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Subregular nilpotent representations of Lie algebras
in prime characteristic

Jens Carsten Jantzen

Introduction

Let G be a reductive algebraic group over an algebraically closed field K of
prime characteristic p > 0. This paper deals with certain representations of the Lie
algebra g of G. For the purpose of this introduction assume that G is semi-simple
and simply connected, that the root system R of G is irreducible, and that p is
larger than the Coxeter number h of R. (If R is of type Es or Fy, assume that
p > h + 1; this restriction should be unnecessary, but my proofs require it.)

Each simple g-module has a p-character; that is a linear form y on g such
that all 22 — 2Pl — y(2)P1 with = € g annihilate the module. Here 27 is the p-th
power of © in the universal enveloping algebra U(g) and « — 2P is the p—th power
map on the Lie p—algebra g. A general result due to Kac and Weisfeiler reduces
the problem of describing all simple modules basically to the case where the p—
character y is nilpotent; this means that y vanishes on some Borel subalgebra
of g. Due to work by Curtis, Friedlander, Parshall, and Panov one then has a
classification of the simple modules in case x has a certain special form (“standard
Levi form”). For x not of this form so far no classification of the corresponding
simple modules has been known.

We look in this paper at the case where y is subregular nilpotent. Here “sub-
regular” means that the orbit of y under the coadjoint action of G has dimension
2(N —1) where 2N = |R|. A subregular nilpotent y has standard Levi form if and
only if R has type A,, or B,,. In those two cases I have given a detailed description
of the corresponding simple modules in [10]. For the other types the results in this
paper are new. In order to describe them I first need some notation.

Let T be a maximal torus in G, let X be the character group of T and § the
Lie algebra of T'. Choose a basis II for the root system R C X. Set p equal to half
the sum of the positive roots, and let «ag denote the unique short root that is a
dominant weight. (If all roots have the same length, then all roots are short, and
none is long.) Set II=TU{—ac}.

Consider the algebra U(g)® of G-invariants in U(g). Each A € X defines a
“central character” ceny : U(g)® — K such that U(g)“ acts via ceny on a highest
weight module with highest weight A. Fix a subregular nilpotent y. Denote for
each A € X the category of all finite dimensional g-modules M that are annihilated
by all 2P — 2Pl — y(2)P1 with € g and such that U(g)® acts via ceny on all
composition factors of M.

Assume first that all roots in R have the same length. (This is the case where
our results are most complete.) Let A € X such that 0 < (A + p,a") < p for all
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positive roots a. (We denote by a" the coroot corresponding to a.) Then there
are up to isomorphism |II| simple modules in Cx. We can denote them by L? with
a € II such that

o O FpaipN Tt if o €11,
dimn Lo = {<p ~ Ot gV i o = —a, 1)

Define integers m, for all o € II by m_a, = 1 and af = Eﬁen mp3Y. Let QX
denote the projective cover of L in Cy. Then

Q2 Lg] = |W|mqmg for all o, 3 € II. (2)

Here W is the Weyl group of R and we write [M : L] for the multiplicity of a
simple module L as a composition factor of a module M.

If x vanishes on the “standard” Borel subalgebra (corresponding to the posi-
tive roots), then one can define “baby Verma modules” Z, (). One gets then

[Z (\) : L] = ma for all o € II. (3)
The extension group (in Cy) of two non-isomorphic simple modules is given by

win(f A o
unless R is of type A; where one has to replace K by K?. I do not know how big
the Ext group is in case o = (3; it will be non-zero in most cases.

The result on the number of simple modules in Cy as well as the formula in
(2) for the Cartan matrix confirm conjectures by Lusztig.

If we consider more generally A € X such that 0 < (A + p,a") < p for all
positive roots «, then the results in (1), (2), and (3) extend if we drop all Lg with
(A + p,8Y) = 0 and if we replace |W| in (2) by |[WeA|. (We use here the ‘dot
action’ where we\ = w(A+ p) — p.) In types A, and D,, we get thus a description
of all possible Cy (that depends only on WA+ pX), while there remain some open
problems in type F,.

Consider next R of type B,, C,,, or F;. Choose again a weight A\ € X such
that 0 < (A + p,a”) < p for all positive roots . In this case there is one simple
module L) corresponding to each short root a € ﬁ, and one ezpects that there
are two simple module Li‘m and Li‘w corresponding to each long root o € II. This
expectation is known to hold in type B,; in types C, and Fj; I cannot exclude
that we get only one simple module corresponding to a given long simple root.

The formulas in (1)—(4) extend to the present situation as long as all roots
occurring are short. The dimension formula (1) holds also for the simple modules
corresponding to long roots. If our expectation holds, then one gets Li‘w from
Li‘m by twisting with the adjoint action of a suitable element in the centraliser of
X in G. In (2)—(4) one has to make then minor changes in case long roots occur.



For example, if « is long, then one should divide the right hand side in (3) by 2.
If o, 3 are long with (o, #) < 0, then one can choose the numbering of the simple
modules such that

K, ifi=jy,
0, otherwise.

Ext'(L) ;, Ly ;) ~ {

a,)

There are again similar results for all A € X such that 0 < (A4 p,a") < p for
all positive roots a. In types B, and (), these A suffice to understand all possible
Cy.

In type G our results are much weaker.

Let me briefly describe the main steps in the proof of the results. We first
construct a chain of submodules in a baby Verma module. Using the Kac-Weisfeiler
conjecture (Premet’s theorem) one can show that this is a composition series. (In
the case of two root lengths the argument is actually slightly more complicated.)
We then show that all composition factors can be described as induced modules
from minimal parabolic subalgebras of g. (These results are contained in Section
D and build on earlier work on translation functors and submodules of baby Verma
modules in Sections B and C.)

The main problem then is to decide when two factors in our composition
series are isomorphic to each other. In order to show that two modules are not
isomorphic to each other, we apply suitable translation functors and show that the
modules behave differently under them. In order to show that two modules are
isomorphic to each other, we use a deformation argument to construct a non-zero
homomorphism. This is done in Section F after some preparations in Sections A
and E. This is followed by an investigation of the action of the centraliser in G of
Y on the simple modules.

The results on the Cartan matrix and the Ext groups are contained in Sections
G and H. Here we use “translation through the walls” as a main technique.

Much of this work was done while I was visiting the SPIC Mathematical
Institute (now: Chennai Mathematical Institute) and the Tata Institute of Fun-
damental Research. I would like to thank all those who made those stays possible
and enjoyable, in particular C. S. Seshadri and K. N. Raghavan, V. B. Mehta and
A. J. Parameswaran. I also would like to thank Jim Humphreys for several useful
suggestions.



A

A.1. Let K be an algebraically closed field of characteristic p > 0. Let G be a
reductive algebraic group over K and denote by g the Lie algebra of G. This is
a restricted Lie algebra as the Lie algebra of an algebraic group; we denote the
p-th-power map by = — z[P.

Let T be a maximal torus in G and set h = Lie(T). Let X = X(T) the
(additive) group of all characters of T and let R C X be the root system of G.
For each o € R let g, denote the corresponding root subspace of g. We choose a
system R™T of positive roots. Set n* equal to the sum of all g, with a > 0 and n™
equal to the sum of all g, with a < 0. We have then the triangular decomposition
g=nt@hdEn" of g. Set bt = hdnT. All of these Lie subalgebras (h, n™, n™, b™)
of g are Lie algebras of closed subgroups of G and hence restricted subalgebras of
g.

For each a € R let o denote the corresponding coroot. Denote then by sq 5
(for all n € Z) the (affine) reflection given by sq.n(1t) = p — ({, @) — n)a for all
p € X. Write W for the Weyl group (generated by all s4 = sq,0), and write W),
for the affine Weyl group generated by all s4 pmp with m € Z and o € R. Then W),
contains all translations by pa with o € R, and W), is generated by W and these
translations.

Each p € X defines by taking the derivative a linear form dp on . The map
p — dp yields an embedding of X/pX into h*. If Ay, A2,..., \; is a basis of X over
Z, then the d\; are a basis of h* over K. There exists for each a € R an element
ha € B such that dp (hy) is the reduction modulo p of (i, oY) for each p € X. We
choose for each root a a basis vector x,, for g, such that always [z, 2_0] = ha.

We have :1;[5] =0 and h[cf] = h, forall o € R.

Let p € X @z Q be a weight with (p,a") = 1 for all simple roots a. We
shall use the ‘dot action” of W or W), on X given by weA = w(A + p) — p. (It is
independent of the specific choice of p.)

We denote the universal enveloping algebra of g by U(g). For each x €
g* set Uy(g) equal to the factor algebra of U(g) by the ideal generated by all
zP —zlPl — \(2)? with = € g. We use analogous notations for restricted subalgebras

of g.

A.2. Each f € h* defines a one dimensional h—module Ky [with each h € §
acting as multiplication by f(h)]. There exists y(f) € h* such that Ky is a
Uy(py(b)-module, i.e., with x(f)(h)? = f(h)P — f(RI?]) for all b € h. So we have in

pgrticular
X(F)(hg)" = f(hg)" — f(hg)  forall f € R (1)
and
flhg) € Fp = x(f)(hg) = 0. (2)

Any fi1, f2 € h* satisfy obviously

X(f1 + f2) = x(f1) + x(fo2)- (3)



We have clearly y(p) = 0 for all ¢ € X, hence

N(f ) =x(f)  forall feh*, ueX. (4)

Here (as usual) we write p instead of dyu by abuse of notation.
For each y € g* set

Av={Ffeb" [ xp=x(f)} (5)

Given f € h* we can regard Ky as a bT-module with n™ acting trivially. This is
then a U (b")-module for all y € g* satisfying x(nT) = 0 and f € A,. For all
these x we get then an induced U, (g)-module (a “baby Verma module”)

Z\(f) = Ux(g) @u,o+) Ky (6)

Denote its “standard generator” 1 @ 1 by vs. As before we usually write Z,(\)
instead of Z, (d\) for A € X; we should keep in mind that Z,(\) depends only on
d\, hence on the coset A\ + pX.

If f' € b* satisfies f'(hg) = 0 for all § € R, then we can extend Ky to a
g-module with all 25 acting as 0. This is then a U, (/) (g)-module where we extend
X(f") to a linear form on g such that x(f')(nt +n~) = 0. A trivial form of the
tensor identity yields then

Zx(f) @ Ky o Zx—i-x(f’)(f + f/) (7)
for all f € h* and y € g* with f € A, and x(nT) =0.

A.3. TFix a simple root a for the rest of Section A. Denote by p, = bT 4+ g_,, the
corresponding parabolic subalgebra. For all f € h* and y € g* with y(nT) =0
and f € A, consider the induced U, (p,)-module

Zy,a(f) = Ux(pa) @u,o+) Ky (1)

Denote the “standard generator” 1 @ 1 now by v}. It satisfies :1;51)} = 0 for all
B € Rt and hv = f(h)v} for all h € h; the :Jc"_avgC with 0 <1 < p are a basis of
Zy.o(f). We have

:L'a(:zji_av}):i(f(ha)—l—l—i)xi__;v} forO0<i<p
and :I;g(xi_av}) =0 for all 3 € R* with 8 # «.
Suppose now that
flhe) € Fy. (2)

Let d be the integer with 0 < d < p and f(ha) + 1 = d1 in F,. Then 2% vo
is annihilated by all x5 with 3 > 0. It follows that we have a homomorphism of
Uy (po)—modules

o Zyolf —da) — Zy o(f) (3)
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given by p(v}_4,) = x‘iav}. [Note that Z, o(f — da) makes sense because x(f) =
V(f —da) by A2(4),]

If x(x—a) # 0, then ¢ is an isomorphism since 2’ , acts as the scalar xy(z_q)?
on these modules. If x(z_o) = 0, then the image of ¢y is spanned over K by all
:Jc"_avgC with d < ¢ < p. In this case the cokernel of ¢y [the factor module of
Zy.o(f) by that image] has dimension d; let us denote it by L, o(f). Note that
Lyo(f) = Zya(f) in case d = p. If d < p, then the image of ¢y is clearly
isomorphic to Ly o(f — da).

If f € h* satisfies f'(h,) = 0, then we can extend Ky from a bt—module to
a Po-—module such that x_, acts as 0. This is then a UX(f/)(pa)fmodule where we
extend x(f’) to a linear form on p, such that y(f')(nT +g_o) = 0. We get then
las in A.2(7)] first Z o(f) @ Kpr >~ Z, 1 (p),0(f + ') and then

Lyalf) @ Ky =~ Lx—i-x(f’),a(f + f/) (4)
whenever L, o(f) is defined.

p

A.4. Let again f € h* and y € g* with y(nT) = 0 and f € A,. We have by
transitivity of induction an isomorphism of U, (g)-modules

Z\(f) — U(8) Ot (pa) Zxalf) (1)

that maps vy to 1 @ v}. If f(ha) € Fp, then we get from A.3 an induced homo-
morphism of U, (g)-modules

P Zy(f = da) — Z\(f) (2)

where d is the integer with 0 < d < p and f(hy)+1=d1 in F,.
If x(z—_o) # 0, then ¢/ is again an isomorphism. If y(x_,) = 0, then we
denote the cokernel of ¢/ by Z,(f, ). So we have then an exact sequence

Z(f —da) 25 Z(f) —s Zo(f.a) = 0. (3)

Since induction is exact in our situation, we can identify Z, (f, o) with the module
induced from the cokernel of ¢:

Z\(f,a) = U(9) @t (pa) Lx,alf)- (4)

We have dim Z, (f,a) = dp™V = where N = |RT|. If d = p, then Z,(f,a) = Z,(f).
If d < p, then the image of ¢/ is isomorphic to Z,(f — da, ).

We shall use the notation v also for the image in Z, (f,a) of the standard
generator of Z,(f).

If f" € h* satisties f'(hg) = 0 for all 3 € R, then we get (as at the end of A.2)
a Uy(py(g)-module Ky where we extend x(f’) to a linear form on g such that
X(f)(nT +1n7) = 0. One checks easily that A.2(7) induces an isomorphism

ZX(fvoé)@I(f' 2Z)(-l-)((f’)(f—I_flvoé) (5)
whenever Z,(f,a) is defined.
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A.5. Let R’ be a root subsystem of R. Then g’ = h & @BER’ gg the Lie algebra
of a reductive closed subgroup of G. We can then apply A.2 also to g’ working
with b+ N g’ instead of b*. We shall write then

ZX(fQE'/) = UX(E'/) ®UX(bJrﬁg’) Ky (1)

for the analogue of Z,(f). In case a € R’ we can also extend A.3/4 and get

Zy(f,e:8") = U(@) Qi pang) Dyalf) (2)

as an analogue of Z, (f, ). We do not introduce extra notations for the analogues
of Z, o(f) and Ly o(f) because the analogous U, (p, N g’ )-modules are just the
restrictions of the corresponding U, (po)—modules.

A.6. In some cases we shall have to consider for a given f € h* at the same time
all x such that Z,(f,«) is defined. In that situation it will be convenient to work
with a slightly modified notation.

Set

X={feb"[flha) €Fp}. (1)
This is a union of p affine subspaces of h* of codimension 1 unless h, = 0 (in which
case X = h*). Set

ZE={xea" [x(pa)=0}. (2)
Extend each x(f) to g such that x(f)(n™4+n7) = 0. Then Z,(54+,(f, @) is defined
for all f € X and y € =. We write

Z(fix,0) = Zy(pyaxfr ). (3)

Note that then also all Z(f + u, x,a) with p € X are defined because f + p € X.

A.7. Proposition: Let p1,p9 € X. For each integer m the set

{(f.x) € ¥ x 2| dim Homg(Z(f + pi1, X, ), Z(f + pa. x,)) >m} (1)

18 closed in X x =.

Proof : The point is to show that the Hom space in (1) can be described as a space
of solutions to a system of linear equations where the matrix of the system has
size independent of (f, x) and entries that are polynomial functions of f and y. If
we have, say, [ unknowns, then the Hom space has dimension > m if and only if
the rank of the matrix is <[ —m if and only if all ({ —m + 1) x (I —m + 1) minors
of the matrix are 0. This condition clearly defines a closed subset of X x =.

In order to show that we are in a situation as described above, let me introduce
some notation. Let 2/ be the set of all RT—tuples of non-negative integers. To
each r = (r())s € B we associate elements

r, = H xr;(g) and :1:;',' = H :1;;(6)
>0 B8>0
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in U(g) where these products are to be carried out in some fixed order. That order

r(a)

is arbitrary except that x_," should occur in z as the factor most to the right.
Choose a basis hy, ha,...,h, of h. Let & be the set of all n—tuples of non-
negative integers. Associate to each t = (¢(¢)); € & the element

hy = ﬁ hf(l)
=1

in U(h) C U(g). So the
z; het with r,s € R, 1€ 6

are a PBW basis of U(g).

Let d; and dy be the integers with 0 < d; < p and (f + p;)(ha) + 1 =d;1 in
F,. Set R, equal to the set of all r € R with r(a) < d; and r(3) < p for all other
positive roots. Then the x vy, with r € R, are a basis of Z(f + p;, x, a).

Claim: Let a € g. There exist ¢ _(a, f,x) € K[X x Z] such that

ATy Vfpp; = Z cir(a7f7X) Ty Uftp (2)

sENR;

for all r € R;.

Well, to start with there are ¢ ¢4 r(a) € K (independent of f and y, almost
all equal to 0) such that

- Z Z Z Cs,t,s/, r l’ htx

SERLIEG s'eR

in U(g). It follows that

axyvprn = Y Y Csron(@)(f 4 pi)(ha)es vpp,. (3)

SERLES

Here 0 denotes the BT —tuple with all components equal to 0. Given s € R there
exist unique s, s” € R with s(8) = s'(8) + ps”(5) and 0 < s'() < p for all 5. We
denote then s’ by s;cq. Then we have

xs_vf‘i'ﬂi = bs(X)xs_rede—l—ui with bs(X) = H X(x—ﬂ)ps (ﬁ)
s"(8)>0

If sred(a) > d;, then 2 vpy,, = 0. So it is enough to consider in (3) only s with
Sred € R;. We get now a formula as in (2) with

clafox) = Y Y balxX)es nor(a)(f + i) ().

s'ER,s= sr tes
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This sum is a regular function on X x =, since each by () is polynomial in x and

each
"

(f + /M)(ht) = H(f + /M)(hi)t(i)

=1
is polynomial in f.
This finishes the proof of the claim. We now return to the proof of the

proposition. The space of all linear maps from Z(f + p1, x, a) to Z(f + p2, X, «)
has basis F,, with r € Ry, s € Ry such that for all ' € R,

3 = if v’ =r;
Eg(z vpy ):{l's AL .’
s\l U4y 0, otherwise.

Given a € g we can now use (2) to evaluate each

(@ Bar) (5 0p4) = a (Bup(2504,)) — Earlazyvgsn,)

and get
a-E, = Z c%s(a,f,x)Etr — Z c;u(a,f,x)Esu.

tERo u€NRy

So we have a formula of the form

a - Esr — Z Z bs’,r’,s,r(aa f7 X)Es’r’

r! 6%1 8/6%2

where the by v 5 »(a, f, x) are regular functions of (f, x) € X x =.

Now Homy(Z(f + p1,x, ), Z(f + p2, X, «)) identifies with the space of all
(M2 x Ry )—tuples (r4,)rs of elements in K with a-> x4 Es =0foralla € g.
It actually suffices to take for a all elements in a basis (br a generating system) of
g. This shows that we indeed get the Hom space as a solution space of a linear
system of equations as described at the beginning of the proof. The proposition
follows.
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B

Keep the assumptions and notations from Section A. We shall have to make in
this section (and in most sections to come) two restrictive assumptions on g: We
assume that

(B1) The derwed subgroup DG of G is simply connected
and
(B2) The group X/ZR has no p-torsion.

These assumptions are needed to introduce translation functors with “nice” prop-
erties, see B.1 and B.3 below. If GG is semi-simple our assumptions mean that X is
equal to the weight lattice of R and that p does not divide the index of connection,
i.e., the index of the root lattice ZR in the weight lattice. If you want to compare
with the assumptions in [11], 6.3: Our (B1) is called (H1) there, our (B2) follows
from (H1) and (H3) there, see [11], 11.2.

B.1. Fix y € g* with y(b%) = 0. The set A, from A.2(5) consists then of all du
with ¢ € X. A simple U, (g)-module is therefore the homomorphic image of some
Z\(p) with g € X, cf. [10], 1.4 or [11], 6.7.

The subalgebra U(g) (cf. [11], 9.1) of the centre of U(g) acts on each Z,(\)
via a character. Let Cy denote the category of all finite dimensional U, (g)-modules
M such that U(g)® acts on each composition factor of M via the same central
character as on Z,(\).

Our assumption (B1) implies that

Cr=Cyp <= AW+ pX, (1)

cf. [11], 9.4. The simple modules in Cy are the simple homomorphic images of
the Z,(w«\) with w € W. Since all these Z,(w.\) define the same class in the
Grothendieck group (cf. [10], 1.5) we get also that the simple modules in Cy are
the composition factors of Z, (\).

The category C of all finite dimensional U, (g)-modules is the direct sum of
all Cx with A running over representatives for the orbits on X of the semi-direct
product of W and pX [acting via (w,pr) - A = we\ + pr]. Each (closed) alcove
with respect to W), contains a representative of each orbit, cf. [11], 11.19 or [12],
4.1. In general, it will contain more than one representative.

If M isin C, let pry(M) denote the largest submodule of M that belongs to
Cx. Then M is the direct sum of pry(M) and other pr, (M ). We get thus an exact
functor pry : C — Cy.

B.2. Given A g in a fixed (closed) alcove C' with respect to W), we define a
translation functor T} : Cx — C, (as usual) by

I{(V) =pr,(E@V) (1)
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where E is the simple G—module with highest weight in W(x — ). (This makes
sense: see the argument in [12], 4.7 where there is a more restrictive assumption
on x, which however does not affect the argument here.) We have clearly T} =
Tuqf.'f:]fy” for all w € W and v € X. Note that we get (in general) more than one

functor Cy — C, for fixed A and p: if ¢ and p’ are two distinct weights in C' with

p' € Wep + pX, then T} and T)’f/ will be two (in general:) distinct functors from
C» to CH = CM"

We have as usual that each T} is exact and that T} and Tlf‘ are adjoint to
each other: The natural isomorphism Homgy(E @ M, N) — Homg4(M, E* @ N)

induces an isomorphism
Homg (T (M), N) == Homg(M, T} (N)), (2)
cof. [12], 4.7.

B.3. For the next result we have to use the assumption (B2) made at the begin-
ning of this section.

Proposition: Let \,p € X and w € W,. Suppose that there exists a closed
alcove with respect to W, containing X\ and p. Then Ty Z,(ws)\) has a filtration
with factors Z,(wwyep) with wy € Wy, wieA = X, There is one factor for each
weight of the form wwiep.

Proof : Consider E as in the definition of T}'. The tensor identity (see [12], 1.12(1))
implies that E @ Z,(w.\) has a filtration with factors Z,(w.\ + v) with v run-
ning over the weights of E (counted with multiplicities). Then T Z, (ws\) has
a filtration with factors ZX(w./\ + v) where v runs over all weights of E with
weA+pr € Wep+ pX. Suppose that v has this property; so there are wy; € W and
v1 € X with wed + v = wyep + pry. We have wed € A\+ZR and v € (u— )+ ZR
and wiep € p+ ZR, hence pr; € ZR. In other words, we have p(r; + ZR) = 0
in X/ZR. Assumption (B2) yields now 14 € ZR, hence wyept + pry € Wyept.
So T)’fZX(w./\) has a filtration with factors Z, (w«\ + v) where v runs over those
weights of E with weA 4+ pr € Wy + pX. Now the claim follows from standard
results, cf. [9], I1.7.13.

B.4. Note that Proposition B.3 implies in particular: If y is in the closure of the
facet of A with respect to W,,, then we have

TEZ\ (0] = 2, (wop) 1)
for all w € W,

Lemma: If i 1s in the closure of the facet of A with respect to W, then we have
Tlf‘L # 0 for all simple modules L in C,,.

Proof : There exists w € W with Homg(Z, (wep), L) # 0. Now (1) and the
adjointness property B.2(2) imply that

Homg(Zy(we)), T L) o Homg(Zy(wep), L) # 0,
hence the claim.

Remark: The claim extends of course to all non-zero modules in C,,.
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B.5. Proposition: Suppose that A\ and p belong to the same facet with respect
to Wy. Then T\'L is simple for each simple module L in Cx. The functor T}
induces a bijection from the isomorphism classes of simple modules in Cy to the
isomorphism classes of simple modules in C,; the imverse 1s induced by Tlf‘.

Proof : Consider a composition series
Zy(N) =M, DM,y D---DM DM =0
of Z,(\). The exactness of T} and B.4(1) yield a chain of submodules
Zy(p) 2 TYM DT{M,—y D --- DTV M, DT{ My =0.

Each Ty M;/T{ M;—1 ~ T{(M;/M;_1) is non-zero by Lemma B.4. It follows that
the length of Z, (p) is greater than or equal to the length of Z,(\). By symme-
try we get also the reversed inequality. Therefore both modules have the same
length. This implies that all T} (M;/M;4+1) are simple, hence the first claim of the
proposition.

We get by symmetry: If L’ is simple in C,,, then also Tlf‘L’ is simple. It follows
that T:‘T;fL is simple for all L simple in Cy. We have by adjointness

Homg (T, T L, L) ~ Homg(T{ L, T{'L) # 0,

hence T:‘T)’fL ~ L (both modules being simple). We get by symmetry: T)’\LTJ‘L’ ~
L' for all L' simple in C,,. The second claim follows.

B.6. Let I be a subset of the set of simple roots. Let P; be the corresponding
parabolic subgroup of G and py its Lie algebra. So py is the direct sum of b™ and
the gg with 8 <0 and € Ry = RNZI. Let Gy D T be the standard Levi factor
of Pr and gy its Lie algebra, gy = h & @661"31 gg-

For each A € X set

Zy1(N) = Uy(pr) @ (b+) K. (1)

Note that this generalises the case |I| = 1 considered in A.3(1) except for that we
consider here more restrictive y.

We have [as in A.4(1)] by transitivity of induction an isomorphism of U, (g)-
modules

Zy(N) = Ux(9) Qv pr) Zxa (M) (2)

If we write vy 1 for the standard generator 1 @ 1 of Z, ;()), then the isomorphism
in (2) takes vy to 1 @ vy s. The nilradical n! of p; (the sum of the g, with a > 0
and o ¢ Ry) annihilates each Z, j(\). Considered as a module over gr =~ pr/nl,
each Z, r(\) identifies with the corresponding baby Verma module for U, (gr).
The Weyl group W; of R; identifies with the subgroup of W generated by
the s, with a € I; similarly for the corresponding affine Weyl group W ,. The
group G again satisfies (B1) and (B2); for (B2) note that ZR; = ZI is a direct
summand of ZR. We define categories C(I)y of finite dimensional U, (g;)-modules
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analogous to the Cy: A finite dimensional U, (gr)-module M belongs to C(I)y if
and only if all its composition factors are composition factors of some Z, r(ws\)
with w € Wy.

We can extend each U, (gr)-module M to a U, (pr)-module letting n! act
trivially. We get then an induced U, (g)-module that we shall denote by ind; M:

ind; M = Uy(g) @, (pp) M. (3)
We have by (2) and the remarks following it
ind; Zy 1(N) >~ Z\(N). (4)

Clearly ind; is an exact functor.
Lemma: Let A € X. If M is in C(I)y, then ind;(M) is in Cy.

Proof : This is clear for M = Z, j(w.\) with w € W by (4). It then follows (by
the exactness of indy) first for all simple modules in C(I)y and then for all M in
C(I)x.

B.7. Keep the notations and assumptions from B.6. The category of all fi-
nite dimensional U, (gr)-modules is the direct sum of all C(I)y with A running
over suitable representatives. We denote the corresponding projection functors by
pr(I)x.

If X and p are weights in the same (closed) alcove with respect to Wy, then
we can define a translation functor T'(I)§ working with the simple Gy—module E’
with highest weight in Wr(u — ).

If X\ and g are weights in the same (closed) alcove with respect to W, then A
and p belong also to the same (closed) alcove with respect to Wy ,. So both T}
and T'(I)} are defined and we want to compare them. Choose w1, ws,...,w, € W),
with w;eA = A such that each wep with w € Staby, A is conjugate to exactly one
w;ep under the stabiliser of A in W7 .

Proposition: There exists for each V in C(I)x a filtration of T} (ind; V) with
factors isomorphic to ind;(T(1)y""" V), 1 <i<r.

Proof: [Note that we do not claim that the factors in the filtration occur in the
same order as the indices.]

Let E be the simple G-module with highest weight in W(u — A). The tensor
identity yields an isomorphism

E@ind;V =E @ (U Qu g)pn V) — U(8) Qu o) (ERV)

that takes any e @ (1 @ v) with e € Eand v € V to 1 ® (e @ v). We get thus a

functorial isomorphism
T (ind; V) = pr, Uy(9) Qu py) (E@V). (1)

Consider a composition series of E as a P;—module. The unipotent radical of
Py acts trivially on the factors (hence so does its Lie algebra n) and these factors
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are simple Gy-modules. It follows that T)’f(indj V) has a filtration with factors
pr, ind;(L ® V) with L running over the factors in a composition series of E as a
Pr—module. Each L ® V is the direct sum of all pr(I), (L ® V) with ¢/ running
over representatives for the orbits of Wy on X/pX. So T (ind; V) has a filtration
with factors

pr, ind; pr(L)y (L@ V) (2)

with L and u' as above.

Since p — A 1s a weight of E with multiplicity 1, so is each wjepr — A =
Wiept — wie N € W(p — A). Therefore our composition series of E as a Pr—module
contains exactly one factor, say F;, such that w;epr — A is a weight of E;. Now
wiept — A 1s an extremal weight of the Gy—module E; since it is an extremal weight
of the G-module E. (The last statement means for all § € R that either no
wiept — A+ nf with n > 0 is a weight of E or that no w;epp — A —nf with n > 0 1is
a weight of E or both.) Therefore w;+pr — A is conjugate to the highest weight of
E; under W; and we can take E; as the simple module E’ used in the definition
of T(I)y"**. This means that

T (V) = pr(Dwin(E: @ V).

So ind;(T(I)y*" V) is one of the factors as in (2). [Note that ind/(T(I)y*** V)
= pr,, ind; (T(I)}*"" V) by Lemma B.6.]

Let us check next that distinct ¢ lead here to distinet factors. Otherwise
we have ¢ # j with (E;, pr(I)w;en) = (E;,pr(L)w;en). This implies wiepr — A €
Wi(wjep — A) and wiepr € Wre(wjep) + pX. The first property yields w;ep €
w;jept + ZI; since both X/ZR and ZR/ZI have no p—torsion, the second property
implies that wiepr € Wie(wjep) + pZI = Wi pe(wjepr). So v = wiepr — X is a
weight of the simple Gr—module with extremal weight wjep — A such that A +v €
Wie(wjep). Now [9], IL7.7 implies that there exists w € Wy, with weA = A and
we(wjept) = A+ v = wiep. This is a contradiction to the choice of the w;.

We have so far shown that all ind;(T(I)\** V) occur in the filtration of
Ty (ind; V) with factors as in (2). It remains to be shown that all remaining
factors as in (2) are 0. Using the exactness of pr,, of all pr(f),s, and of the
induction one reduces first to the case where V is simple and then to the case
where V' = Z, j(we]) for some w € Wy. That all other factors as in (2) are 0 in
this case will follow if we can show that

dim T} (ind; V) = Zdlm ind (T(I)y***V)

for V.= Z, r(ws\). In this case ind; V ~ Z,(ws)\); so Ty (ind; V) has by B.3
a filtration with factors Z, (w'sp) with w’ep running over wStabyy, (/\) oft. Simi-
larly, each T'(I)}*** V has a filtration with factors Z, r(w’w;epu) Wlth w'w;ep TUN-
ning over wStabyw, , (A)w;ep. Then ind(T(I)y*** V') has a filtration with factors
Zy(w'w;ep) and w' as before. Now the claim follows because Stabyy, (A)ep is the
disjoint union of the Staby,  (A)w;ep.
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Remark: The following situation is particularly easy: Suppose that p is contained
in the closure of the facet of A with respect to W,. Then there is only one factor
in the filtration (since wep = p for all w in the stabiliser of \). So we get in this
case an isomorphism

Tt (ind; V) =5 ind (T(I)L V). (3)

This map is functorial: We have for each morphism ¢ : V. — V' in C(I)y a
commutative diagram

T)’f(indj V) AN indI(T(I)i V)
T (ind; @)l lindz(T(I)‘;(@))
T)’f(indj vV AN indI(T(I)i vV

where the horizontal maps are isomorphisms as in (3). This follows from the
functoriality of the isomorphismin (1) and the fact that idg @ induces morphisms
pr(1)y (L@ V) —pr(l)y (L @V') for all L and ¢’ as in (2).

B.8. We want to apply B.6/7 in the case where |I| = 1. We first have to prove
some results on T'(I)} in that case. In order to simplify the notations we assume
in this and the following subsection that g; = g.

So assume now that GG has semi-simple rank equal to 1. There is then exactly
one positive root; denote it by a. In this case our baby Verma module Z,(\)
coincides with the module Z, ,(\) in the notation from A.3. We can use the ex-
plicit description of a basis for this module there, and we have the homomorphism
ox : Zy(A—da) = Z(N) as in A.3(3) given by ¢a(va—da) = x? vy, Here d is
the integer with 0 < d < p and (A + p,a¥) =d (mod p), hence A(h,) + 1 = dl

in F,. We claim now that
Homgy(Z\ (A — da), Z () = Ky if d < p. (1)

Indeed, our assumption (B2) implies that A—iae Z A—ja  (mod pX) whenever 0 <
i,j < pandi # j. Sothe 2' vy with 0 <7 < p belong to distinct eigenspaces with
respect to b, hence span these eigenspaces. Each homomorphism from Z, (A — da)
to Z,(A) has to take p(va—qa) to an eigenvector for the same eigenvalue, hence to
a multiple of 22 vx. So (1) follows.

The same argument shows that

Homg(Zy (A — pa), Zy () = Homg(Z,(A), Z(\) = K id. (2)

(Note that Z, (A — pa) = Z,(A).) If d = p, then ¢y is equal to multiplication by
X(x_q)P since :zj[f]a = 0. Therefore (1) extends to the case d = p if y(x_o) # 0.
For y(z_o) = 0, however, we have ¢y = 0 in this case.

B.9. Keep the assumptions from B.8. Consider now two weights A and g such
that 4 1s in the closure of the facet of A with respect to W,. There is a unique
integer n with

np < (A+p,a’) <(n+1)p.
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The assumption on the facet implies that
np < {u+p.a’) < (n+1)p.

Set d = (A +p,a¥) —np and d = (u+ p,a”) —np. Then d is the same number as
considered in B.8. If d’ > 0, then it the analogue of d working with u instead of \;
if d =0, then that analogue is equal to p, however. Note that sq npeA = A — da
and sq ppept = 1 — d'a.

We get from B.4(1) isomorphisms T} Z,(\) ~ Z,(p) and Ty Z, (A — da) ~
Zy(p — d'a). We claim that, modulo these isomorphisms:

l

Lemma: If d' > 0, then T} () is a non-zero multiple of p,. If d' = 0, then
Ty (¢x) 1s a non-zero multiple of the identity.

Proof: I d = p, i.e., if (A + p,a”) = (n + 1)p, then the assumption on the facets
implies that also (¢ 4 p,a") = (n + 1)p and d' = p. In this case both ¢ and ¢,
are equal to \(z_o)? times the identity. Since the functor T} takes a multiple of
the identity to the corresponding multiple of the identity, the claim follows in this
case.
Assume from now on that d < p.
Case I: We have (u + p,a") < (A4 p,a"). Then the module E involved in the
construction of T} has highest weight sq(t —A) = p— A+ (d —d')a. f ¢ is a
highest weight vector of E, then v = eg @v)_44 1s a highest weight vector of weight
p—d'ain E®Z,(A—da) and generates the summand T3 Z, (A —da) ~ Z, (u—da).
The map T} (px) is the restriction of idg @@y to Ty Z, (A — da). It maps v to
eo @ x‘iaw\, hence is non-zero (since d < p). Now the claim follows from B.8(1) in
case d' > 0, or from B.8(2) in case d' = 0.
Case II: We have (1+p, ) > (A+p,a”). Now E has highest weight ;1 — \. It has
a basis ¢; = #'eg with 0 <7 < d' —d = (u — \,a") where ¢ is a weight vector
of weight © — A and satisfies x40 = 0. We have x4e; = i(d' —d+ 1 —i)e;—; for
all i > 0. A straightforward calculation shows that T{' Z, (A — do) ~ Z, (p — d')

is generated by
d' —d

d’ / :
_ d —d—1
v = e ®x”, Ur—da-
1
i=0

(Note that v # 0 since the coeflicient of eg @ x‘f;dw\_da is non-zero.) We have
now
d'—d ,
T{ (px)v = Z (Z.)@i @zt T A da.
1=0

If d < p, then a look at the “leading term” eg ® flf(i/aUA—da shows that T} (px) # 0
and the claim follows from B.8(1). If d’ = p, then

Ty (px)v =0 @ ¥ Jor—da = X(2—a)Pe0 @ Vr—da-

We see thus that T} (o) # 0 if and only if y(2_q) # 0 if and only if ¢, # 0. Now

the claim is obvious in case x(2_o) = 0 and follows otherwise from B.8(2).
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B.10. Let G again be arbitrary. Choose a simple root o and set I = {a}. We
get from A.4(2) for each A\ € X a homomorphism ¢ : Z\(\ — da) — Z,(\) with
0N (Vva—da) = 2 vx. Here d is again the integer with 0 < d < p and (A +p,a") =d
(mod p).

We can identify Z,(\) with ind; Z, o()\) [see A.4(1)]; then 2 identifies with
indr(ex).

Proposition: Let A\, u € X such that p is contained in the closure of the facet of
A with respect to Wy, If (n+ p,a”) =0 (mod p) and (pu+ p,a¥) < (A + p,aV),
then T{ (o)) identifies with a non-zero multiple of the identity on Z,(11). Otherwise
T (¢2) identifies with a non-zero multiple of .

Proof: As stated above, we can identify ¢2 with ind;(¢y). The functoriality in
B.7(3) implies that we can identify T} (o) with ind;(T(I)k¢x). Now the claim
follows from Lemma B.9 applied to g;. (Note that the first case in the present
proposition corresponds to the case d = 0 in B.9.)

B.11. Let « be a simple root with y(z_,) = 0. In this situation we have defined
in A.4 the module Z, (), a) as the cokernel of ©2.

Corollary: Let A\, € X such that p 1s contained in the closure of the facet of A
with respect to Wy. If (u+ p,a¥) =0 (mod p) and (1 + p,a”) < (A + p,a"),
then Ty Z\ (N, o) = 0. Otherwise Ty Z\ (N, a) ~ Z\(p, ).

Proof : This follows from Proposition B.10 when we apply the exact functor T} to
the exact sequence A.4(3).

Remark: Let I be a subset of the set of simple roots such that the restriction
of \ to gr has standard Levi form (see [11], 10.1 or [12], 2.2). We have then for
each A € X a unique simple quotient L, j(\) of Z, ;(\) and can define induced
modules Z, (A, I) = indr Ly 1(\). We can apply B.7(3) and describe T} Z, (), I)
(for 41 in the closure of the facet of ) using [12], 4.11(4). The corollary above is
a special case of that more general result.

B.12. We shall always write [M : L] to denote the multiplicity of a simple module
L as a composition factor of a module M.

For each simple U, (g)-module L let @), denote the projective cover of L in
the category of all U, (g)-modules.

The proof of Lemma 10.9 in [11] shows that

dimQp =p™ Y [Zy () : L] (1)

where N = |RT| and where p runs over a system of representatives for X/pX. (In
[11], 10.9 one has a more restrictive assumption on x that actually does not enter
the argument.)

Since ()7 and hence L belongs to Cy, only pt € WA + pX can contribute a
positive multiplicity [Z,(¢) : L]. Since all Z,(p) with g € WeA 4+ pX define the
same class in the Grothendieck group (cf. [10], 1.5) we get from (4) that

dim Qr = p™ |We(A + pX)|[Z,(N) : L]. (2)
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Remark: Our assumptions (B1) and (B2) are not needed to prove (1). For (2) we
just need (B1). Similarly, one can check that the first seven paragraphs in B.13
below do not require the assumptions while (B1) suffices for the remainder of B.13

and for B.14.

B.13. In this and the next subsection we drop our assumption that y(b%) = 0
and consider arbitrary y € g*. (But we shall soon assume x to be nilpotent.) Let
C(x) denote the category of all finite dimensional U, (g)-modules; as before we just
write C when it is clear which x we consider.

Let g € G. We write Ad(g) for the adjoint action of g on g and for the induced
action on U(g). If M is a g—module, then we write IM for M “twisted by ¢”, i.e.,
we take IM = M as a vector space and let any « € g (or in U(g)) act on IM as
Ad(g71')(x) does on M. (See also the more general discussion at the beginning of
[10], 1.13.)

Clearly M ~— 9M is an exact functor that takes simple modules to simple
modules. If M is a G-module considered as a g—module via the derived action, then
we have an isomorphism YM — M given by m — gm. If M is a U (g)-module,
then 90 is a Uy, (g)-module where gy is the image of x under the coadjoint action
of g given by (gx)(z) = v(Ad(¢~1)z). The functor M — 9M is an equivalence of
categories from C(x) to C(gx). It takes simple modules to simple modules.

Assume now that y is nilpotent. This means that y vanishes on a Borel
subalgebra of g, or, equivalently, that there exists ¢ € G with (gx)(b™) = 0, see
[13].

If M is a U(g)-module, then each u € U(g)“ acts on each M as it does on
M. Suppose for the moment that (gy)(b") = 0; if M is simple, then U(g)® acts
on /M (and hence also on M) as on some Z,, (\) with A € X. Set C(x)x equal to
the full subcategory of C(y) consisting of those N in C(y) such that U(g)® acts
on each composition factor of N as on Z;,(A). Then C(x) is the direct sum of all
C(x)a with A in a suitable set of representatives.

Note: If we have already x(b™) = 0, then the definition of C(x)x given above
coincides with that one that we get by applying B.1 directly, because each u €
U(g)® acts on Z,(A\) and on Z,,(\) by the same scalar (for each A\ € X), cf.
[10], 1.7. This observation implies for arbitrary y that the definition of C(x)x is
independent of the choice of ¢ with (¢x)(b™) = 0.

We have (for each nilpotent y) projection functors pry : C(x) — C(x) and
translation functors T} : C(x)x — C(x) defined as in B.1/2.

Let g € G. If M is a U, (g)-module in C(x)x, then 9 M belongs to C(gx)x. The
functor M +— 9M restricts to an equivalence of categories from C(y)x to C(gx)a.
We get for arbitrary M in C(x) that

pry( M) = (pry M). (1)
This implies for M in C(x)x that

HIXM) ~ T M), (2)
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Indeed, we use the same G-module E when we define T} on C(x)x and on C(gx )
and get therefore

NILM) =" (pr,(E®M))=pr, "(EwM)=pr,('E® M)
~pr,(E® M) =T{('M).

Lemma: Suppose that x € g* and g € G with x(bT) = (gx)(b1) =0. Let A\ € X
and let L be a simple Uy (g)-module. Then

[Zx(A) - 7L] = [Zy(A) : L. (3)

Proof : If ()}, is the projective cover of L in the category of all U, (g)-modules, then
9(Q1) is the projective cover of L in the category of all Uy, (g)-modules. Applying
B.12(2) to gx instead of x, we get

dim 9(Q1) = p" [Wo(A + pX)| [Z, (V) : L] (4)

Since @1, and 9(Q1) have the same dimension, a comparison of (4) with B.12(1)
yvields (3).

B.14. Let again ¢ € GG. Given a Lie subalgebra q of g and a g—module M, then
we get an Ad(g)g—module 9M by an obvious generalisation of the definition in
B.13. If q is a restricted Lie subalgebra of g and if M is a U, (q)-module, then 9
is a U;y(Ad(g)q)—module. It is then easy to check that we get for all y € g* an
isomorphism for the induced modules

I(U(8) Qu(q) M) = Upx(8) Oupy (ad(gyq) *M (1)

induced by v ® m — Ad(g)(u) @ m.
Let BT = Py (cf. B.6) be the Borel subgroup of G with Lie algebra bt. If
X € g* with x(b™) = 0, then we get applying (1) with q = b™

IZ(N) ~ Zgy (N) forall A\ € X and g € BT (2)

since Ad(g)(bT) = bt and since Ad(g) acts trivially on bF/nt.
Let a be a simple root and let P, D B™ be the standard parabolic subgroup
with Lie algebra p, = b™ 4+ g_,. Suppose that x(p) = 0. Then we claim that

IZ (N, o) >~ Zg (N, o) forall A € X and g € P,. (3)

We want to apply (1) using A.4(4). We can replace A by a weight in A + pX
and assume that 0 < (A\,a") < p. Then we get L, o(\) by taking the derived

action of p, on the simple P,—module with highest weight A\. This then implies
9Ly o(N) 2~ Ly o()), hence via (1) the claim.
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C

Keep all assumptions and notations from Section B, in particular (B1) and (B2).
However, one may check that (B1l) and (B2) are used only for C.1-4 and C.9-10.

We introduced in A.1 an element p € X @z Q. If (B1) holds, then we can choose
p € X. We assume in future that we have made such a choice whenever (B1)
holds. (If G is not semi-simple, then p is not necessarily half the sum of the
positive roots.)

C.1. Set
Co={NEX|0< (A +p,3) <p forall g BT} (1)

and

Co={NeX|0<(A4p,B")<p forall € RT }. (2)

So Cy is the usual “first dominant alcove” Cy as in [11], 11.19(1) or [12], 4.1(1).

We begin now (for certain y) an investigation of the subcategories Cy with
A € Cf. If R has no components of exceptional type, then one can show (see H.1
below) that there exists for each p € X a weight A\ € C§ with yu € WA + pX,
hence with C, = Cx. So in those case we do not lose anything by the restriction
to weights in C{.

Lemma: Let A € C). If w e W and v € X with we\ 4+ prv = A, then v = 0.

Proof : If we\ + pr = A, then pr € ZR since we\ € A + ZR. So our assumption
(B2) implies that ¥ € ZR. This means that the map @ — w.z + pv belongs to
the stabiliser of A in the affine Weyl group W,. Since W, is a reflection group,
that stabiliser is generated by all s, ., with a € RT and (A + p,a¥) = rp. The
definition of C{ implies that then necessarily rp = 0. Therefore the stabiliser of A
in W, is contained in W; this yields v = 0.

C.2. Proposition: Let A € Cl. There exists a simple module L in Cy with
projective cover isomorphic to Ti‘pZX(—p); it satisfies [Z,(\) : L] = 1.

Proof : Let us abbreviate () = Ti‘pZX(—p). Proposition B.3 implies that @) has a
filtration with factors Z, (p) with g € WA, one factor for each such p. We get in
particular that

dim Q = |[W.A|pV (1)

with N = |RT|.

One knows that Z,(—p) is projective, cf. [7], Thm. 4.1. Any translation
functor T} takes projective modules to projective modules since the adjoint functor
T} is exact. Therefore ) is projective.

Let L be a simple quotient of (). Then the projective cover QJ; of L has to
be a direct summand of Q). We have by B.12(2)

dim Qr = p™ |We(A + pX)|[Z,(N) : L]. (2)
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Now Lemma C.1 implies that the stabiliser of A4+pX in W is equal to the stabiliser
of X in W. Using (1) and the fact that @ is a summand of @), we get that

dim @ = p™ |[WA| > dim Q= pN|[WA[Z(N) : L] > pN WAl

So we have to have equality everywhere, hence @, = @ and [Z,()\) : L] = 1. So
the claim follows.

C.3. Proposition C.2 yields a representation theoretic proof of the following
special case of a recent theorem of Brown and Gordon in [2], 3.18:

Corollary: If A € C[, then the subcategory Cy is a block of the category of all
finite dimensional U, (g)-modules.

Proof: If Cy is not a block, then it is a direct sum of two non-trivial subcate-
gories that are closed under taking subquotients. The indecomposable module @
considered in C.2 would have to belong to one of them. Then so would be all
subquotients Z, (w«\) with w € W of @, hence all simple modules in Cy. Then
the other subcategory will contain no simple modules at all, hence be trivial.

Remark: The theorem in [2] says that all C, with p € X are blocks. That proves
the conjecture by Humphreys in [8], Section 18. (For arbitrary type such a result
had previously been known only for y in standard Levi form, cf. [8].) The corollary
here together with H.1 yields that conjecture in case R has no components of
exceptional type (and p # 2 if it has components not of type A).

C.4. Let wy € W denote the unique element with wo(RT) = —R™.

Proposition: Let A\ € CJ, let L denote the simple module in Cy with projective
cover isomorphic to Ti‘pZX(—p).

a) Up to isomorphism L is the only simple module in Cx with Ty "L # 0.
b) The socle of Z,(\) and the head of Z,(woe)\) are tsomorphic to L. We have

dim Homg(Z, (woe M), Z () = 1. (1)
Each non-zero homomorphism from Z,(woe\) to Z,(\) has image equal to the
socle of Z\.(\).

Proof : a) It is known that Z,(—p) is simple, cf. [7], Thm. 4.2. (The assumption
in that theorem that p is good for R is not needed for this particular result.)
Therefore Z,(—p) is the only simple module in C_, (up to isomorphism). If M is
a module in Cx with T\ "M # 0, then we get

0 # Homg(Zy(—p). Ty " M) ~ Homg (T, Z,(~p), M).

If we assume additionally that M is simple, then we get that M is a homomorphic
image of the projective cover of L, hence isomorphic to L.
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b) Let E be a G-module; suppose that v, va, ..., v, are the weights of E (counted
with multiplicities) enumerated such that v; > v; implies ¢ < j. Then any E ®
Z\ (i) has a filtration with factors Z, (¢ + v;) such that Z, (¢ + 1) occurs at the
bottom, then Z, (p+17) as the next higher factor, and so on. Each pr,(E® Z, (1))
has then a similar filtration where only the ZX(/,L + vi) with g+ v; € Wer 4+ pX
occur. In particular, if ¢1 (resp. i2) is minimal (resp. maximal) among the ¢ with
i+ v € Wev + pX, then Z, (¢ + v4,) is a submodule of pr,(E @ Z,(p)), and
Z\ (¢ + vi,) is a homomorphic image of pr,(E @ Z,(u)).

Applied to Q = Ti‘pZX(—p) this shows that Z,()\) is a submodule of @) and
that Z,(wgeA) is a factor module. Since @) (being the projective cover of L) has
simple head isomorphic to L, so has Z, (wgsA). Since Uy (g) is a symmetric algebra
(see [6], Prop. 1.2), the simple module L is also isomorphic to the socle of @, hence
to that of Z,(\).

It is now clear that we get a non-zero homomorphism from Z, (wgeA) to Z, ()

by projecting first onto L and then embedding L into Z, (A). Conversely, let ¢ be
a non-zero homomorphism from Z, (wgsA) to Z,(A). The image of ¢ has simple
head and simple socle, both isomorphic to L. Since [Z, () : L] = 1, the image of
¢ has to be isomorphic to L. Therefore the image is equal to the socle of Z, ()),
and the kernel of ¢ has to be equal to the radical of Z,(wgsA). Now (1) follows
from Schur’s Lemma.
Remark: The entries in the row (or column) of the Cartan matrix of Cy corre-
sponding to L are equal to |We(A + pX)|[Z\(N) : L'] with L’ running over the
simple modules in Cy. In particular, the diagonal entry is equal to |We(A + pX)|
and the other entries are non-zero multiples of that number. This implies that
Lusztig’s original conjecture in [15], 14.5 for the Cartan matrix could not work in
type Dy (for example).

C.5. Fix A € Cf. If w € W and if a is a simple root with w™la > 0, then
0 < (w(A+ p),a”) < p and we have a homomorphism

993]78aw t Iy (Sqwel) — Zy (we ) (1)

given by
S03}750471](1}304u“)‘) = $<—wa()\+p)7a >UU10)\' (2)

If (w(Ap),a”) =0, then 993]78aw is the identity map on Z,(A). If (w(A+p),a¥) >
0, then 993]78aw is up to a non-zero scalar multiple of the map ¢®** from A.4(2).
We get therefore from A.4:

Lemma: If x(x_,) # 0, then 993]78aw is an isomorphism. If x(x_o) =0, then
im<,93]78aw ~ Z\ (Sqwel, &) (3)

and
dim im(¢) , ) = (p — (WA + p),a"))p™ ! (4)
where N = |RT|.
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C.6. We now want to define for each w € W a homomorphism
Pt Zr(wed) — Zy(N) (1)

as follows: If w = s182... 5, is a reduced decomposition (with s; = s,, for some
simple root «;) then we want to have

A A A A
Pw — S‘Ql,sr o S‘QST,sr_lsT 0---0 9932...37,_13,,,3132...3,,_13,, (2)

where the single factors are defined in C.5. One has to check the independence of
the right hand side in (2) of the chosen reduced decomposition. It is (as usual)
enough to check the “braid relations” for each pair «, 3, (o # 3) of simple roots.
For example, if s,sg has order 3, then we have to check for each x+ € W with
zta, 2713 > 0 that

A A A A A A
S‘Qx,sax o S‘Qsax,sfgsax o 80858041’78048/38041’ - S‘Qx,s/ﬂ: o 9‘9351’,3&351’ o S‘Qsa35x735sas/3x‘

This follows from the Verma relations, see [4], 7.8.8; similarly in the cases where
5453 has order 2, 4, or 6.

Now that the ¢ are well-defined, we get for all w € W and all simple roots
a with w™ra > 0 that

P w =Pa 0P s (3)

since we get a reduced decomposition of s,w when we multiply a reduced decom-
position of W on the left by s,.

C.7. SetforallweW
sbn(w, A) = im(¢) € Zy(\ 1)

the submodule corresponding to w.

Lemma: Let a be a simple root and w an element in W with w™la > 0.
a) We have sbm(sqw, ) C sbm(w, ).

b) If x(®—a) # 0, then sbm(sqyw, ) = sbm(w, \).

c) If x(x—o) = 0, then sbm(sqw, ) 1s a homomorphic tmage of Z\(sqweA, a),
and sbm(w, \)/sbm(sqw, A) s a homomorphic image of Z, (we\, o).

Proof : The identity ¢3 ,, = 5 0 ¢ ., from C.6(3) implies a). If y(z_q) # 0,
then 993]78aw is an isomorphism; this yields b).
Suppose now that y(x_,) = 0. Denote the image of 993]78aw by M. Then M

is isomorphic to Z, (sqweA, o), and Z, (weA)/M is isomorphic to Z, (weA, ). Now
the claim in ¢) follows from shm(sqw, \) = 7 (M) and shm(w, \) = o) (Z, (w.)\)).

Remark: It is sometimes more convenient to restate the last part of the lemma as
follows: Let w € W and v € R such that wy is a simple root with x(2_y~) = 0.
Then sbm(ws~, A) is a homomorphic image of Z, (ws~ A, w7), and sbm(w, A)/ sbm
(wsy, A) is a homomorphic image of Z, (weA, a). [Note that s, w = ws-.]
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C.8. We now want to generalise Lemma C.7.a to positive roots that are not
necessarily simple:

Proposition: Let w € W and o € R with w™'a > 0. Then sbm(sqw,\) C
sbm(w, \).

Proof : This will follow in the same way as in C.7 if we can find a homomorphism
S‘QI)\U,saw : ZX(Saw°/\) — ZX(w°/\) with S‘Q?aw = S‘Ql)\l} o S‘Qt)\u,saw‘ (1)

Suppose first that G is semi-simple and simply connected; drop the assump-
tion that (B2) should hold. In order to construct the map in (1) we make a detour
to characteristic 0. Let gc be a complex semisimple Lie algebra of the same type
as g. Fix a triangular decomposition go = ng @ ho © ng and a Chevalley basis
of gc. Denote by gz the span over Z of our Chevalley basis. This is a Lie algebra
over Z with a triangular decomposition gz = n, @ hz © n"z' induced by that of
go. We can and shall assume that g = gz @z K, similarly for n* and . We have
then also U(g) = U(gz) @z K and similarly for n* and . We denote (by abuse
of notation) the vectors in our Chevalley basis of gc by - and hg (8,7 € R, 3
simple). We assume that we have chosen the x, ®1 as our root vectors in g (which
we usually denote by z-).

The group X can be identified with the lattice of integral weights of hc. We
have for each v € X a Verma module M(v)c for go with highest weight v; we
denote its standard generator by z,. We define for each w € W a homomorphism
2 M(wed)e — M(N)g in the same way as we defined in C.6(2) the 7. There

is a unique element
ul € U(ng) with Fo(Zwer) = up 2. (2)

The construction shows that u? is a product of powers of the r_g with 3 simple,
hence contained in U(n; ), and that

Pw(Vwer) = (uj @ 1o (3)

Let (1, B2,..., s denote the simple roots. If we write u(w,\) as a linear combi-
nation of the usual PBW basis of U(ng), then

uﬁ} = H xfﬂi + lower order terms A —we = Z ri B (4)

1=1 =1

where “lower order terms” refers to the canonical filtration of an enveloping algebra
as in [4], 2.3.1.

Now consider w and « as in the proposition. The theory of Verma modules
shows that there exists a unique homomorphism

A : M(sqwe)c — M(wel)c with  f) o f378aw — fA (5)

W,Sq W Sq W
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see [4], 7.6.6 and 7.6.23. There is a unique element

u e U(ng) with A w(Zsawer) = uﬁwaw ZweA- (6)

W,8q W W,Sq

A comparison with (2) shows that

ud =yt u (7)

S W W, Sqw w*

A look at the terms of highest order shows that

u3]78aw = H x’jﬂi + lower order terms i wed — sqwel = Z riffi.  (8)
i=1 =1

If we write d = (w()\ + p), @), then we have above da = >0 r;3;. This shows

that uj, , ,, is equal to the element denoted by Sq ¢(we)) in [5], Section 3. (Note

that there is a misprint in the last displayed equation on p. 66 of [5]: One should

replace r by dr.)

The results in [5] say that
u € U(ny). 9)

W,8q W

(See the remarks on the top of page 67 in [5].) We now want to use this element
to define 993]78aw by

P s (Vsawarn) = (U5 o @ 1) V. (10)
If this is possible, then (7) and (3) yield the equality ¢} ,, = @3 0 @3 ., hence
the proposition.

The right hand side in (10) has weight saws); it therefore suffices to show
that this term is annihilated by all z, @ 1 with v > 0. We have to start with in
U(gz)

x7u378aw = Z Frcr + terms in U(gz)ng

where the F; are (as in [5]) the elements in a PBW basis of U(n, ) and where all
¢z € U(hz). We have then

0= x7u378aw Zwer = Z(w./\)(c,r)Fﬂzw.A.

Y

Since the Frzy,,x are linearly independent, we get (we)(cr) = 0 for all 7. Since

(25 @ D g @ 1 vwar = D (wed)(ex)(Fr © Lvyan =0

Y

the claim follows (for G semi-simple and simply connected).

The extension to the case where G is a direct product of a semi-simple and
simply connected group with a torus is immediate. In general, G is a quotient of
such a group, say G, by a central subgroup. The corresponding homomorphism
7 from g = Lie(G) to g satisfies g = § + =(g). If we consider a baby Verma
module for g as a g-module via 7, we get a baby Verma module for g. We can use
the construction above to get a map 993]78aw as in (1) that is a homomorphism of
g-modules. It then suffices to show that this map also commutes with h. That,

however, follows from the fact that the element uﬁwaw has weight —da also for b.
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Remark: Let < denote the usual Chevalley-Bruhat order on W (with smallest
element 1). The proposition implies for all wy, w2 € W:

wy > wy = sbm(wy, \) C shm(wz, A). (11)

C.9. Lemma: Let p be a weight in the closure of the facet of N\ with u € C{.
For all w € W and o € R simple and w™a > 0 we can identify T{ (o), .. ) with
a non-zero multiple of @b, . . We can identify T)’f(c,oﬁ]) with a non-zero multiple

of p¥ and have
Ty sbm(w, \) ~ sbm(w, ) (1)

for all w e W.

Proof: In order to prove the claim for the 993]78aw we distinguish two cases:

If (w(A+ p),a¥) = 0, then the assumption on p implies that also (w(p +
p);a”) =0. Then both ¢, , ,, and @k are the identity. Sois T} (¢3, . ,,); the
claim follows in this case.

If (w(A+ p),av) > 0, then the claim follows easily from Proposition B.10

because 993]78aw is a non-zero multiple of the map ¢©“** considered there.

«

The rest of the lemma follows now from the definition of 7, the functor
property of T} and its exactness.

C.10. We can apply Lemma C.9 to i = —p. Since all ¢ ” are the identity, hence
non-zero, we get that

pa#0  forallwe W, (1)
This holds in particular for w = wg. Proposition C.4.b implies therefore that
sbm(wg, A) = soc Z, (). (2)
C.11. Set
I'={a € R|asimple x(x_q)#0}. (1)

Let W; denote the subgroup of W generated by all s, with o € I.

Lemma: a) We have sbm(wy, \) = sbm(ws, \) for all wy,ws € W with Wrwy =
W]wz.

b) Let w € Wy and o be a simple root with o ¢ I. Then
shin(saw, \) = Zy(sawe), a) (2)
and
dim sbm(saw, A) = (p = (w(A + p),a¥))p¥ 7! (3)
where N = |R*|.

Proof : The claim in a) follows easily from Lemma C.7.b. In b) we have w™la > 0
since w € Wy and a ¢ I. It follows that c,o?aw =@ oapﬁhsaw. Furthermore 7 is a

composition of certain ¢?, spuw’ with # € I, hence an isomorphism. Therefore the
image sbm(sqw, \) of c,o?aw is isomorphic to the image of 4,9378aw. Now the claims
in b) follow from Lemma C.5.
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C.12. Here and in the next two subsections we fix a simple root with y(x_,) =0
and consider I as in C.11(1). Note that

Wia C(a+ZI)NnRCR". (1)

Pick for each 8 € Wra an element wg € Wi with wﬁ_la = (3 and set

M? = sbm(saws, \). (2)
Lemma C.11.b implies that
dim M7 = (p — (A + p,8¥))p" (3)
and that
MP ~ Z, (sqwgeh, a). (4)

Claim: The submodule M? of Z,()\) depends only on 3, not the choice of wg.

1

Proof: If wj; is a second element in W with (wj) ™ o = 3, then w = wlﬁwﬁ_1 e Wr

satisfies wa = «a, hence ws, = sqw. It follows that saw’ﬁ = wsqwg € Wrsqawg;
now apply Lemma C.11.a.

C.13. Lemma: Let v be a simple root, let w € W with wy € Wra. Then
sbm(w, A)/sbm (ws~, \) is a homomorphic image of Z, (wy~yweA, ).

Proof : The element © = w,~,w satisfies 2y = «, hence xs, = sp2. Since wy~ €
Wi, Lemma C.11.a implies that

sbm(w, \) = sbm(z, \)

and

sbm(ws~, A) = sbm(xs,, A) = sbm(sqx, A).

Now the claim follows from Lemma C.7.c.

C.14. Proposition: Let § € Wra and v € I with (~,3") < 0.

a) We have
MP > MeP (1)

and

dim(MP [M*7) = (v, 8) (A + p,vV)pV 1. (2)

b) Assume that (v,8Y) = (8,7Y) = —=1. Then ' = wg(f + v) is a root and
belongs to Wia; the element v = wgisqwg € W satisfies 17 a =~ and

MPIMPTY ~ Z (z ), a)  if (N4 p,4Y) > 0. (3)
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Proof : a) We have clearly 5,3 € Wra and could choose w,_3 = wgs,. So we have
MP = sbm(sqwgsy, ).

On the other hand sgy = v — (v, 3Y)3 is a positive root not in ZI. Therefore also
B = wgsgy is positive. Using sg = wﬂ_lsawg, we get 8’ = sqwgy, hence

Sgr8qWp = (sawgsywﬂ_lsa)sawg = SqW}3S~.
Since (sqwg) 1B =~ > 0, we get from Proposition C.8 that
sbm(sg sqwg, ) C sbm(sqwg, A),

hence (1). Now (2) follows from C.12(3) and (s,3)" = Y — (v, 8Y)7".

b) Now our assumptions imply that s, 3 = G+~ = sgv. It follows that 5+~ € Wra
and that 3’ = wgsgy = wg(f + ) € Wra. We observed above that 3’ = sqwg7;
so we can apply Lemma C.13 with w = sqwg. Now x = wgrsqwpg is the same z as
in the proof of Lemma C.13 and satisfies « = x+. We have

M? = sbm(w, \) and MPHY = sbm(ws~, A)

since wgs~ is a possible w, 3 = wgy,. Now Lemma C.13 says that we have a
surjective homomorphism

Z (xed,a) — MP /MPTY. (4)
The left hand side has dimension equal to
(@A 4 p)sa)p" = (At p, Y )pN T

as long as (A + p,7Y) > 0; otherwise its dimension is equal to p™. In the first
case, the surjection in (4) has to be an isomorphism by dimension comparison;
this implies (3).

Remark: In the situation from b) one can deduce the inclusion in (1) directly from
Lemma C.7.a (without the more complicated argument in C.8) using 2 oo = v > 0
and the equalities

MP = sbm(z, \) and MPTY = sbm(sqz, \).
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D

We keep the assumptions from Sections B and C. We assume in addition:

(D1) The prime p is good for R.
and
(D2) G is almost simple.

The first assumption is crucial so that we can apply the Kac-Weisfeiler conjec-
ture proved by Premet. The second assumption is mainly meant to simplify the
statement of the results.

D.1. We call a linear form y € g* subregular if its orbit under the coadjoint
action has dimension equal to 2(N — 1) where N = |RT|. If so, then the Kac-
Weisfeiler conjecture as proved by Premet says: If M is a U, (g)-module, then
dim(M) is divisible by pN~1.

Recall that we set p, = b + g_, for each simple root a; we denote (as in
B.14) by P, the corresponding parabolic subgroup of G. The following result is a
translation of well known results on orbits in g:

Lemma: There exists a unique subregular nilpotent orbit O in g*. If a 1s a simple
root then O intersects the set of all x € g* with x(po) = 0 in an open and dense
subset. This intersection 1s one orbit under P,.

Proof : We can (under our assumptions on p) identify g and g* as G-modules. The
classification of the nilpotent orbits in g is the same as for the Lie algebra over C
of the same type (since p is good). In particular, there is exactly one subregular
nilpotent orbit in g; this yields the first claim.

The elements Y € g* with y(bT) = 0 and y(2_,) = 0 correspond (under
g ~ g*) to the elements in the nilradical n® = @7>077¢a g, of the parabolic
subalgebra p,. The theory of the Richardson orbits (cf. [3], 5.2.3) says that there
exists exactly one nilpotent orbit for G that intersects n® in an open and dense
subset. That intersection is one orbit under P,; furthermore the dimension of the
orbit (under G) is equal to the codimension in g of a Levi factor of p,. Since that
codimension is equal to 2(N — 1), we get the remaining claims.

Remark: For each simple root 3 # « the set of all y with x(ps) = 0 and y(z_3) # 0
is an open and dense subset of the set of all y with x(po) = 0. It follows: The set
of all subregular x € g* with x(po) = 0 and x(x—3) # 0 for all simple roots 3 # o
is an open and dense subset of the set of all x with x(po) = 0.

D.2. Each subset .J of the set of all simple roots defines a facet F(.J) contained in
C{ as follows: A weight A\ € C{ belongs to F(.J) if and only if (\+p, 3") > 0 for all
B € Jand (A +p,vY) = 0 for all simple roots v ¢ J. Write c., for the fundamental
weight corresponding to a simple root 4. Then A € X belongs to F(.J) if there
are integers mg > 0 such that A + p =3 5 ;mpwg and if (A + p,a”) < p for all
a € RT. Each facet (with respect to W) that is contained in C} has the form
F(J).
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Lemma: Let J be as above and let v € J. Suppose that we have for all X € F(.J)
a module N(\) in Cx with diim N(\) = (A4 p,v¥)pN ™1 such that T{ N(\) =~ N(u)
for all N\, € F(J). If x is subregular, then each N(\) with A € F(J) is simple.

Proof: We may assume that F(.J) # (. Then the weight y = —p + 3 5. ;s
belongs to F(J) since (u + p,a¥) < (A + p,a¥) < p for all A € F(J) and all
ac RT.

We have now dim N(u) = p
N(u) is simple. Proposition B.5 yields now simplicity in general.

N—=1_ Therefore Premet’s theorem implies that

Remark: Let m be a positive integer. Suppose that we have in the lemma
dim N(\) = m (Ap,vY)p™¥ =1, while all the remaining assumptions are unchanged.
Then the same proof as above yields that the length of N()) is at most equal to
m.

D.3. Here are two types of situations where we shall apply Lemma D.2. Let «
be a simple root and let y be subregular nilpotent with y(ps) = 0.

Lemma: a) Let w € W such that w™a is a simple root. Then Z,(ws\, ) is
simple for all X\ € C} with (w(\ + p),a”) > 0.

b) Let v be a simple root, let wy,wy € W such that sbm(wq, \) C sbm(wsz, A) and
dim sbm(ws, )/ shm(wy, \) = (A + p, vV )p™¥ !

for all A € C}. Then sbm(wsq, \)/sbm(wy, \) is simple for all X € C§ with (A +
v

p,v7) > 0.

Proof: a) Let J be the set of simple roots with A € F(.J). Then (w(A+p),a¥) >0

is equivalent to w™la € J. If so, then

dim Z, (we X, o) = (w(A + p), a\pN T = (N 4 p,w eV )pN T

Now the claim follows from Corollary B.11 and Lemma D.2.
b) This follows from C.9(1) and Lemma D.2. (Note that C.14(2) provides us with

cases where our assumption is satisfied.)
D.4. Let ag denote the unique short root that is a dominant weight. Set h =
{p,ay) + 1 equal to the Coxeter number of R.

Proposition: If R s of type Eg, Fy, or Go suppose that p > h+ 1. Let o be a
simple root and let x be subregular nilpotent with x(po) = 0. Let A € C{.

a) Let w € W with w™'a = —ag. Then Z,(w.\,a) is simple and isomorphic to

the socle of Z,.(\). We have sbm(w, \) = soc Z, (\).
b) The socle of Zy(\) has dimension (p — (A + p,ay))p™ L.

Proof : al) Suppose first that R is not type Eg, Fy, or G3. Under this assumption
there exists a fundamental weight @ with (e, ay) = 1. Set

p=A+({p—1=(\+paq))=.
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We have then (11 4 p, o) = p — 1; furthermore p belongs to C) and A is in the
closure of the facet of u. We have

(wept, 0¥y = (u+p,w o) —=1=—p=0 (mod p),

hence dim Z, (wep, o) = pV =1, Therefore Z, (wep,a) is simple by Premet’s theo-
rem

We have

—p < —(u+p,aq) = (wp+p),a’) <0 = (w=p) + p,a’),

hence by B.11

T Z,(wp0) = Zy(ws(=p),a) = Z(—p) #0.

So Proposition C.4.a implies that Z, (w.p, o) is isomorphic to the socle of Z, (p),
hence Z, (wept, ) ~ sbm(wg, £) by C.10(2). Applying Tlf‘ we get [using B.11 and
C.9(1)]

Zy(wel, a) ~ sbm(wg, A) = soc Z, ().

Note that sbm(w, \) is a (non-zero) homomorphic image of Z,(we\, a) [by
Lemma C.7.c and C.10(1)]. Because the latter module is simple, so is sbm(w, \).
Therefore it is equal to the (simple) socle of Z, ().

a2) Consider now the case where R is of type Eg, Fy, or G3. Let J be the set
of simple roots with A € F(J). We would like to find a weight ¢ € C§ with
(i + p,ay) = p— 1 such that A is in the closure of the facet of p. If so, then we
can argue as above.

There exist fundamental weights @ and @’ with (@, ay) = 2 and (@', o)
=3. I (A +p,af) =p—1, then we take 4 = X\ and are done. Otherwise we try
to find integers r, s > 0 such that

/,L:rw—l—sw’—l—ng—p
psed

satisfies (i + p,ag ) = p — 1. This is possible unless <Eﬁejw5, ag) =p—2. This
equality can hold only when p —2 < h — 1 since

S (@ga) < (poad) = h - 1.
psed

So our assumption p > h + 1 makes sure that the “bad case” will not occur.

b) Let L denote the socle of Z,()). Suppose first that a is short. Then a and
—ag are roots of the same length; so there exists w € W with w(—ag) = . Now
a) implies that L ~ Z, (we\, a). Since p — (A 4 p,ag) = (w(A+ p),a¥) (mod p)
and 0 < p — (A + p,ay) < p, we get the claim from the formula in B.11.

Suppose now that R has two root lengths and that « is long. Let then o
be an arbitrary short simple root. We can find (see D.1) subregular y' € g* with
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X'(b%) = 0 and y'(2_n) = 0. Since there exists only one subregular nilpotent
orbit in g*, there exists g € G with gy = Y.

Let us use notations from B.13 like C} for gy = \’. Applying the results so
far to x’ and o' (instead of y and a) we see that there is a simple U,,(g)-module
Ly in C} of dimension equal to (p — (A + p,ay))p™ ! and satisfying (T ”) Ly # 0.
Twisting Ly with ¢! we get a simple module L, in Cy of the same dimension with

T, "Ly # 0 (by B.13(2)). Now C.4.a implies that Ly ~ L; the claim follows.

Remarks: 1) The proof in a2) shows that the claim holds also in many cases where
R of type Eg, Fy, and G5 and p < h+ 1. One may hope that it holds always in
good characteristic.

2) We have here deduced b) from a). Note conversely: If we know that b) holds
(for a specific A), then also a) holds (for that \): We have T\ "Z, (we), a) ~
Z\(—p) for w as in a) [by B.11]. Therefore (and by C.4) the socle of Z,(\) is
a composition factor of Z,(we), o). Now a dimension comparison shows that
Z\(weA, @) is isomorphic to that socle, hence simple. The remainder of a) follows
now as above.

D.5. Given A € C) write J(\) for the set of simple roots with A € F(J())). Note
that each —p + wg with 5 € J(A) is in the closure of the facet of A. Let x € g* be
nilpotent. We associate to each module M in Cy an invariant by setting

R(M) ={peJN)U{0} | T (M) #0} (1)

where we use the convention wgy = 0.

This invariant will turn out to be useful in the case where y is subregular. In
the general case one should have a finer invariant that keeps track of the behaviour
under all translations to the boundary of a given facet.

There may exist weights A\, \' € Cf with A # )\ and Cy = Cy. If we replace
A by M in (1), then we will in general get different results. So x depends not just
on the category Cy, but also on the choice of A\. It might therefore be better to
denote this map by k). However, usually we fix A and then no problems should
arise.

Suppose that x(b%) = 0. Then C.9(1) and C.10(1) show that
k sbm(w, \) = J(\) U {0} for all w e W. (2)
In particular, the socle L = sbm(wg,A) of Z,(A) satisfies k(L) = J(A) U {0}.
Proposition C.4 says that this is the only simple module in Cy with 0 € x(L).
Let g € G. Given M in Cy we have M in C(gx)x, see B.13. We get now

R(9M) = w(M) (3)

from B.13(2).



33

Lemma: Let y € g* with x(bT) = 0.
a) Let v be a simple root and w € W with wy > 0. Then

r(sbm(w, \)/sbm(ws., A)) C {~v}.

b) If L is a composition factor of Z\(\) not isomorphic to soc Z(\), then x(L)
18 either empty or consists of just one simple root.

¢) Suppose that a is a simple root with x(p) = 0. Let w € W with w'a € J(N).
Then kZ\(we, o) = {w ™ a}.

Proof : a) We have for all 5 € J(A)U{0} by C.9(1)

Ty~ sbm(w, \)/ sbm(wsy, \) ~ sbm(w, wg — p)/ sbm(ws~, g — p). (4)
If 3 # ~, then we have s.+(wg — p) = wg — p, hence sbm (w, wg — p) = sbm (ws~,
wg — p). So the right hand side in (4) is 0 in that case; the claim follows.

b) Let wo = s1s2...sny be a reduced decomposition of wg. (So s; = s, for some
simple root ~;.) This leads to a chain of submodules

Zy(N) =sbm(1,\) D sbm(s;,A) D sbm(sisz,A) D -+ D sbm(wg, A).

It follows that L is a composition factor of some sbm(w,\)/sbm(ws~,\) with
w € W and v a simple root with wy > 0. Now the claim follows from a) since
quite generally x(M') C x(M) for any subquotient M’ of a module M in Cj.

¢) Set 3 = w™la. The definition of J(\) and of Cj implies that u = ) satisfies
0 < (wept + p, ") < p. The same inequalities hold for i = wwg — p. On the other
hand, all g = w, — p with v # 3 satisfy (wep 4 p,@¥) = 0. Now the claim follows
from Corollary B.11.

Remark: Let v be a simple root and let m be a positive integer. Suppose that we
have wy,ws € W with sbm(wy, \) C sbm(wsy, A) and

dimsbm(ws, )/ sbm(wy, \) = m (A + p,v¥)p~V 71
for all A € CJ. If v € J(\), then C.9(1) shows that
k sbm(ws, )/ sbm(wy, \) = {7} (5)

D.6. We are now ready to state our first main result (to be proved in D.7-10).
Let mp denote the positive integers with

ay =) mBY (1)
3

where we sum over all simple roots f3.
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Theorem: Assume that y is subregular nilpotent with x(b%) = 0. Ezclude the
case where R 1s of type Go; if R is of type Eg or Fy, assume that p > h 4+ 1. Let
A € €. Then Z\(A) has length 1+ 3250 5,y mp. We can denote the factors in a
composition series of Z,(\) by Lo and Lg; with § € J(A) and 1 <1 < mg such
that

dim Lg; = (A4 p, 8¥)pN ! and k(Lg.) =40} (2)

for all B and 1, while

dim Lo = (p— (A + p,ad))pV 1 and k(Lo) = J(\) U{0}. (3)

Remarks: 1) The restrictions on the type are hoped to be unnecessary. If R is of
type Es or Fy and p < h + 1, then the theorem will hold for all A € ) where the
socle of Z,()\) has dimension equal to (p — (A + p,ay))p™ 1
applies to the results in D.12/13.

. The same remark

2) The theorem does not say whether different factors in the composition series are
isomorphic to each other. If L and L’ are composition factors with «(L) # x(L'),
then clearly L % L'. So the question is whether for fixed 3 € J(A) the mg factors
L3 ; are isomorphic to each other. We shall see in Section F that such isomorphisms
exist in certain cases.

3) The theorem confirms in part my speculations in [11], 11.15 (where I look only
at those A € Cf that are p-regular, i.e., satisfy (A + p,3Y) > 0 for all 3 € RT).
The part of those speculations not confirmed is that the factors in a composition
series should be pairwise non-isomorphic. As mentioned in the preceding remark,
that turns out to be wrong.

D.7. We now begin to prove the theorem. Lemma B.13 and D.5(3) show: If
Theorem D.6 holds for one subregular y, then it holds for all subregular y. We
assume from now on that « is a simple root with y(p) = 0 and x(z_g) # 0 for
all simple roots  # «. Remark D.1 shows that we can find y with this property
for each a. Later on we shall make specific choices for «. [Usually this is done
such that the right hand side in (6) below is as small as possible.]

Set Lo equal to the simple socle of Z,(\). It satisfies D.6(3) by Proposition
D.4.b and D.5(2).

By our choice of y the set I asin C.11(1) consists of all simple roots 5 # o. We
shall use the construction from C.12-14 in order to find the remaining composition
factors of Z, ().

We can construct inductively a chain

61:a7627"'767’ (1)

of roots in Wra such that (3,,7Y) > 0 for all v € I and such that there exists for
each ¢ < r a simple root v; € I with (5;,7,") < 0 and Biy1 = s+, 0.
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The root (3, is uniquely determined as the only weight in Wy« that is dominant
with respect to the root system R; and its basis I. Set

M; = MPi for1<i<r (2)

and My = Z,(\). We have by C.14(1) a descending chain of submodules in Z,(\)
Mo=2,(\) DM DMy, > DM, Dsbm(wg,A) DO (3)

(2)

where the inclusion M, D sbm(wg, A) follows from C.10(2). Furthermore, C.14(2
yields

dim(M; /Miy1) = (i, B (A + p, 7 )p" 1 for 1< <or (4)
On the other hand, My = M® = sbm(sq, A) shows that My/M; ~ Z, (X, a) and
dim(Mo /M) = (A + p,a¥)pV L, (5)

Finally, a comparison of C.12(4) and Proposition D.4.b shows that
dim(M, / sbm(wo, N)) = (A + p,ag — 5,/)p" 7. (6)

D.8. Suppose first that all roots in R have the same length. We choose y such
that (in the notations from Bourbaki’s tables in [1]) a = a7 (resp. o = ag) for R of
type E7 (resp. of type Es) and o = ay otherwise. Then one checks by inspection

| ag—a, for R of type Eg;
Br = {ao, otherwise. (1)
Writing 70 = a we get from D.7(4),(5)
dim(M; /Miy1) = (A4 p, 4 )pN 1 for 0 < <r (2)

since (3; and v; have the same length (for ¢ > 0).

If v ¢ J(N), then clearly M;/M;y; = 0. If v; € J()), then Lemma D.3.b
implies that M;/M;4q is simple; furthermore D.5(5) shows that «(M;/M;+1) =
{vit-

Exclude the case Es for the moment. Then (1) and D.7(6) show that M, is
equal to the simple socle Ly of Z, (). So the results in the preceding paragraph
show that the M; provides us with a composition series of Z, (\)/Lg. The length
of this series is equal to the number of ¢ with 0 < ¢ < r and 7, € J(\). If
B € J(\) and if mj is the number of ¢ with 4; = 3, then the composition series
has exactly m’ﬁ factors L with dim(L) = (A + p, 8Y)pY¥ ! and w(L) = {3}. We
have 3; = 8,1 + vi—1 for 2 <@ <r and 1 = o = 7, hence

r—1
S i =0 = a0 = 3 mad
=0 8

This shows that m’ﬁ = mg; the claim follows.
If R is of type Ejg, then set M,4; = sbm(wp, \) and v, = a. Now (1) and
D.7(6) yield
dim(M; /My1) = (A + p, 7)™ 7
Again Lemma D.3.b and D.5(5) show that M, /M,1; is simple with ~(M,/M,41)
= {~,}. Now argue as in the preceding paragraph.
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D.9. Consider now R of type B, or C,, with n > 2. We choose y such that
a = o7 (in the notations from [1]) and get then (in those notations) Wra =
{e1 £ ;| 2 <1 < n}. The sequence from D.7(1) is now equal to

€1 —€2,81 —€3,...,81 —Ep,&1 T E€py...,€1 +E3,81 + E2.
We have ~; = ;41 — €442 = aq1 for 1 < 1 < n—1, and v,-1 = «a, and
Ynti = Ep—iml — En—i = Qp—j—q1 for 0 < 12 < n — 2. We get in particular that
r = 2n — 2 and that
v v
v v _ Jag —a¥, fortype By; .
Br=l(e1te)’ = {ozg, for type C,,. (1)

If R is of type C,, then D.8(6) implies now that M, is equal to the simple socle
Loy of Z,(\). For R of type B, we get instead

dim(M, / sbm(wg, \)) = (A + p,a¥)p™V 7L, (2)

Now Lemma D.3.b and D.5(5) show that M, /sbm(wg, A) is simple with ~ invariant
equal to {a} in case (A + p, @) > 0; otherwise this factor module is equal to 0.

If Ris of type By, then o and hence all 3; are long. We get therefore (v;, 8) =
—1for 1 <i < r, hence [using D.7(4),(5)]

dim(M; /Miy1) = (A4 p, 4 )pN 1 for 0 < <r (3)

setting vo = a. One gets then (as in D.8) that all M; /M, are simple or 0, with
k invariant equal to {~;} in the first case. Then the theorem follows by counting
the numbers of 7 with ~; = [ for each simple root 3.

Assume now that R is of type C,. Then (3) holds for all © # n — 1 and we
can argue as in the preceding paragraph for these factors. However, we now get

dim(My—1/Myn) = 2(\ + p,ay)p™ (4)

If (\+p,a)) =0, then M,_; = M, and we have already a composition series.
Counting the numbers of ¢ with ~; = 3 yields then the claim. Suppose from now
on that (A\+p, @) > 0. We want to show in this case that M,,_y /M, has length 2,
with both composition factors of dimension (\ + p, a))p™¥ =1
equal to {ay,}. Then the theorem will follow as before.

Formula (4) implies by Remark D.2 that M, _; /M, has length at most equal
to 2. Note next that y = —w,, + p is in the closure of the facet of \; we have

and with x invariant

dim T{ (M —1 /M) = 2p™ 1,

We can find (by Lemma D.1) an element g € G such that (gx)(b*) = 0 and
(9x)(x=a,) # 0. Then L = Z;, (A, ap) is (by Lemma D.3.a) a simple module of

dimension equal to (A + p,a¥)pV¥~!; we have furthermore (L) = {a,}. More

precisely, T{'L ~ Z, (u, o) has dimension equal to p¥ 7!, Then L' = ' Lis a
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simple module in Cy of the same dimension with (L") = {a,} by B.13(2) and
dim T{L" = pN—L.

Since L' is in Cy it has to be a composition factor of Z,(\). All M;/M;+1 with
i #n—1and My, _y are simple with « invariant different from {«,, }. Therefore L’
has to be a composition factor of M,,_; /M,. It follows that this factor module has
length equal to 2 and that the second composition factor, say L”, has to have the
same dimension. Furthermore, the exactness of the translation functors implies
that Ty (M,,—1/M,) has a filtration with factors Ty L’ and T} L”. By comparison
of dimensions we get that also Ty L” has dimension equal to pV =1 This shows
that o, € K(L"”). On the other hand, since L" is a composition factor of M,,_1 /M,
we have

k(L") C k(Mp—1/M,) = {an}.

So we get equality: x(L") = {a,}. This completes the proof of the claim con-
cerning the composition factors of M,,_; /M, hence that of the theorem for type
Ch.

D.10. Consider R of type Fy. We choose y such that o = a4 in the notations from
[1]. So a is short. We can choose the chain in D.7(1) such that the corresponding
simple roots are (in this order)

g, 02, 01, O3, O, V3.
We get r =7 and 7 = a1 4+ 2a3 4+ 3a3 + ay4, hence

BY =20y +4ay +3a] +ay =af —aj.

Set Ms = sbm(wg, A). We get from D.7(4)—(6)

dim(Mo /M) = dim(M7/Ms) = (A + p,af )p™ 7,

dim( M, /My) = dim(My /M) = dim(Mg /M) = (A + p, a3 )pN 71,
dim( M, /M) = dim(Ms /Mg) = 2(\ + p, ay)p™ 7,

dim(Ms /My) =2\ + p,a))p™ L.

Lemma D.3.b implies that My /My, M;/Mg, M, /My, My/Ms, and Mg/M; are
simple or 0; if non-zero, then the first two modules have « invariant {ay}, and the
remaining three modules have x invariant {a;}.

Each factor module My /My, Ms /Mg, M; /M, has length at most equal to 2
by the Remark D.2. We have

H(MQ/M;;) = H(M5/M6) = {Ozz} and H(M3/M4) = {ozl}.
More precisely, we have, if ag € J(\),

dim T2 7P (My /M) = dim Ty P (Ms /M) = 2p™ !
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and, if oy € J(N),
dim TZ P (M /My) = 2pN 1,

The theorem will follow if we can show: If oy € J(\), then M; /My has length
2 with both factors of dimension (A + p,ay)p” ! and with » invariant {a;}. If
ay € J(N), then both My /M;s and Ms /Mg have length 2 with all simple factors of

dimension (\ + p, oy )p™ =1 and with « invariant {as}.

Set o' = aj. Choose g € G such that ' = gy satisfies x/(b7) = 0 and
X'(x_q) = 0. (This is possible by D.1.) We can carry out the constructions from
C.12-14 and D.7 with x' and o’ instead of y and a. Let me write 3] and ~/ for
the corresponding roots and M for the corresponding submodules of Z,,(\). We
can choose the sequence as in D.7(1) such that the sequence of the ! is equal to

Qg, 3, 04,02, 03, (2.

We get from D.7(4)—(6)

dim(Mg /M7) = (A + p, o) )p™ ',

dim(M{ /My) = dim(M} /M}) = dim(Mg /M) = (A + p, oy )p™ 7",
dim(My /Mj) = dim(M} /M) = (A + p, oy )p™ ",

dim(Mj /M) = (A + p, oy )p™ 7.

Lemma D.3.b implies that each M]/M! , with 0 < 7 < 7 is simple or 0; if
dim(M; /M ) = (A + ,o,oz]V>pN_1 and o; € J(A), then M]/M] | has « invariant
{a;} and satisfies dim Ty’ " (M]/M/[, ;) = pV "

Twisting with ¢~ we get: If a; € J(\), then Z,(\) has a composition factor
L1 1 of dimension (A + p, ay)pN 71, with & invariant {a;} and dim T 7P (Lyg) =
pN7L If ay € J()), then a composition series of Z, ()\) contains three quotients
Ly 1, Ly 5, and Ly 3, all of dimension (A + p, ay)pN 71 with x invariant {a,} and
dm T 7P(Ly ) = p¥~L. (Here one has to use the full strength of Lemma B.13.)

A look at the s invariants of the M; /M;4+q and of Mg shows now: If oy € J(\),
then Ly ; is a composition factor of Ms/My. If ay € J(A), then Ly 1, Ly o, Lo
are factors in a composition series of My /M3 © Ms/Mg. Now one concludes the
proof arguing as in type C,.

D.11. Consider R of type G3. We choose y such that & = a7 in the notations
from [1]. So « is short. Assume that the socle of Z, () has the expected dimension.
When we carry out our standard construction we get r = 2 and 3, = a1 + as,
hence 3 = o 4+ 3ay = af —ay. Setting M3 = sbm(wp, \) we get

dlm(Mo/Ml) = dlm(MZ/MS) = </\ —I_ P O‘¥>pN_17
dim(M; /M) =3 (X + p,ay)p™ .

We see that My /M, and M, /M; are simple or 0, with « invariant {aq } if non-zero.
If (A + p,ay) =0, then we are done. So assume that (A + p,ay) > 0. In order to
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extend Theorem D.6 to type G2, we would have to show that M; /M, has length 3
with all factors of dimension (A + p, ay )p¥ ~! and & invariant {as}. The way that
we handle such problems in types C,, and Fy was to look at another subregular y’
and to get simple modules of the right type by twisting. If we do this here, we get
one simple module L that has to occur as a composition factor of My /Ms having
the expected dimension and the expected s invariant. But one such factor is not
enough when the expected length is 3.

D.12. Return to the situation from Theorem D.6. So we exclude the case where
R is of type Go; if R is of type Eg or Fy, assume that p > h + 1. If R is of type
B, set o = ay; otherwise let a be the same simple root that was used in D.8-10.
So « is a short simple root in all cases. Choose x subregular with x(po) =0. We
claim under these assumptions:

Lemma: Let A € C). Let ~v be a short simple root with v € J(\). If L is a simple

module in Cx with k(L) = {~}, then there exists an element x € W with vy = «
and L ~ Z, (z.\, ).

Proof: If the claim holds for one y as above, then it holds also for all gy with
g € P,; this follows easily from B.14(3) and D.5(3). This means by Lemma D.1
that it suffices to prove the claim for one special y. We can therefore assume that
X(2_g) # 0 for all simple roots 3 # a.

Suppose at first that v # «. (Note that this case does not occur for R of type
B,.) Since L is isomorphic to one of the L. ; from Theorem D.6, the proofs in
D.8-10 show that L is isomorphic to one of the factors M;/M;y; with 1 < j <r
in D.7(3). In these cases the claim follows from C.14(3).

So assume that v = a. If m, = 1, then we have L ~ Z, (), ) and we can
take x = 1.

Assume from now on that my > 1. Then R is of type Eg or Fy; we have
mqo = 2. The two composition factors L, 1 and L, 2 in D.6 arise as

Log =2Z(N)/M® ~Z (N, o) (1)

and

Loy =M"%/soc Z,(N). (2)

We can take x =11f L >~ L, ;. So we may assume that L ~ L, .

Recall that @ = ag in type Fg and a@ = a4 in type Fy. In both cases aq is the
fundamental weight w, corresponding to «.

Set o' equal to the unique simple root with (o, a’) < 0. Then o' is short; we
have spo' =o' +a = sy 0.

Write I (as in D.7) for the set of simple roots different from . Let w; be the
longest element in Wr. It is an involution and satisfies

wra' = —a’ and wro = ag — o. (3)

Here the first equality follows from the fact that I is of type E7 or Bjs, hence that
wr acts as —1 on all of I. For the second equality note that « (resp. ag — «) is the
unique weight in Wra that is antidominant (resp. dominant) with respect to I.
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Claim: The element wy = sqwisy satisfies

sbm(wy, A) D sbm(wisqar, A) D sbm(wysarSa, A) D sbm(wisatar, A) (4)
and

sbm(wi, A) D sbm(wisqe,A) D sbm(wisasar, A) D sbm(wisatar, A) (5)
and

sbm(wysqr, A)/ sbm(wysqrSq,A) >~ Lq 2. (6)
Proof (of Claim): We have sqaap = ag — o and sy a9 = ag, hence
wia = sqwi(a+ ') =sq(lag—a—a')=ag—a—a

and
wia = sqwi(—a’) =s,0" = a+ o'

Since both wia and wya’ are positive, we have in the Bruhat-Chevalley order
w; < WSy < W1SqrSq < W1Sa!SaSa! = WiSa+ta!

and
W1 < W1Sq < W1SaSe! < W1SaSa'Sa = Wi1Satal-

This yields (4) and (5) using C.8(11).
The second equality in (3) implies by C.12(2)

sbm(sqwr, \) = M~ (7)
We get also sqwrsqe () = —sq(ag — o) = —ag, hence by Proposition D.4.a
sbm(sqwrsa, A) = soc Zy (A). (8)

Using wiSq = Sqwy and wisy S = SaWrSqe, wWe see that (6) follows from (2), (7),
and (8). This concludes the proof of the claim.

Now (4)—(6) imply that L 2 is a composition factor of one of the subsequent
quotients in (5). Because shm(wisqa, A)/sbm(wysasar, A) has £ invariant contained
in {a'} by Lemma D.5.a, L, 2 cannot be a composition factor of this quotient. So
it is a composition factor of sbm(wsq, \)/sbm(wase, A) with wy = wy or wy =
W1SaSq. We have wia = ag — a — o' and wisasqga = wia’ = a + o', hence
waa € Wra. Now Lemma C.13 yields an element x € W with ra = « such
that sbm(wsy, A)/sbm(wzsq,A) is a homomorphic image of Z, (z.\, o). It follows
that L 2 is a composition factor of Z, (z«A, ). This implies the lemma because
Zy(xeA, @) is simple by Lemma D.3.a.
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D.13. We want to have an analogue to Lemma D.12 for the simple modules
whose k invariant is a long simple root. Suppose that R is of type B,,, C,,, or Fj;
if R is of type Fy assume that p > h 4+ 1. Set a« = oy if R is of type B, or F}, set
a = ay 1f R is of type C,. So « is a long simple root.

Let y be subregular with x(p,) = 0. We claim under these assumptions:

Lemma: Let A € C{. Let ~ be a long simple root with v € J(X). If L is a simple
module in Cx with k(L) = {~}, then there exists an element x € W with vy = «
and L ~ Z, (z.\, ).

Proof: As in D.12 it suffices to prove the claim for one special subregular y with
X(pa) = 0.

Consider first R of type B,,. Then we may assume that x has the standard
Levi form considered in [10], Section 3. Now the claim follows from [10], 3.13.

Consider next R of type C,,. We may assume that y(x_q;) # 0 for all « < n.
So the set I as in D.7 is the set of all a; with ¢ < n, hence W; ~ ¥, the symmetric
group permuting all ¢;.

Write s; = s4,. Set
Ti = SpSp—q --..5; and Yi = T1Tg...T;
for 1 <7 <n. One checks inductively that
€, if j <1

xi(afj) = —&n, lf] :Z:
gj—1, ifg >

and . . .
oy ey, iy <
yile;) = {5j_i, if 5> 1.

We have in particular y,(¢;) = —ep41—; for all 7, hence y,, € Wrwp. This implies

sbm(yy,, A) = sbm(wg, A) = soc Z, (A). (1)
We have (exercise) I(y,) = n(n + 1)/2; therefore

Yn = (Snsn—1...51)(SnSn—1-..92)...($pSn—1)sn (2)

is a reduced decomposition of y,. Let z; be the product of the first k& factors on the
right hand side in (2); then the sbm(zg, \) are a descending chain of submodules
in Z,(A). Since L is not isomorphic to the simple socle of Z, (\) it has to be a
composition factor of some sbm(zx, A)/sbm(zg+1, A). There exists a simple root ~
with zp41 = zps+; then each composition factor of some shm(zg, A)/ sbm(zg41, A)
has r invariant contained in {7}, see D.5.a. This implies v = a,.

Now a look at (2) shows that either z; = zo = 1 or that zx = y; for some
t < n. In the first case we get that L is a composition factor of

Zy(N)/sbm(sp, A) ~ Z\ (N, ap),
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hence that L is isomorphic to Z, (A, ay,) since that module is simple (see D.3.a).
Suppose that we are in the second case. We have y;(«,) = 2¢,_; for each
¢t < n. Now

2€Tl—l = Sgn—i_gn (an)

shows that
yi(an) € Wray,.

Now Lemma C.13 implies that sbm(y;, A\)/sbm(y;sn, A) is a homomorphic image
of Zy(xeX, ap) with @ = s.,_,_. y, satisfying za,, = «,. Now the simplicity
(by D.3.a) of Z, (2, ap) implies that this module is isomorphic to L; the lemma
follows.

We finally turn to the case where R is of type Fy;. We may assume that
X(2_q;) = 0 for all « > 1. In other words, our set I consists now of all «; with
1> 1.

Let w; be the longest element in W;. We have

sbm(wwg, A) = sbm(wg, ) = soc Z, ().

So L is a composition factor of Z,(\)/sbm(wrwq, A).
An elementary calculation shows that

WIWQ = 51595354525352515253545253525]. (3)

Since there are 15 factors on the right hand side, this is a reduced decomposition
of wrwg. Denote by x; the product of the first ¢ factors on the right hand side of
(3). Then the sbm(z;,\) are a descending chain of submodules in Z, () ending
in sbm(wjwg, A). So L is a composition factor of some sbm(z;, A)/sbm(zj41,A).

Now suppose that (L) = {az}. Then D.5.a implies 241 = s, hence
J € {1,4,6,8,11,13}. I claim that z 02 € Wyreay for these six j. If so, then we
get from Lemma C.13 that L is a composition factor of some Z,(z.), 1) with
ray = a1, hence by D.3.a isomorphic to such a module. Another elementary
calculation shows that

Tiop = o + Qg = 5200,

T4y = 1 + a + 2a3 = s3sqayq,
reorg = a1 + ag + 203 + 204 = 545352011,
xgoy = o + 200 + 203 = s98382011,
r1109 = a1 + 209 + 2a3 + 204 = 52545352001,
13000 = a1 + 209 + 4ag + 204 = 5352545352007

The claim follows and we are done for ¢ = 2. (Actually, for j = 1,4,6 one
could have quoted C.14(3) since the corresponding x; have the form s;wg with

6 - W]Oél.)
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Assume now that ¢ = 1. The approach above does not work because z7ay =
w1 & Wraq. Set J ={ay, a2, a3} and use the abbreviation

Zy,g(psar) = U(pr) Qv (pa,) Ly,a: (1)

for all p € X. Recall the notation Z, j(u) from B.6(1).

The nilradical of p y acts trivially on each Z, j(u), the centre of the standard
Levi factor g acts via scalars. Now g is the direct sum of its centre and its
derived Lie algebra Dg; [since p # 2.] So a composition series of Z, j(u) is the
same as one as a Dgj-module.

The Lie algebra Dg s has type Bz. Assume for the moment that the restriction
of x to Dg has the standard Levi form considered in [10]. The results in [10] show
then that Z, ;(\) has a composition series with factors (among others)

ZX7J(/\,Oé1) and ZX7J(SQ1+QQ2+2a30/\,Oé1).

[If we take Ay = A in [10], then we can take A5 = sS4, 42a542a5¢.] Induction to g
yields a chain of submodules in Z, (\) with

ZX(/\,Oél) and ZX(SQ1+QQ2+2a30/\,Oé1)

among the factors. Since these two modules are simple with « invariant {o; } and
since each composition series of Z, (\) has only two factors with this s invariant,
our L has to be isomorphic to one of them.

It remains to be shown that we can choose y such that its restriction of y to
Dgs has the desired standard Levi form. Well, consider y with x(po) = 0 and
X(z—g) # 0 if and only if 5 € {ag, a3, a4, a1 + a2 + a3 + as}. It is not difficult
to check that the centraliser of y in g has dimension 6. This implies that yx is
subregular. (See [20], p. 38, on the connection between centralisers in G and g.)
On the other hand, the restriction of y to Dg; has clearly the required form.
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E

We return to the more general set-up from Section A. We assume that G satisfies

(B1) and (D1).

E.1. Let y € g* have Jordan decomposition y = x5 + Y. Assume that we have

Ys(n™ 4+ nt) =0 and xa(bT) =0. (1)
Then the assumption that v = v + y» 1s a Jordan decomposition means that
Xs(ha) =0 for all @ € R with x,(x4) # 0. (2)

Set Ry equal to the set of all roots a with ys(he) = 0. This is a root subsystem
of R; it satisfies Ry = RN QR because we assume the characteristic to be good.
The centraliser [ of x; is given

(=53 P g (3)
aERy

This is a Levi subalgebra of some parabolic subalgebra of g. This parabolic subal-
gebra is not uniquely determined. We choose it as follows: We first choose a basis
of the root system R; such that Ry N R is the set of positive roots with respect
to this basis. Then we extend this basis of Ry to a basis of R. (This is possible
since Ry = RN QRy, see [1], Ch. VI, §1, prop. 24.) Set u equal to the direct sum
of all gg with 3 positive with respect to this new basis and not in Ry. Then [Su

is a parabolic subalgebra of g with nilradical u.
Now Kac & Weisfeiler (or rather Friedlander & Parshall, [6], Thm. 3.2) tell

us: The functor V' +— V* is an equivalence of categories from U, (g)-modules to

Uy (I)-modules. We have
dim(V) = pi™ ¥ dim(V*) (4)

for all these V. (It is here that we need (B1) and (D1). In [6] one assumes also
that G is semi-simple, but that is not necessary, cf. [11], 7.4.)

E.2. Keep the assumptions from E.1. We want to evaluate the functor V +— V¥
on certain induced modules.

Let I be a subset of the set of simple roots and let p; D bT be the correspond-
ing standard parabolic subalgebra. Assume that y satisfies in addition

Xs(ha)=0 forallael and Xn(pr) =0. (1)

Let g; be the standard Levi factor of p; (i.e., the direct sum of h and all g, with
a € RNZI).

Let M be a finite dimensional U, (g; )-module. Extend M to a p;—module such
that the nilradical of p; acts trivially. We get thus a Uy (ps)-module because x
vanishes on that nilradical. This leads then to the induced module U, (g)®UX(P1) M.
We want to describe (U (g) @y (p;) M)". We shall identify each m € M with the

element 1 ® m in the induced module.

We shall need some additional notation: Set R;’ (resp. R;’) equal to the set
of all positive roots 3 with g_3 C u (resp. gg C u). So u is the direct sum of all
gs with 8 € (—Rf) URY.
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Lemma: If m runs through a basis of M, then the set of all

[T " I = 2)

¥>0,vERI\ZI BERT

with 0 < r(y) < p for all vy € Ry \ ZI is a basis of (Uy(g) @ (py) M)
Proof : Let me abbreviate V = U\ (g) @y (p,) M. All

IT = 00« II " m (3)

v>0,vERINZI BERT BERT

with m as above and all exponents runnning from 0 to p — 1 are a basis of V. The
elements in (2) are a subset of this basis, hence linearly independent.

We have dimu = |RJ | + |RT|. Therefore a comparison of (3) and (2) shows
that the elements in (2) span a subspace of dimension equal to dim(V)/pdim*,
This is by E.1(4) also the dimension of V*. So the claim will follow if we can show
that all elements in (2) belong to V*.

There exists a group homomorphism d : ZR — Z with d(a) = 0 for all
o € Ry and d(3) > 0 for all B € R with gs C u, i.e., for all 3 € (~Rf)U RY.
(If o belongs to the basis of R used to construct u in E.1, then set d(a) = 1 if
a ¢ Ry and d(a) = 0 otherwise.) We get then a Z—grading on g such that each gg
is homogeneous of degree d(3) and such that § is homogeneous of degree 0. Then
[ is the homogeneous component of degree 0 and u is the sum of the homogeneous
components of positive degree. This induces a grading on U(g) and then also on
Uy(g). (For the last claim one uses that y vanishes by E.1(2) on all 24 not in [.)

The subalgebra p; of g is graded (since it is spanned by h and certain x g, hence
by homogeneous elements). If we give M the trivial grading (where everything has
degree 0), then it becomes a graded pr—module. (The homogeneous components
of pr of non-zero degree belong to the nilradical of p; and act as 0.) This leads
then to a grading on the induced U, (g)-module V.

Each basis element in (3) is homogeneous [of degree — > r(3)d(3)]. We get
elements of maximal degree if we choose r() = p — 1 whenever d(3) < 0, and
r(#) = 0 whenever d(3) > 0. We have to admit arbitrary m and arbitrary r(/)
whenever d(3) = 0. If 3 € RT, then we have d(3) = 0 if and only if 8 € Ry, and
d(B) < 0if and only if g_s C u if and only if 3 € R . It follows that the elements
in (2) are precisely the elements in (3) that have maximal degree. So they are a
basis for the homogeneous component of maximal degree of V. Since each 23 € u
maps an element of some degree to an element of higher degree, all elements in
(2) are annihilated by u. The lemma follows.

E.3. Lemma: We have

T H x]i_ﬁlm: H x]i_ﬁlxym (1)

BERT BERT
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for ally € Ry and m € M.

Proof: Let me abbreviate z = HﬁeR;’ :1;]16 . We have to show that z 2 — 22

annihilates M C V.
Since u is the nilradical of [ & u, we have [[,u] C u. So z., € [ implies that

ryx —xaxy € Uu).

We can express this commutator in terms of a PBW basis of U(u). So z,z — zx,
is a linear combination of monomials of the form

IT == II «5” (3)

BERT BERT

with non-negative integers a(/3), b(3).

Now 2,2 — zx, and all monomials in (3) are eigenvectors for the adjoint
action of T. We can therefore assume that only monomials occur that have the
same weight as o — zx, i.e., with

YNobB)B- Y aBB=y—(p-1) Y 05 (4)

BERT BERT BERT

If b(3) > 0 for some 3 € R, then the term in (3) annihilates M since x5 belongs
to the nilradical of pr, hence annihilates M. In order to prove our claim it therefore

suffices to look at the terms in (3) with b(3) = 0 for all 8 € R . Then (4) reduces

to
Y p-1-alB)s=r. (5)

+
seR]

If a(3) > p for some 3 € R, then l’(i(g) acts as 0 on V since x(u) = 0; hence so

does the monomial in (3). So we may assume that a(3) < p —1 for all 3 € RJ.
Note that then a(8) < p — 1 for at least one 3, since otherwise we get 0 = ~.

Recall now the homomorphism d : ZR — Z used in the proof of Lemma E.2.
It satisfies d(v) = 0 since v € Ry, and d(3) < 0 for all 3 € Rf. If we assume in
(5) that a(8) < p—1for all # and a(8) < p — 1 for at least one (3, then the left
hand side has a negative image under d. This contradicts d(v) = 0. So (5) cannot
have a solution with a(3) < p — 1 for all 8 € R} . Therefore all monomials from
(3) annihilate M; the claim follows.

E.4. Set p’ equal to half the sum of the positive roots in Rj.
Lemma: We have (p — p',~vY) = 266R3<677v> for all v € Ry.
Proof: Let v € Ry. Set a; = 26€R+<[3,7v> for i = 2,3. Since RT is the disjoint

union of RT N Ry, R;’, and R;’, we get

1

(p—10"7") = 3 (az + a3). (1)



47

Because u is the nilradical of a parabolic subalgebra with Levi factor [ D §, the
set of all 3 with gg C u is stable under the Weyl group of [. Now s, belongs to
that Weyl group; this implies s~ ((—RJ ) U RT) = (—RJ) U RY, hence

0= >  (34")=—a+as.

pe(—RIURY
So ay = as; plugging this into (1) we get our claim.

E.5. Set

=Y B (1)

BERT

Each o € I belongs to the basis of R with positive system RT, and it belongs to
the basis of Ry with positive system Rt N Ry. This implies (p,a¥) = 1= (p’,a").
So Lemma E.4 shows that (6;,a") = 0, hence 6;(hy) =0 for all a € I. It follows
that §; vanishes on the intersection of h with the derived Lie algebra of g;. We get
therefore a one dimensional gy—module where each x5 with 8 € RNZI acts as 0,
and each h € b as §;(h). This is a restricted gy—module. Its tensor product with
a Uy (gr)—module, say N, is again a U, (gr)—module; we shall denote it be N @ ¢;.

Proposition: Let M be a finite dimensional Uy (gr)-module extended trivially to
a Uy(pr)-module. Then we have an tsomorphism of Uy (I)-modules

(Ux(8) @uor) M)* = U (Y) Qo npry (M © 61). (2)

Proof: Abbreviate the left hand side in (2) by M'. Write z = HﬁeR;’ :1;11_61.

Lemma E.3 implies that the subspace M of M’ is stable under all ., satisfying
y€ R NR" ory € (—RY)NZI. (Note that M is stable under these z..) On the

other hand, we have for all h € h and m € M

ham = xhm — Z (p—1)B(h) am = xhm + 61(h) xm. (3)
BERT

Because [N pr is spanned by b and the ., as above, it follows that xM is a
Uy (INpr)—submodule of M’. Formula (3) and Lemma E.3 show that this submodule
is isomorphic to M & 4.

The universal property of an induced module yields a homomorphism of U, ([)—
modules

UX([) QU (1npy) M — M, u®axm — urm.

Lemma E.2 implies that this map is bijective. The claim follows.
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E.6. We now drop the assumptions fixed throughout E.1-5 and consider a more
general situation.
Let v = yvo + x1 € g* with

Yo(n™ +nt)=0 and x1(b1) =0. (1)

So this looks like E.1(1); but we no longer assume that x = yo + x1 is a Jordan
decomposition, i.e., the analogue of E.1(2) will not hold in general.
On the other hand, we fix again a set I as in E.2 and assume the analogue of
E.2(1):
Xo(ha) =0 forall o el and x1(pr) =0. (2)

Let P; be standard parabolic subgroup of G with Lie algebra p;. Denote its
unipotent radical by R,(Pr). For each g € R,(Pr) and all @ € p; the difference
Ad(g71')(x) — 2 belongs to the nilradical of p;. Since Y vanishes on that nilradical,
we get

(g ) X)HJI = Xlpr- (3)
(Recall that (g - x)(z) = x(Ad(g™!)(x)).

Lemma: There exist g € R,(Pr) and x| € g* with x| (pr) = 0 such that g -\ has
Jordan decomposition g - x = xo + X}-

Proof: This follows from the proof in Subsection 3.8 in [13]. If we apply the
construction there to our y (as their /), then we get an element g € G such that
¢+ X has Jordan decomposition gy = xo + \} where x{ = ¢y — xo. We just have
to check that the g used there actually is in R, (Pr). (If so, then we get \j(pr) =0
from y1(pr) = 0, since x} coincides by (3) with y; on pr.)

Well, in [13] one considers the set (denoted by II) of all positive roots 3 with
X(hg) # 0. Then g is constructed as a product of elements from the root subgroups

Uz with 3 € II. Now our assumption (2) says that II C RT \ ZI. This implies that
g € Ry(Pr) as claimed.

E.7. Keep the assumptions of E.6 and choose g as in Lemma E.6. We can
apply E.1-5 with xs = xo0, xn = X} and with y replaced by ¢gx. Set in particular
Ri={a€R|xolho) =0}and [=h& @aERl go. We get also é; as in E.5(1).

Proposition: There exists an equivalence of categories
F : Uy(g)-modules — Uy, (I)—modules

such that
F(U(9) Qv (pr) M) 2= Upy (1) @1 (1npy) (M @ 61) (1)

for all finite dimensional Uy (gr)-modules M extended trivially to a pr—module.

Proof : We construct F as a composition of two equivalences. The first one is

Uy (g)-modules — U, (g)-modules, Vs 9V 2)
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where 9V is equal to V as a vector space and where each = € g acts on 9V as
Ad(g™1')(z) acts on V.
In case V = Uy (g) @y (p;) M with M as above one checks easily that

IV = Upy(9) @ ad(grpn) T M = Uy (9) Qu pp) I M.

For the second equality use that Ad(g)p; = py since g € R,(Pr) and apply E.6(3).
For each z € pr the difference Ad(g~')x — 2 belongs to the nilradical of p;. This
nilradical acts trivially on M. Therefore ¢ M is isomorphic to M as a pr—module.
We get thus

IV Tyla) g o) M. 3)

Let F be the composition of the functor in (2) with the equivalence of cate-
gories V' — (V)" from [6], with u as in E.1. Then F is an equivalence of categories
from U, (g)-modules to U, ([)-modules with F(V) = (V)*. Combining (3) and
Proposition E.5 we get (1).

F

We assume in this section that (B1), (B2), and (D1) hold. From F.5 on we shall

also assume (D2).

F.1. Let a be a simple root. We write (as before) p, = bt & g_, for the
corresponding minimal parabolic subalgebra of g. Let v be a root orthogonal to
a.

We want to show:

Proposition: Suppose that the root system RN (Qa + Q) has type Ay x Ay or
By. In the second case assume that o 1s a short root in that subsystem. Then we
have

Homg(Z\(syept, @), Zy (g, ) # 0 (1)
for all p € X and all x € g* with x(pa) = 0.

The proof will occupy the following subsections until F.4. We shall first prove
the proposition in the rank 2 case (i.e., if R = RN (Qa + Q~)) and then use the
‘old S’ to reduce to that case.

Remark: This proposition does not generalise to the situation where RN(Qa+Q~)
has type Bz and where « is long. For example, if R is of type Bs, then [10],
3.13 shows that there exist simple modules Z, (A1, o1 ) and Z, (A3, o) that are not
isomorphic to each other, but where A3 = s,+A; with + the positive root orthogonal
to oq.

F.2. Lemma: Proposition F.1 holds if R is of type Ay x Aj.

Proof : In this case also v is a simple root. Let e be the integer with 0 < e < p and
(u+4 p,a¥) =€ (mod p). Let v (resp. v') be the standard generator of Z,(p1, a)
(resp. of Zy (syept, @)). Using [24q,2—] = 0, one checks easily that there exists a

homomorphism between our two modules that maps v’ to z<_v.
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F.3. Lemma: Proposition F.1 holds if R is of type Cj.

Proof: The assumption (D1) implies in this case that p # 2. It follows that the
derived Lie algebra of g is simple and that g is the direct sum of its centre and of
its derived Lie algebra Dg. The centre (equal to the intersection in § of all ker(/3)
with 3 € b acts on Z, (p, o) and Z,(s~ept, ) via the same linear form. So we can
replace g in F.1(1) by Dg. When we regard a Z, (v) as a Dg—module we get again
a baby Verma module. An analogous result holds for the Z, (v, «). Therefore it
suffices to prove the claim for Dg instead of g.

So assume from now on that G is semi-simple. Let § be the second simple
root (besides o). Recall that we suppose in this case that « is short, hence 3 long.
Since ~ is orthogonal to a, we have v € {£(a + ()} and s, = sgsqa53.

Assume that x is subregular with y(z_g) # 0. (Such y are by D.1 dense in
the set = of all x € g* with x(po) = 0. Therefore Proposition A.7 implies that it
suffices to prove the claim for these x.)

Since Cy 1s a fundamental domain for the affine Weyl group, there exist A\ €
Co, w € W, and v € X with p = we) 4+ pr. We can actually assume that A\ € C{:
If A e Co\ Cf, then (A + p,7vY) = p. In this case one checks (using p # 2) that
N = sgwpe + pw, belongs to € and replaces A by \'.

Because any Z,(p1,«) depends only on the coset of p; modulo pX, we see
that it suffices to show that

Homgy(Z, (sywe, &), Zy(wed,a)) # 0 (1)

for all A € € and w € W.

This is now done case-by-case. We first assume that A is regular, i.e., that
A+ p,a¥) > 0and (A4 p,3Y) > 0. Then Z,()\) has length 4. We denote the
composition factors as in D.6 by L, [short for Ly 1], Lg 1, L2, and Ly. (We know
in this case actually that Ls ; and Lg 2 are not isomorphic to each other; but that
will not play a role here.)

The chain of submodules from D.7(3) is in our situation

Z(\) D M® > M**tP 50.

We have
Zy(A) = sbm(1,\) = sbm(sg, A),
M® = sbm(sq, A) = sbm(sgsa, ),

and
MYP = shm(sass,\) = shm(sgsass, A) = shm(sasgsa, \) = sbm(wo, A),

where the equality M2TF = sbm(wp, \) was observed in D.9, right after D.9(1).
We have Z,(\)/M® ~ L, and Mot8 ~ L. Let me use the abbreviation
M = M%/M®*P. This module has length 2 with composition factors Lg; and

Lgs.
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We have w™'a = o for w = 1 and w = s,. Therefore Lemma D.3.a and
Lemma D.5.c imply that Z,(w.), @) is [for these two w] simple with ~ invariant
{a}, hence satisfies

Zy (A, ) > Lo >~ Z, (540\, v). (2)
We have w—ta = —ag for w = 5q83 and w = s45354, hence by D .4
Zy(8a8geA, @) ~ Lo ~ Z,(sq585q¢\, @t). (3)

Clearly (2) and (3) imply (1) for all w € {1,5458, Sa585a, 535453}

In order to get the result for the remaining w € W, we recall that we have for
all w € W an exact sequence

0 — Zy(sqwed, o) — Zy(wed) —> Zy (wed, ) — 0. (4)
Using (2) and (3) we see that the remaining Z, (wsA, o) have composition factors

Lgi,Lga,Lo for w = s, and w = wq,

Lgi,Lgo,La for w = sg and w = sgs4.

Note that wo = sy54 and sgsq = 5453.
We have M ~ Z,(sqeA, ) by C.12(4), hence a short exact sequence

0— Lo — Zy(Sae, o) — M — 0. (5)

The isomorphism Z,(\) — Z,(sg.)\) induces a surjective homomorphism from
Z\(\) onto Z,(sgeA, o). The kernel of this map has to be isomorphic to Ly, hence
equal to the socle Mt of Z, ()\). This leads to a short exact sequence

0=+ M — Z,(spe\,00) — Lo — 0. (6)

The isomorphism Z,(sqe\) — Z\(8g5q+A) induces a surjective homomorphism
from Z,(sqe¢A) onto Zy(sgsqeA, ). The kernel of this map has to be isomorphic
to Lg. Therefore the submodule Z, (A, o) ~ L, of Z,(sq+A) is mapped isomor-
phically onto a submodule of Z, (sgsqeA, ). The corresponding factor module
of Z,(sgsqe\, ) is a homomorphic image of Z,(sqeA, ). The surjection from
Z\(sqeA, @) onto this image has kernel isomorphic to Lg. Since Z,(sqeA, ) has
only one submodule isomorphic to Lg, that image has to be isomorphic to M. We
get therefore a short exact sequence

0— Lo — Z(sgSasA,a) — M — 0. (7)

Applying (4) with sqw = wq, we see that Z, (wpe A, &) is isomorphic to a submodule
of Z\(s35453+A), hence to one of Z,(sq5s+A). Here we also have a submodule
isomorphic to Z,(sgeX, ). A look at the composition factors shows that the sum
of these two submodules has to be all of Z,(sqs3.A) and that their intersection
has to have composition factors Lg; and Lgs. Another look at the composition
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factors shows that Z,(sg.), @) has only one submodule with this property; this
submodule is by (6) isomorphic to M. Therefore also Z, (wgsA, @) has a submodule
isomorphic to M; we get thus a short exact sequence

0= M — Z,(wgeA,a) —> Lo — 0. (8)
Comparing (5) with (8) and (6) with (7) we get now (1) also for the remaining
four elements in W.

We now turn to singular A\. Suppose first that (A\4p,a¥) > 0 and (A+p,3Y) =
0. Then Z, () has length 2 with composition factors L, and Lg. We have now

Zy(sged,a) = Z (N, o) ™ Lo >~ Z(sye, ) = Z,(SgSqe, &)
and
Zy(saeA,a) = Zy(sa5peA, ) ~ Lo ~ Z,(Sq35qe\, ) = Zy (woe A, ).

So the claim follows in this case.

IF(A+p,aY)=0=(N+p,[Y), then we) = A for all w € W and the claim is
trivial. So we are left with the case where (A +p,a") = 0 and (A +p,3Y) > 0. We
have now weA = s we for all w € {sg,5354, 5053, 50535}, so the claim is trivial
for these elements. On the other hand, we have now

Zy(saeh, ) = Zy (N, o) = Z(N) ~ Zy(s8e))
and
Zy(woe, ) = Z\ (5g5aSge\, ) = Z, (535058 \) = Zy(SasgeN).

So it suffices to show that there are non-zero homomorphisms (in both directions)
between Z,(sgeA) and Z,(sq5s+A). But there exists a non-zero homomorphism
from Z,(sqep) to Zy(p) for all g € X: This is trivial in case (u + p, ") € Zp;
otherwise take p# as in A.4(2).

F.4. We now begin the proof of Proposition F.1 in general. Set

2= (£ €0 | fha) = ulha). f(hy) = (k) }. (1)

Recall the notation Z(f,x,«) from A.6(3). Note that Z,(p, o) = Z(p, x, o) and
Zy(Syept, @) = Z(p — a7, x, ) where a is the integer with 0 < a < p and a =

(1 o).
Proposition A.7 implies that the set of all f € X; with

HomE(Z(f _a77X7a)7Z(f7X7a)) 7£ 0 (2)

is closed in X;. Proposition F.1 claims that dp belongs to this closed set. This
will follow when we can show that (2) holds for all f in an open and dense subset

of %1.
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Since we assume p to be good, h, and h. are linearly independent in f.
Therefore X; is an affine subspace of h* of codimension 2.

If 3 is a root in Qo + Q, then hg € Kho + Kh,y in b (since p is good).
Each f € X; coincides with p (or rather du) on h, and h+, hence on all hg with
p e RN (Qa+ Q7). We have then f(hg) € F, and x(f)(hg) = 0 (recall A.2) for
these (3.

On the other hand, if 8 € Rt with 8 ¢ Qo + Q~, then hy is linearly inde-
pendent of h, and h, (since p is good). It follows that we can find f € X; with
f(hg) ¢ F,. Therefore the set

XE={feX | flhs) ¢ F, forall fe R*, 3¢ Qo+ Q) (3)

is open and dense in X;. By our remarks above, Proposition F.1 will follow from:
Claim: Fach f € X|® satisfies (2).
Proof (of Claim): Let f € X|°®. The definition of ¥|°® implies (cf. A.2)

{BER|x(f)hsg) =0} =RN(Qa+ Q). (4)

We want to apply E.6/7 with yo = x(f) and y; = y and I = {a}. [So the x in
E.6 is our present x(f) 4 x.] The Lie subalgebra [ as in E.7 is by (4) now equal to

(=h @ gs- (5)

BERN(Qa+Qr)

We get from E.6 a linear form, say x’, on g [denoted by v} in E.6] with x/(ps) =0
such that y(f) + x’ is the Jordan decomposition of some conjugate of x(f) + x.
Furthermore E.7 yields an equivalence of categories F. Its description in E.7(1)
involves a certain element ¢6; € X satisfying d1(ho) = 0. The last property implies
by A.3(4) for all v € X

Lypyalf +v) @01 = Ly alf +v+0d1).
Therefore E.7(1) applied to M = Lx(f),a(f + 1) yields
FZ(f +v.x.0) = Zypay(f+v 40, 0:0) (6)

using the notation from A.5.
Note that dp— f is a linear form on h that vanishes on Kho+ Kh-. So A.4(5)
applied to [ instead of g yields

Zy(pax(f o) @ Kgpp ~ Zyo(p + v, 051) (7)

for all v € X. Set now F’ equal to the composition of F with the functor N
N®@Kg,—¢. Then F' is again an equivalence of (appropriate) categories; it satisfies
by (6) and (7)

F'Z(f+ v, a) = Zy(p+ v+ 61, 050).
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So the Hom space in (2) is isomorphic to
Hom((Z\/ (1 — ay + 01, a5 1), Zyo (e + 61, 5 1)). (8)

Note that [ is the Lie algebra of some reductive group satisfying the same
assumptions as (G. Furthermore [ is either of type A; X A; or C3. So we can apply
Lemma F.2 or Lemma F.3 and get

Hom(Zy (5224 0 ), Zye (5 0) # 0 8
for all ' € X. Here ./ is the dot action for [, defined as w'v = w(v+p')— p’ where

p' is half the sum of the positive roots in RN (Qa + Q~). We have (p — p',vY) =
(61,7") by Lemma E.4 and the definition E.5(1). This implies

Sy (4 01) = p 80 = {401+ sy )y = p 6 — (4 p, v )y
= (Syopt) + 61 =p—ay+ 9061 (mod pX).

So we can rewrite the first module in (8) as Z,/(sy' (1 +61), o; ). Now (9) implies
that the Hom space in (8) is non-zero. This yields the claim, hence Proposition

F.1.

F.5. We now return to the situation from Theorem D.6. So we assume in addition
that (D2) holds. Let y € g* be subregular nilpotent. We exclude the case where
R is of type Go; if R is of type Eg or Fy, we assume that p > h + 1. (The results
here as well as in F.6-11 hold in these cases also for p < h+ 1 provided the socle of
Z\ () as in D.4 has the expected dimension.) Recall the definition of the integers
m~ from D.6(1).

Theorem: Let A € Cf. Let v be a short root with v € J(\). If Ly and Lo
are composition factors of Z,(\) with k(L1) = r(L2) = {~}, then Ly ~ Ly. If
x(b%) =0, then Ly has multiplicity m~, as a composition factor of Z,(\).

Proof : Lemma B.13 and D.5(3) show: If this theorem holds for one subregular y,
then it holds for all subregular y. Assume from now on that we choose y and the
simple root « as in D.12. We get then from Lemma D.12 elements x1, z2 € W
with z;v = a and

L1 ~ ZX(J}lo/\,Oé), L2 ~ ZX(J}Qo/\,Oé).

We have xlxz_loz = a. Since W is a reflection group, there are roots =1,
Yoy sy With z12, " = 54,84, ... 5, and s, = a for all 7.

Set Yi = S+, 844y - -+ Sy, T2 for 1 <0 <r 4 15 we get in particular y; = x; and
Yr+1 = T2. We have yi_loz =~ for all + and y; = s, yi41 for all © < r. If we can
show that Z, (y;«\, @) and Z, (yi+1+), @) are isomorphic to each other for all 1 < r,
then the claim will follow.

This shows that we may assume that there exists a root 7' orthogonal to «
with 9 = sy 2. Since o is short and since we exclude type G, we can apply
Proposition F.1 and get

Homg(Z, (14, @), Zy (224N, 0)) # 0.

This implies that these modules are isomorphic to each other, since they are simple.

The claim on [Z,()) : L] follows now from Theorem D.6.
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Remark: Suppose that all roots in R have the same length. Then the theorem
says that Cy has 1 4 |J()\)| isomorphism classes of simple modules. For p-regular
A, ie., if J(A) consists of all simple roots, this confirms a conjecture of Lusztig,

see [15], 14.5, [17], 2.4, and [18], 17.2.

F.6. Let A € C[. It is clear that modules in Cy with distinct < invariants are not
isomorphic to each other. Given Theorem F.5 the main open problem (besides
type G2 and the restriction on p in the types Eg and F)) is the classification of
the simple modules with x invariant a long simple root. Unfortunately our results
are not as complete as in the case treated in F.5.

Let again y be subregular. Assume that R has type B, C,, or Fy; if R is of
type Fy, assume that p > h + 1.

Proposition: Let A € Cf. Let ~v be a long root with v € J(\). If R has type By,
then there are two 1somorphism classes of simple modules with  mvariant {~}.
In the other cases there are at most two such isomorphism classes.

Proof: As in F.5 we get: If this theorem holds for one subregular y, then it holds
for all subregular y.

If R is of type B, then we assume that y has the form as in [10], Section
3. In this case the claim follows from the results in [10]: If v = «;, then the two
isomorphism classes are represented by L, (A;) and L, (A2,—;) in the notation from

[10).

Assume now that R has type C,,. Then ~ has to be equal to «,. We may
assume that x(pa, ) = 0. Set

Wiy ={weW |wa, =a,}.

Recall that all Z, (z+A, ap) with @ € W; are simple with « invariant {a, }, see D.3.a
and D.5.c. On the other hand, each simple module L in Cy with (L) = {a,} is
by D.13 isomorphic to some Z, (e, o) with @ € W,

Since W is generated by all sg with 3 orthogonal to a, = 2¢,, it is clear
that Wy is the Weyl group of the root system Ry = RN}, . Qe;. This is a root
system of type C,,—1. The short roots in Ry are a root system R, of type D,_1;
denote the corresponding Weyl group by Ws. Then W5 has index 2 in W; and we
have

W1 = W2 U W282€n_1. (1)

If v is in Ry, then RN (Qa, + Q) is of type A; x A;. Then Proposition F.1
implies for all € Wy that Z,(z.), ) is isomorphic to Z,(syxeA, ay). So (1)
shows for all x € Wy that

Z (A, an), if x € Wa;
ZX(x./\7Oén) - {ZX(32€n_1 o/\,Oén)v if ¢ WZ' (2)

So there are two possibilities: Either all Z, (x+A, a,) are isomorphic to Z, (A, ay,),
or these modules fall into two isomorphism classes.
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Consider finally R of type F,. We may assume that x(ps,) = 0. The set of
roots orthogonal to a; is a root system of type Cs. (Note that ay is conjugate
to the largest root, i.e., to w;.) A basis of this root system is oy, ag, €2 + 3 =
a1 + 2a9 + 2a3. The stabiliser Wy of «; is the Weyl group of this subsystem.
The short roots orthogonal to a7 form a root system of type D3 = As. The
corresponding Weyl group W is a subgroup of index 2 in Wy; we have

W1 = W2 U W28€2+53. (3)

We have v € {a1,az2}. The simple modules in Cx with & invariant {v} are
(by D.3.a, D.5.c and D.14) the Z,(2+A, 1) with @ € W and v = ay. The x with
this property are a coset for Wy, in fact equal to Wi in case v = a1, equal to
Wis281 in case v = ag. Proposition F.1 implies for all w € W, (and x as above)
that Z, (wxeX, a1) ~ Z, (x4 A, o). This yields for all « € W; in case v = oy

Z.(\, a1), if © € Wy,
ZX(x./\7a1) N {ZX(3€2+€3°/\7051)7 if ¢ Wz’ (4)
and in case v = ag
7, (5251), 01), if @ € W,

Z,(253510), a1) ~ { (5)

ZX(852+€382810/\,Q1), iz ¢ WQ.

Remark: Lusztig’s conjectures predict that we should have two classes also for
types C,, and Fj.

F.7. Given y € g* each g € C(y) (the stabiliser of y under the coadjoint action)
permutes the isomorphism classes of simple U, (g)-modules via L — 9L. Since
there are only finitely many classes, one sees easily that Cg(x)?, the connected
component of the identity in Cg(y), acts trivially. So does the centre Z(G).
This means that we are really looking at an action of the “component group”
A(x) = Ca()/(Z(G)Cq(x)?). (It is really the component group for the adjoint
group.)

Note that this action is “the same” for all y in a fixed G-orbit: Given h € G we
have C(hx) = hCq(x)h™!; therefore conjugation with h induces an isomorphism
A(x) =+ A(hy). Furthermore, the map L +— "L induces a bijection from the
set of isomorphism classes of simple U, (g)-modules to the corresponding set for
Uny(g). This bijection is compatible with the actions of A(x) and A(hy) identified
as above.

We have used before that U(g)® acts on 9L as it does on L. Therefore the
action of A(x) permutes (for x nilpotent) the simple modules in each Cx. (For
general x one would have to introduce a new notation.) By D.5(3) the action of
A(y) preserves the r invariant (when defined).

Suppose now that x is subregular and nilpotent. If all roots have the same
length, then F.5 and the remarks above show that A(y) acts trivially. Actually,
we have in these cases A(x) = 1 at least for large p, see [20], 7.5.

In the next subsections we are going to prove:
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Proposition: Suppose that R has type B, Cy, or Fy; if R has type Fy, assume
that p > h+ 1. Let A € C§, let v be a long root with v € J(X\). If x s subregular,
then A(x) permutes transitively the isomorphism classes of simple modules in Cy
with K 1nvariant {v}.

Remarks: 1) We have A(y) ~ Z/2Z for the groups considered in the proposition,
at least if p is large, see [20], 7.5. (In types B, and C, it suffices to assume that
p > 2, see [21], IV.2.26.)

2) The claim is of course trivial in the (unexpected) case that there is only one
isomorphism class of such modules. If however there are two and if L and L’ are
representatives for these classes, then the proposition implies [by B.13(3)] that
L and L' occur with the same multiplicity in Z,(\) in case x(bT) = 0. That
multiplicity has then to be equal to m~ /2 in the notation from D.6(1).

F.8. We look first at type B,. I shall now use freely the notations and assump-
tions from [10], Section 3. In particular, we have y subregular with y(z_3) # 0 if
and only if 8 € {as,as,...,a,}. We work with an arbitrary A\ € Cj.

We can find in Ng(T') a representative g of s., with gx = x. (Each represen-
tative g will satisfy Ad(g)r_o, € Ka_4, for all ¢ > 1 since s., a; = a;. Multiplying
¢ with a suitable element in T we can get Ad(g)r_n; = ¥—q, for all © > 1. Then
gx = x holds.)

Claim: Suppose that 1 <1 < 2n with b; < bjy1. Then
9L (Ni) ~ Ly(A2n—i) @4(n—1)p, if1<2n
T L Ly(A2n) @ (40 =2)p,  af i =2n
as Uy (g)-To—modules.

Proof : Recall that T is the one parameter subgroup of T' corresponding to 2eq,
see [10], 3.2. This implies that gtg= = ¢t~ for all ¢+ € Tp. One checks easily that
the Lie subalgebra m from [10], 3.4 is stable under Ad(g). It follows that

(12" =01

for each U, (g)-To—module M. Furthermore the weights of Ty on (93 )™ are the
negatives of the weights of Ty on M™.

Apply this to M = L, (\;). We know by [10], 3.8 that 9L, (}\;) is isomorphic
to some Ly (A;) @ mp with [,m € Z and 1 <[ < 2n. We can determine [ and m
using the weights of Ty on (YL, (A;))™. The necessary calculations are the same
that prove [10], 3.14(5), but were not written up in [10].

The weights of Ty on L, (A;)™ are by [10], 3.10(3) and 3.6(6) all

(M) =2(n—1)(p—1)—2j  with b; < j < bit1.
So the weights on (9L, (\;))™ are all

=) +2(n = 1)(p—1) +2j = (M, ¢) =2(n = 1)(p— 1) = 25" +4(n — L)p
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with 7 as above and
i'= ) +2(n 1) — .

We have by, = (M,¢) + 2n — 1 and b; + bapq1-; = bay, for 1 < i < 2n, see [10],
3.2(1) and 3.6(8). If j runs from b; to b;y; — 1 (and if 7 < 2n) then j' = by, — J
runs from by, —; to by, y1—; — 1. This yields the claim for ¢ < 2n. In case 1 = 2n
recall that by,411 = p; so now j runs from by, to p — 1, hence j' from by, — p to
—1, and j' + p from by, to p — 1. This yields the claim in that case.

F.9. Keep for the moment the notation from F.8. Suppose that A\ € C§. If
b; < bi41 for some ¢ < 2n, then the simple module L, ();) has x invariant {c;}
if © < n, resp. {a2,—;} if © > n. This follows, e.g., from [10], 3.13. Furthermore,
L\ (A2p) is the socle of Z, ().

Now Proposition F.7 follows for R of type B, immediately from the claim
in F.8. (We also see that g has to be a representative for the non-trivial class in
A(y). That, however, follows also from the descriptions in [21] or [20].)

With a view to another application let me look a bit more precisely at the
case n = 2. Consider y as in F.8. Given A\ € Cy with (A + p,ay’) > 0, then [10],
3.13 says that

Lx(/\l) ~ Zx(/\laoél) and LX(/\3) ~ ZX(S€1+520/\1,Oé1).
So Claim F.8 says that

IZ (M ar) = Z\(Se,2p0M1,01). (1)

It will be convenient to change notation and assume that R is of type C5. Let
now x € g* have standard Levi form with y(z_3) # 0 if and only if 3 = ;. Let ¢
be a representative in Ng(T') of s., 4., with gy = y. Then we have for all A € Cy
with (A +p,ay) >0

gZX(/\,OéQ) ~ ZX(Szglo/\,Oéz). (2)

This is an immediate translation of (1).

F.10. Consider R of type C),. One can check that

n—1

L = Z Ta; T Tapy_otan_1+an
i=1
is subregular. [It acts for the natural representation on K?" with partition (2n —
2,2).] So the corresponding (under g — g*) linear form y satisfies y(pa, ) = 0
and x(2_q;) # 0 for all © < n.

Choose a representative g € Ng(T) of s, _, 4., such that gy = x. (This
is possible, more or less as in F.8: If ¢ is an arbitrary representative, then
Ad(g)r—a; € Koo, for i < n, i # n —2 while Ad(g)r—a,_, € Kx_(c, ,4-,)
and Ad(g)r_(c, _,4e,) € K2 _q,_,. Now multiply ¢ by a suitable element in T'.)
Proposition F.7 follows in this case from F.6(2) and:



59

Claim: We have

IZ (N, o) ™ Zy(S2e,_ o\, 0y) (1)
for all X € Cy with (A + p,a)) > 0.
Proof: Set J = {ay,_1,a,} and use the abbreviation

Zy, gty an) = Up7) QU (pa,) Lxsom (1)

for all p € X. We have by transitivity of induction

ZX(Maan) = Ux(g) DU (ps) ZXJ(/%O‘TL)

for all 1. Note that g belongs to the standard Levi factor G of Py since we can
find there at least one representative of s, _, 1. [coming from the root subgroups
Ut(e,_1+en))- Therefore we have for all 1

IZ (1, an) = Uy(9) Qv o) ! Zx, 0 (s an),

cf. B.14(1). So our claim will follow if we can show that
IZy 0N an) >~ Zy 1(S2e, o\, o). (2)

The nilradical of p; acts as 0 on both sides in (2). So we just have to find an
isomorphism of gy-modules. The centre of g [equal to the intersection in h of
ker(ay,) and ker(a,—1)] acts on both sides via the restriction of A\. So we just have
to find an isomorphism as modules over the derived Lie algebra Dg; of g;.

We want to apply F.9(2) to Dg; in order to get the isomorphism in (2) and
thus the claim. The restriction of y to Dg; has standard Levi form. We have
Gy = Z(G;)° DGy [where Z(G)° C T is the connected centre] and can thus
write ¢ = z¢' with z € Z(G)°. Since z trivially fixes y on Dgy, so does ¢'. Since
¢’ is still a representative for s., _, 4. , we can now apply F.9(2) and get the claim.

F.11. Suppose now that R is of type Fy. Set

T=Tay, T Tag T Tay T Tayjdastastas- (1)

Let y be the linear form corresponding to x. Then vy is subregular (see the end of
the proof of D.13) with x(pa,) = 0. We can find a representative g € Ng(T') for
the reflection s., = s4, +as+as such that gx = x. Proposition F.7 follows in this
case from F.6(4),(5) and:

Claim: Let A € Cy. We have
12\ (N 1) 22 Zy(Seopege); 1) (2)
if (N p,af) >0, and

gZX(stlo/\,Oél) ~ ZX(S€2+5382810/\,Q1) (3)
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if (A p,ay)>0.

Proof: Note that ey + &3 = a1 + 2a3 + 2a3 € R. Set J = {ay, as,a3}; we have
then g € G ;. We basically proceed as in F.10 using an abbreviation Z, j(u, o1)
as there. We have to show

gZX7J(/\7 O{l) = ZX7J(8€2+53./\7 al) (4)

and
gZX7J(82810/\,Oé1) ~ ZX7J(S€2+5382810/\,Q1). (5)

Again, it suffices to find isomorphisms of Dg;—modules. Now Dg; has type Bs.
We now apply F.8 with n = 3 and get (4) from the case i = 1 and (5) from ¢ = 2.
Well, we have to take another look at [10], 3.13 to check that we can choose there
/\2 = 8281./\1 and /\4 = 8€1+€282810/\1 and /\5 = 881+820/\1.

G

We keep the assumptions from Section D. However, in G.2 and G.3 only (D1) is
needed.

G.1. Assume that x € g* is subregular nilpotent. We exclude R of type G5, and
assume that p > h + 1, if R has type Eg or Fy. Given \ € C} we write Ly for the
simple module in Cy with  invariant J(A) U {0}. If 8 € J(A) and if there is up to
isomorphism only one simple module in Cy with « invariant {3}, then we denote
such a simple module by Lg. If there are two such modules (up to isomorphism),

then we denote them by LgJ and Lgﬂ.

Lemma: Let A\, € C} such that (1 is in the closure of the facet of \.

a) We have TV L) ~ L.

b) Let 3 € J(A). If L is a stimple module in Cy with x(L) = {B}, then T{ L =0 of
B¢ J(p), while T{ L is a simple module with x(T\ L) = {3} if 8 € J(p).

Proof: By B.13(2) and D.5(3) the claim holds for all y, if it holds for one y. So

we may assume that y(b)t = 0. Then the claim in a) follows from
T\ Lo = T} sbm(wg, \) ~ sbm(wog, 1) ~ soc Zy (),

see C.9(1) and C.10(2).

In order to prove b) we may assume that y has the form considered in D.12
or in D.13, hence that L ~ Z, (z.\, ) with a as in D.12/13 and « € W such that
(3 = a. Now the claim follows from B.11 and D.3.a.

Remark: If (3 is short, then we can express the claim in b) as

Ik e T,
SR T v

For long 3 things get more complicated, in particular when we do not know the
number of simple modules with a given x invariant.
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G.2. Let now y be an arbitrary linear form on g with x(b™) = 0.

Lemma: FEach projective U, (g)-module is a direct summand of some E®@ Z,(—p)
with E a G-module.

Proof : 1t suffices to look at the projective cover @y, of a simple U, (g)-module L.
There exists a weight p € X such that L is a homomorphic image of Z, (¢). In
fact, we can find a dominant weight v such that L is a homomorphic image of
Zy(—p+ wov) since Z, (1) depends only on i + pX and since each coset in X/pX
has a representative of the form —p 4 wov as above. Now take E as the simple
module with highest weight v. Then E ® Z,(—p) has a filtration with factors
Zy(—p + ') with v/ running over the weights of L. The factor Z,(—p + wov)
occurs thus as a homomorphic image of E ®@ Z,(—p). So does then L. Because
E® Z,(—p) is projective, this implies that @, is a direct summand of E® Z,(—p).

G.3. Let y be as in G.2. We say that a U,(g)-module M has a Z-filtration if
there exists a chain of submodules in M, beginning with 0 and ending with M,
such that all subsequent factors are isomorphic to some Z, (v) with v € X. If so,
then also each £ @ M with E a G-module, and each pr, (M) with ¢ € X has a
Z—filtration, cf. the proof in B.3. Therefore all modules of the form

pr,, (Er@pr, (B @ ---pr, (Bi20pr, (E1©Z(=p))..) (1)

have a Z-filtration. All these modules are projective, since Z,(—p) is projective,

see [7], Thm. 4.1.

Set P equal to the Grothendieck group of all projective U, (g)-modules. So
this is a free Abelian group with the projective covers of the simple U, (g)-modules
as a basis. We shall usually write ) also for the class in P of a projective U, (g)—
module ().

Let P’ denote the subgroup of P generated by all modules as in (1). For each
A € X let Py be the Grothendieck group of all projective modules in Cy, and set
P, =P N Px. Then P is the direct sum of all Py (and P’ that of all P}) with A

running over a suitable set of representatives. It is clear that
T{ P\ CP, (2)
for all A\, € X.

Lemma: Let A € X, let Q) be a projective module in Cy. If there exists an integer
m >0 with Q™ € Py, then we have

_ dim@
=5 [ZxW] (3)

Q]

in the Grothendieck group of all modules in Cy.

Proof : Since this Grothendieck group is free over Z, it suffices to prove the claim
for @™. So we may assume that @ € P}. So () is a Z-linear combination (in P’)
of modules as in (1) [with g, = A]. Since the claim in (3) is additive in @, we may
assume that @) is a module as in (1), hence that ) has a Ziltration. But then
the claim follows from the fact that [Z, (w.\)] = [Z,(\)] for all w € W.
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Remark: Let L be a simple module in Cy. Suppose that the projective cover @)y,
of L satisfies the assumption of our lemma. Then (3) and B.12(2) imply

[Qr] = [We(A+ pX)[[Zx(A) : L] [Z(N)]; (4)

hence

[Qr : L") = [We(A + pX)[[Zy(A) : L][Zy(A) : L] (3)

for all simple L' in Cj.

G.4. We return to the assumptions and conventions from G.1. In particular, we

have Yy € g* subregular nilpotent. Given A\ € C} we denote by Qp (resp. Qg or

Qg ;) the projective cover in Cy of the simple module L} (resp. Lg or Lg -
Proposition C.2 says that Qj ~ Ti‘pZX(—p). So we get

Qo € Py (1)

for all A € CY.

Lemma: Let o be a short simple root. Then there exists an integer n(a) > 0 such
that

n(a)Qy"" e P, _,. (2)

Proof : Set 1 = wy — p. There are in C,, (up to isomorphism) only two simple
modules: L# and L}, hence only two indecomposable projective modules: Q*
and Qf. Lemma G.2 yields a G-module E such that Q* is a direct summand of
E @ Z,(—p). Then there exist integers n(a) > 0 and m > 0 with

pr, (B @ Zy(—p)) = (Q4)"™ & (Q5)™

Now the definition of P’ and (1) yield the claim.

Remark: Let o be a long simple root. Set p = w, — p. Should (against expecta-
tions) there be only one simple module in C,, with ~ invariant {a}, then we get as
above an integer n(a) > 0 with n(a)Q% € P,. If however, as expected, there are
two such modules, then we get instead

n(@)(Qa1 +@az) €P, (3)

Indeed, we have in this situation by Proposition F.7 an element ¢ € G with

gy = y and 9L ~ LY 2, hence 9@” o~ Q” . On the other hand, we have
above YE ~ F [smce thls is a G— module] and 97, v(=p) ~ Z,(—p) [since this is the
only simple module in C_,]. Therefore the multiplicities of Q% ; and of Q" | as
direct summands of E @ Z,(—p) have to be equal. (The same ar7gument show that

9Q) ~ @ for all @ in P'.)



63

G.5. We have quite generally for all A, u € Cy and all simple L in Cy

T QL ~ P(Qu ) (1)
L

where L' runs over representatives of simple modules in C,, and
m(L,L') = dimHom(T}{ Qr,L') = dimHom(Q, T} L") = [T)L' : L), (2)
Lemma: Let A € C{, let a be a short simple root with o € J(N). Then we have

n(a)Q € Pi. (3)

Proof: Set p = w, — p. We claim that
Qo =T, Qb (4)

Then the claim follows from G.3(2) and Lemma G.4. In order to get (4), we use
(1) and (2): If L' is a simple module in Cx with Ty'L" # 0, then a € x(L'), hence
L' ~ L} or L' ~ L}. It remains to recall that T4 L) ~ L* and T{'Ly ~ L§ by
G.1.

Remark: Let A € C{, let o be a long simple root with a € J(\). One gets similarly,
using Remark G.4 instead of Lemma G.4 that n(a)Q2 € P} or n(oz)(Qi‘Ll —I—Qi‘yﬂ) €
P

G.6. Recall the integers mg from D.6(3).

Theorem: Let A\ € C|. Suppose that all roots in R have the same length. Then

we have
[Q5 = Lg] = [W.A. (1)
and
Q2+ Lol = [Q0 : La] = (WA mq (2)
for all o € J(N\) and
Q3 1 L3) = WA mamg (3)

for all a, B € J(N).

Proof: We may assume that y(b%) = 0. Lemma G.5 and G.4(1) imply that we
can apply G.3(5) to all simple modules L and L' in Cy. We have

WA+ pX)| = [V (4)

by C.1. So the claim follows from [Z, (\) : L}] = mq (see F.5) and [Z,()\) : Ly] = 1
(see C.2).
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Remarks: 1) This result confirms for p—regular A (i.e., for A € C} with [W.A| = W)
the revised conjecture by Lusztig, as in [17], 2.6. (The formulation there looks
somewhat different, but can be checked to yield the same numbers.)

2) Suppose that R is of type B, Cy, or Fy. Then we can apply G.3(5) for L = L}
and for L = L) with a short. Therefore (1) holds, (2) holds if o is short, and
(3) holds if both « and [ are short. If 3 is a long root in J(\) and if there (as
expected) exist two isomorphism classes of simple modules with « invariant {3}
in Cy, then we get

m
Qo L3 = WA 57 (5)
and mams
Q4 L3 =W =5 (6)

for all short o € J(\) [and for ¢« = 1,2] in both cases. By the symmetry of the
Cartan matrix we get also [Qgﬂ : Ly and [Qgﬂ L.

3) For R of type B, we can choose y to have standard Levi form. Then @7, has a
Zfiltration for each simple L in C, cf. [11], 10.11. This implies that G.3(5) holds
for all L even though Q1 ¢ P’ in general (see the final remark in G.4). We get in
this case that

Mamg (8)
4

for all long o, 8 € J(\). One may speculate whether (8) also holds in types C,,
and Fj.

[ i\yz : Lg,j] = |[W.A|

H

We keep the assumptions from Section D.

H.1. Recall from D.6(1) that we write ag = >_ 5.y mpB” where II is the set of
simple roots.

The fundamental weight w, corresponding to a simple root « is minuscule
(in the sense of [1], Ch. VI, §1, exerc. 24) if and only if m, = 1. For all o with
this property set yo = yLwo € W where wq is the longest element in W and where
y., is the longest element in the subgroup of W generated by all sg with § # a.

Now Prop. 6 in [1], Ch. VI, §2, (applied to R instead of R) shows that
YasCo + pwy = Cy. More precisely, the map x — yqex + pw, maps the ‘real’
alcove of all 2 € X @z R with 0 < (z + p,3Y) < p for all 3 € RT to itself. It
therefore permutes the “walls” of this alcove, i.e., the hyperplanes with equations
(x 4+ p,3Y) = 0 with § € II and the hyperplane with equation (x + p, o) = p. So
Yo permutes [T U {—ap}. In fact, one checks easily that y,(—ag) = a and that

(t+p,a5) =p <= (ya(z + p) + pwa,a”) = 0. (1)

The simple root —wpa satisfies yo(—woar) = —y/ (o) < 0 since y! (o) > 0. It
follows that yo(—woa) = —ap, hence that

(2 + pu (—w000)") = 0 <= (yale +p) + pa,af) = p. (2)
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If we apply yo to ag, then we get easily that
Moo = 1 and my.g = mgfor all g €Il, 3 # —wpa. (3)

Proposition: Suppose that R is not of exceptional type. Then there exists for
each p € X a weight A € C| with p € WA+ pX.

Proof: Since Cy is a fundamental domain for W,, we may assume that p € Cj.
If (W4 p,a) < p, then p € C§ and we can take A = p. So let us assume that
(it prod) =

If there exists a simple root a with w, minuscule and yep + po, € Cf, then
we take A = yqopt + pw,. If not, then (2) shows that (u 4+ p, —wea¥) = 0 for all
these . Since —wq is an involution, we get also (1 + p, ") = 0 for all simple «
with mq = 1. The assumption (i 4 p, oy ) = p yields therefore

p= Y mg{u+p,BY). (4)

mg >1

So far we did not use any assumption on R. We do that now. If R is of type
Ay, then we have mg = 1 for all 3 € II; so the right hand side in (4) is equal to 0:
a contradiction. If R is of type B, or C,, (with n > 2), or D,, (with n > 4), then
mg € {1,2} for all # € II. Then (4) turns into

p=2 > (u+pB").

mg=2

Since p # 2 in these cases by (B2), we get a contradiction.

Remarks: 1) If we drop our assumptions (B1) — (D2), then we can extend the
proposition to all cases where R has no components of exceptional type provided
that p # 2 if R has a component not of type A.

The proposition above gives the result in case G is semi-simple and R inde-
composable. If GG is semi-simple and R arbitrary, then X is the direct sum of the
weight lattices of the irreducible components of R. These components are stable
under W:; we get the result for X immediately from that for each component. For
arbitrary reductive G set Xy equal to the subgroup of all v € X with (v,a¥) =0
for all @ € R. Then X /X, identifies with the weight lattice of R, and the canonical
map X — X/Xo commutes with the action of W. Therefore the claim for X/ X
implies the claim for X.

2) It is clear that the proposition cannot extend to the types Fs, Fy, and G3. In
these cases Wep + pX = Wyepu; since Cp is a fundamental domain for W), we
cannot move any pu € Cy with (4 p,ay) = p to an element in C{.

For R of type Eg and E; the proof of the proposition shows that we can
handle all ;4 € Co with (1 + p, ay ) = p for which there exists a simple root o with
me = 1 and (u + p,a¥) > 0. The simple roots with this property are «; and
ag for Eg, resp. ar for E7 (in the numbering from [1]). However there will now
exist other weights that we cannot handle since there exist simple roots 3,~ with
mpg =2 and m, = 3.
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H.2. Let x € g* be subregular nilpotent. Let A\ € Cy be p-regular, i.e., with
0 < (A p,aY) < p for all positive roots . Consider a simple root 3 such that
wp is minuscule. Then A = yg.\ 4+ pwy belongs to Cy (see H.1) and one checks

easily that also A\ is p-regular. The translation functor T)f‘/ is an selfequivalence
of the category Cy = Cy.

Lemma: We have
LG ~ LY (1)

and for all short simple roots ~

Proof : Tt is enough to prove this for one choice of y. So we may assume that there
exists a short simple root o with x(p,) = 0. Consider (2). Choose w € W with

w™la = ~. Then L$ is isomorphic to Z, (ws A, ), since the latter module is simple

and has the right x invariant, see D.3.a, D.4.a, D.5.c. It follows that
T)\/Ié ~ Z(we, o) = Zy(wyge\, ).

Now (2) follows using again D.3.a, D.4.a, D.5.c, since (wyg) 'a = yﬁ_lfy.
The proof of (1) is analogous; one has now to choose w € W with w™la =
—qq.

Remarks: 1) One can show similarly: If v is a long simple root, then T)f‘/ takes a
simple module with k invariant 4 to one with x invariant yﬁ_lfy.

If R is of type B, or (), then there exist exactly one simple root 3 with wg
minuscule: We have 3 = a,, in the B,, case, and 3 = ay in the C}, case.

For R of type C), one checks then easily that ys = s2.,. The only simple
modules not covered by the lemma are those with s invariant {a,,}. If we choose
x as in F.6(2), then L = Z, (A, ap,) is one of these simple modules. We get then

T L~ Z, (530, 0\, o) ~ 9L

with g as in F.10. So we see that T)f‘/ interchanges in this case the two (expected)
simple modules corresponding to «,.

In type B, one checks similarly that T)T‘ILX(/\Z‘) ~ Ly (Apti) for 1 <i<nin
the notations from [10].

2) Note that Lemma G.1 says T)T‘ILQ ~ L?l for all v as in (2). This illustrates that
r depends (as mentioned in D.5) on the choice of A\, not just on the category Cj.
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H.3. So far we have studied only the categories Cy with A € C§. In order to get
all possible Cy we should also look at the A € Cy with (A + p, o) = p. We know
from H.1 that there exist in many cases A € C§ with Cy = Cys, but there are also
cases where this does not hold.

When we try to extend the theory for weights in C§ to the remaining weights
in Cp, then we encounter two major problems: The proof in D.3 that certain
modules are simple will not work for all A € Cp, and there is not an easy definition
of a k invariant as in D.5. The first problem occurs only for relatively few A and
we are going to ignore them here.

Definition: We say that a weight A € Cy 1s nice if for all simple roots «, all
subregular y € g* with x(p) = 0, and all w € W with w™'a simple and (w(\ +
p),a”) > 0 the module Z, (ws\, ) is simple.

Note that Lemma D.3.a says that each A € C{ is nice. I hope that all A € Cy
are nice in good characteristic; what I can prove is this:

Lemma: Let A € Cy with (A + p,ag) = p.

a) In case R is of type Eg, Fy, or Ga, assume that p > h + 1. If there exists a
simple root 3 with wg minuscule such that yg«\ + pwg € C[, then A 1s nice.

b) If there exists for each simple root v with (A 4+ p,vY) > 0 a weight p in the
same facet as N with (u+ p,~v") =1, then X\ is nice.

¢) Suppose that R is not of type Go. If (\+ p,~vY) > 0 for all simple roots ~, then
A 18 nice.

Proof : Consider «, x, and w as in the definition above.
a) Set X = yge\ 4+ pwy. We have
Zy(wiha) = Zy(wyy N, a). 1)
Recall from H.1 that yg permutes [I U {—ag}. We have therefore
(wy;') o= yswla € TU {~ac}.
So the right hand side in (1) is simple by Lemma D.4.a (in case ygw'a = —ayp)

or by Lemma D.3.a (in case ygw ™'« simple) provided we know in the second case
that <wyﬁ_1(/\’ + p),a") > 0. However, one checks easily that

<wy6_1(/\’ +p), ¥y = (w(A + p), oY) + p(ws, ysw ta¥) >0

using wy ' (A + p) = w(h + p) + pwy; ' ws.
b) Under these assumptions Lemma D.2 holds with F(.J) replaced by the facet of

A. Therefore the proof of Lemma D.3.a works in this case.

c¢) Note that p = (A + p,ay) and A € Cq imply p > {p,ay) = h — 1.
If R is of type A, then Yy = 0 and w = 1. Then Z,(\,a) = Z,()) is a

Steinberg module, hence irreducible.
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Assume that R is not of type A;. I want to show that the assumption in b)
is satisfied. Let v be a simple root. If ws is a minuscule fundamental weight with
B # ~, then we can choose p1 = (p — (p, o ) )@ 3.

We are left with the cases where there are no minuscule fundamental weights

at all, or where @, is the only minuscule fundamental weight. (So we are not in
type Ay.) In these cases one can find a fundamental weight wg with (g, ay) = 2
and # # ~. (Recall that we exclude G2.) Furthermore both (p,ay) and p are
odd (since we are done with type A,). So we can choose 1 = rowg with r =
(p = (p,ag))/2.
Remark: If R is of exceptional type, then there exist simple roots § and ~ with
(wg,af) = 2and (w,, ay) = 3. Consider positive integers a and b with 2a+3b = p.
(They exist for each p > 5.) Then \ = awp + bw., — p satisfies (A + p, o) = p.
The weights in the facet of A are all ¢ = d'wg + b'w, — p with «’,0’ > 0 and
2a' 4+ 30 = p. We have (u + p,8Y) = 1 if and only if ¢’ = 1, if and only if
30" = p— 2. So we can find g with this property only in case p =2 (mod 3). So
A does not satisfy the condition in b). Using Remark 2 in H.1 one can see that A
also does not satisfy the condition in a).

H.4. Let p € Cy with (u+ p,ay) = p. Suppose that A is a weight with A\ € C
such that 4 is in the closure of the facet of A\. (Given p we can find A\ with this
property as long as there exists a simple root a with (4 p,a”) > 1: In that case
A = p — wy works. If there is no such «, then p 4 p = ECYEJ(N) w, and then no

A as above can exist. This can happen only in case p < h —1.)

Lemma: Let y and A be as above. Let o be a simple root and let x € g* with
X(Pa) =0. Let we W.

a) We have T\ Z,(wed, o) = 0 if wla < 0 and (w(p + p),a¥) = —p or if
wla > 0 and (w(p + p),a¥) =0 < (w(\ + p),aV). In all other cases we have
TV Z\ (we, ) ~ Z\ (wep, o).

b) Suppose that (w(u+p),a”) £0 (mod p). Then Tlf‘ZX(w./,L,oz) has a filtration
with factors Z,(weN',a) with A" € (Stabyw, 1)« \.

Proof: a) This is more or less a special case of Corollary B.11. One uses that

(wA+p),a¥) > —p for all w e W.

b) We apply Proposition B.7 with I = {a} to (we), wep) instead of (A, p). Since
wep is in the closure of the facet of we), the assumption (w(p + p),a”) £ 0
(mod p) implies that also (w(A + p),a) Z 0 (mod p). So both wep and we
have trivial stabiliser in Wy ,. Proposition B.7 says now that

le‘ZX(w./,L, o) =T indy Ly o(wep)

We it

has a filtration with factors

ind; T(DYi%* ALy o (wep) (1)

We it

where the w; belong to Stabw, wep and are a system of representatives for the
cosets modulo Stabyy, wsA.
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Now wep and each w;we\ belong to the same (open) alcove with respect
to Wr . This implies that T(I)w"w°>‘LX7a(w./,L) ~ Ly o(w;weX). So the module

we pt
in (1) is isomorphic to Z,(w;we\, a). The claim follows since the zw.\ with

x € Stabw, w.p are precisely the wy.\ with y € Stabw, u.

H.5. Suppose that ¢ and A are weights as in H.4. We return to the assumptions
and notations from G.1. In particular, we suppose that y is subregular nilpotent.

Lemma: Assume that p s nice.

a) If L is a simple module in Cy, then T\ L is either 0 or simple. We have T{ L =0
if and only if L ~ Ly or k(L) = {~v} with v ¢ J(u).

b) Each simple module L' in C, is isomorphic to some non-zero Ty L as in a).
We have
[T{TL'] = (Stabw, (1) : Stabw, (A\))[L'] (1)

in the Grothendieck group of C,.
Proof : a) Suppose first that L ~ L} or x(L) = {v} with ~ short. Using B.13(2)

and D.1 one reduces to the case where y(po) = 0 for some short simple root «.
We have then w € W with L ~ Z,(w.)\,a) and w™la = —ag or w™la = . Now
Lemma H.4 yields T{¥'L = 0 in case w™'a = —ag or w™la = v with v ¢ J(u).
In the remaining cases the translated module is isomorphic to Z, (w.p, a), hence
simple by the definition of ‘nice’.

In case (L) = {7} with ~ long, one argues similarly with a long.

b) We may assume that y(b™) = 0. Each simple module L’ in C, is a composition
factor of Z, (u). Since Z,(p) ~ T{ Z\(\), the exactness of T} implies that L' is a
composition factor of some T4 L with L a composition factor of Z, (). Using a)
this yields the first claim in b).

Suppose that L' = T\ L with L and L’ as above. There exists a simple root
B € J(u) C J(A) such that k(L) = {7}. We may assume that there exists a simple
root « of the same length as ~ such that y(po) = 0. Then there exists w € W
with wy = a such that L ~ Z, (we\, o) and L' ~ Z, (wep, av).

Suppose first that (w(p + p),a”) < p. Then Lemma H.4.b implies that Tlf‘L’
has a filtration with factors Z, (ww’s A, o) with w’ running over representatives for
the cosets of Stabw, (\) in Stabyy, (¢). Each of these factors satisfies

TV Zy(ww's X, o) >~ Zy (ww'sp, ) = Zy (wept, o) ~ L.

This yields the claim in this case.

Finally, if p = (w(p+p),a”) = (u+ p,7"), then necessarily + p = pro,, and
w~ minuscule. In this case one gets L' ~ Z, (w.p) and one can argue similarly
using Proposition B.3.

Remark: If L' is a simple module in C,, then a) and G.5(1),(2) imply

v~ P (2)

T/ L~L'
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(Here L runs over representatives of isomorphism classes.) If all Q7 occurring in

(2) satisfy G.3(3), i.e.,

if Q1] = dlr;# [(Z\(N)] for all L with Ty\'L ~ L',

then the exactness of T} yields

QL] = dijNQL 1Zy(40)]

Combining (2) and (1) we get

(Stabuw, (1) : Stabw, \)[Qu] = [TIT)Qu] = 3 [TLQL].

hence )
Qu] = % Zy(u)] (3)

In other words, @ satisfies G.3(3), if all @ in (2) do. (We see also that all
simple modules in C,, are composition factors of @z, hence that C, is a block, as
proved in general in [2].)

H.6. Let a be a simple root, let v € g* be subregular with y(ps) = 0. We
need some information on the composition factors of Z, (w«A, a) with A € C{) and
w € W. Define integers m(w, 3) for each simple root 3 such that

-1_V

e —1
3 m(w, )3” = {w_f“v’ ifw™a >0, 1)

5 w o —|—ozg, if wta < 0.

Lemma: Let A € C) and w € W. We have

0, ifwlta >0,
1, fwta<0.

[Z\ (we, ) : Lé‘] = { (2)

Let 3 € J(N). If there is up to isomorphism only one simple module Lg i Cy with
w(I}) = {8}, then
Zy(weh,a) : I3] = m(w, B); 3)

otherwise we get

[Zy(we, o) : Lgl] + [Zy(we, a) : Lgﬂ] = m(w, 3). (4)

Proof: We have [Z,(ws)\) : L] = 1 by Proposition C.2. So the multiplicity in
(2) is either 0 or 1. Corollary B.11 implies that Ty “Z, (w.\, o) = 0 if and only if
w™la > 0. Now (2) follows from C.4.
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Consider next (3). Using Lemma G.1 we see that

TP Z(wok, @) = Zy (we(wmg — p), )
has [Z\(we, a) : Lg] composition factors isomorphic to T)\wﬁ_pLg ~ Lﬁwﬁ_p; in
case w ™t > 0 there is an additional composition factor isomorphic to T)\wﬁ_pLé‘ o~

Lowﬁ_p. We have
dim L"™" =pN~ dim L5 = (p — (wg, a8 ))p"V
and

(g, wtaV)pN L, if w™la >0,

dim Zy(we( = p), @) = {(p + (@ wtaY)pN L, ifwla <0

see A.4. Comparing dimensions we get

(wwg,wtaY), if w™la >0,
(g, w™taY) + (@, af), fwla<0.

[Zy(we, o) : Lg] = {

Plugging in (1), we get (3). The proof of (4) is analogous.

Remark: Note that (2) holds (by the same proof as above) for all v € g* with
X(pa) = 0, not only for subregular x.

H.7. Return to the situation from Lemma H.5. So we consider a weight A € C{
and a weight p in the closure of the facet of A with (i 4 p, ay) = p such that p is

nice.

Lemma: If Ly and Ly are simple modules wn Cy with T)’le ~ T)’ng # 0, then
H(Ll) = H(Lz).

Proof : Lemma H.5.a implies that there exists a simple root v € J(u) with x(Lq) =
{v}. If J(u) = {~}, then Lemma H.5.a implies that also x(L3) = {~}, hence our
claim. So assume from now on that |J(u)| > 1.

We may assume that there exists a simple root « of the same length as v such
that x(po) = 0. Then there exists w € W with wy = a and L1 ~ Z,(w.\, a).
Using

Homg(La, T)T{ L1) =~ Homg(T4 Ly, T{ L) ~ K

we see that [T)T} Ly : Ly] # 0. Lemma H.4 implies that T2T} Ly has a filtration
with factors of the Z,(wwie), o) with wy € W,, wiepp = p. (We need here
|J(10)] > 1 in order to get the assumption in H.4.b.)

It follows that [Z\(wwqeA, ) 1 Ly] # 0 for one of these wy. We can write
w1 as a composition of some w’ € W with a translation by a weight in pZR and
get Zy(wwied, o) ~ Z\ (ww's A, o). We want to apply Lemma H.6 to this module.
Note that w’ is a product of reflections sg with 4 in the union of {ag} and of the
set II" of simple roots not in J(x). So there are integers ¢ and c¢g with

(wu') 0¥ =Y 4 eoy + 3 s, 1)
pell’
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Let 4" € J(p) with " # ~. If we write (ww')~!'a" as a linear combination of the 3V
with (8 simple, then v/ occurs with coefficient em~s with m.s as in D.6(1). Since
ag is the largest root of R this implies |em/| < ms, hence |¢| < 1. If ¢ = 1, then
7Y occurs above with coefficient 1+m., a contradiction. So we get ¢ = 0 or ¢ = —1.
If ¢ = 0, then a look at the coefficient of v¥ implies (ww’) ta > 0;if ¢ = —1, then a
look at the coefficient of 4" [with + as before] implies (ww')"'a < 0. Now Lemma
H.6 shows that Z, (ww'sA, &) has a composition factor L] with s invariant {~}.
All remaining composition factors have a « invariant in II' or are are isomorphic
to Ly, hence are killed by Ty'. On the other hand, L, is a composition factor of
Zy (ww's A, o) that is not killed by Ty'. This implies Ly ~ L/, hence the claim.

Remark: If all roots in R have the same length, then Theorem F.5 implies now
Ly ~ Ly. Furthermore H.6(2) simplifies now to

T,?QT;L ~ QL (2)

for all simple L in Cy with Ty L # 0.

If R is of type By, C,, or Fy, then we get the same result as long as x(L1) is a
short simple root. If v is a long simple root in J(u), then we cannot exclude that
there are two non-isomorphic simple module L$71 and L$72 that have the same
image under translation. We shall look in H.11 at a special case where this does
not happen. I expect that it never occurs.

H.8. For the remaining subsections fix a p-regular weight A\. The existence of A
implies that p > h. We can therefore find a weight 1(0) € Cy with Staby, (0) =
{1, s0} where sg = 54, and we can find for each simple root 3 a weight (3) € Co
with Stabyw, pu(3) = {1, s3}, cf. [9], I1.6.3(1). So J(x(0)) is the set II of all simple
roots whereas J(u(3)) =11\ {8} otherwise.

We want to evaluate the “translations through the walls” functors

Q5 =Thy oI, peluio} (1)

on our simple modules. There is one trivial case: We have for all 3
@ng =0 resp. ®5L27i =0, (2)

since already T)’f(ﬁ) annihilates these modules, see G.1 or H.5.

Lemma: a) Let 8,v € II with 8 # ~. If L is a simple module in Cx with
k(L) = {~}, then ©3L has 2 composition factors with r invariant {v} and —(3,~v")
composition factors with k invariant {3}.

b) Let v € II. If L us a simple module in Cx with x(L) = {~}, then ©¢L has 2
composition factors with k invariant {~} and (ag,v") composition factors isomor-
phic to Ly. On the other hand, ©. L} has 2 composition factors isomorphic to Ly
and (v, o) composition factors with x invariant {~}.

Proof: When looking at @gL or at OgL with (L) = {~}, then we may assume
that there exists a simple root o and w € W with wy = «a such that y(pn) =0
and L ~ Z, (w.\, a).
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Arguing as in H.4 one checks that © 3L has a filtration with factors Z, (w.\, o)
~ L and Z,(wsge\, ). We want to apply Lemma H.6 to the second factor. We
have

(wsp) e = 557" =7 — {B,7")5".

Now the claim in a) follows immediately from H.6.

In most cases Lemma H.4 implies that ©gL has a filtration with factors
Zy(wed,a) ~ L and Z,(wspeA, ) ~ Z, (wsqyeA, ). The only exception occurs
when (w(u(0)+p),a¥) = (u(0)+ p,~") is congruent to 0 modulo p. The choice of
1(0) implies that this can happen only if ¥ = ag, hence only if R has type A;. Set
that case aside for the moment. We want to apply Lemma H.6 to Z, (wsqageA, a);

we have
1 v

(wsao) a = 3a07v = 7\/ - <a077\/>a(\)/‘
Since af is the largest root in R and since R has not type Ay, we have (ag,v") €
{0,1}. Tt follows that (wsa,) 'a < 0 if and only if (ag,~Y) = 1. Now the claim
concerning O¢L follows easily from H.6.

In the exceptional case A; we have v = ap = « and w = 1. In this case
T)’f(o)L ~ Z,(11(0)). It follows that OgL has a filtration with factors Z,(\) and
Z\(s0eA) ~ Z\(3q4+A). Both factors have length 2 with composition factors L)
and L. Again the claim follows since now (ag, ") = 2.

When looking at ©,L{, then we may assume that there exists a simple root
a and w € W with wag = —a such that x(po) = 0 and L ~ Z, (w.), ). One
argues then as above. (The case A; requires a special argument as before.)

H.9. Suppose in this subsection that all roots in R have the same length and
that R is not of type A;. Then the results in Lemma H.8 can be simplified using
Theorem F.5. We get for all 5, € Il with 3 # ~

2[L7], if (3,7) =0,
and for all v € II
A A i ag, 7
@)= o e )
_ [20L3]+ [L3], if (a0,y) > O,
=L Hen ) 2o ¥

By G.1, H.5, and H.7 the translation functors T)’f(ﬁ) with 8 € ITU {0} take simple
modules to simple modules or 0; if they take two simple modules Ly and L; to iso-
morphic simple modules, then already Ly and L, are isomorphic. The adjunction
property of the translation functors implies that

Homg (© 3 M, M) ~ Homy (T M, TP M) (4)
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and

Homg(M', ©5M) ~ Homg (TP 21’ TP Ar) (5)
for all modules M, M’ in Cy. It follows that each ®5L$ with 4,7 € [T U {0} has

simple head and simple socle isomorphic to Lé. (These are standard arguments
due to Vogan.) We have soc ®5L$ C rad ®5L$. In case 3,~ € Il we get now from

(1)

A .
rad®5L$/ soc @zL2 ~ {OLﬁ’ i Eg’zg i 8’ (6)

One gets similar formulas from (2) and (3).
Note that (6) implies in case (3,v) = 0 that we have a non-split extension

0— L2 — 0gL2 — L2 —0. (7)

Let me write Ext’ for Ext groups in the category of Uy (g)-modules. So (7) says
that Extl(Lé,Lé) # 0 for all v € II such that there exists a simple root 3 with
(8,~) = 0. Using (2) one get similarly Extl(Lé,Lé) # 0 in case (ag,v) = 0, and
from (3) one gets Ext'(Ly, L)) # 0 if there exists a simple root v with (ag,~) = 0.
This shows that Extl(L, L) # 0 for all simple modules in Cy unless R has type A,
(compatibly with Remark 1 in [10], 2.19) or type D4 where L = Li‘w is the only
possible exception. I have no idea how large these non-vanishing Ext groups are.

Proposition: Suppose that all roots in R have the same length and that R 1s not
of type Ay. If B and v are simple roots with 3 # ~, then

x L 72 A I&’v Zf (677) < 0;
Ext'(L5.L5) = {0, if (9.7) = 0. ®)

If v 1s a simple root, then

1 A AN~ 1 A AN~ I&’v Zf (a077) > 0;
Ext! (L, L) ~ Ext!(L), L)) ~ {07 o 0. (9)

Proof : This follows again from standard arguments due to Vogan. When dealing
with (8), one applies the functor Homg( ,Lg) to the short exact sequence

0 —rad©gLd — OgLY — L2 — 0.

The adjointness of T)’f(ﬁ) and T;j\(ﬁ) implies that ©4 is self-adjoint. This implies

Ext' (0L, L}) ~ Ext'(L3,05L}) =0
for all ¢ > 0, see G,13(2). It follows that
Ext' (L2, L}) ~ Homg(rad ©3L2, L}).

Now apply (6).
The proof of (9) is similar, working with (2) and (3) instead of (1).
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Remark: If R has type A; and if we denote the unique simple root by ~, then one
has
[05L3] = [©7Lg] = 2[L3] + 2[Lg]
It is well known that in this case
Ext' (L2, L) ~ Ext' (L, L)) ~ K*.
(Note that y = 0 and look at [19].)

H.10. We now want to extend some results from H.9 to the cases with two root
lengths. Recall that we exclude type G2. Note first that H.9(4) and H.9(5) hold
without restriction. We next look at H.9(7).

Lemma: Let v be a simple root and let L be a simple module in Cy with (L) =
{v}. If B is a simple root with (B,v) = 0 or if 8 =0 and (ao,~v) = 0, then we

have a short exact sequence
0—+L—0gL —L—0 (1)
that does not split.

Proof : Lemma H.8 shows that © 3L has length 2 with both composition factors, say
Ly and Lo, satisfying x(L1) = ~(Ly) = {~}. We want to show that L; ~ Ly ~ L.
If so, then we get a short exact sequence as in (1). If that sequence splits, then we
get dim Homg(L,OsL) = 2 contradicting H.9(5).

If v is short, then Ly ~ L, ~ L follows from Theorem F.5. So consider
the case where v is long. We may assume that there exists a simple root a with
X(Po) =0 and w € W with wy = @ and L ~ Z,(w«\,a). The proof of Lemma
H.8 shows that our claim will follow if we can show that Z, (ws.\, ) is isomorphic
to L where s = sg in case § € Il and s = s,, in case § = 0. We distinguish two
cases:

The type of R is B,,. We may assume that we are in the situation of [10], Section
3. In particular, we have o = oy and v = o; with 1 < j < n. We get from [10],
3.13 that

Z(weh,a) ~ Ly(\;) <= w ey =¢; and w ey = g4
while
ZX(U)./\,Oé) ~ LX(/\Qn_]‘) <~ w_1€1 = —&541 and w_leg = —£j.

We have to show that ws has the same property as w, i.e., that se; = ¢;. The
possibilities for s are s = 5., ¢, (with ¢ # j,j —1) or s., (if j <n—1) or s, (if
J > 1). So we get indeed s¢; = ¢; and the claim follows in type B,.

The type of R 1s Cy, or Fy. We may assume that we are in the situation of
F.6(1),(2) or F.6(3)-(5). We have to show that ws € Wsw in the notations from
F.6(1) or F.6(3). Since ws = syow with o' = 3 or o' = ag this means that
Swar € Wa. Now (o/,v) = 0 and wy = « imply that wa' is orthogonal to a. So
it suffices to show that wa' is a short root. (Recall the definition of Ws.) That
is obvious in case # = 0. Otherwise note that in type C,, or Fy all simple roots
orthogonal to a long simple root are short.
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Remarks: 1) The lemma can be extended to the case where L = L and where 3
is a simple root with (3, ag) = 0.

2) We see as in H.9 that Ext'(L, L) # 0 in almost all cases. The only additional

exceptions can occur in types Cy = By and Cj.

H.11. Lemma: Let § € IIU{0}, let L be a simple module in Cy with ©gL # 0.
a) The head and the socle of ©gL are both isomorphic to L.

b) If L' is a simple module in Cy with T)’f(ﬁ)L’ o~ T)’f(ﬁ)L, then L' ~ L.

Proof: If L' is a simple module in Cy, then H.9(4),(5) imply that L’ occurs with

multiplicity 1 both in head and in the socle of @gL if T)’f(ﬁ)L’ o~ T)’f(ﬁ)L. Otherwise
it does not occur at all. In particular L itself occurs with multiplicity 1. This shows
that a) will follow from b).

Suppose that L’ is a simple module in Cy with T)’f(ﬁ)L’ o~ T)’f(ﬁ)L. Lemma
H.7 implies that k(L) = s(L'). If L’ is not isomorphic to L, then there has to be a
long simple root v with (L) = {v}. Lemma H.8 shows that both L and L’ occur
with multiplicity 1 as composition factors in ©@gL. Since they occur both in the
head and in the socle they have to be direct summands. The discussion above of
the socle implies that there cannot be any other contributions to the socle, hence
that ©3L ~ L @ L’. Then Lemma H.8 implies that (3,~) = 0 in case 3 € II, resp.

(ag,v) =0 in case § = 0. Now Lemma H.10 yields a contradiction.

H.12. Proposition: a) If 5 and v are simple roots with (3,~v) = 0, then we
have Ext' (L, L") = 0 for all simple modules L and L' in Cy with x(L) = {~v} and

#(L) = {8}

b) Let 3, v be simple roots with (3,7) < 0, let L be a simple module L in Cx with

k(L) = {~}. Then there exists a simple module L' in Cx with k(L") = {8} and
Ext'(L,L') ~ K ~Ext' (L', L). (1)

If 3 and ~ have the same length, then the condition Ext'(L,L') # 0 determines
L' up to tsomorphism. If B and ~ have different lengths, then (1) holds for all
possible L and L'.

¢) If v be a simple root. If R is not of type Ay, then

K. if (ag,v) >0
1 AN Ao 17X ~ ) ) ’
Ext'(L, L)) ~ Ext!(L), L) ~ {07 e 2)

for all simple modules L in Cx with r(L) = {~}.

Proof: a & b) Consider simple modules L and L' in Cy with «(L) = {7} and
k(L") ={p4}. Arguing as in H.9 one gets

Ext'(L, L") ~ Homgy(rad ©5L, L'). (3)
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If we use the short exact sequence
0L — 0L — 0OsL/socOgL — 0
and apply the functor Homy (L', ), we get similarly
Ext'(L',L) ~ Homg(L',©3L/socOzL). (4)

If (5,~) =0, then H.8 shows that L’ is not a composition factor of @gL; this
implies now the claim in a).

Suppose that (3,v) < 0. If 3 and v have the same length, then (3,vY) = —1.
Then H.8 and H.11 imply: Given L as above there exists a simple module L] with
S(L}) = {3} and

rad ©gL/soc OgL ~ L.

Then (3) and (4) show that L] satisfies (1) while these Ext groups are 0 for any
simple module L}, with (L) = {#} and L), 2 L].

Consider now the case where # and ~ have different lengths. The claim in
the proposition is symmetric in § and ~. So we may assume that 3 is short and ~
is long. So there is up to isomorphism only one choice for L’ while there are one
or two possibilities for L. We have (3,7") = —1 and (v,3") = —2. Lemma H.8
yields therefore

rad ©gL/socOgL ~ L'
This implies that (1) holds for all possible L and L’.

¢) The proof is similar and left to the reader.

Remark: Let 3, v be simple roots with (3,v) < 0 such that 3 is short and ~ is
long. We know that there exists up to isomorphism only one simple module Lg
in Cy with s invariant {#}. Consider now M = rad ®7L2/ soc ®7L2. Lemma H.8
tells us that M has length 2, with both factors having « invariant {v}. Part b) of
the proposition implies using (3) and (4) that each simple module L in Cy with
invariant {~} occurs with multiplicity 1 in the socle and in the head of M.

There are now two possibilities: If there are (as expected) two isomorphism
classes (with representatives L$71 and L$72) of simple modules in Cy with  invari-
ant {~}, then we can apply the discussion to L = LQJ and to L = L$72. It follows
that M ~ LQJ P qu in this case. If, however, there is only one such class, then

M has to be a non-split extension of L by itself. So, as in other situations, it is
desirable to show that the middle M is completely reducible.
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