
DEPARTMENT OF OPERATIONS RESEARCH
UNIVERSITY OF AARHUS

Working Paper no. 2002/3

Production-to-order pricing based on
renewal-reward optimization

Søren Glud Johansen

ISSN 1600-8987

Department of Mathematical Science Building 530, Ny Munkegade
Telephone: +45 8942 1111 DK-8000 Aarhus C, Denmark
E-mail: institut@imf.au.dk URL: www.imf.au.dk

Production-to-order pricing based on

renewal-reward optimization

S�ren Glud Johansen�

Department of Operations Research

University of Aarhus, Denmark

February 5, 2002

We analyze two models for the pricing of customized products which we call jobs.
The models have discrete time and assume that the demand process is Bernoulli. The
random processing time of each job is predictable if and when the job is submitted
to the considered system. Its objective is to maximize the gain (the long-run average
pro�t) earned by processing the submitted jobs. The �rst model restricts the pro�t
margin of each job to be speci�ed in terms of some basic decision variables (e.g. the
mark-ups for di�erent job types), whereas the second model has unrestricted prices.
We suggest solving the two models by a modi�ed Newton-Raphson algorithm and
a tailor-made policy-iteration algorithm, respectively. Both algorithms are designed
for renewal-reward optimization and they can easily be adapted to other models than
the two analyzed in this paper. The �rst algorithm relies on our easy-to-compute ex-
pressions for the gradient and the Hessian of the gain function. The second algorithm
relies on some shadow fees introduced by us. A numerical example illustrates that a
few carefully chosen decision variables suÆce to obtain a gain close to the maximal
one.

Keywords: Make-to-order; Congestion e�ect; Pricing; Renewal-reward optimization;
Restricted policy; Markov decision process.

�Tel.: +45 8942 3547; fax: +45 8613 1769; Email: sgj@imf.au.dk

1

1 Introduction

Make-to-order �rms face the problem that each accepted order has a congestion e�ect
on the delivery lead times for future orders. When the customers are sensitive to the
lead times quoted, the congestion e�ect makes the pricing of the orders diÆcult. This
e�ect is therefore often neglected. We shall, in this paper, use a numerical example to
illustrate that ignorance of the congestion e�ect can have a severe impact on the pro�t
earned by make-to-order production. The example also illustrates that an expected
pro�t close to the maximal one can be obtained from the solution to a model where
the pro�t margin of each order is speci�ed in terms of two mark-up variables only.

Our focus is on the pricing of customized products. Often such products contain
common components, which are produced before the demand occurs. In this paper we
neglect leadtime-inventory trade-o�s (Glasserman and Wang 1998) and assume that
the common components are available at the push-pull point (Silver et al. 1998, page
541) when needed for the make-to-order production of the customized products. The
`production' may comprise assembly only, but it may also include much more, e.g. the
activities in an integrated production system. The `customized product' might be a
service or a package of services, cf. Kingsman and de Souza (1997) who have coined
the term `versatile manufacturing'.

Each customized product is a job which has a predictable processing time. Job
requests arrive to the considered �rm, referred to as the system, from external cus-
tomers. Each customer is informed of the price to be charged for processing his job
and the lead time o�ered by the system. The customer submits the job to the system
when his bene�t by doing so is larger than or equal to the price. The gain of the
system is the long-run average of the di�erence between the revenue earned and the
direct cost incurred per unit time.

The prices maximizing the gain can be computed as the solution to a Markov de-
cision model. Factors other than economic eÆciency, such as cost of analysis and un-
derstandability, may cause the decision maker not to implement this solution (Miller
and Buckman 1987). We shall therefore also study gain maximization when the prices
are restricted to be speci�ed in terms of some basic decision variables. The decision
variables may e.g. prescribe the mark-ups for di�erent job types. Our numerical ex-
ample illustrates that a few carefully chosen decision variables suÆce to obtain a gain
close to the maximal one.

Our models have discrete time and assume that the system processes the jobs one
at a time and in the �rst-come-�rst-served order. The base period is the constant time
between observation epochs, at which job requests arise from customers according to
a stationary Bernoulli process (C� inlar 1975, page 44). The processing times of the
jobs are i.i.d. integer numbers of the base periods. For any job with processing time k,
the system perceives the customer's bene�t as a random variable being stochastically
decreasing in the work backlog i (the sum of the remaining processing times for the
jobs already submitted), and the lead time is i + k.

The price to be charged for a submitted job is the sum of the direct cost incurred
by the system if the job is submitted and a pro�t margin. When the backlog is i, the
pro�t margin pi;k(x) for a submitted job with processing time k is a function of some
decision vector x. The components of this vector and the pro�t margin function can

2

be speci�ed as desired. If prices are unrestricted, then we let the vector prescribe
a pro�t margin xi;k for each i and k, i.e. pi;k(x) = xi;k. But our main focus is on
settings where the number of components of x is much smaller than the number of i
and k combinations. Each setting is modeled as a renewal-reward process. Its state
at each observation epoch is the current backlog i and we let i = 0 (identifying an
observation epoch with no backlog) be the regeneration state.

A cycle for the renewal-reward process is the time interval between two con-
secutive regeneration epochs. The expected reward R0(x) earned during a cycle
and the expected length T0(x) of one cycle are functions of the vector x chosen.
The renewal-reward theorem (Tijms 1994, Theorem 1.3.1) provides that the gain is

(x) = R0(x)=T0(x). The objective is to maximize this gain.

We derive easy-to-compute expressions for the gradient G(x) and the Hessian
H(x) of the gain function at x. These expressions are used in our modi�ed Newton-
Raphson algorithm for optimizing x. To the best of our knowledge, such an algorithm
has never before been implemented for renewal-reward optimization. The algorithm
computes a near-optimal decision vector rapidly when the dimension of the vector
is small. Since this is normally not the case if the prices are unrestricted, we then
compute the optimal prices as the solution of a Markov decision model. The transi-
tion structure of this model is exploited to design a fast tailor-made policy-iteration
algorithm. This algorithm allows in�nite state and action spaces. A novel feature of
the algorithm is that it incorporates shadow fees which ensure that the state values
occurring during the iterations become monotone like the �nal state values.

The paper is organized as follows. Related literature is reviewed in x2. Our
expressions for the gradient and the Hessian of the gain function are derived in
x3. Here we also present our modi�ed Newton-Raphson algorithm for optimizing
a decision vector which speci�es restricted prices. A numerical example is presented
in x4. Section 5 presents our tailor-made policy-iteration algorithm for optimizing
unrestricted prices and illustrates its performance for the numerical example in x4.
Section 6 has concluding remarks. Appendices A and B describe procedures to be
used by the algorithms presented in x3 and x5, respectively.

2 Related literature

Researchers at Lancaster University have developed a Decision Support System (DSS)
that seeks to integrate the marketing and the production functions of make-to-order
companies, see Hendry el al. (1998) and their references. The DSS copes with work-
load control at the job entry level and the job release level. The former level includes
quoting lead times and prices (Kingsman and de Souza 1997), but it incorporates
many more details than our two models. For example, the job entry level is split into
a customer enquiry stage and a customer con�rmation stage. This split is important
in industries where the customer may take a long time to con�rm the quote made
at the enquiry stage. Until the customer decides, the system has a contingent order
(Easton and Moodie 1999).

Elhafsi (2000) presents a model which incorporates the job entry level only. His
model focuses on a single order when it arrives to a system consisting of several work

3

stations, all subject to random failures and repairs. The aim is to schedule the order
among the work stations so as to minimize the total operating cost and/or to assign
a due date for the order that does not violate a speci�ed time window. The model is
more general than ours, because it deals with a system which has multiple resources.
However, the model and the DSS mentioned above neglect the congestion e�ect.
Moreover, the model does not incorporate how the customer reacts to the quoted
price (speci�ed as the operating cost plus a pro�t margin). Elhafsi and Rolland
(1999) emphasize that the model can be used as a tool for negotiating the delivery
date and the price for a certain upcoming order.

Johansen (1991) studies a discrete-time job-shop consisting of a single work station
under various objectives. One of the objectives studied is to maximize the gain
de�ned as the long-run average pro�t earned per base period. He observes that the
complementary distribution of a customer's random bene�t may be thought of as a
demand function and he suggests an algorithm for computing near-optimal prices in
terms of opportunity costs which incorporate the congestion e�ect. For the pro�t
objective, the opportunity cost of a job is the expected future loss of pro�t caused
when the job is submitted into the shop.

Johansen (1994) studies a continuous-time job-shop system. Its requests for ser-
vice of jobs are Poisson and the processing time of each job is a continuous random
variable. Apart from this the continuous-time system is similar to the discrete-time
system studied by Johansen (1991). The latter system can be used to compute ap-
proximately the value rate function needed to specify opportunity costs and optimal
prices for the former system. Observe that the discrete-time model studied in this
paper can also be used to approximate the similar continuous-time model for which
the job arrivals are Poisson rather than Bernoulli. Johansen (1996) shows how an
M/D/1 model for transfer pricing can be approximated and observes for this model
that the gain reduction caused by restricting the price to be the same for all jobs is
at most 3% in the numerical examples reported.

Duenyas and Hopp (1995) study the problem of quoting lead times in the context
of a GI/G/1 queue. They assume that all jobs are identical. Each submitted job
generates the same net revenue (price minus production cost) and the i.i.d. processing
times are unpredictable upon arrival. The proportion of customers that actually
submit their job depends on the quoted lead time. The system incurs a penalty if
a submitted job is delivered later than promised. The authors prove the optimality
of di�erent forms of control limit policies for the case where the jobs are processed
in the �rst-come-�rst-served (FCFS) order. They also give conditions under which
the optimal due-date-quoting/order-scheduling policy will process jobs in earliest due
date order. Duenyas (1995) assumes that there are di�erent classes of customers. All
customers demand the same product, but they di�er with respect to their preferences
for price and lead time. For the FCFS case, Duenyas formulates a semi-Markov
decision process for optimizing the price and the lead time to be quoted for each
customer, depending on the congestion in the system. He also suggests a heuristic
for dynamic price and due date setting when the order-scheduling is open for decision
making.

Most of the queueing literature on admission control assumes that the processing

4

times of the arriving jobs are exponential and not predictable upon arrival (Stidham
1985). These assumptions imply that the considered system can be modeled as
a semi-Markov decision process observed at the arrival epochs where the state is
described by the number of jobs in the system. The action speci�cation depends
on the structure of the system. References studying control exercised by charging a
price for each submitted job include Low (1974), who considers an M/M/s job-shop
with �nite capacity and Miller and Buckman (1987), who study transfer pricing in
the context of an M/M/s/s queue. The former reference advocates dynamic pricing,
whereas the latter restricts the transfer price to be the same for all jobs. Larsen
(1998) studies an M/M/1/1 job-shop controlled by charging the same price for all
submitted jobs. He demonstrates how the best price depends on the information
system (steady state information or information about the actual number of jobs in
the shop) and the objective (pro�t maximization or welfare maximization). Li and
Lee (1994) present a model of the competition on price and delivery speed between two
M/M/1 queues providing substitutable goods or services in a make-to-order fashion.
In many applications, the main reason for varying processing times is varying jobs
and it is often easy to make a good estimate of the processing time of a job upon
arrival. Therefore we �nd it unfortunate to assume that the actual processing time
of a job is not predictable upon arrival and cannot in
uence the price charged if the
job is submitted. Moreover, we doubt that it is realistic to restrict the processing
times to be exponential.

Low (1974) and Johansen (1991) present similar �xed-point algorithms for com-
puting prices which are optimal, if the set of allowable prices is �nite, and if not,
near-optimal. The algorithms optimize the gain g by solving a sequence of regen-
erative stopping problems (Miller 1981) with g-revised rewards. The two references
initialize and update g di�erently but both use the fact that each problem in the
sequence has a simple transition structure. They exploit implicitly that the transi-
tions are skip-free to the right and to the left, respectively. The former occurs when
a one-step transition from state i to state j is not possible if j > i + 1 (Weijngaard
and Stidham 1986), whereas the latter occurs when such a one-step transition is not
possible if j < i� 1 (Stidham and Weber 1989). The two skip-free structures imply
that the state values can be computed recursively, starting with the smallest state
(Low) or the largest state (Johansen). We present in x5 an improved �xed-point
algorithm exploiting that the transitions are skip-free to the left. This algorithm re-
sembles the algorithm suggested by Johansen and Larsen (2001) for the computation
of a service policy for a single-server queue with homogeneous jobs. But the latter
algorithm incorporates a shadow fee (called a test quantity) only when the system
is empty, whereas our algorithm can incorporate shadow fees for other states of the
system also.

Much recent research on stochastic optimization problems has been based on sim-
ulation. Fu (1994) and Fu and Hu (1997) review the early part of this research. It has
enabled scholars to tackle problems not tractable by other approaches. The large ac-
tivity in the area witnesses that the simulation approach is found promising by many
researchers, including the author of this paper. But we wish to emphasize that the
simulation approach is not the best one for all problems. We think that the pricing

5

problem studied in this paper is a good example of a problem which can be solved
more eÆciently by our exact calculations than by the simulation approach. Both ap-
proaches focus on the gradient of the objective function. Fox and Glasserman (1991)
present a sampling plan for settings where it is diÆcult to compute the gradient ana-
lytically. This is not the case for our discrete-time model. But for the continuous-time
model with Poisson requests and continuous processing times, the gradient cannot be
computed exactly and the simulation approach may be good because it can handle
continuous variables. We shall not in this paper report computations made by this
approach. From a computational point of view, we believe that it is more eÆcient to
approximate the continuous-time model with a discrete-time model having Bernoulli
requests and processing times which are integer numbers of base periods. The accu-
racy of the approximation and the computational e�ort depend on the base period
chosen.

3 Optimizing the decision vector

Let K be the generic random variable for the potential input to the considered system
at each observation epoch. This input is either 0 or the processing time of one job.
The processing times are i.i.d. integer numbers of base periods and take values in a
�nite set K. De�ne qk = PrfK = kg; k 2 f0g[K, where q0 is assumed to be positive.
Note that PrfK > 0g = 1 � q0 is the success probability of the Bernoulli process,
describing the requests for service of jobs. The system and/or the customers will not
accept that the lead time for a job exceeds an industry standard (Duenyas and Hopp
1995) which is N + 1 base periods. Therefore the set I of states at the observation
epochs is the integers from 0 to N . State i identi�es an observation epoch where the
backlog is i. De�ne K(i) = fk 2 Kj i+ k � N + 1g and let M be the largest integer
i for which K(i) is not empty.

The pro�t margin pi;k(x) in state i for a submitted job with processing time k
is some function of a decision vector x having components xl; l = 1; 2; :::; n. The
decision set X is the n-dimensional Euclidean space of such vectors. The net bene�t
B(i; k) of the job is the di�erence between the customer's random bene�t and the
direct cost incurred by the system if the job is submitted. The direct cost is assumed
to be deterministic. Therefore the expected pro�t earned in state i is

ri(x) =
X
k2K(i)

qk PrfB(i; k) � pi;k(x)gpi;k(x)

and the one-step transition probabilities from state i > 0 are

Pi;i�1+k(x) =

8<
:

Qi(x); k = 0
qk PrfB(i; k) � pi;k(x)g; k 2 K(i)
0; else

where
Qi(x) = 1�

X
k2K(i)

qk PrfB(i; k) � pi;k(x)g:

6

Note that Pij(x) = 0 if j < i � 1, i.e. the transitions are skip-free to the left.
The positive one-step transition probabilities from state 0 are P00(x) = Q0(x) +
q1 PrfB(0; 1) � p0;1(x)g and P0;k�1(x) = qk PrfB(0; k) � p0;k(x)g; k 2 K(0) n f1g.

We apply a slightly modi�ed version of the Newton-Raphson method to maximize
the gain. This method assumes that the gain function
(x) is twice di�erentiable,
which is the case when, for i = 0; 1; :::;M and k 2 K(i), the customer's bene�t B(i; k)
has a di�erentiable probability density function and pi;k(x) is twice di�erentiable. Let
Dl denote the operator taking the �rst partial derivative with respect to xl, and note
that Dk;l = DkDl = DlDk is the operator taking the second partial derivative with
respect to xk and xl. For any x 2 X , the Newton-Raphson method uses the gradient
G(x) and the HessianH(x) of the gain function at x to compute a hopefully improved
decision vector x̂.

Recall that the gain
(x) is the ratio of the expected reward R0(x) earned during a
cycle and the expected length T0(x) of one cycle. ThereforeG(x) is the n-dimensional
vector with components

Gl(x) = Dl
(x) =
DlV0(x)

T0(x)
(1)

and H(x) is the n� n matrix with components

Hk;l(x) = Dk;l
(x) =
Dk;lV0(x)�Gk(x)DlT0(x)�Gl(x)DkT0(x)

T0(x)
(2)

where V0(x) is de�ned with g =
(x) by V0(x) = R0(x)�gT0(x). We shall generalize
this de�nition with the same g to specify the value Vi(x) of being in any state i 2 I
when decision x is applied. We de�ne Vi(x) = Ri(x) � gTi(x) where Ri(x) is the
expected reward earned until the �rst visit into state 0 and Ti(x) is the expected
time until this visit. By conditioning on the next state following state i, it can be
concluded that

Ti(x) = 1 +
X
j2J

Pij(x)Tj(x); i 2 I; (3)

and
Vi(x) = ri(x)� g +

X
j2J

Pij(x)Vj(x); i 2 I; (4)

where J = I n f0g. The expected times Ti(x) and the state values Vi(x) for decision
x are the unique solutions to the linear equations in (3) and (4), respectively.

For any x 2 X, the strong unichain assumption holds for the Markov chain de-
scribing the states at the observation epochs because q0 = PrfK = 0g > 0. Therefore
this chain has equilibrium probabilities �j(x), which are the unique solution to the
equilibrium equations �j(x) =

P
i2I �i(x)Pij(x); j 2 I; and the normalizing equationP

j2I �j(x) = 1 (Tijms 1994, Theorem 2.3.3). The expected number of visits into
state j during a cycle is fj(x) = �j(x)=�0(x). Starting with f0(x) = 1, we conclude
from Corollary 2.3.6 in Tijms (1994) that fj(x) can be computed recursively by

fj(x) =

Pj�1
i=0 fi(x)

PN

k=j Pik(x)

Pj;j�1(x)
; j = 1; 2; :::; N: (5)

7

The expected length of one cycle is T0(x) =
P

i2I fi(x) and the expected reward
earned during a cycle is R0(x) =

P
i2I fi(x)ri(x). Lemma 1 o�ers expressions for the

derivatives needed in (1) to compute the components of G(x) and in (2) to compute
the components of H(x).

Lemma 1 For �xed x 2 X and l = 1; 2; :::n, the partial derivatives DlVi(x); i 2 I;
are the unique solution to the following linear equations in these derivatives

DlVi(x) = Dlri(x) +
X
j2J

([DlPij(x)]Vj(x) + Pij(x)DlVj(x)) ; i 2 I: (6)

Moreover,

DlV0(x) =
X
i2I

fi(x)

Dlri(x) +

X
j2J

[DlPij(x)]Vj(x)

!
; (7)

DlT0(x) =
X
i2I

fi(x)
X
j2J

[DlPij(x)]Tj(x) (8)

and, for k = 1; 2; :::n,

Dk;lV0(x) =
X
i2I

fi(x) (Dk;lri(x) + Ui;k;l(x)) (9)

where

Ui;k;l(x) =
X
j2J

([Dk;lPij(x)]Vj(x) + [DlPij(x)]DkVj(x) + [DkPij(x)]DlVj(x)) :

Proof. Following Fox and Glasserman (1991), we apply the operator Dl to get (6)
from (4). After multiplication with fi(x) in (6) and summing over all states i, we get
(7) because f0(x) = 1 andX

i2J

fi(x)DlVi(x) =
X
j2J

fj(x)DlVj(x) =
X
i2I

fi(x)
X
j2J

Pij(x)DlVj(x):

Similarly, we get (8) and (9) from (3) and (6), respectively.

For a current decision vector x 2 X with nonzero G(x), the Newton-Raphson
method (Polak 1971, page 38) assumes that H(x) is invertible and computes the
hopefully improved decision vector x̂ as x+d where the components dl; l = 1; 2; :::; n,
of the vector d are the unique solution to

nX
l=1

Hk;l(x)dl = �Gk(x); k = 1; 2; :::; n: (10)

Unfortunately, for our system it cannot be concluded in general (i) that H(x) is
invertible and (ii) that, when G(x) is nonzero,
(x̂) >
(x) for the vector x̂ speci�ed
above. But it is our experience that a near-optimal decision vector can be computed
rapidly by repeated use of the Newton-Raphson method, when a vector x satisfying

8

the conditions (i) and (ii) is found. It is also our experience that a steepest ascent
algorithm easily �nds a vector x for which (10) has a unique solution d satisfying the
condition

nX
k=1

nX
l=1

dkHk;l(x)dl = �
nX

k=1

dkGk(x) < 0 if d is nonzero (11)

and that this inequality remains satis�ed for non-optimal decision vectors with larger
gain than
(x). Therefore our iterative algorithm for computing a near-optimal
decision vector assumes that the inequality in (11) is satis�ed for the vectors occurring
during the iterations. The algorithm is started with g set equal to the gain
(x) for
the initial vector x and it consists of the following four steps.

Modi�ed Newton-Raphson algorithm

Step 1 For the current vector x, compute the gradientG(x) and its norm jjG(x)jj =qPn

l=1Gl(x)
2. Stop if jjG(x)jj is less than some pre-speci�ed tolerance. Other-

wise, compute the Hessian H(x) and compute d as the solution to (10).

Step 2 For x̂ = x+ d, compute the gain ĝ =
(x̂).

Step 3 While ĝ � g, bisect d and repeat Step 2.

Step 4 Go to Step 1 with x and g set equal to x̂ and ĝ, respectively.

Our procedures to be used in Step 1 for solving (3), (4) and (6) exploit that the
transitions are skip-free to the left. The procedures are described in Appendix A.
We apply Gauss elimination in Step 1 to solve (10). We have investigated various
approaches for what to do whenever in Step 2 it turns out that ĝ � g. It is our
experience that the simple approach described in Step 3 performs well and that
bisections of d are often prescribed in the �rst iteration only, or not at all. It is also
our experience, even for a small pre-speci�ed tolerance, that our algorithm needs only
few iterations to compute a near-optimal decision vector.

4 A numerical example

We shall illustrate how the modi�ed Newton-Raphson algorithm can be used to com-
pute pro�t margins for the numerical example presented in Johansen (1991). Re-
quests for service of jobs are Bernoulli with the success probability 9

10
, i.e. q0 = 0:10.

The processing times of the jobs belong to the set K = f2; 3; 4g and the conditional
probabilities PrfK = kjK 2 Kg are 3

10
, 4

10
and 3

10
for the three elements in K,

i.e. q2 = q4 = 0:27 and q3 = 0:36. No customer will accept that the lead time exceeds
15 base periods, i.e. M = 13 and N = 14. The net bene�t B(i; k) is uniformly
distributed over the interval [0; 100k]. The maximum gain for unrestricted prices is
59:491 (see Table 3). This is obtained when the pro�t margin in state i for a job with
processing time k is (COPP(i; k) + 100k)=2 where COPP(i; k) = vi�1 � vi�1+k is an
opportunity cost which measures the congestion e�ect of the job. Here v�1 = v0 = 0

9

iteration G(x) jjG(x)jj b x̂ ĝ

1 (11.7987,13.2747,7.6082) 19.3212 2 (123.08,198.11,291.51) 56.594

2 (-2.5038,-6.0864,-7.7604) 10.1754 0 (125.57,190.61,257.47) 58.125

3 (0.2528,0.1195,-0.2262) 0.3596 0 (126.52,191.14,255.58) 58.129

4 (-0.0005,-0.0007,-0.0005) 0.0010 0 (126.52,191.14,255.58) 58.129

Table 1: The values computed and the numbers b of bisections prescribed during 4
iterations of the modi�ed Newton-Raphson algorithm started with x = (100; 150; 200)
and g = 49:784.

and, for i > 0, vi is the value of being in state i rather than in state 0 when the
optimal policy is applied. The reference has computed vi�1�vi

100
for i = 0; 1; ::; 14.

Suppose that the prices are not allowed to depend on the actual backlog. Let
X be the set of three-dimensional vectors x and let component xk�1 prescribe the
pro�t margin for a submitted job with processing time k 2 K. If the opportunity
costs caused by the congestion e�ect are neglected, then the best margin vector is
x = (100; 150; 200) and the gain is
(x) = 49:784. This gain is 16.32% less than
the maximum gain 59.491 for unrestricted prices. Hence ignorance of the congestion
e�ect has a severe impact on the pro�t. Starting with the computed vector x and
g = 49:784, we obtain during 4 iterations of our algorithm the results reported in
Table 1. If the tolerance for the norm jjG(x)jj is below 0.3596 and above 0.0010,
then the algorithm is stopped in Step 1 of the fourth iteration and the margin vector
computed is (126:52; 191:14; 255:58) with gain 58.129. This gain is 2.29% less than
the maximum gain 59.491 for unrestricted prices. If each component of the computed
vector is rounded to the nearest integer, then the gain becomes
(127; 191; 256) =
58:128. The very small gain reduction caused by this rounding indicates that the
function
 is
at around its maximum.

In the numerical example, the net bene�t B(i; k) is (stochastically) proportional
to k when i+k � 15. Therefore it is not surprising that the best decision computed by
the algorithm lets the mark-ups for the jobs be almost proportional to their processing
times. This result makes it interesting to investigate what happens for n = 1 when the
pro�t margin function is pi;k(x) = kx where x speci�es a common mark-up per base
period. The modi�ed Newton-Raphson algorithm computes that the best common
mark-up per base period is x = 63:68 and that the gain with this mark-up is 58.127.
It is very close to the maximum gain 58.129 for the best margins computed before.

We shall now show that the gain for the numerical example can be increased
by introducing a pair (x1; x2) of mark-ups per base period and a threshold z for
the backlog. We consider three di�erent methods for computing the backlog to be
compared with z for each job. The �rst method (BEFORE) focuses on the backlog
i upon request and its margin function is

pi;k(x1; x2) =

�
kx1 if i < z
kx2 else.

The second method (INCREMENTAL) focuses on how the backlog is increased and

10

BEFORE INCREMENTAL AFTER

z (x1; x2) gain (x1; x2) gain (x1; x2) gain

0 (�; 63:7) 58.127 (�; 63:7) 58.127 (�; 63:7) 58.127

1 (53:4; 65:1) 58.584 (32:0; 65:0) 58.568 (�; 63:7) 58.127

2 (54:4; 65:8) 58.764 (46:6; 65:6) 58.729 (51:3; 64:0) 58.240

3 (55:6; 66:6) 58.910 (51:1; 66:4) 58.904 (52:7; 64:7) 58.471

4 (56:7; 67:4) 59.014 (53:4; 67:2) 59.048 (54:2; 65:7) 58.735

5 (57:6; 68:3) 59.076 (55:0; 68:1) 59.149 (55:4; 66:4) 58.884
6 (58:5; 69:2) 59.104 (56:3; 69:1) 59.213 (56:5; 67:2) 58.995

7 (59:3; 70:2) 59.098 (57:4; 70:2) 59.245 (57:4; 68:1) 59.066

8 (60:1; 71:3) 59.056 (58:3; 71:4) 59.246 (58:3; 69:0) 59.101

9 (60:8; 72:7) 58.974 (59:2; 72:9) 59.215 (59:1; 70:0) 59.104

10 (61:5; 74:1) 58.838 (60:0; 74:7) 59.147 (59:9; 71:1) 59.071

11 (62:3; 75:7) 58.629 (60:8; 77:2) 59.032 (60:6; 72:4) 58.999

12 (63:1; 77:3) 58.347 (61:5; 81:4) 58.867 (61:3; 73:9) 58.886

13 (63:6; 78:5) 58.172 (62:3; 88:9) 58.654 (62:1; 75:5) 58.694

14 (63:7;�) 58.127 (63:0; 106:1) 58.413 (62:9; 77:0) 58.423

Table 2: The best pair (x1; x2) of two mark-ups per base period for the three pricing
methods and di�erent thresholds z.

its margin function is

pi;k(x1; x2) =
i+k�1X
j=i

[x1 + (x2 � x1)1(j � z)]

where the indicator 1(j � z) is 1 if j � z and 0 else. The third method (AFTER)
focuses on the lead time i + k (the backlog if the job is submitted) and its margin
function is

pi;k(x1; x2) =

�
kx1 if i+ k � z
kx2 else.

For each of the three methods and z = 0; 1; :::; 14, we have used the modi�ed Newton-
Raphson algorithm with X speci�ed as the set of all pairs (x1; x2) to compute the
best pair and its gain. Our results are reported in Table 2 where a bar for one of
the components in a pair indicates that this component has no in
uence on the gain.
For example, if z = 0, then the gain is independent of x1, and all the three methods
specify that the best value of x2 is 63.7 and has gain 58.127 (con�rming the result
reported earlier for a common mark-up per base period). The maximum gain for each
method is written in bold face. The three maxima are, respectively, 0.65%, 0.41%
and 0.65% less than the maximum gain 59.491 for unrestricted prices. These small
percentages tell that most of the gain reduction, caused by restricting the pro�t
margins to be independent of the actual backlog or to be a common mark-up per
base period multiplied by the processing time, can be eliminated by the considered
pricing methods. The best method is INCREMENTAL, but the other two are also
rather good. The three methods perform well because they allow the price of a job

11

to depend on the actual backlog and they demonstrate that simple speci�cations of
this dependence can provide a gain close to the maximal one.

5 Optimizing unrestricted prices

The dimension n of the decision set X equals the number of all i and k combinations
when the prices are unrestricted. If this number is big, the computational burden
becomes overwhelming when we try to compute near-optimal unrestricted prices by
the modi�ed Newton-Raphson algorithm. Therefore we suggest to compute unre-
stricted prices as the solution to a Markov decision model with states i. The action
in each state i is a vector a. Its kth component is the price to be charged for a job
with processing time k. We shall present a tailor-made policy-iteration algorithm for
computing near-optimal prices. As in the original policy-iteration algorithm (Howard
1960), we decompose, in each iteration of our algorithm, the computation of an im-
proved policy into the states. Hence, improved prices are computed separately for
each state. This is much faster than computing improved prices for all i and k
combinations simultaneously.

Our algorithm does not assume that the integersM (the largest state in which the
system accepts jobs) and N (the largest state of the system) are pre-speci�ed. These
integers are now decision variables. For a pre-speci�ed small � > 0, the algorithm
computes the integersM and N and unrestricted prices, for which the gain is at most
� below the maximum gain. The algorithm assumes that the net bene�t B(i; k) is
distributed as the di�erence between the customer's bene�t (~B� ~hi)k and the direct
cost ~ck incurred by the system if a job with processing time k is submitted. Here
~h and ~c are nonnegative constants and ~B is a random variable, having di�erentiable
probability density function f with increasing failure rate. Let < denote the real
numbers. For any s 2 <, the failure (or hazard) rate is f(s)= �F (s) where �F (s) =R1
s
f(t) dt = Prf ~B � sg. The normal and many other distributions have increasing

failure rates (Barlow and Proschan 1975).
Before presenting the details of our policy-iteration algorithm, we shall explain

how it di�ers from Howard's algorithm (as it is described by Tijms (1994, pages 193-
194)). The latter algorithm assumes that the state and action spaces are �nite. Each
iteration of the algorithm consists of three steps: value determination (of the initial
policy in the �rst iteration and otherwise of the policy from the previous iteration),
value improvement and convergence test. Our algorithm allows in�nite state and
action spaces. Rather than starting the iterations with a policy, our algorithm starts
each iteration with an estimate g of the maximal gain. This estimate is speci�ed
from the outset in the �rst iteration. Otherwise it is the gain of the policy found in
the previous iteration. The �rst two steps in our algorithm are designed to compute
the integers M and N and to compute a value vi for each state i from N to 0 (and in
that order except if and when the initial N is increased in Step 2). The second step
also computes actions prescribing a pricing policy which has gain g and is �

2
-optimal

for an adapted version of the considered model. The adapted model has the same
characteristics as the considered model but, in order to obtain the gain g and to get
monotone state values, the adapted model also incorporates shadow fees. We know

12

from Theorem 4.2 in Johansen (1991) that the state values for the optimal policy are
non-increasing in i. We ensure that the state values of the adapted model have the
same monotonicity property by incorporating a shadow fee yi for the states i from m
to 0. Here m is the largest state i where the property is violated (which is indicated
by a negative number Yi computed for state i), before the model is adapted. If the
property is not violated for a positive state i, then m is set equal to 0. The third
step in our algorithm computes the true gain for the policy found in the second step.
The fourth step is a convergence test. We have experienced from numerous numerical
examples that the shadow fees introduced by us make the number of iterations needed
to compute the desired �-optimal prices small, even when the algorithm is started with
an arbitrarily chosen g-value.

Suppose that ki is the largest processing time which is accepted for jobs submitted
in state i. State i's action set A(ki) is the vectors a with components ak; k =
1; 2; :::; ki. The expected pro�t earned in state i by choosing the action a 2 A(ki) is

ri(ki; a) =

kiX
k=1

qk �F
�
~hi+

ak
k

�
(ak � ~ck)

and if i > 0 then the transition probabilities are

Pij(ki; a) =

8><
>:

Qi(ki; a); j = i� 1

qj�i+1 �F
�
~hi+ aj�i+1

j�i+1

�
; j = i; i+ 1; :::; i+ ki � 1

0; else

where

Qi(ki; a) = 1�

kiX
k=1

qk �F
�
~hi+

ak
k

�
; a 2 A(ki):

State 0's transition probability P0j(k0; a) isQ0(k0; a)+q1 �F (a1) if j = 0 and qj+1 �F
�
aj+1

j+1

�
if 1 � j � k0 � 1.

As already explained, the iterations of our algorithm start with some estimate g
of the maximum gain. Each iteration consists of the following four steps.

Tailor-made policy-iteration algorithm

Step 1 Compute the integer M so that

�F (~h(M + 1) + s)(s� ~c� g) �
�

2E[K]
for all s 2 <: (12)

Set N = M and YM+1 = g. When needed in Step 2, compute vi as g(M � i)
for i �M .

Step 2 Recursively for i =M;M � 1; :::; 0, �rst compute the largest processing time
ki, the action xi 2 A(ki) and the number Yi � Yi+1 so that

�F (~hi+ s)

�
s� ~c�

Yi + vi � vi+ki�1
ki

�
�

�

4E[K1(K > ki)]
for all s 2 <; (13)

13

Si(ki;xi) +Qi(ki;xi)Yi = vi (14)

and, for all a 2 A(ki),

Si(ki; a) +Qi(ki; a)Yi � vi +
�

4
(15)

where

Si(ki; a) = ri(ki; a)� g +

i+ki�1X
j=0

Pij(ki; a)vmaxfi;jg: (16)

Second, if N < i + ki � 1, set N = i + ki � 1. And third, if i > 0, set
vi�1 = maxfYi; 0g+ vi and yi = maxf�Yi; 0g. If i = 0, then set y0 = �Y0.

Step 3 If y0 > 0 and in the �rst iteration also if y0 < � �
2
, �rst compute the equi-

librium probabilities �j for the Markov chain having transition probabilities
Pij(ki;xi). Next, compute

ĝ = g +
MX
j=0

�jQj(kj;xj)yj (17)

and set g equal to ĝ.

Step 4 Let m denote the largest state i for which yi is nonzero. Stop in the �rst
iteration, if m = 0 and � �

2
� y0 �

�
2
. Stop in later iterations, if m = 0 and

y0 �
�
2
. Otherwise, go to Step 1.

Our procedures for the computations in Steps 1 and 2 are described in Appendix
B. The equilibrium probabilities in Step 3 are computed by (5) and the normalizing
equation. We shall use the following lemma to argue that the pricing policy computed
in Step 2 is �

2
-optimal for the adapted model. This result provides that an �-optimal

policy is found in the iteration where the algorithm stops in Step 4.
We consider how the adapted model is speci�ed in terms of the shadow fees yi

(which equal 0 for i > m). For any integers i � 0 and k > 0 and any action a 2 A(k),
the adapted reward is

r̂i(k; a) = ri(k; a)�Qi(k; a)yi

and we de�ne

V̂i(k; a) = r̂i(k; a)� g +
i+k�1X
j=0

Pij(k; a)vj:

It follows from (14) that

V̂i(ki;xi) = vi for i = 0; 1; :::;M: (18)

Lemma 2 For any integers i � 0 and k > 0,

V̂i(k; a)�
�

2
� vi for all a 2 A(k): (19)

14

Proof. If i > M then

V̂i(k; a)� vi � V̂M+1(k; a)� vM+1 =
kX
l=1

lql �F
�
~h(M + 1) +

al
l

��al
l
� ~c� g

�
�

�

2

where the last inequality follows from (12). If i � M and k � ki, then (19) follows
trivially from (15). Finally, if i � M and k > ki, then

V̂i(k; a) � vi +
�

4
+

kX
l=ki+1

ql �F
�
~hi +

al
l

�
(al � [~cl + Yi + vi � vi+l�1]) (20)

where the inequality is established by (15). Observe for l > ki that

Yi + vi � vi+l�1 =
i+l�1X
j=i

uj �
l

ki

i+ki�1X
j=i

uj =
l

ki
(Yi + vi � vi+ki�1)

where ui = Yi and uj = vj�1 � vj � uj�1; j = i+ 1; i+ 2; :::; i+ l� 1. Therefore, the
last expression in (20) is at most

kX
l=ki+1

lql �F
�
~hi+

al
l

��al
l
�

�
~c+

Yi + vi � vi+ki�1
ki

��
:

Because (13) provides that �
4
is an upper bound for this expression, we conclude from

(20) that the inequality in (19) is valid.

We obtain from (18) and Theorem 3.2.1 in Tijms (1994) that the gain is g for
the adapted model under the policy speci�ed by the computed actions xi. Moreover,
the same theorem and our Lemma 2 provide that g + �

2
is an upper bound for the

gain of the adapted model under any stationary policy. Hence the computed actions
xi specify an �

2
-optimal policy for the adapted model. For the un-adapted model,

the gain ĝ under this policy is speci�ed by (17). If m = 0 then g + �
2
+ maxfy0; 0g

is an upper bound for the maximum gain. Therefore, the algorithm is stopped in
Step 4 of the �rst iteration (where g can be any scalar) if � �

2
� y0 �

�
2
because then

an �-optimal policy is found. When the algorithm is stopped in Step 4 of a later
iteration, then either the last policy found is �-optimal because � �

2
� y0 �

�
2
or else

the policy found in the previous iteration is �-optimal.
The tailor-made policy-iteration algorithm becomes simpler when the set K and

the integer N are pre-speci�ed. Then M is the largest integer i, for which K(i) is
not empty and ki is the largest element in K(i), i.e. the computations of M satisfying
(12) in Step 1 and of ki satisfying (13) in Step 2 are not needed. If ~B is uniformly
distributed, then for each i we can in Step 2 explicitly compute

Yi = mina2A(ki)

�
vi � Si(ki; a)

Qi(ki; a)

�
(21)

and �x xi as the vector a for which the minimum is attained.

15

iteration y0; :::; ym ĝ
1 33:9; 33:9; 33:9; 33:9; 33:9; 33:9; 33:9; 30:9; 21:4; 4:2 56.402
2 20:81; 20:81; 20:81; 19:39; 14:21; 4:31 58.549
3 15:343; 10:820; 2:431 59.328
4 3:5870 59.485
5 0:12204 59.491
6 0:000156 59.491

Table 3: The �rst 1 + m components of the shadow fee vector y and the gain ĝ
computed during 6 iterations of the tailor-made policy-iteration algorithm started
with g = 49:784.

start with g = 59:104 start with g = 59:246
iteration y0; :::; ym ĝ y0; :::; ym ĝ

1 9:0241; 0:3774 59.457 5.584327 59.477
2 0.701220 59.490 0.280407 59.490
3 0.005056 59.491 0.000818 59.491

Table 4: The �rst 1 + m components of the shadow fee vector y and the gain ĝ
computed during 3 iterations of the tailor-made policy-iteration algorithm started
with g = 59:104 and g = 59:246.

We have implemented our algorithm with the above mentioned simpli�cations for
the numerical example in x4. Table 3 reports the �rst 1 +m components (with the
accuracy depending on the iteration number) of the fee vector y computed in Step 2
and the gain ĝ computed in Step 3 during 6 iterations, when the algorithm is started
with g = 49:784 (the gain of the price policy which neglects the congestion e�ect).
If the desired accuracy � for the gain is below 0.24408 and above 0.000312, then the
algorithm is stopped in Step 4 of the last reported iteration where the computed gain
is 59.491, con�rming the information in x4 about the maximum gain.

We know from Table 2 that the maximum gain for the pricing methods BEFORE
and AFTER is 59.104, whereas the maximum gain for INCREMENTAL is 59.246. If
we start with g set equal to these values, then during 3 iterations of the algorithm
we get the results reported in Table 4.

Tables 3 and 4 illustrate that our tailor-made policy-iteration algorithm rapidly
�nds a near-optimal policy. It is our experience that the algorithm is much faster
than the �xed-point algorithm presented by Johansen (1991).

6 Conclusion

We have analyzed and illustrated two models for the pricing of customized products,
which are called jobs by us. For the model with pro�t margins speci�ed in terms of

16

some basic decision variables, we presented a modi�ed Newton-Raphson algorithm for
optimizing the decision variables. For the model with unrestricted prices we presented
a tailor-made policy-iteration algorithm relying on some shadow fees introduced by
us. Both algorithms were designed for renewal-reward optimization and they can
easily be adapted to other models than the two analyzed in this paper.

Our numerical example illustrated that few carefully chosen decision variables
suÆce to obtain a gain close to the maximal one. We introduced a pair (x1; x2) of
mark-ups per base period and a threshold z for the backlog. We used three di�erent
methods for computing the backlog to be compared with z for each job and we
illustrated how they perform for the numerical example when z is varied. All three
methods performed rather well for their best z-value.

To be published elsewhere we have developed a modi�ed Newton-Raphson algo-
rithm for optimizing a pair (x; z) of decision vectors where x has real-valued compo-
nents (like x1 and x2 in our example), whereas z has integer components (like z in
our example).

Appendices

A Procedures for the modi�ed Newton-Raphson

algorithm

We shall describe the procedures used by the modi�ed Newton-Raphson algorithm
to compute, for the current decision vector x and each i 2 I, the expected time
Ti(x) and the state value Vi(x) (Procedure A1) and the partial derivatives DlVi(x)
(Procedure A2.l) for l = 1; 2; :::; n.

Because the transitions are skip-free to the left, for t0 = �TN (x) and ti = Ti(x)+
t0; i 2 J , it can be concluded from (3) that

ti�1 =
ti � 1�

PN

j=i Pij(x)tj

Pi;i�1(x)
; i 2 J : (22)

Moreover, for vi = Vi(x)� VN(x); i 2 I, it can be concluded from (4) that

vi�1 =
vi � ri(x) + g �

PN

j=i Pij(x)vj

Pi;i�1(x)
; i 2 J : (23)

Starting with tN = 0 and vN = 0, Procedure A1 �rst uses (22) and (23) to compute
ti�1 and vi�1 recursively for i = N;N � 1; :::; 1. Next, the procedure computes
T0(x) =

PN

j=0 fj(x) (= 1 +
PN

j=1 P0j(x)(tj � t0)]), V0(x) = 0 and, for i = 1; 2; :::; N ,
Ti(x) = ti � t0 and Vi(x) = vi � v0.

For l = 1; 2; :::; n, de�ne wl;0 = �DlVN (x) and wl;i = DlVi(x) + wl;0; i 2 J . It
can be concluded from (6) that

wl;i�1 =
wl;i �Dlri(x)�

PN

j=i�1[DlPij(x)]Vj(x)�
PN

j=i Pij(x)wl;j

Pi;i�1(x)
; i 2 J : (24)

17

Starting with wl;N = 0, Procedure A2.l �rst uses (24) to compute wl;i�1 recursively
for i = N;N � 1; :::; 1. Next, the procedure computes DlV0(x) by (7) and DlVi(x) =
wl;i � wl;0 for i = 1; 2; :::; N .

B Steps 1 and 2 of the tailor-made policy iteration

algorithm

The computations in Steps 1 and 2 of the tailor-made policy-iteration algorithm rely
on the following evaluation of the expected net pro�t earned per unit time in state
i. Suppose that the state values vj are computed for j � i. Consider a job with
processing time k. De�ne

ci;k = ~c +
vi � vi+k�1

k

and

�i;k(s; Y) =

Z 1

~hi+s

�
�(t)� ~hi� ci;k �

Y

k

�
f(t) dt; (s; Y) 2 <2;

where

�(t) = t�
�F (t)

f(t)

is an expected marginal revenue per unit time. Observe that �0(t) > 1 because f is
di�erentiable with increasing failure rate and that

�i;k(s; Y) =

Z 1

~hi+s

�
t� ~hi� ci;k �

Y

k

�
f(t) dt�

Z 1

~hi+s

�F (t) dt

=

�
s� ci;k �

Y

k

�
�F (~hi+ s) (25)

where integration by parts establishes the second equality.

Lemma 3 Suppose that si is chosen so that �(~hi + si) � ~hi+ ci;k +
Y
k
. Then

�i;k(s; Y) �
�F (~hi + si)

2

f(~hi+ si)
for all s 2 <:

Proof. De�ne s� = ��1(~hi+ ci;k+
Y
k
)� ~hi where ��1 is the inverse of �. For all s 2 <,

observe that

�i;k(s; Y) � �i;k(s
�; Y) = �i;k(si; Y) +

Z ~hi+s�

~hi+si

�
~hi+ ci;k +

Y

k
� �(t)

�
f(t) dt

and that si � s�. Hence, for ~hi+ si � t � ~hi+ s�, the expression in parenthesis is at
most

~hi+ ci;k +
Y

k
� �(~hi + si) = ci;k +

Y

k
� si +

�F (~hi + si)

f(~hi + si)
� 0

18

and it can be concluded that

�i;k(s
�; Y) �

�
si � ci;k �

Y

k

�
�F (~hi+ si) +

ci;k +

Y

k
� si +

�F (~hi + si)

f(~hi+ ŝ)

!
�F (~hi + ŝ):

The expression to the right of the inequality equals the desired upper bound.

Because vi = g(M � i) for i � M , it is easily seen that the expression to the left
of the inequality in (12) equals �M+1;k(s; g) for any positive integer k. Motivated by
Lemma 3 our procedure for Step 1 chooses M and sM+1 so that the conditions

�(~h(M + 1) + sM+1) � ~h(M + 1) + ~c + g (26)

and
�F (~h(M + 1) + sM+1)

2

f(~h(M + 1) + sM+1)
�

�

2E[K]
(27)

are satis�ed.
In order to present our procedure for the computations in Step 2, for 0 � i �M ,

j � 1 and b 2 A(j) we de�ne

Zi;j(b) =
g �

Pj

k=1 kqk
�F (~hi+ bk)(bk � ci;k)

1�
Pj

k=1 qk
�F (~hi+ bk)

and

Ui;j(b) =

jX
k=1

qk

���k[�(~hi+ bk)� ~hi� ci;k]� Zi;j(b)
��� :

For each state i, the purpose of the procedure is to compute the integer ki, the vector
bi 2 A(ki) and the scalar si so that

�(~hi+ si) � ~hi + ci;ki +
Zi;ki(bi)

ki
; (28)

�F (~hi+ si)
2

f(~hi + si)
�

�

4E[K1(K > ki)]
(29)

and
Ui;ki(bi) �

�

4
:

Then, for Yi = Zi;ki(bi), Lemma 3 provides that (13) is satis�ed. Moreover, when xi
is the vector with components xik = kbik; k = 1; 2; :::; ki, it can be concluded that
(14) and (15) are satis�ed.

Procedure for state i

Step 0 If i = M , then set sM = sM+1, compute the smallest kM satisfying (29) for
i = M and let b 2 A(kM) have the components bk = sM ; k = 1; 2; :::; kM .
If i < M , then set ki = ki+1 + 1 and let b 2 A(ki) have the components
bk = bi+1;k; k = 1; 2; :::; ki+1, and bki = si+1.

19

Step 1 While Ui;ki(b) >
�
4
, repeat to replace b with a vector b̂ (computed as de-

scribed below) having the property Zi;ki(b̂) < Zi;ki(b) < Yi+1.

Step 2 Compute si so that (28) is satis�ed for bi = b. If (29) is satis�ed, then stop
after setting bi = b and Yi = Zi;ki(b). Otherwise, �rst repeat to increase ki by
one and to set bki = si until (29) is satis�ed. Next, go to Step 1.

The computation in Step 1 of b̂ for the current vector b relies on approximations.
For each k = 1; 2; :::; ki, de�ne �k = f(~hi + bk) and �k = bk + �F (~hi + bk)=�k.
We approximate �F (~hi + s) by �k(�k � s) and conclude from (25) that �i;k(s; Y)
is approximated by (s � ci;k �

Y
k
)�k(�k � s). For any scalar Y , the maximum value

of this quadratic function is �k(�k � b�k(Y))
2, where

b�k(Y) =
�k + ci;k +

Y
k

2

is the s-value for which the maximum is attained. Let a�(Y) 2 A(ki) have the
components kb�k(Y); k = 1; 2; :::; ki; and note that we can approximate

ri(ki; a
�(Y))� g +Qi(ki; a

�(Y))Y +

i+ki�1X
j=0

Pij(ki; a
�(Y))vmaxfi;jg � vi

by

Y +

kiX
k=1

kqk�k

�k � ci;k �

Y
k

2

!2

� g:

The largest root of this quadratic function is

Ŷ = �Y +

vuut �Y 2 �

Pki
k=1 kqk�k(�k � ci;k)

2 � 4gPki
k=1

qk�k

k

where

�Y =

Pki
k=1 qk�k(�k � ci;k)� 2Pki

k=1
qk�k

k

:

The vector b̂ is computed so that���k[�(~hi + b̂k)� ~hi� ci;k]� Ŷ
��� � �

4
; k = 1; 2; :::; ki:

References

[1] Barlow, R.E., F. Proschan. 1975. Statistical Theory of Reliability and Life Test-

ing. Holt, Reinehart and Winston, New York.

[2] Bazaraa, M.S., H.D. Sherali, C.M. Shetty. 1993. Nonlinear Programming, 2nd
Ed. John Wiley and Sons, New York.

20

[3] C� inlar, E. 1975. Introduction to Stochastic Processes. Prentice-Hall, Englewood
Cli�s.

[4] Duenyas, I. 1995. Single facility due date setting with multiple customer
classes. Management Sci. 41(4) 608-619.

[5] |, W.J. Hopp. 1995. Quoting customer lead times. Management Sci. 41(1) 43-
57.

[6] Elhafsi, M. 2000. An operational decision model for lead-time and price quotation
in congested manufacturing systems. European J. Oper. Res. 126 355-370.

[7] |, E. Rolland. 1999. Negotiating price delivery date in a stochastic manufac-
turing environment. IIE Transactions 31(3) 255-270.

[8] Easton, E.F., D.R. Moodie. 1999. Pricing and lead time decisions for make-to-
order �rms with contingent orders. European J. Oper. Res. 116(2) 305-318.

[9] Fox, B.L., P. Glasserman. 1991. Estimating derivatives via Poisson's equa-
tion. Probability in the Engineering and Informational Sciences 5 415-428.

[10] Fu, M. 1994. Optimization via simulation: A review. Annals of Oper. Res. 53

199-247.

[11] |, J.-Q. Hu. 1997. Conditional Monte Carlo. Kluwer Academic Publishers,
Boston.

[12] Glasserman, P., Y. Wang. 1998. Leadtime-inventory trade-o�s in assembly-to-
order systems. Oper. Res. 46(6) 858-871.

[13] Hendry, L.C., B.G. Kingsman, P. Cheung. 1998. The e�ect of workload control
(WLC) on performance in make-to-order companies. J. Oper. Management 16(1)
63-75.

[14] Howard, R.A. 1960. Dynamic Programming and Markov Processes. John Wiley
and Sons, New York.

[15] Johansen, S.G. 1991. Optimal prices of a job shop with a single work station: a
discrete time model. International J. Production Econom. 23 129-137.

[16] |. 1994. Optimal prices of an M/G/1 jobshop. Oper. Res. 42(4) 765-774.

[17] |. 1996. Transfer pricing of a service department facing random demand. In-
ternational J. Production Econom. 46-47 351-358.

[18] | , C. Larsen. 2001. Computation of a near-optimal service policy for a single-
server queue with homogeneous jobs. European J. Oper. Res. 134(3) 648-663.

[19] Kingsman, B.G., A.A. de Souza. 1997. A knowledge-based decision support sys-
tem for cost estimation and pricing decisions in versatile manufacturing compa-
nies. International J. Production Econom. 53(2) 119-139.

21

[20] Larsen, C. 1998. Investigating sensitivity and the impact of information on
pricing decisions in an M/M/1/1 queueing model. International J. Production
Econom. 56-57 365-377.

[21] Li, L., Y.S. Lee. 1994. Pricing and delivery-time performance in a competitive
environment. Management Sci. 40(5) 633-646.

[22] Low, D.W. 1974. Optimal dynamic pricing policies for an M/M/s queue.
Oper. Res. 22 545-561.

[23] Miller, B.L. 1981. Countable-state average-cost regenerative stopping prob-
lems. J. Appl. Prob. 18 361-377.

[24] |, A.G. Buckman. 1987. Cost allocation and opportunity costs. Management

Sci. 33(5) 626-639.

[25] Polak, E. 1971. Computational Methods in Optimization. Academic Press, New
York.

[26] Press, W.H., et al. 1989. Numerical Recipes in Pascal. Cambridge University
Press, Cambridge.

[27] Silver, E.A., D.F. Pyke, R. Peterson. 1998. Inventory Management and Produc-

tion Planning and Scheduling, 3rd Ed. John Wiley and Sons, New York.

[28] Stidham, S. 1985. Optimal control of admission to a queueing system. IEEE
Trans. Auto. Control AC-30 705-713.

[29] |, R.R. Weber, 1989. Monotonic and insensitive optimal policies for control of
queues with undiscounted costs. Oper. Res. 37(4) 611-625.

[30] Tijms, H.C. 1994. Stochastic Models. John Wiley and Sons, Chichester.

[31] Wijngaard, J., S. Stidham. 1986. Forward recursion for Markov decision
processes with skip-free-to-the-right transitions, part I: Theory and algo-
rithms. Math. Oper. Res. 11(2) 295-308.

22

