UNIVERSITY OF A ARHUS

 DEPARTMENT OF MATHEMATICSISSN: 1397-4076

On THE KK-THEORY AND THE E-THEORY OF
 Amalgamated Free Products of C^{*}-Algebras

By Klaus Thomsen

ON THE KK-THEORY AND THE E-THEORY OF AMALGAMATED FREE PRODUCTS OF C^{*}-ALGEBRAS

KLAUS THOMSEN

Abstract

We establish six terms exact sequences relating the KK-theory groups and the E-theory groups of an amalgamated free product C^{*}-algebra, $A_{1} *_{B} A_{2}$, to the respective groups of the three constituents, A_{1}, A_{2} and B. In the KKtheory case we assume the existence of conditional expectations from A_{k} onto B or that A_{1}, A_{2} and B are all nuclear, and in the E-theory case that there exist sequences $R_{n}^{k}: A_{k} \rightarrow B, n \in \mathbb{N}$, of completely positive contractions such that $\lim _{n \rightarrow \infty} R_{n}^{k}(b)=b$ for all $b \in B, k=1,2$. This condition is fullfilled e.g. when B is nuclear or sits as a hereditary C^{*}-subalgebra of the A_{k} 's.

1. Introduction

Cuntz and Germain have conjectured the existence of two short exact sequences which should relate the KK-groups of an amalgamated free product $A_{1} *_{B} A_{2}$ to the KK-groups of A_{1}, A_{2} and B. See Remark 2 of [C1], Conjecture 0.1 of [G2] and Conjecture 3.11 of [G3] where the conjecture is formulated in varying generality. In [C1] Cuntz proved the conjecture when there are retractions from the A_{k} 's onto B, in [G1] Germain proved it when $B=\mathbb{C}$ sits unitally inside the A_{k} 's which were assumed to be 'K-pointed', cf. Definition 5.1 of [G1], a condition which he subsequently, in [G2], weakened to K-nuclearity (in the sense of Skandalis, [S]). Finally, in [G3] he announced a proof of the conjecture under certain technical assumptions ('relative K-nuclearity') which among other things require the existence of conditional expectations $P_{k}: A_{k} \rightarrow B$. In another direction the conjecture was established in increasing generality for examples coming from groups or actions by groups in [C2], [L], [N]. In this direction the ultimate result seems to be that of Pimsner, [Pi], who obtained results which, among other, verify the conjecture when G_{1} and G_{2} are countable discrete groups containing a common subgroup H, $A_{k}=A \ltimes G_{k}, k=1,2$, and $B=A \ltimes H$ for some actions of G_{1} and G_{2} on A which agree on H. However, in the general case the conjecture remained open even when $B=\mathbb{C}$.

In this paper we establish the conjectured six terms exact sequences when there are conditional expectations $A_{k} \rightarrow B, k=1,2$, or A_{1}, A_{2} and B are all nuclear. In principle the method we use for this is the same as that of Germain. In [G2] and [G3] Germain wrote down a $*$-homomorphism $\varphi: C \rightarrow S\left(A_{1} *_{B} A_{2}\right)$ between the mapping cone C for the inclusion $B \rightarrow A_{1} \oplus A_{2}$ and the suspension $S\left(A_{1} *_{B} A_{2}\right)$ of $A_{1} *_{B} A_{2}$, and made the observation that the conjecture is equivalent to the KK-invertibility of φ. He was then able to invert φ in KK-theory when $B=\mathbb{C}$ under the assumption on A_{1} and A_{2} mentioned above. The method of proof that we shall use is in principle the same, but the goal - to invert φ in KK-theory - is achieved by completely different means. In fact, we shall obtain the proof by working with extension groups in much

[^0]the same way as in the work of L. Brown, [Br], who obtained partial results which inspired Cuntz in the formulation of the conjecture, cf. Remark 2 of [C1]. By working with extensions we shall establish enough of the desired exact sequences to deduce that Germains homomorphism is invertible in KK-theory. To do this we use two important ingredients which were not available when Brown did his work, namely Boca's result on free products of completely positive unital maps, [Bo], and the automatic existence of absorbing trivial extensions together with the related duality results for KK-theory obtained in full generality by the author in [Th1].

A major part of the paper is an attack on the analogous conjecture in the E-theory of Connes and Higson, [CH], and we obtain the desired six terms exact sequences under even weaker conditions in this setting, as described in the abstract. The approach we take for this is new: Provided B is properly embedded in both A_{k} 's, meaning that an approximate unit in B is also an approximate unit in A_{k}, there is an exact sequence

$$
\begin{equation*}
0 \longrightarrow S\left(A_{1} *_{B} A_{2}\right) \longrightarrow \operatorname{cone}\left(A_{1}\right) *_{S B} \operatorname{cone}\left(A_{2}\right) \longrightarrow A_{1} * A_{2} \longrightarrow 0, \tag{1.1}
\end{equation*}
$$

where $A_{1} * A_{2}$ is the unrestricted free product. As shown by Cuntz, [C3], $A_{1} * A_{2}$ is KK-equivalent to $A_{1} \oplus A_{2}$. Based on methods and results from [DE] and [Th2] we show here that cone $\left(A_{1}\right) *_{S B}$ cone $\left(A_{2}\right)$ is equivalent to B in E-theory provided there are sequences of completely positive contractions $R_{k}^{n}: A_{k} \rightarrow B$ such that $\lim _{n \rightarrow \infty} R_{k}^{n}(b)=b$ for all $b \in B, k=1,2$. The desired exact sequences then come up as the E-theory exact sequences arising from (1.1). Note that the extension (1.1) is actually semi-split (this follows from Boca's result, [Bo]), so it is not inconceivable that this extension can be used to obtain the result in KK-theory rather than Etheory. However, the methods that we use here to show that cone $\left(A_{1}\right) *_{S B} \operatorname{cone}\left(A_{2}\right)$ is equivalent to B works only in E-theory. In a final section we point out a serious limitation of our methods which explains why they stop short off a proof in the general case.

2. On AbSORbING EXTENSIONS AND ASYMPTOTIC HOMOMORPHISMS

In this section we gather a series of lemmas. Only the first two are needed for our results in KK-theory. Let A and D be separable C^{*}-algebras, D stable. Let $M(D)$ denote the multiplier algebra of D. Since D is stable there are isometries $V_{1}, V_{2} \in$ $M(D)$ such that $V_{1} V_{1}^{*}+V_{2} V_{2}^{*}=1$ and $V_{1}^{*} V_{2}=0$ and we can define the orthogonal sum $a \oplus b$ of two elements $a, b \in M(D)$ to be $V_{1} a V_{1}^{*}+V_{2} b V_{2}^{*}$. Similarly, we can add maps, $\varphi, \psi: A \rightarrow M(D)$, orthogonally; viz. $(\varphi \oplus \psi)(a)=V_{1} \varphi(a) V_{1}^{*}+V_{2} \psi(a) V_{2}^{*}$. We call a $*$-homomorphism $\varphi: A \rightarrow M(D)$ absorbing when the following holds:

When $\pi: A \rightarrow M(D)$ is a $*$-homomorphism, there is a sequence of unitaries $\left\{U_{n}\right\} \subseteq M(D)$ such that $\lim _{n \rightarrow \infty} U_{n}(\varphi \oplus \pi)(a) U_{n}^{*}-\varphi(a)=0$ for all $a \in A$.

See Theorem 2.5 of [Th1] for alternative characterizations of absorbing $*$-homomorphisms which we shall use quite freely. By Theorem 2.7 of [Th1] there always exists an absorbing *-homomorphism.

Lemma 2.1. Let A, D be separable C^{*}-algebras, D stable and $B \subseteq A$ a C^{*}-subalgebra of A. Assume that that there is a sequence of completely positive contractions R_{n} : $A \rightarrow B$ such that $\lim _{n} R_{n}(b)=b, b \in B$. If $\pi: A \rightarrow M(D)$ is an absorbing *-homomorphism, then $\left.\pi\right|_{B}: B \rightarrow M(D)$ is an absorbing *-homomorphism.

Proof. By Theorem 2.5 of [Th1] we must show that the unitization $\left(\left.\pi\right|_{B}\right)^{+}: B^{+} \rightarrow$ $M(D)$ of $\left.\pi\right|_{B}$ is unitally absorbing. We check that condition 1) of Theorem 2.1 of [Th1] is satisfied. Consider therefore a completely positive contraction $\varphi: B^{+} \rightarrow D$. Then $\varphi \circ R_{k}^{+}: A^{+} \rightarrow D$ is also a completely positive contraction and since $\pi^{+}: A^{+} \rightarrow$ $M(D)$ is unitally absorbing, we know that there is a sequence $\left\{W_{n}^{k}\right\} \subseteq M(D)$ such that $\lim _{n \rightarrow \infty}\left\|\varphi \circ R_{k}^{+}(a)-W_{n}^{k^{*}} \pi^{+}(a) W_{n}^{k}\right\|=0$ for all $a \in A^{+}$and $\lim _{n \rightarrow \infty}\left\|W_{n}^{k^{*}} d\right\|=0$ for all $d \in D$. Since $\lim _{k \rightarrow \infty} R_{k}^{+}(b)=b$ for all $b \in B^{+} \subseteq A^{+}$, it follows that also $\left(\left.\pi\right|_{B}\right)^{+}=\left.\pi^{+}\right|_{B^{+}}$satisfies condition 1).

Lemma 2.2. Let A, D be separable C^{*}-algebras, D stable and $B \subseteq A$ a C^{*}-subalgebra of A. Assume that B is nuclear. If $\pi: A \rightarrow M(D)$ is an absorbing $*$-homomorphism, then $\left.\pi\right|_{B}: B \rightarrow M(D)$ is an absorbing $*$-homomorphism.

Proof. Since B is nuclear there are sequences $S_{n}: B \rightarrow F_{n}, T_{n}: F_{n} \rightarrow B, n \in \mathbb{N}$, of completely positive contractions, where the F_{n} 's are finite dimensional C^{*}-algebras, such that $\lim _{n \rightarrow \infty} T_{n} \circ S_{n}(b)=b$ for all $b \in B$. By Arvesons extension theorem, [A1], there is for each n a completely positive contraction, $V_{n}: A \rightarrow F_{n}$, extending S_{n}. Set $R_{n}=T_{n} \circ V_{n}$ and apply Lemma 2.1.

Throughout the rest of the paper A_{1}, A_{2}, B, D are separable C^{*}-algebras with D stable, and $i_{k}: B \rightarrow A_{k}, k=1,2$, are embeddings.
Lemma 2.3. Assume that there are sequences $R_{n}^{k}: A_{k} \rightarrow B, n=1,2,3, \cdots$, of completely positive contractions such that $\lim _{n \rightarrow \infty} R_{n}^{k}\left(i_{k}(b)\right)=b$ for all $b \in B, k=$ 1,2 . Let $\pi_{k}: A_{k} \rightarrow M(D), k=1,2$, be saturated and absorbing $*$-homomorphisms. It follows that there is a normcontinuous path $\left\{u_{t}\right\}_{t \in[1, \infty)}$ of unitaries in $M(D)$ such that $u_{t} \pi_{1} \circ i_{1}(b) u_{t}^{*}-\pi_{2} \circ i_{2}(b) \in D$ for all $t \in[1, \infty), b \in B$, and $\lim _{t \rightarrow \infty} u_{t} \pi_{1} \circ$ $i_{1}(b) u_{t}^{*}-\pi_{2} \circ i_{2}(b)=0$ for all $b \in B$.

Proof. Recall from [Th2] that π_{k} being saturated means that the infinite direct sum $0 \oplus \pi_{k} \oplus \pi_{k} \oplus \pi_{k} \oplus \cdots$ is unitarily equivalent to π_{k}. It follows from Lemma 2.1 that $\pi_{k} \circ i_{k}: B \rightarrow M(D), k=1,2$, are both absorbing (and saturated). From the uniqueness of absorbing $*$-homomorphisms it follows that $\pi_{1} \circ i_{1} \oplus\left(\pi_{2} \circ i_{2}\right)_{\infty} \sim$ $\pi_{1} \circ i_{1}$ and $\left(\pi_{1} \circ i_{1}\right)_{\infty} \oplus \pi_{2} \circ i_{2} \sim \pi_{2} \circ i_{2}$, in the notation of [DE]. It follows therefore from Lemma 2.4 of [DE] that there is a normcontinuous path $\left\{w_{t}\right\}_{t \in[1, \infty)}$ of unitaries in $M(D)$ such that $w_{t}\left(\pi_{1} \circ i_{1}\right)_{\infty}(b) w_{t}^{*}-\left(\pi_{2} \circ i_{2}\right)_{\infty}(b) \in D$ for all t, b, and $\lim _{t \rightarrow \infty} w_{t}\left(\pi_{1} \circ i_{1}\right)_{\infty}(b) w_{t}^{*}-\left(\pi_{2} \circ i_{2}\right)_{\infty}(b)=0$ for all $b \in B$. Since π_{k} is saturated, π_{k} is unitarily equivalent to $\left(\pi_{k}\right)_{\infty}$, so the conclusion follows.

In the following we shall consider the suspensions $S A_{1}, S A_{2}, S B$ and the cones cone $\left(A_{1}\right)$, cone $\left(A_{2}\right)$, cone (B). The embeddings $i_{k}: B \rightarrow A_{k}, k=1,2$, induce embeddings between some of these algebras (e.g. $S B \rightarrow \operatorname{cone}\left(A_{k}\right)$) in a natural way, and in order to avoid too heavy notation we shall denote a map induced by $i_{k}: B \rightarrow A_{k}$ by i_{k} again. It will always be clear from the context which domain and target is meant.
Lemma 2.4. Assume that there are sequences $R_{n}^{k}: A_{k} \rightarrow B, n=1,2,3, \cdots$, of completely positive contractions such that $\lim _{n \rightarrow \infty} R_{n}^{k}\left(i_{k}(b)\right)=b$ for all $b \in B, k=1,2$. There exist absorbing and saturated $*$-homomorphisms $\alpha_{k}: \operatorname{cone}\left(A_{k}\right) \rightarrow M(D), k=$ 1,2 , such that $\alpha_{k} \circ i_{k}: \operatorname{cone}(B) \rightarrow M(D), k=1,2$, are both absorbing and saturated, and there exist normcontinuous paths, $\left\{p_{t}\right\}_{t \in[0, \infty)},\left\{w_{t}\right\}_{t \in[0, \infty)}$, of elements in $M(D)$ such that the w_{t} 's are unitaries, and

1) $0 \leq p_{t} \leq 1, \quad t \in[0, \infty)$,
2) $p_{t} \alpha_{k}\left(\operatorname{cone}\left(A_{k}\right)\right) \subseteq D, \quad t \in[0, \infty), k=1,2$,
3) $\left(p_{t}^{2}-p_{t}\right) \alpha_{k}\left(\operatorname{cone}\left(A_{k}\right)\right)=\{0\}, \quad t \in[0, \infty)$,
4) $\lim _{t \rightarrow \infty} p_{t} d=d, \quad d \in D$,
5) $\lim _{t \rightarrow \infty}\left\|p_{t} \alpha_{k}(a)-\alpha_{k}(a) p_{t}\right\|=0, \quad a \in \operatorname{cone}\left(A_{k}\right), k=1,2$,
6) $p_{0}=0, p_{n}^{2}=p_{n}, n=1,2,3, \cdots$,
7) $\lim _{t \rightarrow \infty} w_{t} \alpha_{1} \circ i_{1}(b) w_{t}^{*}-\alpha_{2} \circ i_{2}(b)=0$ for all $b \in \operatorname{cone}(B)$,
8) $\lim _{t \rightarrow \infty} p_{t} w_{t}-w_{t} p_{t}=0$.

Except for 7) and 8), Lemma 2.4 follows from Theorem 3.7 of [Th2]. To obtain 7) and 8), which will be crucial for us here, we must elaborate on the proof of Theorem 3.7 of [Th2] as follows.

Lemma 2.5. Let D be a separable C^{*}-algebra. Let $K_{1} \subseteq K_{2} \subseteq M(D)$ and $F \subseteq D$ be compact subsets. Let $\delta>0$ and assume that $p \in M(D)$ is a projection such that $[p, m] \in D, m \in K_{2}$, and

$$
\begin{equation*}
\|m p-p m\|<\delta \quad, \quad m \in K_{1} . \tag{2.1}
\end{equation*}
$$

Let $0 \leq z \leq 1$ be a strictly positive element in $(1-p) D(1-p)$ and let $\left.\epsilon_{1}, \epsilon_{2} \in\right] 0,1[$ be given. There is then a continuous function $h:[0,1] \rightarrow[0,1]$ such that h is zero in a neighbourhood of $0, h(t)=1, t \geq \epsilon_{1}$,

$$
\begin{gather*}
\sup _{t \in[0,1]}\|[m, p+h(t z)]\|<5 \delta, \quad m \in K_{1}, \tag{2.2}\\
\|[m, p+h(z)]\|<\epsilon_{2}, \quad m \in K_{2}, \tag{2.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\|p d+h(z) d-d\|<\epsilon_{2}, d \in F \tag{2.4}
\end{equation*}
$$

Proof. Let Λ denote the convex set of continuous functions $H:[0,1] \rightarrow[0,1]$ such that H is zero in a neighbourhood of 0 and $H(t)=1, t \geq \epsilon_{1}$. For each $x \in K_{2}$ define a multiplier \tilde{x} of cone $((1-p) D(1-p))$ by $(\tilde{x} f)(t)=(1-p) x(1-p) f(t), t \in[0,1]$, and define $\tilde{H} \in \operatorname{cone}((1-p) D(1-p))$ by $\tilde{H}(t)=H(t z)$. Since $t \mapsto t z$ is a strictly positive element of cone $((1-p) D(1-p)),\{(\tilde{H}, p+H(z))\}_{H \in \Lambda}$ is a convex net in cone $((1-p) D(1-p)) \oplus M(D)$ such that

$$
\lim _{H \in \Lambda}(\tilde{H}, p+H(z)) X=X
$$

for all $X \in \operatorname{cone}((1-p) D(1-p)) \oplus D$. Since $[m, p] \in D$ for all $m \in K_{2}$ we can therefore use the arguments from the proof of the existence of quasi-central approximate units to find a $h \in \Lambda$ such that $\|[(\tilde{x}, y),(\tilde{h}, p+h(z))]\|<\min \left\{\delta, \epsilon_{2}\right\}, x \in K_{1}, y \in K_{2}$, and $\|p d+h(z) d-d\|<\epsilon_{2}, d \in F$. In particular (2.3) and (2.4) hold and we have that

$$
\begin{equation*}
\sup _{t \in[0,1]}\|[(1-p) x(1-p), h(t z)]\|<\delta, x \in K_{1} \tag{2.5}
\end{equation*}
$$

Since $[x, h(t z)]=[(1-p) x(1-p), h(t z)]+[(1-p) x p, h(t z)]+[p x(1-p), h(t z)]$, we get (2.2) by combining (2.5) with (2.1).

Let \mathcal{H} be an infinite-dimensional separable Hilbert space. We can then define $g:[0, \infty[\rightarrow[0,2]$ by

$$
g(s)=\sup \{\|[a, \sqrt{x}]\|: a, x \in \mathcal{B}(\mathcal{H}),\|a\| \leq 1,0 \leq x \leq 1,\|[a, x]\| \leq s\}
$$

By the lemma on page 332 of [A2], g is continuous at 0 , i.e. $\lim _{s \rightarrow 0} g(s)=0 . g$ will feature in the next lemma. In that lemma we introduce the notation 0_{n} for the zero in the n-by- n matrices over a C^{*}-algebra.
Lemma 2.6. Let A and D be separable C^{*}-algebras with A contractible. Let φ_{t} : $A \rightarrow A, t \in[0,1]$, be a homotopy of endomorphisms of A such that $\varphi_{0}=\operatorname{id}$ and $\varphi_{1}=$ 0 , and let $L \subseteq M(D)$ be a fixed subset. Let $F_{0} \subseteq F_{1} \subseteq A$ and $K \subseteq D, G_{0} \subseteq G_{1} \subseteq L$ be compact subsets. Let $\pi: A \rightarrow M(D)$ be $a *$-homomorphism and $p \in M(D)$ a projection such that $p \pi(A) \subseteq D,[p, m] \in D, m \in L,\left\|p \pi\left(\varphi_{t}(a)\right)-\pi\left(\varphi_{t}(a)\right) p\right\|<$ κ, $a \in F_{0}, t \in[0,1]$, and $\|p m-m p\|<\kappa, m \in G_{0}$, for some $\kappa>0$.

For any $\epsilon>0$ there is an $n \in \mathbb{N}$, a *-homomorphism $\pi_{1}: A \rightarrow M\left(M_{n}(D)\right)$ of the form

$$
\pi_{1}(a)=\operatorname{diag}\left(\pi\left(\varphi_{s_{1}}(a)\right), \pi\left(\varphi_{s_{2}}(a)\right), \cdots, \pi\left(\varphi_{s_{n}}(a)\right)\right)
$$

for some $s_{1}, s_{2}, \cdots, s_{n} \in[0,1], s_{1}=0, s_{n}=1$, and a normcontinuous path $p_{t}, t \in$ $[0,1]$, of elements $p_{t} \in M\left(M_{n+1}(D)\right)$ such that

1) $0 \leq p_{t} \leq 1, t \in[0,1]$,
2) $\left(p_{t}^{2}-p_{t}\right)\binom{\pi(a)}{\pi_{1}(a)}=0, \quad a \in A, t \in[0,1]$,
3) $p_{t}\left({ }^{\pi(a)} \pi_{\pi_{1}(a)}\right) \in M_{n+1}(D), \quad a \in A, t \in[0,1]$,
4) $\left\|p_{t}\left({ }^{\pi(a)} \pi_{1}(a)\right)-\left({ }^{\pi(a)} \pi_{1}(a)\right) p_{t}\right\| \leq 6 g(20 \kappa)+3 \kappa, \quad a \in F_{0}, t \in[0,1]$,
5) $\binom{p}{0_{n}} \leq p_{t}, t \in[0,1]$,
6) $\left\|p_{1}\left({ }^{\pi\left(\varphi_{t}(a)\right)} \pi_{1}\left(\varphi_{t}(a)\right)\right)-\left({ }^{\pi\left(\varphi_{t}(a)\right)}{ }_{\pi_{1}\left(\varphi_{t}(a)\right)}\right) p_{1}\right\| \leq \epsilon, \quad a \in F_{1}, t \in[0,1]$,
7) $\left\|p_{1}\left(\begin{array}{cc}d & 0_{n}\end{array}\right)-\left(\begin{array}{cc}d & 0_{n}\end{array}\right)\right\| \leq \epsilon, d \in K$,
8) $p_{1}=p_{1}^{2}, p_{0}=\binom{p}{0_{n}}$,
9) $\left[\left(1_{M_{n+1}(\mathbb{C})} \otimes m\right), p_{t}\right] \in M_{n+1}(D), m \in L, t \in[0,1]$,
10) $\left\|\left[\left(1_{M_{n+1}(\mathbb{C})} \otimes m\right), p_{t}\right]\right\| \leq 6 g(20 \kappa)+3 \kappa, m \in G_{0}, t \in[0,1]$,
11) $\left\|\left[p_{1},\left(1_{M_{n+1}(\mathbb{C})} \otimes m\right)\right]\right\| \leq \epsilon, m \in G_{1}$.

Proof. The proof is an elaboration of Voiculescus proof of Proposition 3 in [V]. Let $\delta>0$ be so small that $6 g(4 \delta)+3 \delta<\epsilon, \delta<\kappa$ and $\delta+\sqrt{\|d\| \delta}<\epsilon$ for all $d \in K$. Choose n so large that $t, s \in[0,1],|s-t| \leq(n-1)^{-1} \Rightarrow\left\|\varphi_{t}(a)-\varphi_{s}(a)\right\|<\delta, a \in F_{1}$. Let $0 \leq z \leq 1$ be a strictly positive element in $(1-p) D(1-p)$. It follows from Lemma 2.5 that there are continuous functions $g_{i}:[0,1] \rightarrow[0,1], i=0,1, \cdots, n-1$, which are all zero in a neighbourhood of 0 such that $g_{j} g_{j-1}=g_{j-1}, j=1,2, \cdots, n-1$, and such that the elements $x_{j}=p+g_{j}(z)$ and $x_{j}^{t}=p+g_{j}(t z)$ satisfy that

$$
\begin{gather*}
\left\|x_{j} m-m x_{j}\right\|<\delta, m \in G_{1}, \tag{2.6}\\
\left\|x_{j} \pi \circ \varphi_{s}(a)-\pi \circ \varphi_{s}(a) x_{j}\right\|<\delta, a \in F_{1}, \tag{2.7}\\
\left\|x_{j}^{t} \pi \circ \varphi_{s}(a)-\pi \circ \varphi_{s}(a) x_{j}^{t}\right\|<5 \kappa, a \in F_{0}, \tag{2.8}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|x_{j}^{t} m-m x_{j}^{t}\right\|<5 \kappa, m \in G_{0} \tag{2.9}
\end{equation*}
$$

for all s, t and all $j=0,1,2, \cdots, n-1$, and $\left\|x_{0} d-d\right\| \leq \delta, d \in K$. Set $s_{j}=\frac{j-1}{n-1}, j=$ $1,2, \cdots, n$, and $\pi_{1}=\operatorname{diag}\left(\pi \circ \varphi_{s_{1}}, \pi \circ \varphi_{s_{2}}, \cdots, \pi \circ \varphi_{s_{n}}\right)$. Let

$$
p_{t}=\left(\begin{array}{cc}
p & 0_{n-1} \\
& \\
& 2 t(1-p)
\end{array}\right) \quad, \quad t \in\left[0, \frac{1}{2}\right] .
$$

Then 1)-5), 9) and 10) hold trivially for $t \in\left[0, \frac{1}{2}\right]$. Note that $x_{i}^{t} x_{i-1}^{t}=x_{i-1}^{t}, i=$ $1, \cdots, n-1$. Set $X_{t}^{0}=x_{0}^{2 t-1}, X_{t}^{j}=x_{j}^{2 t-1}-x_{j-1}^{2 t-1}, j=1,2, \cdots, n-1$, and $X_{t}^{n}=1-x_{n-1}^{2 t-1}, t \in\left[\frac{1}{2}, 1\right]$. Define $T_{t} \in M\left(M_{n+1}(D)\right), t \in\left[\frac{1}{2}, 1\right]$, by

$$
T_{t}=\left(\begin{array}{cccc}
\sqrt{X_{t}^{0}} & 0 & \ldots & 0 \\
\sqrt{X_{t}^{1}} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\sqrt{X_{t}^{n}} & 0 & \ldots & 0
\end{array}\right)
$$

Then $T_{t} T_{t}^{*}$ is a projection since $T_{t}^{*} T_{t}$ clearly is. Since $T_{\frac{1}{2}} T_{\frac{1}{2}}^{*}=p_{\frac{1}{2}}$ we can extend $p_{t}, t \in\left[0, \frac{1}{2}\right]$, to a continuous path in $M\left(M_{n+1}(D)\right)$ by setting $p_{t}=T_{t} T_{t}^{*}, t \in\left[\frac{1}{2}, 1\right]$. Then 1) and 2) clearly hold and 3) follows from the observation that

$$
\left({ }^{\pi(a)}{ }_{\pi_{1}(a)}\right) T_{t} \subseteq M_{n+1}(D), \quad a \in A, t \in\left[\frac{1}{2}, 1\right]
$$

It follows from (2.7) and (2.8), by using that $T_{t} T_{t}^{*}$ is tri-diagonal as in the proof of Proposition 3 in [V], that

$$
\left\|\left[p_{1},\left(_{\pi_{1}\left(\varphi_{s}(a)\right)}^{\pi\left(\varphi_{s}(a)\right)}\right)\right]\right\| \leq 6 g(4 \delta)+3 \delta \leq \epsilon, a \in F_{1} s \in[0,1],
$$

and

$$
\|[p_{t}, \overbrace{\pi_{1}(a)}^{\pi(a)})] \| \leq 6 g(20 \kappa)+3 \kappa, a \in F_{0}, t \in\left[\frac{1}{2}, 1\right],
$$

i.e. 4) and 6) hold. 10) and 11) follow in the same way. 5) is trivial when $t \in\left[0, \frac{1}{2}\right]$ and for $t>\frac{1}{2}$ it follows from the observation that

$$
\left(\begin{array}{cc}
p & 0_{n}
\end{array}\right) T_{t}=\left(\begin{array}{cc}
p & 0_{n}
\end{array}\right), \quad\left(\begin{array}{cc}
p & 0_{n}
\end{array}\right) T_{t}^{*}=\left(\begin{array}{cc}
p & 0_{n}
\end{array}\right) .
$$

It is straightforward to check that $\left\|p_{1}\left(\begin{array}{c}{ }^{d}{ }_{0_{n}}\end{array}\right)-\left({ }^{d}{ }_{0_{n}}\right)\right\| \leq\left\|X_{1}^{0} d-d+\sqrt{X_{1}^{1}} \sqrt{X_{1}^{0}} d\right\| \leq$ $\delta+\sqrt{\|d\| \delta}$ when $d \in K$, and 7) holds. 8) is trivial and 9) is a consequence of the construction of p_{t} and the assumption that $[m, p] \in D, m \in L$.

Proof. (of Lemma 2.4) We apply first Lemma 2.3 to obtain saturated and absorbing *-homomorphisms Θ_{k} : cone $\left(A_{k}\right) \rightarrow M(D), k=1,2$, and a normcontinuous path $\left\{u_{t}\right\}_{t \in[1, \infty)}$ of unitaries in $M(D)$ such that $\lim _{t \rightarrow \infty} u_{t} \Theta_{1} \circ i_{1}(b) u_{t}^{*}-\Theta_{2} \circ i_{2}(b)=0$ for all $b \in \operatorname{cone}(B)$. Define $\Theta: \operatorname{cone}\left(A_{1}\right) \oplus \operatorname{cone}\left(A_{2}\right) \rightarrow M(D)$ by $\Theta\left(a_{1}, a_{2}\right)=$ $\Theta_{1}\left(a_{1}\right) \oplus \Theta_{2}\left(a_{2}\right)$. There is then a normcontinuous path $\left\{v_{t}\right\}_{t \in[0, \infty)}$ of unitaries in $M(D)$ such that $v_{t} \Theta\left(i_{1}(b), 0\right) v_{t}^{*}-\Theta\left(0, i_{2}(b)\right) \in D$ for all $t \in[0, \infty), b \in \operatorname{cone}(B)$, and $\lim _{t \rightarrow \infty} v_{t} \Theta\left(i_{1}(b), 0\right) v_{t}^{*}-\Theta\left(0, i_{2}(b)\right)=0$ for all $b \in \operatorname{cone}(B)$. Let $F_{1} \subseteq F_{2} \subseteq$ $F_{3} \subseteq \cdots$ and $G_{1} \subseteq G_{2} \subseteq G_{3} \subseteq \cdots$ be sequences of finite sets with dense union in $\operatorname{cone}\left(A_{1}\right) \oplus \operatorname{cone}\left(\overline{A_{2}}\right)$ and D, respectively. By using Lemma 2.6 with $L=\left\{v_{s}: s \in\right.$ $[0, \infty)\}$ we can construct a sequence $1=n_{0}<n_{1}<n_{2}<\cdots$ of natural numbers, paths $p_{i}(t), t \in[i, i+1]$, in $M_{n_{i}}(M(D)), i=0,1,2, \cdots$, and $*$-homomorphisms $\widetilde{\pi_{i}}: \operatorname{cone}\left(A_{1}\right) \oplus \operatorname{cone}\left(A_{2}\right) \rightarrow M_{n_{i}-n_{i-1}}(M(D)), i=1,2, \cdots$, such that $\pi_{0}=\Theta$ and $\pi_{i}=\pi_{i-1} \oplus \widetilde{\pi_{i}}: \operatorname{cone}\left(A_{1}\right) \oplus \operatorname{cone}\left(A_{2}\right) \rightarrow M_{n_{i}}(M(D)), i=1,2, \cdots$, satisfy

1) $0 \leq p_{i}(t) \leq 1, t \in[i, i+1], i=0,1,2, \cdots$,
2) $\left\|p_{i}(t) \pi_{i}(a)-\pi_{i}(a) p_{i}(t)\right\| \leq \frac{1}{i}, a \in F_{i}, t \in[i, i+1], i=0,1,2, \cdots$,
3) $p_{i}(t) \pi_{i}\left(\operatorname{cone}\left(A_{1}\right) \oplus \operatorname{cone}\left(A_{2}\right)\right) \subseteq M_{n_{i}}(D), t \in[i, i+1], i=0,1,2, \cdots$,
4) $\left\|p_{i+1}(t)\left(\begin{array}{ll}d & \\ 0_{n_{i}-n_{i-1}}\end{array}\right)-\left(\begin{array}{ll}d & 0_{n_{i}-n_{i-1}}\end{array}\right)\right\| \leq \frac{1}{i}$ when all the entries of $d \in$ $M_{n_{i-1}}(D)$ come from $G_{i}, t \in[i+1, i+2], i=1,2,3, \cdots$,
5) $\left(p_{i}(t)^{2}-p_{i}(t)\right) \pi_{i}\left(\operatorname{cone}\left(A_{1}\right) \oplus \operatorname{cone}\left(A_{2}\right)\right)=\{0\}, t \in[i, i+1], i=0,1,2, \cdots$,
6) $p_{i}(i+1)=p_{i}(i+1)^{2}, p_{i}(i)=\left(\begin{array}{cc}p_{i-1}(i) \\ 0 & 0 \\ 0_{n_{i}-n_{i-1}}\end{array}\right), i=1,2,3, \cdots$,
7) $\left\|p_{i}(t)\left(1_{M_{n_{i}}(\mathbb{C})} \otimes v_{s}\right)-\left(1_{M_{n_{i}}(\mathbb{C})} \otimes v_{s}\right) p_{i}(t)\right\| \leq \frac{1}{i}, t \in[i, i+1], s \in[0, i+1], i=$ $0,1,2, \cdots$,
8) $\left[p_{i}(t),\left(1_{M_{n_{i}}(\mathbb{C})} \otimes v_{s}\right)\right] \in M_{n_{i}}(D), t \in[0,1], s \in[0, \infty)$,
and $p_{0}=0$. Note that thanks to the way π_{1} is constructed in Lemma 2.6 we find that $\widetilde{\pi}_{i}$ has the form $\widetilde{\pi}_{i}=\pi_{i-1} \oplus \varphi_{i} \oplus 0_{n_{i-1}}$ for some $*$-homomorphism φ_{i} : $\operatorname{cone}\left(A_{1}\right) \oplus \operatorname{cone}\left(A_{2}\right) \rightarrow M_{n_{i}-2 n_{i-1}}(M(D))$, and that

$$
\lim _{t \rightarrow \infty} \sup _{i}\left\|\left(1_{M_{n_{i}}(\mathbb{C})} \otimes v_{t}\right) \pi_{i}\left(i_{1}(b), 0\right)\left(1_{M_{n_{i}}(\mathbb{C})} \otimes v_{t}^{*}\right)-\pi_{i}\left(0, i_{2}(b)\right)\right\|=0
$$

for all $b \in \operatorname{cone}(B)$. Now define $\varphi^{\prime}: \operatorname{cone}\left(A_{1}\right) \oplus \operatorname{cone}\left(A_{2}\right) \rightarrow \mathbb{L}_{D}\left(l_{2}(D)\right)$ by $\varphi^{\prime}(a)=$ $\operatorname{diag}\left(\Theta(a), \widetilde{\pi_{1}}(a), \widetilde{\pi_{2}}(a), \widetilde{\pi_{3}}(a), \cdots\right)$, and set

$$
p_{t}^{\prime}=\left(\begin{array}{ll}
p_{i}(t) & \\
& 0_{\infty}
\end{array}\right), \quad t \in[i, i+1], i=0,1,2, \cdots,
$$

and $w_{t}^{\prime}=\operatorname{diag}\left(v_{t}, v_{t}, v_{t}, \cdots\right), t \in[0, \infty) . \varphi^{\prime}$ is unitarily equivalent to a $*$-homomorphism $\pi: \operatorname{cone}\left(A_{1}\right) \oplus \operatorname{cone}\left(A_{2}\right) \rightarrow M(D)$ since $l_{2}(D) \simeq D$ as Hilbert D-modules. Via the isomorphism $l_{2}(D) \simeq D, p^{\prime}$ and w^{\prime} become paths in $M(D)$ which satisfy 1)-8) relative to $\alpha_{1}(a)=\pi(a, 0)$ and $\alpha_{2}(a)=\pi(0, a)$ in the statement of the lemma. α_{k} and $\alpha_{k} \circ i_{k}, k=1,2$, are all absorbing because Θ_{1} and Θ_{2} are, and they are also all saturated because each π_{i} occurs infinitely often as a direct summand in the sequence $\widetilde{\pi_{1}}, \widetilde{\pi_{2}}, \widetilde{\pi_{3}}, \cdots$.

Lemma 2.7. Assume that there are sequences $R_{n}^{k}: A_{k} \rightarrow B, n=1,2,3, \cdots, k=$ 1,2 , of completely positive contractions such that $\lim _{n \rightarrow \infty} R_{n}^{k}\left(i_{k}(b)\right)=b$ for all $x \in B, k=1,2$. For any pair of asymptotic homomorphisms $\varphi, \psi: \operatorname{cone}(B) \rightarrow D$, there are asymptotic homomorphisms $\mu^{k}: \operatorname{cone}\left(A_{k}\right) \rightarrow D, k=1,2$, such that $\lim _{t \rightarrow \infty} \mu_{t}^{1} \circ i_{1}(x)-\mu_{t}^{2} \circ i_{2}(x)=0, x \in \operatorname{cone}(B)$, and a normcontinuous path of unitaries $\left\{W_{t}\right\}_{t \in[1, \infty)}$ in $M_{2}(D)^{+}$such that

$$
\lim _{t \rightarrow \infty} W_{t}\left(\begin{array}{ll}
\varphi_{t}(x) & \mu_{t}^{1} \circ i_{1}(x)
\end{array}\right) W_{t}^{*}-\left(\psi_{t}(x){ }_{\mu_{t}^{1} \circ i_{1}(x)}\right)=0
$$

for all $x \in \operatorname{cone}(B)$.
Proof. Let $\tilde{\psi}, \tilde{\varphi}:$ cone $(B) \rightarrow C_{b}([1, \infty), D) / C_{0}([1, \infty), D)$ be the $*$-homomorphisms arising from ψ and φ, respectively. By Lemma 2.6 of [Th2] there is a stable separable C^{*}-algebra $D_{0} \subseteq C_{b}([1, \infty), D) / C_{0}([1, \infty), D)$ such that $\tilde{\psi}(\operatorname{cone}(B)) \cup \tilde{\varphi}(\operatorname{cone}(B)) \subseteq$ D_{0}. For any C^{*}-algebra X, define $p:$ cone $(X) \rightarrow \operatorname{cone}(X)$ and $s: \operatorname{cone}(X) \rightarrow S X \subseteq$ cone (X) by $p(f)(t)=f\left(\frac{t}{2}\right)$ and

$$
s(f)(t)= \begin{cases}f(2 t), & t \in\left[0, \frac{1}{2}\right] \\ f(2-2 t), & t \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Note that $\left.\tilde{\psi} \circ p\right|_{S B}$ and $\left.\tilde{\varphi} \circ p\right|_{S B}$ both represent zero in $\left[\left[S B, D_{0}\right]\right]_{c p}$. Let p_{t}, w_{t}, α_{1} and α_{2} be as in Lemma 2.4, relative to D_{0}. By Theorem 4.1 in [Th2] there is an
increasing continuous function $r:[1, \infty) \rightarrow[1, \infty)$ with $\lim _{t \rightarrow \infty} r(t)=\infty$ and a normcontinuous path $\left\{S_{t}\right\}_{t \in[1, \infty)}$ of unitaries in $M_{2}\left(D_{0}\right)^{+}$such that

$$
\lim _{t \rightarrow \infty} S_{t}\binom{\tilde{\varphi} \circ p(x)}{p_{r(t)} \alpha_{1} \circ i_{1}(x) p_{r(t)}} S_{t}^{*}-\left(\tilde{\psi} \circ p(x)^{p_{r(t)} \alpha_{1} \circ i_{1}(x) p_{r(t)}}\right)=0
$$

for all $x \in S B$. Set

$$
T_{t}=\left({ }^{1} w_{w_{r(t)}}\right) S_{t}\left({ }^{1}{ }_{w_{r(t)}^{*}}\right)
$$

and $l_{t}^{1}(\cdot)=w_{r(t)} p_{r(t)} \alpha_{1}(\cdot) p_{r(t)} w_{r(t)}^{*}, l_{t}^{2}(\cdot)=p_{r(t)} \alpha_{2}(\cdot) p_{r(t)}$. Then $l^{k}: \operatorname{cone}\left(A_{k}\right) \rightarrow$ $D_{0}, k=1,2$, are asymptotic homomorphisms such that $\lim _{t \rightarrow \infty} l_{t}^{1} \circ i_{1}(b)-l_{t}^{2} \circ i_{2}(b)=0$ for all $b \in \operatorname{cone}(B)$ and

$$
\lim _{t \rightarrow \infty} T_{t}\binom{\tilde{\varphi} \circ p(b)}{l_{t}^{1} \circ i_{1}(b)} T_{t}^{*}-\left(\tilde{\psi} \circ p(b)_{l_{t}^{1} \circ i_{1}(b)}\right)=0
$$

for all $b \in S B$. Note that $\left\{T_{t}\right\}_{t \in[1, \infty)}$ is a normcontinuous path of unitaries in $M_{2}\left(D_{0}\right)^{+}$. Let $\chi: C_{b}\left([1, \infty), D^{+}\right) / C_{0}\left([1, \infty), D^{+}\right) \rightarrow C_{b}\left([1, \infty), D^{+}\right)$be a continuous right-inverse for the quotient map $q: C_{b}\left([1, \infty), D^{+}\right) \rightarrow C_{b}\left([1, \infty), D^{+}\right) / C_{0}\left([1, \infty), D^{+}\right)$. Standard arguments give us a normcontinuous path of unitaries $\left\{V_{t}\right\}$ in $M_{2}(D)^{+}$ such that $\left(\operatorname{id}_{M_{2}} \otimes q\right)\left(V_{t}\right)=T_{t}$. Set $\nu_{t}^{k}(x)=\chi\left(l_{s^{-1}(t)}^{k}(x)\right)(t)$ for a sufficiently rapidly increasing continuous bijection $s:[1, \infty) \rightarrow[1, \infty)$. If s increases fast enough, this will give us asymptotic homomorphisms $\nu^{k}: \operatorname{cone}\left(A_{k}\right) \rightarrow D, k=1,2$, such that $\lim _{t \rightarrow \infty} \nu_{t}^{1} \circ i_{1}(x)-\nu_{t}^{2} \circ i_{2}(x)=0, x \in \operatorname{cone}(B)$, and a normcontinuous path of unitaries $W_{t}=V_{s^{-1}(t)}(t)$ in $M_{2}(D)^{+}$such that

$$
\lim _{t \rightarrow \infty} W_{t}\left(\varphi_{t} \circ p(x) \nu_{t}^{1} \circ i_{1}(x)\right) ~ W_{t}^{*}-\left(\psi_{t} \circ p(x) \underset{\nu_{t}^{1} \circ i_{1}(x)}{ }\right)=0
$$

for all $x \in S B$. Set $\mu^{k}=\nu^{k} \circ s: \operatorname{cone}\left(A_{k}\right) \rightarrow D, k=1,2$. Then $\mu^{k} \circ i_{k}=\nu^{k} \circ s \circ i_{k}=$ $\nu^{k} \circ i_{k} \circ s$ and hence $\lim _{t \rightarrow \infty} \mu_{t}^{1} \circ i_{1}(x)-\mu_{t}^{2} \circ i_{2}(x)=0, x \in \operatorname{cone}(B)$, and

$$
\lim _{t \rightarrow \infty} W_{t}\left(\begin{array}{cc}
\varphi_{t}(x) & \\
\mu_{t}^{1} \circ i_{1}(x)
\end{array}\right) W_{t}^{*}-\left(\begin{array}{cc}
\psi_{t}(x) & \mu_{t}^{1} \circ i_{1}(x)
\end{array}\right)=0
$$

for all $x \in \operatorname{cone}(B)$.

3. Results in KK-theory

Assume now that A_{1}, A_{2}, B and $i_{k}: B \rightarrow A_{k}, k=1,2$, are all unital. Let j_{k} : $A_{k} \rightarrow A_{1} *_{B} A_{2}, k=1,2$, be the natural maps. The basic assumption in this section is that there is an absorbing $*$-homomorphism $\alpha: A_{1} *_{B} A_{2} \rightarrow M(D)$ such that $\alpha \circ j_{k}$ and $\alpha \circ j_{k} \circ i_{k}, k=1,2$, are all absorbing. (Of course, $\alpha \circ j_{1} \circ i_{1}=\alpha \circ j_{2} \circ i_{2}$.) This is the case when either,
a) there are surjective conditional expectations $P_{k}: A_{k} \rightarrow B, k=1,2$,
or
b) A_{1}, A_{2} and B are all nuclear.

Indeed, in case a) it follows from [Bo] that there are also conditional expectations $\operatorname{id}_{A_{1}} *_{B} P_{2}: A_{1} *_{B} A_{2} \rightarrow A_{1}$ and $P_{1} *_{B} \mathrm{id}_{A_{2}}: A_{1} *_{B} A_{2} \rightarrow A_{2}$. Hence by Lemma 2.1 any absorbing $*$-homomorphism $\alpha: A_{1} *_{B} A_{2} \rightarrow M(D)$ will have the desired property. And α exists by Theorem 2.7 of [Th1]. In case b) it suffices to use Lemma 2.2 instead, plus the non-trivial fact that $j_{k}: A_{k} \rightarrow A_{1} *_{B} A_{2}, k=1,2$, are injective, see Theorem 3.1 of [Bl] or Theorem 4.2 of [P2].

This α will be fixed throughout this section. To simplify notation we set $\alpha_{k}=$ $\alpha \circ j_{k}, k=1,2$. Set

$$
\begin{aligned}
& \mathcal{A}_{k}=\left\{x \in M(D): x \alpha_{k}(a)-\alpha_{k}(a) x \in D, a \in A_{k}\right\}, \\
& \mathcal{B}_{k}=\left\{x \in \mathcal{A}_{k}: x \alpha_{k}(a) \in D, a \in A_{k}\right\}, \\
& \mathcal{A}=\left\{x \in M(D): x \alpha_{1} \circ i_{1}(b)-\alpha_{1} \circ i_{1}(b) x \in D, b \in B\right\}, \\
& \mathcal{B}=\left\{x \in \mathcal{A}: x \alpha_{1} \circ i_{1}(b) \in D, b \in B\right\} .
\end{aligned}
$$

Obviously, $\mathcal{A}_{k} \subseteq \mathcal{A}, k=1,2$, and since A_{1}, A_{2}, B share the same unit, we see that $\mathcal{B}_{1}=\mathcal{B}_{2}=\mathcal{B}$. Hence $\mathcal{A}_{k} / \mathcal{B}_{k} \subseteq \mathcal{A} / \mathcal{B}, k=1,2$. By Theorem 3.2 of [Th1] we can make the following identifications

$$
\begin{aligned}
& K K\left(A_{k}, D\right)=K_{1}\left(\mathcal{A}_{k} / \mathcal{B}_{k}\right), k=1,2, \\
& K K(B, D)=K_{1}(\mathcal{A} / \mathcal{B}) .
\end{aligned}
$$

In the following, when given a $*$-homomorphism $\varphi: E \rightarrow F$ between C^{*}-algebras, we will denote the $*$-homomorphism $E \rightarrow M_{n}(F)$, given by

$$
E \ni e \mapsto \operatorname{diag}(\varphi(e), \varphi(e), \cdots, \varphi(e)),
$$

by $\left[1_{n} \otimes \varphi\right.$]. Let $q_{D}: M(D) \rightarrow Q(D)=M(D) / D$ be the quotient map. We define a map $\rho: K K(B, D) \rightarrow \operatorname{Ext}^{-1}\left(A_{1} *_{B} A_{2}, D\right)$ in the following way. Let u be a unitary $M_{n}(\mathcal{A} / \mathcal{B})$ for some n, and let $\tilde{u} \in M_{n}(\mathcal{A})$ be a lift of u. Then $\tilde{u}\left[1_{n} \otimes \alpha_{1} \circ i_{1}\right](b) \tilde{u}^{*}-\left[1_{n} \otimes \alpha_{2} \circ i_{2}\right](b) \in M_{n}(D)$ for all $b \in B$ and $\tilde{u} \tilde{u}^{*}\left[1_{n} \otimes \alpha_{1}\right](a)=$ $\tilde{u}^{*} \tilde{u}\left[1_{n} \otimes \alpha_{1}\right](a)=\left[1_{n} \otimes \alpha_{1}\right](a)$ modulo $M_{n}(D)$ for all $a \in A_{1}$, so

$$
\rho(u)=\left(q_{M_{n}(D)} \circ \operatorname{Ad} \tilde{u} \circ\left[1_{n} \otimes \alpha_{1}\right]\right) *_{B}\left(q_{M_{n}(D)} \circ\left[1_{n} \otimes \alpha_{2}\right]\right)
$$

is a well-defined extension, $\rho(u): A_{1} *_{B} A_{2} \rightarrow Q\left(M_{n}(D)\right) \simeq Q(D)$.
Lemma 3.1. $\rho(u)$ is an invertible extension. In fact, $\left(\begin{array}{ll}\rho(u) & \\ \rho\left(u^{*}\right)\end{array}\right)$ is a split extension.
Proof. Choose first a unitary lift $w \in M_{2 n}(\mathcal{A})$ of ($\left.{ }^{u}{ }_{u^{*}}\right)$. Then

$$
\left({ }_{\rho\left(u^{*}\right)}^{\rho(u)}\right)=\left(q_{M_{2 n}(D)} \circ \operatorname{Ad} w \circ\left[1_{2 n} \otimes \alpha_{1}\right]\right) *_{B}\left(q_{M_{2 n}(D)} \circ\left[1_{2 n} \otimes \alpha_{2}\right]\right) .
$$

As is wellknown, there is a continuous path of unitaries in $M_{2 n}(\mathcal{A})$ connecting w to a unitary $w_{0} \in M_{2 n}(\mathcal{B})^{+}$. Set $w_{1}=w w_{0}^{*} \in M_{2 n}(\mathcal{A})$, and observe that

$$
\left({ }_{\rho\left(u^{*}\right)}^{\rho(u)}\right)=\left(q_{M_{2 n}(D)} \circ \operatorname{Ad} w_{1} \circ\left[1_{2 n} \otimes \alpha_{1}\right]\right) *_{B}\left(q_{M_{2 n}(D)} \circ\left[1_{2 n} \otimes \alpha_{2}\right]\right) .
$$

Note that $\operatorname{Ad} w_{1}$ leaves $\left[1_{2 n} \otimes \alpha_{1} \circ i_{1}\right]^{+}\left(B^{+}\right)+M_{2 n}(D)$ globally invariant and that the path of unitaries in $M_{2 n}(\mathcal{A})$ connecting w_{1} to 1 shows that the automorphism of $\left[1_{2 n} \otimes \alpha_{1} \circ i_{1}\right]^{+}\left(B^{+}\right)+M_{2 n}(D)$ given by $\operatorname{Ad} w_{1}$ is homotopic to the identity in the uniform normtopology. Consequently this automorphism is inner by Corollary 8.7.8 of [P1], i.e. there is a unitary $T \in\left[1_{2 n} \otimes \alpha_{1} \circ i_{1}\right]^{+}\left(B^{+}\right)+M_{2 n}(D)$ such that $w_{1} x w_{1}^{*}=$ $T x T^{*}$ for all $x \in\left[1_{2 n} \otimes \alpha_{1} \circ i_{1}\right]^{+}\left(B^{+}\right)+M_{2 n}(D)$. Write $T=\left[1_{2 n} \otimes \alpha_{1} \circ i_{1}\right]^{+}(S)+d$, where $S \in B^{+}$and $d \in M_{2 n}(D)$. Since $\alpha_{1} \circ i_{1}$ is absorbing, $q_{M_{2 n}(D)} \circ\left[1_{2 n} \otimes \alpha_{1} \circ i_{1}\right]^{+}$ is injective, so we conclude that S is a unitary. Furthermore, since

$$
\begin{aligned}
& q_{M_{2 n}(D)} \circ\left[1_{2 n} \otimes \alpha_{1} \circ i_{1}\right](b) \\
& =q_{M_{2 n}(D)} \circ \operatorname{Ad} w_{1} \circ\left[1_{2 n} \otimes \alpha_{1} \circ i_{1}\right](b)=q_{M_{2 n}(D)} \circ\left[1_{2 n} \otimes \alpha_{1} \circ i_{1}\right]\left(S b S^{*}\right)
\end{aligned}
$$

for all $b \in B$, we conclude that $S b S^{*}=b$ for all $b \in B$. We can therefore define an automorphism $\boldsymbol{\Phi}=(\operatorname{Ad} S) *_{B} \operatorname{id}_{A_{2}}$ of $A_{1} *_{B} A_{2}$ such that $\boldsymbol{\Phi} \circ j_{1}(x)=$ $j_{1}\left(i_{1}^{+}(S)^{*} x i_{1}^{+}(S)\right), x \in A_{1}$, and $\boldsymbol{\Phi} \circ j_{2}(y)=j_{2}(y), y \in A_{2}$. Then

$$
\begin{aligned}
& \binom{\rho(u)}{\rho\left(u^{*}\right)} \circ \mathbf{\Phi} \\
& =\left(q_{M_{2 n}(D)} \circ \operatorname{Ad}\left(w_{1}\left[1_{2 n} \otimes \alpha_{1} \circ i_{1}\right]^{+}(S)^{*}\right) \circ\left[1_{2 n} \otimes \alpha_{1}\right]\right) *_{B}\left(q_{M_{2 n}(D)} \circ\left[1_{2 n} \otimes \alpha_{2}\right]\right) \\
& =\left(q_{M_{2 n}(D)} \circ \operatorname{Ad}\left(w_{1} T^{*}\right) \circ\left[1_{2 n} \otimes \alpha_{1}\right]\right) *_{B}\left(q_{M_{2 n}(D)} \circ\left[1_{2 n} \otimes \alpha_{2}\right]\right)
\end{aligned}
$$

which admits the lift $\left.\left(\operatorname{Ad}\left(w_{1} T^{*}\right) \circ\left[1_{2 n} \otimes \alpha_{1}\right]\right) *_{B}\left[1_{2 n} \otimes \alpha_{2}\right]\right): A_{1} *_{B} A_{2} \rightarrow M_{2 n}(M(D))$. It follows that $\binom{\rho(u)}{\rho\left(u^{*}\right)}$ admits the lift $\left(\left(\operatorname{Ad}\left(w_{1} T^{*}\right) \circ\left[1_{2 n} \otimes \alpha_{1}\right]\right) *_{B}\left[1_{2 n} \otimes \alpha_{2}\right]\right) \circ \boldsymbol{\Phi}^{-1}$.

Given Lemma 3.1 it is clear that the construction gives us a homomorphism $\rho: K K(B, D) \rightarrow \operatorname{Ext}^{-1}\left(A_{1} *_{B} A_{2}, D\right)$.

Lemma 3.2.

$$
\begin{aligned}
& K K\left(A_{1}, D\right) \oplus K K\left(A_{2}, D\right) \xrightarrow{i_{1}^{*}-i_{2}^{*}} K K(B, D) \xrightarrow{\rho} \operatorname{Ext}^{-1}\left(A_{1} *_{B} A_{2}, D\right) \\
& \downarrow^{\left(j_{1}^{*}, j_{2}^{*}\right)} \\
& \operatorname{Ext}^{-1}(B, D) \stackrel{\left(i_{1}^{*}-i_{2}^{*}\right.}{ } \operatorname{Ext}^{-1}\left(A_{1}, D\right) \oplus \operatorname{Ext}^{-1}\left(A_{2}, D\right)
\end{aligned}
$$

is exact.
Proof. Exactness at $K K(B, D)$: Consider elements $v_{k} \in M_{n}\left(\mathcal{A}_{k}\right)$ that are unitaries modulo $M_{n}\left(\mathcal{B}_{k}\right)$. Then

$$
\left(q_{M_{n}(D)} \circ \operatorname{Ad} v_{2}^{*} v_{1} \circ\left[1_{n} \otimes \alpha_{1}\right]\right) *_{B}\left(q_{M_{n}(D)} \circ\left[1_{n} \otimes \alpha_{2}\right]\right)
$$

is unitarily equivalent to

$$
\begin{aligned}
& \left(q_{M_{n}(D)} \circ \operatorname{Ad} v_{1} \circ\left[1_{n} \otimes \alpha_{1}\right]\right) *_{B}\left(q_{M_{n}(D)} \circ \operatorname{Ad} v_{2} \circ\left[1_{n} \otimes \alpha_{2}\right]\right)= \\
& \left(q_{M_{n}(D)} \circ\left[1_{n} \otimes \alpha_{1}\right]\right) *_{B}\left(q_{M_{n}(D)} \circ\left[1_{n} \otimes \alpha_{2}\right]\right)=q_{M_{n}(D)} \circ\left[1_{n} \otimes \alpha\right],
\end{aligned}
$$

which is a split extension. This shows that $\rho \circ\left(i_{1}^{*}-i_{2}^{*}\right)=0$. Consider then a unitary $u \in M_{n}(\mathcal{A} / \mathcal{B})$ and assume that $[\rho(u)]=0{\operatorname{in~} \operatorname{Ext}^{-1}\left(A_{1} *_{B} A_{2}, D\right) \text {. Since } \alpha, ~(1)}$ is absorbing this implies that

$$
\operatorname{Ad} q_{M_{n+1}(D)}(W) \circ\left({ }^{\rho(u)} q_{D \circ \alpha}\right)=\left({ }^{q_{M_{n}(D)} \circ\left[1_{n} \otimes \alpha\right]}{ }_{q_{D} \circ \alpha}\right)
$$

for some unitary $W \in M_{n+1}(M(D))$. Alternatively,

$$
\operatorname{Ad} q_{M_{n+1}(D)}(W) \circ\left(q_{M_{n}(D)} \circ \operatorname{Ad} \tilde{u} \circ\left[1_{n} \otimes \alpha_{1}\right]{ }_{q_{D} \circ \alpha_{1}}\right)=\binom{q_{M_{n}(D)} \circ\left[1_{n} \otimes \alpha_{1}\right]}{q_{D} \circ \alpha_{1}}
$$

and

$$
\operatorname{Ad} q_{M_{n+1}(D)}(W) \circ\left(q_{M_{n}(D) \circ\left[1_{n} \otimes \alpha_{2}\right]}^{q_{D} \circ \alpha_{2}}\right)=\binom{q_{M_{n}(D)} \circ\left[1_{n} \otimes \alpha_{2}\right]}{q_{D} \circ \alpha_{2}}
$$

Hence W^{*} and $W\left({ }^{\tilde{u}}{ }_{1}\right)$ represent unitaries in $M_{n+1}\left(\mathcal{A}_{2} / \mathcal{B}_{2}\right)$ and $M_{n+1}\left(\mathcal{A}_{1} / \mathcal{B}_{1}\right)$, respectively, and since the product of their images in $M_{n+1}(\mathcal{A} / \mathcal{B})$ is $\left({ }^{u}{ }_{1}\right)$, we conclude that $[u]$ is in the range of $i_{1}^{*}-i_{2}^{*}$.

Exactness at $\operatorname{Ext}^{-1}\left(A_{1} *_{B} A_{2}, D\right)$: It is obvious that the composition $\left(j_{1}^{*}, j_{2}^{*}\right) \circ \rho$ is zero, so consider an extension - a priori not necessarily invertible - $\varphi: A_{1} *_{B} A_{2} \rightarrow$
$Q(D)$ with the property that $\varphi \circ j_{k}, k=1,2$, are both split. Since α_{k} is absorbing there are unitaries $S_{k} \in M_{2}(M(D))$ such that

$$
\operatorname{Ad} q_{M_{2}(D)}\left(S_{k}\right) \circ(\overbrace{}^{\varphi \circ j_{k}} q_{q_{D} \circ \alpha_{k}})=(\overbrace{q_{D} \circ \alpha_{k}}^{q_{D} \circ \alpha_{k}}),
$$

$k=1,2$. It follows that $S_{2} S_{1}^{*} \in M_{2}(\mathcal{A})$ and that (${ }_{q_{D} \circ \alpha}$) is unitarily equivalent to $\left(\operatorname{Ad} q_{M_{2}(D)}\left(S_{2} S_{1}^{*}\right) \circ\left[1_{2} \otimes \alpha_{1}\right]\right) *_{B}\left[1_{2} \otimes \alpha_{2}\right]$ which is clearly in the range of ρ. In particular, φ is invertible afterall, and we have exactness at $\operatorname{Ext}^{-1}\left(A_{1} *_{B} A_{2}, D\right)$.

Exactness at $\operatorname{Ext}^{-1}\left(A_{1}, D\right) \oplus \operatorname{Ext}^{-1}\left(A_{2}, D\right)$: It is trivial that $\left(i_{1}^{*}-i_{2}^{*}\right) \circ\left(j_{1}^{*}, j_{2}^{*}\right)=0$, so consider a pair of invertible extensions $\varphi_{k}: A_{k} \rightarrow Q(B), k=1,2$, with the property that $i_{1}^{*}\left[\varphi_{1}\right]=i_{2}^{*}\left[\varphi_{2}\right]$. There is then a unitary $S \in M_{2}(M(D))$ such that

$$
\operatorname{Ad} q_{M_{2}(D)}(S) \circ\binom{\varphi_{1} \circ i_{1}}{q_{D} \circ \alpha_{1} \circ i_{1}}=\binom{\varphi_{2} \circ i_{2}}{q_{D \circ \alpha_{2} \circ i_{2}}} .
$$

After adding $q_{D} \circ \alpha_{k}$ to φ_{k} we may assume that $\varphi_{1} \circ i_{1}=\varphi_{2} \circ i_{2}$. Similarly, if $\psi_{k}: A_{k} \rightarrow Q(D)$ represents the inverse of φ_{k} in $\operatorname{Ext}^{-1}\left(A_{k}, D\right), k=1,2$, we may assume that $\psi_{1} \circ i_{1}=\psi_{2} \circ i_{2}$. We can then consider the two extensions $\varphi_{1} *_{B}$ $\varphi_{2}, \psi_{1} *_{B} \psi_{2}: A_{1} *_{B} A_{2} \rightarrow Q(B)$ whose sum $\mu=\left(\varphi_{1} *_{B} \varphi_{2}\right) \oplus\left(\psi_{1} *_{B} \psi_{2}\right)$ has the property that $\mu \circ j_{k}: A_{k} \rightarrow Q(D), k=1,2$, both split. By the arguments in the last paragraph we conclude that μ and hence also $\varphi_{1} *_{B} \varphi_{2}$ is an invertible extension. Since $\varphi_{k}=\left(\varphi_{1} *_{B} \varphi_{2}\right) \circ j_{k}, k=1,2$, the proof is complete.

Theorem 3.3. Let A_{1}, A_{2}, B be separable C^{*}-algebras. Assume that $i_{k}: B \rightarrow$ $A_{k}, k=1,2$, are embeddings, and that there are surjective conditional expectations $P_{k}: A_{k} \rightarrow i_{k}(B), k=1,2$, or that A_{1}, A_{2} and B are all nuclear. Let $j_{k}: A_{k} \rightarrow$ $A_{1} *_{B} A_{2}, k=1,2$, be the natural maps. For any separable C^{*}-algebra D there are six terms exact sequences

and

Proof. Consider first the case where A_{1}, A_{2} and B share the same unit, and let $\varphi: C \rightarrow S\left(A_{1} *_{B} A_{2}\right)$ be Germain's $*$-homomorphism, cf. [G3], where C is the mapping cone for the embedding $B \rightarrow A_{1} \oplus A_{2} . \varphi$ relates the Puppe exact sequence of Theorem 1 in [CS] to the exact sequence in Lemma 3.2 in such a way that we can conclude from the five lemma that $\varphi^{*}: K K\left(S\left(A_{1} *_{B} A_{2}\right), D\right) \rightarrow K K(C, D)$ is an isomorphism. Since D is arbitrary here, standard KK-theory arguments show that $[\varphi] \in K K\left(C, S\left(A_{1} *_{B} A_{2}\right)\right)$ is invertible. By using that $\left(A_{1} *_{B} A_{2}\right)^{+}=A_{1}^{+} *_{B} A_{2}^{+}$it follows straightforwardly that $[\varphi]$ is also invertible in the general (non-unital) case. As pointed out by Germain in [G3], this completes the proof.

The possibilities of our approach are not completely exhausted; if we assume that D is nuclear we can obtain the second of the six terms exact sequences in Theorem 3.3 without any conditions on $i_{k}: B \rightarrow A_{k}, k=1,2$.

Theorem 3.4. Let A_{1}, A_{2}, B be separable C^{*}-algebras. Assume that $i_{k}: B \rightarrow$ $A_{k}, k=1,2$, are embeddings, and let $j_{k}: A_{k} \rightarrow A_{1} *_{B} A_{2}, k=1,2$, be the natural maps. For any separable nuclear C^{*}-algebra D the following six terms sequence is exact:

$$
\left.\begin{array}{l}
K K\left(A_{1}, D\right) \oplus K K\left(A_{2}, D\right) \xrightarrow{i_{1}^{*}-i_{2}^{*}} K K(B, D) \xrightarrow{\rho} \operatorname{Ext}^{-1}\left(A_{1} *_{B} A_{2}, D\right) \\
\left(j_{1}^{*}, j_{2}^{*}\right)
\end{array}\right)
$$

where $\alpha: \operatorname{Ext}^{-1}(-, D) \rightarrow K K(-, S D)$ and $\beta: \operatorname{Ext}^{-1}(-, S D) \rightarrow K K(-, D)$ are Kasparov's natural transformations.

Proof. By adjoining units we may assume that A_{1}, A_{2} and B share the same unit, and we may assume that D is stable. By Theorem 5 of $[\mathrm{K}]$ the nuclearity of D implies that any absorbing $*$-homomorphism $\pi: A_{1} *_{B} A_{2} \rightarrow M(D)$ restricts to absorbing $*$-homomorphisms on A_{1}, A_{2} and B. Consequently the proof of Lemma 3.2 works to give us the stated six terms exact sequence.

In particular, Theorem 3.4 calculates of the K-homology of an arbitrary amalgamated free product of separable C^{*}-algebras.

The crucial Lemma 3.2 in this section is in some sense merely an updated version of the result in $[\mathrm{Br}]$. Brown's result contains also the statement that $\operatorname{Ext}\left(A_{1} *_{B} A_{2}\right)$ is a group when $\operatorname{Ext}\left(A_{k}\right), k=1,2$, are groups and B is finite dimensional. This part of Brown's result can now be improved as follows.
Proposition 3.5. Let A_{1}, A_{2}, B, D be separable C^{*}-algebras, D stable. Assume that $i_{k}: B \rightarrow A_{k}, k=1,2$, are embeddings, and that $\operatorname{Ext}\left(A_{k}, D\right), k=1,2$, are both groups. If either
a) there are surjective conditional expectations $A_{k} \rightarrow B, k=1,2$,
or
b) A_{1}, A_{2} and B are nuclear,
or
c) D is nuclear,
it follows that also $\operatorname{Ext}\left(A_{1} *_{B} A_{2}, D\right)$ is a group.
Proof. The assumptions ensure that there is an absorbing $*$-homomorphism β : $A_{1} *_{B} A_{2} \rightarrow M(D)$ such that $\beta \circ j_{k}, k=1,2$, and $\beta \circ j_{1} \circ i_{1}=\beta \circ j_{2} \circ i_{2}$ are all absorbing; in case a) this follows from Lemma 2.1, in case b) from Lemma 2.2 and in case c) from Theorem 5 of $[\mathrm{K}]$. Therefore the arguments from the proof of Lemma 3.2 give that every extension of $A_{1} *_{B} A_{2}$ by D is invertible.

As a particular case of c) in Proposition 3.5 we get that $\operatorname{Ext}\left(A_{1} *_{B} A_{2}\right)$ is always a group when $\operatorname{Ext}\left(A_{k}\right), k=1,2$, both are. It is wellknown that the assumption that $\operatorname{Ext}\left(A_{k}, D\right), k=1,2$, are groups is redundant in case b$)$.

4. An appropriate picture of the E-theory groups

Let A, D be separable C^{*}-algebras, D stable. In this section an E-pair for (A, D) will be a pair (W, φ), where $\varphi: \operatorname{cone}(A) \rightarrow D$ is an asymptotic homomorphism and $W=\left\{W_{t}\right\}_{t \in[1, \infty)}$ is a strictly continuous path of unitaries in $M(D)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|W_{t} \varphi_{t}(a)-\varphi_{t}(a) W_{t}\right\|=0 \tag{4.1}
\end{equation*}
$$

for all $a \in S A$. The pair (W, φ) is degenerate when (4.1) holds for all $a \in \operatorname{cone}(A)$. We let $X_{0}(A, D)$ denote the set of homotopy classes of E-pairs, where a homotopy is given by an E-pair for $(A, C[0,1] \otimes D)$. The direct sum of E-pairs, performed with the aid of any pair V_{1}, V_{2} of isometries in $M(D)$ such that $V_{1}^{*} V_{2}=0$ and $V_{1} V_{1}^{*}+V_{2} V_{2}^{*}=1$, makes obviously $X_{0}(A, D)$ into an abelian semigroup. The subsemigroup of $X_{0}(A, D)$ consisting of the elements of $X_{0}(A, D)$ that can be represented by a degenerate E-pair will be denoted by $X_{00}(A, D)$. The quotient semigroup $X(A, D)=X_{0}(A, D) / X_{00}(A, D)$ is then an abelian group; a standard rotation argument shows that $(W, \varphi) \oplus\left(W^{*}, \varphi\right)$ is homotopic to a degenerate E-pair. Define a map $\kappa: X(A, D) \rightarrow\left[\left[S^{2} A, D\right]\right]$ in the following way. Given an E-pair (W, φ) we can define an asymptotic homomorphism $W \otimes \varphi: C(\mathbb{T}) \otimes S A \rightarrow D$ such that

$$
\lim _{t \rightarrow \infty}(W \otimes \varphi)_{t}(g \otimes f)-g\left(W_{t}\right) \varphi_{t}(f)=0
$$

for all $g \in C(\mathbb{T}), f \in S A$. We set $\kappa[W, \varphi]=i^{*}[W \otimes \varphi]$, where $i: S^{2} A \rightarrow C(\mathbb{T}) \otimes S A$ is the canonical embedding. To show that κ is an isomorphism, we need two lemmas.
Lemma 4.1. Let $\varphi: C(\mathbb{T}) \otimes A \rightarrow D$ be an asymptotic homomorphism. There is then a strictly continuous path $W=\left\{W_{t}\right\}_{t \in[1, \infty)}$ of unitaries in $M_{2}(M(D))$ such that

$$
\lim _{t \rightarrow \infty} g\left(W_{t}\right)\left(\begin{array}{cc}
\varphi_{t}\left(1_{C(\mathbb{T})} \otimes a\right) & \\
& 0
\end{array}\right)-\left(\begin{array}{cc}
\varphi_{t}(g \otimes a) & \\
& 0
\end{array}\right)=0
$$

for all $g \in C(\mathbb{T}), a \in A$.
Proof. Let $\varphi_{1}: C(\mathbb{T}) \otimes A \rightarrow C_{b}([1, \infty), D) / C_{0}([1, \infty), D)$ be the $*$-homomorphism defined from φ in the usual way. Set $H=\varphi_{1}\left(C(\mathbb{T}) \otimes A\right.$), and $H_{0}=q^{-1}(H) \subseteq$ $C_{b}([1, \infty), D)$, where $q: C_{b}([1, \infty), D) \rightarrow C_{b}([1, \infty), D) / C_{0}([1, \infty), D)$ is the quotient map. Since φ_{1} and q extend to surjections $\overline{\varphi_{1}}: M(C(\mathbb{T}) \otimes A) \rightarrow M(H)$ and $\bar{q}:$ $M\left(H_{0}\right) \rightarrow M(H)$, we can find a unitary lift $W \in M_{2}\left(M\left(H_{0}\right)\right)$ of $\left(\overline{\varphi_{1}(z)} \overline{\varphi_{1}}\left(z^{*}\right)\right)$, where $z \in M(C(\mathbb{T}) \otimes A)$ is the element given by the identity function on \mathbb{T}. Since $M\left(M_{2}\left(H_{0}\right)\right) \subseteq M\left(M_{2}\left(C_{0}([1, \infty), D)\right)\right), W$ is given by a strictly continuous path of unitaries in $M_{2}(M(D))$ with the desired property.

Let $c: S A \rightarrow C(\mathbb{T}) \otimes S A$ be the $*$-homomorphism $c(f)=1_{C(\mathbb{T})} \otimes f$.
Lemma 4.2. Let $\psi: C(\mathbb{T}) \otimes S A \rightarrow D$ be an asymptotic homomorphism such that $c^{*}[\psi]=0$ in $[[S A, D]]$. It follows that there are asymptotic homomorphisms $\psi^{\prime \prime}: C(\mathbb{T}) \otimes \operatorname{cone}(A) \rightarrow D, \psi^{\prime}: \operatorname{cone}(A) \rightarrow D$ and a strictly continuous path $\left\{W_{t}\right\}_{t \in[1, \infty)}$ of unitaries in $M(D)$ such that

$$
\lim _{t \rightarrow \infty}\left[\psi_{t} \oplus \psi_{t}^{\prime \prime}\right](g \otimes f)-g\left(W_{t}\right) \psi_{t}^{\prime}(f)=0
$$

for all $g \in C(\mathbb{T}), f \in S A$.

Proof. Since $c^{*}[\psi]=0$ it follows from Theorem 4.2 of [Th2] that there is an asymptotic homomorphism $\nu: \operatorname{cone}(A) \rightarrow D$ and a normcontinuous path of unitaries $\left\{U_{t}\right\}_{t \in[1, \infty)} \subseteq M_{2}(D)^{+}$such that

$$
\lim _{t \rightarrow \infty} U_{t}\left(\begin{array}{ll}
\psi_{t}\left(1_{C(\mathbb{T})} \otimes f\right) & \\
& \nu_{t}(f)
\end{array}\right) U_{t}^{*}-\left(\begin{array}{ll}
0 & \\
\nu_{t}(f)
\end{array}\right)=0
$$

for all $f \in S A$. Let ev $: C(\mathbb{T}) \otimes S A \rightarrow S A$ be the $*$-homomorphism obtained by evaluation at some point in \mathbb{T}. It follows from Lemma 4.1 that there is a strictly continuous path $\left\{W_{t}\right\}_{t \in[1, \infty)}$ of unitaries in $M(D)$ such that

$$
\lim _{t \rightarrow \infty} g\left(W_{t}\right)\left(\psi_{t} \oplus \nu_{t} \circ e v \oplus 0\right)\left(1_{C(\mathbb{T})} \otimes f\right)-\left(\psi_{t} \oplus \nu_{t} \circ e v \oplus 0\right)(g \otimes f)=0
$$

$$
g \in C(\mathbb{T}), f \in S A . \text { Set } \psi^{\prime \prime}=\nu \circ e v \oplus 0 \text { and } \psi^{\prime}=\operatorname{Ad}(U \oplus 1)^{*} \circ(0 \oplus \nu \oplus 0)
$$

To use these two lemmas to define a map $\delta:\left[\left[S^{2} A, D\right]\right] \rightarrow X(A, D)$, we remind the reader that $[[S-, D]]=E(S-, D)$, cf. [DL]. In particular, the contravariant functor $[[S-, D]]$ is split-exact, and this will be used now. Let $\psi: S^{2} A \rightarrow D$ be an asymptotic homomorphism. There is then an asymptotic homomorphism $\varphi: C(\mathbb{T}) \otimes S A \rightarrow D$ such that $c^{*}[\varphi]=0$ and $[\psi]=[\varphi \circ i]$ in $\left[\left[S^{2} A, B\right]\right]$. Since $c^{*}[\varphi]=0$, Lemma 4.2 gives us asymptotic homomorphisms $\varphi^{\prime \prime}: C(\mathbb{T}) \otimes \operatorname{cone}(A) \rightarrow$ $D, \varphi^{\prime}: \operatorname{cone}(A) \rightarrow D$ and a strictly continuous path $\left\{W_{t}\right\}_{t \in[1, \infty)}$ of unitaries in $M(D)$ such that

$$
\lim _{t \rightarrow \infty}\left[\varphi_{t} \oplus \varphi_{t}^{\prime \prime}\right](g \otimes f)-g\left(W_{t}\right) \varphi_{t}^{\prime}(f)=0
$$

for all $g \in C(\mathbb{T}), f \in S A$. Then $\left(W, \varphi^{\prime}\right)$ is an E-pair and we claim that we can define δ such that $\delta[\psi]=\left[W, \varphi^{\prime}\right]$. To see this, the only non-trivial point is to show that the class of $\left(W, \varphi^{\prime}\right)$ is independent of the choices made. So assume that $\lambda^{\prime \prime}: C(\mathbb{T}) \otimes \operatorname{cone}(A) \rightarrow D, \lambda^{\prime}: \operatorname{cone}(A) \rightarrow D$ are asymptotic homomorphisms and $\left\{S_{t}\right\}_{t \in[1, \infty)}$ a strictly continuous path of unitaries in $M(D)$ such that

$$
\lim _{t \rightarrow \infty}\left[\varphi_{t} \oplus \lambda_{t}^{\prime \prime}\right](g \otimes f)-g\left(S_{t}\right) \lambda_{t}^{\prime}(f)=0
$$

for all $g \in C(\mathbb{T}), f \in S A$. By Lemma 4.1 there are strictly continuous pathes, $\left\{Y_{t}\right\}_{t \in[1, \infty)},\left\{X_{t}\right\}_{t \in[1, \infty)}$ of unitaries in $M(D)$ such that

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} g\left(Y_{t}\right) \varphi_{t}^{\prime \prime}\left(1_{C(\mathbb{T})} \otimes f\right)-\varphi_{t}^{\prime \prime}(g \otimes f)=0, \\
& \lim _{t \rightarrow \infty} g\left(X_{t}\right) \lambda_{t}^{\prime \prime}\left(1_{C(\mathbb{T})} \otimes f\right)-\lambda_{t}^{\prime \prime}(g \otimes f)=0
\end{aligned}
$$

for all $g \in C(\mathbb{T}), f \in \operatorname{cone}(A)$. Since $\left(Y, \varphi^{\prime \prime} \circ c\right)$ and $\left(X, \lambda^{\prime \prime} \circ c\right)$ are degenerate E-pairs, $\left[W, \varphi^{\prime}\right]=\left[W, \varphi^{\prime}\right]+\left[X, \lambda^{\prime \prime} \circ c\right]=\left[W \oplus X, \varphi^{\prime} \oplus \lambda^{\prime \prime} \circ c\right]$ and $\left[S, \lambda^{\prime}\right]=\left[S, \lambda^{\prime}\right]+\left[Y, \varphi^{\prime \prime} \circ c\right]=$ $\left[S \oplus Y, \lambda^{\prime} \oplus \varphi^{\prime \prime} \circ c\right]$ in $X(A, D)$. Conjugating the pair $\left(S \oplus Y, \lambda^{\prime} \oplus \varphi^{\prime \prime} \circ c\right)$ by a unitary, we see that $\left[W, \varphi^{\prime}\right]=\left[W^{1}, \varphi^{1}\right]$ and $\left[S, \lambda^{\prime}\right]=\left[W^{2}, \varphi^{2}\right]$, where the E-pairs $\left(W^{1}, \varphi^{1}\right)$ and $\left(W^{2}, \varphi^{2}\right)$ are related such that

$$
\lim _{t \rightarrow \infty} g\left(W_{t}^{1}\right) \varphi_{t}^{1}(f)-g\left(W_{t}^{2}\right) \varphi_{t}^{2}(f)=0
$$

for all $g \in C(\mathbb{T}), f \in S A$. In particular, $\lim _{t \rightarrow \infty} \varphi_{t}^{1}(f)-\varphi_{t}^{2}(f)=0$ for all $f \in S A$, so a standard rotation argument shows that $\left(W^{1} \oplus W^{2^{*}}, \varphi^{1} \oplus \varphi^{2}\right)$ is homotopic to $\left(W^{2^{*}} W^{1} \oplus 1, \varphi^{1} \oplus \varphi^{2}\right)$. This shows that $\left[W^{1}, \varphi^{1}\right]-\left[W^{2}, \varphi^{2}\right]$ is represented by an E-pair (V, μ) where $\lim _{t \rightarrow \infty} g\left(V_{t}\right) \mu_{t}(f)-g(1) \mu_{t}(f)=0$ for all $g \in C(\mathbb{T}), f \in S A$. By rotation we find that $[V, \mu]+[1,0]=[V, 0]+[1, \mu]=0$ in $X(A, D)$. Hence $\left[W, \varphi^{\prime}\right]=\left[S, \lambda^{\prime}\right]$ and we conclude that δ is well-defined. Since δ is clearly an inverse for κ, we have obtained the following proposition.

Proposition 4.3. $\kappa: X(A, D) \rightarrow\left[\left[S^{2} A, D\right]\right]$ is an isomorphism with inverse δ.
5. cone $\left(A_{1}\right) *_{S B}$ cone $\left(A_{2}\right)$ is equivalent to B in E-THEORY

Assume now that $i_{k}: B \rightarrow A_{k}, k=1,2$, are proper embeddings, i.e. that $i_{k}(B) A_{k}$ spans a dense subspace in A_{k}, and that there are sequences $R_{n}^{k}: A_{k} \rightarrow B, n=$ $1,2,3, \cdots, k=1,2$, of completely positive contractions such that $\lim _{n \rightarrow \infty} R_{n}^{k}\left(i_{k}(x)\right)=$ x for all $x \in B, k=1,2$. By Theorem 5.5 of [P 2] we have natural isomorphisms

$$
S\left(A_{1} *_{B} A_{2}\right)=S A_{1} *_{S B} S A_{2}, \quad \operatorname{cone}\left(A_{1} *_{B} A_{2}\right)=\operatorname{cone}\left(A_{1}\right) *_{\operatorname{cone}(B)} \operatorname{cone}\left(A_{2}\right) .
$$

We can then define a map $X(B, D) \rightarrow\left[\left[\operatorname{cone}\left(A_{1}\right) *_{S B} \operatorname{cone}\left(A_{2}\right), D\right]\right]$ in the following way. Let (W, φ) be an E-pair. It follows from Lemma 2.7 that there are asymptotic homomorphisms $\mu^{k}: \operatorname{cone}\left(A_{k}\right) \rightarrow D$ and $\nu^{k}: \operatorname{cone}\left(A_{k}\right) \rightarrow D, k=1,2$, such that $\lim _{t \rightarrow \infty} \mu_{t}^{1} \circ i_{1}(x)-\mu_{t}^{2} \circ i_{2}(x)=\lim _{t \rightarrow \infty} \nu_{t}^{1} \circ i_{1}(x)-\nu_{t}^{2} \circ i_{2}(x)=0$ and

$$
\lim _{t \rightarrow \infty} \varphi_{t}(x) \oplus \mu_{t}^{1} \circ i_{1}(x)-\nu_{t}^{1} \circ i_{1}(x)=0
$$

for all $x \in \operatorname{cone}(B)$. Since $\lim _{t \rightarrow \infty} \operatorname{Ad}\left(W_{t} \oplus 1\right) \circ \nu_{t}^{1} \circ i_{1}(x)-\nu_{t}^{2} \circ i_{2}(x)=0$ for all $x \in S B$, there is an asymptotic homomorphism

$$
\left(\operatorname{Ad}(W \oplus 1) \circ \nu^{1}\right) *_{S B} \nu^{2}: \operatorname{cone}\left(A_{1}\right) *_{S B} \operatorname{cone}\left(A_{2}\right) \rightarrow D
$$

such that $\lim _{t \rightarrow \infty}\left(\left(\operatorname{Ad}(W \oplus 1) \circ \nu^{1}\right) *_{S B} \nu^{2}\right)_{t} \circ j_{1}(x)-\operatorname{Ad}\left(W_{t} \oplus 1\right) \circ \nu_{t}^{1} \circ j_{1}(x)=0$ for all $x \in \operatorname{cone}\left(A_{1}\right)$ and $\lim _{t \rightarrow \infty}\left(\left(\operatorname{Ad}(W \oplus 1) \circ \nu^{1}\right) *_{S B} \nu^{2}\right)_{t} \circ j_{2}(x)-\nu_{t}^{2} \circ j_{2}(x)=0$ for all $x \in \operatorname{cone}\left(A_{2}\right)$. We claim that we can define a map $\rho: X(B, D) \rightarrow\left[\left[\operatorname{cone}\left(A_{1}\right) *_{S B}\right.\right.$ cone $\left.\left.\left(A_{2}\right), D\right]\right]$ such that $\rho[W, \varphi]=\left[\left(\operatorname{Ad}(W \oplus 1) \circ \nu^{1}\right) *_{S B} \nu^{2}\right]$. If $\kappa^{k}:$ cone $\left(A_{k}\right) \rightarrow D$ and $l^{k}: \operatorname{cone}\left(A_{k}\right) \rightarrow D, k=1,2$, are other asymptotic homomorphisms such that $\lim _{t \rightarrow \infty} l_{t}^{1} \circ i_{1}(x)-l_{t}^{2} \circ i_{2}(x)=\lim _{t \rightarrow \infty} \kappa_{t}^{1} \circ i_{1}(x)-\kappa_{t}^{2} \circ i_{2}(x)=0$ and

$$
\lim _{t \rightarrow \infty} \varphi_{t}(x) \oplus \kappa_{t}^{1} \circ i_{1}(x)-l_{t}^{1} \circ i_{1}(x)=0
$$

for all $x \in \operatorname{cone}(B)$, observe first that $\kappa^{1} *_{S B} \kappa^{2}, l^{1} *_{S B} l^{2}$ and $\mu^{1} *_{S B} \mu^{2}$ are all restrictions of asymptotic homomorphisms defined on cone $\left(A_{1} *_{B} A_{2}\right)=\operatorname{cone}\left(A_{1}\right) *_{\text {cone }(B)}$ cone $\left(A_{2}\right)$, and hence null-homotopic. Consequently $\left[\left(\operatorname{Ad}(W \oplus 1) \circ \nu^{1}\right) *_{S B} \nu^{2}\right]=\left[\left(\left(\operatorname{Ad}(W \oplus 1) \circ \nu^{1}\right) *_{S B} \nu^{2}\right) \oplus\left(\kappa^{1} *_{S B} \kappa^{2}\right) \oplus\left(l^{1} *_{S B} l^{2}\right) \oplus\left(\mu^{1} *_{S B} \mu^{2}\right)\right]$.
Note that there is a unitary $S \in M(D)$ which commutes both with $W \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1$ and $1 \oplus 1 \oplus 1 \oplus W \oplus 1 \oplus 1$, and has the property that

$$
\begin{gathered}
\lim _{t \rightarrow \infty}\left(\left(\left(\operatorname{Ad}(W \oplus 1) \circ \nu^{1}\right) *_{S B} \nu^{2}\right) \oplus\left(\kappa^{1} *_{S B} \kappa^{2}\right) \oplus\left(l^{1} *_{S B} l^{2}\right) \oplus\left(\mu^{1} *_{S B} \mu^{2}\right)\right)_{t} \circ j_{k} \circ i_{k}(x) \\
\quad-\operatorname{Ad} S \circ\left(\varphi \oplus \kappa^{1} \oplus \mu^{1} \oplus \varphi \oplus \kappa^{1} \oplus \mu^{1}\right)_{t} \circ i_{k}(x)=0
\end{gathered}
$$

for all $x \in S B, k=1,2$. By first 'rotating' $W \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1$ to $1 \oplus 1 \oplus 1 \oplus W \oplus 1 \oplus 1$ and then connecting S to 1 through a strictly continuous path of unitaries in $M(D)$, we get a homotopy connecting

$$
\left(\left(\operatorname{Ad}(W \oplus 1) \circ \nu^{1}\right) *_{S B} \nu^{2}\right) \oplus\left(\kappa^{1} *_{S B} \kappa^{2}\right) \oplus\left(l^{1} *_{S B} l^{2}\right) \oplus\left(\mu^{1} *_{S B} \mu^{2}\right)
$$

to

$$
\left(\nu^{1} *_{S B} \nu^{2}\right) \oplus\left(\kappa^{1} *_{S B} \kappa^{2}\right) \oplus\left(\left(\operatorname{Ad}(W \oplus 1) \circ l^{1}\right) *_{S B} l^{2}\right) \oplus\left(\mu^{1} *_{S B} \mu^{2}\right) .
$$

Hence $\left[\left(\operatorname{Ad}(W \oplus 1) \circ \nu^{1}\right) *_{S B} \nu^{2}\right]=\left[\left(\operatorname{Ad}(W \oplus 1) \circ l^{1}\right) *_{S B} l^{2}\right]$, and we conclude that ρ is a well-defined homomorphism. Note, however, that at this point we do not know that $\left[\left[\right.\right.$ cone $\left.\left.\left(A_{1}\right) *_{S B} \operatorname{cone}\left(A_{2}\right), D\right]\right]$ is a group.

To obtain an inverse to ρ, consider an asymptotic homomorphism $\psi:$ cone $\left(A_{1}\right) *_{S B}$ $\operatorname{cone}\left(A_{2}\right) \rightarrow D$. By Lemma 2.7 there are asymptotic homomorphisms $\nu^{k}: \operatorname{cone}\left(A_{k}\right) \rightarrow$ $D, k=1,2$, such that $\lim _{t \rightarrow \infty} \nu_{t}^{1} \circ i_{1}(x)-\nu_{t}^{2} \circ i_{2}(x)=0$ for all $x \in \operatorname{cone}(B)$ and a normcontinuous path of unitaries $\left\{W_{t}\right\}$ in D^{+}such that

$$
\lim _{t \rightarrow \infty} W_{t}\left(\psi_{t} \circ j_{1} \circ i_{1}(x) \oplus \nu_{t}^{1} \circ i_{1}(x)\right) W_{t}^{*}-\psi_{t} \circ j_{2} \circ i_{2}(x) \oplus \nu_{t}^{2} \circ i_{2}(x)=0
$$

for all $x \in \operatorname{cone}(B)$. Then $\left(W^{*}, \psi \circ j_{2} \circ i_{2} \oplus \nu^{2} \circ i_{2}\right)$ is an E-pair, and we claim that $\delta[\psi]=\left[W^{*}, \psi \circ j_{2} \circ i_{2} \oplus \nu^{2} \circ i_{2}\right]$ is a welldefined map $\delta:\left[\left[\operatorname{cone}\left(A_{1}\right) *_{S B} \operatorname{cone}\left(A_{2}\right), D\right]\right] \rightarrow$ $X(B, D)$. To see this, let $\mu^{k}: \operatorname{cone}\left(A_{k}\right) \rightarrow D, k=1,2$, be another pair of asymptotic homomorphisms and $\left\{S_{t}\right\}$ another normcontinuous path of unitaries in D^{+}such that

$$
\lim _{t \rightarrow \infty} S_{t}\left(\psi_{t} \circ j_{1} \circ i_{1}(x) \oplus \mu_{t}^{1} \circ i_{1}(x)\right) S_{t}^{*}-\psi_{t} \circ j_{2} \circ i_{2}(x) \oplus \mu_{t}^{2} \circ i_{2}(x)=0
$$

for all $x \in \operatorname{cone}(B)$. There is a unitary in $M(D)$ conjugating $\left(S, \psi \circ j_{2} \circ i_{2} \oplus \mu^{2} \circ\right.$ $\left.i_{2}\right) \oplus\left(1, \nu^{2} \circ i_{2}\right)$ to $\left(T, \psi \circ j_{2} \circ i_{2} \oplus \nu^{2} \circ i_{2} \oplus \mu^{2} \circ i_{2}\right)$, where $\left\{T_{t}\right\}$ is a normcontinuous path of unitaries in D^{+}such that
$\lim _{t \rightarrow \infty} T_{t}\left(\psi_{t} \circ j_{1} \circ i_{1}(x) \oplus \nu_{t}^{1} \circ i_{1}(x) \oplus \mu_{t}^{1} \circ i_{1}(x)\right) T_{t}^{*}-\psi_{t} \circ j_{2} \circ i_{2}(x) \oplus \nu_{t}^{2} \circ i_{2}(x) \oplus \mu_{t}^{2} \circ i_{2}(x)=0$
for all $x \in \operatorname{cone}(B)$. Then a standard rotation argument shows that

$$
\begin{aligned}
& {\left[W^{*}, \psi \circ j_{2} \circ i_{2} \oplus \nu^{2} \circ i_{2}\right]+\left[S, \psi \circ j_{2} \circ i_{2} \oplus \mu^{2} \circ i_{2}\right]} \\
& =\left[W^{*}, \psi \circ j_{2} \circ i_{2} \oplus \nu^{2} \circ i_{2}\right]+\left[1, \mu^{2} \circ i_{2}\right]+\left[S, \psi \circ j_{2} \circ i_{2} \oplus \mu^{2} \circ i_{2}\right]+\left[1, \nu^{2} \circ i_{2}\right] \\
& =\left[T\left(W^{*} \oplus 1\right), \psi \circ j_{2} \circ i_{2} \oplus \nu^{2} \circ i_{2} \oplus \mu^{2} \circ i_{2}\right]+\left[1, \psi \circ j_{2} \circ i_{2} \oplus \nu^{2} \circ i_{2} \oplus \mu^{2} \circ i_{2}\right] \\
& =0
\end{aligned}
$$

in $X(B, D)$. Since $X(A, B)$ is a group we deduce that

$$
\left[W^{*}, \psi \circ j_{2} \circ i_{2} \oplus \nu^{2} \circ i_{2}\right]=\left[S^{*}, \psi \circ j_{2} \circ i_{2} \oplus \mu^{2} \circ i_{2}\right]
$$

proving that δ is well-defined. It is straightforward to see that δ is an inverse to ρ so we have proved the following
Lemma 5.1. $\left[\left[\operatorname{cone}\left(A_{1}\right) *_{S B} \operatorname{cone}\left(A_{2}\right), D\right]\right]$ is a group, and $\rho: X(B, D) \rightarrow\left[\left[\operatorname{cone}\left(A_{1}\right) *_{S B}\right.\right.$ cone $\left.\left(A_{2}\right), D\right]$ is an isomorphism.

Note that it follows from Lemma 5.1 and [DL] that $E\left(\operatorname{cone}\left(A_{1}\right) *_{S B} \operatorname{cone}\left(A_{2}\right), D\right)=$ $\left[\left[\operatorname{cone}\left(A_{1}\right) *_{S B}\right.\right.$ cone $\left.\left.\left(A_{2}\right), D\right]\right]$.

In the following we let \mathcal{K} denote the C^{*}-algebra of compact operators on an infinite dimensional separable Hilbert space.
Theorem 5.2. Assume that $i_{k}: B \rightarrow A_{k}, k=1,2$, are proper embeddings, and that there are sequences $R_{n}^{k}: A_{k} \rightarrow B, n=1,2,3, \cdots, k=1,2$, of completely positive contractions such that $\lim _{n \rightarrow \infty} R_{n}^{k}\left(i_{k}(x)\right)=x$ for all $x \in B, k=1,2$. There is an asymptotic homomorphism $\boldsymbol{\Phi}: \operatorname{cone}\left(A_{1}\right) *_{S B} \operatorname{cone}\left(A_{2}\right) \rightarrow B \otimes \mathcal{K}$ which is invertible in E-theory.
Proof. By Proposition 4.3 and Lemma 5.1, $\rho \circ \kappa^{-1}:\left[\left[S^{2} B, D\right]\right] \rightarrow\left[\left[\operatorname{cone}\left(A_{1}\right) *_{S B}\right.\right.$ cone $\left.\left.\left(A_{2}\right), D\right]\right]$ is an isomorphism. Let $\varphi: S^{2} B \rightarrow B \otimes \mathcal{K}$ be the asymptotic homomorphism obtained by applying the Connes-Higson construction to the Toeplitzextension tensored with B. Let Φ be an asymptotic homomorphism such that $[\boldsymbol{\Phi}]=\rho \circ \kappa^{-1}[\varphi]$ in $\left[\left[\operatorname{cone}\left(A_{1}\right) *_{S B} \operatorname{cone}\left(A_{2}\right), B \otimes \mathcal{K}\right]\right]$. Standard KK- and E-theory arguments show that Φ must be invertible in E-theory because of Lemma 5.1.

6. Results in E-Theory

Theorem 6.1. Let A_{1}, A_{2}, B be separable C^{*}-algebras. Assume that $i_{k}: B \rightarrow$ $A_{k}, k=1,2$, are embeddings, and that there are sequences $R_{n}^{k}: A_{k} \rightarrow B, n=$ $1,2,3, \cdots, k=1,2$, of completely positive contractions such that $\lim _{n \rightarrow \infty} R_{n}^{k}\left(i_{k}(x)\right)=$ x for all $x \in B, k=1,2$. Let $j_{k}: A_{k} \rightarrow A_{1} *_{B} A_{2}, k=1,2$, be the natural maps. For any separable C^{*}-algebra D there are six terms exact sequences

and

Proof. Let $A_{1}^{+}, A_{2}^{+}, B^{+}$denote the C^{*}-algebras obtained by adjoining units to A_{1}, A_{2} and B. Let X denote the kernel of the natural map cone $\left(A_{1}^{+}\right) *_{S\left(B^{+}\right)} \operatorname{cone}\left(A_{2}^{+}\right) \rightarrow$ cone $(\mathbb{C}) *_{S \mathbb{C}}$ cone (\mathbb{C}) and Y the kernel of the natural map $A_{1}^{+} * A_{2}^{+} \rightarrow \mathbb{C} * \mathbb{C}$. There is then a commuting diagram

By $[\mathrm{C} 2] A_{1}^{+} * A_{2}^{+}$and $\mathbb{C} * \mathbb{C}$ are KK-equivalent to $A_{1}^{+} \oplus A_{2}^{+}$and $\mathbb{C} \oplus \mathbb{C}$, respectively, so we find that Y is equivalent to $A_{1} \oplus A_{2}$ in E-theory. In the same way it follows from Theorem 5.2 that X is equivalent to B in E-theory. The two six terms exact sequences of the theorem now arise by writing down the two six terms exact sequences of E-theory coming from the first row in (6.1), substituting $A_{1} \oplus A_{2}$ for Y and B for X, and finally identifying the resulting maps in the diagram. We leave this to the reader.

7. Conclusion

As pointed out by Germain in [G3] the six terms exact sequences of Theorem 3.3 imply that $S\left(A_{1} *_{B} A_{2}\right)$ is KK-equivalent to the mapping cone C of the embedding $B \rightarrow A_{1} \oplus A_{2}$ (and vice versa, essentially). It follows therefore from Theorem 3.3 that $S\left(A_{1} *_{B} A_{2}\right)$ is equivalent to C in E-theory under the assumptions of that theorem, and the six terms exact sequences of Theorem 6.1 follow from this by writing down the E-theory Puppe sequences for the inclusion $B \rightarrow A_{1} \oplus A_{2}$. In other words, Theorem 6.1 is a consequence of Theorem 3.3 when there are conditional expectations from the A_{k} 's onto B, and when A_{1}, A_{2} and B are all nuclear. But the assumptions of Theorem 6.1 are much weaker than this; it suffices for example that B is nuclear, or that B sits as a hereditary C^{*}-subalgebra of the A_{k} 's. Nonetheless it would be nice to be able to remove the condition in Theorem 6.1 altogether, and also in Theorem 3.3 for that matter. Let us therefore conclude by pointing out that the methods we have used can not, without some serious adjustments, give the six terms exact sequences of Theorem 6.1 in full generality.

It is clear that the assumption of Theorem 6.1 was used above to guarantee that some absorbing $*$-homomorphism cone $(B) \rightarrow M(D)$ can be extended to a *-homomorphism cone $\left(A_{k}\right) \rightarrow M(D)$. Such an extension will not exist in general. To see this observe that if $B \subseteq A$ are separable C^{*}-algebras and D is a stable separable C^{*}-algebra, then there can only be a $*$-homomorphism $\pi: A \rightarrow M(D)$ such that $\left.\pi\right|_{B}: B \rightarrow M(D)$ is absorbing when

$$
\left\{\left.\varphi\right|_{B}: \varphi: A \rightarrow D \text { is a completely positive contraction }\right\}
$$

is dense for the topology of pointwise normconvergence among all the completely positive contractions $B \rightarrow D$, see [Th1]. (In fact, this condition is also sufficient.) Now consider a separable exact C^{*}-algebra B for which $\operatorname{Ext}(\operatorname{cone}(B))$ is not a group - such C^{*}-algebras exist in abundance by [Ki1]. Then $B \subseteq A$ for some nuclear separable C^{*}-algebra A; in fact one can take $A=O_{2}$, cf. [Ki2]. That $\operatorname{Ext}(\operatorname{cone}(B))$ is not a group means that there is a $*$-homomorphism $\chi: \operatorname{cone}(B) \rightarrow Q(=$ the Calkin algebra) which does not lift to a completely positive map cone $(B) \rightarrow \mathbb{B}\left(l_{2}\right)$. Consider $D=\chi(\operatorname{cone}(B)) \otimes \mathcal{K}$ which is certainly a separable stable C^{*}-algebra. If $\varphi_{n}: \operatorname{cone}(A) \rightarrow D, n \in \mathbb{N}$, is a sequence of completely positive contractions such that $\lim _{n \rightarrow \infty} \varphi_{n}(b)=\chi(b) \otimes e_{11}, b \in \operatorname{cone}(B)$, we would clearly also have a sequence of completely positive contractions $\psi_{n}: \operatorname{cone}(A) \rightarrow Q$ such that $\lim _{n \rightarrow \infty} \psi_{n}(b)=\chi(b)$ for all $b \in \operatorname{cone}(B)$. Since cone (A) is nuclear each ψ_{n} would be liftable in the sense of [A2] and hence this would force χ to be liftable by Theorem 6 in [A2], contradicting the choice of it. It follows that for such an inclusion $B \subseteq A$ the approach we have taken to prove Theorem 6.1 does not suffice to prove the general conjecture in Etheory. The method we use to prove Theorem 3.3 requires even more; namely that we can extend some absorbing $*$-homomorphism out of B, not only to A_{1} and A_{2}, but all the way to $A_{1} *_{B} A_{2}$. The obstacle we have just identified is therefore even more serious in regards to Theorem 3.3.

References

[A1] W. Arveson, Subalgebras of C^{*}-algebras, Acta Math. 123 (1969), 141-224.
[A2] , Notes on extensions, Duke Math. J. 44 (1977), 329-355.
[B1] B. Blackadar, Weak expectations and nuclear C^{*}-algebras, Indiana Univ. Math. J. 27 (1978), 1021-1026.
[Bo] F. Boca, Free products of completely positive maps and spectral sets, J. Func. Anal. 97 (1991), 251-263.
[Br] L. Brown, Ext of certain free product C^{*}-algebras, J. Operator Theory 6 (1981), 135-141.
[CH] A. Connes and N. Higson, Deformations, morphisms asymptotiques et K-theorie bivariante, C.R. Acad. Sci. Paris, Sér. I Math. 313 (1990), 101-106.
[C1] J. Cuntz, The K-groups for free products of C^{*}-algebras, Proc. Symp. Pure Math. 38, Part 1, A.M.S. (1982).
[C2] , K-theoretic amenability for discrete groups, J. Reine angew. Math. 344 (1983), 180-195.
[C3] \quad, A new look at KK-theory, K-theory 1 (1987), 31-51.
[CS] J. Cuntz and G. Skandalis, Mapping cones and exact sequences in KK-theory, J. Operator Theory 15 (1986), 163-180.
[DE] M. Dadarlat and S. Eilers, Asymptotic unitary equivalence in KK-theory, Preprint 1999.
[DL] M. Dadarlat and T. Loring, K-homology, Asymptotic Representations, and Unsuspended E-theory, J. Func. Analysis 126 (1994), 367-383.
[G1] E. Germain, KK-theory of reduced free product C^{*}-algebras, Duke Math. J. 82 (1996), 707-723.
\qquad , KK-theory of the full free product of unital C^{*}-algebras, J. Reine angew. Math. 485 (1997), 1-10. , Amalgamated Free Product C^{*}-Algebras and KK-Theory, Fields Institute Communications 12 (1997), 89-103.
[K] G.G. Kasparov, Hilbert C^{*}-Modules: Theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), 133-150.
[Ki1] E. Kirchberg, On non-semi-split extensions, tensor products and exactness of group C^{*}-algebras, Invent. Math. 112 (1993), 449-489.
[Ki2] \quad, On subalgebras of the CAR-algebra, J. Functional Analysis 129 (1995), 3563.
[L] E. Lance, K-theory for certain group C^{*}-algebras, Acta Math. 151 (1883), 209-230.
[N] T. Natsume, On $K_{*}\left(C^{*}\left(S L_{2}(\mathbb{Z})\right)\right)$, J. Operator Theory 13 (1985), 103-118.
[P1] G.K. Pedersen, C^{*}-algebras and their automorphism groups, Academic Press, London, 1979.
[P2] , Pullback and Pushout Constructions in C^{*}-Algebra Theory, J. Func. Anal. 167 (1999), 243-344.
[Pi] M. V. Pimsner, KK-groups of crossed products by groups acting on trees, Invent. Math. 86 (1986), 603-634.
[S] G. Skandalis, Une notion de nucléarité en K-theorie (d'aprés J. Cuntz) K-theory 1, (1987), 549-573.
[Th1] K. Thomsen, On absorbing extensions, Proc. Amer. Math. Soc. 129 (2001), 14091417.
[Th2] \quad, Homotopy invariance for bifunctors defined from asymptotic homomorphisms, Preprint 1999.
[V] D. Voiculescu, A note on quasi-diagonal C^{*}-algebras and homotopy, Duke Math. J. 62 (1991), 267-271.
E-mail address: matkt@imf.au.dk
Department of Mathematics, Ny Munkegade, 8000 Aarhus C, Denmark

[^0]: Version: April 17, 2001.

