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Preface

This document is my Ph.D. thesis. It consist of four parts

(1) An introduction.
(2) Friis, Peter de Place, d’Alembert’s and Wilson’s equations on Lie groups.
Submitted. Preprint Series 2000 No 8, Matematisk Institut, Aarhus Uni-
versity, Denmark. pp 1-12.
(3) Friis, Peter de Place, Stetkaer, H. On the Cosine-Sine Functional Equation
on Groups. Submitted. Preprint Series 2000 No 10, Matematisk Institut,
Aarhus University, Denmark. pp 1-17.
(4) Friis, Peter de Place, The Sine and Cosine addition functional equations
on non-abelian groups. Manuscript pp 1-21.
The two preprints have been submitted to Aequationes Mathematicae. The second
preprint is, as indicated, a joint work with my supervisor Henrik Stetkaer. This
was my introduction to the field of functional equations and I wish to express my
gratitude for this well considered starting project. The manuscript is an almost
preprint meaning that I consider it to be in its final form, but it have not formally
been made into a preprint at the time where I handed in my thesis. Finally thanks
to Sgren Fournais and Kére Nielsen for many enjoyable conversations over the years
on mathematical subject and other matters. Further thanks are due to Kére for his
technical assistance with IATEX. Lastly thanks to my supervisor Henrik Stetkaer
for accepting me as a ph.d.-student in the first place and for a good introduction
into the interesting field of functional equations.
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CHAPTER 1

Introduction

As the title of my thesis indicates, the subject is trigonometric functional equa-
tions on groups. These are partially motivated by a generalization of the addition
formulas for Sine and Cosine from the real line to an arbitrary group. A related
source of inspiration is the study of spherical functions which is a classical field
of interest. Roughly speaking, the spherical functions play the role in harmonic
analysis on homogeneous spaces that the trigonometric polynomials play in Fourier
analysis. The spherical functions can be characterized as the solutions of certain
functional equations. Let us be more precise. Let G be a topological Hausdorff
group, K a compact transformation group acting on G, let k- denote the action of
k € K, and dk the normalized Haar measure on K. A K-spherical function is a
solution f € C(G), f # 0, to the functional equation

/K f(ak - y)dk = f(@)f (), 2,y € G. (1)

For general G little is known. If G is a connected abelian Lie group or a
compact abelian group then all solutions are given in [17]. If G is abelian and
locally compact then all essentially bounded solutions are given in [3] and [2]. For
G abelian with the usual Zs-action, i.e.,

fl@+y)+ flx—y) =2f(x)f(y), =,y €G, (2)

the general solution was found by Kannappan as late as in 1968 (see [13]). Corovei
has found all solutions when G is a nilpotent group where all elements have odd
order (see [5]). This was my inspiration for showing that the form of the solutions
are the same on connected nilpotent Lie groups as in the abelian case (see [8]). All
solutions on metabelian groups are given by [7] and [20].

When studying (1) on Lie groups one is led to consider a generalisation of (1)
(see [12] Proposition IV.2.4 page 402), namely

/K f(ak - y)dk = f(2)d(y), 7,y €G. 3)

On abelian groups with the usual Zo-action the form of the solutions of (3) are
known. In [6] Corovei gives all solutions when G is a nilpotent group where all
elements are of odd order and ¢ is not identically 1. This was my inspiration for
proving that in the case where ¢ is not identically 1 the solutions of (3) on nilpotent
connected Lie groups are the same as in the abelian case (see [8]). This of course
leaves the case where ¢ = 1. That is we are considering Jensen’s equation

flzy) + fly™") =2f(2), 2,y € G. (4)

If G is abelian or f(zy) = f(yz) then it follows from [1] that f is an additive
function. Ng has solved Jensen’s equation for all free groups and for GL,(Z)

1



2 1. INTRODUCTION

for n > 3 (see [14]). I solve the equation in the case ¢ = 1 on a semidirect
product of two abelian groups. Given that the solutions to Wilson’s equation on
nilpotent connected Lie groups when ¢ Z 1 where the same as in the abelian case,
the following is a bit surprising: I have shown that on the Heisenberg group the
solutions differ from the solutions in the abelian case. The Heisenberg group is
after all the simplest connected nilpotent Lie group which is not abelian.

A natural generalization of (1) and (3) is

/K Flak - v)dk = Y gi@hily), 2,y € G. (5)

This has been studied in [15], [16], [17], and [18] for example. In a joint work with
my supervisor Stetkaer [9] we solve the following special case of (5)

(fz+y) + f(z+0y)/2 = f(z)g9(y) + 9(z) f(y) + h(z)h(y),z,y € G, (6)

where ¢ is a continuous involution of G. The solutions are certain exponential
polynomials. This is an extension of the results in [4], where the authors consider
the case o(z) =z, z € G. We also solve the signed equation

Jet ) = TE2 ) _ fa)gty) +9(@)f0) + MG, 2y €. (7)

This turns out to be surprisingly simpler to solve.

Stetkaer has found a necessary condition on the functions g1, ...,gn, A1,.--,hn
in (2) when K acts on G by homomorphisms (see [18]). My most recent work [10]
is an extention of that result to the case where for each k € K the action of k is
either a homomorphism or an antihomomorphism, where G of course need not be
abelian. The functions g1, ..., gn, h1,---,h, € C(G) has to satisfy the equation

> @) /K (hi(yk - 2) + ha((k - 2)y))dk (8)

-y [ [ atak-n)aitia) + [ gitok- awhit)], .02 € G
i=1 WK K
in order that a solution can exist. This necessary condition is applied to the equa-
tions

/K fak-y)dk = f(@)g(y) + 9(2)f W), 7,y € G, (9)
and

/K f(ak - y)dk = f(2)f() + 9(2)g(w), .y € G, (10)

and I show how to reduce the problem of solving these equations to the problem of
solving simpler equations. This is an extension of results in [19]. The conclusion is
the same but the assumptions are weaker. I do not assume that G is abelian, and K
acts by homomorphisms and possibly also antihomomorphisms, and not exclusively
by homomorphisms. It is perhaps a bit unexpected that the conclusion is the same.

Further developments

While obviously a number of functional equations have been solved this has
often been done using ad hoc methods. What I am trying to find is more necessary
conditions for existence of solutions for different left hand sides of (5) for non-
abelian G. Any such result would be a valuable contribution due to the scarcity



1. INTRODUCTION 3

of general methods. The reason for looking at different left hand sides of (2) is
primarily that it is not obvious how to generalize a functional equation from the
abelian case to the non-abelian case. The obvious generalization is of course not to
change anything but other possibilities occur. Perhaps the left hand side should be
changed to [}, f(zk -y)dk + [ f(k-yx)dk, which is a generalization of a left hand
side occuring in [6].

Furthermore the methods used are most often algebraic in nature. I think
another perspective might prove fruitful. Applying abstract harmonic analysis and
representation theory for groups to provide information about and existence of the
solutions might be useful. Of course some work has already been done in this
direction, see [11], [15], [16], [18], and [21].
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CHAPTER 2

D’Alembert’s and Wilson’s Equations on Lie
Groups

Peter de Place Friis

1. Introduction

In this paper we discuss certain topics in the theory of functional equations on
non-abelian groups. Our first aim is to study d’Alembert’s equation

9(zy) + glay™") = 29(x)g(y), =,y € G, (11)

where G is a group and g is a complex valued function on G, and the following
generalization that comes out naturally of the study of Wilson’s functional equation
(see Corovei [3])

9(zy) +9(yz) + g(zy™") + g(y ') = 49(2)9(y), 2,y € G. (12)
Secondly we will study Wilson’s equation
flay) + flzy™") = 2f(2)9(y), 2,y € G. (13)
Finally we will solve Jensen’s equation
fey) + flzy™) = 2f(2), 2,y €G, (14)

on a semidirect product of groups.

Notation: The following notation will be used throughout the article. G de-
notes a group with e as neutral element and Z(G) its centre. C* denotes the
multiplicative group of non-zero complex numbers. If m : G — C* is a homomor-
phism, then m : G — C* is the homomorphism given by m(z) = m(z~!), z € G.
A group G is said to be 2-divisible, if for any z € G there exists y € G such that
y? = z. y is not assumed to be unique. An involution 7 of G is amap 7: G = G
such that 7(zy) = 7(y)7(x), Vz,y € G and 7(7(z)) = z for all z € G.

If m: G — C* is a homomorphism, then

_m+m

g(z) 5

is a solution to (11). No restrictions on the group are needed for that statement.
For abelian groups the converse is true: Any nonzero solution of (11) has this form
(Kannappan [6]). This is true for certain other groups as well (Corovei [2] and
Stetkaer [10]). We are going to show it for still another class of groups.

Our main results are the following:

(1) We show that any solution g to (11) and (12) is of the form (15) when G
is a connected nilpotent Lie group (see Theorem 2.6 and Corollary 2.8).

(z), z € G, (15)

7



8 2. D’ALEMBERT’S AND WILSON’S EQUATIONS ON LIE GROUPS

(2) We give all solutions to Wilson’s equation on connected nilpotent Lie
groups, provided that it is not the degenerate version of Wilson’s equation
where g = 1, i.e. Jensen’s equation (see Theorem 3.4).

(3) We give the solution to Jensen’s equation on a semidirect product of two
groups, where we suppose that the normalized solutions to Jensen’s equa-
tion on the groups, which enter in the formation of the semidirect product,
are homomorphisms. This is the case if they are abelian (see Theorem
4.1).

Ng has solved Jensen’s equation for all free groups and GL,(Z) for n > 3 (see Ng
[8]). Ng has also studied the following version of Jensen’s equation

fley) + fly~'z) = 2f(z), Yz € G. (16)
We are not going to pursue this, but we will compare our results to his on the
Heisenberg group (see Example 4.2). The difference is somewhat surprising.

The parts of the present paper concerned with d’Alembert’s and Wilson’s func-
tional equations are closely related to and inspired by Corovei [2] and [3]. However
there is a shift of emphasis from insisting on that all elements have odd order to
looking at 2-divisibility as we do. Apart from the trivial group, connected Lie
groups contain elements of infinite order, so it is essentially a phenomenon for dis-
crete groups that all elements have odd order. We manage to treat the connected
nilpotent Lie groups which play an important role in Analysis. This is one reason
that the results are interesting. These groups are 2-divisible. Since 2-divisibility
was what made Corovei’s proofs work, some of his proofs are copied with only
modest changes. But our results are more general (see Remark 2.7 and Remark
3.5).

From Lemma 1 in [1] we know that a solution f : G — C of Jensen’s equation
with f(e) =0 and f(zy) = f(yz) for all z,y € G is a homomorphism. But not all
solutions f with f(e) = 0 are homomorphisms. We have a counterexample when
G is the Heisenberg group (see Example 4.2), the simplest connected nilpotent Lie
group which is not abelian.

2. d’Alembert’s equation on nilpotent connected Lie groups

In this section we will solve (12). It is a generalization of (11), because g(zy) =
g(yz) for any solution g of (11) (see Remark V.2 in [10]) so that any solution of
(11) is also a solution of (12).

LEMMA 2.1. Let g : G — C be a non-zero solution of the equation
9(zy) + g(yz) + g(=7(y)) + 9(7(y)z) = 49(x)g(y), =,y € G, (17)
where T is an involution of G. Then gle) =1, goT =g, and

g(x2) + g(:m'(:z:)) -;—g(T(SL').CL') — 29(.1,)27 rzeq. (18)
PROOF. See Lemma III.1 of [10]. O

THEOREM 2.2. Let g be a solution of the following extension of d’Alembert’s
functional equation
9(zy) + g(yz) + 9(z7(y)) + 9(7(y)x) = 49(z)g(y), Vz,y € G, (19)

where T : G — G is an involution and Z(g9) = {u € G : g(zuy) = g(zyu), Vz,y €
G}.
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a: If there exists u € Z(g) such that g(u)? # g(ut(u)) then g has the form

m-+morT
g=—5—, (20)

where m : G — C* is a homomorphism.
b: If g(u)? = g(ur(u)) for all u € Z(g) then

9(zu) = g(z)g(u), Vz € G, Yu € Z(g). (21)
PROOF. See Theorem III.2 of [10]. O
LeMMA 2.3. Let H be a 2-divisible subgroup of G. Let g be a solution of

9(zy) + g(yz) + g(zy™") + g(y~"z) = 49(2)9(y), .y € G. (22)
Ifg>=1 on Htheng=1 on H.

PROOF. For any x € H there exists y € H such that y> = z. Using Lemma

2.1 we get g(z) = g(y*) = 29(y)*> — g(e) = 1. O
LEMMA 2.4. If g: G — C is a solution to
9(zy) + g(yz) + g(zy™") + g(y~"z) = 49(2)9(y), z,y € G, (23)

and g(u) = 1, VYu € Z(Q), then one can define F : G/Z(G) — C by F(z) =
g9(z), Yz € G, where T = xZ(G). Furthermore F' satisfies the equation

F(zj) + F(§z) + F(zg~ ')+ F(§~'z) = 4F()F(y), z,7 € G/Z(G).  (24)
PROOF. See Lemma 4 of [2]. O

LEMMA 2.5. If G is a connected nilpotent Lie group, then G is 2-divisible.
Furthermore Z(G) and G/Z(G) are connected nilpotent Lie groups and hence also
2-divisible.

PRrROOF. Let G be the Lie algebra of G. Since G is connected and nilpotent,
the exponential map exp : G — G is onto (see Corollary VI 4.4 of [5] (p. 269)).
Let x € G, there exists X € G such that exp(X) = x. G being a vector space, put
y = exp(3X), then

y* = exp(%X) exp(%X) =exp(X) = z. (25)
So G is 2-divisible. Z(G) is a closed subgroup of G and hence a Lie group in it’s
own right. Furthermore Z(G) is connected (see Corollary 3.6.4 of [11]). Being
nilpotent Z(G) is 2-divisible. Since Z(G) is a closed normal subgroup of G, it
follows that G/Z(G) is a Lie group (see Theorem 2.9.6 of [11]). The natural map
m: G = G/Z(G) given by w(g9) = ¢gZ(G) is continuous, so G/Z(G) is connected.
Hence G/Z(G) is a connected nilpotent Lie group. O

For Lie groups the following theorem extends Proposition V.5 of [10].

THEOREM 2.6. If G is a nilpotent connected Lie group, then g : G — C is a
non-zero solution to

9(zy) + 9(yz) + g(zy ) + g(y 'z) = 49(x)9(y), =,y € G, (26)

if and only if g has the form
m + 1

2 )

9= (27)

where m : G — C* is a homomorphism.
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ProoF. Standard technique. Let {e} = Zy < --- < Z,, = G be an ascending
central series for G, with Z;11/Z; = Z(G/Z;). We will prove the result by induction
onn. If n =0,1then Z(G) = G, hence G is abelian, and g therefore satisfies the
equation

9(zy) +g(zy™") = 29(2)g(y), z.y € G. (28)
That is d’Alembert’s equation on an abelian group, where it is known that g has the
stated form. Let n € N and assume that the result is true for all nilpotent connected
Lie groups with ascending central series of length n. Let G be a nilpotent connected
Lie group with ascending central series {e} = Zg < Z1 < -+ < Zpy < Zpy1 = G,
where Z;1/Z; = Z(G/Z;). If there exists u € Z(G) such that g(u)? # 1, then it
follows from the previous theorem that g has the stated form. So we can assume
that g(u)? = 1, VYu € Z(G). Since Z(G) is 2-divisible it follows that g(u) =
1, Yu € Z(@G). By the previous lemma G/Z(G) is a nilpotent connected Lie group.
Furthermore Z1 /2y < --- < Zu41/Z1 = G/Z; is an ascending central series for
G/Z1 = G/Z(G) with (ZZ+1/Z1)/(Z1/Zl) = Z((G/Zl)/(Z,/Zl)) We have shown
above that we can define F' : G/Z; — C by F(Z) = g(z), where Z = zZ;, and
furthermore F' : G/Z; — C is a solution to

F(zy) + F(yz) + F(zy ') + F(y~'z) = 4F(2)F(y), 2,9 € G/Z(G).  (29)
By assumption, there exists a homomorphism M : G/Z; — C* such that F' = (M +
M)/2. Define a homomorphism m : G — C* by m(z) = M (Z), then m(z) = M(Z).
So we have that

. M+M, . m+m
g2) = F(@) = == (0) = "2 (x), 2 € G. (30)
The theorem now follows by induction on n. a

REMARK 2.7. (a) Instead of g : G — C we could consider g : G — K where K
is any quadratically closed field with characteristic different from 2.

(b) Instead of nilpotent connected Lie groups, we could consider any class C of
nilpotent groups G, for which G € C implies Z(G) is 2-divisible and G/Z(G) € C.
Note that if we take C to be all nilpotent groups where the order of all elements are
odd, then C fulfils the requirement. So if we formulate the theorem for classes C
with the above mentioned properties, instead of for connected nilpotent Lie groups,
then it contains as a special case Theorem 2 in [2].

COROLLARY 2.8. If G is a connected nilpotent Lie group, and K be a quadrati-
cally closed field with characteristic different from 2. Then g : G — K is a nonzero
solution of d’Alembert’s equation

g(ay) + g(zy™") = 29(x)g(y), =,y € G, (31)
if and only if g has the form g = (m+)/2, wherem : G — K* is a homomorphism.

Furthermore suppose K = C, then g is continuous if and only if m is continuous.

PRrROOF. Let g : G — K be a non-zero solution of d’Alembert’s equation. Then
g(zy) = g(yx) Vz,y € G. Hence g satisfies the equation

9(zy) + g(yz) + g(zy™) + g(y~"2) = 49(2)g(y), =,y € G- (32)
Hence by the previous theorem g has the form g = (m+m)/2, wherem : G — K* is
a homomorphism. The converse result is trivial. Suppose K = C. If m is continous
then obviously so is g. If g is continuous then it follows from Theorem 1 in [6] or
Proposition V.7 of [10] that m is continuous. O
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3. Wilson’s equation on connected nilpotent Lie groups
The following lemma is a slight extension of Lemma 1 of [3] in that the group
inversion has been replaced by a general involution.
LEMMA 3.1. Let the pair f,g : G = C be a solution of Wilson’s equation

flzy) + f(a7(y)) = 2f(2)g(y), =,y € G. (33)
where 7 : G — G is an involution. If f is not identically zero then g satisfies the
following equation

9(zy) + g(yz) + g(z7(y)) + 9(r(y)z) = 49()g(y), =,y € G. (34)
PrOOF.

8f(x)g(y)g(z) = 4f(2)9(y)g(2)+4f(x)g9(2)g(y) (35)
2f(zy)g(2) + 2f(z7(y))9(2) + 2f (z2)g(y) + 2f (27(2))9(y)
= f(zyz) + f(ayr(2)) + f(27(y)2) + f(a7(y)7(2))
+f(z2y) + f(@27(y)) + f(27(2)y) + f(27(2)7(y))
= 2f(2)lg(yz) + 9(zy) + 9(y7(2)) + 9(7(2)y)], =,y,2 € G
Since f is assumed not to be identically zero, the result follows. |

The following theorem is a slight extension of Theorem 1 in [3], again because

the group inversion has been replaced by a general involution 7.
THEOREM 3.2. Let G be a group. Suppose that the pair f and g is a solution to

Wilson’s equation,
flzy) + f(a7(y) = 2f(2)g(y), =,y € G, (36)
where T is an involution and f is nonzero. Suppose furthermore that there exists
u € Z(G) such that g(u)? # g(ut(u)), then f and g has the form,
f:Am+mOT +Bm—m07" g= m+m07"
2 2 2

where m is a homomorphism of G into C*, and A, B € C are constants.

(37)

PrOOF. Since f is non-zero it follows from the previous lemma that g satisfies
the following equation

9(zy) + g(yz) + g(z7(y)) + 9(7(y)z) = 49(x)9(y), =,y € G. (38)

Since we assume that there exists ug € Z(G) such that g(uo)? # g(uo7(uo)) then it
follows from Theorem 2.2 that g = (m+mo7)/2. Now g(uo)? # g(uo7(uo)) implies
that m(ug) # m(7(ug)). Now fix zg € G for the moment and consider the smallest
abelian subgroup G, of G which contains Z(G) and zg (G, = {282 :n€Z, 2z €
Z(@)}). We obviously have

flzy) + f(27(y)) = 2f(2)9(y), =,y € Gy, (39)
It follows from Theorem III.4 in [9] that f’s restriction to G, has the form
m-+morT m—moT
£(z) = en(e0) T () 4 (o) 0T
where ¢1 (o), c2(x0) € C are constants. Putting z = e and 2 = uo we find that

c1(xo) = f(e), (41)

(2), € Gy, (40)
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and
2

ca(wo) = m{ug) = m(r(ug)) (f(uo) — f(e)g(uo))- (42)

So the constants A = ¢;(x0), B = ¢3(xg) € C do not depend on our particular
choice of xy. So for arbitrary o € G we have

f(xo):Am-l-;nOT_i_Bm—;nOT_ (43)

d
LemMA 3.3. Let G be a 2-divisible group. Let the pair f,g : G — C be a

solution to Wilson’s equation
flxy) + f(zy™!) = 2f(2)g(y), Y,y € G, (44)

where f is non-zero. Suppose that Vu € Z(G) : g(u) =1 and Iz € G : g(z) # 1.
Then the functions F1,G1 : G/Z(G) — C can be defined by Fi(z) = f(z), Vz €
G,and G1(z) = g(z), Vz € G, where T = £Z(G). The functions Fi and Gy fulfil
the equation

Fi(z) + Fi (25 ') = 2F1(2)G1(9), 7,5 € G/Z(G). (45)
Proor. This is like the proof of Lemma 2 of [3] with minor modifications. We
already know from Lemma 2.4 that G1(Z) = g(z), Vz € G is a valid definition,
since g(zu) = g(z), Vz € G, Yu € Z(G).
We split f into its even and odd parts f(z) = fi(z) + fo(x) where fi(z7!) =
fi(z) and fo(z71) = — fo(2).
2f(e)g(y) = f(y) + Fly™") = 2f1(y). (46)
So fi(z) = Ag(z) where A = f(e). Now
fuley) + folay) + flay™) + blay™) = 2h@) + H@lel)  (47)
implies that

fa(wy) + fa(ay™) = 2[Ag(z) + f2(2)]g(y) — Alg(zy) + g(zy )] (48)
Exchange z and y in this equation.
f2(yz) + fa(yz™") = 2[Ag(y) + f2(y)]g(z) — Alg(yz) + g(yz")]. (49)

Note that f2(yz~!) = —fo((yz™")") = —fa(zy™"), and g(zy~") = g((zy~") ") =
g(yz~1). Adding the previous two equations, and using these two facts we get

fo(zy) + fa(yz) = 2£2(2)9(y) + 2f2(y)g9(z) + Alg(y~'z) — g(zy™")]. (50)
Taking y = z in the following identity

fleyu) + fley'u™") = 2f(2)g(uy) = 2f (2)g(y) = flay) + flay™"),  (51)
we find that

f@u) + flu™) = f(2®) + A, Vz € G, Yue Z(Q). (52)
Since G is 2-divisible we get
fu)+ fu™) = f(z)+ 4, V2 €G, Yue Z(G). (53)

We know that
fi(zu) = Ag(zu) = Ag(x) = fi(x), Vz € G, Yu € Z(G). (54)
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So we get

fo(zu) flau) = fi(zu) = f(azu) — f(2) + fa(2) (55)
fo(a) + A= Ag(u™) = fo(u™") = fo(2) + fa(uw).
From (50)) we have that

fo(zu) + fo(uz) = 2fa(z)g(u) + 2g(2) f2(u) + Alg(u"z) — g(zu)]
).

= 2fa(2) +29(z) f2(u (56)
Hence
f2(z) + f2(u) = fo(zu) = fo(2) + g(2) f2(u). (57)
So we get
0= fo(u)[g(z) — 1], Vo € G, Yu € Z(G). (58)

Since there exists z € G such that g(z) # 1 we deduce that fo(u) =0, Yu € Z(G).
So

fo(zu) = fa(z), Vo € G, Yu € Z(G). (59)
Hence
flzu) = fi(zu) + fo(zu) = fi(z) + fa(z) = f(z), Vz € G, Yue Z(G). (60)
So Fi(Z) = f(z) is a valid definition. It is trivial to check that
Fi(zg) + Fi (75 ") = 2F1(2)G1(), Z,5 € G/Z(G). (61)
O
THEOREM 3.4. Let G be a connected nilpotent Lie group. Let f,g: G — C be a

solution to Wilson’s equation, where f is non-zero. Suppose that there exists ¢ € G
such that g(x) # 1. Then f and g have the form:
m+m m—m m+
f 5t 5 9 2
where A, B € C are constants, and m : G — C* is a homomorphism. Conversely if
f and g have this form where A, B are arbitrary constants, then the pair f,g is a
solution to Wilsons equation.

(62)

PrROOF. The last claim is a trivial calculation. The proof of the fact that the
solutions must have this form is standard technique. Let {e} =Zp < --- < Z, =G
be an ascending central series for G, with Z;11/Z; = Z(G/Z;). We will prove the
result by induction on n. If n = 1 then Z(G) = G and it follows by the previous
theorem that f and g has the stated form. Let n € N and suppose that the result
is true for any connected nilpotent Lie group with an ascending central series af
length n. Let G be a connected nilpotent Lie group with an ascending central
series of length n+1, {e} = Zy < --- < Z,, < Zpy1 = G, with Z;1,/Z; = Z(G/Z;),
71 = Z(@). If there exists u € Z(G) such that g(u) # 1, then the result follows by
the Theorem 3.2. So suppose g(u) = 1, Vu € Z(G). By the previous lemma we
can define F1,G1 : G/Z; — C by F1(Z) = f(z) and G1(Z) = g(z), furthermore F}
and G satisfy the equation

Fy(zg) + Fi (25 ") = 2F(2)G1(9), %,5 € G/Z1. (63)
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G/Z, is a connected nilpotent Lie group with an ascending central series Z; /Z; <
C < Zni|Zy = GJZy with (Zip1/20)/(Zi)2:) = Z((G/21)/(Z:]Z0)). By as-
sumption there exist a homomorphism M : G/Z; — C* and constants A,B € C
such that 3 3 3
M+ M M-M M+ M
=AY p LG =2t (64)
2 2 2
Define m : G — C* by m(z) = M(Z), m is a homomorphism and rm(z) = M(%).

M+ M M-M + 17 — 17
f(@) = Fi(3) = A—5—(2) + B——(3) = AT (1) + B-——(x), (65)
and 3
_ M+M, m+m
9(2) = Gi(2) = 2 —(2) = "2 (@), (66)
The theorem follows by induction on n. |

REMARK 3.5. (a) Instead of f,g : G — C we could consider f,g : G — K
where K is any quadratically closed field with characteristic different from 2.

(b) Instead of nilpotent connected Lie groups, we could consider a class C
of nilpotent groups G, for which G € C implies G and Z(G) are 2-divisible and
G/Z(G) € C. Note that if we take C to be all nilpotent groups where all elements
are of odd order then C fulfils the requirement. So if we formulate the theorem in
terms of classes C with the above mentioned properties, instead of for connected
nilpotent Lie groups, then it contains as a special case Theorem 2 of [3].

4. Jensen’s equation on a semidirect product of two groups

Let G be a semidirect product of G; and G5. So we assume that G; is a
transformation group of G2 acting by homomorphisms, that is a - (zy) = (a - x)(a -
y), Va € Gy, Vx,y € G2, and that the group operation in G = G5 x Gy, is given
by

(x,a)(y,b) = (:zs(a ) y)aab)a V(x,a), (ya b) € Gy x Gy. (67)
We let e; denote the neutral element of G; for i = 1,2. Then e = (e1,e3). Note
that (z,a)™! = (a7 !-z71,a7}), V(z,a) € G2 x G1. The idea is to reduce the study
of functional equations on G to the study of functional equations on the subgroups
G1 and G,. Clearly constant functions on G and homomorphisms of G into C* are
solutions to Jensen’s equation on G. If f is a solution to Jensen’s equation on G,
then so is f — f(e), so we may assume that f(e) = 0. If G is abelian and f is a
solution of Jensen’s equation on G such that f(e) = 0, then f is a homomorphism
of G into C* (see Lemma 1 in [1]).

THEOREM 4.1. Assume that G1 and G2 satisfy the following. If f; : G; — C
satisfies
filed) + fi(ed™") = 2fi(c) Ve,d € G; and fi(e;) =0, (68)
then f; € Hom(G;,C) i =1,2. Then f : G — C is a solution to Jensens equation
on G
f((z,a)(y,b)) + f((2,0)(y,0)™") = 2f (2, 0), ¥(z,a), (y,b) € G, (69)
such that f(e) =0 if and only if

f(z,a) = Ai(a) + Ay (2) + As(a™ ' - 2), Y(z,0a) €G, (70)
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where A; € Hom(G;,C) ,i=1,2 and

As((ab) - z) = Az(a- 1) + Ax(b- x) — As(z), V(z,a) € G2 X G1. (71)
Suppose f is of this form. Then f € Hom(G,C) if and only if As(a-x) =
As(z), Y(z,a) € G.

PRrOOF. Assume that f : G — C is a solution to Jensen’s equation with f(e) =
0. Then
2f(z,a) = f(z(a-y),ab) + f(z(ab™' -y~1),ab™ ), V(z,a),(y,b) € G. (72)
Putting b = e; and fixing a € G1 in (72) we have
2fa(z) = 2f(z,a) = fa(z(a-y)) + fa(z(a-y)™"), Y2,y € Go. (73)

Since a- : Gy — G4 is a bijection, it follows that f, : Go — C is a solution to
Jensen’s equation on G>. Hence

f(@,a) = fo(z) = Aa(2) + fale2) = Aa(z) + fle2,a), V(z,a) €G,  (T4)
where A, : G2 — C is additive. Put y = e and fix z € G in (72)

2f%(a) = 2f(z,a) = f(ab) + f*(ab™ "), Va,b € G. (75)
Hence f* : G1 — C is a solution to Jensen’s equation on Gj.
f*(a) = A*(a) + f*(e1) = A%(a) + f(z,€1), V(z,a) € G, (76)
where A% : G; — C is additive.
f(z,e1) = Ae, () + flez,e1) = Ae, (x), Vz € G2, (77)
and
flea,a) = f2(a) = A®?(a) + f(e2,e1) = A®%(a), Va € G;. (78)
Hence we have
f(z,a) = Au(z) + A% (a) = A% (a) + A, (2), Y(z,a) € G. (79)
Note that
A™(a) = Aa(zy) + A%(a) — Ae, (zy) = A”(a) + A¥(a) — A%(a).  (80)
Now

2f(z,0) = f((,0)(z,a)) + f((z,a)(z,a)"") = f(z(a-2),0*)

= A"9)(@?) + A, (2(a - 7))
= 2(A%a)+ Ac, (z)) — A, (z) + 2(AY?(a) — A% (a)) + Ae, (a - )
= 2f(z,a) — Ae, (x) +24,(a- 1) — Ae, (a - T), Y(z,0) € G.
So
Ay(a-) = %(Ael(a:) + Ae, (a- 1)), VY(z,a) € G. (81)
Substitute a~! - z for x, that gives us
Ay () = %(Ael(x) + A, (a - 2), V(z,0) € G. (82)

So
f(z,a) = Ag(z) + A% (a) = A°2(a) + B(z) + B(a ! - 2),V(z,a) € G, (83)
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where B = 1 A,, is an additive function on G». f(z,a) = A°(a)+B(z)+B(a™" )
is a solution to Jensen’s equation if and only if g(z,a) = B(z) + B(a™' - ) is a
solution to Jensen’s equation. The computation

2B(x) +2B(a™'-z) = 2g(x,a) =g(z(a-y),ab) + g(x(ab™ -y~ 1),ab™")
= B(z(a-y)) + B((ab) " - (z(a-y)))
+B(z(ab -y™1) + B((ab™ ") - (z(ad~t -y71))
= 2B(z)+B(a-y)+ Bl tat-2) +Bb ' -y)
+B(ab™"-y™") + B(ba™' -2) + B(y™), (84)
shows that g is a solution to Jensen’s equation if and only if
2B(a'-z) = Bla-y)+Bb tat-z)+Bb !y (85)
+B(ab ' -y "+ B(ba ' - z) — B(y), V(z,a),(y,b) € G.
Put = ey in (85) to get
0=B(a-y)+ B0~ -y) - Blab™" -y) - B(y). (86)
Put a = b in (86) to get
2B(y) = B(a-y) + B(a™" -y). (87)
In particular we have
2B(a™'-x) = B(ba™' - )+ B(b"'a™' - ). (88)
It is now obvious that if conversely (86) holds, i.e. if
0=DB(a-y)+B(b ™' y)—B(ab~'-y) — B(y), VYa,be Gy, Yy € Go, (89)
then g is a solution to Jensen’s equation. The condition (86) is equivalent to
0=B(a-y)+B(b-y)— B(ab-y) — B(y), VYa,be Gy, Yy € Gs. (90)

Now all that remains is to determine when f is additive. This is the case if and
only if g is additive.

B(z(a-y)) + B((ab) ™" - (z(a-y))) (91)
~B(z) = B(a™'-z) = B(y) = B(b"* -y)
= B(b'a'l-z)-Ba'-z)+Bla-y)— By).

g(($7a)(y> b)) - g($7a) - g(yab)

Suppose that g is additive
0=B(b'a™'-2)—B(a™'-z)+ Bla-y) — B(y). (92)
Put z = e,
B(a-y) = B(y), Va € G1, Yy € Go. (93)

Conversely if this condition is fulfilled then g is additive.
O

EXAMPLE 4.2. The Heisenberg-group Hz = R? x, R, where the action of R on
R? is given by = - (y,2) = (y,2 + zy). Here e = ((0,0),0).
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PROPOSITION 4.3. f is a solution to Jensen’s equation on Hz with f(e) =0 if
and only if and only if

f(y, 2),x) = Ar(z) + Ax(y) + 2A3(2 — %azy), Vz,y,z € R, (94)

where A; € Hom(R,C) are arbitrary, i = 1,2, 3.
Suppose f is a solution to Jensen’s equation. Then f € Hom(H3,C) if and only

PROOF. Let B : R?2 — C be any additive function on R?. It is a simple
calculation to check that

B((z1+22)-(y,2)) + By, 2) = B(x1-(y,2)) + B(22- (4, 2)), Va1, 22,9,z € R (95)

So it follows immediately from Theorem 4.1 that the solutions to Jensen’s equation
on Hj3 are of the form

f((y,2),7) = Ai(z) + B(y,2) + B(y,z — ay),Vz,y,2 € R, (96)
where B € Hom(R?,C) is arbitrary. For B € Hom(R2?,C) there exist Ay, A3 €

Hom(R,C) such that B(y,z) = $A2(y) + A3(z), Vy,z € R. When is f additive?
We know from Theorem 4.1 that it is the case if and only if

1 1
§Az(y)+A3(2+wy) = B(z-(y,2)) = B(y,2) = §A2(y)+A3(Z), Va,y,z € R, (97)
that is if and only if A3 = 0. |

Note in particular that f((y,z)x) = 2z—zy is a solution to Jensen’s equation on
the Heisenberg group with f(e) = 0 which is not a homomorphism. So this example
show that genuine differences occur, from the abelian case, when we attempt to
solve Jensen’s equation on non-abelian groups. Furthermore Hj is a connected
nilpotent Lie group, so the example also shows that contrary to what Theorem 3.4
might lead one to suspect, the solutions to the degenerate Wilson’s equation, i.e.
Jensen’s equation, need not be of the classical form, even on connected nilpotent
Lie groups. By the term the classical form we mean homomorphisms, which is the
form of the solutions in the case where G is abelian. In contrast Ng has shown that
all solutions to (16) with f(e) = 0 are homomorphisms for certain groups including
the Heisenberg group (private communication and presented in his talk at the 37th
ISFE).

EXAMPLE 4.4. The (ax+b)-group G = R xs Ry where the action of Ry on R
is given by a -y = ay. Here e = (0,1).

PROPOSITION 4.5. f: G+ C is a solution to Jensen’s equation with f(e) =0
if and only if f(z,a) = A(a), Ya € Ry, Vz € R, where A : Ry — C is additive.

PRrROOF. Assume that B : R — C is additive and
B((ab) - z) + B(z) = B(a-z) + B(b-z), Vz € R, Va,be R;. (98)
Puta=5b=2
B(4z) = B(2-z) + B(2-z) = B(4z) + B(z), Vz € R. (99)

Hence B(z) = 0, Vz € R. The proposition now follows immediately from Theorem
4.1. O
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CHAPTER 3

On the Cosine-Sine Functional Equations on
Groups

Peter de Place Friis and Henrik Stetkaer

1. Introduction

An ambitious project is to obtain the general solution f,g,h € C(G) of the
functional equation

/K f(zk -y)dk = f(x)g(y) + g(z)f(y) + h(z)h(y), z,y € G, (1)

where G is a topological group, and C(G) denotes the algebra of all continuous,
complex valued functions on G. Furthermore K is a compact, transformation group,
acting by automorphisms on G, and k - x denotes the action of k € K on x € G. In
particular the map (k,z) — k- of K x G into G is continuous. Finally dk is the
normalized Haar measure on K. This notation will be used throughout the paper.

We give the complete continuous solution to (1) for K = Z, acting on a topo-
logical abelian group G. That is we solve the functional equation

J@2D+TELW) _ jayge) + o) f W) + h@h@), 2y e, (@)
where ¢ : G — G denotes a continuous involutive automorphism of G. Obvious
examples of such automorphisms are 0 = I and ¢ = —1, where I denotes the identity
operator. Letting o be a reflection in a hyperplane in G = R"™ we get an example for
which o # £1. It turns out that the solutions are certain exponential polynomials.
Chung, Kanappan and Ng’s paper [4] deals with the functional equation

f(zy) = f(@)g(y) + 9(z) f(y) + h(2)h(y), =,y € G, (3)

that can be viewed as the case of ¢ = I in (2). Our results encompass those of
[4] (see Remark 3.4). For G = R the functional equation (2) describes involved
addition formulas for trigonometric and related functions. See also [7].

The classical example 0 = —I of the equation (2) has been studied extensively
for d’Alembert’s functional equation (g = f — h = 0), the trigonometric functional
equations in [5] (h = 0 and g = f = ih) and the quadratic equation (h = g—1 = 0).
The special case of h = g turns up as part of a system of 2 functional equations
in ([5]; Formula (3.6)) and in ([11]; Lemma V.3). The case of g = 1 is Swiataks
equation (see [3] and [13]).

The general form of the solution sets for functional equations of d’Alembert’s
type, i.e., with the left hand side (f(z + y) + f(z —y))/2, can be found in Rukhin
[10].

The new of the present paper is that we:
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i: Produce the explicit solution formulas for the special functional equations
(2) in question.

ii: Do it for any involutive automorphism o, not just for o = £1.

iii: Take continuity into account.

We reveal part of the underlying structure in the set up by discussing the
general equation (1). The results of the present paper can be compared with the
ones of [4] because we formulate them in the same way. It is intriguing to see that
many of the methods of [4] carry over to the more general situations (1) and (2).
However, our formulas for the solutions of (2) contain certain types of functions
that are absent in [4], because they vanish for ¢ = I. For example the 4’th order
term in Proposition 3.2. So new phenomena show up.

With more than one term on the left hand side the possibility of varying signs
exists. We give the complete solution of the functional equation

flz+y) -z +oy)
2

= f(x)g(y) + g9(z) f(y) + h(z)h(y), =,y € G, (4)

in Section 6.

2. Main result

The following notation will be used throughout the paper unless explicitly
stated otherwise.

Notation (G, +) is an abelian topological group, 0 its identity element. We
let ¢ : G — G be an continuous automorphism of order 2. A(G) is the vector
space of all continuous additive maps from G to C and A*(G) := {4 € A(G) :
Aoo = +A}. Furthermore S™(G) denotes the vector space of all continuous,
biadditive, symmetric maps S : G x G — C for which S(oz,y) = —S(=,y) for
all z,y € G. If S~ € S (G) we let for brevity S~ also denote the function
S (z) := S (z,z),z € G. With K = Zy = (£1,-) equipped with the discrete
topology, the action of K on G given by 1-x = z,Vx € G and —1-z = ox,Vz € G.
A K-spherical function is a function ¢ € C(G) such that ¢ # 0 and ¢ satifies
Jx ok - y)dk = ¢(x)¢(y) for all z,y € G, in the case K = Zj the K-spherical
functions are given by theorem IIL.1 in [12]. If f is a function on G and k € K we
define the function k- f by (k- f)(z) := f(k~!-z) for x € G. We let C* denote the
multiplicative group of nonzero complex numbers.

Our main result is

THEOREM 2.1. Let (f,g,h) be a continuous solution of

flz+y)+f(z+0y)
2

= f(@)g(y) + g(z) f(y) + h(z)h(y),z,y € G. (5)

Then f,g and h have one of the following siz forms, and conversely.
(A): f=h=0andge C(Q).
(B):
f ar ax as ¢1

g p=4 b by b3 o2 ¢, (6)
h 1 C2 C3 ®3
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where ¢1,p2 and ¢3 are K-spherical functions on G and a;,b;,¢;,1=1,2,3
are complex constants satisfying the matriz equation

a bl C1 b1 b2 b3 ai 0 0
as b2 Co ay a2 as = 0 as 0 . (7)
as b3 C3 Ci Cy C3 0 0 as
(©):
f a1 a» as b1
g ¢=4 b b b3 ¢2 ; (8)
h ¢ e c3 (m2A+ (m2oo)(Aoa))/2

where ¢1 is a K-spherical function on G, my : G — C* is a continuous
homomorphism for which mas # mooo, ¢o is the corresponding K-spherical
function ¢y = ka'dek‘, A€ A(G), and a;,b;, ¢, = 1,2,3 are complex
constants satisfying the matriz equation

ai bl C1 bl b2 b3 ai 0 0
as b2 Co a; a2 as = 0 as as . (9)
as b3 C3 Ci Cy C3 0 as 0

Furthermore as = 1. If f, g and h are linearly independent it may also be
assumed that a; = —as.

(D):
f ay az as o1
g =< b1 by b3 m2 o, (10)
h c1 ¢ c3 maq

where ¢y is a K-spherical function on G, ms : G — C* is a continuous
homomorphism for which ms =mooo, g = AT + S~ where AT € AT(G)
and S~ € S (G) and a;,b;,¢;,1 = 1,2,3 are complex constants satisfying
the matriz equation (9). It may be assumed that a3 = 1. If f,g and h are

linearly independent it may also be assumed that a1 = —as.
(E):
f 4 a a3 s (mA; + (moo)(A1 00))/2
g = b1 by bz by (m +mo0)/2 ) (11)
g bkl (A +(moo)(Ao0))/2

(mA? + (m o 0)(4% 0 0))/2

where m : G — C* is a continuous homomorphism for which m # mo o,
A, A € A(G), and a;,b;,¢;,1 = 1,2,3,4 are complex constants satisfying
the matriz equation

ap by ¢ 0 a 0 0

a; b; c; bi by by by a1 a; as Q4

a3 b3 ¢ a2 as a4 = 0 a3 2a4 0 |[° (12)
3 03 c¢3 o e o ey 3 4

as by cas 0 as O 0

Futhermore a; = 1 and az = 0. If f,g and h are linearly independent then
it may also be assumed that ay = 0 and that ay = 1/2.
(F):
f ap a2 as mF
g = b1 bg b3 m ) (13)
h €1 C2 C3 mq
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where a;,b;,c;, i = 1,2,3 are complex constants satisfying the matrix equa-

tion
a bl C1 b1 b2 b3 0 ai 0
as b2 Co ay a2 as = ay a2 as s (14)
as b3 C3 Ci Cy C3 0 as ap

m: G — C* is a continuous homomorphism for which m = mo o, and

Pl s oy s arary e ap e s (15)
g=AT +(47)? (16)

where AT, AT € AY(Q), A= € A~ (G) and S~ € S~ (G). We may even
assume that

ay as as 1 0 0
by by b3 p=< —2?/2 1 z % for somez € C. (17)
€1 C2 C3 -z 01

PrOOF. It is elementary to check that the functions listed are solutions. Thus
what is left is to show that each continuous solution (f, g, h) of (5) occurs in the
list. Apart from the last section the rest of the paper is dedicated to this. a

REMARK 2.2. (a) Theorem 2.1 above yields for o = I the main result of [4].
In checking that this is so it is advisable to take the discussion on p. 276 of [4] into
account or the remark after our Lemma 3.3.

(b) The matrix equations (7), (9) and (12) occur in [3].

3. Technicalities
PROPOSITION 3.1. The solutions g € C(G) of the quadratic equation

q(z+y) +q(z + 0y)
2

are the functions of the form q = AT + S~ , where AT € AT (G) and S € S~ (G).

= q(SL') + Q(y), T,y € Ga (18)

PRrOOF. This is Corollary II1.8 of [12]. O

PROPOSITION 3.2. The solutions F,q € C(G) of the system of functional equa-
tions

F(z+vy) + F(z + oy)

5 = F(z)+ F(y) +q(z)qy), =,y € G, (19)
WrPACE) _ ) 4 q(y), 2y € G,
are
F = %<A+)2+%(A*)“+A+(A*)2+q’a (20)

q = AT + (A7)27

where AT € AT(G) and where ¢’ € C(G) is a solution of the quadratic equation

(18).
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PROOF. It suffices to prove that q has the stated form. Indeed, if so then
fo:=(A1)2/2+ AT(A7)2 + (A7)*/6 is a particular solution of the first equation
of (19). Its complete solution is F' = fo + ¢’ where ¢’ ranges over the solutions of
the corresponding homogeneous equation, i.e. of the quadratic equation.

If the function z — ¢(z + t) — ¢(z) is a constant, say ¢(t), for any t € G
then ¢(t) = ¢(t) — ¢(0) = ¢(t), implying that q is additive. Substituting oy for
y in (18) shows that any solution of the quadratic equation is invariant under o,
hence ¢ € AT(G). So from now on we may assume that there exists a t € G
such that the function x — ¢(z + t) — q(z) is not constant. The function F;(z) :=
F(zx+t)— F(z) — F(t), = € G satisfies

file )+ BEL0) _ f0) + oo +1) - a@)a@), 2y € G, ()
which is a version of the functional equation of symmetric differences. It is solved
by theorem IV.1 of [12] according to which there are five cases (a)-(e) to take into
account: The cases (a) and (b) do not apply under our assumptions here. (c) gives
q = AT + (A7)2 In each of the two remaining cases q has the form ¢ = ¢(¢ — 1)
where ¢ € C and ¢ is a Zs-spherical function. But if a function q of this form
satisfies the second equation of (19) then it is 0. O

The general result that makes thing work is the following technical lemma.
It says that if f,g,h € C(G) constitute a solution of (22) then g and h satisty
functional equations of the same nature as f in (22). The corresponding result of
[4] is there expressed by (3.7) and (3.8).

LEMMA 3.3. In this Lemma G need not be abelian, so we use the multiplicative
way of writing the group composition. If f,g,h € C(G) constitute a solution of

/K f(zk -y)dk = f(x)g(y) + 9(x) f(y) + h(x)h(y), z,y € G, (22)
and f # 0 then there exists constants a, 3,7,6 € C such that v* = a + 3§ and
| stak- )ik~ g(a)ato) (23)

= af(2)f(y) + Blf (@)h(y) + h(2)f ()] + Yh(x)h(y), 2,y € G,

/K h(zk - y)dk — g(@)h(y) — h(z)g(y) = (24)
B1() f(y) + 11/ @)h(y) + h(z) f@)] + 6h()h(y), o,y € G.

ProoF. This is Propostition IL.5 of [9]. We have included the proof for the
readers convinience as [9] is not readily available.

Case A : f and h are linearly independent. Lemma IL.2 in [12] implies here
that

G(z,y)f(2) + H(z,y)h(z) = G(y,2) f(2) + H(y, 2)h(2), 2,y,2 € G, (25)

where

Gla,y) = /K o(ak - y)dk — g(2)g(y), 7,y € G, (26)

H(z,y) = /K h(zk - y)dk — g(x)h(y) — h(z)g(y), =,y € G.
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By (25) we have for any 21, 22 € G that
f(zl) h(zl) G(IL’, y) _ G(ya Zl)f(m) + H(ya Zl)h(m)
(7 1o ) (aem )= (o tatmne ). e

Since f and h are linearly independent there exists 21, 22 € G such that the matrix
on the left is invertible (see Lemma 14.1 in [1]), and so

Gz,y) = 0(y)f(@)+i(y)h(), (28)
H(z,y) = ¢2(y)f(2) + ¢a2(y)h(2),
for some functions ¢1, @=2,91,12 € C(G). When we substitute this back into (25)
we get by the linear independence of f and h that
HWE) +hWhE) = hu(I6) + (), 1,7€G,  (29)
DI +Whz) = 62(fW) +a()h), v,z €G.

Using the linear independence of f and h once more we get that there exist constants
ai,as, by, by, c1,c9,dy,dy € Csuchthat ¢; = a; f+b;h and ¢; = ¢;f+d;hfori =1,2.
Substituting this back into (29) we find that by = ¢1, as = by, bs = dy, ¢1 = as,
c2 = by, di = co, so that ¢1 = af + Bh, ¢p2 = Y1 = Bf + vh, and Y2 = vf + 0h,
where a@ = a1, 3 = b1, v = by, and § = d». This means by (28) that G and H have
the forms stated in (23) and (24). That v? = a + 3§ follows from applying Lemma
I1.2 in [12] to any of the two identities (23) and (24).

Case B: f and h are linearly dependent. Since f # 0 there exists a constant
c € C such that h = v/2¢cf. The identity (22) then becomes

/K fak-g)dk = [@)g() +9(@)f @) + 26 () [ ()
f@lg+EAW) + o+ EA@FW), myeG.  (30)

From Lemma V.1 in [11] it follows after elementary computations that there exists
a constant k € C such that

/Kg(mk -y)dk — g(z)g(y) = &> f(2)f(y), =,y €G. (31)

From (22) we get that

/K Wk -y)dk — g(2)h(y) — h@)g(y) = VEeh(@h(y), 2,y € G,  (32)

So all that remains to be show is that there exist a, 8,7,d € C such that v2 = a+ 9,
a+ 2v2¢f + 2¢%y = k2, and B + 2v/2¢y + 2¢%6 = v/2¢. But this is obvious. O

REMARK 3.4. Let K be the trivial group as in [4] and let (£, g, h) be a solution
of (22) with f # 0. Then it follows from (22),(23) and (24) that each of the
functions f, g and h satisfies Kannappans condition. Hence we may assume without
loss of generality that G is abelian in this case. Unfortunately the argument does
not generalize to K = Zy so here we assume that G is Abelian.

PROPOSITION 3.5. Let each of the functions ¢1, @2, 3 be a K-spherical function
on G or the zero function. For a;,b;,c; € C,i = 1,2,3, we define the functions
f= 2?21 a;p;, g = Ele b;p; and h := 2?21 c;¢;. If the coefficients a;,b;,c; €
C,i = 1,2,3 satisfy the matriz equation (7) then the triple (f,g,h) constitutes a
solution of the functional equation (22).
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Conwversely if the triple (f,9,h) solves (22) and if f,g and h are linearly indepen-
dent then the coefficients satisfy the matriz equation (7).

PRrOOF. To prove the converse result note that f, g, and h linearly independent
implies that ¢1, ¢2, @3 are linearly independent and the result follows by direct
computations. O

PROPOSITION 3.6. Let my,ms : G — C* be continuous homomorphisms and
let A € A(G). For a;,b;,c; € C,i=1,2,3 we define the functions

f a; Gz ag 1
g = b1 b2 b3 ¢2 , (33)
h C1 Co C3 fK k- (mgA)dk

where ¢;,i = 1,2 denotes the K-spherical function ¢; := fK k-m;dk.

If the coefficients satisfy the matriz equation (9) then the triple (f,9,h) consti-
tutes a solution of the functional equation (22).

Conwersely if the triple (f, g, h) € C(G) solves (22) and if f, g and h are linearly
independent then the coefficients satisfy the matriz equation (9).

4. The case of linear independence

Let us assume that the triple (f, g, h) solves the functional equation (22) and
that f # 0. Explicit calculations based on the identities (22), (23) and (24) reveal
that

f f
[ {9 pakpdk=2w7  t@) nyed. (34)
K1 h h
where @ is defined by
0 a B 0 8 ~
b=9gl+f< 1 0 0 »+h¢ 0 0 1 (35)
0 B8 ~ 1 v 6

Elementary computations based on the definition of ® and the identities (22),
(23) and (24) where v2 = a + 36 show that & satisfies the spherical equation

/ ®(zk - y)dk = ®(z)®(y) forall z,y € G. (36)
K

Since the right hand sides of (22), (23) and (24) are symmetric in x and y it
follows that

/ F(zk -y)dk = / F(yk - z)dk, Vz,y € G, F € {f,g,h}. (37)
K K
Hence

B(2)B(y) = /K<I>(:ck-y)dk: /K<I>(yk-a:)dk: B(y)d(z), Yo,y € G (38)

By linear Algebra this ensures the existence of a 3 x 3 complex matrix A such that
A~1®(x)A is upper triangular for all z € G. Below we find such an A explicitly. If
we put y = e in (22) we get that

(9(e) =1)f + f(e)g + h(e)h = 0. (39)
If f, g and h are linearly independent this means that g(e) = 1 and f(e) = h(e) = 0.
In particular we find in this case that ®(e) = I so ® is a matrix valued K-spherical
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function. In the remaining part of this section we shall assume that the triple (f,g,h)
constitutes a solution of (22) and that f, g and h are linearly independent.
CASE 1: 3 =0 but a =2 # 0. Here ® takes the form

0 92 0 0 0 v
P=gl+f< 1 0 0 +h< 0 0 1 3. (40)
0 0 ~« 1 v 4
Let
) 5\?
= — &+ — .
At 2 (2) + 2y (41)
CASE 1.A: Ay # A_. Here
~1
- 7 Y - Y
11 1 3¢ 01 1 1 %= (42)
0 Ax Ao 0 Ar A
g—~f 0 0
0 g + ’)/f + /\+h 0
0 0 g+vf+A_h

None of the three functions in the diagonal are zero, because f, g, and h are
linearly independent. From (36) we read that ¢y := g —f, ¢2 :== g+ vf + Aph,
and ¢3 := g+ vf + A_h are K-spherical functions on G. We find that there exist
constants a;,b;,¢; € C for ¢ = 1,2,3 such that f = Zle a;d;, g = 2?21 b i,
and h = Ele c;¢i. It follows from Proposition 3.5 that the coefficients satisfy the
matrix equation (7). The solution occurs in (B) of the list of Theorem 2.1.

CASE 1.B: Ay = A_. This means that v = —§%/8. In particular § # 0 since
v # 0. Here we find that

|
=
()

52 82
T —5 0 § -% 0
1 1 0 ¢ 1 1 0 3= (43)
J J
0o ¢ 1 0o ¢ 1
62
0 — 2 f+4h h
0 0 Sy Y

We see from (36) that ¢ := g+ 62f/8 and ¢2 := g — 62 f/8 + h/2 are K-spherical
functions on G. Furthermore

F=(2) - grt Iy andg= Lo 00— On) (44)
=\3 1 2T 5 and g = 5 \P1 2= 5
and h is a non-zero solution of the functional equation

| hak- 9}k = 62()hio) + h@)a(a), 2.3 €. (45)

We specialize to Z, for a moment. By Theorem IIL.1 of [12] (or Theorem 3 of [2])
there exists a continuous homomorphism my : G — C* such that ¢o = (ma +ma o
0)/2. By Theorem V.1 of [13] there are two possibilities for & :

CASE 1.B.1: my # my o 0. Here

m2+mgoaA++m2—mgoaA_:m2A+(mgoa)(Aoa)

h= 2 2 2 ’

(46)
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where A* € A*(G), A € A(G). It follows from Proposition 3.6 that the coefficients
satisfy the matrix equation (9). The solution occurs in (C) of the list of Theorem
2.1.

CASE 1.B.2: my = mooo. Here h = maq where q is a solution of the quadratic

equation (18). We find that
R W )
A O (47)
0 s mag

SIS

L1

so that the solution occurs in (D) of the list of Theorem 2.1.
CASE 2: a =3 =+ =0 but § #0. We find that

o0 1 Y' (00 1 g 0  f—h/s
11 0 {11 0 =00 g+sh 0 . (48)
06 -1/6 06 -1/6 0 0 g

From here we proceed exactly as in Case 1.B above. The solutions occur in (C)
and (D) of the list of Theorem 2.1.
CASE 3:a=8=v7=§=0. We get

00 1)" 001 g h f
100 3{ 100 $=20 g h %, (49)
010 010 00 g

so that g is a K-spherical function. We know from Theorem III.1 of [12] (or Theorem
3 of [2]) that there exists a continuous homomorphism m : G — C* such that
g=(m+moo)/2

CASE 3.A: m # m o o. By Proposition IIL.6 of [12] there exists a continuous
homomorphism M : G — GL(3,C) of the form

{m 0 ¢} {gilf} 1
M=< 0 m 19 »suchthat ¢ 0 g h :§(M+Moa). (50)

O =

0 0 m 0 0 g

The homomorphism property of M means that

Pl+y) = me)y(y) +P(@)m(y), (51)

dz+y) = d@)m(y) +m(z)d(y) + Y(z)(y).
Dividing by m(z + y) = m(z)m(y) in the above identities we get that

Yarn =L@+ e, ayeaq, (52)

so that 1y = mA where A € A(G), and

2@ty = L@+ L)+ A@AW), 2y e G, (53)

A particular solution of this inhomogeneous equation is % = A2/2 so its complete
solution is % = Ay + A?/2 where A; € A(G). Now

1 A A +1A?
M=m{ 0 1 A : (54)

0 0 1
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from which we find that

f 100
g »=<010
h 00 1

The solution occurs in (E) in the list of Theorem 2.1.
CASE 3.B: m = moo. In this case g = m = m o o. The original functional
equation (22) and the one for h from Lemma 3.3 are in this case:

flz+y) + flz+oy)
2

h(z +y) + h(z + oy)
2

(m+4+moo)/2
(mA + (mo0)(A00))/2
(mA? + (moo)(A%00))/2

(55)

O Ol

} (mAy 4+ (moa)(4i00))/2

= fl@)m(y) +m(z)f(y) + h(2)h(y), 2,y € G, (56)

= h(z)m(y) + m(z)h(y), z, € G. (57)

f 1 0 mF
GREENE)
h 0 1 mq

where the functions F := f/m and q := h/m satisfy the equations

We find that

> O = O

F(z+y)+ F(z+oy)

2 = F(@)+F(y) +q@)e), z,yed,  (59)
q(z +7v) *-QQ(eray) T )

Proposition 3.2 shows that the solution occurs in (F) of the list Theorem 2.1.
CASE 4: 8 #0. For any z € C we put

2
G::g—%f—zh and H := h+ zf. (61)

Note that
1

1 0 0 1 00
_TZQ 1 —2 = _;2 1 2z ;. (62)
z 0 1 -z 0 1

Now f, G and H are linearly independent because f, g and h are so. Brute force
calculations show that

/K f(xk - y)dk = f(2)G(y) + G(2)f(y) + H(z)H(y), (63)

/K G(ak - y)dk — G(2)G(y) = (64)
Af(@)f(y) + BIf (@) H(y) + H(z) f(v)] + CH(z)H(y),

/K H(zk - y)dk — G(2)H(y) — H(z)G(y) = (65)
Bf(2)f(y) + Clf (2)H(y) + H(z) f ()] + DH()H(y),
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where
A = _234 — 023+ 3722 =382 +a, (66)
B = 224822 —2y2+ 3, (67)
c = —gz2 —d0z+7, (68)
D = §+3z (69)

We note that C2 = A + BD corresponding to the earlier identity 72 = a + 3.
Choosing z € C such that B = 0 we can apply the earlier results to the new set of
functions {f,G, H} replacing {«, 3,7,0} by {4, B,C,D}. Thus

f a ... Qap (1
G = by ... b, : R (70)
H 1 ... Cp Un

corresponding to the various cases above. Now

f 1 00 f a - an ¥
gt=d 21 el e o owe b @
h -z 01 H c(z) - cn(2) Un

where b;(2) := b; — %zQai +2z¢; and ¢;(2) :=¢;—za; for z€ Candi=1,...,n. We

are through by the following matrix identity:
ar bi(z) c(z) bi(z) -+ bn(2)
N . N ai . an,

an bn&z) cn‘(z) ca(z) - en(2)

ap b ¢ bp -+ by
Do a coan o
an bn Cn C1 C’I’L

Indeed, in all the cases (B)-(F) of Theorem 2.1 the matrix equation contains only
the a; entries on the right hand side and they are independent of z.

5. The case of linear dependence

This section deals with the remaining case of f, g and h linearly dependent. We
divide it into three subcases (A), (B) and (C).

(A) f and h linearly independent, so that g = Af + ph for some A\, u € C.
Substituting this expression for g into the functional equation (1) and introducing
H:=h+ uf instead of h we get

/K fak-y)dk = 2X = p*) f(2) f(y) + H(2)H(y), ,y € G (73)
If 2\ = p? then taking y = e in (73) we find that f = H(e)H = H(e)h + H(e)uf,

contradicting that f and h are linearly independent. So 2\ — u? # 0. Letting p € C
be a square root of 2\ — u? the equation (73) becomes

/K F(zk-y) = F(z)F(y) + G(2)G(y), 7,y € G, (74)
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where F := p? f and G := pH. The solutions of (74) are written down as Theorem
V.5 of [13] for K = Z with n=1. The theorem states that there are only the
following possibilities (a)-(e):

(a) F = G = 0. This implies here that f = 0. However that possibility must
be excluded since f and h are assumed to be linearly independent.

(b) There exists a continuous homomorphism m : G - C* and a ¢ € C\ {%i}
such that

¢ m+moo 1 m+4+moo

1+¢2 2 1+¢2 2
It follows that cpf = h + pf. But f and h are assumed to be linearly independent
so the possibility (b) must also be excluded.

(c) There exist continuous homomorphisms my,ms : G — C* and ac € C\{=%i}
such that

pH = and p°f = (75)

c miy+mipo0 my +mooao
H = _
P 1+¢ ( 2 2 ) ’ (76)
1 mi+mioo 2 mo+maoo
2 —
= Tra 2 Tira 2 (")
Letting ¢ := (m1 +mq 00)/2 and ¢2 := (ma + ma 0 0)/2 we find that
f 1 1 1 c
g =575 Atupe—pt c(he—pp—cp?) ol (78)
h pPl+c ¢2
pc— —c(p + pc)
A calculation reveals that this fits into case (B) of Theorem 2.1 when we take
ai as as 1 1 1 C2 0
by by b3 p= ST E A+ ppe—p? c(Ae—pp—cu®) 0 3. (79)
a e o P pc— —c(p+pc) 0

(d) There exists a continuous homomorphism m : G — C* for which m # moo,
At € AY(G) and A~ € A(G)™ such that

m-+moo m—-moo ,_

_ +
pH = 22T B e, (80)
2 m+moo . |m+moo ., M—Mmoao  _
prf o= +4 AT+ ———— A7) (81)
2 2 2
With A := +ip 2(A* + A™) we find that
f 0 p 2 1 (m+moo)/2
9 (=40 (P—)p?/2 (pFin)?/2 (m+moo)/2
h 0 —pp? Fi(p Fip) (mA + (mA)oo)/2

(82)
The solution fits into case (C) of Theorem 2.1.
(e) There exists a continuous homomorphism m : G — C* for which m = moo
and a solution ¢ € C(G) of the quadratic equation (18) such that pH = mq and
p2f = m £ imq. Here we find that

f ar az as m
g = bl b2 b3 m 5 (83)
h C1 (&) C3 mq
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where
a1 a2 ag 0 p 2 1
bi by by p=4q 0 (0 —pP)p? —5(Fip—p)?® ;. (84)
c1 c2 c3 0 —pp~2 Fip— @

A calculation reveals that this fits into case (D) of Theorem 2.1.

(B) f =0. Here h =0 and g € C(G), which is the trivial case (A) of Theorem
2.1.

(C) f # 0 and h are linearly dependent, so that h = af for some a € C. Here
the functional equation (5) reduces to

2

fet+y)+fl@+oy) _ £(z) [g(y) n O‘_Qf(y)} + [g(w) + a_f(m)] f(y),z,y €G,

2 2 2
(85)

which is once again a well known functional equation. The solutions of the equation
(85) are written down as Theorem V.4 of [13] for K = Z, with n=1. The theorem
state that there are only the following possibilities (a)-(e):

(a) f = 0. This possibility is excluded by assumption.

(b) There exists a continuous homomorphism m : G — C* and a constant
c € Csuch that g +a?f/2=(m+moo)/4and f =c(m+moo).

Letting ¢1 = @2 = ¢p3 = (m + m o 7)/2 we get

f 2¢ 00 o1
g p=14 2+—a% 0 0 s (86)
h 2ac 0 0 o3

from which a small calculation reveals that we this is case (B) of Theorem 2.1.

(c¢) There exist continuous homomorphisms m;, ms : G — C* and a constant
c € Csuch that g+ a?f/2 = (m; +my 00 +ms+myoo)/4dand f=c[my +myo
o — (m2 +my o 0)].

Letting ¢ := (m1 +mq 00)/2 and ¢2 = ¢3 := (M2 + m2 0 0)/2 we find that

f 2c —2c 0 (]51
g = % —a?c % +a%c 0 o2 ¢, (87)
h 2ac —2ac 0 3

from which a small calculation reveals that this is case (B) of Theorem 2.1.
(d) There exists a continuous homomorphism m : G — C* for which m # moo,
AT € AT(G) and A~ € A (G) such that

1 m+moo m+moo m-—moo ,_

a2 = — +
g+2af 5 and f 5 AT+ 5 A (88)
We find with 4 := AT + A~ that
f 00 1 (m+moo)/2
g p=4 0 1 —a?/2 (m+moo)/2 , (89)
h 00 a (mA+ (mA)oo)/2

from which a small calculation reveals that this is case (C) of Theorem 2.1.
(e) There exists a continuous homomorphism m : G — C* for which m = moo,
and a solution ¢ € C(G) of the quadratic equation (18) such that g + o®f/2 =m
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and f = mgq. We find that

f 00 1 m
g =<0 1 —a?/2 m o}, (90)
h 0 0 «a mq

from which a small calculation reveals that this is case (D) of Theorem 2.1.

6. The signed equation
PRrRoOPOSITION 6.1. f,g,h € C(G) is a solution to

/K f(@+k-y)x(k)dk = f(2)g(y) + 9(2)f (y) + h(@)h(y), =,y € G, (91)

where x is a continuous homomorphism from K into the circle group {z € C: |z| =
1} and x # 1, if and only if one of the following three conditions holds:
a): f=h=0, and g € C(G).
b): f =v, g = —a*v/2, and h = av where a € C and v € C(Q) is a
solution to

/ v(z +k-y)x(k)dk =0, z,y € G. (92)
K

c): g=—p’f/2+pH, h = H — pf where p € C, and f,H € C(G) is a
solution to

/K f(@ + k- y)x(R)dk

H(x)H(y), =,y € G. (93)

PRrOOF. That the conditions are sufficient is verified by trivial calculations.
Now suppose that the triplet f, g, and h is a solution. Suppose f(k-z) = x(k)f(x)
for all z € G and for all k € K. Then

/Kf(y+k-x)dk /Kf(k* -x+y)dk=/Kf(k* @+ k-y))dk

/ fl@+k-y)x(k)dk = / flx+k-y)x(k)dk

K K

Twg(z) + g(y) f(z) + h(y)h(z)

- /K f(y+ k- 2)x(RYdk, (94)

where we have used that K is unimodular since it is compact (see Theorem 15.13
and Theorem 15.14 in [6]). Taking = e we get

f) = /K fy+k-e)dk = /K f(u + k- xRk = f(y) /K X(®)dk =0,  (95)

since’y # 1 (see Lemma 23.19in [6]). Soif f # 0 we can not have f(k-z) = x(k)f(z)
for all z € G and for all £k € K. We will use this observation to exclude a number
of cases and thereby prove that the only possible solutions are those given by the
proposition.

Suppose that f, g, and h are linearly independent. it follows immediately from
Theorem I1.2 in [11] that f(k-z) = x(k)f(z), Vo € G, Vk € K. But this is
impossible since f # 0. So f, g, and h have to be linearly dependent.
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Case A: f and h are linearly independent. Then g = Af + ph for some A, u € C.
Define H = h + puf, then we have

/K f@+k-y)xk)dk = (21 - p*) f(2) f(y) + H(z)H(y), =,y € G. (96)
Take p € C such that p? = 2\ — p2. Suppose p # 0 and define F = pf. We have
| 1@+ kX @k = F@)F @) + H@HG), s.yeG. (1)

F = pf and H = h + uf are linearly independent since f and h are linearly
independent. Again it follows from Theorem II.2 in [11] that F'(k - z) = x(k)F ()
and hence f(k-x) = x(k)f(z), Vo € G, Yk € K. So f = 0, but this is impossible
so p = 0. Hence

/K f(@+ k- y)X(B)dk = H(z)H(y), #,y € G. (98)

This is case ¢ in Proposition 6.1.

Case B: f and h are linearly dependent.

Case B1: f =0, then h =0 and g € C(G) can be arbitrary. This is case a in
Proposition 6.1.

Case B2: f #0, so h = af and we have

[ $o+ ke gkl = $S 1 +al0) + 5+ D), my e G (09)

Suppose f and o?f/2 + g are linearly independent then again it follows from The-
orem I1.2 in [11] that f(k-z) = x(k)f(z), Vz € G, Vk € K. So f = 0. But this is
impossible so f and a? f/2+ g have to be linearly dependent. So a?f/2+g = \2f/2
for some A\ € C. Hence we have

/K @+ k- y)x®)dk = M) @A) @), 2y € G. (100)

Suppose A # 0 then, using Theorem I1.2 in [11] it follows that f(k-z) = x (k) f(z), Vz €
G, Vk € K so f =0 and this is impossible. So A = 0 and we have

/ flz+k-y)x(k)dk =0, z,y € G. (101)
K
This is case b in Proposition 6.1 This proves the proposition. |

PROPOSITION 6.2. f,g,h € C(G) is a solution to

JCrn) —J@E) _ 1)) + gla) 1) + B@h(s). 2y €G. (102)

if and only if one of the following conditions holds:

a): f=h=0and g€ CQ).

b): f =v, g = —a’v/2, h = av, where a € C and v(z +y) = v(z +
oy), Vz,y € G.

c): g=—p’f/2+ puH, h = H — uf, where p € C, and where f = ¢*(m +
moo)/2+v and H = ¢(m —moo)/2 where ¢ € C and v(z +y) =
v(z + oy), Vz,y € G and m : G — C* is a continuous homomorphism
such that m #moo.
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d): g=—p?f/2+pH, h=H — uf, where p € C, and f = m(A™)?/2+v
and H = mA~, where A € A~ (G), and m : G — C* is a continuous
homomorphism such that m = mog, and v(z+y) = v(z+oy), Vz,y € G.

PrOOF. To check that anything on the list is a solution is trivial. Now suppose
that f, g, and h is a solution. We let K = Z3 act in the usual way on G. We define
X : K+~ C* by x(1) =1 and x(—1) = —1. Then we have

/Kf(“k'y)mdk = f(“y)—zf(ﬂ”ray)

= f(@)g(y) + 9(x)f(y) + h(z)h(y), z,y € G. (103)
This equation was treated in Proposition 6.1.
If we are in case a in Proposition 6.1 then we are in case a in Proposition 6.2.
If we are in case b in Proposition 6.1 then we are in case b in Proposition 6.2.

If we are in case ¢ in Proposition 6.1. Then for some p € C we have g =
—p2f/2+ pH and h = H — puf where f, H € C(G) is a solution to

flz+y) - flz+oy)
2
The equation (104) has been solved in Corollary IIL5 in [12].
If we are in case 1 or 2 in Corollary IIL.5 in [12] then H = 0 and f(z + y) =
f(z+oy), z,y € G. This is case b of Proposition 6.2.
If we are in case 3 in Corollary IIL5 in [12] then there exist a continuous
homomorphism m : G — C* for which m # moo, ¢ € C\ {0}, ¢1,¢2 € C, and
v € C(Q) for which v(z + y) = v(z + oy), =,y € G such that

= H(z)H(y), z,y € G. (104)

clm+m°‘7+62m‘m°":H:cm, (105)
2 2 2
and m-+moo m-—moao
f=ce 5 + ccy 5 + v (106)

From (105) it follows that ¢; = H(e) = 0, and since m # moo it follows from (105)
that co = ¢, and we are in case ¢ of Proposition 6.2.

If we are in case 4 of Corollary IIL.5 in [12] then there exist a continuous
homomorphism m : G — C* for which m = moo, ¢,c; € C, A~ € A(G), and
v € C(@Q) for which v(z + y) = v(z + oy), z,y € G, such that

em+ceymA”™ =H =mA~, (107)

and 1
f=cmA™ + 5clm(/r)2 + . (108)
From equation (107) it follows that ¢ = H(e) = mA~(e) = 0, if A~ = 0 we can
take ¢; to be 1, if A~ # 0 then ¢; has to be 1. We are in case d in Proposition
6.2. O

REMARK 6.3. Note that if G is 2-divisible and ¢ = —I then the condition
v(z +y) = v(z + oy), z,y € G implies that v is constant. 2-divisible means that
for any x € G there is a y € G such that y? = .
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CHAPTER 4

The Sine and Cosine Addition Functional
Equations on Nonabelian Groups

Peter de Place Friis

1. Introduction

Let K be a compact transformation group acting on a topological group G
by homomorphisms. Suppose f,g1,---,9n,h1,-..,h, € C(G) is a solution to the
following functional equation

[ 1@k = Y a@hitn), vy €, 1)
i=1
then g¢1,...,9n, h1,-..,h, is a solution to
Z/ gi(zk - y)dkh;(z) = Zg,(w)/ hi(yk - 2)dk, z,y,z € G. (2)
i=1 /K i=1 K

See Lemma II.2 in [14]. This necessary condition is very useful as can be seen
from [14] for example. Usually functional equations on groups are solved by ad
hoc methods. There is very little theory to our disposal. Therefore any necessary
condition is useful. When G is not abelian group inversion is not a homomorphism
but an antihomomorphism. So the standard action of Z, on a nonabelian group
does not fit into the general set-up in [14]. Hence we can not use the necessary
condition (2) on the equations

flzy) + flzy™) = 2f(2)g(y) + 29(2) f(y), z,y € G, (3)
and

flxy) + flzy™") = 2f(2) f(y) + 29(2)g(y), .y € G 4)
So it would be of interest to find a necessary condition in the case where K acts
by both homomorphisms and antihomomorphism. Such a condition is given in
the section General Theory and we deduce some additional properties in this case.
Then we apply the necessary condition to the functional equations

/K f(ak - y)dk = f(@)g(w) + 9(@)f (), 7,9 € G, (5)
and
/K f(ak - y)dk = £@)f () + 9(@)g(v), 2.y € G (6)

and we show how the problem of solving these equations can be reduced to the
problem of solving some simpler equations. This is an extension of result in [15].
The conclusion is the same but the assumptions are weaker. G need not be abelian
and K is not assumed to act by homomorphisms only, but by homomorphisms
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and possibly also antihomomorphisms. That the conclusion is unaltered is perhaps
somewhat surprising.
The main new results of the present paper is that we:

(1) Find a necessary condition that g1,...,gn,h1,. .., h, € C(G) must satisfy
in order that a solution to

/K flok - y)dk = Y gs(@hilw), o,y € G, (7)

can exist in the case where K acts by homomorphisms and possibly also
antihomomorphisms (Proposition 2.4).
(2) Reduce the problem of solving the equations

/K f(ak - y)dk = f(2)g(y) + 9(z)f (), 7,y € G, (8)
and
/K f(ak-y)dk = f(@) f(y) + 9()g(y), .y € G, (9)

to the problem of solving simpler equations when G is not necessarily
abelian and K acts by homomorphisms and possibly also antihomomor-
phisms (Theorem 4.3 and Theorem 5.3).

2. General Theory

We recall the concept of a topological transformation group as defined in, e.g.,
[9] Ch. IT §3.

DEFINITION 2.1. Let K be a group with neutral element e, and let X be a
nonempty set. We say that K acts on X if there is given an action of K on X, i.e.
amap (k,z) = k-z of K x X into X such that

(1) (klkg) -z =k - (k‘z .Z') for kl,kg € Kand z € X.

(2) ecx=zxforzeX.
If X is a group we say that the action is by automorphisms if the bijection  — k-z
of X onto X is an automorphism for each k € K. Let a topological group K act
on a topological space X. We say that K is a topological transformation group of
X if the map (k,z) — k - z is a continuous mapping of the product space K x X
onto X.

We shall throughout the paper work in the following set-up.

General Set-up and Notation K is a compact Hausdorff group. We denote
by dk its normalized Haar measure. Furthermore K is also a topological transfor-
mation group acting on G, where G is a topological group. The action of k € K
on z € G is denoted by k - . Furthermore we assume that for every k € K,
k- = ¢r : G = G is either a homomorphism or an antihomomorphism. The neutral
element of G is denoted e. As usual C(G) is the algebra of complex valued contin-
uous functions on G. A function f on G is said to be K-invariant if f(k-z) = f(x)
for all k € K and z € G. For any function f : G — C the function f : G — C is de-
fined by f(z) = f(z™'), z € G. We let M>(C) denote the algebra of complex 2 x 2
matrices. The group Zs will be viewed as the multiplicative group Z, = {£1,-}. It
acts on any group G by (+1)-z = z and (—1)-2 = 1. We will call this action for
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the standard action by Z, on G. Finally we let C* = C\ {0} be the multiplicative
group of the nonzero complex numbers.

DEFINITION 2.2. We will call a non-zero function ¢ € C(G) a K-spherical
function if it satisfies d’Alembert’s functional equation

/K o(zk - y)dk = p(2)d(y), 7,y € G. (10)

REMARK 2.3. Note that this is an extension of the usual definition, as found in
[2] Definition 8.1 for example, in that K is not assumed to act by homomorphisms
only but by homomorphisms and possibly also antihomomorphisms. If K acts on
G by homomorphisms there is a connection with the classical theory of spherical
functions. We define the group G = G x, K as a semidirect product of G and K
where the topology is the product topology and the group operation is given by
(91,%1)(92,k2) = (g1k1 - 92, k1k2). Ks = {eg} x K is a closed compact subgroup of
G. Consider f : G — C then f((g,k)(eq, ko)) = f(g,kko) so a K,-rightinvariant
function on G is a function which only depends on the first variable. So we can
identify functions on G/K, and functions on G. Furthermore f((eg,ko)(g,ex)) =

f(ko - g,ko), so Kg-biinvariance on G corresponds to K-invariance on G. A K-
spherical function on the group G continuous K,-biinvariant function with satisfies

f(eky)dk = f(2)f(y), z,y € G. (11)

K

We can-as we saw above-think of f as defined on G /K, that is on G as a topolog-
ical K space. So if K acts on G with homomorphisms what we call K-spherical
functions correspond to K ,-spherical functions on G. For more information on this
point of view see [13]. However, when K acts by both homomophisms and anti-
homomorphisms we can not form the semidirect product G x; K so in this case
there is no obvious connection with the classical theory of spherical functions. The
standard Z, action serves as motivation for also studying the case where K acts
both homomorphisms and antihomomorphisms.

ProposITION 2.4. If f,91,---,9n, h1,---, hn € C(Q) is a solution to

/K flok )k = Y gs@hilw), o,y € G, (12)
then
> 0o /K (hilyk - 2) + ha((k - 2)y)ldk (13)

n

= Z [/ng'(wk'y)dkhi(z)+/ng'($k'z)dkhz’(y) , T,y,2 €G.

=1
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PROOF.
g g:(@) /K ik - 2) + hi((ky - 2)9)]dky (14)
- / / k- (ks - 2)) + ek - (ks - 2)y))]dkdks
KJK
/ / (k- y)(kky - 2)) + F(o(kky - 2)(k - y))dkdky
KJK
[ 7y 2) + b -2) k- )bk
KJK
/ / k- y)(ky - 2)) + (ks - 2)(k - ))]dkydk
/Zgz (zk - y)h dk+/ / f(z(ky - 2)(k - y))]dkdk,

= /Zgz (wk - y)h dk-l—/ Zgz (zky - 2)hi(y)dk:1, z,y,2 € G.

O

REMARK 2.5. Suppose that K acts by homomorphisms. Furthermore assume
that f,91,---,9n, h1,---,hn € C(G) is a solution to

| 1k p)dk =3 gi@hity), 2.y €G. (15)
i=1
As we will prove in Proposition 2.8 this implies that
> gi(@)hi(k-y) = gi(2)hi(y), v,y € G, k€ K. (16)

i=1 =1

So using the fact that K is compact and hence unimodular (see Theorem 15.13 and
Theorem 15.14 in [10]) we find that

gi(x hi((k- 2)y)dk = gi(x)h; (k- (zk™" - y))dk
S aie) [ /B>
/Zgz i(2k! - y)dk = Zgz /h (zk - y)dk, z,y,z € G.

i=1

(17)

Stetkeer’s necessary condition (2) gives

Z/ gi(xk - y)dkh;(z Zgz /h (yk - 2)dk, z,y,z € G. (18)

Exchanging y and z gives

Z/ gi(xk - 2)dkh;( Zgz /h (zk - y)dk, z,y,z € G. (19)
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Adding these two equations using (17) yields

Zgi(m)/K[hi(yk-z)+h,~((k-z)y)]dk
i=1 i ) o0
= ;/Kgi(wk -y)dkh;(2) + ;/Kgi(mk - 2)dkhi(y), z,y,2 € G.

This is precisely our necessary condition (13). So while our necessary condition
can be applied in the more general case where K acts by both homomorphism and
antihomomorphisms, it does not reduce to Stetkeer’s condition in the case where K
acts by homomorphisms only. So it is in some sense weaker. Also, the fact that our
necessary condition (13) is symmetric in y and z would make it likely that it is a bit
harder to use it to obtain results than using Stetkaer’s necessary condition; the use
of our necessary condition on the Sine and the Cosine addition equations seems to
confirm this. However, it is applicable in the more general situation where K acts
by both homomorphisms and antihomomorphisms so some additional complications
are to be expected.

COROLLARY 2.6. If f,91,---,9n,h1,--.,hy € C(G) is a solution to

| 1tk payar = > aieMulo). 7.y € G, (21)
then B
- aia) [ ulok-2) + ha((k - )k (22)
=1
- ¥ [ oyt + [ g amnw)] 2z e
PROOF. Since group inversion is continuous it follows that f,§, ..., dn, b1, .., hn €

C(@). Since for any k € K we have that ¢ = k- : G — G is a homomorphism or
an antihomomorphism, we have that ¢y (z 1) = ¢p(z) !, € G. So we get

/K Flak y)dk = /K F((ak - y))dk = /K F((k -y V)a ) dk

Do iy =D ai@)hi(y), my G (23)

i=1

Using (13) gives

> ota ™) /K ha((k -2 )y Y)dk + /K hiy k-2 )dk] (24)

- Zg,-(x)[/Kh,-(yk-z)dk+/Kﬁi((k-z)y)dk]

n

- Z[/

i=1 /K

Gi(ok - y)dkhi(z) + /K Gi(k - 2)dk(y)]

n

= Z[/K g’((k 'y_l)w_l)dkhi(z_l) +/Kgl((k 'z_l)x_l)dkh’i(y_l)a r,Y,2 € G.

i=1
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|

REMARK 2.7. Let f,g1,---,9n,h1,---hn € C(G). Note that we have proved
that if

/K F(k gk = 3 )iy, 2,9 € G, (25)
then ln_
/K flak )ik = Y Gi@)haty), .9 € G. (26)

The converse result is proved in the same manner. So if we have a result for the
equation

/K [k -y)dk =3 gi@hily), 2,y € G, (27)
i=1
we automatically get a corresponding result for the equation
[ 1 p)ik =3 g@hitw), 2.3 € G, (25)
K i=1

just by translating. So while it is essentially only necessary to treat one of the equa-
tions it is convenient for our later work to have the results written down explicitly
for both equations.

PROPOSITION 2.8. If f,91,---,9n,h1,---,hn € C(G) is a solution to

/K fak-ydk =3 gi(@)hily), 2,y € G, (29)

=1

then . .
Zgi(w)hz’(k y) = Zgi(w)hi(y), z,y € G. (30)

If in particular g1, - . ., gn are linearly independent then h;(k-z) = h;(z), x € G, k €
K.

PROOF. Since K is compact it is unimodular (see Theorem 15.13 and Theorem
15.14 in [10]). So we get

S a@hita-y) = [ fak-G-g)ik= [ fah-mar @)

= /Kf(wk'y)dkzzgi(m)hi(y), sy G

O
PROPOSITION 2.9. If f,91,.--,9n, h1,-.., Ay € C(Q) is a solution to
[ 1@ p2)ik =Y g@hitw), 2.3 € G, (32)
K i=1
then
> gi@hi(k-y) = gi(@)hi(y), =,y € G. (33)

i=1 =1
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If in particular g1, ..., gn are linearly independent then h;(k-xz) = h;(x), x € G,k €
K.

ProposSITION 2.10. If f,91,---,9n, h1,---, hn € C(G) is a solution to
/Kf(wk-y)dk=;gi(w ; zg, (), myeG,  (34)
then f(k-z) = f(z), v € G, m:d
/ f(ak - y)dk = / (k- y)z)dk, o,y € G, (35)

Zg,k z)h Zgz hi(y), =,y € G. (36)

In particular if hq,...,h, are linearly mdependent then gi(k - z) = g;(x), z € G.

ProOOF. First note that
/fmk e)dk = Zgz hi(z), z € G. (37)
From Proposition 2.8 we have that
= gi(e)hi(k-z) =Y _ gi(e)hi(z) = f(z), z € G, k€ K. (38)
i=1 i=1

Hence we have that

:/ f(m)dk:/ F(k-2)dk, 7 € G. (39)
K K
Using this expression for f gives us
| stak-gar [ (G pa)e (40)
K K

//fkl- (zk - y) dkldk+/K/Kf(k1-((k-y)m))dkldk

/ / ((ky - 2) (k- ) + F((nk - y) (b - 2))]dboa e

/ / (v - @) (kak - ) + F((knk - ) (kr - 2)]dkdy
K JK

/K /K (k- )k ) + F((k - )k - 2)]dkdks

/ Stk ()i + /K /K F((k - )y - )by
/Zgz dk1+/ Zgi(k-y)h,(x)dk

ngm)hi(y) + ngy)hi(w) =2 gi@hiy) =2 /K f(ak - y)dk

Hence

/Kf((ky)w)dk = /Kf(:ck-y)dk, z,y € G. (41)
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COROLLARY 2.11. If f,91,---,9n, h1s. .., hn € C(G) is a solution to
| w0k = Y aeh) = 3 awha), nyec, ()
i=1 i=1

then f(k-z) = f(z), z € G, and

/ f(ak - y)dk = / F((k- y)z)dk, 2,y € G, (43)
K K
Zgi(’“ - z)hi(y) = Zgi(w)hi(y), 2,y €G. (44)

In particular if hy,. .., hyn are linearly independent then g;(k - ) = g:(x), x € G.
PRrOOF. We note that f,d1,...,Jn, 1, .., € C(G) are a solution to
[ fakpdk = Y a@h) = X e ™) (45)
i=1 i=1

Zgi(y_l)hi(x_l) = Zgz‘(y)hz’(m), z,y € G.

i=1

Hence by the Proposition 2.10

/Kf((k-y’l)a:’l)dk:/Kf(xk-y)dk:/Kf((k-y)x)dk:/Kf(x’lk-y’l)dk.

(46)
Thus
[ tek-ndi= [ (kg =Y g@hiw), syec, @D
K K i=1
so by the previous proposition this proves the corollary. O

PROPOSITION 2.12. IfZy={1,—1} actson Gbyl-z =z, x € G and (—1)-z =
oz, x € G, where o is an continuous antihomomorphism of order 2 and

f(zy) +2f($0(y)) _ ;gi(x)hi(y) = ;gi(y)hi(m), z,y € G, (48)

then f(in) = f(ym)a r,y €G.

PROOF. We note first how it is made to fit into the general framework. Endow
Zo with the discrete topology. Then Zs is compact Hausdorff group. It is trivial
to check that Z, acts on G. So we only need to check that the map (k,z) — k-
is continuous but that is true since ¢ is continuous. From the previous proposition
we have

flyz) + 2f(a(y)ﬂ?f) = | feya)dk= | fk-yde (49)
- f(yk-x)dk:w, z,y €G,
Zo

SC? flo(y)x) = f(yozx) = f(o(yox)) = f(zoy), x,y € G. Hence f(zy) = f(yx), 2,y €
. O
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3. Technicalities

This section contains some lemmas we will need later on.

LEMMA 3.1. Let X be a nonempty set. Suppose f: X - Cand D : X xX - C
are a solution to

f(Z)D(JI,y) = —f(y)D(z',z), z,Y,2 € X7 (50)
and f Z0, then D = 0.

PRrROOF. There exists zg € X such that f(z) # 0. So

D(z,y) = —f(y)D(x,20)/ f (20) = d(2) f(y), z,y € X, (51)

where d(z) = —D(z, 20)/ f(20). Insert this expression for D in (50)
[(2)d@)f(y) = —F(y)d(@)f(2), z,y,z € X. (52)
Since f # 0 it follows that d = 0 and hence D = 0. |

LEMMA 3.2. Let X be a nonempty set. Suppose f : X - C and &,V : X x X —
C are a solution to

[(@)[®(y,2) + ¥(y,2)] = @(2,9) f(2) + ®(,2) f(y), =, ¥,z € X, (53)
and f # 0. Then there exists a function ¢ : X — C such that ®(z,y) =

f@)(y), ,y € X and ¥(z,y) = (x)f(y), 7,y € X.
If X is a topological space and ® is continuous then so is 1.

PRrROOF. There exists 29 € X such that f(zo) # 0. So

B(y,2)+¥(y,2) = B(z0,y)f(2) + B(z0,2) f(y) = W) [ (2) +9(2)f(y),

L L

f (o) (o)

where ¢(z) = ®(zo,2)/f(z0). Hence
F@[W)f(2) + () fy)] = 2(2,9)f(2) + ®(2,2)f (), z,y,2€ X. (55

Rearranging terms gives

[@(z,y) = f@)Y WS (2) = —f(W)[®(x, 2) = f(2)Y(2)], z,y,2 € X. (56)
Define D(z,y) = ®(z,y) — f(x)1(y). Then

D(z,y)f(2) = —=D(z,2)f(y) (57)
By Lemma 3.1 D = 0. So

®(z,y) = f(@)Y(y), 2,y € X, (58)
and

(z,y) =) f(y), z,y € X. (59)
That the continuity of ® implies the continuity of 4 is trivial by the definition of
0. O

LEMMA 3.3. Let X and Y be nonempty topological spaces. Assume that Y is
compact, F' : X xY — C is continuous, and p is a finite measure on a o-algebra
Y in Y which contains all Borel sets in Y, then ® : X — C given by

B(r) = /Y F(z,y)du(y), = € X, (60)

18 continuous.
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ProoF. We will show that & is continuous at the arbitrary point o € X, so
let € be given. For every y € Y there exist open neighbourhoods V; of z¢ and
W, of y such that (z,z) € V, x W, implies |F(zo,y) — F(z,2)| < €/2. Since
{W, 1y € Y} is an open cover of Y and since Y is compact there exist a finite
subcover {W,, : ¢ = 1,...,n} of Y. Put V. = nN,V,,. For any z € V and
any y € Y there exists ig such that y € Wy, , z € V,, , |F(z,y) — F(zo,y)| <
|F(z,y) — F (2o, Yiy)| + | F (20, Yi,) — F (z0,y)| < €. Thus for any x € V' we have that

| /Y F(z,y)du(y) - /Y F(z0,9)du(y)| < /Y IF (2, 5)~F(0,1)|du(y) < ea(Y). (61)
O

COROLLARY 34. If f € C(G) then ® : G x G — C given by

B(z,y) = /K f(ak-y)dk, z,y € G, (62)

1S continuous.

PrOOF. F: (G x G) x K — C given by F((z,y),k) = f(zk - y) is continuous,
so the corollary follows from the previous lemma. |

4. The Sine Addition Equation

In this section we will study the equation

/K f(ak-y)dk = f(2)g(y) + 9(@) @), 7.y € G. (63)

We will show how reduce the problem of solving this equation to the problem of
solving simpler equations. Note that if K = {e} is the trivial group, then (63)
reduces to

flzy) = f(@)g9(y) + 9(2)f(v), 2,y € G. (64)

If G = (R,+) then f = sin and g = cos is a solution. For a thorough discussion of
trigonometric functional equations on R see Chapter 13 in [1].

LEmMA 4.1. If f,g € C(G) are a solution to
| 1@k -9k = [@aw) + 9@ fw). 2.y €, (65)
and f Z 0, then there exists a function ¥ € C(G) such that

/K ok - y)dk = g(@)g(y) + @), .y € G, (66)

and

/Ky((k -y)z)dk = g(z)g(y) + ¥(z)f(y), =,y €G. (67)
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PROOF. Apply the necessary condition (13) to (65). This gives
@) /K o(yk- 2)dk + /K o((k - 2)y)dk] + g(x)] /K Flyk - 2)dk + /K F(k - 2)y)dk]
- / F(zk - y)dkg() + / ook - y)dkf(2) + / F(ak - 2)dkg(y)

K K K

4 / g(zk - 2)dkf (), 7y, € G.
K

Using the fact that

/ F((k - y)z)dk = / f(ek-y)dk = f(@)g(y) + 9(@) [ (), 2y G,  (69)
K K

which follows from Proposition 2.10, we get that
f(w)[/K 9(yk - z)dk + /Kg((k-Z)y)dk] +29(2)[f(y)g(2) + 9(y) f(2)] (70)
= U@M@)+M@ﬂ@h@%ﬂ&g@hyﬂwﬁ0+U@M@%+ﬂ@ﬂdw@)

T / g(ak - 2)dkf(y), 9,7 € G.
K

Cancelling and rearranging terms we get
(@) / o(yk - 2)dk — g(y)g(2) + / o((k - 2)y)dk — 9(4)g(2)] (71)
K K
= / ok - y)dk — g(@)gW)]f(2) + | / ok - 2)dk — g(x)g(2)]f (W), 2,9,% € G.
K K
Define &, ¥ : G x G —» C by

B(z,y) = /K o(ak - y)dk — g(2)g(y), 7,y € G, (712)

U(z,y) = /K o((k - y)2)dk — g(2)9(y), 2,y € G. (73)

It follows from Corollary 3.4 that ® is continuous. Using the definition of ® and ¥
in (71) we get

f(@)[2(y,2) + U(y,2)] = (z,) f(2) + (z,2)f(y), z,y €G. (74)
By Lemma 3.2 there exists ¢ € C(G) such that ®(z,y) = f(z)¥(y), z,y € G and
(z,y) = ¢(2)f(y), z,y €G. O

ProposITION 4.2. If f,g € C(G) is a solution to

/K f(ak-y)dk = f(@)g(y) + 9(2)f (), 7,y € G, (75)

and f # 0, then there exists A € C such that

/K ook - y)dk = g(2)g(y) + N2 £(2){(v), 2.y € G. (76)
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PROOF. By the Lemma 4.1 there exists 1) € C(G) such that

/K o(zk - y)dk = g(z)g(y) + F)(y), 7,y € G, (77)

and
/K o((k - y)z)dk = g(z)9(y) + V(@) f ), 7,y € G. (78)

If ¢ = 0 then it follows from (77) that A = 0 will do. So assume that 1 Z 0. Apply
the necessary condition (13) to (77)

(@) / (k- 2) + (k- 2)w)]dk + £(z) / Bk - =) + o ((k - 2)y)ldk

- / ook - y)dhg(z / F(zk - y)dki(2) + / g(ek - 2)dkg(y) (79)
K K

+/ flzk - 2)dky(y), x,y,2 € G.
K

Using (75), (77), and (78) we get
9(@)[29(y)9(2) + f(¥)¥(2) + P(y) f(2)] + /[¢ yk - z) + ¢((k - 2)y)]dk
(

= [9(@)g9() + f(@)PW)lg(2) + [f(2)g(y) + 9(2) f (y)]e(2) (80)
+o(2)g(2) + f(2)d(2)]9(y) + [f(2)9(2) + 9(2) f(2)]¥(y), @,y,2 € G.

Cancelling terms we get

@ vk b+ [ ok D)k = 26 @a0)v() + 2 @vaz). (ED
Since f # 0 this implies

[ vtk )ikt [ 0(-n)o)dk = 20(@000) + 20@a), 2y € G (82)

Using the necessary condition (22) on (78) we get

/ lo(wk - 2) + 9((k - 2)y)]dk + () / k- 2) + f(k- 2))dk (83)

= /K z)dkg(z /zp ((k-y)z / 9((k - z)z)dkg(y)

+/ (k- 2)x)dkf(y), z,y,z € G.

K

Using (77), (78), and the fact that
[ # g2k = [ gk gk = @9 + 90w, 2y G (6
K K

which follows from Proposition 2.10, we get

9(2)[29(y)9(2) + f(¥)¥(2) + YY) f(2)] + 2¢(2)[f (¥)9(2) + 9(y) F (2)] (85)
= [9@)g(y) +¢(2)f(y /¢ ((k -y)z)dk f(2) + [9()9(2) + ¢ (2) f(2)l9(y)

+/K¢((k-z)x)dkf(y), z,y,2 € G.
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Rearranging and cancelling terms we get

f(Z)[/K (k- y)x)dk — ¢ (2)g(y) — 9(2)¢(y)] (86)

= —f(y)[/K Y((k - 2)z)dk — g(z)Y(2) — P(2)9(2)], =,y,2 € G.
This is of the form
f(Z)D(CL’,y) = —f(y)D(.’IT,Z), T,Y,%2 € Ga (87)
with
Die.y) = [ 0((k-9)o)dk — vie)ol) —9)b(w). v €. (89

Hence D = 0, see Lemma 3.1. So

[ 0 -n))dk = b@at) + s(@)w), .y € G (39)
Subtract (89) from (82). This gives
| wlak-p)dk = @)g) + 9@)vw). 2.9 €G. (90)
It follows from Lemma 4.1 that there exists a function ¢ € C'(G) such that
| atak )k = g()otw) + 6(@)ot0), 2.y € G- (1)
Compare this with (77). It follows that
f@)(y) = ¢(2)o(y), =,y €G. (92)

If $ =0 then f(z)¥(y) =0, z,y € G. Since f Z 0 we get ¢ = 0. This is excluded
by assumption so ¢ Z 0. Hence there exists yo € G such that ¢(yo) # 050 ¢ = A2 f
where A2 = 9 (yo)/¢(yo). So from (77) we get that

/K o(zk - y)dk = g(z)g(y) + N2 £(2) [ (W), 7,y € G. (93)
O

The following theorem is an extension of Theorem V.2 in [15] in that G is not
assumed to be abelian and K is not supposed to act by homomorphisms only.

THEOREM 4.3. The solutions f,g € C(G) of the functional equation

/K f(zk-y)dk = f(x)g(y) +g9(x)f(y), =,y €G, (94)

can be listed as follows
(1) f =0 and g arbitrary in C(QG).
(2) There exists a K -spherical function ¢ € C(G) and a constant c € C\ {0}
such that f = c¢ and g = ¢/2.
(3) There exists two K-spherical functions ¢1,¢2 € C(G), ¢1 # ¢2, and a
constant ¢ € C\ {0} such that

_ it . P1— ¢
9= =5 f=e=— (95)
(4) g is a K-spherical function and f is a solution of the original functional
equation (94).



52 4. THE SINE AND COSINE ADDITION EQUATIONS

PRrOOF. It is easy to check that each ot the pairs described in Theorem 4.3 is
a solution to equation (94). So assume that the pair f,g € C(G) is a solution to
(94). We will show that it fits into one of the four cases. If f = 0 then obviously g
can be chosen arbitrarily in C(G). This is case 1. So we will assume that f # 0.
Note that if g = 0 then

flz) = / f(zk - e)dk = f(z)g(e) + g(z) f(e) =0, (96)
K
which we have excluded, so g # 0. If f and g are linearly dependent, then there

exists ¢ € C\{0} such that g = cf. It then follows from (94) that 2¢f is K-spherical.
This is case 2. Now assume that f and g are linearly independent. From

flz) = /Kf(wk -e)dk = f(z)g(e) +9(z)f(e), z € G, (97)

we deduce that f(e) = 0 and g(e) = 1. It follows from Proposition 4.2 that there
exists A € C such that

/K o(zk - y)dk = g(2)g(y) + N £(2)f (), 7,y € G. (98)

If A = 0 then g is a K-spherical function. This is case 4. So assume that A # 0.
We now proceed as on page 18 in [12]. Define ® : G — M>(C) by

_ [ 9@ Nf(2)
d(z) = { @) o) }, z€QG. (99)
It is easy to check that
/K B(zk - y)dk = B(2)B(y), 7.y € G (100)
Put
A:{’l\ _1’\} (101)
Define ¥ : G — M>(C) by
- | g+ Xf 0
lII_A1<I>A_{ 0 g_/\f}. (102)

Since
/ U (zk-y)dk = A~ / B(wk-y)dkA = A1 3 (z) AA~1B(y) A = U(x)(y), (103)
K K

and (g + Af)(e) = (g — Af)(e) = 1 we have that ¢, = g+ A\f € C(G) and ¢» =
g — Af € C(@) are K-spherical functions. This is case 3 with ¢ = 1/\. d

REMARK 4.4. Notice that in the proof of this theorem we could use the same
methods as Stetkeer used in section V of [12] and in section V of [15] with the
exception of the proof of Proposition 4.2. It was fairly simple to prove the similar
result Lemma V.1 in [12] in the case where K acted by homomorphisms. But
proving Proposition 4.2 when K does not act exclusively by homomorphisms was
the difficult part of proving Theorem 4.3.
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COROLLARY 4.5. Assume that G is an abelian group, or G is an metabelian
group generated by the squares 22, * € G, or that G is a semidirect product of
two 2-divisible abelian groups, or G is a connected nilpotent Lie group. Then the
solutions f,g € C(G) of the functional equation

flay) + flay™) = 2f(2)9(y) + 29(2)f(y), =,y € G, (104)
can be listed as follows
(1) f =0 and g € C(G) arbitrary.
(2) There exists a continuous homomorphism m : G — C and a constant
c € C\ {0} such that f = ¢(m +m)/2 and g = (m + m)/4.
(3) There exist two continuous homomorphisms my,ms : G — C* such that
&1 = (m1 +111)/2 # ¢p2 = (m2 + mi2)/2, and a constant c € C\ {0} such

that
1+ P 91— ¢
9="—5 > f=c 5

(4) There exists a continuous homomorphism m : G — C* and f is a solution
to the equation

flay) + flay™") = f(@)(m +m)(y) + (m + m)(2) f(y), z,y € G. (106)

PROOF. First of all we need to determine the Zs-spherical functions. So assume
that ¢ : G — C is a solution of

(105)

Then there exists a homomorphism m : G — C* such that
p=" ; mn (108)

If G is abelian this follows from Theorem 2 in [11]. If G is a metabelian group

generated by the squares 22, z € G, then it follows from Proposition V.5 in [16].

If G is a semidirect product of two abelian 2-divisible groups then it follows from

Theorem 3.13 in [8]. If G is a connected nilpotent Lie group then it follows from

Corollary 2.8 in [7]. It follows from Theorem 1 in [11] that ¢ is continuous if and

only if m is. So the Zs-spherical functions on G are all functions ¢ of the form
m+ 1

p="2"7,

where ¢ € C(G). The fact that any function of this form is a Zy-spherical function
is trivial to check, and this is true for any group G. The corollary now follows from
Theorem 4.3. |

(109)

REMARK 4.6. If G is abelian then all solutions to the equation in case 4 are
given by Theorem 1 in [3] and the corollary gives the solution formulas as found
in Theorem 2 in [3] as noted by Stetkaer in [12] p. 18. So the corollary only gives
something new when G is not abelian. Suppose we have case 4 in the corollary and
that m = 7h. Then F = f/m is a solution to the quadratic equation

F(zy) + F(zy™') = 2F(z) + 2F(y), =,y € G. (110)

So we would like to solve the quadratic equation on any group. In [5] Corovei
claims to have proved that all solutions to the quadratic equation have the form
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F(z) = B(z,z) where B : GxG — Cis a symmetric biadditive map. Unfortunately
the proof is faulty. It is based on the claim that a solution to the equation
a(zy) + a(yz) = 2a(z) + 2a(y), z,y € G, (111)
necessarily is a homomorphism. This is not true. That the claim is false can be
seen in the following way. Let h : G — C be a solution of Jensen’s equation
h(zy) + h(zy~') = 2h(z), ,y € G, (112)
with h(e) = 0. Then h(z~!) = —h(x) and we get
2h(z) + 2h(y) = h(zy) + h(zy™") + h(yz) + h(yz™") = h(zy) + h(yz), =,y € G.
(113)
So if the claim was true then any solution h to Jensen’s equation with h(e) =
0 would necessarily be a homomorphism. This is however not the case. For a

counterexample see Proposition 4.3 of [7]. So finding all solutions of the quadratic
equation is still an open problem.

5. The Cosine Addition Equation

In this section we will study the equation

/K f(ak-y)dk = £(@)f(y) + 9()g(y), 7.9 € G, (114)

and show how to reduce the problem of solving this equation to the problem of
solving simpler equations. Note that if K = {e} is the trivial group then (114)
reduces to

fley) = f(2)f(y) + 9(x)9(y), 2,y € G. (115)
If G = (R,+) then f =cos and g = isin is a solution. Again see Chapter 13 in [1]
for further information on trigonometric functional equations on R.
LeEmMMA 5.1. If f,g € C(QG) is a solution to

| 1@k -9k = @) ) + (@)atv). 2.y € G, (116)
then there egists 1 € C(G) such that

| stk )ik = @) + o)) .y € G, (117)
and

/Kg((k -y)z)dk = g(z)f(y) + ¢(@)9(y), z,y € G. (118)

PROOF. If g = 0 then the conclusion is trivially true. So we may assume that
g Z 0. If we apply the necessary condition (13) to (116) we get

f(w)/K[f(yk-z)+f((k-z)y)]dk+g(w)[/K[g(yk-z)+g((k-z)y)]dk
- /K f(ak - y)dkf(z) + /K gk - y)dkg(2) + /K f(ak - 2)dkf(y) (119)

+/ g(zk - 2)dkg(y), z,y,z € G.
K
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Using the fact that

/ F((k - y)z)dk = / f(ak - y)dk = f(@)f() + 9(@)g(w), 9 €G,  (120)
K K

which follows from Proposition 2.10, we get

2f(@)[f () f(2) + 9(y)g(2)] + g(=) /K[g(yk -2) + g((k - 2)y)]dk (121)
= [f(@)f(y) +9(x)gW)]f (=) + /K g(zk - y)dkg(z) + [f () f(2) + 9(x)g(2)] f (y)

+/ g(xk - 2)dkg(y), z,y,2z € G.
K

Cancelling and rearranging terms we get

o(x)] /K oyk - 2)dk — F(y)g(2) + /K o((k - 2)y)dk — g(4) £(2)] (122)
= /K gk - y)dk — f(@)g(w)]g(z) + | /K gk - 2)dk — £(2)g(2)]g(v).

This is of the form

9@)[B(y, ) + Ty, 2)] = 9(2)8(z,9) + 9(0)B(z,2), 7,y,2 €G,  (123)
with

¥(.y) = [ glok-9)dk— f@)glo). 2.y €, (124)
and

W) = [ gk vk~ 9(e)f(), 2.y € C. (125)

It follows from Corollary 3.4 that ® is continuous. Hence by Lemma 3.2 there exists
¥ € C(G) such that ®(z,y) = g(z)¥(y), z,y € G, and ¥(z,y) = P(z)g(y), z,y €
G. d

PROPOSITION 5.2. If f,g € C(G) are a solution to

/K f(ak - y)dk = f(@)f() + g(@)g(y), .y € G, (126)

then for some X € C we have
| stk )k = f@)(0) + 9@ /) + Aa(@a(). z.y G (120

PROOF. If g = 0 then the conclusion is trivially true. So we may assume that
g Z 0. By Lemma 5.1 there exists ¢ € C(G) such that

/Kg(wk -y)dk = f(2)g(y) + g(x)d(y), =,y € G, (128)

and

/K o((k - y)2)dk = g(@)f(4) + (@)g(w), 7,y € G. (129)
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Apply the necessary condition (13) to (128)
f(fﬂ)/ [g(yk'Z)+g((k'-Z)y)]dk+g(w)/ [b(yk - 2) + (k- 2)y)]dk (130)
K K

= /Kf(wk-y)dkg(z)Jr/K (zk - y)dki(z /f:ck 2)dkg(y)

+/ g(zk - 2)dky(y), ©,y,z € G.
K

Using (126), (128), and (129) we get
F@)fW)9(2) +9W) f(2) + 9(W)¥(2) + ¥(y)g(2)] + g w)/K[i/J(yk'Z)-Hb((k-Z)y)]dk

( (
=[f(@)f(y) + 9(x)9(¥)]g(2) + [f(2)g(y) + g(x)i(y)]
+ [f(2)f(2) + 9(2)9(2)]g(y) + [f(2)9(2) + 9(x)¥(2)]¥(y), @,y,2 €G.
Cancelling terms we get
9 x)[/K w(yk-z)dk+/K Y((k-2)y)dk] = 29(x)g(y)9(2)+29(x)(y)¢(2), =,y,2 €G.
(132)

(131)

Since g #Z 0 this implies that
/K (k- y)dk + /K B((k - y))dk = 29(2)g(y) + 2p(@)b(y), Ty €G.  (133)
Apply the necessary condition (22) to (129)
(@) [ k-2 + (k- )ldb +(0) / (k- 2) + g((k - 2)y))dk (134)
K
- / o((k - y)z)dkf (= / b((k - y)x)dkg(z) + / o((k - 2)2)dkf ()
K K
+ / B((k - 2))dkg(y), 7,7 € G.
K
Using (128), (129), and the fact that
/ F((k - y)z)dk = / f(ak - y)dk = f(2)f () + 9(2)g(w), 7.y €G,  (135)
K K

which follows from Proposition 2.10, we get
29(z)[f () f(2) + 9(y)g(2)] + Y (@)[f (¥)9(2) + 9() f(2) + 9(¥)(2) + ¥ (y)g(2)] (136)
= [9(2)f(y) +¥(z)9(y)]f(2) + /K (k- y)z)dkg(z) + [9(2) f(2) + ¥ (x)g9(2)]f(y)

+ [ 0l 2)o)dkg(u), 2,02 € G. (137)
K
Cancelling and rearranging terms we get
z) [/K P((k - y)z)dk — p(x)p(y) — 9(2)9(y)] (138)

=- y)[/K Y((k - 2)z)dk — () (2) — g(2)g9(2)], z,y,2 € G.  (139)
This is of the form
9(2)D(z,y) = —9(y)D(z,2), ©,y,2 € G, (140)
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with
D(z,y) = /Klb((k -y)z)dk — (z)Y(y) — 9(z)g9(y), =,y € G (141)
Hence by Lemma 3.1 D = 0. So

/K B((k - y)e)dk = p(@)p(y) + g(@)g(y), 7y € G. (142)
Subtract (142) from (133) to get
/K ok - y)dk = b)) + 9(@)g(y), 2.y € G. (143)

By Lemma 5.1 there exists a function ¢ € C(G) such that

F@ats) + @0 = [ alak- i)k = 6(@)g(0) + 9(@é(0). 7.y €C. (144
where we have used (128). Hence

9W)[(z) = f(2)] = 9(@)[¢(y) — d(W)], =,y € G- (145)

Since g # 0 there exists yo € G such that g(yo) # 0. So ¢¥(z) — f(z) = Ag(=)
where A = (¥(yo) — ¢(v0))/9(yo). Insert ¢ = f+ Ag into (128) and the proposition
follows. =

The following theorem is an extension of Theorem V.3 in [15] in that G is not
supposed to be abelian and K is not supposed to by acting by homomorphisms
only.

THEOREM 5.3. The solutions f,g € C(G) of the functional equation

[ 1k )k = @) 10) + 9@)9w). 2. € G, (146)
K
can be listed as follows:
(1) f=0,g=0.
(2) There ezists a K -spherical function ¢ € C(G) and a constant A € C\ {+i}
such that
1
=_- =" __o. 14
f 1+/\2¢andg 1+)\2(ZS (147)

(3) There exist two K-spherical functions ¢1,¢2 € C(G), ¢1 # ¢2, and a
constant A € C\ {0,i,—i} such that

PERES STy e

TN I=NF At

(4) There exists a K-spherical function ¢ € C(G) such that g € C(G) is a
solution of

(148)

/K g(ak - y)dk = g(z)d(y) + 6(z)g(y) (149)

and f =¢+ig or f = ¢ —ig.

PRrROOF. It is easy to see that each of the pairs f,g described in Theorem 5.3
is a solution of (146). So let us assume that the pair f, g is a solution to (146). We
must show that it falls into one of the four cases listed above.
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If f = 0 then it obviously follows from (146) that g = 0. This is case 1 above.
So we may assume that f # 0. If f and g are linearly dependent then there is a
constant A € C such that g = Af. This reduces the identity (146) to

/K ek -y)dk = (1+)2)f(@)f(y), 2,y € G. (150)

Here 1+ A2 # 0 because 1+ A? = 0 in (150) would imply f = 0 and this is excluded
by assumption. We see from (150) that (1 + A\2)f is a K-spherical function, this is
case 2 above. So we may assume that f and g are linearly independent. Since we
assume that f and g are linearly independent it follows from

flz) = /Kf(wk -e)dk = f(z)f(e) + g(z)g(e), z € G, (151)

that f(e) = 1 and g(e) = 0. We now proceed along the same lines as on page 18 in
[12]. It follows from 5.2 that there exists k € C such that

/K ok - y)dk = f(£)g(y) + 9(2) f(y) + 269(2)g(y), 7,y € G. (152)
Define ® : G — M>(C) by
1) ()
3(2) _{ g(j) f(z)z—;fig(z) } 2€QG. (153)

Then a straightforward calculation shows that & fulfils
/ ®(wk - y)dk = ®(z)(y), 5,y € G. (154)
K

If k # +i then we put

1 1
A_{ k+V1+K2 k—1+ K2 }’ (155)
where v/1 + k2 is a square root of 1 4+ k2. Define ¥ : G — C by
_ V14 k2)g 0
v-atga=] fHET 156
{ 0 f+(—vV1+k2)g (156)

Put A = =k — V1 4+ k2 and note that —(k + V1+ £2)(k —V1+k2) =1s0 A #0
and A ! = k —v/1+ k2. From A+ A~! = —2y/1 + &2 it follows that k # +i implies
that \ # +i. Since

/ U(zk-y)dk = A1 / ®(zk-y)dkA = A ®(2) AA B (y) A = T(z)T(y) (157)
K K

and (f — Ag)(e) = (f + A™'g)(e) = 1 we have that ¢» = f — Ag € C(G) and
¢1 = f + A\ 'g are K-spherical functions. We find that

Apr+A"ds 1 —

F==7 9 o

(158)

This is case 3.
Suppose k = xi. Then we put

A:{Ili ’1‘} (159)
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and as above we define ¥ : G — M>(C) by

_ A= _J f+rg 2
‘IJ_A1<I>A_{ ; fmg}. (160)
Again
/ U(ak - y)dk = U(z)T(y), 2,y € G, (161)
K

and since (f + kg)(e) =1, ¢ = f + kg € C(G) is K-spherical and

/Kg(wk-y)dk =g(@)f(y)+ f(x)g(y) +2kg(x)g(y) = 9(x)d(y) +d(x)9(y), =,y € G.

(162)
This is case 4. O

REMARK 5.4. A similar remark applies to this theorem as to Theorem 4.3.
Also in this case we could use the same procedure as Stetkaer with the exception of
the proof of Proposition 5.2. Again the proof of this proposition turned out to be
the difficult part of proving Theorem 5.3
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