erent path ve
tors, and try to �nd the eÆ
ient

ones. Similarly, we investigate the m dimensional in
iden
e ve
tors that 
hara
terize the

di�erent spanning trees in a tree approa
h. Sin
e there are usually many edges 
ompared

to the number of nodes and there may be exponentially many spanning trees, a labeling

approa
h that 
ompares values in the two-dimensional 
riterion spa
e at ea
h node may be

advantageous. In a Label Setting approa
h one label is made permanent in ea
h iteration

and in a Label Corre
ting approa
h all labels are 
hangeable until the stop 
riterion is

ful�lled.

In Table 1 I list the referen
es that fall in the four 
ategories. The number of referen
es

applying a labeling approa
h indi
ates that this is the most su

essful approa
h. In a joint

paper with K.A. Andersen, [16℄, we des
ribe in detail, why the node labeling approa
h is

to be preferred for the BSP problem.

To 
larify the similarities and di�eren
es between the di�erent labeling algorithms,

I outline a generi
 labeling algorithm. Ea
h node has a set of labels asso
iated with

it. Denote the label-set at node i by L(i). This set 
ontains labels of the form (
; t)
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Table 1: Classi�
ation of referen
es.

K'th shortest path [4℄

Two Phases [14℄

Label Setting [10℄, [13℄ algorithm 1, [17℄

Label Corre
ting [2℄, [5℄,

[6℄, [16℄

sorted by in
reasing 
-values (and de
reasing t-values). At node-level we assume that

dominated labels are deleted. Let L = [

n

i=1

L(i) be the set of all labels, again sorted by

in
reasing 
 (but not ne
essarily de
reasing t). Dominated labels are not deleted, be
ause

they belong to di�erent nodes. The merge operation on the sets A and B is de�ned as

Merge(A;B) = (A[B) n fz 2 A[B j 9x 2 A[B : x � zg. This means that after the sets

are joined all dominated labels are deleted. Note that the set A 
ould be just one label.

Generi
 labeling algorithm:

1. Initialization: Label node s, L(s) = f(0; 0)g

2. Sele
t a node i by some rule

3. Generation of new labels using node i

4. Stop or go to Step 2

The labeling algorithms di�er in node/label sele
tion rule, label generation and stop-

ping 
riterion, but they all have the stru
ture of the generi
 algorithm. In the following

se
tions, the referen
es are dis
ussed in more detail, and when possible related to the

generi
 algorithm.

2.1 Clima
o and Martins [4℄

Some basi
 theory in the �eld is provided by Clima
o and Martins [4℄ along with an

algorithm. They use an upper bound on the 
ost 
riterion as a stopping 
riterion. If we

minimize the time 
riterion we get the fastest path. Choose among these fastest paths

the 
heapest one. This 
ost value is denoted 
̂. Observe that 
̂ is the best value of the


ost obje
tive, given the time obje
tive is at its global minimum. Obje
tive ve
tors with


 values higher than 
̂ are therefore obviously dominated.
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2.1.1 Clima
o and Martins' algorithm

Clima
o and Martins' algorithm uses an ordered sear
h starting by minimizing the 
ost


riterion and sear
hing for the best value of the time 
riterion. Then the 
ost 
riterion is

gradually relaxed, ea
h time �nding the best path with respe
t to the time 
riterion. This


ontinues until the value of the 
ost 
riterion ex
eeds 
̂.

Algorithm 2.1.1:

1. Initialize:

Compute 
̂ as upper bound on 


Find p

1

as the 
heapest path

Set S = fp

1

g and K = 2

2. Compute the K'th 
heapest path p

K

3. If 
(p

K

) > 
̂ stop, S is the set of eÆ
ient paths

4. If t(p

K

) � t(p

K�1

) then set K = K + 1 and go to 2

5. If t(p

K

) < t(p

K�1

) then S = S [ fp

K

g, set K = K + 1 and go to Step 2

To keep the algorithm in a 
ompa
t form, we assume that 
(p

K+1

) > 
(p

K

) 8K 2

1; 2; 3; : : :. This is not a restri
tive assumption.

Due to the K'th shortest path routine in
luded, it has little hope for being fast. The

K'th shortest path problem is intra
table for general K, whi
h in this 
ase means that we

may have to enumerate all solutions. It is, however, polynomial for �xed K, but in our


ase K is unknown and expe
ted to be very large. In Clima
o and Martins [4℄ they refer to

Lawler [12℄ for the K'th shortest path algorithm. Alternative pro
edures are found in [3℄,

and more re
ently [7℄. Lawler's algorithm works by forbidding the K � 1 shortest paths

in order to �nd the K'th shortest.

2.2 Mote, Murthy and Olson [14℄

A paper by Mote, Murthy and Olson [14℄ uses a Two-Phases method. Instead of the

K'th shortest path approa
h of Se
tion 2.1, they use the unimodularity property of the

network 
onstraints in (1) to �nd the Pareto optimal supported paths (Phase I). In Phase

II the unsupported solutions are found by a Label Corre
ting algorithm. They 
all their
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approa
h the Parametri
 Approa
h, be
ause of their use of the weighting method in Phase

I (� is a weighting parameter).

Two important results are used. The �rst is the use of Geo�rion's result, [9℄, to

determine the weights of the 
onvex 
ombination of the two obje
tives in order to move

from one supported solution to the next supported solution. Geo�rion's result ensures that

no supported solutions are in between. This movement between solutions with in
reasing


ost and de
reasing time is similar to the idea of Clima
o and Martins' algorithm. The

se
ond important result is that a supported path uses only supported sub-paths, and that

an unsupported s� t path uses a supported path from s to some node j, and then some

unsupported j � t path. This result is the basis of Phase II.

In Phase I the authors �nd the eÆ
ient supported paths from s to all other nodes in

the network as minimal spanning tree solutions to the linear relaxation of the BP -problem

(3) explained below. Note that the spanning trees are rooted at s.

The BP problem is formulated as follows, with the same obje
tive fun
tions as in (1):

min 
(x)

min t(x)

s.t.

P

(i;j)2A

x

ij

�

P

(j;i)2A

x

ji

=

(

n� 1 if i = s

�1 if i 6= s

x

ij

2 f0; 1; 2; : : : ; n� 1g

(3)

Please note that the x

ij

is now integer values and not just 0 and 1. If, say x

ij

= 3 in a

solution, this means that edge (i; j) is used in three di�erent paths. One of these is for

sure the path from s to j. This is illustrated in Figure 3 for a network with 5 nodes.

1

2 3

4

5

x

12

= 3 x

13

= 1

x

24

= 1

x

25

= 1

Figure 3: Example of a spanning tree solution for the 
onstraints in (3).

Be
ause of this spanning tree phase, I have 
lassi�ed the algorithm as a tree algorithm.

This approa
h (Phase I) with spanning trees is similar to algorithm 2 presented in Martins

[13℄. Martins' algorithm 2 is not in
luded in this paper, but algorithm 1 of the paper is

presented in Se
tion 2.3. Di�erent pro
edures to obtain the supported nondominated

solutions 
ould be used, e.g. repeated use of Dijkstra's shortest path algorithm.
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The prin
iple of the Phase II algorithm is to add arbitrary edges to the supported

s � j paths in order to 
reate alternative unsupported paths. The obje
tive values are

then evaluated, 
andidates for eÆ
ient paths are labeled, and dominated solutions are

deleted. Phase II is very similar to Brumbaugh-Smith and Shier [2℄ presented in Se
tion

2.6, ex
ept for the label generation being done by expanding on only one label at a time.

2.2.1 Mote, Murthy and Olson's algorithm

The set L(i) 
ontains the supported nondominated labels at node i, and the set T (i)


ontains the unsupported nondominated labels. We say a node is being s
anned if it is

used to generate new labels.

Algorithm 2.2.1:

Phase I:

1. Initialize L(i) and T (i) as empty sets

2. Find all the supported nondominated labels L(i), by use of the weighting method

3. Let T (i) = L(i) 8i 2 N . Go to Phase II

Phase II:

1. If all labels in T (i) for all i 2 N are s
anned, go to Step 3. Else sele
t an uns
anned

label (
; t)(i) 2 T (i)

2. (a) Compute label (
; t)(j) = (
; t)(i) + (


ij

; t

ij

) 8(i; j) 2 A

(b) For ea
h (
; t)(j) found in (a), Merge (
; t)(j) with T (j)

(
) Go to Step 1

3. Report all eÆ
ient solutions from s to t found in L(t) and T (t)

One may think that this algorithm is fast for �nding supported eÆ
ient paths, due

to unimodularity, but I have found that the Label Corre
ting algorithm is mu
h more

e�e
tive, Skriver and Andersen [16℄. In fa
t Huarng, Pulat and Shih [11℄ (Se
tion 2.9)

have found the Label Corre
ting algorithm by Brumbaugh-Smith and Shier [2℄ (Se
tion

2.6) to be signi�
antly faster, even 
ompared with Phase I only.
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2.3 Martins [13℄

This paper presents a Label Setting algorithm. It is a multi
riteria generalization of

Hansen's bi
riteria algorithm, [10℄, brie
y mentioned in Se
tion 2.4. The algorithm 
an

be seen as a generalization of Dijkstra's shortest path algorithm to multiple 
riterias. It

is assumed that all edge-
oeÆ
ients (


ij

; t

ij

) are non-negative.

In ea
h iteration in the algorithm we 
hoose the lexi
ographi
ally smallest label in the

set L of all labels. This is where the assumption of non-negative weights is needed. When

�nding the lexi
ographi
ally smallest ve
tor, we �rst look at the �rst 
oordinates. If only

one ve
tor has the smallest �rst 
oordinate, this is the lexi
ographi
ally smallest ve
tor.

If more ve
tors have equal �rst 
oordinates, we look at the se
ond 
oordinates and so on.

2.3.1 Martins' algorithm

The algorithm makes a set of labels at ea
h node. The labels are all put in a set L, and

at ea
h iteration one label is removed as permanently labeled.

From all the permanent labels at the terminal node t, the DM 
an 
hoose the label

l with the 
ost/time 
ombination that he/she prefers. Then this parti
ular path 
an be

found by ba
ktra
king. Next I will explain Martins' algorithm by des
ribing the steps of

the generi
 algorithm.

Step 2: The sele
tion rule is to 
hoose the lexi
ographi
ally smallest label from all

the labels and remove this label from L as permanently labeled. Assume this label is

(
; t)(i) 2 L(i).

Step 3: When generating new labels, the label (
; t)(i) above is used. We generate new

labels for all the nodes that 
an be rea
hed from node i. Assume edge (i; j) 2 A. We then

Merge the new label (
; t)(i) + (


ij

; t

ij

) with L(j).

Step 4: We stop when L = ;.

It 
an be seen that one label is labeled permanently in ea
h iteration. By 
hoosing

the lexi
ographi
ally smallest, we ensure that this is always a nondominated label. In this

perspe
tive it 
an be seen that the algorithm relies on the fa
t that a nondominated path

uses only nondominated sub-paths.

The 
omplexity of the algorithm is hidden in Step 3. Here we generate new labels,

and for ea
h new label also 
he
k for domination. Both operations are time 
onsuming,

be
ause they have to be done a large number of times.

In the paper by Martins [13℄ a se
ond algorithm is presented. This algorithm is similar
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in stru
ture to the �rst phase of the Two Phases method des
ribed in Se
tion 2.2, in

the way that it alternates between spanning trees by looking at the redu
ed 
osts. This

algorithm is not presented here.

2.4 Hansen [10℄

Hansen was one of the �rst to propose an algorithm for the BSP problem (ba
k in 1980).

His algorithm is explained in detail in Se
tion 2.3, be
ause Martins' algorithm is a gener-

alization of Hansen's algorithm. The original paper by Hansen 
ontains 10 di�erent BSP

problems and solution pro
edures for these di�erent problems. It also 
ontains an example

that explains the 
omplexity of the problem. His algorithm has been used for 
omparison

with later algorithms both in Mote, Murthy and Olson [14℄ and Huarng, Pulat and Shih

[11℄.

2.5 Tung and Chew [17℄

The paper by Tung and Chew [17℄, suggests a forward labeling algorithm. The algorithm

starts in an optimisti
 manner by moving in the dire
tion of the minimum sum of the two


riteria, and then labels the possible next steps. When visited, the labels are updated, and

�nally labeled permanently. The algorithm has not been implemented for testing. The

stru
ture of the algorithm is a Label Setting stru
ture.

2.6 Brumbaugh-Smith and Shier [2℄

The authors of this paper present a Label Corre
ting algorithm. They use some e�ort

on implementation issues, and �nd that the CPU-times depend heavily on the way the

di�erent label-sets are s
anned (Step 2) and deleted (Step 3). The worst prin
iple LIFO

(Last In First Out) is more than a fa
tor 10 slower than the fastest prin
iple, namely

FIFO (First In First Out).

The most en
ouraging result is the fa
t that the 
omputational e�ort grows linearly

with the number of edges in the networks and sub-linearly with the average number v of

labels (at the nodes). The total number of labels are therefore the number of elements in

L. The following statisti
al model is found to have good �t:

T = �m

�

v




(4)

where T is CPU-time, m is the number of edges, and v is the average number of labels per

node. � is just a 
onstant depending on the CPU-time units. The parameter � is found

to be just less than one, and 
 is found to be just less than one half. It is, however, hard

to believe that this result is true for large networks.
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The last result is on 
orrelation of the obje
tives, and states that the number of eÆ
ient

paths in
rease, when the obje
tives get more negatively 
orrelated. This is to be expe
ted.

The authors �nd the in
rease in the number of eÆ
ient paths as a fun
tion of 
orrelation

to be rapidly in
reasing when the 
orrelation is from -0.6 to -1. It 
an be noted that the

number of eÆ
ient paths is equal to the number of nodes (one eÆ
ient path from the

sour
e to ea
h of the other nodes in
luding itself), when the 
orrelation is 1.

2.6.1 Brumbaugh-Smith and Shier's algorithm

This algorithm is also outlined by des
ribing the di�erent steps of the generi
 algorithm.

Step 1: We form a list Labeled of nodes to be s
anned, initially the node s. The

sele
tion rule is optional, but we investigate a label-set L(i) and not just a parti
ular label

(
; t)(i) 2 L(i). In the paper the FIFO prin
iple is suggested. Assume we sele
t node

i 2 Labeled.

Step 2: When generating new labels, all labels in L(i) are used. We generate new

labels for all the nodes that 
an be rea
hed from node i. Assume edge (i; j) 2 A. We then

Merge the new labels L(i) + (


ij

; t

ij

) with L(j). If L(j) 
hanges, add node j to the list

Labeled.

Step 3: We stop when Labeled = ;.

The label-set L(t) 
ontains all the nondominated labels for the eÆ
ient paths from s

to t. The time-
onsuming part of the algorithm is the Merge operation (in Step 3), even

though this is in linear time in the size of the two sets. Also note that in this algorithmi


stru
ture, a node 
an return to the set Labeled a large number of times. In this algorithm

we have a 
hoi
e of how to 
hoose the nodes from the set Labeled. Di�erent rules (poli
ies)

for doing this is dis
ussed in detail in Brumbaugh-Smith and Shier [2℄.

2.7 Corley and Moon [5℄

I have 
hosen to present this Label Corre
ting algorithm too, be
ause it has a di�erent

label generation pro
edure than Brumbaugh-Smith and Shier [2℄ des
ribed in Se
tion 2.6.

This algorithm is in fa
t a generalization of Ford and Bellmann's shortest path algorithm

(see [7℄, p. 88-89). The paper also presents a sub-algorithm for the Merge operation.

This algorithm 
an dete
t negative 
y
les, and negative weights are therefore allowed.
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2.7.1 Corley and Moon's algorithm

Let L

k

(i) be the label-set at node i after k iterations. In ea
h iteration k we try to improve

L

k�1

(i) at ea
h node i by using an intermediate node j. The algorithm terminates when

this is no longer possible (or when a negative 
y
le is dete
ted). The iteration 
ounter k

is the maximum number of edges used in a path from node 1 to node i after iteration k.

Step 2: Sele
t ea
h node in turn by the node number, 1; 2; : : : ; n. Assume we are

looking at node i.

Step 3: We generate new labels for node i by expanding the label-sets of all nodes j,

where edge (j; i) 2 A. Assume we are 
urrently expanding from node j. We then Merge

the new labels L(j) + (


ji

; t

ji

) with L(i). When generating new labels, all labels in L(j)

are used.

Step 4: We stop when k = n� 1 or L

k

(i) = L

k�1

(i) 8i 2 N .

When the algorithm stops, the label L(t) at the terminal node t 
ontains the nondom-

inated values from node 1 to node t. All eÆ
ient paths will 
onsist of k or fewer edges, in

iteration k. If the algorithm terminates with k = n� 1 there exists a negative 
y
le.

When we 
ompare the two Label Corre
ting algorithms we see that they are very

similar. The main di�eren
e is that in Brumbaugh-Smith and Shier [2℄ we have a 
hoi
e

of sele
tion rule for the set Labeled, and only nodes with 
hanges in their label-sets are

re-examined. In Corley and Moon [5℄ we ea
h time add labels with one more edge than

in the iteration before.

If we 
ompare the Label Setting and the two Label Corre
ting algorithms, the main

di�eren
e is that we only expand on one label, namely the one re
ently made permanent,

when we form new labels in the Label Setting algorithm. In the Label Corre
ting algorithm

we expand on the set L(i) at a parti
ular node i.

2.8 Daellenba
h and DeKluyver [6℄

This paper presents an algorithm similar to Brumbaugh-Smith and Shier's algorithm de-

s
ribed in Se
tion 2.6, but it is formulated in the 
ontext of dynami
 programming. The

di�erent steps of the algorithm are very generally de�ned, but it is essentially the same

stru
ture. The di�eren
e being that no 
y
les are allowed in this dynami
 programming


ontext. Edges are only allowed to point to nodes with higher numbers. This assumption

is not expli
it in the paper, but it is essential for the algorithm.

Instead of using a set Labeled for the 
hanging labels as in Brumbaugh-Smith and
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Shier [2℄, they move from one node to the next. Therefore the assumption of no 
y
les is

needed, and this is a very restri
tive assumption.

2.9 Huarng, Pulat and Shih [11℄

This paper is a 
omparison of some of the existing algorithms. Some of the algorithms

appear di�erently from the algorithms of the original papers. Their K'th shortest path

implementation of Clima
o and Martins [4℄ does not seem to �nd all eÆ
ient paths, as it

is 
onstru
ted to do, and the Two Phases method of Mote, Murthy and Olson [14℄ has a

di�erent Phase I implementation.

Despite this 
riti
ism, their 
omputational results suggest that the Label Corre
ting

approa
h ([2℄ implemented) is the fastest approa
h. This is in fa
t the approa
h we have

improved in [16℄. They also �nd that the Label Setting approa
h is far better than both

the K'th shortest path approa
h and the Two Phases method.

2.10 Skriver and Andersen [16℄

By imposing some prepro
essing 
onditions to the Label Corre
ting algorithm by Brumbaugh-

Smith and Shier [2℄ (Se
tion 2.6) in ea
h iteration, we have saved more than 50 % in

CPU-time on some of our random networks. How mu
h CPU-time is saved depends on

the network stru
ture. Our algorithm is the fastest algorithm for the BSP problem at the

moment. This suggests that the Label Corre
ting approa
h is the best known for the BSP.

The paper also 
ontains a dis
ussion on the stru
ture of random networks. The stru
-

ture of the random networks has great impa
t on the 
omputational results, and we have

made a program that generates what we believe is realisti
 random networks for testing.

3 Con
luding remarks

With the number of algorithms implemented, and the 
omputational results found, many

real life problems 
an now be modeled with more than one obje
tive. This may lead

to a more realisti
 representation of the problem. Most of the algorithms dis
ussed 
an

be easily modi�ed to handle more than two obje
tives, making even more sophisti
ated

models appli
able. This is in fa
t the 
ase for all the labeling algorithms.

We have seen that there are generally two types of algorithms, path/tree and labeling.

I argue that the path/tree approa
h has been the least su

essful of the two. The labeling

algorithms, and the Label Corre
ting approa
h in parti
ular, performs mu
h better. For

the Label Corre
ting algorithm, the order in whi
h the labels are sele
ted and expanded,


an result in signi�
ant di�eren
es in the running times.
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Finally, one may think that �nding the supported nondominated solutions by 
ombin-

ing the weighting method and some shortest path algorithm 
an be done relatively fast.

This does not seem to be the 
ase! The repeated use of, e.g. Dijkstra's shortest path

algorithm, seems to be a slower approa
h, than applying the Label Corre
ting approa
h,

�nding all nondominated solutions at on
e.
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Abstra
t

This arti
le 
ontributes with a very fast algorithm for solving the bi
riterion short-

est path problem. By imposing some simple domination 
onditions, we redu
e the

number of iterations needed to �nd all the eÆ
ient (Pareto optimal) paths in the net-

work. We have implemented the algorithm and tested it with the Label Corre
ting

algorithm. We have also made a theoreti
al argument of the performan
e of all the

existing algorithms, in order to rank them by performan
e.

In
luded is a dis
ussion on the stru
ture of random generated networks, generated

with two di�erent methods, and of the 
hara
teristi
s of these networks.

Keywords: MCDM, MCIP, Bi
riterion, Shortest Path, Random networks.

1 Introdu
tion

The bi
riterion shortest path problem (BSP) is one of the simplest problems in multi
rite-

rion integer analysis, but nevertheless also one of great importan
e in many appli
ations.

For example it is of interest to model transportation problems with more than one obje
-

tive. Also, the BSP problem often o

urs as a subproblem in other problems, for example

in s
heduling problems. It also o

urs as a subproblem in models for transportation of

hazardous materials, see Erkut et al. [4℄.

�
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Let us des
ribe the problem. We have a dire
ted network or a digraph G = (N ;A) where

N = f1; : : : ; ng is the set of nodes and A = f(i; j); (k; l); : : : ; (p; q)g is a �nite set of

dire
ted edges joining nodes in N . Parallel edges are allowed. Ea
h edge (i; j) 2 A 
arries

two attributes denoted by (


ij

; t

ij

). For simpli
ity assume that 


ij

is the 
ost using edge

(i; j) and t

ij

is the travel time from node i to node j (using the edge (i; j)). The obje
tive

is to �nd a \shortest" path from a parti
ular node, the sour
e node s 2 N , to another

parti
ular node, the terminal node t 2 N . Traditionally, the BSP problem is formulated

as follows:

min F

1

(x) =

P

(i;j)2A




ij

� x

ij

min F

2

(x) =

P

(i;j)2A

t

ij

� x

ij

s.t.

P

fjj(i;j)2Ag

x

ij

�

P

fjj(j;i)2Ag

x

ji

=

8

>

<

>

:

1 if i = s

0 if i 6= s; t

�1 if i = t

x

ij

2 f0; 1g; 8 (i; j) 2 A

(1)

The 
onstraints in (1) yield a dire
ted path from sour
e node s to terminal node t if one

exists and the two obje
tives are to �nd the minimum 
ost s� t path and the minimum

travel time s � t path, respe
tively. As it is highly unlikely to �nd a dire
ted path from

node s to node t whi
h a
hieves both the minimum total 
ost and the minimum total

travel time, we have to settle with something less, namely �nding the set of eÆ
ient paths

(see De�nition 1) from node s to node t. Several approa
hes for doing this has been

presented in the past, but we have only been able to �nd one attempt to 
ompare the

existing algorithms, see Huarng et al. [6℄, and they �nd the Label Corre
ting algorithm

[2℄ to be the fastest.

The outline of the paper is as follows. In se
tion 2 we des
ribe the theory of the problem

in question and give a theoreti
ally based argumentation for the ranking of the exist-

ing algorithms. In se
tion 3 we present the basi
 Label Corre
ting algorithm found in

Brumbaugh-Smith et al. [2℄ along with our modi�ed versions. In se
tion 4 we dis
uss

the stru
ture of randomly generated digraphs for the BSP problem, be
ause it turns out

to have in
uen
e on the 
omputational results. In se
tion 5 we present our test results

together with a 
omparison of the most promising methods.

2 The theory of bi
riterion shortest path problems

Solving the BSP problem means �nding the set of eÆ
ient paths from sour
e node s to

terminal node t. For basi
s in multiple 
riteria analysis see Steuer [8℄.
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In order to make sure, that solutions do exist, we assume that the network is strongly


onne
ted. The de�nition of eÆ
ien
y is as follows.

De�nition 1 A feasible solution x to (1) is eÆ
ient i� there does not exist another

feasible solution �x to (1) su
h that (F

1

(�x); F

2

(�x)) � (F

1

(x); F

2

(x)) and (F

1

(�x); F

2

(�x)) 6=

(F

1

(x); F

2

(x)). Otherwise x is ineÆ
ient.

EÆ
ien
y is de�ned in the de
ision spa
e. There is a natural 
ounterpart in the 
riterion

spa
e. The 
riterion spa
e is denoted by Z and is given by Z = fz(x) 2 R

2

jz(x) =

(F

1

(x); F

2

(x)); x is feasible in (1)g.

De�nition 2 z(x) 2 Z is a non-dominated 
riterion ve
tor i� x is an eÆ
ient solution

to (1). Otherwise z(x) is a dominated 
riterion ve
tor.

It is well-known that the 
onstraint set in (1) de�nes an integral polytope (the 
onstraint-

matrix is unimodular). Therefore, if the linear relaxation of (1) is solved, the set of extreme

(supported) eÆ
ient paths is found. Unfortunately, there might be (and probably are)

unsupported eÆ
ient paths as indi
ated in Figure 1.

Criterion 1

Criterion 2

�

�

�

�

�

D

Figure 1: D is a non-extreme, non-dominated 
riterion ve
tor.

Being interested in the set of eÆ
ient paths, it is not a satisfa
tory 
ompromise just

�nding the set of supported eÆ
ient paths. It should, however, be noted that in pra
ti
e
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the de
ision maker (DM) might be satis�ed with only the set of extreme eÆ
ient paths.

In fa
t, the DM will probably prefer to see the set of non-dominated values (
riterion

ve
tors).

Basi
ly, there are two approa
hes to the problem, namely some sort of path/tree handling

pro
edure or some sort of node-labeling pro
edure. Clima
o and Martin [3℄ and Mote et

al. [7℄ fall in the path/tree handling 
ategory. Below we argue that this approa
h has

disadvantages for the BSP problem. Hansen [5℄, Brumbaugh-Smith et al. [2℄ and the

approa
h in this paper fall in the labeling 
ategory. Our ranking is found in Table 1.

Now we will use a small example to illustrate the 
omplexity of the BSP problem. By

evaluating two di�erent sets of 
oeÆ
ients, we explain why the node-labeling approa
h is

better than the path/tree handling pro
edure. For 
larity remember that eÆ
ient paths

are in the (high dimensional) de
ision spa
e, and the non-dominated values are in the (two

dimensional) 
riterion spa
e. The network in Figure 2 has parallel edges. If we split the

lower edges into two, where the edge-
oeÆ
ients sum to (2; 1), the example is similar to

one found in Hansen [5℄.

1 2 3 4

(1; 2)

(2; 1)

(1; 2)

(2; 1)

(1; 2)

(2; 1)

Figure 2: Illustration of 
omplexity in eÆ
ient paths.

In Figure 2 there is a total of 8 paths. All paths are eÆ
ient, having the 4 non-dominated

values (3; 6), (4; 5), (5; 4) and (6; 3). The upper path has the value (3; 6), then there

are three paths having the value (4; 5), three paths having the value (5; 4) and the lower

path has value (6; 3). We see that the eÆ
ient paths distribute among the non-dominated

values, as in level 4 in Pas
al's triangle, see Figure 3. Note that the network in Figure 2

has 4 nodes.

From this spe
ial 
ase of the BSP problem we make two observations. The number of

eÆ
ient paths grow exponentially in the number of nodes, namely 2

jN�1j

, and the number

of eÆ
ient paths are always greater than or equal to the number of non-dominated values,

whi
h is jN j. In the above there are 8 eÆ
ient paths, and 4 non-dominated values.

Next we show an example, where the number of non-dominated values grow exponentially
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1

1 1

1 2 1

1 3 3 1

Level 1

Level 2

Level 3

Level 4

Figure 3: Pas
al's triangle.

in the number of nodes. That is, all the eÆ
ient paths have distin
t non-dominated values.

We use this to 
on
lude that the node-labeling algorithms have exponential 
omplexity.

Here we 
hoose the edge 
oeÆ
ients, so that the sum of the smaller 
oeÆ
ients is less than

the next. This is a
hieved by the following numbers, 2

i

; i = 0; 1; 2; : : : ; jAj � 1. For the

example that is 1; 2; 4; 8; 16; 32, and then we pair them from ea
h end of the list as shown

in Figure 4.

1 2 3 4

(1; 32)

(32; 1)

(2; 16)

(16; 2)

(4; 8)

(8; 4)

Figure 4: Illustration of 
omplexity in EÆ
ient values.

The 8 paths in the network in Figure 4 are all eÆ
ient having the following 8 non-

dominated values: (7; 56), (11; 52), (21; 42), (25; 38), (38; 25), (42; 21), (52; 11) and (56; 7).

By 
hoosing the edge 
oeÆ
ients this way we get 2

jN�1j

non-dominated values.

We argue that the node-labeling algorithms will outperform the path/tree algorithms

be
ause the number of non-dominated values is always smaller than (or equal to) the

number of eÆ
ient paths. A stronger argument is that the node-labeling algorithm only

�nds the list of non-dominated values at the terminal node, and not the a
tual eÆ
ient

paths. After the De
ision Maker 
hooses some favourite non-dominated value(s), we only

have to ba
ktra
k for these parti
ular eÆ
ient paths. As a �nal note we see that the

amount of memory needed to store the labelsets, is mu
h smaller than the memory needed

to store all the eÆ
ient paths.

In the existing literature all algorithms, ex
ept perhaps the Parametri
 Approa
h by Mote

et al. [7℄, have been proven slower than the Label Corre
ting approa
h. Comparisons are

found in [2℄ and [6℄. These algorithms are the Label Setting approa
h by Hansen [5℄, and



88 BSP Label Corre
ting

the K'th shortest path approa
h by Clima
o and Martin [3℄.

1 Skriver & Andersen node-labeling

2 Brumbaugh-Smith & Shier [2℄ node-labeling

3-4 Hansen [5℄ node-labeling

3-4 Mote, Murphy & Olson [7℄ path/tree handling pro
edure

5 Clima
o & Martin [3℄ path/tree handling pro
edure

Table 1: Existing BSP algorithms ranked by 
omputational performan
e.

We will argue that the Parametri
 Approa
h will also be slower, due to the stru
ture

of the algorithm. The approa
h is to use the weighting method (see Steuer [8℄) to �nd

the eÆ
ient extreme paths, and then use ba
ktra
king of spanning trees to sear
h for

non-extreme eÆ
ient paths. The weighting method means solving LP problems, but for

the shortest path problem that is done by Dijkstra's shortest path algorithm (or a similar

algorithm). It turns out that Dijkstra's algorithm is a
tually a slower approa
h in pra
ti
e

than the Label Corre
ting routine, see se
tion 5. On top of this 
omes the fa
t, that the

weighting method of the Parametri
 Approa
h by far is faster than the ba
ktra
king part

[7℄. When we are ba
ktra
king, we might have to evaluate all the edges in all the spanning

trees in the worst 
ase, resulting in an exponentially growing number of 
omparisons. This

stru
tural disadvantage is also the 
ase for Clima
o and Martins [3℄ algorithm.

The 
on
lusion is that the Parametri
 Approa
h and the K'th shortest path algorithm

are slower than the Label Corre
ting approa
h, and this was also found by Huarng et al.

[6℄. Due to the stru
ture of the ba
ktra
king part of the Parametri
 Approa
h, we also

believe that it is slower than Hansen's Label Setting algorithm, espe
ially for networks

with negatively 
orrelated obje
tives, but this has not been tested.

Hansen's algorithm is a label setting s
heme with an exponentially worst 
ase behaviour.

It uses four sets of labels instead of only two, as in the Label Corre
ting approa
h, and

it makes more set 
omparisons. We therefore rank it below the Label Corre
ting ap-

proa
h. The Label Corre
ting approa
h uses the well-known fa
t that all eÆ
ient paths

pass through eÆ
ient subpaths.

3 Algorithm with prepro
essing routine

In this se
tion we des
ribe the label-
orre
ting algorithm proposed by Brumbaugh-Smith

et al. [2℄. The des
ription is followed by a 
ouple of suggestions for improvements, whi
h

give rise to a re�nement of the Brumbaugh-Smith algorithm.
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The theory and idea behind this is explained in the following se
tions, but for simpli
ity

we start with some notation.

3.1 Notation

D(i) : Set of labels at node i. Ea
h label is a 2-tuple 
ontaining 
ost and time

s : sour
e node

t : terminal node

Labeled : Set of nodes to be 
he
ked

Len(i; j) : The edge-length from node i to node j (two attributes 
ost and time)

out(i) : Set of edges having their tail in node i

Merge(A;B) : A [Bn (dominated elements in A [B)




�

(i) : 
heapest path from node i to node t

t

�

(i) : fastest path from node i to node t




min

(i) : 
heapest path from node s to node i

t

min

(i) : fastest path from node s to node i


̂ : upper bound on 
ost, 
orresponding to t

min

(t)

^

t : upper bound on time, 
orresponding to 


min

(t)

3.2 The Brumbaugh-Smith Algorithm

The algorithm below is taken dire
tly from Brumbaugh-Smith et al. [2℄. The boxed part of

the algorithm is the time 
onsuming part we try to avoid when it is not needed. The FIFO

prin
iple is used to sele
t nodes from the set Labeled as re
ommended in Brumbaugh-Smith

et al. [2℄.

Initialize:

D(s) = f(0; 0)g;

Labeled=f s g ;

Routine:

while Labeled 6= �


hoose i from Labeled (FIFO prin
iple);

Labeled=Labeled-f i g ;

for j 2 out(i)
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D

M

(j) =Merge(D(j);D(i) + len(i; j));

If D

M

(j) 6= D(j) then

D(j) = D

M

(j);

If j not in Labeled then (avoids double labelling)

Labeled = Labeled + f j g ;

end If;

end If;

end for;

end while;

In this algorithm the Merge operation in the box uses the main part of the 
omputational

e�ort. Our intention is to dis
ard \expensive" edges before these operations are 
arried out

in order to redu
e 
omputation time. The means being indu
ing some simple domination


onditions on the edge-
andidates in order to dis
ard \expensive" edges as soon as possible.

The Merge operation returns the labels in an ordered set as des
ribed in se
tion 3.3.1. The

Merge operation implemented in this paper is the \modi�ed Merge" operation found in

Brumbaugh-Smith et al. [2℄. This operation is in linear time as a fun
tion of the sizes of

the two sets to be merged.

It should be noted that the algorithmi
 stru
ture of the Brumbaugh-Smith algorithm is

somewhat similar to Dijkstra's shortest path method, ex
ept the nodes 
an reenter in the

set Labeled. This suggests that the performan
e is similar. In the remainder of this paper

we refer to the Brumbaugh-Smith algorithm as brum.

3.3 The improvements

We have two suggestions for improvements that are both based on the idea of omitting

\expensive" edges before the box in the algorithm. At ea
h iteration in the routine, we

are looking at an edge (i; j) from some node i to another node j, see Figure 5.

j

i

Figure 5: Evaluating the (i; j)-edge.
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The �rst improvement is a fast predomination 
he
k, whi
h rules out \expensive" edges by


onsidering the present set of labels. This 
ondition is implemented in two distin
t ways

as -des
ribed in se
tions 3.4 and 3.5. The �rst implementation uses initialization with

Dijkstra's shortest path method to set bounds on all labels, and the se
ond pro
edure sets

the bounds during the routine.

The se
ond improvement is inspired by an arti
le by Tung and Chew [9℄. The idea is to

initialize node information from the terminal node in order to �nd the 
heapest and fastest

paths from an intermediate node to the terminal node. This initialization also �nds some

upper bounds on the two obje
tives. If the present best label at node i, plus the 
ost/time

of the (i; j)-edge, plus the least 
ost/time for the remainder of the (j; t)-path ex
eeds the

upper bounds, the edge (i; j) 
an be left out of further 
onsideration.

We will argue that initializing using Dijkstra's shortest path method is too slow. This

is supported by the 
omputational results des
ribed in se
tion 5. The problem with

the initialization is that the bounds set on the labelsets are too loose. The bounds set

during the routine is better, and 
an therefore dis
ard more \expensive" edges. The


omputational results shown in se
tion 5 support this.

3.3.1 Condition I

Consider again the two parti
ular nodes, i and j, and the set of labels D(i) and D(j) at

these two nodes. Assume that the two labelsets are non-empty, and that

D(i) = f(


1

(i); t

1

(i)); � � � ; (


k

(i); t

k

(i))g and D(j) = f(


1

(j); t

1

(j)); � � � ; (


q

(j); t

q

(j))g with




1

(i) < 


2

(i) < � � � < 


k

(i) and t

1

(i) > t

2

(i) > � � � > t

k

(i)




1

(j) < 


2

(j) < � � � < 


q

(j) and t

1

(j) > t

2

(j) > � � � > t

q

(j)

We are now looking at the edge from node i to node j. Consider the two distin
t but

similar situations:

� Assume that 


1

(i) + len(i; j)




� 


q

(j). In this 
ase we have:




1

(j) < 


2

(j) < � � � < 


q

(j) � 


1

(i) + len(i; j)




< � � � < 


k

(i) + len(i; j)




t

1

(j) > t

2

(j) > � � � > t

q

(j) ? t

1

(i) + len(i; j)

t

> � � � > t

k

(i) + len(i; j)

t

So if t

k

(i) + len(i; j)

t

� t

q

(j), then the set D(i) + len(i; j) is dominated by the

set D(j). In fa
t the set D(i) + len(i; j) is dominated by the last label q of D(j).

Therefore we 
an dis
ard the edge between i and j, and pro
eed to the next edge,

be
ause a merge of the two sets will return the set D(j) un
hanged.
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� Assume that t

k

(i) + len(i; j)

t

� t

1

(j). In this 
ase we have:




1

(i) + len(i; j)




< � � � < 


k

(i) + len(i; j)




? 


1

(j) < 


2

(j) < � � � < 


q

(j)

t

1

(i) + len(i; j)

t

> � � � > t

k

(i) + len(i; j)

t

� t

1

(j) > t

2

(j) > � � � > t

q

(j)

So if 


1

(i) + len(i; j)




� 


1

(j), then the set D(i) + len(i; j) is dominated by the set

D(j), be
ause it is dominated by the �rst label of D(j).

The above observations give rise to the following pseudo-
ode:

If 


1

(i) + len(i; j)




< 


q

(j) then end if; (be
ause (i; j) is promising)

else (That means �)

If t

k

(i) + len(i; j)

t

< t

q

(j) then end if; (be
ause (i; j) is promising)

else remove j from out(i); (be
ause (i; j) is dominated)

If t

k

(i) + len(i; j)

t

< t

1

(j) then end if; (be
ause (i; j) is promising)

else (That means �)

If 


1

(i) + len(i; j)




< 


1

(j) then end if; (be
ause (i; j) is promising)

else remove j from out(i); (be
ause (i; j) is dominated)

The 
ase of alternative solution possibilities is dis
arded in the stri
t inequalities. The

a
tual paths, alternative solutions or not, 
an be found by a simple ba
ktra
king algorithm.

This way we only �nd the path(s) that have the \best" 
ost/time labels (viewed from the

terminal node t by the DM).

Another interesting 
ase is when we look at the opposite 
onditions of the above. This

implies that all labels at node j is dominated by the paths via node i, and therefore 
an

be repla
ed by a new set of labels with the simple 
al
ulation D(j) = D(i) + len(i; j).

This operation we will 
all overtaking. However, not surprisingly the number of times we


an \overtake" is small, be
ause relatively good bounds are set as we pro
eed through the

network. Therefore \overtaking" is used only when node j has not yet been labeled.

Noti
e that the sets of labels are expe
ted to be small in the beginning (1-3 labels), but

larger as we approa
h node t.

3.3.2 Condition II

To use the se
ond improvement it is ne
essary to use Dijkstra's shortest path method

starting at node t, and with all edges reversed, in the initialization. When used with both


ost and time, we �nd the 
heapest and fastest path from any node i to the terminal

node t. These values are denoted 


�

(i) and t

�

(i). The upper bounds on 
ost and time are
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denoted 
̂ and

^

t, and are found when initializing with Dijkstra's shortest path method is

used to �nd the 
heapest and fastest paths.

This gives the following pseudo-
ode:

If 


1

(i) + len(i; j)




+ 


�

(j) � 
̂ then remove j from out(i)

If t

k

(i) + len(i; j)

t

+ t

�

(j) �

^

t then remove j from out(i)

In the next se
tions we dis
uss how to implement Condition I. In se
tion 5 we argue that

Condition II will be too slow due to the initialization with Dijkstra's shortest path method

as mentioned in the beginning of this se
tion.

3.4 Algorithm 1 - Initializing with Dijkstra's shortest path pro
edure

We implement the Brumbaugh-Smith algorithm together with 
ondition I. Condition I

des
ribed above is �rst implemented using Dijkstra's shortest path method to initialize

the algorithm, and to set bounds on the labelsets. We refer to this algorithm as alg1.

The pseudo-
ode is as follows:

Initialize:

D(s) = f(0; 0)g;

Use Dijkstra's algorithm to minimize 
ost

Use Dijkstra's algorithm to minimize time

Labeled=f1, 2, ... , n g ; (all nodes need to be examined during the routine)

SLIM(D(i);8i 2 Labeled);

After having used Dijkstra's algorithm two times, all nodes have two labels, and these la-

bels are also the bounds 
orresponding to the two elements (
̂(i); t

min

(i)) and (


min

(i);

^

t(i)).

There might be some dupli
ate labels, be
ause the labels set by Dijkstra's shortest path

method, minimizing 
ost and time, might be the same, espe
ially in the beginning of the

network. If the two labels are equal, one of them is deleted. We refer to this pro
edure as

SLIM in pseudo-
ode.

Routine:

while Labeled 6= �


hoose i from Labeled (FIFO prin
iple);

Labeled=Labeled-f i g ;

for j 2 out(i)

Condition I

If 


1

(i) + len(i; j)




< 


q

(j) then end if; (be
ause (i; j) is promising)
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else (That means �)

If t

k

(i) + len(i; j)

t

< t

q

(j) then end if; (be
ause (i; j) is promising)

else remove j from out(i); (be
ause (i; j) is dominated)

If t

k

(i) + len(i; j)

t

< t

1

(j) then end if; (be
ause (i; j) is promising)

else (That means �)

If 


1

(i) + len(i; j)




< 


1

(j) then end if; (be
ause (i; j) is promising)

else remove j from out(i); (be
ause (i; j) is dominated)

Condition I ended

The box is only 
arried out if the (i; j)-edge looks promising

D

M

(j) =Merge(D(j);D(i) + len(i; j));

If D

M

(j) 6= D(j) then

D(j) = D

M

(j);

If j not in Labeled then (avoids double labelling)

Labeled = Labeled + f j g ;

end If;

end If;

end for;

end while;

The 
omputational performan
e of the algorithm 
an be seen in Table 4.

3.5 Algorithm 2 - A dire
t approa
h

This implementation of Condition I is without initialization, but with \overtaking" of

nonlabeled nodes. The algorithm is referred to as alg2. The pseudo-
ode is as follows:

Initialize:

D(s) = f(0; 0)g;

Labeled=f s g ;

Routine:

while Labeled 6= �


hoose i from Labeled (FIFO prin
iple);

Labeled=Labeled-f i g ;

for j 2 out(i)

If j not in Labeled then D(j) = D(i) + len(i; j) (``overtaking'')

else

Condition I

If 


1

(i) + len(i; j)




< 


q

(j) then end if; (be
ause (i; j) is promising)

else (That means �)

If t

k

(i) + len(i; j)

t

< t

q

(j) then end if; (be
ause (i; j) is promising)
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else remove j from out(i); (be
ause (i; j) is dominated)

If t

k

(i) + len(i; j)

t

< t

1

(j) then end if; (be
ause (i; j) is promising)

else (That means �)

If 


1

(i) + len(i; j)




< 


1

(j) then end if; (be
ause (i; j) is promising)

else remove j from out(i); (be
ause (i; j) is dominated)

Condition I ended

The box is only 
arried out if there is no ``overtaking'' or if the (i; j)-edge

looks promising.

D

M

(j) =Merge(D(j);D(i) + len(i; j));

If D

M

(j) 6= D(j) then

D(j) = D

M

(j);

If j not in Labeled then (avoids double labelling)

Labeled = Labeled + f j g ;

end If;

end If;

end for;

end while;

4 Random networks

In this se
tion we 
ompare two di�erent approa
hes for generating random networks.

The reason being that the stru
ture of the random networks has a large e�e
t on the


omputational results.

First we dis
uss how NETGEN

1

works and what problems this gives. Then we introdu
e

our own random network generator NETMAKER

2

and explain in detail how it works.

Finally, we 
ompare the two approa
hes 
omputationally to illustrate the di�eren
es.

Our �rst approa
h was to use NETGEN to generate random networks (without the


ost/time 
oeÆ
ients). On these networks we ran a small program to generate the 
ost

and time 
oeÆ
ients. These 
oeÆ
ients are generated in the same way as in NETMAKER

des
ribed below.

We generated ten random networks with NETGEN, ea
h having 100 nodes and 900 edges.

In average, there were only 7.5 non-dominated values (see Table 2), and four of the net-

works had only 2 or 3 non-dominated values.

At �rst it seemed a little strange that the average number of non-dominated values gen-

erated with NETGEN was so low. In an e�ort to explain this, we drew all the eÆ
ient

1

shareware software found on the Internet and used in Huarng et al. [6℄

2

available in C++ on the webpage http://www.imf.au.dk/�ajs/
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paths in a NETGEN generated network. The stru
ture shown in Figure 6 was found.

1 14 13 12 11 3 2 15

9

7

Figure 6: Stru
ture of eÆ
ient paths in NETGEN network with 15 nodes.

The network is being run through on a single eÆ
ient subpath, and then somewhere there

is a few alternative subpaths between a few nodes, before the paths again use the same

subpath to the terminal node. The eÆ
ient paths are not spread out through the network.

This network stru
ture is due to the generation of a Hamiltonian 
y
le in NETGEN that

is deterministi
, and be
ause the generation of random edges are un
ontrolled. Before any

random edges are generated, a Hamiltonian 
y
le is made as shown in Figure 7, to make

sure that the network is strongly 
onne
ted.

1

2 3

n� 2

n� 1

n

Figure 7: Hamiltonian 
y
le in NETGEN.

Be
ause of this deterministi
 stru
ture of the Hamiltonian 
y
le, a single eÆ
ient subpath

is used, in the beginning as well as in the end of the network.

We �nd this an unrealisti
 stru
ture for real life problems. For this reason we developed

the NETMAKER program in order to generate alternative eÆ
ient paths that run through

the whole network having a stru
ture similar to that shown in Figure 8. This stru
ture is

a
tually found in the NETMAKER networks.
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1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 8: Stru
ture of eÆ
ient paths in NETMAKER networks.

Next we des
ribe how NETMAKER works. First a random Hamiltonian 
y
le starting

at the sour
e node s is generated in order to se
ure that the network is strongly 
onne
ted.

Then we uniformly generate a random number of edges out of ea
h node. This random

number of edges belongs to a 
ertain interval, say 1 to 3 edges, to 
ontrol the total number

of edges. These edges are only allowed to rea
h a 
ertain number of nodes forward and

ba
kwards. This omits paths with very few edges, unless they are generated in the random

Hamiltonian 
y
le. This edge interval is essential to get the stru
ture of Figure 8, with

eÆ
ient paths spread out through the network.

To illustrate this, we assume that we are allowed to generate between 1 and 3 edges out of

node 5, within a node-interval of 6 nodes. We want node 5 in the middle of the interval,

so the edges may rea
h 3 nodes in ea
h dire
tion. From node 5 these edges are allowed to

go into nodes 2, 3, 4, 6, 7 and 8. The 6 possible edges are shown in Figure 9.

2

3

4

5

6

7

8

Figure 9: The 6 possible random edges in whi
h 1, 2 or 3 must be pi
ked.

The 
ost/time 
oeÆ
ients are generated negatively 
orrelated so that one 
oeÆ
ient is an

integer between 1 and 33, and the other is between 67 and 100. This 
oeÆ
ient generating
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approa
h was found in Andersen, J�ornsten and Lind [1℄. We use negatively 
orrelated

obje
tives be
ause it is a

epted to be most realisti
 and interesting, and be
ause it implies

more eÆ
ient paths [2℄.

In Table 2 it is seen that the number of non-dominated values is mu
h higher in the

networks generated by NETMAKER. One 
ould think that this is only be
ause of the

random Hamiltonian 
y
le in NETMAKER, but as illustrated in Table 3 the edge intervals

are important.

generator # nodes # edges non-dominated values

NETGEN 100 900 7.5

NETMAKER 100 ' 900 13

NETGEN 50 250 4.7

NETMAKER 50 ' 250 8.9

Table 2: Average number of non-dominated values in NETGEN and NETMAKER

To get an idea of the number of non-dominated values in networks generated with NET-

MAKER 
ompared with the number of non-dominated values in networks generated with

NETGEN we generated networks with 200 nodes. The results are shown in Table 3. Ea
h


olumn in table 3 presents the number of outgoing edges for ea
h node in the networks

generated. The 3-6 
olumn, for example, indi
ates that from ea
h node between 3 and 6,

outgoing edges are generated, 6 being the max. The rows in the table give the interval

between whi
h these edges are allowed to go. The �rst row (2 � max) shows that the edges

generated are distributed uniformly in an interval of \2 � max" length around ea
h node

where \max" is the maximum number of edges generated. Consider the 3-6 
olumn and

the (2 � max) row. From a parti
ular node, say 10, between 3 and 6 outgoing edges are

generated. These edges 
an go into nodes with numbers between 4 and 16 (the interval

length is 2 times the maximum number of edges generated, 2�6 = 12). As another example


onsider the 7-15 
olumn and the (3 � max) row. From a parti
ular node, say 25, between

7 and 15 outgoing edges are generated. These edges 
an go into nodes with numbers

between 3 and 47 (the interval length is approximately 3 times the maximum number of

edges generated).

In Table 3 we have found that the average number of non-dominated values depend on

the degree of ea
h node and on the edge interval size. All 
ells in the tables are with a

sample size of 10 networks.
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200 nodes 1-3 2-4 3-6 5-10 7-15 10-20

2 � max 3.5 5.5 10.2 12.4 13.1 14.3

3 � max 3.9 4.8 9.6 12.7 13.8 13.9

4 � max 3.1 4.9 7.9 12.9 13.3 14.7

8 � max 3.5 5.5 8 10.8 12.2 15

no restri
tion 2.5 4.3 6.4 8 9.8 10

200 interval 3.4 5.1 7.4 9.9 9.2 13.1

NETGEN 2.7 4.8 6.7 7.9 8.2 10.3

Table 3: Average number of non-dominated values generated by NETMAKER

It is of no surprise that the average number of non-dominated values in
reases with the

total number of edges. The total number of edges varies around its mean being the average

number of edges 
reated at ea
h node times the number of nodes. For example, 2-4 edges

implies an average of 3 edges per node, and with 200 nodes this results in approximately

600 edges in ea
h network of this kind. This is the �xed number of edges generated for

the NETGEN networks in the last row of Table 3 for the 2-4 edges 
ase. We see that

NETGEN generates the same number of non-dominated values that NETMAKER does

without interval restri
tions. This means that when you run NETMAKER with no interval

restri
tion, the probability of a short path is high, as explained with NETGEN.

The next observation is on the interval size. We 
laimed earlier that the number of non-

dominated values will be larger if paths using very few edges are omitted. This 
laim

holds, as the number of non-dominated values is larger when there is a restri
tion on the

interval size. Sin
e the interval length itself is not so important, we have used the 8 � max

interval length for all the networks in se
tion 5.

As mentioned earlier, the stru
ture of the random networks shown in Figure 6 is an

unrealisti
 stru
ture for testing shortest path algorithms, and it also favours one type

of algorithm, namely the Parametri
 Approa
h [7℄. The reason for this is that the Label

Corre
ting algorithm (brum) has to evaluate all nodes at least on
e, and thereby evaluates

all edges. Therefore the 
omputational e�ort is very dependent on the size of the network,

even in networks with only one eÆ
ient path. The Parametri
 Approa
h uses simple

obje
tive weighting in the �rst phase, and then ba
ktra
king of spanning trees as explained

in se
tion 2. But in 
ase of a large network with only one or two eÆ
ient paths there is

little ba
ktra
king, and the algorithm will perform well. But if the network has many

eÆ
ient paths and perhaps negative 
orrelation between the obje
tives, there is mu
h

more ba
ktra
king to be done, and this is what takes time in the Parametri
 algorithm [7℄.
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Mote et al. [7℄ have 
omputational results in their arti
le showing that with negatively


orrelated obje
tives, their algorithm has 
pu-times similar to those of Hansen's label

setting approa
h [5℄. This illustrates how mu
h 
pu-time is 
onsumed by the ba
ktra
king

part, if there are many eÆ
ient paths.

5 Computational results

We have tested the two algorithms des
ribed in se
tions 3.4 (alg1) and 3.5 (alg2) together

with the Brumbaugh-Smith algorithm (brum) of se
tion 3.2. All algorithms are imple-

mented in C++, and 
an be found on the homepage http://www.imf.au.dk/�ajs. We

have used an HP 9000 series 
omputer with a single pro
essor. For ea
h size of network

we have used 10 random networks, so in Table 4 we have used a total of 50 networks.

In the previous se
tion, we argued that NETMAKER generates reasonably random net-

works for testing bi
riterion shortest path algorithms. In this se
tion we 
ompare the

Brumbaugh-Smith approa
h and the modi�ed versions of se
tion 3.4 (alg1) and se
tion

3.5 (alg2).

# nodes brum alg1 init alg1 routine alg1 total alg2

100 2.52 5.22 2.11 7.33 1.84

200 18.27 41.32 16.54 57.86 13.59

300 44.37 139.76 40.81 180.57 35.11

400 76.26 327.98 70.52 398.50 58.29

500 133.22 640.29 123.96 764.25 108.33

Table 4: Cpu-times for brum, alg1 and alg2 when the number of edges are between 2 and

4 at ea
h node.

In Table 4 we see that the initialization phase in alg1, where Dijkstra's shortest path

algorithm is run through twi
e, takes more than double the amount of 
pu-time used by

brum. Our implementation of Dijkstra's shortest path algorithm is seen to be a little

slower than the Label Corre
ting routine. Remember that they are expe
ted to be fairly

similar.

The di�eren
e in 
pu-time between the alg1 routine part and alg2 o

urs be
ause all nodes

in the alg1 routine part has a label from initialization so there is no \overtaking".

The slow initialization times are the reason why Condition II in se
tion 3.3.2, suggested by

Tung et al. [9℄ is not being implemented. It requires that Dijkstra's shortest path method

is run through twi
e. The brum algorithm is always outperformed by the alg2.
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It 
an also be seen that running Dijkstra's shortest path method twi
e takes somewhat

the double 
pu-time as running brum. This supports our argument from se
tion 3.3, that

the Label Corre
ting algorithm has the same 
omputational performan
e as Dijkstra's.

The rest of the 
omparisons are done with only the brum and alg2 algorithms. The

obje
tive is to evaluate the e�e
tiveness of Condition I on networks with di�erent 
hara
-

teristi
s.

# nodes brum Merges alg2 Condition I's % Merges in alg2 % 
pu-time

200 9.01 761.30 4.12 208.40 46.49 45.76

400 40.38 1615.20 20.96 407.20 50.09 51.91

600 92.96 2502.00 51.40 578.15 52.95 55.29

800 187.05 3385.00 111.82 757.65 54.01 59.78

1000 280.61 4668.20 162.52 970.90 57.80 57.92

Table 5: Cpu-times, number of Merges and number of Condition I's for brum and alg2

when the number of edges are between 1 and 3 at ea
h node.

The �rst 
omparison is made on a thin network, where the average number of edges is

only two times the amount of nodes. The results are shown in Table 5, and the overall


on
lusion is that alg2 is 
onsiderably faster than brum. On these thin networks, Condition

I is a
tive in about 25 % of the set 
omparisons. On top of this the \overtake" pro
edure

labels (#nodes�1) times, this being the number of times we look at a node with an empty

labelset. If we add the number of nodes to the number of Condition I's, we get half the

number of merges 
arried out in the brum algorithm. This explains why the 
pu-time is

half, and supports that the boxed part of the algorithms is the 
omputationally heavy

part.

It 
an also be seen, that as the number of nodes in
reases, the fra
tion of Condition I's

de
reases. This is due to the fa
t that the probability of the Condition I being ful�lled

de
reases as the labelsets in
rease. The labelsets in
rease in size as we move towards the

terminal node, and in the larger networks the average number of non-dominated values

is a little higher and therefore the labelsets are bigger. The Condition I is more often

ful�lled in the �rst half of the merges, while the labelsets are fairly small. As expe
ted

alg2 performs very well on thin networks, be
ause of the small size of the labelsets.

Next we look at less thin networks with an average number of 3 edges per node. The results

are shown in Table 6, and as expe
ted the fra
tion of Condition I's has dropped. Be
ause

the 
pu-time saved is fairly proportional to the number of Condition I's and \overtakes",
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# nodes brum Merges alg2 Condition I's % Merges in alg2 % 
pu-time

200 18.34 1399.65 12.16 303.25 64.12 66.29

300 45.37 2221.4 31.76 428.45 67.25 70.00

400 80.43 3080.7 58.14 487.35 71.23 72.28

500 129.77 4006.65 96.91 652.10 71.27 74.68

800 336.65 6801.80 245.77 933.95 74.52 73.00

Table 6: Cpu-times, number of Merges and number of Condition I's for brum and alg2

when the number of edges are between 2 and 4 at ea
h node.

alg2 only performs about 25-35 % better than the brum algorithm for networks with this

density (and this size).

# nodes brum Merges alg2 Condition I's % Merges in alg2 % 
pu-time

100 12.59 2796.1 11.05 251 87.48 87.76

200 79.55 6055.40 73.50 284.4 92.02 92.40

300 195.48 9680.60 183.55 346.45 93.33 93.90

400 349.04 13733.30 329.83 430.25 93.96 94.50

500 589.84 17943.05 558.87 463.40 94.64 94.75

Table 7: Cpu-times, number of Merges and number of Condition I's for brum and alg2

when the number of edges are between 7 and 15 at ea
h node.

For the thi
k networks of Table 7 with an average of 11 edges per node, we see that the

fra
tion of Condition I's and \overtakes" is down to 5-12 %. The 
pu-times are again

proportionately faster as well. This Table illustrates that even in thi
k networks there are

still 
pu-time saved by imposing the 
ondition. We therefore 
on
lude that the 
ost in


pu-time of 
he
king the 
ondition is 
lose to zero.

A little investigation revealed that for random networks, the number of merges is (almost)

a linear fun
tion of the number of edges. For small networks the number of merges is

double the amount of edges, and for larger networks the number of merges was found to

be three times the number of edges.

6 Con
luding remarks

We have investigated both the stru
ture of random networks for the BSP problem, and the

performan
e of the existing algorithms. Only the most promising algorithm so far, namely

the Label Corre
ting algorithm has been implemented here. However, with referen
e to

other arti
les, we argue that this approa
h is indeed the fastest. We have also imposed
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a 
ondition to be 
he
ked during the routine, that saves up to 50 % 
pu-time. Thus we


on
lude that even large BSP problems 
an be solved to optimality in reasonable time.

Well-known methods for 
hoosing among the non-dominated solutions 
an then be applied.
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Abstra
t

Lo
ating an obnoxious (undesirable) fa
ility is often modeled by the maximin

or maxisum problem. But the obnoxious fa
ility is often pla
ed unrealisti
ally far

away from the demand points (nodes), resulting in prohibitively high transportation


ost/time. One solution is to model the problem as a semi-obnoxious lo
ation problem.

Here we model the problem as a bi
riterion problem, not in advan
e determining

the importan
e of the obnoxious obje
tive 
ompared to the 
ost/time obje
tive.

We 
onsider this model for both the planar and the network 
ase. The two problems

are solved by an approximation algorithm, and the models are brie
y 
ompared by

means of a real-life example.

Keywords: Multiple 
riteria analysis, Semi-obnoxious, Lo
ation, Planar, Networks.

1 Introdu
tion

In the two traditional single fa
ility lo
ation problems, a new fa
ility is lo
ated (pla
ed)

so as to minimize transportation 
osts (minisum), or as to minimize the distan
e to the

farthest 
ustomer (minimax). In the minisum problem we sum all the distan
es between

the new fa
ility and the 
ustomers, multiplied by a weight depending on the individual


ustomer. In the minimax problem we minimize the largest weighted distan
e. The

minisum model 
an be relevant when lo
ating a warehouse and the minimax model 
an be

used to lo
ate a �re station. These models are presented in Love et al. [12℄ and Fran
is et

al. [8℄, both in
luding many referen
es. The obnoxious lo
ation problem is a more re
ent


lass of problems, where the two most 
ommon are the maxisum and maximin models.

When lo
ating an obnoxious (undesirable) fa
ility the goal is to pla
e it as far from the

�

Corresponding author. Email: kima�imf.au.dk
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existing fa
ilities (demand points, 
ustomers) as possible. See Erkut and Neuman [7℄ or

Carrizosa and Plastria [5℄ for a review.

There is little literature 
ombining the desirable and the obnoxious fa
ility lo
ation

models. In this paper we model the 
ombined problem as a Bi
riterion Semi-obnoxious

Lo
ation (BSL) problem. One obje
tive fun
tion is obnoxious and one is desirable. We

also 
onsider both the network 
ase and the planar 
ase of the problem. In biobje
tive

optimization our goal is to �nd the set of eÆ
ient solutions. These solutions are su
h

that there does not exist another solution that has a better value in one obje
tive without

having a worse value in the other obje
tive. The 
on
ept of eÆ
ient solutions is the same

as Pareto optimal solutions. In the network 
ase, where the demand points are nodes in a

network and we try to lo
ate the new fa
ility in a node or on an edge, we have found no

referen
es, but ongoing resear
h is presented in Hama
her et al. [9℄. In the planar 
ase,

where the feasible lo
ations are in IR

2

, we have found only three referen
es, namely two

papers by Brimberg and Juel, [1℄ and [2℄, and a paper by Carrizosa et al. [4℄.

In the bi
riterion model, developed in the �rst paper by Brimberg and Juel [1℄, the

�rst obje
tive is the minisum obje
tive and the se
ond obje
tive (the obnoxious 
riterion)

is the minisum obje
tive, where the Eu
lidean distan
e is raised to a negative power. It is

proposed to solve the problem (�nding the eÆ
ient solutions) in two steps. First a 
onvex


ombination with parameter � 2 [0; 1℄ of the two obje
tives (weighting method, Steuer

[14℄) is formed. The resulting obje
tive is neither 
onvex nor 
on
ave. By varying � a

traje
tory of eÆ
ient solutions may be determined. In the paper an algorithm based on

this is outlined. A numeri
al example is presented.

In the se
ond paper by Brimberg and Juel [2℄ a di�erent bi
riterion model is 
onsidered.

In this model the �rst obje
tive is again the minisum obje
tive, but the se
ond obje
tive

(obnoxious) is now the maximin obje
tive. They present two di�erent solution methods

for this model, but only one of them is guaranteed to �nd the 
omplete set of eÆ
ient

solutions.

In the bi
riterion model developed in the third paper by Carrizosa et al. [4℄, the �rst

obje
tive (the obnoxious 
riterion) is modeled as the maxisum, and the se
ond obje
-

tive is modeled as the minisum problem. A solution pro
edure based on the BSSS (Big

Square Small Square) approa
h is suggested. The pro
edure �nds an approximation of

the set of eÆ
ient solutions but no 
omputational experien
e is reported. It should also

be mentioned, that the approximation is in value spa
e, and not in de
ision spa
e.

The theory of the planar and network models is quite di�erent, and the two models

are not often 
ompared, even though they try to des
ribe the same real-life problem. We
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apply the two models on a real-life example in Se
tion 4.

Next we present the basi
 model for the (BSL) problem. We assume that there are n ex-

isting fa
ilities (demand points). In the planar 
ase they are denoted a

j

= (a

j1

; a

j2

); j =

1; : : : ; n. In the network 
ase they are denoted v

1

; v

2

; : : : ; v

n

. We want to pla
e a new

fa
ility at lo
ation x in order to minimize both the (transportation) 
osts and the obnox-

iousness. Let S denote the set of feasible solutions, f(x) the obnoxious obje
tive fun
tion

and g(x) the 
ost obje
tive fun
tion. The general model looks as follows:

min f(x)

min g(x)

s.t.

x 2 S

(1)

We assume f depends negatively on the distan
e fun
tion and g depends positively on the

distan
e fun
tion. This means, when we in
rease the distan
e between the new fa
ility

and an existing fa
ility, this will have a de
reasing e�e
t on f and an in
reasing e�e
t on

g, e.g. less obnoxiousness but higher transportation 
osts.

De�nition 1 A feasible solution x to (1) is eÆ
ient i� there does not exist another fea-

sible solution �x to (1) su
h that f(�x) � f(x); g(�x) � g(x) and (f(�x); g(�x)) 6= (f(x); g(x)).

Otherwise x is ineÆ
ient.

EÆ
ien
y is de�ned in the de
ision spa
e. There is a natural 
ounterpart in the


riterion spa
e. The feasible region in 
riterion spa
e is denoted by Z and is given by

Z = fz(x) 2 R

2

jz(x) = (f(x); g(x)); x is feasible in (1)g.

De�nition 2 z(x) 2 Z is a nondominated 
riterion ve
tor i� x is an eÆ
ient solution

to (1). Otherwise z(x) is a dominated 
riterion ve
tor.

For a textbook introdu
tion to multi
riteria analysis see Steuer [14℄ or more re
ently

Ehrgott [6℄. We note that several eÆ
ient solutions may 
orrespond to the same nondom-

inated 
riterion ve
tor.

As mentioned we 
onsider two 
ases of the problem. The planar 
ase, denoted the

BSPL problem, where the feasible solutions form a region in the plane, and the network


ase, denoted the BSNL problem, where the set of demand points are verti
es in a network.

The BSPL problem is solved using the BSSS method des
ribed by Hansen et al. [10℄,

and we use the idea of this method to solve the BSNL problem as well. The method is

des
ribed in Se
tion 2.1 for the planar 
ase and in Se
tion 3.1 for the network 
ase.
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The remaining part of the paper is organized as follows. In Se
tion 2 we des
ribe the

BSPL problem and the solution approximation algorithm, and in Se
tion 3 the BSNL

problem and its solution method is des
ribed. In Se
tion 4 an appli
ation of the two

models is presented. Se
tion 5 
ontains the 
on
lusions.

2 The planar 
ase : The BSPL problem

The BSPL problem is formulated in the following way. There are n fa
ilities (demand

points) lo
ated at points a

1

; a

2

; : : : a

n

, and the obje
tive is to lo
ate a semi-obnoxious

fa
ility at x so as to minimize a weighted sum of the distan
es raised to a negative power,

and to minimize the weighted sum of the distan
es between the existing fa
ilities and the

new fa
ility. The �rst 
riterion f(x) may be thought of as a pollution e�e
t and the se
ond


riterion g(x) as transportation 
osts. This model was �rst introdu
ed in Brimberg and

Juel [1℄, where a dis
ussion of the obje
tive fun
tions 
an also be found.

min f(x) =

n

P

j=1

w

1

j

(k x� a

j

k

p

1

)

�b

; b > 0

min g(x) =

n

P

j=1

w

2

j

k x� a

j

k

p

2

s.t.

x 2 S

(2)

where k x� a

j

k

p

= (jx

1

� a

j1

j

p

+ jx

2

� a

j2

j

p

)

1=p

be the usual l

p

norm, p � 1.

We prefer this obnoxious fun
tion, be
ause it minimizes the overall obnoxiousness

when far from a demand-point, but re
e
ts the lo
al e�e
ts when 
lose to a demand-

point. Corresponding to this obje
tive we use the non-negative weights w

1

. The se
ond

obje
tive is the standard formulation for lo
ating an attra
tive fa
ility by minimizing

the weighted sum of the distan
es (
alled minisum or median). Please note that we use

non-negative weights w

2

with this obje
tive, so that the two obje
tives may be weighted

di�erently with respe
t to ea
h of the n demand points. We may also use two di�erent

norms, p

1

6= p

2

.

If we are modeling where to pla
e a new airport (the example in Se
tion 4), the �rst

weight w

1

j

may depend on the population at demand point j (e.g. 
ity), and the se
ond

weight w

2

j

may be the expe
ted number of passengers on a yearly basis from demand

point j.

S is the set of feasible solutions. Be
ause of the obnoxious e�e
ts from the new semi-

obnoxious fa
ility, we assume that it is forbidden to pla
e it too near an existing fa
ility.

Therefore, we require, that k x � a

j

k

p

1

> �; j = 1; : : : ; n, where � is a small positive
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number. Noti
e, that this assumption makes the two obje
tive fun
tions Lips
hitzian in

the feasible set S.

An obvious question for this model would be, if all feasible points are eÆ
ient? The

answer is that there does exist examples where all feasible points are eÆ
ient, but that

will probably not be the 
ase in a realisti
 set-up.

2.1 The idea of the BSSS algorithm

In this paper the idea behind the BSSS method will be applied to the BSPL problem (and

also to the BSNL problem). Therefore we brie
y review the method below.

Suppose that the feasible region S is 
ontained in a disjoint union of squares of equal

size. We put these squares into a list named ES. Next ea
h of these squares are 
onsidered

separately. Consider one of the squares, say Q

i

. We divide Q

i

into four sub-squares

Q

i1

; Q

i12

; Q

i3

and Q

i4

of equal size. For ea
h of these sub-squares, say Q

i1

, lower bounds

on the obje
tive fun
tion values (f(x); g(x)); x 2 Q

i1

, are found. By 
omparing this lower

bound with a sample set of obje
tive fun
tion values (stored in a list 
alled EFV) it may be

determined that square Q

i1


ontains only ineÆ
ient points (this is done by the Dominan
e

Che
k Routine DCR(Q

i1

)). If this is the 
ase square Q

i1

is 
alled an ineÆ
ient square

and may be deleted from further 
onsideration. The squares that 
annot be 
lassi�ed as

ineÆ
ient are put into the ES list and will later be divided further into four new sub-

squares. The pro
ess 
ontinues until the side-lengths of all the remaining squares (those

that are not 
lassi�ed as ineÆ
ient) in ES are below some pre-spe
i�ed value �. This

pro
edure is justi�ed provided the two obje
tive fun
tions f(x) and g(x) are Lips
hitzian

in the feasible set S (whi
h is the 
ase in the present paper).

A few 
omments on the pro
edure are appropriate. The sample list of obje
tive fun
-

tion values kept in (the sorted) list EFV (EÆ
ient Fun
tion Value) are used to dominate

sub-squares with poor obje
tive fun
tion value bounds. Therefore the values should in a

way represent the obje
tives' behavior over the feasible region. This is done by 
al
ulating

obje
tive fun
tion values in the 
enters of all the squares, if the 
enter is in the feasible

region S, and otherwise in some other feasible point, and then deleting pairs of obje
tive

fun
tion values being dominated by other obje
tive fun
tion values in the EFV list. It

is also essential that we use good lower bounds for the obje
tive fun
tion values over the

squares. If the bounds are poor, the 
onvergen
e of the algorithm may be slow, be
ause

we will end up with a large number of squares. These bounds are explained in detail in

Se
tions 2.2 and 2.3. Finally, we need to 
he
k if a square is 
ontained in the feasible

region, is overlapping the region or is outside the region. For a dis
ussion of this issue we



110 BSL Approximate

refer to the paper by Hansen et al. [10℄.

The output from the algorithm is an ordered set of \eÆ
ient" squares. By \eÆ
ient"

we mean that we have not been able to dominate them for this parti
ular 
hoi
e of �.

This is why the pro
edure is only an approximation. The \eÆ
ient" squares 
an be

asso
iated with a 
ertain obje
tive fun
tion value, to illustrate the trade-o� between the

two obje
tives. This 
an be done by giving the squares a 
olor 
orresponding to the value

of the �rst obje
tive. This will illustrate how one obje
tive improves as the other gets

worse, and visualize the obje
tive fun
tion values being favored in the di�erent \eÆ
ient"

regions. In the remaining part of this se
tion we assume to have an initial approximation

of the feasible region S by equal size squares.

2.2 Cal
ulating lower bounds

In order to 
al
ulate lower bounds on the two obje
tives, we use an approximation of the

weighted distan
es. This distan
e approximation is illustrated in Figure 1 for the l

2

norm.

The lower bound for the distan
e is found in Hansen et al. [10℄, and the upper bound for

the distan
e is an obvious extension of the same idea, found in Hansen et al. [11℄.

The plane is divided into 9 regions, obtained by extending the four sides of Q

i

. The

regions are the square Q

i

, the four side regions, and the four 
orner regions. The square

Q

i

will be in the 
enter.

�

�

�

� �

a

1

= a

1

a

2

a

2

a

3

a

3

A: Lower bound

�

�

�

�

�

�

a

1

a

1

a

2

a

2

a

3

a

3

B: Upper bound

Figure 1: Lower and upper bounds on the distan
es.

Now let a

j

be a parti
ular lo
ation. With this lo
ation we asso
iate a 
losest point

a

j

2 Q

i

and a furthest point a

j

2 Q

i

, see Figure 1. We may then 
al
ulate a lower bound
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on the values of f and g in Q

i

as follows:

f(Q

i

) =

P

j

w

1

j

(k a

j

� a

j

k

p

1

)

�b

Case B in Figure 1

g(Q

i

) =

P

j

w

2

j

k a

j

� a

j

k

p

2

Case A in Figure 1

Clearly, (f(Q

i

); g(Q

i

) � (min

x2Q

i

f(x);min

y2Q

i

g(y)). Therefore we 
an use the bound

z(Q

i

) = (f(Q

i

); g(Q

i

)) for eÆ
ien
y 
he
king in the algorithm. If we at some point have

found a sample value x 2 S, su
h that (f(x); g(x)) < (f(Q

i

); g(Q

i

)), then, 
learly all

points in Q

i

are dominated by x. It follows that square Q

i


ontains only ineÆ
ient points.

Therefore it is not ne
essary to 
onsider Q

i

anymore. This bound approa
h 
an be used

for any p 2 [1;1℄. Please note that the bounds obviously 
onverge when the squares get

smaller.

2.3 Exa
t lower bound

Sin
e the minisum obje
tive is a ni
e 
onvex fun
tion, it is possible to 
al
ulate an exa
t

lower bound for the squares in most situations. The level sets of a 
onvex fun
tion are


onvex sets, and the gradient 
an therefore be used as follows.

For a square Q

i

with 
orners 


1

; 


2

; 


3

and 


4

, �nd the 
orner 


h

with the minimum

fun
tion value g(


h

). If the dire
tion of steepest des
ent \points away" from the square

Q

i

, then the lower bound g(Q

i

) is exa
tly g(


h

). By \pointing away" we mean that the

dire
tion of steepest des
ent has an angle of at least 90 degrees with the sides of Q

i

, see


ase A in Figure 2. If this angle is less than 90 degrees, the minimum value over Q

i

is

not in 


h

, but on the line segment between 


h

and the 
orner, the dire
tion points out, see


ase B in Figure 2. Finally, if the dire
tion points into Q

i

, the minimum value is not in




h

but inside Q

i

.

Case A Case B




i




i

Figure 2: Exa
t lower bound, depending on dire
tional derivative
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From the above, an exa
t lower bound 
an easily be 
omputed, if the dire
tional

derivative points away from the square. We only need to 
ompute four fun
tion values

and the dire
tional derivative in the minimum value 
orner. Case A in Figure 3 will o

ur

in most evaluations, but not in all.

The dire
tional derivative g

0

(x

0

; y) of g at x

0

2 S in the dire
tion y is de�ned as follows:

g

0

(x

0

; y) = r g(x

0

) � y

where rg(x

0

) is the gradient of g evaluated in x

0

.

If we 
onsider the l

2

norm, the gradient looks as follows:

r g(x

0

) =

0

�

X

j

w

2

j

(x

01

� a

j1

)

k x

0

� a

j

k

;

X

j

w

2

j

(x

02

� a

j2

)

k x

0

� a

j

k

1

A

This reveals the well-known problem; if x

0

is at a demand point, the gradient is unde�ned

be
ause of the denominator being zero. In this 
ase we also have to use the lower bound

of Se
tion 2.2.

Expressions for the gradient for general l

p

norms, 
an be derived for any p 2 [1;1℄.

A
tually, the only assumption needed for the exa
t lower bound to be valid, is that the

level sets are 
onvex. The reason for deriving tighter bounds is to speed up 
onvergen
e

of the algorithm.

2.4 BSSS algorithm for the BSPL problem

Notation:

Q

i

Square number i

z(Q

i

) = (f(Q

i

); g(Q

i

)) Lower bounds for Q

i

.

ES List of EÆ
ient Squares. Note that this is only a name for

squares that have not been proven ineÆ
ient.

ECL EÆ
ient Candidate List (of squares of equal size). It 
onsists

of the four sub squares of all the squares in ES.

EFV List of EÆ
ient Fun
tion Values. Fun
tion values are 
al
ulated

at di�erent points in the feasible region, and the nondominated ones

(at this time in the routine) are in this list.

DCR(Q

i

) Dominan
e Che
k Routine for Q

i

(with EFV). Is brie
y explained

in Se
tion 2.1.

The idea for the DCR routine was found in [3℄, and earlier used by the authors in [13℄.

Planar Algorithm:

1. Initialize

Find an equal size square approximation Q

1

; Q

2

; : : : ; Q

N

of S
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Put Q

i

in ES 8i = 1; 2; : : : ; N .

Let L be the length of a side of Q

1

De�ne the toleran
e level �

2. Creating New Squares

For ea
h Q

i

2 ES do

Create 4 sub-squares Q

j

; j = 1; 2; 3; 4, put the Q

j

's in ECL and delete Q

i

from ES

Set L =

L

2

3. EÆ
ien
y Update

Update EFV by 
al
ulating some fun
tion values from the Q

j

's

For ea
h Q

j

2 ECL do

Cal
ulate z(Q

j

) = (f(Q

j

); g(Q

j

)) using exa
t lower bounds when possible

Make DCR(Q

j

) with EFV

If Q

j

is eÆ
ient 
ompared with EFV then add Q

j

to ES

4. Termination Test

If L < � Terminate with ES as the solution list

Else go to Step 2

3 The network 
ase : The BSNL problem

In this se
tion we adapt the BSSS method to the network 
ase. However, instead of

dividing big squares into smaller squares, we divide edges into sub-edges. This will be

explained in detail in Se
tion 3.1. Assume we have an undire
ted 
onne
ted network

G(V; E) with node set V = fv

1

; v

2

; : : : ; v

n

g where jVj = n nodes, and a �nite set of edges

(ar
s) E = f(v

i

; v

j

); (v

k

; v

l

); : : : ; (v

p

; v

q

)g with jEj = m. Edges may also be denoted by e.

All edges have a stri
tly positive length. Ea
h node v

j


arries two non-negative weights

(w

1

j

; w

2

j

), one for the obnoxious 
riterion and one for the desirable 
riterion.

The model is the same as (2), ex
ept that the set of possible new lo
ations is the entire

network. With our 
hoi
e of obnoxious obje
tive fun
tion, however, x 
annot be lo
ated
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in a node. The BSNL problem is then:

min f(x) =

P

j

w

1

j

(d(x; v

j

))

�b

; b > 0

min g(x) =

P

j

w

2

j

d(x; v

j

)

s.t.

x 2 G(V; E)

(3)

where d(x; v

j

) is the shortest distan
e from point x to node v

j

. The authors are well aware

that the obnoxious obje
tive fun
tion is not as appropriate on the network model, as in

the planar model, but we have de
ided to use it for 
omparison purposes, see Se
tion 4.

The solution pro
edure is des
ribed shortly in Se
tion 3.1 and the algorithm is presented

in Se
tion 3.4. The approximation algorithm is a very general and intuitive approa
h and


an be used for 
ompli
ated obje
tive fun
tions.

3.1 The Edge Dividing algorithm

The idea of the Edge Dividing (ED) algorithm is similar to the idea behind the BSSS

algorithm. First we divide ea
h edge into two sub-edges. Then bounds on the obje
tive

fun
tion values on ea
h sub-edge are 
al
ulated. Furthermore, a sample set of obje
tive

fun
tion values are 
al
ulated. If the bounds 
al
ulated for a sub-edge are dominated by

one (or more) of the sample set obje
tive fun
tion values then the sub-edge is dominated

and may be deleted from further 
onsideration.

The bounds are derived in detail in Se
tions 3.2 and 3.3. The sample set of obje
tive

fun
tion values are 
al
ulated in the middle (
enter) of the sub-edges. Nondominated


riterion values are kept in the EFV list. Please note that only an approximation of the

eÆ
ient set is found.

The output from the algorithm is an ordered set of \eÆ
ient" sub-edges. This general

pro
edure, however, has a few disadvantages. The eÆ
ient set (or part of it) may be an

edge-segment. This sub-edge will obviously remain in the ES list, but the sub-edge will

be divided into sub-edges again and again. This reveals that the ES set will probably

almost double in size, when we half the � value. This 
an in fa
t be used as an alternative

stopping 
riterion.

3.2 Cal
ulating lower bounds

We need both upper and lower bounds on the distan
e d(x; v

j

), where x 
an be any point

on the edge (or sub-edge) e

i

. We refer to the lower bound of this distan
e by d(e

i

; v

j

) and

to the upper bound by d(e

i

; v

j

). Assume e

i

2 (v

h

; v

k

), and x

h

is the endpoint of e

i


losest

to v

h

, and that x

k

is the endpoint of e

i


losest to v

k

.
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The upper-bound may be 
al
ulated as follows:

d(e

i

; v

j

) = minfd(v

j

; v

h

) + d(v

h

; x

h

); d(v

j

; v

k

) + d(v

k

; x

k

)g+ d(x

h

; x

k

)

and the lower-bound may be 
al
ulated as follows:

d(e

i

; v

j

) = minfd(v

j

; v

h

) + d(v

h

; x

h

); d(v

j

; v

k

) + d(v

k

; x

k

)g

These two bounds 
an be easily 
al
ulated as illustrated in Figure 3, whenever the

distan
e matrix D, of shortest distan
es between all pairs of nodes, is available.

v

j

v

h

v

k

x

h

x

k

e

i

Figure 3: Cal
ulating distan
e bounds.

Using these bounds we 
an 
al
ulate the lower bounds on the obje
tive fun
tion values

as

f(e

i

) =

X

j

w

1

j

�

d(e

i

; v

j

)

�

�b

g(e

i

) =

X

j

w

2

j

d(e

i

; v

j

)

3.3 Exa
t bounds

In this se
tion we derive some exa
t bounds, spe
i�
ally for our 
hoi
e of obje
tive fun
-

tions.

The distan
e fun
tion d(x; v

j

) is a 
on
ave fun
tions on an edge (subedge). Therefore,

g(x) is a 
on
ave fun
tion on an edge, and the minimum is always in one of the (sub-edge)

endpoints. So we have an exa
t lower bound as follows.

g(e

i

) = minfg(x

h

); g(x

k

)g (4)

Now lets 
onsider f(x). Sin
e d(x; v

j

) is both positive and 
on
ave, (d(x; v

j

))

�b

is 
onvex.

Therefore, f(x) is 
onvex on an edge. If we are looking at the sub-edge from x

h

to x

k

as
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illustrated in Figure 3, and the derivatives at the endpoints have the same sign, then an

exa
t lower bound is simply the smallest endpoint value. That is, if

sign

�

�

+

�x

(v

h

;v

k

)

f(x

h

)

�

= sign

�

�

+

�x

(v

h

;v

k

)

f(x

k

)

�

(5)

then

f(e

i

) = minff(x

h

); f(x

k

)g (6)

where

�

+

�x

(v

i

;v

j

)

f(x

k

) denotes the derivative in the dire
tion from v

i

towards v

j

, and we

want to know if the fun
tion in
reases or de
reases. The \

+

" indi
ates right derivative,

so even in a break-point this derivative is well-de�ned. If (5) does not hold, the bound in

Se
tion 3.2 has to be applied. For more general obje
tive fun
tions, the bounds in Se
tion

3.2 may be needed more often.

3.4 ED algorithm for the BSNL problem

Notation:

e

i

Sub-edge number i

z(e

i

) = (f(e

i

); g(e

i

)) Lower bounds for e

i

.

ES List of EÆ
ient Sub-edge. Note that this is only a name for

sub-edges that have not been proven ineÆ
ient.

ECL EÆ
ient Candidate List (of sub-edges). It 
onsists

of the two sub-edges of all the sub-edges in ES.

EFV List of EÆ
ient Fun
tion Values. Fun
tion values are 
al
ulated

at di�erent points on the network, and the nondominated ones

(at this time in the routine) are in this list.

DCR(e

i

) Dominan
e Che
k Routine for e

i

(with EFV).

L Length of a longest edge in ES.

Network Algorithm:

1. Initialize

Find the shortest path matrix D.

Put all edges e

1

; e

2

; : : : ; e

m

in ECL.

Let L be the length of a longest edge in ECL.

De�ne the toleran
e level �.

Cal
ulate 
riterion values in all midpoints to make an initial EFV list.

2. EÆ
ien
y Update

For ea
h e

i

2 ECL do
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Cal
ulate z(e

i

) = (f(e

i

); g(e

i

)) using (4) and the exa
t bound (6) if possible

Make DCR(e

i

) with EFV

If e

i

is EÆ
ient 
ompared with EFV then add e

i

to ES

Update L (as a longest sub-edge in ES)

3. Termination Test

If L < � Terminate with ES as the solution list

4. Creating New Sub-edges

For ea
h e

i

2 ES do

Split e

i

into two sub-edges e

i1

and e

i2

of equal length.

Add e

i1

and e

i2

to ECL and delete e

i

from ES

Update EFV by 
al
ulating 
riterion values on the middle of all sub-edges e

j

in ECL

Go to Step 2

4 An airport example

To illustrate the usefulness of the two models we present an appli
ation. Currently, there

is a debate in Denmark as to the lo
ation of a new international airport in the mainland

Jutland in order to repla
e an existing one. The existing airport is lo
ated near a small


ity 
alled Tirstrup approximately 45 km to the North-East of

�

Arhus, the largest 
ity in

Jutland (with about 215.000 inhabitants). The existing airport is lo
ated in an area where

not many people are living and where not many 
ompanies are based. Furthermore, the

infrastru
ture of this area is not too good. For example it takes about 1 hour to go from

�

Arhus to Tirstrup. Many 
ompanies (and people) think that this is too mu
h time to

spend on transportation to the airport.

It is believed that a new international airport lo
ated not too far away from

�

Arhus

would be attra
tive to a lot of 
ompanies (and people). However, 
ustomers (
ompa-

nies/people) living nearby

�

Arhus are more likely to use the new airport than 
ustomers

living far away from

�

Arhus. Therefore, we will 
onsider only a region of potential lo
a-

tions with x-
oordinates between 60 and 140, and y-
oordinates between 100 and 180, see

Figure 4. Furthermore, we have divided Jutland into three zones, namely a 100% zone,

a 50% zone, and a 20% zone, see Figure 4. The weighting zones should re
e
t the fa
t

that 
ustomers far away from the 
hosen region will use the new airport less frequently
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than 
ustomers 
lose by or within this region. These three weighting zones will be used

when de�ning the transportation obje
tives later in this se
tion. We have 
hosen 42 
ities

to represent the 
ustomers in Jutland, ranging in population from 2574 (Hanstholm) to

215587 (

�

Arhus) inhabitants as demand points. Distan
e is measured in kilometers, and

the �-value used is 0.15 km (150 meters) for both the planar 
ase and the network 
ase.

Origo is pla
ed on the German island of Sylt.

Next, let us des
ribe the parameters for the two obje
tive fun
tions. For the planar

model we have used the Eu
lidean distan
e and a b-value of two. For the network model,

the distan
e is always the shortest distan
e in the network. The b-value is two. The edge

lengths are road distan
es 
olle
ted from an inter
ity distan
e table. All input data is

available from the 
orresponding author.

For the obnoxious 
riterion we have used weights w

1

j

=\population in 
ity j". This

is a simple form of letting the larger 
ities 
ount more than the smaller 
ities. For the

transportation 
ost obje
tive we have used weights w

2

j

=\population in 
ity j multiplied

by the weight of the zone in whi
h the 
ity is lo
ated". This means that 
ities nearby

�

Arhus 
ount mu
h more than 
ities far away from

�

Arhus, re
e
ting the fa
t that 
ustomers

far away from

�

Arhus are likely to use the new airport less frequently than 
ustomers living

nearby

�

Arhus.

Whether the 
ity population is an appropriate measure of passengers is not an issue

here. The data for the example is presented in Table 1, and it is used for both the planar

and the network problem. The three dummy-nodes in Table 1 are introdu
ed only to make

the road-network in Figure 7 more realisti
, and are lo
ated right to the west of

�

Arhus.

These nodes are introdu
ed be
ause the main highway follows a half-
ir
le around

�

Arhus.

First we present the results of the planar model. The norm to the negative power

fun
tion is illustrated in Figure 5, 
overing the region of [60; 140℄ � [100; 180℄. The peaks

indi
ate the 
ities, with fun
tion values going to in�nity. As 
an be seen from Figure 5 it

may be hard to �nd an exa
t lower bound for this fun
tion. The minisum global optimum

is attained in (110; 145) with a value of 3; 27 � 10

7

. The minisum fun
tion is not plotted

sin
e it is just a 
onvex fun
tion.

The eÆ
ient region is illustrated on the map in Figure 6. For 
larity, we have drawn

two minisum level 
urves. The inner level 
urve is minisum values 10% above the global

minisum minimum (3; 6 � 10

7

), and the outer level 
urve is 20% above (3; 92 � 10

7

).

Figure 6 reveals three eÆ
ient regions. The 
entral region just west-north-west of

�

Arhus 
ontaining the global minisum minimum, and with minisum-values within 10%

of the minimum. The 
entral region re
e
ts in whi
h dire
tion the obnoxious obje
tive
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100 %
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Figure 4: Jutland divided into three weighting-zones. Coordinates are in kilometers.
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City (j) a

j1

a

j2

w

1

j

w

2

j

Esbjerg 7.17 69.31 73422 14684.4

T�nder 34.416 8.126 8161 1632.2

Ribe 28.202 52.102 8046 1609.2

Kolding 72.178 68.832 53012 26506

Vejle 76.002 93.21 47839 23919.5

Horsens 95.122 110.418 48410 48410

Skanderborg 99.902 130.494 12067 12067

�

Arhus 118.066 142.922 215587 215587

Randers 106.116 177.338 56123 56123

Viborg 67.876 175.904 31872 31872

Silkeborg 76.958 146.746 36762 36762

Ikast 52.102 141.01 14014 7007

Herning 40.63 141.966 29231 14615.5

Holstebro 18.642 166.344 30770 15385

Struer 17.208 181.206 11272 5636

Skive 44.454 188.332 20557 10278.5

Hadsten 108.028 162.042 6616 6616

Gren�a 158.696 172.08 14441 14441

Hobro 91.298 196.936 10704 5352

Aars 74.568 216.056 7066 3533

�

Alborg 98.468 240.434 119157 59578.5

Frederi
ia 88.43 78.392 29376 14688

Haderslev 74.09 42.064 21106 4221.2

Aabenr�a 69.31 20.076 16218 3243.6

Vejen 52.58 66.442 8507 1701.4

Br�nderslev 99.902 267.202 11365 2273

Hj�rring 103.248 289.668 24889 4977.8

Frederikshavn 135.274 288.234 24768 4953.6

Bjerringbro 83.547 169.246 7201 7201

Varde 10.994 83.172 12478 2495.6

Grindsted 38.718 97.034 9497 1899.4

Skjern 11.95 119.978 6949 1389.8

Ringk�bing -4.302 135.274 9166 1833.2

Brande 50.668 119.022 6214 3107

Lemvig 0 185.464 7302 1460.4

Nyk�bing 33.46 212.71 9319 1863.8

Thisted 25.334 231.352 12609 2521.8

Hanstholm 19.12 249.516 2574 514.8

Fjerritslev 58.316 244.736 3332 666.4

Hirtshals 100.858 301.14 6949 1389.8

Skagen 136.708 315.958 10674 2134.8

Ebeltoft 146.746 144.834 4396 4396

Dummi North 113 152 0 0

Dummi West 109 144 0 0

Dummi South 109 137 0 0

Table 1: Lo
ations a

j

= (a

j1

; a

j2

) and weights (w

1

j

; w

2

j

) of 42 
ities in Jutland.
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Hadsten

AarhusViborg

Bjerringbro
Silkeborg

Randers Skanderborg

Horsens

Figure 5: Surfa
e-plot of the obnoxious obje
tive-fun
tion.
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Figure 6: EÆ
ient regions for airport lo
ation
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Region f -value g-value (�10

7

)

A ℄1 ; 3772℄ [3.63 ; 3.80℄

B [3756 ; 2244℄ [3.86 ; 3.92℄

C [713 ; 570℄ [4.29 ; 4.45℄

D [568 ; 419℄ [4.49 ; 4.70℄

E [419 ; 316℄ [4.77 ; 4.93℄

F [316 ; 222℄ [5.18 ; 5.71℄

G [222 ; 193℄ [5.91 ; 6.34℄

Table 2: Obje
tive fun
tion values for the regions indi
ated in Figure 7.

de
reases, namely north-west. This region has the highest obnoxious values, ranging from

3400 (at the minisum optimum) to 675 in the north-western part of the region. The south-

west region has minisum values from approximately 10% to 25% above the minimum. This

region has obnoxious values from 675 to 440. The last eÆ
ient region is the north-east

region with minisum values more the 25% above the minimum. This region has the lowest

obnoxious values, below 440, simply be
ause there are no major 
ities in this part of the


ountry as 
an be seen in Figure 4. As a matter of fa
t the existing airport at Tirstrup

is nearby this region. Potential lo
ations for a new airport should be found within these

eÆ
ient regions.

Next we present the results of the network model. For this model only the resulting

network, with the eÆ
ient sub-edges, is presented, see Figure 7. The minisum obje
tive

fun
tion has its global minimum in the node representing the 
ity of

�

Arhus. The obnoxious

obje
tive fun
tion has its global minimum outside the target region.

In Figure 7 the seven eÆ
ient regions are indi
ated by the letters A, B, : : :, G, and the


orresponding obje
tive fun
tion value intervals are presented in Table 2. The region A

around

�

Arhus has the lowest transportation 
osts, but also quite high obnoxious values.

The most deserted subedge, region G, has the lowest obnoxious values, but almost two

times the lowest transportation 
ost. The trade-o� between the two obje
tives is well

represented by Table 2. Figure 7 reveals that a possible lo
ation of the new airport 
ould

be in an area north-west of

�

Arhus.

5 Con
luding remarks

In this paper we have set up two bi
riterion lo
ation models for lo
ating one obnoxious

fa
ility, namely one for the planar 
ase and one for the network 
ase. EÆ
ient (well-

working) solution algorithms based on the well-known BSSS algorithm has been proposed.
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A

B
C

D

E

F

G

Figure 7: Road-network of Jutland. Bold parts 
onstitute the eÆ
ient set.
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Both models are easily extended to multiple 
riteria. All that needs to be 
hanged is the

DCR operation.

Even though the planar and the network model may seem distin
t in stru
ture, they

are designed to solve the same real-life problem. Often a 
ombination of the two models

would be preferable. For example, modeling air pollution su
h as noise makes most sense

in the planar model, whereas the network model would be the 
orre
t des
ription of a

road network with distan
es or travel times as 
oeÆ
ients. One possible 
ombination is

to embed the network on top of the plane, so that ea
h point on the network 
orresponds

to a point in the plane, but not ne
essarily the other way around.

Another issue is the 
hoi
e of obnoxious 
riterion fun
tions. We have used the negative

power fun
tion also used in Brimberg and Juel [1℄. Of 
ourse, many other fun
tions may

be used, and for more 
ompli
ated fun
tions, the approximation approa
h des
ribed in

this paper may be the only appli
able approa
h.

It may also be appropriate to have weights depending on distan
e. However, in most

exa
t models this will 
ause mathemati
al diÆ
ulties. In the airport example presented

in Se
tion 4, the number of yearly passengers from a 
ity using the new airport, most

probably depends negatively on the distan
e.

It should also be 
onsidered what kind of pull obje
tive (
ost fun
tion) is appropriate.

We have only 
onsidered the minisum. It should also be noted that for some obje
tives

an exa
t bound, or at least an improved bound, may be applied.

The output of the models reveal the trade-o� between the two negatively 
orrelated


riteria. We 
on
lude that the two proposed models are good tools for obnoxious lo
ation

de
isions. Finally, we have illustrated the models on a real-life appli
ation.
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Abstra
t

Lo
ating a fa
ility is often modeled as either the maxisum or the minisum prob-

lem, re
e
ting whether the fa
ility is undesirable (obnoxious) or desirable. But many

fa
ilities are both desirable and undesirable at the same time, e.g. an airport. This


an be modeled as a multi
riteria network lo
ation problem, where some of the sum-

obje
tives are maximized (push e�e
t) and some of the sum-obje
tives are minimized

(pull e�e
t).

We present a polynomial time algorithm for this model along with some basi


theoreti
al results, and generalize the results also to in
orporate maximin and minimax

obje
tives. In fa
t, the method works for any pie
ewise linear obje
tive fun
tions.

Finally, we present some 
omputational results.

Keywords: MCDM, Multi
riteria, Obnoxious, Semi-obnoxious, Fa
ility Lo
ation, Net-

works.

1 Introdu
tion

There are a number of models that deal with the problem of lo
ating (pla
ing) a new fa
ility

on a network. Most of these models lo
ate a desirable fa
ility, su
h as a supermarket or a

�

Corresponding author.

127
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�re station, where the obje
tive is to keep the new fa
ility 
lose to its users (pull e�e
t).

There are also some models des
ribing how to lo
ate an obnoxious (undesirable) fa
ility

su
h as a nu
lear power plant or a dump site whi
h the users want to lo
ate far away (push

e�e
t). Many fa
ilities 
an, however, be thought of as semi-obnoxious. Su
h fa
ilities


ould be airports, train stations or other noisy servi
e fa
ilities. It 
ould also be the

above-mentioned dump site that, with respe
t to transportation 
osts, should be lo
ated


entrally, but, in the opinion of the 
itizens, should be lo
ated distantly. These lo
ation

problems 
ould with obvious advantages be formulated as multi
riteria network lo
ation

problems. In this way the trade-o� between the di�erent obje
tives 
an be revealed,

making a good basis for an overall de
ision. Di�erent aspe
ts of the problem 
an be

des
ribed by di�erent obje
tives. Su
h obje
tives 
ould be transportation 
osts, travel

time, air pollution or minimizing the number of 
itizens within a 
ertain radius of the

fa
ility. Another situation arises when we have more de
ision makers, ea
h having their

own obje
tive fun
tion. When we solve a problem with more than one obje
tive, it is

highly unlikely that one solution is optimal for all obje
tives. Instead, the solution is the

set of eÆ
ient or Pareto lo
ations, i.e. solutions where we 
annot improve any obje
tive

without at least one other obje
tive being worsened.

Bi
riterion models for the planar 
ase of the problem is presented in Brimberg and Juel

[1℄, Carrizosa et al. [2℄ and Andersen and Skriver [10℄. In Andersen and Skriver [10℄

an approximation solution method for the bi
riterion network lo
ation problem is also

presented. A general solution method for the multi
riterion median-problem is presented

in Hama
her et al. [5℄.

As one noti
es, the terminology for lo
ation problems is not unique. Therefore we intro-

du
e in the following a 
lassi�
ation s
heme for lo
ation problems that should help get an

overview over the manifold area of lo
ation problems.

We use a s
heme whi
h is analogous to the one introdu
ed su

essfully in s
heduling theory.

The presented s
heme for lo
ation problems was developed in Hama
her and Ni
kel [6℄

and Hama
her et al. [5℄.

We have the following �ve position 
lassi�
ation

pos1=pos2=pos3=pos4=pos5 ;

where the meaning of ea
h position is explained in Table 1:

If we do not make any spe
ial assumptions in a position, we indi
ate this by a �.

The rest of the paper is organized as follows. In Se
tion 2 we give some de�nitions and
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Position Meaning Usage (Examples)

1 number of new fa
ilities

2 type of problem

P planar lo
ation problem

D dis
rete lo
ation problem

G network lo
ation problem

3 spe
ial assumptions and

restri
tions

w

m

= 1 all weights are equal

R a forbidden region

4 type of distan
e fun
tion

l

1

Manhattan metri


d(V;V) node to node distan
e

d(V; G) node to point distan
e

5 type of obje
tive fun
tion

P

median problem

P

obnox

anti-median problem

max 
enter problem

max

obnox

anti-
enter problem

Table 1: Classi�
ation s
heme for lo
ation problems.

des
ribe the problem. The general solution pro
edure is des
ribed in Se
tion 3, and in

Se
tion 4 we present a di�erent approa
h that works only in the bi
riteria 
ase. In Se
tion

5 we dis
uss how the general solution pro
edure 
an also be used with 
enter obje
tives.

Computational results are presented in Se
tion 6, and we 
on
lude the paper in Se
tion 7.

2 Problem formulation and de�nitions

We are given a (strongly) 
onne
ted network G(V; E) with nodeset V = fv

1

; v

2

; : : : ; v

n

g

where jVj = n nodes, and edgeset E = f(v

i

; v

j

); (v

k

; v

l

); : : : ; (v

p

; v

q

)g with jEj = m edges.

If the underlying graph is dire
ted it is denoted G

D

, and the edge e = (v

i

; v

j

) has head v

j

and tail v

i

. If the underlying graph is undire
ted, it is just denoted G, and e = (v

i

; v

j

) =

(v

j

; v

i

) 8e 2 E . We de�ne the set of obje
tives as Q = f1; 2; : : : ; Qg. Ea
h node v

i


arries

Q weights (w

1

i

; w

2

i

; : : : ; w

Q

i

)

t

, where w

q

i

> 0;8q 2 Q, so we may refer to the matrix of

weights by W

Q�n

. Ea
h edge e 2 E has length l(e) 2 R

+

.

By d(v

h

; v

k

) we denote the distan
e between v

h

and v

k

, is given by the length of a shortest

path between v

h

and v

k

. A point x 2 G(V; E) 
an be lo
ated both at a node or on an

edge. This is often referred to as absolute lo
ation.

We de�ne a point x on a dire
ted edge e = (v

i

; v

j

) as a tuple x = (e; t); t 2 [0; 1℄, with

d(v

k

; x) = d(v

k

; v

i

) + tl(e) and d(x; v

k

) = (1� t)l(e) + d(v

j

; v

k

)

for any v

k

2 V. A point x on an undire
ted edge e = (v

i

; v

j

) is de�ned as a touple
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x = (e; t); t 2 [0; 1℄, with

d(x; v

k

) = minfd(v

k

; v

i

) + tl(e); d(v

k

; v

j

) + (1� t)l(e)g

for any v

k

2 V. Noti
e that d(v

i

; x) = tl(e) and d(x; v

j

) = (1� t)l(e) for x = (e; t). Sin
e

v

i

= (e; 0) and v

j

= (e; 1), all nodes of the network are also points of the network.

The set f(e; t)jt 2 (t

1

; t

2

); t

1

; t

2

2 [0; 1℄g, forming an open subedge on e, is denoted

(e; (t

1

; t

2

)) for any e 2 E . Of 
ourse this set is empty, unless t

2

> t

1

. Similarly, we de�ne


losed and half right/left open subedges.

We formulate the model with the maxisum and minisum obje
tives, whi
h are obviously

negatively 
orrelated. These obje
tive fun
tions are often referred to as the weighted

anti-median andmedian of a network. In Se
tion 5 we dis
uss the maximin and minimax

obje
tives. For the undire
ted problem the obje
tive fun
tions are de�ned by

f

q

(x) =

n

X

i=1

w

q

i

d(x; v

i

) q 2 Q (1)

and for the dire
ted 
ase they are de�ned by

f

q

(x) =

n

X

i=1

w

q

i

(d(x; v

i

) + d(v

i

; x)) q 2 Q (2)

In (2) observe that we for ea
h node v

i

make a round-trip from x to v

i

and ba
k to x. In

some appli
ations it may be more appropriate to look only at the distan
es out of x or into

x. The general undire
ted problem 1/G/�/d(V; G)/(Q

1

-

P

obnox

; Q

2

-

P

)

Par

is formulated

as follows:

max f

q

(x) q 2 Q

1

min f

q

(x) q 2 Q

2

s.t.

x 2 G(V; E)

(3)

Q = Q

1

[ Q

2

, where Q

1

\ Q

2

= ;. Q

1

is the set of obnoxious obje
tive fun
tions, and

Q

2

is the set of desirable obje
tive fun
tions. At most one of the sets are allowed to be

empty. If Q

1

= ; we have the situation dis
ussed in Hama
her, Labb�e and Ni
kel [5℄.

f(x) = (f

1

(x); f

2

(x); : : : ; f

Q

(x))

t

.

For simpli
ity in the su

eeding argumentation we multiply all obje
tive fun
tions in Q

1

by �1 in order to minimize instead of maximize. Thus, in the remaining part of the paper

we assume that w

q

i

< 0;8i = 1; 2; : : : ; n and q 2 Q

1

, and w

q

i

> 0;8i = 1; 2; : : : ; n and

q 2 Q

2

. We now have a multi
riteria minimization model:

min f

q

(x) q 2 Q

1

min f

q

(x) q 2 Q

2

s.t.

x 2 G(V; E)

(4)



MSNL Subedge Comparison 131

In order to �nd the shortest distan
es between x and all the nodes, we need the distan
e

matrix D of shortest distan
es between all pairs of nodes. Note that D

ij

= d(v

i

; v

j

). This

matrix 
an be 
al
ulated in O(n

3

) running time using Floyd's algorithm or by applying Di-

jkstra's algorithm to all n nodes. For details on these graph pro
edures, see Thulasiraman

and Swamy [13℄. For an undire
ted network the distan
e matrix D is symmetri
.

This model is a 
ombination of two well-known models. The minisum and the maxisum

models. The solution pro
edures for these two models are similar, but we will explain the

most important details here. For the maxisum problem, some interesting theory is found

in Chur
h and Gar�nkel [3℄. They introdu
e the 
on
ept of bottlene
k points, and refer

to nodes with degree one as dangling nodes (often 
alled pendant nodes). The minisum

problem has been well studied, and we refer to Daskin [4℄ for details.

We will now outline the 
on
ept of bottlene
k-points as it is presented in Chur
h and

Gar�nkel [3℄. There are two types of bottlene
k-points. The edge-bottlene
k-points are

de�ned as follows, for ea
h edge (v

i

; v

j

) 2 E : Let x be on the edge (v

i

; v

j

). If there exists

a node v

k

6= v

i

; v

j

su
h that

D

ki

+ d(x; v

i

) = D

kj

+ d(x; v

j

)

then x is an edge-bottlene
k-point. It is easily seen, that edge (v

i

; v

j

) 
ontains an

edge-bottlene
k-point with respe
t to node v

k

if and only if

jD

ki

�D

kj

j < l((v

i

; v

j

))

This sets the upper bound for the number of edge-bottlene
k-points on an edge to n� 2.

Now we de�ne the node-bottlene
k-points. Assume there exists distin
t nodes v

i

,v

h

and

v

k

. If there exists a node v

j

6= v

i

; v

h

; v

k

su
h that

D

ik

+D

kj

= D

ih

+D

hj

then node v

j

is a node-bottlene
k-point with respe
t to node v

i

(and v

i

to v

j

). Consid-

ering the whole edge (v

i

; v

j

) in
luding the nodes, it 
ontains at most n bottlene
k-points.

Sin
e there are m edges in G, the total number of bottlene
k-points is bounded by mn.

It is important to note that the bottlene
k-points are independent of the weights. They

only depend on the network stru
ture in
luding the edge-lengths. We will denote the

edge-bottlene
k-point matrix of shortest distan
es from all edge-bottlene
k-points to

all nodes by B. So B

ij

is the shortest distan
e from edge-bottlene
k-point B

i

to node v

j

.

This matrix is needed for easy 
al
ulation of the obje
tive-values in the bottlene
k-points.
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When we know the shortest distan
e matrix D, the bottlene
k-points 
an be 
al
ulated

in O(mn) running time, be
ause for ea
h edge we have to evaluate all nodes. This 
an be

improved to an algorithm that takes O(n log n) time, see Hansen et al. [7℄.

In Chur
h and Gar�nkel [3℄ it is shown that there exists a point x, that is either a

bottlene
k-point or a dangling node that solves the maxisum problem. This is true be-


ause the weighted-sum obje
tive is a pie
ewise linear, 
on
ave fun
tion on the edges,

with break-points only in the edge-bottlene
k-points. This 
orresponds to minimizing the

weighted sum where all weights are negative. The obje
tive fun
tion is then a pie
ewise

linear, 
onvex fun
tion with break-points only in the edge-bottlene
k-points, see f

1

in

Figure 1. Note that the optimum need not be unique, it 
an be a subedge between two (or

more) bottlene
k-points, or the optimum value may also be obtained on a di�erent edge.

It is well-known that the optimum for the minisum problem is found in a node (f

2

in

Figure 1). The standard way of solving this problem is to sum the rows of the distan
e

matrix D multiplied by the weights. The row with the smallest weighted sum 
orresponds

to the minisum optimum node. For further details see Daskin [4℄.

t10

f

2

= z

2

f

1

= z

1

t

0

t

1

t

2

t

3

Z

2

Z

1

Figure 1: Illustration of the obje
tive fun
tions on an edge.

We denote the set of optimal solutions to a single-obje
tive problem by X

q

. The 
or-

responding obje
tive values are denoted by Z

q

. Note that these sets of obje
tive-values

only 
ontain one value, namely the optimal value, but the notation generalizes to the

nondominated set Z

Par

de�ned below.

Solving the Q-
riteria semi-obnoxious network lo
ation problem means �nding the set of

eÆ
ient points. For an introdu
tion to multiple 
riteria analysis see Steuer [12℄.

The de�nition of eÆ
ien
y is as follows.
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De�nition 1 A solution x 2 G(V; E) to (4) is eÆ
ient (Pareto optimal) i� there does

not exist another solution �x 2 G(V; E) to (4) su
h that f

q

(�x) � f

q

(x) 8q 2 Q and

9q 2 Q s:t: f

q

(�x) < f

q

(x). Otherwise x is ineÆ
ient.

The set of all eÆ
ient/Pareto optimal solutions are denoted by X

Par

. EÆ
ien
y is de�ned

in the de
ision spa
e. There is a natural 
ounterpart in the 
riterion spa
e. The 
riterion

spa
e is denoted by Z and is given by Z = ff(x) 2 R

Q

jx 2 G(V; E)g.

De�nition 2 f(x) 2 Z is a nondominated 
riterion ve
tor i� x is an eÆ
ient solution

to (4). Otherwise f(x) is a dominated 
riterion ve
tor.

The set of all nondominated 
riterion ve
tors are denoted by Z

Par

where Z

Par

= f(X

Par

).

We use the Pareto optimality notation for both de
ision and 
riterion spa
e.

Let S be a subset of G(V; E). We will de�ne the set of lo
ally eÆ
ient solutions, denoted

X

Par

(S), to be the solutions that are eÆ
ient with respe
t to all other solutions in the

subset S. Similarly, Z

Par

(S) denotes the set of 
riterion ve
tors from f(S) that are lo
ally

nondominated by any other 
riterion ve
tor in f(S).

2.1 Example

Now we present two small examples to illustrate the stru
ture of the dire
ted and the

undire
ted problem, see Figure 2 and 3. Let the distan
e matrix D

dire
ted

be given by

D

dire
ted

=

2

6

6

6

6

6

6

4

0 1 5 4 3 6

7 0 6 3 10 5

1 2 0 5 4 7

4 3 3 0 7 2

3 4 2 7 0 3

8 1 7 4 11 0

3

7

7

7

7

7

7

5

for the dire
ted network of Figure 2. Let the weights be w

1

= (�1;�2;�1;�1;�2;�2)

and w

2

= (2; 1; 2; 2; 2; 1).

The solution pro
edure for the dire
ted network in Figure 2 is explained in Se
tion 3.2,

and the 
riterion values are presented in Table 3.

Let the distan
e matrix D be given by

D =

2

6

6

6

6

6

6

4

0 1 1 4 3 2

1 0 2 3 4 1

1 2 0 3 2 3

4 3 3 0 5 2

3 4 2 5 0 3

2 1 3 2 3 0

3

7

7

7

7

7

7

5
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v

1

v

2

v

3

v

4

v

5

v

6

3

1

1

3

2 2

3

1

3

Figure 2: The dire
ted network of Example 2.1. The bold parts 
onstitute the set of

eÆ
ient points.

for the undire
ted network of Figure 3. B 
an be 
al
ulated as

B =

2

6

6

6

6

6

6

6

6

6

6

4

2 3 3 6 1 4

3 2 4 1 6 3

2 3 1 2 3 4

3 4 2 1 4 3

2 3 1 4 1 4

3 2 4 1 4 1

4 3 3 4 1 2

3 2 4 3 2 1

3

7

7

7

7

7

7

7

7

7

7

5

:

v

1

v

2

v

3

v

4

v

5

v

6

B

1

B

2

B

3

B

4

B

5

B

6

B

7

B

8

p

Figure 3: The undire
ted network of Example 2.1. The bold parts 
onstitute the set of

eÆ
ient points.

To 
larify the solution to the undire
ted network in Figure 3 we present some fun
tion

values in Table 2. The solution method for this bi
riterion model is des
ribed in Se
tion

4. Please note the values of p and B

4

. This proves that a subedge, not having endpoint

at a node or a bottlene
k-point, 
an be eÆ
ient. We will refer to this example in Se
tion

3 and 4.
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Point x f(x) = (f

1

(x); f

2

(x))

v

1

(�17; 19)

v

2

(�16; 21)

v

3

(�18; 17)

v

4

(�27; 29)

v

5

(�24; 27)

v

6

(�15; 21)

B

1

(�27; 31)

B

2

(�30; 33)

B

3

(�25; 23)

B

4

(�28; 27)

B

5

(�23; 29)

B

6

(�20; 27)

B

7

(�25; 25)

B

8

(�23; 27)

p (�28; 30

1

3

)

Table 2: Criterion values for all nodes, all bottlene
k-points and point p.

From Table 2 we note that bottlene
k-point B

2

is optimal for the maxisum 
riterion (f

1

)

and node v

3

is optimal for the minisum 
riterion (f

2

).

3 General solution method for the Q 
riteria 
ase

First, we solve two simple 
ases of the problem, namely the node problem and the dire
ted


ase of the absolute lo
ation problem. Then we present the absolute lo
ation problem on

an undire
ted network.

3.1 The easy 
ase: 1/G;G

D

/�/d(V;V)/(Q

1

-

P

obnox

; Q

2

-

P

)

Par

In this 
ase the new fa
ility 
an be pla
ed only at the nodes of the given network, and

we 
an determine the eÆ
ient set X

Par

= X

Par

(V) by the following approa
h in O(Qn

2

)

time, given the distan
e matrix D. This approa
h is presented in [5℄.

Algorithm 3.1:

1. X

Par

(V) = V;

2. for i = 1 to n do

for j = 1 to n do

if f(v

j

) dominates f(v

i

) then X

Par

(V) = X

Par

(V) n fv

i

g;
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3. Output X

Par

(V);

3.2 The easy 
ase: 1/G

D

/�/d(V; G)/(Q

1

-

P

obnox

; Q

2

-

P

)

Par

For this problem we have to investigate the obje
tive fun
tion (2) of the dire
ted 
ase.

First, we observe that the obje
tive fun
tions are 
onstant on the interior of the edges.

This is true be
ause ea
h term in the sum in (2) 
onsists of a shortest 
y
le multiplied by

a weight.

Theorem 1 The dire
ted obje
tive fun
tion f

q

(x) de�ned in (2) is 
onstant on (e; (0; 1))

for all e 2 E and for all q 2 Q.

Proof :

Assume e = (v

i

; v

j

) 2 E . In the obje
tive fun
tion

f

q

(x) =

n

X

k=1

w

q

k

(d(x; v

k

) + d(v

k

; x)) q 2 Q

we observe that

d(x; v

k

) = d(x; v

j

) + d(v

j

; v

k

) 8k 2 V

d(v

k

; x) = d(v

k

; v

i

) + d(v

i

; x) 8k 2 V

on the interior of e, and that

d(x; v

j

) = (1� t)l(e) and d(v

i

; x) = tl(e)

for some t 2 (0; 1). After substituting the distan
e terms we get

f

q

(x) =

n

X

k=1

w

q

k

(d(v

j

; v

k

) + d(v

k

; v

i

) + l(e)) (5)

whi
h is independent of t, and thus of x, on the interior of e.

Next we use the triangular inequality to prove that the obnoxious obje
tive fun
tions,

q 2 Q

1

, have a higher value at the endnodes of e, and that the desirable obje
tive fun
tions,

q 2 Q

2

, have a lower value at the endnodes of e. To see this we analyze the obje
tive

fun
tion (2) on
e again.

Theorem 2 Let e = (v

i

; v

j

) 2 E be given. The obnoxious obje
tive fun
tion values f

q

(v

i

)

and f

q

(v

j

) are higher than f

q

(x), where x is an interior point on e for all q 2 Q

1

.
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Proof :

WLOG we prove that f

q

(x) � f

q

(v

i

) < 0. Remember that w

q

i

< 0;8i = 1; 2; : : : ; n and

q 2 Q

1

. Let us examine the two sums in

f

q

(x)� f

q

(v

i

) =

n

X

k=1

w

q

k

(d(x; v

k

)� d(v

i

; v

k

)) +

n

X

k=1

w

q

k

(d(v

k

; x)� d(v

k

; v

i

)) (6)

Starting at the se
ond sum of (6) we use that d(v

k

; x) = d(v

k

; v

i

) + d(v

i

; x) to get

n

X

k=1

w

q

k

(d(v

k

; x)� d(v

k

; v

i

)) =

n

X

k=1

w

q

k

d(v

i

; x) =

n

X

k=1

w

q

k

tl(e)

In the �rst sum of (6) we use the triangular inequality d(v

i

; v

k

) � d(v

i

; v

j

) + d(v

j

; v

k

) and

that d(x; v

k

) = d(x; v

j

) + d(v

j

; v

k

). Remembering w

q

i

< 0, we get

n

X

k=1

w

q

k

(d(x; v

k

)� d(v

i

; v

k

)) =

n

X

k=1

k 6=i

w

q

k

(d(x; v

k

)� d(v

i

; v

k

)) + w

q

i

(d(x; v

j

) + d(v

j

; v

i

))

�

n

X

k=1

k 6=i

w

q

k

(d(x; v

j

)� d(v

i

; v

j

)) + w

q

i

((1� t)l(e) + d(v

j

; v

i

))

=

n

X

k=1

k 6=i

�w

q

k

tl(e) + w

q

i

((1� t)l(e) + d(v

j

; v

i

))

=

n

X

k=1

�w

q

k

tl(e) + w

q

i

(l(e) + d(v

j

; v

i

)):

Hen
e,

f

q

(x)� f

q

(v

i

) � w

q

i

(l(e) + d(v

j

; v

i

)) < 0

be
ause w

q

i

< 0. The proof that f

q

(x) � f

q

(v

j

) < 0 is similar, apart from the triangular

inequality being used in the se
ond sum of (6).

Theorem 3 Let e = (v

i

; v

j

) 2 E be given. The desirable obje
tive fun
tion values f

q

(v

i

)

and f

q

(v

j

) are lower than f

q

(x), where x is an interior point on e for all q 2 Q

2

.

Proof :

Similar to the proof of Theorem 2, ex
ept w

q

i

> 0;8i = 1; 2; : : : ; n and q 2 Q

2

.

Using Theorem 3, we observe that the fun
tion values on int(e) 
annot dominate the

fun
tion values at the nodes v

i

and v

j

, be
ause the desirable fun
tion values at the nodes

are lower. Similarly, the fun
tion values at the nodes 
annot dominate the fun
tion value

on the interior of e, be
ause the obnoxious fun
tion value is lower on int(e) by Theorem
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2. This observation 
annot, however, be used to 
on
lude that nodes and edges 
annot

dominate ea
h other. The obje
tive fun
tion values on edge e

12

in the dire
ted network

in Figure 2 are illustrated in Figure 4.

t

10v

1

v

2

62

78

98

-70

-62

-96

Figure 4: f((v

1

; v

2

)). Noti
e that f(v

1

) dominates f(v

2

).

In Algorithm 3.2 we have to 
ompare all nodes and edges, but we only need one ve
tor of

fun
tion values on ea
h edge, 
al
ulated easily by (5).

To present a 
ompa
t form of the algorithm, we de�ne the n+m points a

i

on G(V; E) as

the n nodes and the midpoints on the m edges:

a

i

= v

i

8 i = 1; 2; : : : ; n

a

n+i

= x

i

= (e

i

;

1

2

) 8 i = 1; 2; : : : ;m

Algorithm 3.2:

1. X

Par

= G(V; E);

2. for i = 1 to n+m do

for j = 1 to n+m do

if f(a

j

) dominates f(a

i

) then

if i � n then X

Par

= X

Par

n fv

i

g;

if i > n then X

Par

= X

Par

n (e

i�n

; (0; 1));

3. Output X

Par

;

When we make the pairwise 
omparison on the n+m points, ea
h taking O(Q) time, we

get a 
omplexity bound of O(Q(n+m)

2

) time.
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For the dire
ted example in Figure 2, using (2) and (5), we get the 
riterion values of

Table 3. The optimal value for the obnoxious fun
tion is �126 attained on (v

5

; v

6

) and

the optimal desirable fun
tion value is 62 attained at v

1

and v

3

. After running Algorithm

3.2 we have determined the eÆ
ient nodes and edges as indi
ated in the table and the

�gure.

Point x f(x) = (f

1

(x); f

2

(x))

v

1

(�70; 62) EÆ
ient

v

2

(�62; 78)

v

3

(�70; 62) EÆ
ient

v

4

(�68; 72)

v

5

(�82; 80) EÆ
ient

v

6

(�74; 102)

(v

1

; v

2

) (�96; 98)

(v

1

; v

5

) (�94; 92) EÆ
ient

(v

2

; v

4

) (�74; 84)

(v

3

; v

1

) (�76; 74) EÆ
ient

(v

4

; v

3

) (�96; 98)

(v

4

; v

6

) (�98; 120)

(v

5

; v

3

) (�106; 98) EÆ
ient

(v

5

; v

6

) (�126; 140) EÆ
ient

(v

6

; v

2

) (�86; 108)

Table 3: Criterion values for all nodes and all edges.

3.3 Solving 1/G/�/d(V; G)/(Q

1

-

P

obnox

; Q

2

-

P

)

Par

The general solution method 
onsists of pairwise 
omparison of subedges. The obje
tive

fun
tions are all pie
ewise linear, and the idea is to partition the network into subedges,

where the obje
tive fun
tions are linear. The points where the pie
ewise linear fun
tions


hange in slope are in fa
t the bottlene
k-points. We then make a pairwise 
omparison

of all these subedges and delete the ineÆ
ient parts. The result is the 
omplete set of

eÆ
ient solutions X

Par

.

It is important to note that part of a subedge may be eÆ
ient, starting at a point that is

not a node or an edge-bottlene
k-point (see Example 2.1 at point p).

For ea
h 
omparison of two subedges we will 
onstru
t a linear program to dete
t ineÆ
ient

points (segments), that 
an be solved in linear time by methods found in Megiddo [9℄.

Let z

q

(t) = f

q

(x

t

); x

t

= (e; t). These Q fun
tions are all pie
ewise linear with the same

set of possible breakpoints 
orresponding to the bottlene
k-points. Assume there are P+1
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breakpoints in
luding the two nodes. We then have P subedges. Let these breakpoints

on (e; t) be denoted by t

j

; j = 0; 1; : : : ; P , (1 � P � n � 1), with t

0

= v

i

, t

P

= v

j

and

t

j�1

< t

j

8 j = 1; 2; : : : ; P . For t 2 [t

j�1

; t

j

℄, the z

q

(t)'s are linear fun
tions of the form

z

q

(t) = m

q

j

t+ b

q

j

8 q = 1; 2; : : : ; Q with

m

q

1

� m

q

2

� : : : � m

q

P

; b

q

1

� b

q

2

� : : : � b

q

P

q 2 Q

1

m

q

1

� m

q

2

� : : : � m

q

P

; b

q

1

� b

q

2

� : : : � b

q

P

q 2 Q

2

This is illustrated in Figure 1. Let us now 
ompare the subedge A on edge e

A

, (e

A

; [t

j�1

; t

j

℄)

with subedge B on edge e

B

, (e

B

; [s

p�1

; s

p

℄). A point (e

A

; t) 2 (e

A

; [t

j�1

; t

j

℄) is dominated

by some point (e

B

; s) 2 (e

B

; [s

p�1

; s

p

℄) if and only if

m

q

p

s+ b

q

p

� m

q

j

t+ b

q

j

8 q = 1; 2; : : : ; Q

where at least one inequality is stri
t. This 
omparison is illustrated in Figure 5 for two

subedges from Example 2.1. Subedge (B

7

; B

8

) is 
ompared with subedge (v

5

; B

7

).

1

3

0

2

3

1

3

z

2

z

1

t

1

(B

7

) t

2

(B

8

) s

0

(v

5

) s

1

(B

7

)t s

29

�23 �23

29

27 27

�20

�24

Figure 5: Comparing subedge (B

7

; B

8

) with subedge (v

5

; B

7

).



MSNL Subedge Comparison 141

Let us de�ne the set T where the inequalities hold (for these parti
ular subedges) by

T = f(s; t)j m

q

j

t�m

q

p

s � b

q

p

� b

q

j

; 8 q 2 Qg \ ([s

p�1

; s

p

℄� [t

j�1

; t

j

℄)

If T = ;, (e

B

; [s

p�1

; s

p

℄) does not 
ontain a point dominating any point in (e

A

; [t

j�1

; t

j

℄).

Otherwise T 6= ; is taken as a feasible solution set of the two 2-variable linear programs:

LB = minf t j (s; t) 2 T g and UB = maxf t j (s; t) 2 T g

Using methods des
ribed by Megiddo [9℄, LB and UB 
an be 
al
ulated in O(Q) time.

We now 
he
k if we have only weak dominan
e. This means that none of the inequali-

ties need to be stri
t as required by De�nition 1. Note that points with weak dominated

obje
tive fun
tion values may be eÆ
ient. Let s

LB

and s

UB

be optimal values of s 
or-

responding to LB and UB. These s-values are not ne
essarily unique as illustrated in

Figure 6, where s

LB


an be any point in [0;

1

3

℄. In the 
ase where s

LB

(and/or s

UB

) is not

unique (s

LB

2 [s

a

; s

b

℄), we 
hoose s

LB

=

1

2

(s

a

+ s

b

) to avoid problems with weak domi-

nan
e in the subedge endnodes. To 
he
k for weak dominan
e, we examine the subedge

endnodes. If m

q

p

s

LB

+ b

q

p

= m

q

j

LB + b

q

j

8 q 2 Q, then LB is only weakly dominated and


an therefore still be eÆ
ient. Similarly, if m

q

p

s

UB

+ b

q

p

= m

q

j

UB + b

q

j

8 q 2 Q, then UB

is only weakly dominated. If both LB and UB are only weakly dominated, the entire

subedge (e

A

; [t

j�1

; t

j

℄) is only weakly dominated by (e

B

; [s

p�1

; s

p

℄). This means that all

the inequalities in T are in fa
t equalities. Otherwise the ineÆ
ient part of the subedge

is deleted. If both LB and UB are dominated, then

(e

A

; [t

j�1

; t

j

℄) = (e

A

; [t

j�1

; t

j

℄) n (e

A

; [LB;UB℄)

and if, say LB is only weakly dominated, then

(e

A

; [t

j�1

; t

j

℄) = (e

A

; [t

j�1

; t

j

℄) n (e

A

; (LB;UB℄)

This 
omparison 
an also be done in linear time. The approa
h is simpli�ed if one or both

subedges 
onsists of a single point (e

A

; t

0

) (or (e

B

; s

00

)). If (e

A

; [t

j�1

; t

j

℄) = (e

A

; t

0

) = x,

then LB = UB = t

0

and

T

0

= fsj �m

q

p

s � b

q

p

� f

q

(x); 8 q 2 Qg \ [s

p�1

; s

p

℄

If (e

B

; [s

p�1

; s

p

℄) = (e

B

; s

00

) = y, then

T

00

= ftj m

q

j

t � f

q

(y)� b

q

j

; 8 q 2 Qg \ [t

j�1

; t

j

℄

and

LB = minf t j t 2 T

00

g and UB = maxf t j t 2 T

00

g
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t

s

1

1

2

3

2

3

1

3

1

3

T

Figure 6: The linear programming 
onstraints for 
omparing (B

7

; B

8

) = (e; [

1

3

;

2

3

℄) with

(v

5

; B

7

) = (e; [0;

1

3

℄) on edge (v

5

; v

6

) in Example 2.1. T is indi
ated by the shaded area.

This subedge 
omparison is illustrated in Figure 6, where the subedge (B

7

; B

8

) = (e; [

1

3

;

2

3

℄)

from Example 2.1 is 
ompared with (v

5

; B

7

) = (e; [0;

1

3

℄). Both subedges are on the same

edge. Sin
e T is non-empty, we solve the two programs and �nd LB =

1

3

and UB =

2

3

.

Both LB and UB are dominated, so the subedge (B

7

; B

8

) is 
ompletely deleted.

Sin
e we are removing a 
onne
ted pie
e of (e

A

; [t

j�1

; t

j

℄), three things 
an happen. First,

(e

A

; [t

j�1

; t

j

℄) 
an be 
ompletely deleted if t

j�1

= LB and t

j

= UB are both dominated.

Se
ond, a pie
e of (e

A

; [t

j�1

; t

j

℄) that in
ludes one of the endpoints t

j�1

or t

j


an be deleted,

in whi
h 
ase one 
onne
ted subedge remains, say (e

A

; [t

j�1

; LB)) or (e

A

; [t

j�1

; LB℄). The

third 
ase is when an interior part of (e

A

; [t

j�1

; t

j

℄) is deleted, so we end up with the two

subedges (e

A

; [t

j�1

; LB)) and (e

A

; (UB; t

j

℄), possibly in
luding one of the points LB or

UB. The third 
ase is illustrated in Figure 7 where UB is not deleted, be
ause z(UB) =

z(t

2

).

In order to 
omplete the 
omparison, we simply make an ordered subedge 
omparison.

First, we 
ompare (e

1

; [t

0

; t

1

℄) with all the other subedges, possibly dividing (e

1

; [t

0

; t

1

℄)

into new subedges. Then we 
ompare the se
ond subedge (e

1

; [t

1

; t

2

℄) with all the remaining

subedges. If (e

1

; [t

0

; t

1

℄) is not 
ompletely dominated, we also 
ompare with this subedge.

This 
omparison 
ontinues until we have 
ompared the last subedge (e

m

; [s

P�1

; s

P

℄) with

all the remaining subedges.

Noti
e that we 
an still use the entire subedge (e

A

; [t

j�1

; t

j

℄) to 
ompare with the other

subedges, even though a part of it is ineÆ
ient. It is only for the set of eÆ
ient points

X

Par

, that we have to remember what part of (e

A

; [t

j�1

; t

j

℄) is eÆ
ient. But if the whole

subedge (e

A

; [t

j�1

; t

j

℄) is ineÆ
ient, we should delete it from further 
onsideration, also in

the 
omparison pro
ess.

Assume that edge e

i

2 E is divided into P

i

bottlene
k-point subedges.



MSNL Subedge Comparison 143

t1

z

2

z

1

t

0

t

1

t

2

t

3

Figure 7: There are 4 breakpoints (P = 3) and 4 eÆ
ient subedges. Lo
ally Pareto optimal

subedges are indi
ated in bold on the t axes. Note that (e; [t

2

; t

3

℄) dominates an interior

part of (e; [t

0

; t

1

℄).

Algorithm 3.3:

1. X

Par

= G(V; E);

2. for i = 1 to m do

for x = 1 to P

i

do

for j = 1 to m do

for y = 1 to P

j

do


ompare (e

i

; [t

x�1

; t

x

℄) with (e

j

; [t

y�1

; t

y

℄)

X

Par

un
hanged if no points are dominated

X

Par

= X

Par

n (e

i

; [LB;UB℄) if LB and UB are dominated;

X

Par

= X

Par

n (e

i

; (LB;UB℄) if only UB is dominated;

X

Par

= X

Par

n (e

i

; [LB;UB)) if only LB is dominated;

3. Output X

Par

;

This general algorithm has been implemented, and 
omputational results are reported in

Se
tion 6. Ea
h of the m edges may 
onsist of up to n � 1 bottlene
k-point subedges,

giving at most O(mn) subedges. If we make the global pairwise 
omparison on the

O(mn) bottlene
k-point subedges, ea
h taking O(Q) time, we get a 
omplexity bound

of O(Qm

2

n

2

) time. This is also the bound for the 
ase where Q = Q

2

found in Hama
her

et al. [5℄.
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4 Bi
riteria 
ase

In the 
ase where we only have two 
riteria, we may use the image of the network mapped

into 
riterion spa
e Z to solve the problem faster. This is done by 
al
ulating the lower

envelope, see Hershberger [8℄. This 
an be done in O(p log p) time, where p is the

number of line-segments. There are three di�erent situations. Q

1

= ; denoted min-min

(1/G/�/d(V; G)/2-(

P

)

Par

), jQ

1

j = jQ

2

j = 1 denoted max-min (1/G/�/d(V; G)/(

P

obnox

;

P

)

Par

)

and Q

2

= ; denoted max-max (1/G/�/d(V; G)/2-(

P

obnox

)

Par

). All three 
ases are solved

by the same method.

4.1 Dire
t mapping of the network into 
riterion spa
e

This pro
edure is best des
ribed by an example, so we present the undire
ted network of

Example 2.1 in 
riterion spa
e.

-30 -18

17

33

B

2

p

B

4

B

3

v

3

Figure 8: Mapping of the undire
ted network from Example 2.1 into 
riterion spa
e. The

bold parts 
onstitute the set of nondominated points.

Sin
e we want to �nd the set of eÆ
ient solutions X

Par

, we are only interested in values

between the two extreme optimal solutions, namely Z

1

and Z

2

. We therefore investigate

the region [f

1

Z

1

; f

1

Z

2

℄� [f

2

Z

2

; f

2

Z

1

℄, denoted S.

We have to make sure that the slope of the envelope is de
reasing, when the f

1

-values

in
rease, to ensure that there are no dominated points on the envelope. This 
an be done

by adding horizontal lines to all nodes and bottlene
k-points in S, with the horizontal
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lines ending at f

1

Z

2

. This will at worst double the number of line-segments in the region S.

Alternatively we 
ould add the horizontal line to bottlene
k-points that does not have a

subedge with negative slope leaving the point. In the example of Figure 8 none of the points

in S would need the horizontal line added. After the lower envelope is determined, we

delete the horizontal parts (if any), be
ause the points on a horizontal line are dominated

by the left endpoint. The result is Z

Par

. The set of eÆ
ient solutions are then given by

X

Par

= f

�1

(Z

Par

). The eÆ
ient set 
orresponding to the nondominated set of Figure 8

is indi
ated in Figure 3.

We have the same 
omplexity bound on the lower envelope 
al
ulation, as in Hama
her et

al. [5℄, namely O(mn log(mn)). This bound 
an be rewritten by examining the log term

and using the fa
t that m is at most n

2

for dense graphs. We therefore get the bound of

O(mn log n) time for the envelope 
al
ulation.

5 Center obje
tives - 1/G/�/d(V ; G)/(Q

3

-max

obnox

; Q

4

-max)

Par

We now investigate the maximin and minimax obje
tives. These 
riterion fun
tions are

often referred to as the weighted anti-
enter and 
enter of a network. The problem is

formulated as follows:

max f

q

(x) = min

i

w

q

i

� d(x; v

i

) q 2 Q

3

min f

q

(x) = max

i

w

q

i

� d(x; v

i

) q 2 Q

4

s.t.

x 2 G(V; E)

(7)

Q

3

is the set of obnoxious obje
tive fun
tions, and Q

4

is the set of attra
tion obje
tive

fun
tions. At most one of the sets are allowed to be empty.

For simpli
ity we again multiply all obje
tive fun
tions in Q

3

by �1 in order to minimize

in stead of maximize. This gives the following formulation:

min f

q

(x) = max

i

�w

q

i

� d(x; v

i

) q 2 Q

3

min f

q

(x) = max

i

w

q

i

� d(x; v

i

) q 2 Q

4

s.t.

x 2 G(V; E)

(8)

We noti
e that the obje
tive fun
tions are again pie
ewise linear, but the breakpoints are

now weight dependent, see Figure 9. If we �nd these breakpoints, we 
an apply the same

solution approa
h as in Se
tion 3.3 for the multi
riteria 
ase, and the envelope method

of Se
tion 4 for the bi
riteria 
ase. When we only have 
enter obje
tive fun
tions, the



146 MSNL Subedge Comparison

new breakpoints are the only ones needed. If we 
ombine these obje
tives with the sum

obje
tives, we may get a lot more breakpoints, be
ause the bottlene
k-point breakpoints

are also needed.

1

6

1

2

t

1

z

4

z

3

B

3

B

4

Figure 9: f((v

3

; v

4

)). There are two edge-bottlene
k-points on this edge, and we �nd two

new breakpoints. f

3

and f

4

are indi
ated with a bold lines.

In the following we expand Example 2.1 to illustrate what the 
enter obje
tives look

like. In Figure 9 we illustrate the lo
ally eÆ
ient points on (v

3

; v

4

), where w

3

= w

1

and

w

4

= w

2

, as X

Par

((v

3

; v

4

)) = ((v

3

; v

4

); [

1

6

;

1

2

℄).

In this example both obje
tive fun
tions turn out to be 
onvex, but this is not the general


ase. The 
enter obje
tive is known to be neither 
onvex nor 
on
ave. But the anti-
enter

(maximin) obje
tive is a 
on
ave fun
tion (so in problem (8) it is 
onvex). This is true,

be
ause it is the minimum of pie
ewise linear 
on
ave fun
tions. When we 
onvert the

problem to a minimax with negative weights, we get a pie
ewise linear 
onvex fun
tion.

This fa
t leaves little hope for �nding an improved approa
h for this general 
ase where we


ombine both sum and 
enter obje
tives. After having investigated the di�erent problems

in turn, we 
an 
on
lude that the method des
ribed in Se
tion 3.3 works for any pie
ewise

linear obje
tive fun
tions.
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6 Computational results

In this se
tion we present 
omputational results from an implementation of Algorithm 3.3.

We have not used the methods of Megiddo [9℄ in this implementation to solve the small

LP's. Instead, we have used CPLEX 6.6. The 
ode is programmed in C++ and the tests

are run on a 700 MHz Linux PC.

We have used random networks of varying size generated using NETMAKER. A des
rip-

tion of NETMAKER 
an be found in Skriver and Andersen [11℄. All the random networks

have a �xed number of nodes and a random number of edges with mean 4 times the num-

ber of nodes, i.e. a 50 node network has approximately 200 edges. Ea
h network 
ontains

a random Hamiltonian 
y
le, and for ea
h node three random edges are generated. The

weights are generated negatively 
orrelated. If one weight is in the integer interval from

1 to 33, the other is in the integer interval of 67 to 100. The same holds for the negative

weights for the obnoxious obje
tive fun
tions (ex
ept for the sign). In ea
h group we have

used 10 random networks, and the mean is reported in the following tables.

First, we examine some semi-obnoxious bi
riterion networks, having one push obje
tive

and one pull obje
tive. The results are presented in Table 4. It appears that the number

of subedges grows a little less than squared the number of nodes. The number of subedges

is important, be
ause in worst 
ase we have to make a pairwise 
omparison of all these

subedges, (# Subedges)

2

. The number of a
tual 
omparisons made is presented in the

table, and the per
entage of a
tual 
omparisons to the worst 
ase is also presented. It is

important to note that this per
entage de
reases as the networks in
rease in size.

# Nodes 50 100 150 200 250

CPU-time 40.96 229.54 774.64 1505.42 3326.37

# Subedges 3033.6 9411.5 18525.2 28368.1 39540.2

# Subedge 
omparisons (in millions) 0.358 1.770 5.138 8.655 16.531

# EÆ
ient subedges 96.2 155.3 175.7 222.5 264.5

% EÆ
ient subedges 3 1.6 0.95 0.78 0.67

% Comparisons 4.00 2.02 1.50 1.08 1.05

# Comparisons per se
 8733 7709 6633 5749 4970

Table 4: Semi-obnoxious bi
riterion results, 1 push - 1 pull obje
tive.

The number of eÆ
ient subedges is also presented in Table 4, and this number seems to

grow linearly with the number of nodes. This number is in fa
t higher than the number

of a
tual eÆ
ient subedges, be
ause more subedges may 
ontain the same eÆ
ient point,

when this point is a node. If a node is eÆ
ient, all the subedges 
onne
ted to this node
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ontain some eÆ
ient points (perhaps only the node whi
h is the endpoint of the subedge).

The last row in Table 4 are the numbers of 
omparisons made per CPU-se
ond. Assuming

that CPLEX performs independently of the number of problems it has to solve, this

de
rease indi
ates that the large problems require a lot more storage of data, and a

essing

this data takes an in
reasing amount of time.

Next we examine the e�e
t of having more obje
tives. These results are all 
omputed on

networks with 50 nodes. We reuse the results of the bi
riterion (1-1) networks of Table

4, examine two types of three obje
tive problems and one type of four obje
tive prob-

lems. The three obje
tive networks are generated with both 1 obnoxious and 2 desirable

obje
tives (1-2), and 2 obnoxious and 1 desirable obje
tives (2-1). The four obje
tive

networks are all with 2 obnoxious and 2 desirable obje
tive fun
tions (2-2). The results

are presented in Table 5.

As expe
ted both the number of subedges 
ontaining eÆ
ient points and the CPU-time

in
rease rapidly when more negatively 
orrelated obje
tive fun
tions are added. With four

obje
tives more than 75 % of the subedges 
ontain eÆ
ient points. It is seen that the CPU-

time for these instan
es is almost proportional to the number of subedge 
omparisons, sin
e

the data size of the instan
es is approximately the same (last line in Table 5).

# Obje
tives 1-1 1-2 2-1 2-2

CPU-time 40.96 123.05 105.49 870.57

# Subedges 3033.6 3293.1 3158.8 2853.6

# Subedge 
omparisons (in millions) 0.358 1.019 0.914 6.128

# EÆ
ient subedges 96.2 359.1 357.9 2237.7

% EÆ
ient subedges 3 11 11 78

% Comparisons 4.00 9.47 9.53 75.46

# Comparisons per se
 8733 8349 8720 7077

Table 5: The e�e
t of having more obje
tives. All networks have 50 nodes.

Finally, we 
on
lude that the 
omputational results are 
onstru
tive in the sen
e that

rather large problems 
an be solved within a reasonable amount of time. Sin
e lo
ation

problems are usually not of the type you have to resolve often, a longer CPU-time is

a

eptable.

The most en
ouraging result being that for bi
riterion networks with obje
tive fun
tions

in almost opposite dire
tions, a very small proportion of the networks is eÆ
ient. This

indi
ates that this model is in fa
t an aid for the de
ision-maker, sin
e a large part of the

network 
an be omitted from further 
onsideration. On the eÆ
ient parts of the network,

the trade-o� between the two obje
tives 
an then be revealed.
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As a �nal 
omment, we note that with negatively 
orrelated obje
tives, at most three

obje
tive fun
tions should be 
onsidered. Otherwise the results are in
on
lusive, sin
e a

large proportion of the network will be eÆ
ient.

7 Con
luding remarks

In this paper we have set up a multi
riterion network lo
ation model for lo
ating a (semi)

obnoxious fa
ility. We have proposed an eÆ
ient solution algorithm based on ideas from

the multi
riterion median network lo
ation problem presented in Hama
her et al. [5℄.

In the bi
riterion 
ase we have found an improved method, but this method has not been

implemented. The general method presented in this paper works for all pie
ewise linear

obje
tive fun
tions, and has been implemented in C++ using CPLEX as a solver. The


omputational results show that networks of realisti
 size 
an be solved in a reasonable

amount of time. We thus 
on
lude that this model is a good tool for general network

lo
ation de
isions.
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Abstra
t

We present a new model, whi
h is a generalization of the bi
riterion median prob-

lem. We introdu
e two sum obje
tives and 
riteria dependent edge lengths. For this

NP 
omplete problem a solution method �nding all the eÆ
ient solutions is presented.

The method is a two-phases approa
h, whi
h 
an easily be applied as an intera
tive

method.

In Phase 1 the supported solutions are found, and in Phase 2 the unsupported

solutions are found. This method 
an be thought of as a general approa
h to BOCO

(Bi-obje
tive Combinatorial Optimization) problems.

Keywords: MCDM, biobje
tive optimization, fa
ility lo
ation, networks, MOCO.

1 Introdu
tion

We begin by a motivating example. Assume we have to lo
ate a money reserve, 
onsider-

ing the two obje
tives of minimizing the transportation 
osts and the risk of having the

transports robbed. The depot serves a number of 
lients varying in size, and we are given

a 
onne
ted network and interpret ea
h of the n nodes as the 
lients. A relevant (node)

weight for a 
lient with respe
t to transportation 
osts is the number of monthly deliver-

ies, and a weight for the risk obje
tive is the maximum value of a money-transport. The

�
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edge-lengths with respe
t to transportation 
osts 
ould be the distan
e, and for the risk

obje
tive the edge-length 
ould be the probability of an assault. If we assume that the 
ost

of opening the new fa
ility is independent of lo
ation, this parti
ular 
ost is unimportant.

A solution to this problem 
onsists of two de
isions. The �rst (and probably the most

important) one is to de
ide where to lo
ate the new fa
ility (depot), and the se
ond one


onsists in determining how to route the 
ow from the new fa
ility to the nodes. The


ow problem 
onsists of n� 1 Bi
riterion Shortest Path (BSP) problems, whi
h is a NP


omplete problem.

If ea
h edge has only one length, we have the usual median problem. Now that we have

one length for ea
h 
riterion, the BSP problem be
omes a subproblem. Therefore, this

re�nement has severe 
onsequen
es on the 
omplexity of the problem.

Before presenting the ideas behind the proposed solution method, some 
on
epts from

bi
riterion analysis are reviewed. For a textbook introdu
tion see Steuer [7℄ or Ehrgott

[4℄. Suppose we want to simultaneously minimize two fun
tions f

1

(x) and f

2

(x) over some

feasible set S. In our 
ase S is a �nite set of solutions.

min f

1

(x)

min f

2

(x)

s.t.

x 2 S

(1)

It is generally a

epted, that solving (1) means �nding the set of eÆ
ient (or Pareto

optimal) solutions. A solution x 2 S is 
alled eÆ
ient if one of the obje
tive fun
tion

values 
annot be improved without worsening the other. Let f(x) = (f

1

(x); f

2

(x))

t

,

where t denotes transpose. The mathemati
al de�nition of eÆ
ien
y is as follows.

De�nition 1 A point x 2 S is eÆ
ient i� there does not exist a point �x 2 S su
h that

f(�x) � f(x) with at least one stri
t inequality. Otherwise x is ineÆ
ient.

EÆ
ient points are de�ned in de
ision spa
e. There is a natural 
ounterpart in 
riterion

spa
e Z = fz 2 IR

2

j9x 2 S; z = f(x)g.

De�nition 2 z(x) 2 Z is a nondominated 
riterion ve
tor i� x is an eÆ
ient solution.

Otherwise z(x) is a dominated 
riterion ve
tor.

In De�nition 2 we have used that z(x) = f(x). The set of eÆ
ient (E) solutions is denoted

S

E

, and the set of nondominated (ND) 
riterion ve
tors is denoted Z

ND

, and is given by

Z

ND

= z(S

E

).
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The 
riterion ve
tors 
an be partitioned into two kinds, namely supported and unsup-

ported. De�ne the weighted obje
tive fun
tion W (x; �) as:

W (x; �) = �f

1

(x) + (1� �)f

2

(x); � 2 (0; 1): (2)

The fun
tion W (x; �) is a 
onvex 
ombination, or weighted sum, of the two obje
tive

fun
tions. Optimizing this fun
tion over the feasible set S parametri
ally in � 2 (0; 1)

will give all the supported nondominated solutions to (1). The method is therefore often

referred to as the weighting method.

It is important to note that ea
h unsupported nondominated 
riterion ve
tor is domi-

nated by a 
onvex 
ombination of some set of nondominated 
riterion ve
tors. Supported

nondominated (SND) 
riterion ve
tors are denoted Z

SND

and the 
orresponding set of

solutions are denoted S

SE

.

The solution method proposed is a variant of the two-phases approa
h due to Ulungu

and Teghem [9℄ and Vis�ee et al. [10℄. In Phase 1 all (or a representative subset of) the

supported extreme solutions are found by using the weighting method. In Phase 2 a sear
h

between the supported solutions is 
ondu
ted to �nd unsupported eÆ
ient solutions. The

pro
edure is explained in details in Se
tion 3.

The remaining parts of the paper is organized as follows. In Se
tion 2 the bi
riterion

problem is presented, and some properties of the problem is given. In Se
tion 3 the solution

pro
edure is outlined, and an example is presented. In Se
tion 4 the generalization to more

than two 
riteria is dis
ussed, and �nally Se
tion 5 
ontains the 
on
lusions.

2 Problem formulation

We are given a 
onne
ted dire
ted network G(V; E) with node set V = fv

1

; v

2

; : : : ; v

n

g

where jVj = n nodes, and edge set E = f(v

i

; v

j

); (v

k

; v

l

); : : : ; (v

p

; v

q

)g with jEj = m edges.

The underlying graph is denoted by G, and edges may be referred to by e 2 E , by

(v

i

; v

j

) 2 E or simply by (i; j) 2 E , where node i is the tail and node j is the head. Ea
h

node v

i


arries two weights (w

1

i

; w

2

i

)

t

, where w

q

i

2 IR

+

; q = 1; 2, so we may refer to the

matrix of weights by W

2�n

. Ea
h edge e 2 E has length l(e) = (l

1

(e); l

2

(e)) 2 IR

2

+

. Let us

de�ne a matrix of edges E

m�(4)

with the following entries. E

i1

is the tail of edge e

i

, E

i2

is the head, E

i3

= l

1

(e

i

) is the length with respe
t to 
riteria one and E

i4

= l

2

(e

i

) is the

length with respe
t to 
riteria two.

Noti
e that an undire
ted network 
an be modeled as a dire
ted network with the double
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amount of edges. De�ne binary de
ision variables as follows:

x

i

=

�

1 if the fa
ility is lo
ated in node i

0 else

y

ijk

=

�

1 if edge (i; j) is used in the path to node k

0 else

We examine the so-
alled median obje
tives or weighted sum obje
tives:

f

q

(y) =

n

X

k=1

n

X

i=1

n

X

j=1

l

q

ij

w

q

k

y

ijk

q = 1; 2

Combining the 
oeÆ
ients to 


q

ijk

= l

q

ij

w

q

k

, we get

f

q

(y) =

n

X

k=1

n

X

i=1

n

X

j=1




q

ijk

y

ijk

q = 1; 2 (3)

There are two types of 
onstraints. The �rst 
onstraint ensures that exa
tly one fa
ility is

lo
ated and the se
ond set of 
onstraints ensures the existen
e of paths from the fa
ility

to the remaining nodes. This leads to the following problem:

min f

1

(y)

min f

2

(y)

s.t.

n

P

i=1

x

i

= 1

n

P

j=1

y

jik

�

n

P

j=1

y

ijk

= �x

i

i 6= k; 8 i; k

x

i

2 f0; 1g 8i

y

ijk

2 f0; 1g 8 i; j; k

(4)

Noti
e that we have omitted the following redundant 
onstraints

n

X

j=1

y

jik

�

n

X

j=1

y

ijk

= 1� x

i

8 i; where i = k:

The reason being that this part of the 
onstraint matrix 
onsists of n totally unimodular

sub-matri
es forming the n sets of paths, see (5). Noti
e that one path is non-existing,

sin
e the node in whi
h the new fa
ility is lo
ated, ships nothing through the network.

To understand the stru
ture of the 
onstraint matrix of (4), we write it out. We de�ne

the ve
tor y

ijk

(in bold) as the ve
tor of all 
ombinations of i and j, but with a �xed

k. This way y

ij1


ontains all edge variables for node 1 and so forth. The matrix M

k

is
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the totally unimodular sub-matrix forming paths from node x

i

to node k. These matri
es

have dimension (n � 1) � n

2

. I

�k

is an (n � 1) � n identity matrix with the k'th row

deleted.

2

6

6

6

6

6

6

6

6

4

1 � � � 1 0 � � � 0 � � � 0

I

�1

M

1

� � � 0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I

�k

0 � � � M

k

� � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I

�n

0 � � � 0 � � � M

n

3

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

4

x

y

ij1

.

.

.

y

ijk

.

.

.

y

ijn

3

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

4

1

0

.

.

.

0

.

.

.

0

3

7

7

7

7

7

7

7

7

5

(5)

It turns out that this matrix is not totally unimodular.

Theorem 1 The 
onstraint matrix in (5) is not totally unimodular.

An example of a sub-matrix of (5) with determinant two is given in the appendix. Sin
e

the 
onstraint matrix is not totally unimodular, solving the LP relaxation of (4) is not

guaranteed to return integer solutions, as is often the 
ase in network problems.

Weighting the two obje
tive fun
tions in (4), using the weights � and 1 � �; � 2 (0; 1),

results in the weighted version of (4)

min �f

1

(y) + (1� �)f

2

(y)

s.t.

n

P

i=1

x

i

= 1

n

P

j=1

y

jik

�

n

P

j=1

y

ijk

= �x

i

i 6= k 8 i; k

x

i

2 f0; 1g 8i

y

ijk

2 f0; 1g 8 i; j; k

(6)

In Se
tion 3.4 we des
ribe how problem (6) 
an be solved in O(n

4

) running time using

Benders' de
omposition for a �xed �.

3 Solution pro
edure

In this se
tion the solution pro
edure for solving the bi
riterion problem (4) is outlined.

Before stating the pro
edure it may be helpful to 
onsider a naive method. One possible

way of solving the problem 
ould be to solve problem (6) n times, namely one time for

ea
h possible lo
ation of the new fa
ility. Suppose that the lo
ation of the new fa
ility is

�xed at a spe
i�
 node, say node i (so x

i

= 1). Using the weighting method, the supported

eÆ
ient solutions (paths) with respe
t to node i 
an be revealed. We 
all these eÆ
ient
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solutions lo
ally eÆ
ient with respe
t to node i. Given � 2 (0; 1) and x the 
orresponding

lo
ally eÆ
ient solution 
an be found in O(n

3

) running time, sin
e we are fa
ed with n�1

shortest path problems.

Finding the lo
ally unsupported eÆ
ient solutions that are in fa
t globally eÆ
ient, 
on-

stitutes a more diÆ
ult problem. These 
annot be found using the weighting method.

This fa
t is known from studying the BSP problem alone [5℄.

We thus have three types of eÆ
ient solutions:

� supported eÆ
ient solutions

� lo
ally supported eÆ
ient solutions

� (lo
ally) unsupported eÆ
ient solutions

The reason why lo
ally supported eÆ
ient solutions are interesting, is that they may be

unsupported eÆ
ient solutions in the main problem (4). These three kinds of solutions

are illustrated in Example 3.1.

3.1 Example

We examine the network presented in Figure 1 with the following weights and edges. Ea
h


olumn of W 
onsists of the two node-weights.

W =

�

200 300 500 100 400 500 400

7 4 2 6 6 2 8

�

The �rst two 
olumns of E are the tail and head nodes. The next two 
olumns are the

two edge-lengths.

E =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 2 78 22

1 3 24 72

1 4 26 71

1 5 13 71

1 7 86 12

2 3 98 29

2 5 17 90

3 5 29 97

3 6 87 28

3 7 7 69

4 5 4 77

4 7 89 5

5 6 17 92

5 7 40 74

6 7 69 12

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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1 2 3

4 5 6

7

Figure 1: Network for Example 3.1.

The resulting 11 nondominated 
riterion ve
tors are presented in Table 1. These 
rite-

rion ve
tors are visualized in Figure 2 and it is seen that there are 6 supported and 5

unsupported 
riterion ve
tors. Of the 5 unsupported solutions, only one, (89200; 1868), is

lo
ally unsupported. The other four unsupported solutions are lo
ally supported by the

nodes indi
ated in Figure 2. The last nondominated solution, (89200; 1868), is dominated

by a 
onvex 
ombination of the following two lo
ally supported solutions:

9

11

(91200; 1684) +

2

11

(80200; 2587) = (89200; 1848:18)

There are a total of 2128 feasible 
riterion ve
tors, using only eÆ
ient paths between

nodes. All these ve
tors are illustrated in Figure 3.

3.2 Two-phases approa
h

The pro
edure that we propose instead of the naive method, is a variant of the two-

phases approa
h due to Ulungu and Teghem [9℄ and Vis�ee et al. [10℄, and may be stated

generi
ally as:

� Phase 1: Find all (or a representative subset of) the supported solutions.
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Node f

1

f

2

5 45500 3025

5 47100 2289

1 78200 2062

7 89200 1868

7 91200 1684

1 92600 1506

7 97200 1376

1 107500 1182

7 111600 1112

7 129300 856

7 203800 798

Table 1: Nondominated values for Example 3.1.

� Phase 2: Condu
t a sear
h between the supported solutions in order to �nd unsup-

ported nondominated solutions.

3.3 Phase 1

As explained in Se
tion 2 all supported solutions to (4) may be obtained by solving the

weighted program (6) parametri
ally in � 2 (0; 1). We will do that by employing NISE

(Non-Inferior Set Estimation), a method presented in Cohon [3℄. NISE guides the 
hoi
e

of � 2 (0; 1).

First, the weighted program (6) is solved using � = 1 and � = 0. This results in the

minimum values f

1�

and f

2�

of the two obje
tives f

1

and f

2

respe
tively. Say there

are alternative optima for the problem with � = 1, then we 
hoose a solution with the

lowest obje
tive fun
tion value of the se
ond obje
tive f

2

. This automati
ally gives upper

bounds,

�

f

2

and

�

f

1

, on the other obje
tive. The initial nondominated 
riterion ve
tors (in

Z

SND

) are E

1

= (f

1�

;

�

f

2

) and E

2

= (

�

f

1

; f

2�

).

Next we �nd the outward normal, �n = (�n

1

; �n

2

), to the line between the two initial points,

E

1

and E

2

. Using � =

�n

1

�n

1

+�n

2

in solving (6), may result in two 
ases. We either get a

new unique solution E

3

, or we get E

1

or E

2

again. In the �rst 
ase, the point E

3

is in

Z

SND

, and we 
ontinue by examining the two line-segments E

1

� E

3

and E

2

� E

3

. In

the latter 
ase we know that there does not exist a supported (extreme) 
riterion ve
tor

between E

1

and E

2

. The pro
edure pro
eeds until no new supported 
riterion ve
tors

are found, or until a desired number of solutions are found. The outward normal to the

line-segment between two points 
an easily be found as di�eren
es between the obje
tive

fun
tion values.
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5
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7

7
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7

7

7

7 (80200,2587)

Figure 2: Nondominated ve
tors for Example 3.1. Large dots illustrate the supported

solutions, and only one solution is lo
ally unsupported. The numbers indi
ate the lo
ation

node.

3.4 Benders' de
omposition in Phase 1

In this se
tion we present how Benders' de
omposition 
an be used to �nd the supported

solutions given a weight � in Phase 1. Let � be �xed and de�ne




ijk

(�) = �w

1

k

l

1

ij

+ (1� �)w

2

k

l

2

ij

(� 0 sin
e l; w � 0):

When x is �xed, we 
an use the path 
onstraints being totally unimodular, and relax the

integrality 
onstraints on y. Fixing x means lo
ating the fa
ility at a parti
ular node. For

a �xed x satisfying

P

i

x

i

= 1; x

i

2 f0; 1g, we get the following Benders' subproblem:

min

P

k;i;j




ijk

(�)y

ijk

s:t

P

j

y

jik

�

P

j

y

ijk

= �x

i

i 6= k 8i; k

0 � y

ijk

� 1 8i; j; k

(7)
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Figure 3: Illustration of 2128 
riterion ve
tors for Example 3.1.

This linear programming problem has the following dual program:

max

P

i;k

i 6=k

�

ik

(�x

i

) +

P

k;i;j

�

ijk

s:t

�

jk

� �

ik

+ �

ijk

� 


ijk

(�) i 6= k 8i; j; k

� � 0

(8)

The variables � are free variables 
orresponding to the path 
onstraints in (7) and the �

variables 
orrespond to the upper bound on y. These dual variables 
an be found when

the n� 1 shortest path problems are solved in the Benders' subproblem, so we need not

a
tually solve the dual problem (8). The dual leads to the following Benders' master
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problem:

min v

s:t

v � �

P

i;k

i 6=k

�

l

ik

x

i

+

P

k;i;j

�

l

ijk

8l

P

i

x

i

= 1

x

i

2 f0; 1g 8i

(9)

where l is an index for the added inequalities.

The �rst time we generate a redundant inequality (or suggests a node pi
ked earlier), the

solution at hand is optimal (eÆ
ient). This is true be
ause the subproblem (7) will return

an earlier found solution.

Noti
e that Benders' master problem (9) is easy to solve in this 
ase. It 
an be reformulated

as a minimax problem. Let us rewrite the �rst 
onstraint in (9), keeping in mind that

only one x

i

will be one.

v � �

X

i

X

k

i 6=k

�

l

ik

x

i

+

X

k;h;j

�

l

hjk

v �

X

i

0

B

B

�

�

X

k

i 6=k

�

l

ik

+

X

k;h;j

�

l

hjk

1

C

C

A

x

i

v �

X

i




l

i

x

i

where 


l

i

= �

P

k

i 6=k

�

l

ik

+

P

k;h;j

�

l

hjk

. If we think of these 
 
oeÆ
ients in a matrix, the optimal

x

i

is to �nd the 
olumn where the largest element 


l

i

is as small as possible.

Noti
e, that we have to solve problems (7) and (9) at most n � 1 times. Sin
e Benders'

subproblem 
onsists of n� 1 shortest path problems, problem (7) 
an be solved in O(n

3

)

running time. Therefore the overall running time in Phase 1, given �, is O(n

4

) running

time.

3.5 Phase 2

Here we 
an �rst �nd the lo
ally supported nondominated ve
tors by using the weighting

method for a �xed node(s).

To �nd lo
ally unsupported eÆ
ient points of (4), we use the T
heby
he� theory. Let

z = (z

1

; z

2

) denote a �xed referen
e point with z � z

�

=

�

f

1�

; f

2�

�

, where z

�

is the ideal
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point. Then the augmented non-weighted T
heby
he� program (10) may be stated as

min �+ �

�

f

1

(y) + f

2

(y)

�

s.t.

f

q

(y)� � � z

q

q = 1; 2

n

P

i=1

x

i

= 1

n

P

j=1

y

jik

�

n

P

j=1

y

ijk

= �x

i

i 6= k 8i; k

x

i

2 f0; 1g 8i

y

ijk

2 f0; 1g 8i; j; k

� 2 IR

+

(10)

where � is a small positive 
onstant ensuring that the solution found is in fa
t eÆ
ient.

A few 
omments are in order. Note that instead of solving the usual weighted T
heby
he�

program as found in Steuer and Choo [8℄, we propose to solve the augmented non-weighted

T
heby
he� program (10). It was shown by Alves and Clima
o [1℄ that all nondominated

solutions to (4) 
an be found using the non-weighted program for integer problems (IP),

and in Alves and Clima
o [2℄ this result was generalized to mixed integer problems (MIP).

Note that the augmented T
heby
he� program (10) has the same 
onstraints as our orig-

inal problem (4), as well as two additional 
onstraints. The two new 
onstraints are the

referen
e point 
onstraints, linking the referen
e point to the obje
tive fun
tion in (10).

These two new 
onstraints 
ompli
ate the problem, sin
e they destroy the ni
e stru
ture

of the 
onstraint matrix. Using Lagrange relaxation of these 
onstraints does not solve our

problem, as des
ribed in Appendix 2. We simply end up with the weighting method. How-

ever, problem (10) is a one obje
tive MIP, whi
h 
an be solved by the usual IP methods,

su
h as bran
h and bound.

Next we explain how to determine the appropriate referen
e point(s). Assume that we

want to sear
h for lo
ally unsupported solutions between the two nondominated points E

1

and E

2

. First, we determine a maximum deviation fa
tor

Æ = max

�

Æ

1

; Æ

2

	

where Æ

q

=

�

f

q

� f

q�

q = 1; 2. This deviation fa
tor is going to ensure that our referen
e

point is below the ideal point z

�

. Next we �nd referen
e points 
orresponding to our two

nondominated solutions, E

1

and E

2

:

z(E

i

) = (E

1

i

� Æ; E

2

i

� Æ) i = 1; 2
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The sear
h referen
e point z

new


an then be determined as the maximum of the referen
e

point 
oordinates, be
ause this point has a maximum distan
e of Æ to both z(E

1

) and

z(E

2

):

z

new

=

�

max

�

z

1

(E

1

); z

1

(E

2

)

	

;max

�

z

2

(E

1

); z

2

(E

2

)

	�

:

Using z

new

in (10) 
an result in two things. If a new solution is returned, this solution is

nondominated and de�nes two new sear
h areas. Otherwise one of the points E

1

or E

2

is

returned, and no nondominated (unsupported) solutions exist between the two points.

For our Example 3.1 we �nd Æ = maxf203800 � 45500; 3025 � 798g = 158300. Next we

sear
h for lo
ally unsupported solutions between the two points E

1

= (78200; 2062) and

E

2

= (91200; 1684) (on either side of the single lo
ally unsupported point in Figure 2).

This leads to the referen
e point z

new

= (�67100;�156238), where � = 158300 
an �nd

both E

1

and E

2

. In this 
ase E

3

= (89200; 1868) is found with � = 158106.

4 Generalization to multiple 
riteria

Most of the ingredients in our approa
h easily generalize to more than two 
riteria. How-

ever, the NISE pro
edure used in Phase 1 to �nd supported nondominated points in a

\spread-out" way, does not generalize. In two dimensions we �nd upper bounds on the

obje
tives by minimizing the other obje
tive alone. Forming the hyperplane between these

two upper bounds, and then moving this hyperplane, we are guaranteed not to miss any

supported nondominated solution. In three dimensions we may set upper bounds as the

highest value from minimizing the other two obje
tives. The problem is that we may

have supported nondominated solutions above this hyperplane. In Solanki et al. [6℄ these

diÆ
ulties are explained.

Using another way to set the weights in Phase 1 in order to �nd the supported nondomi-

nated solutions, will leave us with a similar problem in Phase 2. Near the borders of the

eÆ
ient frontier it may be diÆ
ult to determine a referen
e point in order to sear
h for

unsupported solutions.

5 Con
luding remarks

In this paper we present a new, interesting lo
ation problem. This formulation in
orporates

both the lo
ation and the routing aspe
ts in a multiobje
tive setting. We also present

a solution method for the problem, and illustrate the problem stru
ture and solution

pro
edure by an example. The presented method 
an easily be made intera
tive, sin
e the

pro
edures in both phases are easily made intera
tive.
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Appendix 1

Proof of Theorem 1:

Consider the 
omplete dire
ted network with 4 nodes (n = 4). This in
ludes both dire
ted

edges between all nodes given k: (i; j; k) and (j; i; k) 8i; j; k where i 6= j. From (5) 
hoose

the �rst 4 
olumns 
orresponding to the x variables. Choose also the three 
olumns


orresponding to y

124

,y

132

and y

143

. Next we spe
ify the seven rows. Choose the �rst row


orresponding to the sum of x

i


onstraint. From I

�4


hoose rows 1 and 2, from I

�2


hoose

rows 1 and 2 and from I

�3


hoose rows 1 and 3. This lead to the following 7 � 7 matrix

with determinant two:

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 1 1 1 0 0 0

1 0 0 0 �1 0 0

0 1 0 0 1 0 0

1 0 0 0 0 �1 0

0 0 1 0 0 1 0

1 0 0 0 0 0 �1

0 0 0 1 0 0 1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= 2

Appendix 2

Lagrange relaxation in the augmented T
heby
he� problem

As we will show, this approa
h does not help! We end up with the weighting method, if

we relax the referen
e point 
onstraints.

Let � be the Lagrange multiplier on the referen
e point 
onstraints of problem (10). We

are then left with the 
onstraints of our original problem (4), and the 
onstraint � � 0.

Let's assume that � is �xed at

�

�.

�

� 
an then be updated using for example a subgradient.

The new obje
tive fun
tion is given by

f(x; y) = �+ �

�

f

1

(y) + f

2

(y)

�

+ �

1

(f

1

(y)� �� z

1

) + �

2

(f

2

(y)� �� z

2

):

Rearranging terms, we get

f(x; y) = (1� �

1

� �

2

)�+ (�+ �

1

)f

1

(y) + (�+ �

2

)f

2

(y)� �

1

z

1

� �

2

z

2

(11)

Let's evaluate the optimal value of �. If 1 � �

1

� �

2

� 0, we 
hoose � = 0, and if

1 � �

1

� �

2

< 0, we 
hoose � = 1. Neither solution is good, be
ause � = 0 makes no

improvement when we update

�

� using the usual sub-gradient dire
tion

d = (f

1

(y)� �� z

1

; f

2

(y)� �� z

2

)

t
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Sin
e z is a referen
e point f(y) > z, and we will simply in
rease

�

� until we get the

situation where � =1. We therefore 
on
lude that �

1

+�

2

= 1, so � 
an be any positive

number. Sin
e � is almost zero, we re
ognize this to be the weighting method applied in

Phase 1.
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Abstra
t

We 
onsider a network design problem arising in mobile 
ommuni
ations. The

problem 
onsists in deploying a number of new MSCs and allo
ating existing BSCs to

MSCs, so as to minimize the in
urred 
osts while meeting 
ustomer demand and ob-

serving the 
apa
ity restri
tions. We formulate this problem as a two-stage sto
hasti


program with mixed-integer re
ourse. To solve the problem we apply a dual de
om-

position pro
edure, solving s
enario subproblems by means of bran
h and 
ut. The

solution pro
edure has been tested on a real life problem instan
e provided by Sono-

fon, a Danish mobile 
ommuni
ation network provider, and we report some results of

our 
omputational experiments.

Keywords: Network planning; Tele
ommuni
ation; Sto
hasti
 Programming; Dual

De
omposition; Bran
h and Cut.

1 Introdu
tion

Mobile tele
ommuni
ation network providers have been fa
ing a rapid growth in demand

for several years and this trend seems likely to 
ontinue. This for
es the network provider

�

Corresponding author. Email: riis�imf.au.dk
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to 
onstantly expand the 
apa
ity of the network in order to provide an a

eptable grade

of servi
e to 
ustomers. There is a vast amount of literature 
on
erning the optimal

expansion of link 
apa
ities in a tele
ommuni
ations network. We refer to papers by

e.g. Balakrishnan, Magnanti and Wong [1℄, Biensto
k and G�unl�uk [2℄, Chang and Gavish

[4℄ and Dahl and Stoer [5℄ for di�erent approa
hes to su
h types of problems. The link


apa
ities do not 
onstitute the only potential bottlene
k in a tele
ommuni
ations network,

however, sin
e 
apa
ity restri
tions may be imposed not only on traÆ
 but also on the

number of 
ustomers served by the network. In this paper we study a network design

problem in whi
h some 
apa
ity 
onstraints are imposed to restri
t traÆ
 on links in the

network while others are imposed to restri
t the number of 
ustomers served by nodes in

the network.

We study a mobile 
ommuni
ations network. The base trans
eiver stations (BTSs) are

ea
h 
onne
ted to one base station 
ontroller (BSC). Ea
h BSC serves a number of BTSs

and is 
onne
ted to one mobile swit
hing 
enter (MSC). Finally ea
h MSC serves a number

of BSCs and the MSCs are 
onne
ted internally. The network is illustrated in Figure 1.

MSC

MSC

MSC

BSC

BSC

BSC

BSC

BSC

BSC

BTS

BTS

Figure 1: Illustration of a mobile tele
ommuni
ations network.

The visitor lo
ation register (VLR) of an MSC, a database handling all information about


lients, has a limited 
apa
ity, thus restri
ting the number of 
ustomers that 
an be served

(through BTSs and BSCs) by an MSC. Thus the network provider not only has to expand

the link 
apa
ities but should 
onsider when and where to deploy new MSCs in order to

be able to serve the in
reasing number of 
ustomers.

We will 
onsider the problem of deploying a number of new MSCs and allo
ating the BSCs
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to new and existing MSCs, thus treating the number and lo
ations of BTSs and BSCs as

exogenous. The deployment of MSCs must be 
arried out so as to minimize the in
urred


osts while meeting 
ustomer demand and observing the 
apa
ity restri
tions. The 
ost

fun
tion will in
lude four terms:

1. The 
ost of new MSCs.

2. The 
ost of 
onne
ting BSCs to MSCs.

3. The 
ost of expanding the 
apa
ity of links 
onne
ting the MSCs.

4. A penalty 
ost for handovers that o

ur among BSCs that are 
onne
ted to di�erent

MSCs.

Tzifa et al. [17℄ study a similar problem in whi
h only the a

ess network is 
onsidered, thus

ignoring the third 
ost term mentioned above. Also, the problem of optimally assigning

BSCs to MSCs has been addressed by several authors su
h as Saha, Mukherjee and Bhat-

ta
harya [15℄ and Mer
hant and Sengupta [8℄. Apart from minimizing the in
urred 
osts of


onne
ting BSCs to MSCs and the handover 
ost, it is 
ustomary to enfor
e some degree

of load balan
ing among the MSCs. Tzifa et al. and Saha, Mukherjee and Bhatta
harya

expli
itly in
lude a penalty 
ost on uneven loads in the obje
tive fun
tion, whereas Mer-


hant and Sengupta propose to handle the load balan
ing problem parametri
ally. We

do not expli
itly 
onsider load balan
ing but the parametri
 approa
h of Mer
hant and

Sengupta may easily be adopted in our setting.

All of the above-mentioned authors follow a deterministi
 approa
h in the sense that the


ost parameters, the number of 
ustomers and the demand for bandwidth are all assumed

to be known at the point of de
ision. It is a fa
t, however, that the time that passes from

the moment at whi
h deployment of MSCs is resolved on, until the equipment is a
tually

in pla
e and available for use, is rather long (about a year). This means that at the time

the de
ision has to be made, the network provider does not have full knowledge of several

important parameters of the model. For this reason the network provider should put o�

the de�nitive de
ision on allo
ation of BSCs to MSCs for as long as possible, allowing

un
ertainty to be at least partially revealed. This is the in
entive for us to model the

problem as a two-stage sto
hasti
 program. In this formulation un
ertain parameters are

repla
ed by random variables and de
isions are organized in two stages. The �rst stage


onsists of deployment of MSCs whi
h must be resolved on before un
ertainty has been

revealed and hen
e must be based on the distribution of random parameters only. In

the se
ond stage out
omes of all random parameters have been observed and an optimal
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allo
ation of BSCs to MSCs and a 
orresponding routing of traÆ
 in the resulting network

is determined.

The importan
e of in
luding un
ertainty in the problem formulation when modeling 
a-

pa
ity expansion problems is well re
ognized. Sto
hasti
 programming has been used as

a modeling tool for su
h problems in tele
ommuni
ations by several authors. Sen, Dover-

spike and Cosares [16℄ study a 
apa
ity expansion problem in whi
h the expe
ted number

of unserved requests is minimized subje
t to limitations on the total 
apa
ity expansion.

Riis and Andersen [11, 12℄ use sto
hasti
 programming to solve two di�erent 
apa
ity ex-

pansion problems in whi
h additional 
apa
ity, required to meet 
ustomer demand, should

be installed on edges of the network in modularities of �xed bat
h sizes. Finally, Demp-

ster, Medova and Thompson [6℄ use 
han
e-
onstrained programming to solve a 
apa
ity

expansion problem subje
t to 
ertain grade of servi
e 
onstraints assuming that the arrival

pro
ess of 
alls is known. The main emphasis in previous studies has been on the 
apa
ity

expansion of links, while less has been said about the network design problem 
onsidered

in this paper.

This paper is organized as follows. We start out by formalizing the problem formulation

and des
ribing the parameters involved in Se
tion 2. Extensions of the basi
 model to

hedge against potential node and edge failures by imposing survivability 
onstraints are

dis
ussed in Se
tion 3. Next, in Se
tion 4 we brie
y outline the 
on
ept of dual de
ompo-

sition (or s
enario de
omposition). Dual de
omposition te
hniques have been applied in

the 
ontext of sto
hasti
 programming by numerous authors in
luding Car�e and S
hultz

[3℄, Mulvey and Rusz
zynski [9℄ and Ro
kafellar and Wets [14℄. The seminal idea is to use

variable splitting to make the problem separable into independent subproblems whi
h are

easily solved. In our 
ase, the subproblems are solved by means of bran
h and 
ut, using

valid inequalities derived in Se
tion 5 as 
utting planes. In Se
tion 6 our appli
ation is

des
ribed along with some of the pra
ti
al diÆ
ulties 
on
erning implementation of the

algorithm. Finally, we give some 
on
luding remarks in Se
tion 7.

2 Problem Formulation

To give a formal formulation of the 
apa
ity expansion problem introdu
ed in the previous

se
tion, we will 
onsider a �nite number of potential lo
ations for new MSCs and hen
e

the basi
 setup will be des
ribed by three �nite sets of nodes representing the lo
ations of

MSCs and BSCs:

� V

1

The set of lo
ations of existing MSCs.
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� V

2

The set of potential lo
ations for new MSCs.

�W The set of lo
ations of BSCs.

Note that a given lo
ation may very well be represented as a node in more than one of the

sets (even in all of them). In fa
t, the model allows for a single lo
ation to be represented

as several nodes in one set, for example if we wish to deploy more than one MSC at a

lo
ation.

The network inter
onne
ting the MSCs is modeled as an undire
ted graph G = (V;E).

The nodeset V = V

1

[V

2

represents the existing and potential lo
ations of MSCs, and the

edge set E represents the existing and potential links fi; jg between nodes i; j 2 V . We

will 
onsider demand at BSC level. Even though we assume that traÆ
 is bidire
tional, we

will �nd it 
onvenient to use dire
ted 
ow for modeling purposes. Hen
e we shall assign an

arbitrary dire
tion to ea
h point-to-point demand and refer to its origin and destination.

Also, ea
h undire
ted edge fi; jg 2 E will 
orrespond to two (
on
eptual) dire
ted edges

(i; j) and (j; i), ea
h of whi
h 
an 
arry 
ow. Still, to allow for the appropriate bidire
tional

traÆ
, edge 
apa
ities are dimensioned with respe
t to the total traÆ
 on the given edge,

disregarding the arbitrarily assigned dire
tions of 
ow.

Demand for bandwidth on the 
onne
tions will be des
ribed by a set K of 
ommodities.

Two main approa
hes for de�ning su
h 
ommodities have been used in the literature. One

possibility is to de�ne a 
ommodity for ea
h point-to-point demand resulting in a total

of O(jW j

2

) 
ommodities. In general we �nd it more 
onvenient, though, to redu
e the

number of variables by working with an aggregated formulation 
ontaining a total of only

O(jW j) 
ommodities. This is a
hieved by letting ea
h 
ommodity k 2 K 
orrespond to

demand originating at a given BSC with respe
t to the arbitrary dire
tions assigned to

traÆ
. If one wishes to impose survivability 
onstraints, however, it turns out that the

disaggregated formulation may be more 
onvenient. We will return to this issue in Se
tion

3.

As previously dis
ussed, several parameters of the model are not known with 
ertainty

at the time the de
ision on deployment of MSCs has to be made. In parti
ular, the

only information about future demand available at the point of de
ision, 
omes from

past observations and some form of fore
ast model. This inherent un
ertainty will be

in
orporated in the problem formulation by introdu
ing some probability spa
e (
;F ; P )

and allowing the parameters in question to be dependent on the out
ome of a random

event ! 2 
. Here, the probability distribution P is meant to re
e
t information about

un
ertain parameters 
oming from the above-mentioned fore
asts. Thus the demand for
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bandwidth on edges and VLR-
apa
ity at nodes will be des
ribed by the following sets of

parameters:

� D

kr

(!) The net demand for 
ommodity k at BSC r. (k 2 K; r 2W )

� L

r

(!) The load of BSC r on the VLR in the MSC to whi
h it is 
onne
ted. (r 2W )

We emphasize that D

kr

(!) is the net demand for 
ommodity k at BSC r and hen
e, in

parti
ular, that it is negative if and only if BSC r is the origin of 
ommodity k and that

P

r2W

D

kr

(!) = 0. The parameter D

kr

(!) is dire
tly related to the traÆ
 between the

origin of 
ommodity k and BSC r, whereas the load L

r

(!) should rather be thought of as

depending on the number of 
ustomers in the area served by BSC r.

Corresponding to the two types of demand, we have two types of existing 
apa
ity in

the network - 
apa
ity restri
ting 
ow on edges of the network and 
apa
ity restri
ting

the number of 
ustomers served by nodes in the network. These are summarized in the

following sets of parameters:

� C

ij

Flow-
apa
ity on edge fi; jg. (fi; jg 2 E)

�M

i

VLR-
apa
ity of the MSC lo
ated at node i. (i 2 V )

The 
ost stru
ture is des
ribed by the following sets of parameters some of whi
h are

treated as exogenous, while others are assumed to be un
ertain at the point in time at

whi
h the de
ision has to be made, thus depending on the random event !:

� 


i

The 
ost of deploying an MSC at node i. (i 2 V

2

)

� p

ij

(!) The 
ost of adding one unit of 
apa
ity on edge fi; jg. (fi; jg 2 E)

� q

ri

(!) The 
ost of 
onne
ting BSC r to node i. (r 2W; i 2 V )

� h

rt

(!) The penalty 
ost (for supporting handovers) in
urred if BSC r and t are


onne
ted to di�erent MSCs. (r; t 2W )

Note that we assume the 
ost of expanding the 
apa
ity of a 
onne
tion to be linear and

that we do not in
lude a �xed 
ost for establishing the 
onne
tion. The reason for this is

the fa
t that the 
ompany, in 
ooperation with whi
h this resear
h proje
t was engaged

upon, had already available a physi
al network with suÆ
ient link 
apa
ities. In order to

utilize this 
apa
ity, however, it may be ne
essary to install additional equipment at the

end-points of the 
onne
tion, and this 
ost is assumed to be linear with respe
t to the


apa
ity provided.
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The main de
isions to be taken are deployment of new MSCs and allo
ation of BSCs to

MSCs. These de
isions are represented by the following two sets of binary variables:

� x

i

=

(

1 if an MSC is deployed in node i. (i 2 V

2

)

0 otherwise

� y

ri

(!)=

(

1 if BSC r is 
onne
ted to MSC i. (r 2W , i 2 V )

0 otherwise

As indi
ated by the dependen
y of the variables y

ri

on the random event !, the allo
ation

of BSCs to MSCs is allowed to depend on the out
ome of the random parameters. That

is, the de
ision on allo
ation of BSCs to MSCs is postponed to the se
ond stage to take

full advantage of the additional information whi
h is available at this point.

Finally, the following sets of variables are used to des
ribe 
ow in the network, and the


apa
ity expansion of links needed to 
arry this 
ow. Sin
e 
ow does not o

ur until

demand is realized, these variables all belong in the se
ond stage.

� f

ijk

(!) Flow of 
ommodity k on edge fi; jg in dire
tion from i to j. (k 2 K; fi; jg 2

E)

� f

jik

(!) Flow of 
ommodity k on edge fi; jg in dire
tion from j to i. (k 2 K; fi; jg 2

E)

� v

ij

(!) Aggregate 
ow on edge fi; jg in ex
ess of 
urrent 
apa
ity C

ij

. (fi; jg 2 E)

To be 
apable of handling the model 
omputationally, we will assume that there is only a

�nite number of possible out
omes of random parameters.

(A1) The probability distributionP is dis
rete and has �nite support, say 
 = f!

1

; : : : ; !

S

g

with 
orresponding probabilities P

�

f!

1

g

�

= �

1

; : : : ; P

�

f!

S

g

�

= �

S

.

A possible out
ome of random parameters (p(!

s

); q(!

s

); h(!

s

);D(!

s

); L(!

s

)) 
orrespond-

ing to some elementary event !

s

2 
 will be referred to as a s
enario. For notational


onvenien
e we will refer to su
h a s
enario simply by (p

s

; q

s

; h

s

;D

s

; L

s

). Likewise, we will

use a supers
ript s on se
ond-stage variables to indi
ate that these de
isions are allowed

to di�er for di�erent s
enarios.

We are now ready to formulate the problem of optimally deploying a number of new MSCs

and allo
ating BSCs to MSCs as a two-stage sto
hasti
 program. The �rst-stage obje
tive

is to minimize the sum of the 
ost of new MSCs and the expe
ted value of the 
ost in
urred
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in the se
ond stage,

z = min

X

i2V

2




i

x

i

+

S

X

s=1

�

s

Q

s

(x) (1)

s.t. x 2 IB

jV

2

j

: (2)

Here, the se
ond-stage value fun
tion Q

s

(x) is given by

Q

s

(x) = min

X

fi;jg2E

p

s

ij

v

s

ij

+

X

r2W

X

i2V

q

s

ri

y

s

ri

+

X

r;t2W

r<t

h

s

rt

X

i2V

(y

s

ri

� y

s

ti

)

+

(3)

s.t.

X

r2W

L

s

r

y

s

ri

�M

i

8i 2 V

1

; (4)

X

r2W

L

s

r

y

s

ri

�M

i

x

i

8i 2 V

2

; (5)

X

i2V

y

s

ri

= 1 8r 2W; (6)

X

j:fi;jg2E

f

s

jik

�

X

j:fi;jg2E

f

s

ijk

=

X

r2W

D

s

kr

y

s

ri

8i 2 V; k 2 K; (7)

X

k2K

�

f

s

ijk

+ f

s

jik

�

� C

ij

+ v

s

ij

8fi; jg 2 E; (8)

y

s

2 IB

jW jjV j

; f

s

2 IR

2jEjjKj

+

; v

s

2 IR

jEj

+

: (9)

We have used the notation x

+

to denote maxf0; xg for x 2 IR, and hen
e the third term

of the se
ond-stage obje
tive (3) in
ludes the handover 
ost between BSCs r and t if and

only if these BSCs are allo
ated to di�erent MSCs. The 
onstraints (4) and (5) ensure

that the total load from the BSCs 
onne
ted to an MSC does not ex
eed the 
apa
ity of

the VLR. Moreover, the 
onstraint (5) ensures that a BSC 
an only be 
onne
ted to an

MSC if this is a
tually deployed (x

i

=1) while the 
onstraint (6) ensures that all BSCs are


onne
ted to exa
tly one MSC. The 
onstraint (7) is a 
ow 
onservation 
onstraint stating

that the net 
ow of 
ommodity k into MSC i should equal the aggregate net demand for


ommodity k from BSCs 
onne
ted to MSC i. Finally, the 
onstraint (8) states that the

aggregate 
ow on an edge fi; jg 2 E 
annot ex
eed the total 
apa
ity installed on the

edge.

We note that the nonlinear term in the se
ond-stage obje
tive may easily be repla
ed by

a linear one. Hen
e let H

s

rt

be a variable representing the handover 
ost in
urred between

BSCs r and t under s
enario s. Then H

s

rt

may be de�ned using V linear 
onstraints,

H

s

rt

� h

s

rt

(y

s

ri

� y

s

ti

) 8i 2 V; (10)
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and the nonlinear term may be repla
ed by a simple summation of the variables H

s

rt

. Thus

if the 
onstraints (10) are added, the third obje
tive term may be repla
ed by

X

r;t2W

r<t

H

s

rt

:

3 Survivability

There is an entirely di�erent side to the issue of designing a tele
ommuni
ations network

under un
ertainty besides the one we have 
onsidered this far. Thus it is possible that not

only the parameters of the model, su
h as demand and pri
es, are subje
t to un
ertainty.

To be spe
i�
, we will 
onsider a situation in whi
h nodes and/or edges are subje
t to

potential failures. This for
es us to impose di�erent kinds of survivability 
onstraints

to ensure that the network is not too vulnerable in 
ase of su
h failures. The 
on
ept of

survivability has previously been 
onsidered in the 
ontext of tele
ommuni
ation networks

by numerous authors. (See e.g. Dahl and Stoer [5℄ and Rios, Marianov and Gutierrez

[13℄.) In general survivability may be a
hieved either by diversi�
ation or by reservation

depending on the assuran
e required and the ability to restru
ture the solution in 
ase of

failures. In this se
tion we dis
uss some possible formulations in the 
ontext of problem

(1)-(9).

By diversi�
ation we mean routing demand using two or more edge- and/or node-disjoint

paths. Diversi�
ation 
onstraints are easily imposed if we are working with the disaggre-

gate formulation in whi
h ea
h 
ommodity k 2 K 
orresponds to a unique point-to-point

demand. Hen
e we may let O(k) and D(k) denote the origin and destination of 
ommod-

ity k, and d

s

k

the demand for 
ommodity k under some s
enario s so that D

s

kr

equals d

s

k

for r = D(k), �d

s

k

for r = O(k) and zero otherwise. If �

k

is a parameter equal to the

maximum fra
tion of demand for 
ommodity k that is allowed to 
ow through any given

node or edge of the network, we may impose the following diversi�
ation 
onstraints:

f

s

ijk

+ f

s

jik

� �

k

d

s

k

8fi; jg 2 E; k 2 K (11)

X

j:fi;jg2E

f

s

ijk

� �

k

d

s

k

+ (1� �

k

)d

s

k

y

s

O(k);i

8i 2 V; k 2 K (12)

If paths are not required to be node disjoint the 
onstraints de�ned by (12) are ignored.

When working with the aggregate formulation on the other hand, we 
annot impose su
h

exa
t diversi�
ation 
onstraints. One possibility is to use the following 
onstraint, stating

that at most a fra
tion of �

k

of the aggregate net 
ow of a 
ommodity into a given MSC
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an arrive through one 
onne
tion.

f

s

jik

� �

k

X

r2W

D

s

kr

y

s

ri

+

X

h:fi;hg2E

f

s

ihk

8fi; jg 2 E; k 2 K

As mentioned, another way to a
hieve survivability is by reservation. That is, to ensure

the possibility of rerouting a given fra
tion of demand in the network resulting after a node

or edge failure. To in
lude reservation in the problem formulation ea
h s
enario should


orrespond not only to an out
ome of the random parameters, but also to a spe
i�
 failure

state (possibly no failure). If all se
ond-stage de
isions may be modi�ed in the light of

a failure su
h an extension is easily in
luded in the formulation, simply by modifying

the node and/or edge set for ea
h s
enario a

ording to the 
orresponding failure. It

is more realisti
, however, to assume that only rerouting of traÆ
 is possible, whereas

a swift reallo
ation of BSCs to MSCs or 
apa
ity expansion is not pra
ti
able. Su
h a

situation would 
orrespond to a three-stage sto
hasti
 program. In the �rst stage, as

before, the deployment of MSCs is de
ided upon. In the se
ond stage the out
ome of

random parameters is revealed and allo
ation of BSCs to MSCs and appropriate 
apa
ity

expansion is 
arried out. Finally, in the third stage a failure possibly o

urs and traÆ


is rerouted a

ordingly. Note that a node (MSC) failure in this situation would result in

the loss of some demand, sin
e BSCs allo
ated to the MSC in question would be 
ut o�

from the rest. We do not pursue this issue further in the present paper. It should be

noted, however, that in theory su
h a three-stage problem 
ould be solved by the solution

pro
edure presented in the subsequent se
tions, but in pra
ti
e the 
omputational overhead

involved would render su
h an approa
h intra
table even for networks of moderate size.

4 Dual De
omposition

In this se
tion we brie
y outline the dual de
omposition pro
edure whi
h we are going

to apply to problem (1)-(9). Dual de
omposition, or s
enario de
omposition, exploits

the fa
t that the vast majority of variables and 
onstraints in the sto
hasti
 program are

s
enario dependent. In fa
t the only thing tying the s
enarios together are the �rst-stage

de
isions on deployment of MSCs. Hen
e, if we use variable splitting on the �rst-stage

variables, de�ning a deployment of MSCs for ea
h s
enario x

1

; : : : ; x

S

, problem (1)-(9)

be
omes separable into independent s
enario subproblems. The fa
t that the deployment

of MSCs 
annot be s
enario dependent may now be represented by a non-anti
ipativity



Sonofon 177


onstraint stating the problem as

z = min

S

X

s=1

�

s

�

X

i2V

2




i

x

s

i

+Q

s

(x

s

)

�

s.t. x

1

= : : : = x

S

;

x

s

2 IB

jV

2

j

8s 2 f1; : : : ; Sg:

(13)

Relaxing the non-anti
ipativity 
onstraint we obtain a problem whi
h is 
ompletely sepa-

rable into independent s
enario subproblems. These subproblems are solved to obtain an

optimal deployment of MSCs for ea
h s
enario. Next non-anti
ipativity is reinfor
ed by

bran
hing on 
omponents of these solutions whi
h di�er among s
enarios. To be spe
i�
,

we introdu
e a bran
hing tree initially 
onsisting of only the root node 
orresponding to

the original problem (13). In a given iteration we sele
t a problem from the bran
hing tree

and solve the 
orresponding s
enario subproblems obtaining s
enario solutions x

1

; : : : ; x

S

.

If MSC i is to be deployed in some s
enario solutions and not in others, we add two prob-

lems to the bran
hing tree imposing for s = 1; : : : ; S the 
onstraints x

s

i

= 0 and x

s

i

= 1

respe
tively. Otherwise, if all s
enario solutions are equal, we have a feasible solution of

the original problem and may update the upper bound if appropriate. For a thorough de-

s
ription of su
h a pro
edure, in
luding a Lagrangian relaxation of the non-anti
ipativity


onstraints, we refer to Car�e and S
hultz [3℄.

Clearly, if the s
enario subproblems are solved by means of some bran
h and bound pro
e-

dure, some e�ort should be taken to put information from previous iterations in the above

pro
edure to use. Thus a node whi
h is fathomed in a given subproblem in some iteration

of the main pro
edure may be re
onsidered in subsequent iterations sin
e more variables

are �xed as the main pro
edure progresses. In fa
t, for the problem instan
e 
onsidered

in Se
tion 6, the number of �rst-stage variables was so small (less than 20) that an enu-

meration tree 
ould be 
reated a priori and used for all s
enarios, thus pre
luding any

re-evalutions of nodes.

5 Valid Inequalities

In order to solve problem (1)-(9) using the dual de
omposition pro
edure outlined in the

previous se
tion we need an eÆ
ient pro
edure for solving the s
enario subproblems. To

this end we will apply the 
on
ept of bran
h and 
ut whi
h have proven to be a powerful

tool for the solution of (mixed-) integer programming problems. As in ordinary bran
h

and bound we start with the LP-relaxation of the mixed-integer programming problem

and build a partitioning of the solution spa
e in order to obtain an integral solution. The
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ru
ial idea in bran
h and 
ut is to 
ombine this approa
h with a 
ontinuous generation of


utting planes tightening the formulation and thus redu
ing the size of the bran
hing tree.

For a thorough dis
ussion of the bran
h and 
ut approa
h we refer to Padberg and Rinaldi

[10℄ and G�unl�uk [7℄. As 
utting planes we will use valid inequalities derived through simple

polyhedral 
onsiderations.

First, we 
onsider an inequality based on the total VLR-
apa
ity installed through de-

ployment of new MSCs. The inequality simply states that the total 
apa
ity of all VLRs

in the resulting network should ex
eed the total demand from all BSCs. Formally the

inequality is derived by summing the 
onstraints (4)-(5), rearranging and rounding.

X

i2V

2

x

s

i

�

�

1

M

�

X

r2W

L

s

r

�

X

i2V

1

M

i

�

�

8s 2 f1; : : : ; Sg:

Here we have de�ned M := max

i2V

2

M

i

. Sin
e the deployment of MSCs is not allowed to

be s
enario dependent this inequality may be strengthened further:

Proposition 1 The following inequality is valid for the feasible region of all s
enario

subproblems, s = 1; : : : ; S.

X

i2V

2

x

s

i

� max

�2f1;:::;Sg

�

1

M

�

X

r2W

L

�

r

�

X

i2V

1

M

i

�

�

:

This inequality may be viewed as a global 
onstraint in the sense that it is valid for all

s
enarios. As mentioned in the previous se
tion we used an enumeration tree to solve

subproblems for the instan
e 
onsidered in Se
tion 6. Hen
e the above inequality was

not a
tually in
luded in the formulation but was merely used to redu
e the size of the

enumeration tree.

Next we 
onsider a lo
al 
onstraint whi
h is only guaranteed to be valid for the parti
ular

s
enario from whi
h it was derived. This inequality is based on the VLR-
apa
ity of the

individual MSCs and is used to enfor
e the fa
t that ea
h BSC must be allo
ated to a

unique MSC. On
e again the underlying idea is simple. If the total demand from a group

of BSCs ex
eeds the VLR-
apa
ity of an MSC, we 
annot allo
ate all of these BSCs to

the MSC in question. This is formalized in the following proposition.

Proposition 2 Let U be a subset of W su
h that

P

r2U

L

s

r

> M

i

for some MSC i 2 V

and some s
enario s 2 f1; : : : ; Sg. Then the following inequality is valid for the feasible

region of the s

0

th s
enario subproblem.

X

r2U

y

s

ri

� jU j � 1:
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Naturally, this inequality will only be useful when the subset U of W is minimal in the

sense that

P

r2Unftg

L

s

r

� M

i

for all t 2 U , sin
e it is otherwise dominated by other

inequalities of the same type.

6 Numeri
al Results

In this se
tion we will des
ribe the pra
ti
al appli
ation of our model. We have imple-

mented our model on a real problem provided by Sonofon, a Danish mobile 
ommuni
ation

network provider. In this se
tion we brie
y des
ribe the problem instan
e, the stru
ture of


osts and demand, and the pra
ti
al 
olle
tion and estimation of data. Due to 
ompetitive


onditions, however, we 
annot be too spe
i�
 about the problem size and the input data.

Finally, we report our 
omputational results.

The problem under 
onsideration has between 5 and 10 existing MSCs, less than 20 po-

tential lo
ations for new MSCs and less than 50 BSCs. The network inter
onne
ting the

MSCs is 
omplete. The number of binary variables were redu
ed by dividing the area of

interest into a number of regions and pre
luding from 
onsideration 
ertain allo
ations of

BSCs to MSCs a
ross regions. In the resulting formulation ea
h s
enario subproblem has

707 binary variables, 14598 
ontinuous variables and 12045 
onstraints.

The 
ost of a new MSC is orders of magnitude higher than any other 
ost parameter. The


ost of 
onne
ting a BSC to an MSC was set to zero if the BSC is 
urrently 
onne
ted

to this parti
ular MSC, and otherwise the total 
ost of a movement was estimated. Fur-

thermore, the 
ost of expanding link 
apa
ities is given by the total 
ost of installing new

equipment. The issue of determining an appropriate level for the arti�
ial penalty 
ost for

handovers, however, is a more 
ompli
ated matter. Setting this level too low, may result

in solutions with a large number of handovers whi
h are not a

eptable from a pra
ti
al

viewpoint. A high level, on the other hand, may result in 
on�gurations for whi
h the

gained pra
ti
ability obtained by redu
ing the number of handovers is not suÆ
ient to

justify the in
reased 
ost. As a side e�e
t 
omputation time is likely to be in
reased in

this 
ase due to the large number of movements of BSCs required to redu
e the number

of handovers. In pra
ti
e we 
hose to adjust the handover 
osts, observing their e�e
t on

solutions, so as to 
reate geographi
ally 
onne
ted BSC areas.

The 
urrent demand for bandwidth and VLR-
apa
ity was estimated from observations of

traÆ
 and the number of 
ustomers respe
tively. Future demand was then 
al
ulated using

the estimates of 
urrent demand s
aled by di�erent s
enario dependent growth fa
tors. We

have used the following pro
edure to generate demand for VLR-
apa
ity at BSC r under
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s
enario s,

L

s

r

= �

s

� �

s

r

� L

r

:

Here L

r

is the 
urrent demand for VLR-
apa
ity at BSC r, �

s

is a parameter re
e
ting

the average growth in the number of 
ustomers, while �

s

r

is a parameter re
e
ting regional


u
tuations from this average growth. To 
apture the 
orrelation between the demand for

VLR-
apa
ity and the demand for bandwidth, the net demand for 
ommodity k at BSC r

under s
enario s was 
al
ulated using 
urrent demand D

kr

, the above-mentioned param-

eters re
e
ting growth in the number of 
ustomers, and a third parameter �

s

re
e
ting

growth in the demand for bandwidth per 
ustomer,

D

s

kr

= �

s

�

p

�

s

k

� �

s

r

� �

s

�D

kr

:

Note that we have used the geometri
 average of the regional 
u
tuations �

s

k

and �

s

r

.

Likewise the di�erent 
ost terms were made s
enario dependent by introdu
ing sto
hasti



u
tuations on future pri
es. The growth fa
tors were all sampled from uniform distri-

butions re
e
ting the expe
tations of Sonofon for the time horizon under 
onsideration.

As pointed out in Se
tion 1, the se
ond-stage de
ision of allo
ation of BSCs to MSCs is

to be made after one year, and this was the time horizon used when estimating growth

fa
tors for the 
ost terms. As for 
ustomer demand, however, we have used a four-year

time horizon when estimating the appropriate growth fa
tors. This was done to ensure

a somewhat stable solution guaranteeing suÆ
ient network 
apa
ity for three additional

years beyond the 
ompleted deployment of new MSCs. This means that demand is in fa
t

only partially revealed at the time the se
ond-stage de
isions are to be made, but sin
e

the additional information obtained at this point will provide an improved estimate of the

true rate of growth in demand, the gain of postponing some de
isions to the se
ond stage

is likely to be 
onsiderable.

The algorithm was implemented in C++ using pro
edures from the 
allable library from

CPLEX 6.6. Considering 100 s
enarios, the solution times were about 3.5 hours CPU-time

on a 700 MHz Linux PC. The solution suggested the deployment of one new MSC. Due

to the 
omplexity of the problem, the survivability 
onstraints of Se
tion 3 have not been

implemented in the appli
ation. The valid inequalities of Se
tion 5, however, have speeded

up the solution times 
onsiderably.

7 Con
lusions

In this paper we have set up a model for the optimal deployment of new MSCs in a mobile


ommuni
ations network. The model takes into a

ount the 
ost of new MSCs, the 
ost
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of allo
ating BSCs to MSCs, and the 
ost of expanding 
apa
ities of links 
onne
ting

the MSCs. Furthermore, a penalty 
ost was introdu
ed to limit the number of handovers,

indu
ing 
onne
ted BSC areas. Sin
e the deployment of MSCs involves a planning horizon

of about a year, a number of important parameters of the model are not known with


ertainty at the point of de
ision. This lead us to a two-stage sto
hasti
 programming

formulation of the problem. Considering 100 possible s
enarios for the random parameters,

the resulting formulation of a real-life problem 
ontained more than a million variables

and 
onstraints and hen
e de
ompostion methods were 
alled for. We 
hose to solve the

problem using a dual de
omposition pro
edure, solving s
enario subproblems by means

of bran
h and 
ut. The algorithm was implemented in C++ and the problem 
ould be

solved to optimality within a few hours of CPU time. We 
on
lude that our model has

been su

essfully implemented, and that it in
orporates the most important details of the

problem. We also 
on
lude that the sto
hasti
 programming model is an important tool

in the de
ision pro
ess, giving insight of the dynami
s of the expansion problem.
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Abstra
t

In this paper we propose a new method to solve biobje
tive 
ombinatorial optimization

problems of the max-ordering type. The method is based on the two-phases method

and ranking algorithms to eÆ
iently 
onstru
t K best solutions for the underlying

(single obje
tive) 
ombinatorial problem. We show that the method over
omes some

of the diÆ
ulties of pro
edures proposed earlier. We illustrate this by an example and

dis
uss the diÆ
ulties in extending it to more than two obje
tives.

Keywords: MCDM, biobje
tive optimization, max-ordering problems, ranking meth-

ods, 
ombinatorial optimization.

1 Introdu
tion

Max-ordering (MO) problems are multi
riteria optimization problems in whi
h the goal is

to minimize the worst of several obje
tive fun
tions. They 
an be formulated as follows.

min

x2S

max

i=1;:::;Q

f

i

(x); (1)

where f

i

(x) denotes the obje
tive fun
tions of the problem. The problem is denoted max-

ordering instead of min-max in order not to 
onfuse terminology with single obje
tive

problems, i.e. min

x2S

max

e2x

w

e

, whi
h �nds solutions where the largest weight is minimal,

e.g. the path where the largest edge-weight is minimal. Max-ordering problems arise in

various appli
ations, see Rana and Vi
kson [23℄ or Warburton [29℄, and as subproblems

in intera
tive methods for the solution of multi
riteria optimization problems su
h as the

�
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GUESS method (Bu
hanan [3℄), STEM (Benayoun et al. [2℄), and the intera
tive weighted

T
heby
he� method (Steuer and Choo [25℄).

In this paper we 
onsider max-ordering problems in a 
ombinatorial 
ontext, i.e. we assume

that S is a �nite set, e.g. the set of paths between two nodes of a network, or the set of

spanning trees of a graph.

There is a number of previous resear
h papers on this topi
 (Ehrgott [5℄, Hama
her and

Ruhe [15℄, Murthy and Her [21℄, Ehrgott et al. [9℄). See also Ehrgott and Gandibleux

[8℄ for more referen
es. Various authors observed that, even in the bi
riteria 
ase, max-

ordering problems are usually NP-
omplete. The methods proposed for their solution

in
lude bran
h and bound (Rana and Vi
kson [23℄), labeling algorithms (for shortest path

problems, Murthy and Her [21℄) and ranking methods (Ehrgott [5℄, Hama
her and Ruhe

[15℄), that is the appli
ation of algorithms to �nd K best solutions of (single obje
tive)


ombinatorial problems.

We also propose methods involving ranking algorithms a
tually over
oming the main prob-

lem of the method proposed in Hama
her and Ruhe [15℄, at least for the 
ase of two obje
-

tives, see the dis
ussion after Algorithm 1. Our method also over
omes a weakness of the

method proposed in Murthy and Her [21℄, see Se
tion 4. We 
ombine the ranking method

with the two-phases method originally developed for the determination of all Pareto opti-

mal solutions of bi
riteria 
ombinatorial optimization problems, Ulungu and Teghem [27℄,

and so far, su

essfully applied to a number of su
h problems. We mention Ehrgott [6℄,

Lee and Pulat [18℄ for network 
ow, Ulungu and Teghem [26℄ and Vis�ee et al. [28℄ for

knapsa
k, Ulungu and Teghem [27℄ for assignment, and Ramos et al. [22℄ for spanning

tree problems.

2 Basi
 Results

In this se
tion we introdu
e some notation for multi
riteria (
ombinatorial) optimization

and we prove some basi
 results whi
h will justify the 
orre
tness of our method.

Consider a multi
riteria optimization problem

min

x2S

ff

1

(x); : : : ; f

Q

(x)g:

We use the notation f(x) = (f

1

(x); : : : ; f

Q

(x)) for the ve
tor of obje
tive fun
tions. A

feasible solution x

�

is 
alled Pareto optimal, if there is no x 2 S su
h that f(x) � f(x

�

)

and f(x) 6= f(x

�

), where � is understood 
omponent-wise. The set of Pareto optimal

solutions of S is denoted Par(S). If x

�

is Pareto optimal, f(x

�

) is 
alled eÆ
ient.
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In multiobje
tive 
ombinatorial optimization, Pareto optimal solutions 
an be 
lassi�ed

into supported and unsupported Pareto optimal solutions. The former are those x

�

for

whi
h there exists a weighting ve
tor � = (�

1

; : : : ; �

Q

) su
h that

f(x

�

) = min

x2S

Q

X

i=1

�

i

f

i

(x):

The existen
e of unsupported Pareto optimal solutions is a 
hara
teristi
 property of

multiobje
tive 
ombinatorial optimization problems.

We shall also use the notation g(x) = max

i=1;:::;Q

f

i

(x) for the max-ordering obje
tive

value of a feasible solution x 2 S. With these de�nitions we are ready to prove some basi


results. The �rst one is wellknown, see e.g. Hama
her and Ruhe [15℄. We state the proof

for 
ompleteness.

Lemma 1 There is at least one optimal solution of the max-ordering problem min

x2S

g(x)

whi
h is Pareto optimal.

Proof : Suppose x

�

is an optimal solution of the max-ordering problem, but is not Pareto

optimal. Sin
e S is �nite, there must then exist a feasible solution x 2 S dominating

x

�

, i.e. su
h that f

i

(x) � f

i

(x

�

) for i = 1; : : : ; Q with one stri
t inequality. Be
ause

g(x) � g(x

�

), it follows that x also solves the max-ordering problem optimally.

The next Lemma is spe
i�
ally stated for two obje
tives. It formalizes the argument that

the maximum of two fun
tions is minimal, if the obje
tive values are as equal as possible.

Its proof is immediate from the de�nition of the max-ordering problem and Lemma 1.

Lemma 2 Let Par(S) = fx

1

; : : : ; x

p

g be the set of Pareto optimal solutions of a bi
riteria


ombinatorial optimization problem. Assume that f

1

(x

i

) � f

1

(x

i+1

) and f

2

(x

i

) � f

2

(x

i+1

)

for 1 = 1; : : : ; p� 1 and de�ne K := minfi : f

2

(x

i

) < f

1

(x

i

)g. Then the following hold.

1. If K = 1; x

1

solves the max-ordering problem.

2. If K =1; x

p

solves the max-ordering problem.

3. Otherwise x

K

or x

K�1

(or both) solve the max-ordering problem.

A spe
ial 
ase o

urs if there is a Pareto optimal solution with both obje
tives equal.

Lemma 3 If there is a Pareto optimal solution su
h that f

1

(x) = f

2

(x) then x also

minimizes g(x).
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These three lemmas state that we 
an restri
t our sear
h for a solution for a minimizer of

g(x) to Pareto optimal solutions, with their two obje
tives as equal as possible. In other

words, Pareto optimal max-ordering solutions will be lo
ated 
lose to the halving line

f

1

= f

2

in 
riterion spa
e. Lemma 2 suggests to rank Pareto optimal solutions a

ording

to in
reasing values of f

1

(or f

2

). This strategy would, however, imply the generation of

supported and unsupported Pareto optimal solutions. And with the desired max-ordering

solutions expe
ted to be 
entrally lo
ated in the Pareto set, we would expe
t to enumerate

half of all Pareto optimal solutions, involving ex
essive 
omputational e�ort. Taking the

diÆ
ulty of generating unsupported solutions into a

ount (see Ehrgott [7℄), we propose

a di�erent approa
h.

Our algorithm makes use of the information of Lemmas 1 to 3 in a more intelligent way

and pro
eeds in two phases.

3 The Algorithm

First, we look for the two supported Pareto optimal solutions for whi
h f

1

(x

i

) � f

2

(x

i

) and

f

1

(x

j

) > f

2

(x

j

); j > i; a

ording to the order of Lemma 2. We shall 
all them x

1

and x

2

in the algorithm. To do so, we start with solutions x

1

and x

2

minimizing obje
tives f

1

and

f

2

, respe
tively. We then pro
eed to solutions where the di�eren
e of obje
tive values is

smaller. When this is no longer possible, we will either have one supported Pareto optimal

solution with f

1

(x) = f

2

(x), or we end up with two neighboring supported Pareto optimal

solutions, say x

1

and x

2

su
h that f

1

(x

1

) < f

2

(x

1

) and f

1

(x

2

) > f

2

(x

2

). A

ording to

Lemma 3, the �rst 
ase solves min

x2S

g(x), and any other Pareto optimal solution must

have one obje
tive value smaller and one bigger than x. Of 
ourse, it may happen that one

of the obje
tives dominates the other 
ompletely, i.e. min

x2S

f

1

(x) � max

x2Par(S)

f

2

(x)

(
ases 1 or 2 in Lemma 2). In this 
ase the problem is trivial, and we 
an easily dete
t it

when 
omputing x

1

and x

2

for the �rst time.

Should we terminate Phase 1 with two solutions, we will have to investigate unsupported

solutions in the right-angled triangle de�ned by the hyperplane through the point f(x

�

)

with normal � and (g(x

�

); g(x

�

)), where x

�

is the 
urrent best solution, see Figure 2. For

this we use the ranking algorithm. In fa
t, f(x

1

) and f(x

2

) uniquely de�ne weights �

1

; �

2

su
h that both x

1

and x

2

are optimal solutions of

min

x2S

�

1

f

1

(x) + �

2

f

2

(x):

We 
an now apply a ranking algorithm to �nd se
ond, third, ... best solutions for this

problem, in order to �nd unsupported solutions in the identi�ed triangle. A similar pro-
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edure was proposed for the identi�
ation of all unsupported Pareto optimal solutions in

Coutinho-Rodrigues et al. [4℄.

The algorithm will stop if we en
ounter a solution x with f

1

(x) = f

2

(x), as this must be

the optimal solution we are looking for, or �

1

f

1

(x)+�

2

f

2

(x) � g(x

�

); be
ause any further

solutions will no longer be in the triangle and therefore no longer a 
andidate for a MO

optimal solution. In the latter 
ase, the 
urrently best solution is the optimal solution of

the max-ordering problem.

Algorithm - Phase 1

1. Solve min

x2S

f

1

(x), let x

1

be the optimal solution and let f

1

1

:= f

1

(x

1

); f

1

2

= f

2

(x

1

).

2. If f

1

1

� f

1

2

STOP, x

�

= x

1

is an optimal solution.

3. Solve min

x2S

f

2

(x), let x

2

be the optimal solution and let f

2

1

:= f

1

(x

2

); f

2

2

= f

2

(x

2

).

4. If f

2

2

� f

2

1

STOP, x

�

= x

2

is an optimal solution.

5. If f(x

1

) = f(x

2

) STOP, x

�

= x

1

(or x

2

) is an optimal solution.

6. Let x

�

:= argminfg(x

1

); g(x

2

)g be the 
urrently best solution.

7. Let �

1

:= f

1

2

� f

2

2

; �

2

:= f

2

1

� f

1

1

.

8. Solve min

x2S

�

1

f

1

(x) + �

2

f

2

(x), let x

3

be the optimal solution and let f

3

1

:= f

1

(x

3

);

f

3

2

= f

2

(x

3

).

9. If f

3

1

= f

3

2

STOP, x

�

= x

3

is an optimal solution.

10. If x

3

= x

2

or x

3

= x

1


all Phase 2(�

1

; �

2

).

11. If f

3

1

< f

3

2

then x

1

= x

3

; f

1

1

= f

3

1

; f

1

2

= f

3

2

.

12. If f

3

1

> f

3

2

then x

2

= x

3

; f

2

1

= f

3

1

; f

2

2

= f

3

2

.

13. Go to 6.

The idea of the �rst phase is illustrated in Figure 1. With solutions x

1

and x

2

we 
ompute

the normal to the line 
onne
ting (f

1

1

; f

1

2

) and (f

2

1

; f

2

2

). This normal serves as a weighting

ve
tor for 
ombining the two obje
tives, and its negative is the dire
tion in whi
h we

sear
h for a new supported Pareto optimal solution whi
h is eventually found at x

3

with

obje
tive values (f

3

1

; f

3

2

).
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f

2

f

1

n = (f

1

2

� f

2

2

; f

2

1

� f

1

1

)

(f

1

1

; f

1

2

)

(f

2

1

; f

2

2

)

(f

3

1

; f

3

2

)

Figure 1: Illustration of Sear
h Dire
tion in Phase 1

We remark that the values �

1

; �

2

, identi�ed at the end of Phase 1, are the best 
hoi
e of �

in the method proposed by Hama
her and Ruhe [15℄ and will over
ome the problem that

for an unfortunate 
hoi
e of �, that method turns out to be 
omplete enumeration of all

feasible solutions.

Algorithm - Phase 2

1. K := 3.

2. Use a K-best algorithm to �nd the K-best solution of min

x2S

�

1

f

1

(x) + �

2

f

2

(x).

Denote this solution x

K

.

3. If �

1

f

1

(x

K

) + �

2

f

2

(x

K

) � g(x

�

) STOP, x

�

is an optimal solution.

4. If f

1

(x

K

) = f

2

(x

K

) STOP, x

�

= x

K

is an optimal solution.

5. If f

1

(x

K

) > f

2

1

then K := K + 1, go to 2.
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6. If f

2

(x

K

) > f

1

2

then K := K + 1, go to 2.

7. K := K + 1, If g(x

K

) < g(x

�

) then x

�

:= x

K

, go to 2.

We illustrate the algorithm on an example. In Figure 2 we show the obje
tive values of 6

feasible points indexed in the order of their generation.

f

2

f

1

f(x

1

)

f(x

2

)

f(x

3

)

f(x

4

)

f(x

5

)

f(x

6

)

Figure 2: Illustrative Example

In Phase 1, x

1

and x

2

will be generated �rst. Weights �

1

and �

2

are 
omputed 
orre-

sponding to the normal to a line 
onne
ting f(x

1

) and f(x

2

) and x

�

= x

2

. Solution of

the weighted sum problem in Step 8 results in x

3

. Sin
e f

1

(x

3

) < f

2

(x

3

); f

1

1

and f

2

1

are

repla
ed by the obje
tive values of x

3

. The 
urrent best x

�

is updated to x

3

. The se
ond

weighted sum problem uses updated �'s 
orresponding to the normal to the line 
onne
t-

ing f(x

2

) and f(x

3

). Assume x

3

is returned as optimal solution. Thus no new supported

Pareto optimal solution is found, and we 
ontinue with Phase 2 to investigate the earlier

de�ned triangle. Note that the supported solution x

4

is not generated in Phase 1.

We know that x

3

and x

2

are �rst and se
ond best solutions of the weighted sum problem,
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therefore we are sear
hing for the third best by sear
hing in dire
tion �. This turns out to

be x

4

, whi
h is dis
arded as not being in the triangle (f

2

(x

4

) > f

2

(x

3

) = g(x

�

)). So we set

K = 4, identify x

5

as the next solution, whi
h passes all tests. In our example x

5

repla
es

x

3

as the 
urrent best solution and K is set to 5. The next solution is x

6

, the 
ombined

obje
tive value of whi
h is larger than that of the third 
orner point of the triangle. We

will therefore �nd no further points in the triangle and stop with the optimal solution

x

�

= x

5

.

Remark 1 In Phase 2 the following situation might o

ur: The solution of the weighted

sum problem is another supported Pareto optimal solution whi
h is, as x

1

and x

2

, optimal

for the weighted sum problem. Its obje
tive fun
tion ve
tor lies on the line between f(x

1

)

and f(x

2

). In this 
ase, this point 
reates two new and smaller triangles. We 
an restri
t

sear
h to the one whi
h is interse
ted by the halving line f

1

= f

2

.

4 Lagrange Relaxation of Max-Ordering Problems

In this se
tion we des
ribe why Lagrange relaxation of max-ordering problems with linear

obje
tive fun
tions does not work. This approa
h has earlier been suggested as a pruning

method for a label 
orre
ting approa
h in Murthy and Her [21℄.

Consider the usual reformulation of (1)

min z

s.t. z � f

i

(x) 8 i = 1; : : : ; Q

x 2 S

z 2 IR:

(2)

A Lagrange relaxation of the �rst set of 
onstraints in (2) is an appealing thing to do,

as it simpli�es the 
onstraints to the original ones. This leads to the following problem,

where � is the ve
tor of Lagrange multipliers:

min z +

P

Q

i=1

�

i

(f

i

(x)� z)

s.t. x 2 S

� � 0:

Rearranging the obje
tive fun
tion leads to

min

x2S

 

1�

X

i

�

i

!

z +

Q

X

i=1

�

i

f

i

(x);

where

P

i

�

i

= 1 to avoid an unbounded problem (sin
e z 2 IR). We thus end up with the
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following simple problem

min

P

Q

i=1

�

i

f

i

(x)

s.t. x 2 S

� � 0

P

Q

i=1

�

i

= 1:

(3)

The multipliers are determined in the Lagrangian dual of (2), whi
h has the obje
tive

fun
tion

max

�

min

x2S

Q

X

i=1

�

i

f

i

(x); (4)

where the multipliers still have to ful�ll the 
onvexity 
onstraints. (4) is easily solved by

minimizing f

i

(x) for all i, and then setting �

i

= 1 for the largest f

i

(x).

We 
on
lude that this approa
h will in fa
t return the worst possible Pareto optimal

solution to our original problem (1) in the bi
riteria 
ase. With more than two obje
tives,

worse solutions may exist.

5 K-best Algorithms

As we propose the use of ranking algorithms, our method is obviously restri
ted to su
h


ombinatorial optimization problems for whi
h eÆ
ient methods for �nding K-best solu-

tions are available. We brie
y review some of these here.

The largest amount of resear
h on ranking solutions is available for the shortest path

problem. Algorithms developed by Azevedo et al. [1℄, Martins et al. [19℄ or Eppstein [11℄

are very eÆ
ient. The best 
omplexity known is O(m+n logn+K) by Eppstein's method.

However, numeri
al experiments reported by Martins et al. [20℄ show their algorithm to

be very 
ompetitive. Its 
omplexity is O(m+Kn logn).

The se
ond problem for whi
h several methods are known, is the minimum spanning tree

problem. We mention papers by Gabow [12℄ and Katoh et al. [16℄. The best known


omplexity is O(Km+min(n

2

;m log logn)).

In the seventies and eighties some general s
hemes for ranking solutions of 
ombina-

torial optimization problems have been developed by Lawler [17℄ and Hama
her and

Queyranne [14℄. The appli
ation of the latter led to algorithms for matroids (Hama
her

and Queyranne [14℄), with the spe
ial 
ase of uniform matroids dis
ussed in Ehrgott [5℄.

The 
omplexity of the latter is O(K(n+m)+minfn log n; nmg). Finally, an algorithm to

rank (integer) network 
ows was presented in Hama
her [13℄. Its 
omplexity is O(Knm

2

):

We note that only algorithms allowing the 
onstru
tion of solutions with the same obje
tive

fun
tion values are appli
able in our method. This is evident from the fa
t that at the
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beginning of Phase 2, we have x

1

and x

2

as optimal, i.e. �rst and se
ond best solutions of

the weighted sums problem.

6 Dis
ussion

The algorithm we propose solves the max-ordering problem for two 
riteria. It works

eÆ
iently, as it restri
ts sear
h (in general) to a small subset of feasible solutions, where

max-ordering solutions 
an be found. As it starts its sear
h from supported Pareto optimal

solutions whi
h are mu
h easier to generate than unsupported ones, it will in general

enumerate only few solutions. It thereby resolves the diÆ
ulties of the ranking method

proposed by Hama
her and Ruhe [15℄ in whi
h the 
onstru
tion of an appropriate � was

an open question.

In addition, for large s
ale problems, when even the intelligent sear
h applied in our

algorithm might result in the enumeration of many feasible solutions (after all the problem

is NP-
omplete), the algorithm 
an be stopped at any time with the 
urrent best as an

approximate solution. By 
omputing g(x

�

)�g

LB

, where g

LB

is a lower bound on g, we even

have a bound on the distan
e from the real optimal solution. g

LB


an easily be 
al
ulated

and updated in Phase 1 in a straightforward manner. Initially, g

LB

= maxff

1

1

; f

2

2

g with

updates o

urring whenever x

1

or x

2

is updated.

A natural question is the extension of the algorithm to more than two obje
tives. With

su
h an endeavor we en
ounter two major diÆ
ulties. The �rst one is that problems with

at least three obje
tives 
annot be redu
ed to subproblems with two obje
tives only. Thus,

in the multi
riteria 
ase all 
riteria have to be 
onsidered simultaneously.

Example 1 Consider a 
ombinatorial problem with three obje
tives and the following set

of eÆ
ient ve
tors (obje
tive ve
tors of Pareto optimal solutions)

8

<

:

0

�

7

5

3

1

A

;

0

�

6

4

8

1

A

;

0

�

9

4

2

1

A

;

0

�

6

8

2

1

A

9

=

;

The unique max-ordering solution is the �rst one, with g(x) = 7. However, looking at only

two of the obje
tives at a time, we obtain the following. For f

1

; f

2

only, the minimal value

of g(x) is attained at the se
ond solution, for f

2

; f

3

it is the third, and for f

1

; f

3

it is the

fourth. Thus none of the bi
riteria subproblems yields the true optimal solution.

The se
ond major diÆ
ulty is in the generalization of Phase 1. This problem has been

observed by many resear
hers applying the method for the generation of all Pareto optimal



MO 193

solutions. In 
ontrast to the bi
riteria 
ase, there may exist supported eÆ
ient points,

whi
h lie above (rather than below) a previously 
onstru
ted hyperplane. For a dis
ussion

see Solanki et al. [24℄. This kind of problem is very similar to the problem en
ountered

in 
omputing Nadir points for problems with at least three obje
tives see Ehrgott and

Tenfelde [10℄ for a re
ent dis
ussion. Further work is required to generalize our method

in order to develop at least a heuristi
 to �nd a good � in Phase 1 that will enable an

eÆ
ient appli
ation of the ranking algorithms in Phase 2.
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Summary

This thesis is on spe
i�
 problems in the �eld of operations resear
h, an area within math-

emati
al e
onomi
s. I fo
us on network and lo
ation problems 
ombined with the area of

multi
riteria analysis. Multi
riteria analysis is mathemati
al programming problems for-

mulated with several (often 
on
i
ting) obje
tive fun
tions (goals). Therefore, the 
on
ept

of optimality is broadened to Pareto optimality, also known from mi
ro e
onomi
s. With

the 
on
ept of Pareto optimality a whole set of solutions 
an be \optimal", instead of just

a single point. Sin
e network and lo
ation problems are often 
ombinatorial optimization

problems, the 
omplexity of the problems is an important issue. Many well-known 
ombi-

natorial optimization problems are easy to solve (require polynomial solution time), but

with more than one obje
tive fun
tion they often be
ome hard (require exponential solu-

tion time). In this thesis I develop methods for solving multi
riteria network and lo
ation

problems.

The thesis is built around seven papers, whi
h should be read separately. The �rst part

of the thesis is a seven 
hapter overview of my (and 
oauthors) work, and the se
ond part


ontains the seven 
omplete papers. Chapter 1 is a short introdu
tion, Chapter 2 des
ribes

two 
losely related papers and the remaining �ve 
hapters 
over one paper ea
h.

Paper A is \A Classi�
ation of Bi
riteria Shortest Path (BSP) Algorithms", whi
h de-

s
ribes the four main solution approa
hes for the BSP problem. By examining the algo-

rithmi
 stru
tures, we argue why the Label Corre
ting method is believed to be the most

e�e
tive method for this problem.

Paper B is \A label 
orre
ting approa
h for solving bi
riterion shortest path problems",

in whi
h a prepro
essing rule is introdu
ed to the Label Corre
ting method to redu
e

the solution time. Computational experiments support the usefulness of the prepro
essing

rule. The last part of the paper 
ontains a dis
ussion on how to generate random networks

for 
omputational experiments on the BSP problem.

Paper C is \The Bi
riterion Semi-obnoxious Lo
ation (BSL) Problem Solved by an �-

Approximation". This paper introdu
es a bi
riterion model to des
ribe the problem of

lo
ating a new airport. Two similar models are built for both the planar and the network


ase of the problem, and an approximation solution method is adapted. Computational

experiments were performed on the real-life example of where to lo
ate a new airport

around the 
ity of Aarhus, Denmark.

Paper D is \Multi
riteria Semi-obnoxious Network Lo
ation (MSNL) Problems with Sum

and Center Obje
tives". We present how a known, but rather new solution method works
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by means of an illustrative example, and moreover dis
uss the generalization to a broader


lass of problems. The impa
t on the 
omplexity of the algorithm by generalizing the

problem is also presented. Finally a simple and very e�e
tive bi
riterion approa
h is

des
ribed and visualized.

Paper E is \Bi
riteria Network Lo
ation (BNL) problems with 
riteria dependent lengths

and minisum obje
tives" in whi
h two well-known problems are 
ombined. The result is

a new problem, and possible appli
ations are indi
ated. A two-phases solution method is

adapted for the new problem, and the mathemati
al diÆ
ulties at di�erent steps of the

solution approa
h are dis
ussed. The method is presented on an example illustrating the

exa
t 
ompli
ations of the solution pro
ess.

Paper F is \Network planning in tele
ommuni
ations: A sto
hasti
 programming ap-

proa
h" in whi
h a 
apa
ity expansion problem arising in tele
ommuni
ation is presented.

The work is based on a resear
h proje
t with Sonofon. A sto
hasti
 programming model

is built to des
ribe when to expand 
apa
ity in order to meet required goals of servi
e.

Computational experiments were performed on data provided by Sonofon.

Paper G is \Solving Biobje
tive Combinatorial Max-Ordering Problems by Ranking Meth-

ods and a Two-Phases Approa
h", in whi
h a two-phases solution method is adapted for

the max-ordering problem. The max-ordering problem o

urs as a subproblem in many

well-known multi
riteria solution methods. Therefore a good solution method for this

problem is important. Ranking methods are used in Phase 2. The method is illustrated

on an example.


