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Abstract

The purpose of the present manuscript is to give an overview of the

state of the fundamental statistical theory for semiparametric models,

in particular the likelihood methods in such models. The focus is

on the main ideas and where the problems occur in comparison with

the archetypal likelihood theory of parametric models. We refer to

the literature for further details and proofs. Finally, we discuss the

applications in a number of examples.
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1 Introduction

In many practical applications of statistics it is unreasonable or undesirable
to make full �nite dimensional parametric assumptions on the probability
distributions of the phenomena we observe. On the other hand a nonpara-
metric model might loose \too much" of the structure that nevertheless is at
hand. Then a semiparametric model is a competitive alternative that should
be considered.

In general, semiparametric models are statistical models indexed by a
parameter in an in�nite dimensional set. There are two ways to formulate
such models, even though a strict de�nition of a semiparametric model is
not given. We denote by \the �rst type" in�nite dimensional models with
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2 Likelihood Methods in Semiparametric Models

a parameter map, i.e. we consider a model P on a measurable space (X ;A)
given of the form

P = fP j  2 Hg; (1)

where P is a probability distribution on (X ;A) and H is an in�nite dimen-
sional set (expressing some conditions on P such that P is not all proba-
bility measures on (X ;A)). On the model (1) we have a map # : P 7! �,
which yields the parameter of interest #(P ). Here � is a subset of a Eu-
clidean space�. Typical parameter maps include #(P ) =

R
�(X)dP for

�(x) = x; x2;1fx�tg etc. In the second formulation we have (genuine) semi-
parametric models in the sense that they are naturally parametrized by two
components (�; �), where, typically, � 2 � is a Euclidean interest parame-
ter and � is a nuisance parameter ranging over an abstract set H of in�nite
dimension. I.e. the model is of the form

P = fP�;� j � 2 �; � 2 Hg; (2)

where � � IRd for some natural number d, H is an abstract set, and � is the
interest parameter (In this formulation the term semi -parametric becomes
clear). Even though the setup is quite abstract in both formulations, we shall
see that the majority of concepts studied here are given in terms of �nite
dimensional submodels, so we will be on familiar ground mostly. Example
11 below illustrates that the two formulations overlap but they are in general
not equivalent.

Even though the semiparametric formulation in (2) is often the most ap-
pealing to keep in mind, the in�nite dimensional model formulation in (1)
with a parameter map is the formulation that works for most purposes. The
goal here is to discuss the possibilities of estimating #(P ) (optimally) at
the `classical'

p
n{rate. In order to achieve this goal we need to reconsider

some of the concepts used in regular parametric models. First we de�ne dif-
ferentiability, since coordinatewise di�erentiability is insu�cient in abstract
spaces. In Section 3 we introduce two new concepts of di�erentiability in or-
der to de�ne score functions (by Hellinger di�erentiability) and di�erentiable
parameters (by pathwise di�erentiability). Other tools are introduced in Ap-
pendix B.1 on Banach and Hilbert spaces and in Appendix C on the theory
of empirical processes, which generalize the notion of convergence in distribu-
tion to in�nite dimensional spaces and non{measurable random elements. In
Sections 4{6 we will discuss the estimation theory. One of the general result

�In the literature abstract parameter spaces � are also considered, see e.g. Chapter 5
in Bickel, Klaassen, Ritov and Wellner (1993).
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for semiparametric models is the convolution theorem presented in Section
4, which gives a lower bound on the asymptotic variance of any regular es-
timator. This is a generalization of the well known Cram�er{Rao bound for
parametric models. At the end of the section we brie
y mentions alterna-
tive results. Section 5 considers estimation techniques. The e�cient score
function can be used to express the information bound found in Section 4,
and in Subsection 5.1 we discuss how it can be used for estimation as well.
The construction of estimates based on estimating equations is considered in
Section 5.3. In Section 6 we touch upon the test theory. The �nal major part
of this introduction is given in Section 7, where we consider the cases when
maximum likelihood methods are successful in these models, this includes
parameter estimation, the use of the observed information and the likelihood
ratio test. In the next section we shall look at the motivation for studying
semiparametric models and list some examples that are typical for the area.
We follow up on the applications in Section 8.

As the title and the outline above indicate we want to imitate the clas-
sical likelihood theory for regular parametric models \as much as possible".
When is it possible to estimate the interest parameter at the usual order of
accuracy? How can we construct estimators which reach the lower bound on
the asymptotic variance? When will the maximum likelihood method work?
Can we estimate the asymptotic variance matrix? By the observed informa-
tion? What can be said about the likelihood ratio test? In answering these
questions we will aim to make the di�erences to the classic theory and the
arising problems clear to the reader.

The theory in the area is not complete. The information bound in Section
4 is well studied, but the remaining areas leave much work to be done and
knowledge to be found. At present the literature in the area is dominated
by papers with exact deduction in speci�c examples and hence it might ap-
pear confusing to the novice. However, the monograph of Bickel et al. (1993)
presents the information calculations in general and gives detailed compu-
tations in many interesting examples and the authors discuss methods for
constructing estimators. Chapter 25 in van der Vaart (1998) gives a general
account with a clear view on both the estimation theory and the maximum
likelihood methods, with proofs. In survival analysis Andersen, Borgan, Gill
and Keiding (1993) show how counting process and martingale theory can
be fruitfully used. For further and up to date results see the recent journals
in statistics and econometrics | also note the suggestions for new students
in Appendix A.

The chapter on semiparametric models in van der Vaart (1998) has been
of great inspiration in preparing this account of the theory.
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2 Motivation and Examples

As mentioned in the introduction semiparametric models are intermediate
between parametric models and nonparametric models. We should choose a
semiparametric model if we want the 
exibility of the nonparametric model
and if we want to answer the questions that a parametric model allow us to
ask. An example might be a study of some aspect of the behavior of humans,
where many incontrollable factors including the intellect of the individual re-
acting to its own situation might bring the nature of the experiment \too
far" away from a closed laboratory trail. Another occasion where a semipara-
metric model is useful is the case where the model given from the scienti�c
context only partly describes the phenomena under study, e.g. it is given
that a certain relation holds in mean but no distributional form is given.
This type of models occurs frequently in econometrics, for such models see
Example 17 and 7 below.

Semiparametric models have roots long back in the history of statistics.
In the statistical literature the theory has evolved dramatically over the last
three decades, since the proposal by Cox in the early seventies to model
survival times by proportional hazard functions. Since this model is a par-
ticularly nice and well known example, we will brie
y discuss it here and
emphasize what makes it (and survival analysis in general) so distinctive
among semiparametric models.

Example 1 (Cox model) We observe a pair (T;Z), where T is a survival
time and Z is a covariate. The conditional hazard of T given Z is given by
�(tjz) = �0(t)e�

>z, where �0 is an unknown baseline hazard function, � is a
real parameter of interest that expresses the proportional di�erence between
hazard functions, and the distribution of Z is unrestricted. �

Example (1) was introduced in Cox (1972, 1975) and estimated by Cox's
partial likelihood which is constructed to be a function of � only. Aalen (1978)
reformulated the model in terms of counting processes and this formulation
was used in Andersen and Gill (1982) to give a rigorous proof for the asymp-
totic distributional results based on martingale theory, see also the readable
survey in Gill (1984). The connection between the partial maximum likeli-
hood estimator and the non-parametric maximum likelihood estimator was
�rst obtained in Bailey (1979), see also Bailey (1984). Jacobsen (1984) dis-
cusses maximum likelihood estimation in a general counting process setup.
Later, several other issues of the model have been studied, e.g. Jacobsen
(1989) ensures uniqueness of the partial maximum likelihood estimator in
absence of co-linearity in the covariates, Bartlett adjustments of the partial
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likelihood ratio test have been considered in Gu and Zheng (1993), model
control by test for non-proportional hazard in e.g. Murphy (1993), etc. Fur-
thermore, the model has been extended in a variety of directions including
several types of censored observations, introducing unobserved frailties, etc.

Example 1 captures the basic idea in and the strength of a semiparametric
model. We parameterize the part of the model we have interest in (how
di�erent covariates in
uence the survival hazard) and we leave the remaining
part of the model as unspeci�ed as possible (the baseline pattern by which
individuals fail). However, the partial likelihood function is special to the
Cox model and it does not have a universal counterpart, and the martingale
property of the likelihood is unique for survival analysis. Unfortunately, it
has not been possible to generalize these strong features to a version of a
likelihood for semiparametric models. The partial likelihood is replaced by
various types of likelihood{like or pseudo{likelihood functions (Section 7). To
obtain a convenient terminology we refer to all such functions as `likelihoods'.
The martingale tool is substituted by empirical process methods (Appendix
C), which seem to give the tools that can be utilized to prove asymptotic
results.

The intention with the following list of examples is to give an impression
of the range of semiparametric models. We will return to these and related
examples in Section 8. Each example include a reference to a starting point
for further details.

Example 2 (Parametric models) Let � be a �xed �-�nite measure on a
sample space (X ;A). We observe X with distribution P from the class P =
fP� � � j � 2 �g, where � is an open subset of IRd and the parametrization

� 7! P� satis�es the following. The map � !
q

dP�
d�

from � to L2(�) is

Fr�echet di�erentiable with derivative s(�) 2 Rd. The Fisher d�d information
matrix for � given by I(�) =

R
s(�)>s(�)d� is nonsingular. Finally, the map

�! si(�) is continuous from � to L2(�) for i = 1; : : : ; d. Then P is a (�nite
dimensional) regular parametric model. Such a model is of course a special
case of a semiparametric model. (Bickel et al. (1993, Chapter 2)) �

Example 3 (Mixture models) We observe a random variable X. Given an
unobserved random variable Z the distribution of X has density q�(�jZ),
which belongs to a regular parametric family of densities with respect to some
�-�nite measure �. The random variable Z is assumed to have completely
unknown distribution G on a measurable space (T ; C). The density of X
with respect to � is given by

p(x; �;G) =
Z
T
q�(xjz)G(dz):
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The probability distribution G is called the mixing distribution, and the
function q�(�jZ) is called the kernel or the mixture density which is known
up to the parameter � in an open subset � of IRd. (Lindsay and Lesperance
(1995) and van der Vaart (1996)) �

Example 4 (Paired exponential) In the mixture model above we observe
X = (X1;X2), which conditional on Z is a pair of independent exponentially
distributed random variables with parameter Z and �Z. The interest param-
eter � describes the ratio of conditional hazard rates. To model Z with an
unknown distribution function yields a more 
exible model for X than if z
simply was an unknown parameter. That Z is random allows for unobserved
heterogeneity in the population. (Bickel et al. (1993, Example 4.5)) �

Example 5 (Errors-in-variables) We observe a pair (X1;X2), where X1 =
Z + �1 and X2 = �+ �Z + �2, and � = (�1; �2) has a two dimensional normal
distribution with mean zero and unknown covariance matrix, i.e. X2 is a
linear regression on Z which we observe with error �1. The distribution of Z
is unknown. (Murphy and van der Vaart (1996)) �

Example 6 (Convolution models) Let the observation X have the same dis-
tribution as the sum Y +Z, where Y has a known �xed distribution G and Z
has an unknown distribution F . Estimation in this type of model is in par-
ticular di�cult with low rates of convergence of estimators of F . Particular
examples occur when Y is an exponential variable and Z is a positive random
variable, or when Y is standard Gaussian and Z has an unrestricted distri-
bution on the real line. (Groeneboom and Wellner (1992) and Groeneboom
(1996)) �

Example 7 (Regression) Let Z and � be two independent random vectors
and suppose that Y = �(Z; �) + �(Z; �)� for known functions � and �. We
observe the pair X = (Y;Z). If � has a parametric distribution and the
observed value of Z is treated as a constant, then this is just a classical re-
gression model. When the distribution of � belongs to an in�nite dimensional
set, such as all mean zero distributions, we obtain a semiparametric version
of the regression model. (Horowitz (1998, Chapter 3)) �

Example 8 (Partly linear regression) Consider the setup from Example 7
with Z decomposed into (W;T ), � � 1, and �(Z; �) = h(�>W + �(T )).
Here h is a known �xed function, � is a parameter vector, and � belongs to
an in�nite dimensional set of \smooth" functions. We might also relax the
independence assumption on Z and � to require that the conditional mean
of � given Z is zero. In other words, we observe X = (Y;W; T ) and assume
that E(Y jW;T ) = h(�>W + �(T )). (Chen (1995)) �
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Example 9 (Transformation models) Assume that X = (Y;Z) satis�es
�(Y ) = �>Z + � for an unknown map � and independent random vectors
Z and � with known or parametrized distributions. The transformation map
� is restricted in some simple way, e.g. it belongs to the set of all monotone
functions. (Wang and Ruppert (1996) and Bickel et al. (1993, Section 4.7
and 6.7)) �

Example 10 (Projection pursuit regression) Let Z and � be two indepen-
dent random vectors and suppose that Y = �(�>Z) + � for a function �
ranging over a set of smooth functions, and � having a mean zero normal
distribution. Obviously, � and � are confounded, but � is estimable up to a
constant. This type of model is also called a single{index model. (Horowitz
(1998)) �

Example 11 (Symmetric location) Suppose that the random variableX has
a symmetric distribution with unknown centre of symmetry. We want to es-
timate the centre of symmetry. If we assume that the probability distribution
for X is dominated by the Lebesgue measure, then we parameterize the den-
sity of X by p(x; �; g) = g(x � �), where g is a density with respect to the
Lebesgue measure on IR which is symmetric at zero. (Bickel et al. (1993))

�

Example 12 (Copula model) We observe X = (X1;X2) with two{dimen-
sional distribution FX(x1; x2) = G� (G1(x1); G2(x2)), where G� is a bivari-
ate distribution function known up to the parameter � and with uniform
marginals. The marginal distribution functions Gi can both be unknown or
one can be known. The purpose of the Copula model is to model the covari-
ance structure between X1 and X2 by the parameter � without a�ecting the
marginal distributions. (Klaassen and Wellner (1997)) �

Example 13 (Missing at random) Suppose that the second coordinate of
(Y1; Y2) sometimes is missing. If the conditional probability that Y2 is ob-
served depends only on Y1, then we say that Y2 is missing at random (MAR).
The interest parameter is typically a function of the distribution of Y . (van
der Vaart (1998)) �

Example 14 (Random censoring) We observe a survival time T if it occurs
before an independent censoring time C, otherwise C is observed. If �
is the indicator variable for observing T , then the observation is the pair
X = (T ^ C;�). The distribution of T and C may be completely unknown
or T might follow the Cox model in Example 1. (Andersen et al. (1993)) �
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Example 15 (Interval censoring) At the random censoring time C we ob-
serve whether the \death" time T has occurred, i.e. we observe X = (C;�)
where � is the indicator of the event fT � Cg. The distribution of T and C
may be as in the previous example. (van der Laan and Robins (1998)) �

Example 16 (Frailty) Let two survival times T1 and T2 conditional on the
random variable (W;Z) be independent with conditional hazards of the form
�(tjz) = w�0(t)e

�>z. However, the variable W is not observed but inde-
pendently of Z it follows a gamma distribution with mean one and vari-
ance �. Thus W and � model the unobserved heterogeneity and we observe
X = (T1; T2; Z). (Nielsen, Gill, Andersen and S�rensen (1992)) �

Example 17 (Conditional moment restrictions) Let g(y; z; �) be a given
vector function. We observe X = (Y;Z) and assume that the distribution of
X satis�es EP (g(Y;Z; �) j Z) = 0 for a unique value of �. Except from this
condition the distribution of (Y;Z) is unrestricted. (Newey (1993)) �

3 Di�erentiability

In this section we introduce some of the technical tools for semiparametric
models. Typically, the in�nite dimensional parameter belongs to a Banach
or Hilbert space. A Banach space is an abstract linear space with a norm
k k, such that every Cauchy sequence has a limit point in that space, i.e. a
complete normed linear space. A Hilbert space is an abstract linear space
with an inner product h�; �i, where every Cauchy sequence is convergent with
respect to the norm kxk =

q
hx; xi, i.e. a complete inner product space. In

Appendix B.1 we list some of the properties of Hilbert and Banach spaces
which will be used in the sequel.

We write �n = oP (�n) for random variables �n and real numbers �n if
�n=�n ! 0 in P -probability. We write �̂ � �0 = OP (n�1=2), if for all � > 0
there exists K > 0 such that lim supn!1 P (

p
nj�̂� �0j � K) < �, and we say

that �̂ is
p
n{consistent for �0. We use the operator notation for integrals

Pf(�; �) = R
f(x; �)P (dx) also when the parameter � is random. From a sam-

ple X1; : : : ;Xn we denote the empirical measure by IPn =
Pn
i=1 �Xi. Given

a probability space (X ;A; P ), we write L2(P ) for the set of all measurable
functions f : X 7! IR with �nite second moment Pf2 < 1. If we equip
L2(P ) with the usual inner product hf; giP = Pfg and the associated norm
kfkP =

p
Pf2 and identify functions that are equal alomost surely, then it

is well known that L2(P ) is a Hilbert space.
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In IRn there is one de�nition of di�erentiability that works. In a normed
linear space there are several de�nitions with individual advantages. In reg-
ular parametric models the derivative of the log-likelihood (the score func-
tion) is used both for construction of an estimator and for calculating the
Cram�er{Rao lower bound of information. Assume (for the moment) that the
semiparametric model P is dominated by a �-�nite measure �. Then the set
f
q

dP
d�
j P 2 Pg is a subset on the unit sphere in the Hilbert space L2(�). The

size and shape of the tangent set at a given point expresses how well we can
estimate a given parameter. Estimators that solve the average of a certain
function (associated with the derivative of the parameter map) equal to zero,
have nice properties, just like the solution to the score equation. Here follow
the strict de�nitions.

An important metric on the set of probability distributions is the Hellin-
ger distance dH(P;Q) given by

dH(P;Q) =

0
@Z

�����
s
dP

d�
�
s
dQ

d�

�����
2

d�

1
A

1=2

(3)

for � dominating both P and Q. We de�ne the score functions at a point P
in P as follows. Let t 7! Pt be a map from a neighbourhood of 0 in [0;1)
into P with P0 = P such that there exists a measurable function g : X 7! IR,
for whichy

Z "p
dPt �

p
dP

t
� 1

2
g
p
dP

#2
! 0: (4)

This is Hellinger di�erentiability (di�erentiability in quadratic mean) along
the path fPtg0<t<� at t = 0 with score function g. If fPtg ranges over a
collection of submodels, we obtain a set of score functions, which we call the
tangent set of the model P at the point P , denoted by _PP . From the lemma
below we see that any score function will belong to L2(P ).

In principle we want to use all submodels fPtg through P , but sometimes
it is wiser to consider a subset. The results derived later will be relative to
the tangent set determined by the chosen set of submodels. Since the path
t 7! Pat for a � 0 has score function ag when the submodel t 7! Pt has score
function g we see that the maximal tangent set is a cone. Hence we will
assume that the tangent set always is a cone. If the tangent set is a linear
space, we call it the tangent space. However, the literature does not agree

yWe write the de�nition in this abstract way with
p
dPt and

p
dP because the model

P is not always dominated, and because the choice of dominating measure for the path
fPtg is irrelevant.
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on these de�nitions of tangent set and space, e.g. Bickel et al. (1993) use all
`two-sided' submodels to de�ne the tangent set and de�ne the tangent space
as the closure of linear span of the tangent set. Usually, one has a good
idea of what the tangent set `should be', but it might require an e�ort to
verify the conjecture.z A useful method to construct the score function g for
a submodel t 7! Pt is for each x to compute the score function in the usual
manner

g(x) =
@

@t
log dPt(x)

���
t=0
;

and then verify the L2 condition (4).

Lemma 1 Let g be the score function of the map t 7! Pt satisfying (4). Then
we have Pg = 0, Pg2 < 1, and the submodel fPtg has the local asymptotic
normality (LAN) propertyx

log
nY
i=1

dP1=
p
n

dP
(Xi) =

1p
n

nX
i=1

g(Xi)� 1

2
Pg2 + op(1):

Proof : See van der Vaart (1998) page 363. �

To de�ne smooth parameter maps we will need a pathwise version of
Hadamard di�erentiability with respect to the Hellinger metric in (3). A
map # : P 7! IRd is said to be di�erentiable at P relative to a given tangent
set _PP if there exists a continuous linear map{ _#P : L2(P ) 7! IRd such that
for every submodel fPtg with score function g 2 _PP ,

#(Pt)� #(P )

t
! _#P g :

Observe that this di�erentiability requirement is twofold: the derivative must
exist and be of the form _#P g. Also note that if we reduce the tangent set _PP
by considering fewer submodels more parameter maps become di�erentiable.

From Hilbert space theory we know that the map _#P can be represented
as an inner product with a random vector �#P : X 7! IRd,

_#P g = h�#P ; giP =
Z

�#P gdP :

The function �#P is called an in
uence function of the parameter # and it
is clear that we may add elements orthogonal to the tangent set to this

zSee Appendix B.3 for a comment.
xAgain dP and dPt denote the density under any dominating measure.
{See Appendix B.1 for a precise de�nition.
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function. However, there exists (again from the theory for Hilbert spaces) a
unique function ~#P with coordinate functions in span _PP , the closure of the
linear span of the tangent set _PP . We name the function ~#P the e�cient
in
uence function and it can be found by projecting any in
uence function
�#P onto span _PP .

The two di�erentiability notions introduced above for a score function and
a di�erential parameter map can both be seen as Hadamard di�erentiability
tangentially to the given path, see Bickel et al. (1993, Appendix 5).

We close this section with a de�nition of regular estimators. Let fPt;gg
denote a submodel with score function g 2 _PP , such that the parameter # is
di�erentiable. An estimator Tn is a measurable function of the observations
X1; : : : ;Xn. An estimator sequence fTng is called regular (or locally regular)
at P for estimating #(P ) (with respect to the tangent set _PP ) if there exists
a probability distribution L such that for every g 2 _PP with corresponding
submodel fPt;gg we havek

p
n
�
Tn � #(P1=

p
n;g)

� P
1=
p
n;g) L:

Here we use the notation ) for weak convergence, and Xn
Pn) X denotes

weak convergence under fPng, i.e. Pnf(Xn) ! Pf(X) for every bounded
continuous function f .

Note that two di�erent notions of di�erentiability are used, one for score
functions and one for the parameter map. These are pathwise de�ned and
closely related to the Hadamard di�erentiability.

4 Information Bound

In the following three sections we consider general estimation results for
semiparametricmodels. In the present section we consider the most clear and
complete result in the area concerning the asymptotic information contained
in any regular estimator sequence. The result is given in term of an upper
bound on the information and any particular estimator at hand must be
evaluated against this bound to determine the e�ciency of the estimator.
The idea here and later is to consider regular estimators and measure the
\noisiness" by the asymptotic variance.

The problem of estimating the d{dimensional parameter #(P ) given that
P belongs to the semiparametric model P is obviously more di�cult than

kThis local uniformity might seem unnecessarily technical, but it is required to exclude
super e�cient estimators like Stein's shrinkage estimator, see Bickel et al. (1993) example
2.2.1.
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estimating #(P ) given that P belongs to a smooth parametric submodel P0 =
fP� j � 2 Ag � P. Let I(P j #;P0) denote the Cram�er{Rao information
bound for estimating # in the regular parametric model P0 containing P .
Any regular estimator T in a parametric model P0 has asymptotic variance
� � I�1(P j #;P0).

De�nition 2 (Information bound)We de�ne the lower bound on asymptotic
variance in a semiparametric model P for estimating # at P by

I�1(P j #;P) = sup
n
I�1(P j #;P0)

��� P 2 P0 � P
o
;

where P0 is a regular �nite dimensional submodel and the supremum is
taken in the class of positive semide�nite matrices. Moreover, we de�ne
the information in the semiparametric model P for estimating � at P by
I(P j #;P) = (I�1(P j #;P))�1.

The connection between the \e�cient in
uence function" and the \in-
formation" is illuminated by the following result. For simplicity, assume
that the parameter #(P ) is real. The Cram�er{Rao bound for the parameter
t 7! #(Pt;g) in the model fPt;gg is

(d#(Pt;g)=dt)2

Pg2
=
h~#P ; gi2P
hg; giP :

From the Cauchy-Schwartz inequality and since ~#P 2 span _PP , we see that
taking supremum over all submodels in the display above or equivalently over
all g in the tangent set gives

sup
g2span _PP

h~#P ; gi2P
hg; giP = P ~#2P :

This shows that the second moment of the e�cient in
uence function ex-
presses the lower bound on the asymptotic variance. This can be generalized
to an arbitrary Euclidean parameter to show that the lower bound on asymp-
totic variance is given by P ~#P ~#>P = I�1(P j #;P). The following theorem is
a key point in semiparametric models.

Theorem 3 (Convolution)�� Let the parameter map # : P 7! IRd be dif-
ferentiable at P with respect to the tangent cone _PP with e�cient in
uence
function ~#P . Then we have that the asymptotic variance matrix of every reg-
ular sequence of estimators is bounded below by P ~#P ~#>P . Furthermore, if the
tangent set _PP is a convex cone, then every limit distribution L of a regular
sequence of estimators can be written as the distribution of L0 + Z, where
L0 � N(0; P ~#P ~#>P ) and independent of Z with an arbitrary distribution.

��For a review on the convolution theorem see the end of this section.
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Proof : See van der Vaart (1998) page 366. �

The interpretation of the theorem is that among regular estimators the
matrix P ~#P ~#

>
P is the \optimal" asymptotic variance matrix for estimators of

the parameter #(P ) in the model P. Therefore, we call an estimator sequence
which is regular at P with limit distribution L = N(0; P ~#P ~#>P ) asymptotically
e�cient at P . It is possible to prove that a sequence of estimators fTng is
asymptotically e�cient at P if and only if

p
n (Tn � #(P )) =

1p
n

nX
i=1

~#P (Xi) + oP (1): (5)

Hence we say that the in
uence function ~#P is e�cient.
For a `genuine' semiparametric model P = fP�;� j � 2 �; � 2 Hg with

interest parameter #(P�;�) = � the results above can be simpli�ed. The
information bound in Theorem 3 can be expressed in terms of an e�cient
score function. The approach is similar in spirit to the parametric case with
a �nite dimensional nuisance parameter.

Let P� denote the submodel fP�;� j � 2 Hg where � is �xed and let
_P�;P�;� denote the corresponding tangent set for �. We de�ne P� similarly to
P�. In the parametric family P� we have the ordinary score vector function
_̀
�;� =

@
@�
log dP�;�. Typically, we use submodels of the form t 7! P�+ta;�t for

given paths t 7! �t, which gives score functions as a sum,

@

@t
log dP�+ta;�t

���
t=0

= a> _̀�;� + g;

where g is a nuisance score function in _P�;P�;� . Ordinary di�erentiability of
the parameter #(P�+ta;�) = � + ta is obvious, but our de�nition requires a
certain form. Let ��;�(f j S) denote the orthogonal projection of f in L2(P�;�)
on the linear space S. De�ne the e�cient score function for estimating � by

~̀
�;� = _̀

�;� ���;�( _̀�;� j span _P�;P�;�); (6)

and the e�cient information matrix by its variance matrix ~I�;� = P�;� ~̀�;� ~̀
>
�;�.

The following lemma justi�es this terminology.

Lemma 4 yy Suppose that for every a 2 IRd and every g 2 _P�;P�;� , there
exists a path t 7! �t in H such that

Z 2
4
q
dP�+ta;�t �

q
dP�;�

t
� 1

2
(a> _̀�;� + g)

q
dP�;�

3
5
2

! 0: (7)

yyFor the same result in the alternative setup, see Theorem 3.4.1 in Bickel et al. (1993).
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.
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l θ,η

P
.
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θ,η

Figure 1: The geometric picture of the e�cient score function ~̀
�;�.

If ~I�;� is nonsingular, then the function #(P�;�) = � is di�erentiable at P�;�
with respect to the tangent set _PP�;� = span _̀

�;� + _P�;P�;� with e�cient in
u-

ence function ~#�;� = ~I�1�;� ~̀�;�.

Proof : It is straightforward to verify the necessary conditions. �

From our de�nition of the e�cient score function in (6) we may or may not
have ~̀�;� on closed form. The interpretation of the e�cient score function is
that from the score function for � we subtract the part that can be accounted
for by nuisance score functions. A part of the information for � is lost when
we do not know the nuisance parameter �. A particular nice case, called
adaptation, occurs when _̀

�;�? _P�;P�;� . This means that we can estimate �
equally well (up to the classical order) knowing the value of � and only
knowing that the nuisance parameter belongs to the set H.

A further re�nement can be achieved if the model has �nite, positive
information for the nuisance parameter �. Let T� be a subset of a Hilbert
space which constitutes \directions", say b, in which we can approximate
� within H. Suppose that there exists a continuous linear operator B�;� :
spanT� 7! L2(P�;�), and for every a 2 IRd and b 2 T� there exists a path
t 7! �t such that the path t 7! P�+ta;�t is Hellinger di�erentiable with score
function of the form

A�;�(a; b) = a> _̀�;� +B�;�(b):

Here the \score operator" B�;� generates the score functions g for the nuisance
parameter. The domain of the operator A�;� : IR

d � spanT� 7! L2(P�;�) is a
Hilbert space with respect to the inner product given by the sum

h(a; b); (�; �)i� = a>� + hb; �iT�
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The score operator A�;� has adjoint operatorzz A�
�;� : L

2(P�;�) 7! IRd�span T�,
and corresponding information operator A�

�;�A�;� : IR
d � T� 7! IRd � span T�

given by

A�
�;�g = (P�;�g _̀�;� ; B

�
�;�g)

A�
�;�A�;�(a; b) =

 
I�;� P�;� _̀�;�B�;�

B�
�;�

_̀>
�;� B�

�;�B�;�

! 
a

b

!
;

where B�
�;� : L2(P�;�) 7! spanT� is the adjoint of B�;�. The �rst diagonal

element in the matrix is ordinary Fisher information matrix I�;� for � and
the second diagonal element is the information operator for �. From Lemma
4 we know that the e�cient in
uence function for estimating #(P�;�) = � is
expressed in the e�cient score function. If the information operator B�

�;�B�;�

is continuously invertible, then the orthogonal projection on the nuisance
tangent set is given by the operator B�;�(B�

�;�B�;�)�1B�
�;�, and we obtain the

following simple formula for the e�cient score function

~̀
�;� = (I �B�;�(B

�
�;�B�;�)

�1B�
�;�) _̀�;� :

This implies that the submodel fP�+t1;�tg, where t 7! �t has tangent b =
(B�

�;�B�;�)�1 B�
�;�

_̀
�;�, is a \least favourable submodel", i.e. the submodel is

least informative about �.
Furthermore, under the same conditions and in the case where the pa-

rameter of interest #(P�;�) = �(�) is a function of the nuisance param-
eter � (despite the name), and there exists a continuous linear operator
_�� : span T� 7! IRd such that for every b 2 T� there exists a path t 7! �t with

�(�t)� �(�)

t
! _��b

for t # 0. Then the parameter map # is pathwise di�erentiable with respect
to the tangent set A�;�(IR

d � T�) with e�cient in
uence function ~#�;� given
by

P�;� ~#�;� _̀�;� = 0; and B�
�;�
~#�;� = ~�� ;

where ~�� is the e�cient in
uence function for �. If ~I�;� is nonsingular and
~�� belongs to the range of B�

�;�B�;�, we obtain

~#�;� = B�;�(B
�
�;�B�;�)

� ~�� � hB�;�(B
�
�;�B�;�)

� ~��; _̀�;�i>P�;� ~I�1�;� ~̀�;� ;
where z = C�y means nothing more than a solution to Cz = y. For an in�-
nite dimensional interest parameter and no Euclidean parameter the formula

zzSee Appendix B.1 for a de�nition.
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above remains true without the second term.

It often happens that the operator B�
�;�B�;� is not continuously invertible.

This means that the nuisance parameter � does not have a
p
n{consistent

estimator. In this case the maximum likelihood estimator of � is on the
boundary of the parameter set H to such an extent that the usual rate breaks
down and (maybe) ~l is no longer a score function. However, in some of these
di�cult cases it is possible to estimate the interest parameter via the e�cient
score function with the usual

p
n{rate, as we shall see in the following section,

since the e�cient information is still well de�ned and nonsingular.
An information bound of the type studied here �rst appeared in the litera-

ture in Begun, Hall, Huang and Wellner (1983) and has later been improved
and simpli�ed in van der Vaart (1989, 1991b); Groeneboom and Wellner
(1992) and Bickel et al. (1993). A presentation using di�erential geometry is
given in Amari and Kawanabe (1997). If the e�cient information is zero, then
there does not exist a

p
n{consistent estimator, see Newey (1990), Chamber-

lain (1986) or van der Vaart (1991b). However, the information bound is not
necessarily sharp, since Ritov and Bickel (1990) have given examples with �-
nite and positive information where there does not exist any estimator which
converges at rate n�� for any � > 0. It is possible to avoid the regularity as-
sumption on the estimator sequence by using the local asymptotic minimax
(LAM) bound (see van der Vaart (1998)). Both the convolution theorem and
the LAM theorem have been generalized in a result concerning convergence
of experiments, see van der Vaart (1991a).

5 Estimation Methods

Under regularity conditions the method of maximum likelihood can be ap-
plied successfully in �nite dimensional parametric models. Unfortunately,
in in�nite dimensional models there is not a widely usable method for con-
structing the estimates. In some examples ingenious but ad hoc methods
have been applied, in other cases estimating equations are successful, and in
some smooth models maximum likelihood estimation is possible. In this sec-
tion we will discuss some of the most general results available. We will leave
the discussion of maximum likelihood methods to Section 7. For methods
used in particular models references can be found in Section 8. Bickel (1982)
studies estimation in adaptive models and his ideas are further developed
in Schick (1986). In a semiparametric model with a su�cient statistic for
� for each �xed � van der Vaart (1988) constructs asymptotically regular
estimators, which are e�cient under further conditions. The moral seems to
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be that in each model one needs to carefully consider which method to apply
in the case at hand.

5.1 The E�cient Score Function

In a semiparametric model where � is the interest parameter and the e�cient
score function is explicitly known we can use an estimating equation with the
e�cient score function just as the ordinary score equation is used in maximum
likelihood estimation. Under conditions stated below such estimators are
e�cient.

Suppose that a consistent estimator �̂n of � is given, and let ~̀
�;�(x) be

the e�cient score function for �. Then we say that �̂n is an e�cient score
estimator if it solves the equation in �

nX
i=1

~̀
�;�̂n(Xi) = 0 : (8)

For the asymptotic results given below it su�ces, in fact, that the left hand
side evaluated at �̂n is oP (

p
n).

In classical theory asymptotic results for a solution to an equation of this
type are proved by a linearization argument. However, such a scheme is not
possible here because the estimator �̂n does not, in general, have the usualp
n{rate of convergence (when we consider the `natural' parametrization).

Instead we apply results about Donsker classes from the theory for empirical
processes.

Theorem 5 Suppose that the model fP�;� j � 2 �g is Hellinger di�erentiable
in the sense of (4) with respect to � at (�; �), let the e�cient information ma-
trix ~I�;� be nonsingular, and let the e�cient score estimator �̂n be consistent
for �. Assume that the given estimator �̂n is consistent with respect to a
metric d on H and that it satis�es

P�̂n;�
~̀̂
�n ;�̂n

= oP (n
�1=2 + k�̂n � �k) ; (9)

P�;�k ~̀̂�n;�̂n � ~̀
�;�k2 P! 0 ; P�̂n;�k ~̀̂�n;�̂nk2 = OP (1) : (10)

Furthermore, suppose that there exists a � > 0 such that the set of functions
f~̀�0;�0 j k�0��k < � ; d(�0; �) < �g is a P{Donsker class with square-integrable
envelope function. Then the sequence �̂n is asymptotically e�cient at (�; �).

Above we estimate the e�cient score function by plugging in an estimator
�̂n for the nuisance parameter. Since P�̂n ;�

~̀̂
�n ;�

= 0, condition (9) requires
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that the \bias" of the plug-in estimator ~̀�;�̂n of the true e�cient score function
~̀
�;� converges to zero at a rate faster than 1=

p
n. This can be expected to

be true, since the e�cient score function is orthogonal to the score functions
for the nuisance parameter. Then small changes in � should not e�ect its
expectation. The condition is necessary within the setting of the theorem. If
it fails

p
n times the left hand side is added to the asymptotic linear expansion

for �̂n, see van der Vaart (1998, Theorem 25.59). The second condition (10)
states that the plug-in estimator must be consistent for the true e�cient score
function. Naturally, Theorem 5 can be generalized to the case where the plug-
in estimator ~̀�;�̂n for the e�cient score function is substituted by other types
of data dependent estimators. For further discussion of these assumptions
and some generalizations and for a proof, see van der Vaart (1998) page
391pp. Of particular interest is the case where the maximum likelihood
estimator (�̂n; �̂n) is a solution to the e�cient score equation, cf. Section 7.
The limitation of this method is that the e�cient score function is not always
explicitly known.

5.2 The One-step Method

The purpose here is to discuss the case where by some means we have ob-
tained a

p
n{consistent estimator which does not have minimal asymptotic

variance. The conclusion is that we can obtain an e�cient estimator based
on this initial estimator by, loosely speaking, one iteration in the Newton{
Raphson algorithm for solving the e�cient score equation (8). We might
expect this to work since a second order polynomial is maximized by one
step in a Newton{Raphson algorithm.

Let ~�n be the given
p
n{consistent estimator of � and let �̂ = �̂(X1; : : : ;

Xn) be given estimators of �. Assume without loss of generality that the
initial estimators are discretized on a grid with step size n�1=2. The basic
tool is sample splitting. Let m be the integer part of n=2 and de�ne

�̂n;i =

8<
:�̂m(X1; : : : ;Xm) for i > m

�̂n�m(Xm+1; : : : ;Xn) for i � m
(11)

Then we de�ne the one{step estimator as

�̂n = ~�n �
 

nX
i=1

~̀
~�n;�̂n;i

~̀>
~�n;�̂n;i

(Xi)

!�1 nX
i=1

~̀
~�n ;�̂n;i

(Xi) : (12)

The discretization of ~�n and the sample splitting technique are for mathemat-
ical convenience. They allow simple conditions and the use of independence
between parameter estimates and the data argument of the functions.
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Theorem 6 Suppose that the model fP�;� j � 2 �g is Hellinger di�erentiable
in the sense of (4) with respect to � at (�; �) and let the e�cient information
matrix ~I�;� be nonsingular. Assume that for every deterministic sequence
�n = � +O(n�1=2)

p
nP�n;� ~̀�n;�̂n

P! 0; P�n;�k~̀�n;�̂n � ~̀
�n ;�k2 P! 0: (13)Z

k~̀�n;�
q
dP�n ;� � ~̀

�;�

q
dP�;�k2 ! 0: (14)

Then the sequence �̂n is asymptotically e�cient at (�; �).

Proof : See van der Vaart (1998) p 394. �

This idea of improving a given initial estimator can also be carried over to
the general estimating equation setup considered below for mean zero square
integrable functions. For a formulation of the one{step improvement result
in that setup see Section 7.8 in Bickel et al. (1993).

5.3 Estimating Equations

The methods in the preceding subsections aim at e�ciency, which might be
too di�cult to achieve in some situations. This subsection considers esti-
mation of the interest parameter by the solution to an estimation equation
(also called M{ or Z{estimates in the literature). This method ignores the
remaining part of the parameter in P. We denote the interest parameter
#(P ) by �. This work is due to Huber (1967) and Pollard (1985) and the
setup is the following.

Suppose that the following maps are given

�n : � ! IRd ; n = 1; 2; : : : (random)

� : � ! IRd (deterministic):

We construct an estimator �̂n of � by solving the equation �n(�) = 0.� We
need the basic assumption that in the population � there is an element which
zeroes out �, i.e. (C0) there exists a unique �0 in � such that �(�0) = 0.
We require that the maps �n and � satisfy the following four smoothness
conditions. (C1 - Convergence at the true model) The random maps �n
converge to � at �0 in the sense that

p
n (�n � �) (�0)) Z0 ;

�Such an estimator is called a generalized M{estimator. If �n(�̂n) is only oP (n�1=2),

we call �̂n an asymptotic generalized M{estimator.
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where Z0 is a random variable. (C2 - Asymptotic equicontinuity) Assume
that

sup
j���0 j��n

jpn(�n � �)(�)�pn(�n � �)(�0)j
1 +

p
nj� � �0j = oP (1)

for all sequences �n # 0. (C3 - Di�erentiability) The map � is ordinary
di�erentiable at �0 with

�(�)� �(�0)� _��0(� � �0) = o(j� � �0j) ;

where the derivative is a linear map _��0(�� �0) = _�(�0)(�� �0) acting on the
di�erence �� �0. (C4 - Nonsingular inverse) The derivative map _�0 � _�(�0)
is a nonsingular d� d matrix.

Theorem 7 Suppose that C0{C4 hold. Let �̂n be random maps in � � IRd

such that �̂n ! �0 in probability , and �n(�̂n) = oP (n�1=2). Then we have
that

p
n(�̂n � �0)) � _�(�0)

�1Z0 :

Proof : See page 310 in van der Vaart and Wellner (1996). �

The assumptions of Theorem 7 are very weak. Occasionally condition C2
can be veri�ed without the

p
nj� � �0j term in the denominator. The two

conditions C1 and C2 imply that �n ! � in probability locally around �0.
Typically we have maps which are linear in the empirical part, i.e. random
maps of the form �n(�) = IP nf(�; �). In this case the term

p
n(�n � �)(�) =

p
n(IP n � P )f(�; �)

in C2 is the empirical process indexed by F = ff1(�; �); : : : ; fd(�; �) j j�� �0j
� �g. Conditions on F that insure the set to be P{Donsker also imply
condition C2, see e.g. Lemma 3.3.5 in van der Vaart and Wellner (1996).
Furthermore, if we may choose f as the e�cient score function we are within
the framework of subsection 5.1, see also corollary 7.8.1 in Bickel et al. (1993).

Construction of the estimating equations can be done by the following
heuristic outline. A reasonable requirement for an estimator Tn is that it is
asymptotically linear , i.e.

p
n (Tn � #(P )) =

1p
n

nX
i=1

�#P (Xi) + oP (1) :
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If Tn is regular also, then the parameter #(P ) is di�erentiabley with in
uence
function �#P , and the di�erence �#P � ~#P is orthogonal to the tangent set
_PP . Now, consider a class of in
uence functions corresponding to di�erent
asymptotically linear estimator sequences and suppose that f�#�;� j � 2 Tg
is a nice parametrization of this set, where � is the interest parameter and �
becomes a control parameter. Then we might estimate � from the estimating
equation

�n;� (�) =
1

n

nX
i=1

�#�;�(Xi) = 0

for given � . The value of � determines the asymptotic precision of the esti-
mator �̂n, hence we should try to make it data dependent to obtain a \best"
estimator within this class. For further discussion on estimating equations
in semiparametric models see Pfanzagl (1990) and Amari and Kawanabe
(1997). A result on estimating equations for in�nite dimensional parameters
can be found in van der Vaart (1995).

6 Test Theory

We have two things to say about testing in semiparametric models. The
discussion of the likelihood ratio test is postponed to the following section on
maximum likelihood methods. Here we discuss the power at local alterna-
tives and show that a test based on an e�cient estimator is \asymptotically
optimal."

Let P be a given model with real interest parameter #(P ). We want to
test the null hypothesisH0 : #(P ) = 0 against the alternativeH1 : #(P ) > 0.
Let P be a measure on the boundary of the null hypothesis, i.e. #(P ) = 0.
We want to analyze the \local asymptotic power" in a neighbourhood of P
by the means of the submodels fPt;gg, where g belongs to the tangent set _PP
and # is di�erentiable. For g 2 _PP with P ~#P g > 0 the di�erentiability of #
gives that #(Pt;g) = tP ~#P g+ oP (t). Thus for t su�ciently small, Pt;g belongs
to the alternative hypothesis H1 : #(P ) > 0. The following theorem gives an
upper bound on the asymptotic power at the alternatives Ph=pn;g.

Theorem 8 Let the parameter map # : P 7! IR be di�erentiable at P relative
to the tangent space _PP with e�cient in
uence function ~#P . Suppose that
#(P ) = 0. Then for every sequence of power functions P 7! �n(P ) of level{�
tests for the hypothesis H0 : #(P ) � 0, for every g 2 _PP with P ~#P g > 0,

ySee Bickel et al. (1993) Proposition 3.3.1.
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and every h > 0, we have that

lim sup
n!1

�n(Ph=pn;g) � 1� �

 
z� � h

P ~#P g

(P ~#2P )
1=2

!
;

where z� is the �{quantile and � is the standard normal distribution function.

The preceding theorem is accompanied by the following result, which
states that the power of a test based on an e�cient estimator Tn is asymp-
totically locally uniformly most powerful.

Corollary 9 Let the parameter map # : P 7! IR be di�erentiable at P rel-
ative to the tangent space _PP with e�cient in
uence function ~#P . Suppose
that #(P ) = 0 and that the estimator Tn is regular at P with limit distribu-
tion N(0; P ~#2P ). Furthermore, suppose that S2

n is a consistent estimator of
the asymptotic variance of Tn, i.e. S2

n ! P ~#2P in probability. Then, for every
h � 0 and g 2 _PP we have that

lim sup
n!1

Ph=pn;g

 p
nTn
Sn

� z�

!
= 1 � �

 
z� � h

P ~#P g

(P ~#2P )
1=2

!
:

The results above are as one would hope and expect, i.e. tests based on
e�cient estimators are asymptotically e�cient. These results were given in
Andersen et al. (1993) and Choi, Hall and Schick (1996) who also consider two
sided alternatives and multidimensional hypotheses. The present formulation
follows from Section 25.6 in van der Vaart (1998).

7 Maximum Likelihood Estimation

A particularly interesting type of semiparametric models are those where
maximum likelihoodmethods can be applied. In parametric models we derive
three important conclusions from the likelihood function, the value of the
argument that maximizes the likelihood function is a good estimator of the
unknown parameter, the second{order derivative at the maximum is used to
estimate the Fisher information, and �nally we construct a con�dence set of
parameter values where the likelihood ratio exceeds a certain level. These
goals are pursued for semiparametric models in the three subsections below.
The ideas from parametric likelihood theory can be generalized to either
maximizing an appropriate \likelihood" over the in�nite dimensional space
or we can require that in�nitely many \score" equations are satis�ed. At �rst
such a task might seem impossible, but that is not true. In the Cox model
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it is actually easy, in other models it is numerical laborious but possible.
The computational methods change from case to case; for a review of some
numerical procedures see Appendix B.2.

Even if the semiparametric model P is dominated it is not given that a
maximizer exists. Hence the �rst di�culty with applying likelihood methods
in semiparametric models is to choose an appropriate (pseudo{) likelihood
for the experiment. It happens that di�erent choices of likelihoods result in
di�erent maximum likelihood estimators. At present it appears that in each
concrete example one needs to determine carefully the likelihood that should
be used. To illustrate this point consider the model of all measures on the
real line dominated by the Lebesgue measure. Then the (ordinary) likelihood
function

Ln(P ) =
nY
i=1

p(Xi) ; (15)

where p is the Lebesgue density of P , is unbounded and has no maximizer.
One way to extend the likelihood is to allow for discrete distributions, i.e. to
work with the empirical likelihood function given by

Ln(P ) =
nY
i=1

PfXig ; (16)

where Pfxg denotes the mass of P at x. This likelihood function has the
well-known empirical distribution IPn with mass 1=n at each observation as
its maximizer. As one would expect this estimator is optimal. Other modi�-
cations of the likelihood function are: A sieved likelihood, where we maximize
the function (15) over a �nite dimensional sieve Pm in P with a dimension
m = m(n) that grows with the sample size such that Pm becomes dense in P.
A penalized likelihood, where we subtract from (15) a disappearing penalty

Ln(p) =
nY
i=1

p(Xi) � �nJ(p) ;

which (typically) forces the likelihood to prefer smooth parameters. Quasi
likelihoods, where the density p is substituted by another reasonable \likeli-
hood{like" object. A weighted likelihood utilizes the idea in kernel estimation
to the semiparametric setting.z Finally, combinations of these methods are
also used. Strictly our (pseudo{) likelihood in (17) is only a criteria function
but we will use the `likelihood' terminology in accordance with some part
of the literature. The resulting estimator is often called a nonparametric

zSee Hunsberger (1994).
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maximum likelihood estimator (NPMLE) due to the large dimension, but we
shall refer to it as the maximum likelihood estimator or just as the MLEx.

In the sequel we will assume that a likelihood lik( )(x) of an observation
x and a parameter  is given. For an i.i.d. sample the likelihood function is
given by

Ln( ) =
nY
i=1

lik( )(Xi) : (17)

In a semiparametricmodel with a decomposed parameter  = (�; �) 2 ��H
a central object is the pro�le likelihood function

PLn(�) = sup
�2H

Ln(�; �) ; (18)

where we maximize the likelihood function over � for each � �xed. Let �̂(�)
denote a maximizer of (18), so that PLn(�) = Ln(�; �̂(�)). The maximizer
�̂ of PLn is the �rst argument of the overall MLE (�̂; �̂) = (�̂; �̂(�̂)). Under
regularity conditions the pro�le likelihood function can be used, largely as
an ordinary parametric likelihood function, see Subsection 7.4.

The concept of a least favourable submodel is important in the �eld of
maximum likelihood estimation, it is a �nite dimensional submodel where
the score function equals the e�cient score function, see (20) and Appendix
B.3. The heuristic argument and picture one should keep in mind follow. The
MLE is also the maximum likelihood estimator in any parametric submodel
passing through the MLE. If we have a least favourable submodel at any
relevant point in the parameter space, we know that the (ordinary) score
in the least favourable submodel at the MLE is zero. By continuity the
least favourable submodel at the maximizer approximates the least favourable
submodel at the true value of the parameter, hence we might expect that the
MLE is not fare away from the maximizer in the least favourable submodel
at the true value of the parameter. That is we expect that the MLE will be
asymptotically equivalent to the parametric maximum likelihood estimator
in the least favourable submodel at the true value of the parameter. The
reduction to least favourable submodels have been used in Severini and Wong
(1992) and goes back to Levit (1978) and Stein (1956).

7.1 Asymptotic Normality and E�ciency

As outlined above there are two ways of proving asymptotic normality and
e�ciency of the MLE in semiparametricmodels. The method based on gener-

xThe name MLE is also used if the estimator is the solution to an in�nite dimensional
set of equations.
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alized score equations or likelihood equations has been considered in a series
of papers, where Gill (1989), Gill and van der Vaart (1993) and van der Vaart
(1995) are the most outstanding. The focus in the �rst two references (which
are part I and II of the same paper) is on explaining the underlining idea.
The authors consider cases where the MLE is determined as the solution
of the likelihood equations for a collection of smooth parametric submodels.
E�ciency in the semiparametric sense of such in�nite dimensional estimators
is proved and the result is transformed to be valid for interest parameters by
the delta method. The last reference gives a simple proof of e�ciency within
the same setup.

The score equation method has the complication that the classical point-
wise Taylor expansion fails to work, so advanced tools including empirical
process theory have to be applied and the method also implies that the en-
tire parameter  or (�; �) is

p
n{consistent. Here we outline the typical

derivation of the asymptotic distribution of the MLE de�ned by a set of like-
lihood equations with a decomposed parameter  = (�; �).{ The situation is
quite close to the �nite dimensional nuisance parameter case. The true value
of the parameters is denoted by a subscript zero and for convenience the true
data generating measure is denoted P0 = P�0;�0.

Suppose that the MLE (�̂; �̂) maximizes the likelihood function given in
(17). Let _l�;�(x) denote the ordinary derivative of log lik(�; �)(x) with respect
to �. Hence, by varying �, the MLE satis�es the equation

IPn _̀�;� = 0:

For the nuisance parameter � we typically consider the submodels t 7! �t
which are used to de�ne the nuisance tangent set. If, for each direction h in
an index set H, the score for � takes the operator form B�;� working on the
direction h, then the likelihood equation for the nuisance parameter becomes

IPnB�̂;�̂h = 0

for all h 2 H. This is true for the MLE if for every (�; �) there exists a path
t 7! �t(�; �) with �0(�; �) = �, such that

B�;�h(x) =
@

@t
log lik(�; �t(�; �))

���
t=0

:

Suppose that the index set H is chosen in such a manner that the map
h 7! B�;�h(x) is uniformly bounded on H, for every x and (�; �). Then we

{Basically, we transform the MLE into an estimator de�ned by an in�nite dimensional
set of equations and apply a result for generalized estimating equations together with some
e�ciency considerations.
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de�ne random maps 	n : IR
d �H 7! IR� `1(H) by 	n = (	n1;	n2), where

	n1(�; �) = IPn _̀�;�

	n2(�; �)h = IPnB�;�h; h 2 H :

The asymptotic version of these maps is the expectation under the parameter
(�0; �0) which gives a deterministic map 	 = (	1;	2)

	1(�; �) = IP0
_̀
�;�

	2(�; �)h = IP0B�;�h; h 2 H :

These maps are constructed such that 	n is zero at the MLE and 	 is zero
at the true value of the parameter (�0; �0). The following theorem is based
on a linearization argument.

Theorem 10 Suppose that the following four conditions are satis�ed. (i)

The set of \score functions"
n
_̀
�;�; B�;�h j h 2 H; (�; �) 2 U

o
, where U is a

neighbourhood of (�0; �0), is contained in a P0{Donsker class. (ii) The score
functions are continuous along the MLE sequence

P0k _̀�;� � _̀
�0 ;�0k2 ! 0; sup

h2H
P0jB�̂;�̂h�B�0;�0hj2 ! 0

in P0{probability. (iii) The map 	 : � �H 7! IRd � `1(H) is Fr�echet dif-
ferentiable at (�0; �0), with derivative _	0 : IRd � spanH 7! IRd � `1(H).
(iv) The derivative _	0 has a continuous inverse on its range. If the se-
quence of maximum likelihood estimators is consistent for (�0; �0) and satis-
�es

p
n	n(�̂; �̂) = oP0 (1), then

_	0

p
n
�
�̂ � �0; �̂ � �0

�
= �pn	n(�0; �0) + oP (1) : (19)

Proof : See page 420 in van der Vaart (1998). �

This theorem contains the joint asymptotic distribution of the MLE. Sincep
n	n(�0; �0) is the empirical process of the Donsker class including the func-

tions _̀
0 and B0h for h 2 H the right hand side is asymptotically Gaussian.

Since the continuous linear inverse of _	0 preserves normality, we see that the
sequence

p
n(�̂ � �0; �̂ � �0) is asymptotically normally distributed.

For known �0 the information operator for � is B�
0B0. If this operator is

continuously invertible and h = (B�
0B0)�1B�

0
_̀
0 is a potential direction in H,

then the e�cient score function is given by ~̀
0 = _̀

0 �B0(B�
0B0)�1B�

0
_̀
0. Fur-

thermore, by Theorem 5 or by direct manipulation of the system of equations
in (19) we obtain that

~I�0;�0
p
n(�̂ � �0) =

p
n(IPn � P0)~̀�0;�0 + oP (1)
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Thus the MLE is asymptotically linear in the e�cient in
uence function and
hence asymptotically e�cient. This is a complete mimic of the parametric
case with a nuisance parameter, only the notation is more di�cult to handle
and the mathematics more abstract to manage.

The condition (vi) in the theorem above is often the most di�cult to
verify. In the Euclidean case the matrix _	�1

0 is automatically continuous if
it exists, i.e. if _	0 is one{to{one. However, in this theorem we have some
freedom in the choice of the set of directions H. A larger set makes _	�1

0

more likely to be continuous, but makes the di�erentiability of _	0 and the
Donsker condition more restrictive. For a discussion on how to compute the
operator _	0 and to prove that it is continuously invertible, see p. 421-424 in
van der Vaart (1998).

If the nuisance parameter cannot be estimated with a
p
n{rate of con-

vergence, we can use a general result in Huang (1996) within the setup from
above. The result requires that a positive rate of convergence, say � > 0, of
the estimator of � is given, i.e. k�̂ � �0k = OP (n��), and that the di�eren-
tiability condition on the generalized score map 	 can be strengthened to a
smoothness condition of order � > 1 (with �� > 1=2) in the nuisance pa-
rameter. Together with assumptions similar to those in the previous theorem
these imply asymptotic normality and e�ciency of the MLE for �.

Another way to avoid the
p
n{consistency of the estimator for � is to em-

ploy least favourable submodels. If the MLE satis�es the equation IPn ~̀̂�;�̂ = 0,
then e�ciency follows from Theorem 5. Despite the name, the e�cient score
function is not, in general, a score function; it is de�ned as the projection of
the score function for the interest parameter on the orthogonal complement
of the nuisance tangent set. Occasionally there exist paths t 7! �t(�̂; �̂) such
that �0(�̂; �̂) = �̂, and for every x

~̀̂
�;�̂(x) =

@

@t
log lik

�
�̂ + t; �t(�̂; �̂)

�
(x)
���
t=0

:

Then the MLE satis�es the e�cient score equation. It is far from obvious how
one should construct these (exact) least favourable submodels, in particular
at the MLE , since (�̂; �̂) often belongs to the \boundary" of the parameter
space. However, inspection of the conditions in Theorem 5 reveals that the
MLE does not have to solve the e�cient score equation exactly, an oP (n�1=2)
error term is su�cient, and the function ~̀

�0;�0 needs to be the e�cient score
function only at the true value of the parameter, in order to maintain the
same asymptotic result.

This space for re�nement is utilized by \approximately least favourable
submodels", which are de�ned as maps t 7! �t(�; �) from a neighbourhood
of 0 2 IRd to the parameter set for � with �0(�; �) = � (for every (�; �)) such
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that

~��;�(x) :=
@

@t
log lik (� + t; �t(�; �)) (x)

���
t=0

(20)

exists and at (�0; �0) equals ~̀�0;�0. The submodel f�t(�; �)g in the nuisance
parameter space passes through � at t = 0, and at the true value of the
parameter ~� is the e�cient score function. As a minimum we need these
submodels at (�0; �0) and at any possible value of (�̂; �̂).

When (�̂; �̂) is the MLE it also maximizes the likelihood over the ap-

proximately least favourable submodel, i.e. the function t 7! IPn log lik
�
�̂ +

t; �t(�̂; �̂)
�
is maximized at t = 0. Hence the MLE satis�es the equation

IPn~��̂;�̂ = 0 and Theorem 5 can be reformulated to give the relevant asymp-
totic e�ciency result.

Theorem 11 Suppose that the model fP�;� j � 2 �g is Hellinger di�eren-
tiable in the sense of (4) with respect to � at (�; �), let the e�cient information
matrix ~I�;� be nonsingular, and assume that the maximum likelihood estima-

tor (�̂; �̂) is consistent. Assume that ~��;� are score functions of approximately
least favourable submodels in the sense of (20) and that they satisfy

P�̂n;�0~��̂n;�̂n = oP (n
�1=2 + k�̂n � �0k) ; (21)

P�0 ;�0k~��̂n;�̂n � ~��0;�0k2 P! 0 ; P�̂n;�0k~��̂n;�̂nk2 = OP (1) : (22)

Furthermore, suppose that there exists a � > 0 such that the set of functions
f~��;� j k� � �0k < � ; d(�; �0) < �g is a P0{Donsker class with square-

integrable envelope function. Then the sequence �̂n is asymptotically e�cient
at (�0; �0).

The no bias condition (21) can be veri�ed by permuting the left hand
side around ~��0;�0 and establishing rate of convergence of �̂. This is usually
completed by results for empirical processes, cf. Theorem 25.81 in van der
Vaart (1998)

7.2 Estimation of the E�cient Information

The results in the previous subsection state that we may have strong con�-
dence in our estimator, i.e. the estimator approaches the true value with an
error 1=

p
n times a \minimal" disturbance. However, if we have an estimator

of the asymptotic variance we increase our bene�t of the previous theorems
with standard errors and con�dence regions. Partly, the results discussed
here have applications beyond the MLE.
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In the case where the e�cient score function is a known function on
closed form and we have used a result similar to Theorem 11 for proving
asymptotic e�ciency of the estimator (�̂; �̂), then a natural estimator of
~I�0;�0 = P0

~̀
�0 ;�0

~̀>
�0;�0

is the sample average of ~̀�;� ~̀>�;� evaluated at the estima-
tor.

Lemma 12 Assume that (i) for some neighbourhood U of (�0; �0) the class
f~̀�;� j (�; �) 2 Ug is P{Donsker with square-integrable envelope function, (ii)

the estimator (�̂; �̂) is consistent, and (iii)

P0k ~̀̂�;�̂ � ~̀
�0;�0k2 P! 0 : (23)

Then we have that

IPn ~̀̂�;�̂
~̀>
�̂;�̂

P! ~I�0;�0 : (24)

Proof : See Appendix B. �

Observe that the assumptions of the lemma typically have been proved
when establishing the asymptotic distribution of the estimator. Unfortu-
nately, in important examples the e�cient score function is not known on
closed form, whence alternative measures are needed. Here we discuss the
ideas of using the observed information obtained from the pro�le likelihood
PLn given in (18), or estimating the e�cient score function by a nonpara-
metric least square regression, and �nally by using the bootstrap method.

Since the pro�le likelihood � ! PLn(�) may not be given explicitly and
existence of a second order derivative matrix is in general unclear, several
authors have proposed to use a discretized version of the observed pro�le
information. Under regularity conditions and existence of approximately
least favourable submodels Murphy and van der Vaart (1997a) prove that

for every hn
P! 0 such that (

p
nhn)�1 = OP (1), the sequence

� 2
log PLn(�̂ + hnvn)� logPLn(�̂)

nh2n

P! v> ~I�0;�0v ; (25)

for every sequence of \directions" vn
P! v 2 IRd. Applying this with vn =

ei; ej and ei + ej (where ei is the i'th unit vector) gives the (i; j) coordinate
in ~I�0;�0. Following the same paper \a heuristic explanation that this method
might provide a consistent estimator of the inverse of the asymptotic covari-
ance matrix is as follows. If �̂� achieves the supremum in (18), then the map
� 7! (�; �̂�) ought to be an estimator of a least favourable submodel for the
estimation of � (See Severini and Wong (1992)). By de�nition, di�erentiation
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of the likelihood along the least favourable submodel (if the derivative exists)
yields the e�cient score function for �. The e�cient information matrix is
the covariance matrix of the e�cient score function, and, as usual, the ex-
pectation of minus the second derivative along this submodel should yield
the same matrix."

Next, suppose that the nuisance scores are in the operator form B�;�(b)
for some direction b 2 T� by which we can approximate � within H. Assume
that the e�cient score function is given by ~̀

�;� = _̀
�;� � B�;�(b0), where b0

minimizes the function

�(b) = P0k _̀�;� �B�;�(b)k2

over T� (recall that the e�cient score function is, in general, de�ned as the
projection of the score for � on the closure of the linear span of the nuisance
scores). Let (�̂; �̂) be a consistent estimator. Then Huang (1998) proposes
to estimate the least favourable direction b0 by the minimum value of

�n(b) =
1

n

nX
i=1

k _̀�̂;�̂(Xi)�B�̂;�̂(b)(Xi)k2 : (26)

Furthermore, let b̂ denote the minimizer of �n, then Huang proposes ~In =
�n(b̂) as a natural estimator of ~I�;� (see Huang (1998) for further details and
a proof of consistency of this estimator).

Finally, the bootstrap method is proposed in Wellner and Zhan (1996) for
estimators solving a set of in�nite dimensional score equations as in Theorem
10. Under an additional hypothesis on the continuity in (�; �) of the score

map 	, then appropriate bootstrap estimators [(�̂; �̂) are consistent in the
sense that

_	0

p
n
�
[(�̂; �̂)� (�̂; �̂)

�
= �cpn	n(�0; �0) + oP (1) (27)

for a constant c that depends on the bootstrap sampling scheme. For the
complete notation, a proof, and some examples see Wellner and Zhan (1996).

7.3 Inference

With the asymptotic distribution result for the MLE from subsection 7.1
and an estimator from subsection 7.2 of the asymptotic variance we can,
by Corollary 9, perform e�cient tests for the interest parameter � based on
these two estimators. In parametric models the likelihood ratio test is a
popular alternative. One may ask whether such a test is meaningful and/or
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possible in an in�nite dimensional context. However, (once again) we shall
see that approximative least favourable submodels allow to draw on �nite-
dimensional-type arguments. The following theorem is due to Murphy and
van der Vaart (1997c) and gives the usual �2 distribution as the limit of
the likelihood ratio test, where the degrees of freedom equal the number of
parameters that are �xed.

Let Ln( ) be the likelihood function in (17) with interest parameter
�( ) 2 IR and consider the hypothesis H0 : �( ) = �0. Let  ̂ be the unre-
stricted MLE and let  ̂0 be the maximizer under the restriction �( ) = �0.
Then the likelihood ratio statistic for testing H0 is

� 2 lnQ = 2 sup
 2	

logLn( )� 2 sup
 2	;�( )=�0

logLn( )

= 2nIPn log lik( ̂)� 2nIPn log lik( ̂0) (28)

The setup and assumptions that guarantee an asymptotic �2 distribution
of �2 lnQ are the following. Assume that the MLE �̂ = �( ̂) is asymptoti-
cally linear,

p
n(�̂ � �) =

p
nIPn ~̀=~I + oP (1) ; (29)

where ~I is the variance of the mean zero function ~̀ under P0. Typically,
~̀ is the e�cient score function ~̀

�0;�0 for estimating �. In this setting the
\approximately least favourable submodels" are of the form t 7!  t( ) 2 	
for every t and  , and passing through  at t = �( ), i.e.

�( t( )) = t; and  t( )
���
t=�( )

=  : (30)

The corresponding submodel of log{densities

t 7! `(x; t;  ) = log lik( t( ))(x) (31)

should be twice continuously di�erentiable for every x, with derivatives _̀ and
�̀. That the submodels are least favourable is expressed in the following con-
ditions. The �rst condition is a double statement that in the sample average
the Bartlett identity holds and that the scores in the submodel approximate
the e�cient score function in an L2 sense. The second assumption is related
to how well the scores approximate the e�cient score function under the hy-

pothesis. Assume that for any random sequences ~�
P! �0 and  

P!  0 we
have

� IPn �̀(�; ~�; ~ ) P! P0
~̀2 (32)

p
nIPn

�
_̀(�; �0;  ̂0)� ~̀

�
P! 0 : (33)
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Theorem 13 Suppose that the maps t 7! `(x; t;  ) satisfy (29){(33) and that
 ̂ and  ̂0 are consistent. Then the likelihood ratio statistic is asymptotically
�2(1) distributed with one degree of freedom, i.e.

� 2 lnQ) �2(1) : (34)

Proof : See Murphy and van der Vaart (1997c). �

7.4 Pro�le Likelihood and Least Favourable Submod-

els Revisited

Readers might recall that the results in parametric likelihood theory corre-
sponding to the three previous subsections all build on an asymptotic expan-
sion of the likelihood around the true value �0. Is such expansion possible
in semiparametric models? If we have smooth least favourable submodels
we may expand the pro�le likelihood function given in (18) around �0 of the
form

logPLn(~�) = logPLn(�0) + (~� � �0)
>

nX
i=1

~̀
�0;�0(Xi) (35)

�1

2
n(~� � �0)

> ~I�0;�0(~� � �0) + oP0
�p

nk~� � �0k+ 1
�2

for any random sequence ~�! �0 in probability.
This asymptotic expansion is built on approximately least favourable sub-

models as in (30)-(31) with  t( ) = (t; �t(�; �)). We require that the sub-
models are twice di�erentiable in t with (t; �; �) 7! _̀(t; �; �) and (t; �; �) 7!
�̀(t; �; �) continuous at (�0; �0; �0) a.s. and _̀(�0; �0; �0) equal to the e�cient
score function for �. Assume that there exists a neighbourhood V of (�0; �0;
�0) such that f _̀(t; �; �) j (t; �; �) 2 V g is P�0 ;�0{Donsker and f�̀(t; �; �) j
(t; �; �) 2 V g is P�0;�0{Glivenko-Cantelli with envelope functions F1 2
L2(P�0 ;�0) and F2 2 L1(P�0;�0) such that j _̀i(t; �; �)j � F1 and j�̀i;j(t; �; �)j � F2

for all (t; �; �) 2 V and i; j = 1; : : : ; d. Furthermore, we need to strengthen
the consistency of the MLE of the nuisance parameter and retain the no-bias

condition already discussed, i.e. for any sequence ~�
P! �0

�̂(~�)! �0 (36)

P0
_̀(�0; ~�; �̂(~�)) = oP (n

�1=2 + k~� � �0k) ; (37)

where �̂(�) is the argument that maximizes the likelihood for � �xed.
The submodels yield the Bartlett identity P0

�̀(�0; �0; �0) = �~I�0;�0 and
allow us to sandwich log PLn(~�) � logPLn(�0) between appropriate terms
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from the submodels (t; �t(�0; �̂�0)) and (t; �t(~�; �̂~�)) (for t around �0 and ~�,
respectively), where we apply a two-term Taylor expansion in t. The Donsker
and the Glivenko-Cantelli properties provide empirical process methods to
control the error terms in the presence of the in�nite dimensional nuisance
parameter, also the no-bias condition appears in these approximations. For
a rigorous proof of the asymptotic expansion under these assumptions and
methods for verifying the conditions, see Murphy and van der Vaart (1997b).

From the asymptotic expansion in (35) we obtain results similar to those
of the previous subsections. If ~I�0;�0 is invertible and the MLE �̂ of � is consis-
tent, then (35) may be manipulated such that the MLE has the asymptotic
linear expansion

p
n(�̂ � �0) =

1p
n

nX
i=1

~I�1�0;�0
~̀
�0;�0(Xi) + oP (1) ; (38)

which implies asymptotic normality and e�ciency of �̂. Combining (35) and
(38) gives an expansion of the log pro�le likelihood function around �̂ as

log PLn(~�) = logPLn(�̂) � 1

2
n(~� � �̂)> ~I�0;�0(~� � �̂)

+ oP
�p

nk~�n � �0k+ 1
�2
: (39)

These two expansions of the log pro�le likelihood function justify the use
of the pro�le likelihood as an ordinary likelihood. Murphy and van der Vaart
summarize the following conclusions.

Corollary 14 If (35) holds, the maximum likelihood estimator �̂ is consis-
tent, and the e�cient Fisher information matrix ~I�0;�0 is invertible, then (38)

and (39) also hold. In particular, �̂ is an e�cient estimator with asymptotic
distribution

p
n(�̂ � �0)) N(0; ~I�1�0;�0) : (40)

Corollary 15 If (35) holds, and ~I�0;�0 is invertible, then under the null hy-
pothesis H0 : � = �0, the likelihood ratio statistic �2 lnQ is asymptotically
�2{distributed with d degrees of freedom, i.e.

� 2 lnQ = �2 log PLn(�0)
PLn(�̂)

) �2(d) : (41)
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Corollary 16 If (35) holds, then the discretized observed pro�le informa-
tion is a consistent estimator of the e�cient information matrix, i.e. for all

sequences vn
P! v 2 IRd and hn

P! 0 such that (
p
nhn)�1 = OP (1), we have

� 2
log PLn(�̂ + hnvn)� log PLn(�̂)

nh2n

P! v> ~I�0;�0v ; (42)

We see that under these slightly stronger conditions we have \all the
usual" results. However, the crucial point is the construction of the submod-
els which takes a creative mind. When the submodels have been established
we use empirical process methods to verify the conditions.

8 Applications to Examples

The abstract theory of the previous sections has been used in a multitude of
examples. Here we give a few selected examples from the literature to give
the reader a 
avour of what has and can be proved in concrete cases within
the area. Since the theory in the previous sections is developed recently, it
should be seen as an extraction of what has been shown in examples, rather
than the examples should be seen as pure applications. We have gathered the
examples in three groups. First we discuss some examples that are common
in the semiparametric statistical literature. In the second group there are
models from survival analysis, where the results from semiparametric maxi-
mum likelihood theory have been applied. Finally, we discuss examples from
the econometric literature. This partition is, however, not very natural due
to the large overlap between the three groups. Wellner (1985) gives a system-
atic review of semiparametric models, see also the many examples treated in
Bickel et al. (1993) and van der Vaart (1998).

In the �rst group we have mixture models, Example 3, which is one of the
major and most successful groups of models studied in the semiparametric
literature. Lindsay and Lesperance (1995) review important areas of appli-
cation and summarize some of the theoretical results including inference for
the mixing distribution and the structural parameter �. Several results on a
general level are known for semiparametric mixture models. Lindsay (1983a)
gives an ingenious treatment of how maximum likelihood estimation can be
achieved in general mixture models, see also the discussion in Appendix B.2
on numerical methods. From Section 4.5 in Bickel et al. (1993) we know
that, if the mixture density q�(xjz) is of the exponential form

q�(xjz) = expfz>T (x; �) + S(x; �)� b(�; z)g;
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if the support of the mixing distribution G has a non-empty interior and
some regularity conditions are satis�ed, then the e�cient score function is
known and given by

~̀=
h
_T �E( _T j T )

i
E(Z j T ) + _S �E( _S j T );

where _S and _T denote the derivative with respect to � of S and T , respec-
tively. Thus, mixtures of exponential families have a known e�cient score
function. The MLE for � is asymptotically normally distributed and e�cient
by van der Vaart (1996). The examples in the latter paper include the paired
exponential model Example 4, the errors{in{variables model Example 5, and
a scale mixture model, where the mixture density q� corresponds to a normal
density with mean � and variance z2.

In mixture models with observations from the marginal distribution of
X the mixing distribution G is not estimable at

p
n{rate. However, in up-

graded mixture models, we observe along with the Xi's independently Zj 's
with distribution G or (Xj ; Zj) with distribution q�(xjz)Gfzg. In these mod-
els e�cient maximum likelihood estimation of G is possible with positive
information, see van der Vaart and Wellner (1992) and van der Vaart (1994).

The deconvolution problem in Example 6 is also a di�cult one since we
have low rate of convergence of any estimator of the convoluting distribu-
tion. However, maximum likelihood estimation is possible for some classes
of examples, see Groeneboom and Wellner (1992) and Groeneboom (1996).
The errors{in{variables model Example 5 is extensively studied in Murphy
and van der Vaart (1996) who consider maximum likelihood estimation and
con�dence regions based on the likelihood ratio test. See also the treatment
of the Weibull mixture in Ishwaran (1996a,b). Roeder (1992) proposes a
consistent estimator in the normal mean mixture model with a �xed lower
bound on the variance parameter.

Another natural class in the �rst group of semiparametric models is
formed by extensions of the classical regression model. These extensions
can be carried out in two directions. The �rst alternative (Example 7) lets
the error distribution belong to a set of in�nite dimension and/or allows for
correlation with the covariate. These models are discussed further below in
the last group of examples. The second alternative is a semiparametric re-
gression or a partly linear regression, introduced in Example 8, where the
conditional mean of the response variable is linear in the �rst part and non-
linear in the second part of the covariates. To avoid over{�tting we need
some smoothness assumption on the nonparametric regression function �.
Typically we assume that � belongs to the Sobolev class of k{times di�er-
entiable functions with square integrable k'th derivative or we use a sieve of



36 Likelihood Methods in Semiparametric Models

spline functions of order k with an increasing number of split points. In these
models ordinary likelihood methods are not usable. For a recent treatment
of Example 8 see Mammen and van de Geer (1997b) who consider penal-
ized quasi-likelihood estimation. See also Cuzick (1992); Hunsberger (1994);
Severini and Staniswalis (1994); M�uller and Zhao (1995) and Chen (1995).
For work on the non{parametric regression model (without a linear part) see
van de Geer (1990); van de Geer and Wegkamp (1996) and Mammen and
van de Geer (1997a).

The second group of models are used in survival analysis. In models for
survival data counting processes and martingale theory have traditionally
been used to prove asymptotic results. Recently, empirical process meth-
ods and the principles discussed there have been applied to examples in the
area with success. Huang and Wellner (1995) study the proportional hazard
model with \case 2" interval censoring, cf. Example 1 and 15. With \case 2"
censoring we have two censoring times C1 < C2 and we observe one of the
events fT � C1g, fC1 < T � C2g, or fC2 < Tg. The authors use the pro�le
likelihood to estimate the regression parameter e�ciently and to estimate
the e�cient information.

An alternative to the Cox model is the proportional odds model where
the hazard ratio approaches unity when the time increases (i.e. the regressors
have a disappearing e�ect). The model assumes that the survival function
S(� jZ) given the covariate Z satis�es

�logit(S(t jZ)) = �(t) + �>Z ;

where logit(x) = log(x=(1 � x)) and �(t) is the baseline log odds of failure
at time t. Murphy, Rossini and van der Vaart (1997) consider the maximum
likelihood method for this model and prove

p
n{consistency of the estimator

of the baseline odds of the failure function and asymptotic normality and
e�ciency of the estimator of the regression parameter. Furthermore, they
verify the use of the likelihood ratio test for inference for the regression
parameter. The Gamma-Frailty model occurs when the frailty in Example
16 has a Gamma distribution. This model has been considered by several
authors. Parner (1998) proves that the full MLE is consistent, asymptotically
Gaussian and e�cient. The likelihood ratio test for the regression parameter
is justi�ed in Korsholm (1998b) by the method in subsection 7.4. See also
van der Laan and Robins (1998) and Rotnitzky and Robins (1995) for related
work.

The last group of models that we consider here is frequently used in econo-
metrics. Semiparametric methods are important in that area because eco-
nomic theory typically only states that a certain relation should hold (e.g. in
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conditional mean) and does not yield restrictions on the distributional form
of the object under study. The models from survival analysis are suitable
for duration data e.g. from (un)employment spells.k A key reference in the
econometric literature on duration models is Heckman and Singer (1984), see
also Goto (1996). Mixture models, in particular errors{in{variable models,
are frequently used due to covariates being contaminated.�� The theory from
section 4 and 5 is presented in the econometric literature by Newey (1990)
and applications in the econometric literature are considered in Robinson
(1988), and Horowitz (1998). A version of the pro�le likelihood method is
considered in Ai (1997). It is common in the literature to use ad hoc methods
to construct estimators that achieve the semiparametric e�ciency bound.

One of the favourite models in econometrics is an extension of Example
7 called the conditional moment model, which is given by the equation

E (g(Y;Z; �) j Z) = 0 (43)

for a unique value of the interest parameter �, where g is a known vector
function. The information bound for this model was found in Chamberlain
(1987) and Newey (1993) cleverly constructs an e�cient estimator using the
method of moments proposed in Hansen (1982). A treatment of this model
from the point of view of the present account can be found in Korsholm
(1998a).

The binary response model is another example frequently used in econo-
metrics. The model is a censored version of the regression model Example
7, whereyy Y = 1f�>Z+�>0g. Manski (1985) proposes \the maximum score
estimator" for � in this model and Kim and Pollard (1990) show that this
estimator converges with cube root rate to a non standard distribution, see
also the thorough presentation in Horowitz (1998) Chapter 3.

The �nal model we will consider here is the Single{Index model, also
known as the projection pursuit regression, in Example 10. In the single
index model Y is a real variable and Z is a vector of covariates which satisfy
the conditional mean condition

E(Y j Z) = �(�>Z) ;

where � is an unknown parameter and � : IR 7! IR is an unknown function.
The quantity �>Z is called an index and the purpose with the model is to

kHowever, such models will describe the data set rather than explaining which factors
in the market that generate the distributional form.
��E.g. income data from tax reports have a tendency to underestimate the true income.
yyE.g. Y could be the decision variable for whether a person should participate in the

labour market and �>Z + � is the possible net earnings given the skills Z.
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subtract the information in a simple and presentable way (in particular if
the dimension of Z is high). For a discussion on identi�cation, the informa-
tion bound, e�cient estimation of � by weighted nonlinear least square and
alternative methods see Horowitz (1998) and the references therein.

Appendix

A A Guideline for future students

The intention with this section is to list some of the main prerequisites that
I wish I had known before studying semiparametric models and to list the
main references to the literature. Thus this section is solely built on my own
experience and gives my personal recommendations.

Beside the pre-graduate level the mathematical background should in-
clude knowledge of basic Banach and Hilbert space theory. In particular,
one must be familiar with continuous linear operators, know how to per-
form projections (in order to compute the e�cient score function), be able
to determine when an operator is continuously invertible (in order to iden-
tify whether we have positive �nite information in a given model), and be
familiar with the three de�nitions of di�erentiability: Gâteaux (pointwise),
Hadamard (compact), and Fr�echet (bounded). As a possible reference we
give Appendix 5 in Bickel et al. (1993).

In probability theory the usual measurability theory must be extended
with the methods for empirical processes, which extend the law of large
numbers and the central limit theorem to processes indexed by a class of
functions. See the short introduction in Appendix C below and the recent
and readable book by van der Vaart and Wellner (1996).

The statistical background should cover regular parametric models and
the Cram�er{Rao bound on the asymptotic information for such models (since
this is one of the main objects that we can generalize to semiparametricmod-
els). The local asymptotic normality (LAN) condition and its implications
also have important counterparts in semiparametric models. Finally, under-
neath the convolution theorems is Le Cam's three Lemmas.

Having come this far one should be well equipped for studying and doing
research in semiparametricmodels. An overview paper as the present thesis is
a recommended place to start; then follow the references to the literature from
here. At present most developments appear in the statistics and econometrics
journals. For a textbook in survival analysis we refer to Andersen et al.
(1993). The comprehensive monograph of Bickel et al. (1993) gives a detailed
account of the convolution theorem in general and information calculations
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in many important examples. A broad and readable account of the theory
can be found in Chapter 25 of van der Vaart (1998). Groeneboom and
Wellner (1992) discuss some of the numerical methods that are used. For the
maximum likelihood methods in semiparametric models see Gill (1989); Gill
and van der Vaart (1993); van der Vaart (1995) and Murphy and van der
Vaart (1997a,c,b).

We close this section by giving a `user manual' with the intention to show
in principle how a given semiparametric model could be analyzed. Suppose
we have a semiparametric model f P�;� j � 2 �; � 2 H g with a real
interest parameter � 2 � � IR. First we �nd the score functions. For �
the score function usually is the ordinary score. If the nuisance parameter
is a distribution function, then we construct paths f�tg by d�t = (1 + th)d�,
where h is a bounded mean zero square integrable function (also paths with
d�t = d� + th are used, see also the technique in Example 3.2.1 in Bickel
et al. (1993)). A candidate for the nuisance score function is obtained by

g(x) =
@

@t
log dP�;�t

���
t=0

:

This suggestion must then be veri�ed by the condition in (4) and we obtain
the nuisance tangent set _P�. From here there are two possibilities. If the score
function for the nuisance parameter is on the operator form g = B�;�h for
a continuous, linear operator B�;� and if B�

�;�B�;� is continuously invertible,
then one can expect that both � and � are estimable at rate

p
n, the e�cient

score function is given by

~̀
�;� =

�
I �B�;�(B

�
�;�B�;�)

�1B�
�;�

�
_̀
�;� ;

and the submodel in the direction h = (B�
�;�B�;�)�1B�

�;�)
_̀
�;� is least favour-

able. In this case we typically also have a (pseudo{) likelihood function as
well, and Kiefer and Wolfowitz (1956) can be used to show consistency of the
MLE. Then we apply the results in Subsection 7.4 or alternatively we use
Theorem 10, one of the methods in Subsection 7.2, and Theorem 13 to obtain
asymptotic normality and e�ciency of the MLE �̂ (or of the full MLE (�̂; �̂)),
a consistent estimator for the e�cient information, and we conduct inference
by the likelihood ratio test. If B�

�;�B�;� is not continuously invertible, then
we �nd the e�cient score function by the de�nition

~̀
�;� = _̀

�;� ���;�( _̀�;� j span _P�;P�;�) :

And if this function is non{zero the e�cient information for estimating � is
given by its variance. Then we have three alternatives. If we can establish
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the existence of approximately least favourable submodels and a (pseudo{)
likelihood function exists, then we are basically in the same situation as
above with maximum likelihood estimation, except Theorem 10 has to be
substituted by Theorem 11. If the e�cient score function is on closed form
and a preliminary estimator of the nuisance parameter is available, then we
could use the e�cient score estimator from Subsection 5.1. And if everything
else fails, we always have the estimating equation approach in Subsection 5.3,
where we probably lose some e�ciency.

B Techniques

In this section we review some of the techniques that are frequently used
in semiparametric models. First we consider results for Banach and Hilbert
spaces. Secondly, we list some numerical methods that can be utilized in
computing in�nite dimensional estimators. Finally, we discuss some technical
issues that are useful when working with semiparametric models.

B.1 Banach and Hilbert Spaces

A Banach space is an abstract linear space equipped with a norm k k, where
every Cauchy sequence has a limit point in that space, i.e. a complete normed
linear space. A Hilbert space is an abstract linear space with an inner product

h�; �i, where every Cauchy sequence with respect to the norm kxk =
q
hx; xi

is convergent, i.e. a complete inner product space.
For a Hilbert space H , a convex and closed subset C � H , and every

g 2 H there exists a unique projection �(g j C) of g on C, which minimizes
the distance c 7! kg � ck over C. If C is a closed, linear subspace, then the
projection can be found by the equation

hg ��(g j C); ci = 0 ; for every c 2 C :
For every Banach space B there exists a dual space B � , which is the set of

all continuous, linear maps b� : B 7! IR. The Riesz Representation Theorem
states that continuous, linear maps on a Hilbert space are of the form

h 7! hh; h�i ;
for some h� 2 H . Hence, we may identify the dual space of any Hilbert space
with the Hilbert space itself, H � � H .

A linear mapzz A : B 1 7! B 2 between two Banach spaces is continuous
if and only if kAb1k2 � ckb1k1 for every b1 2 B 1 and some number c. To

zzAlso called an operator .
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such an operator there exists an adjoint operator A� : B �2 7! B �1 given by
(A�b�2)b1 = b�2(Ab1) or A

� : b�2 7! f(A�b�2) : b1 7! b�2(Ab1)g. For operators
between Hilbert spaces the de�nition of the adjoint simpli�es to a map A� :
H 2 7! H 1 satisfying

hAh1; h2i2 = hh1; A�h2i1 ; for every h1 2 H 1 ; h2 2 H 2 :

An operator between Euclidean spaces is represented by a matrix and the
transposed matrix represent the corresponding adjoint operator.

Finally, we need to know when an operator between Banach spaces is
continuously invertible. In Euclidean spaces a one{to{one linear operator
is invertible with continuous inverse. This is not automatically the case in
Banach spaces. A one{to{one continuous, linear operator A has a continuous
inverse if and only if the range R(A) = fAb1 j b1 2 B 1g is closed.

If A�A : H 7! H is continuously invertible, then the projection on the
range of A in H is given by �(� j R(A)) = A(A�A)�1A� : H 7! R(A).

B.2 Numerical Methods

The numerical methods used to obtain estimators of in�nite dimensional
parameters di�er from case to case. In the Cox model, Example 1, simple
analytic considerations simplify the problem to an estimation problem over
f�(ti); � j i = 1; : : : ; ng of dimension d + n, where n is the sample size and
d is the dimension of the interest parameter. Then standard maximization
procedures yield the MLE.

For mixture models (cf. Example 3) we have the VDM{algorithm from
Lindsay (1983a,b), who reformulates the problem as a maximization over a
convex set in IRn. The idea is, for a given estimator of the mixture dis-
tribution, Gm, to �nd a new support point in the \direction" of which the
likelihood has the steepest derivative and then in the second step to adjust
the weights between Gm and the new support point. The method has been
improved by several authors. Probably, the ISDM{algorithm is the most ef-
�cient version, because it makes use of all the local maxima in the �rst step
(which have to be identi�ed anyway) and because it does not have to keep
track of all the support point visited, see Lesperance and Kalb
eisch (1992)
and the references therein.

The EM{algorithm has been proposed and used in numerous models in
survival analysis. For a discussion of the EM{algorithm in the interval cen-
sored model, Example 15, see Groeneboom and Wellner (1992), and in frailty
models, Example 16, see Parner (1997). The EM{algorithm often corre-
sponds to a \self-consistency" equation where the MLE is a �xed point.
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The idea of the Iterative Convex Minorant (ICM) algorithm proposed in
Groeneboom (1991) goes back to Grenander (1956), who showed that the
MLE of a decreasing density is the density corresponding to the smallest
concave distribution function larger than the empirical distribution function.
This method has been applied to the interval censoring problem, Example
15, and to convolution models, Example 6, where the random variable Y
has a decreasing density. For an introduction to the ICM{algorithm see
Groeneboom (1996).

Wellner and Zhan (1997) propose a hybrid algorithm for censored survival
data. The algorithm alternates between the EM{ and the ICM{algorithm
and thereby rapidly approaches the optimum.

B.3 Useful Remarks

There are two di�erent de�nitions in the literature of a least favourable sub-
model. The monograph of Bickel et al. (1993) de�nes such a submodel of a
semiparametric model as a regular �nite dimensional model with Cram�er{
Rao bound equal to the inverse of the semiparametric information bound,
i.e. there exists a submodel, denoted B, such that IB = ~I. Alternatively, Aad
van der Vaart de�nes a least favourable submodel as a regular �nite dimen-
sional model such that the ordinary score function in the submodel equals
the e�cient score function for the semiparametric model, i.e. there exists a
submodel, denoted V , such that _̀

V = ~̀ pointwise. From Lemma 4 the latter
de�nition implies the �rst. In a semiparametric model with a decomposed
parameter  = (�; �) we expect that the score function in the submodel B
can be written as _̀

B = _̀
� � g, where g is the nuisance score function. Then

we have that

P ( _̀B � _̀
V )

2 = P _̀2
B + P _̀2

V � 2P _̀
B
_̀
V = ~I + ~I � 2~I = 0 :

The second equality follows since the e�cient score function or _̀
V is orthog-

onal to any nuisance score and the inner product with _̀
� is equal to the

e�cient information. For an interest parameter of dimension d these con-
siderations hold for each coordinate. Thus the two de�nitions are congruent
in the sense that IB = ~I = IV and _̀

B = _̀
V almost surely. In the present

account of semiparametric models we have used the second de�nition.
The next remark concerns the e�ciency bound and the tangent set. Sup-

pose that we have a candidate T for the full tangent set _P with T � _P.
Instead of proving the reverse inclusion, which might be di�cult, we may
ignore the problem in the following case. Suppose #̂ is a regular estimator
of the parameter #(P ) with a Gaussian limit distribution and asymptotic



Likelihood Methods in Semiparametric Models 43

variance �. Then the convolution theorem, Theorem 3, implies that

� � ~I�1 = k�( _# j span _P)k2 � k�( _# j spanT )k2 :

If the estimator #̂ achieves the bound given by T , i.e. � = k�( _# j spanT )k2,
then the inequalities above are identities and T = _P.

Finally we provide a proof of the naive estimator of the e�cient infor-
mation in Lemma 12. Probably this is known, but I have not seen a proof
before.

Proof of Lemma 12 : For any h 2 IRd �xed the class of real functions hF =
fh> ~̀�;� j (�; �) 2 Ug is P{Donsker. From Lemma 2.10.14 in van der Vaart
and Wellner (1996) the Donsker property on hF implies that the class
(hF)2 = fh> ~̀�;� ~̀>�;�h j (�; �) 2 Ug is Glivenko-Cantelli, i.e. supf2(hF)2 j(IPn�
P0)f j ! 0. Together with (23) this yields that

h>
�
IPn ~̀̂�;�̂

~̀>
�̂;�̂

�
h� h> ~I�0;�0h = (IPn � P0)h

> ~̀̂
�;�̂
~̀>
�̂;�̂
h

+h>P0(~̀̂�;�̂
~̀>
�̂;�̂
� ~̀

�0 ;�0
~̀>
�0;�0

)h
P! 0 :

Applying this with h = ei; ej and ei + ej, where ei is the ith unit vector in
IRd, we obtain (24) for each entry i; j = 1; : : : ; d. �

C Empirical Processes

Among the useful tools in modern semiparametric theory the methods of
empirical processes call upon attention. From a semiparametric point of view
we study such processes for two reasons, either because of their usefulness,
which is apparent in this thesis, or for the technical reason that the methods
handle objects that are not measurable, which frequently occurs, and hence
substitute the usual convergence theory. We refer to van der Vaart and
Wellner (1996) for a readable textbook on the theory. The reader is probably
familiar with a stochastic process of the form fXtgt2I for an interval I � IR.
Here we consider a di�erent type of stochastic processes, where we presume
more structure of the random variables for �xed index but the index set is a
collection of functions rather than a simple interval on the real line.

Let X1; : : : ;Xn be an i.i.d. sample on the measure space (X ;A) with
common distribution P . We study the empirical process

G n [f ] =
p
n (IPn � P ) [f ] =

1p
n

nX
i=1

(f(Xi)� Pf) ;



44 Likelihood Methods in Semiparametric Models

where IPn is the empirical distribution from the i.i.d. sample. The index f
is an element from the class F of measurable functions f : X ! IR. The
randomness (or dependence on !) is through the empirical measure IPn. A

simple example is to take F =
n
1]�1;t] j t 2 IR

o
, the collection of indicator

functions. Then IPn becomes the empirical distribution function IFn. Our
goal is to give conditions under which G n converges in distribution as a
process. The space l1(F) is de�ned as the set of all uniformly bounded,
real functions on F . Under suitable conditions on F the empirical process
G n belongs to l1(F). E.g. assume that there exists a �nite function F such
that jf(x)j � F (x) for all f 2 F and all x 2 X . Recall that Zn converges
in distribution to Zin l1(F), if for any function h, which is continuous and
bounded and takes as argument an element in l1(F) , we have that

P �h(Zn)! Ph(Z) :

This is weak convergence in the sense of Ho�mann-J�rgensen and Dudley
and we denote it by Zn)Zin l1(F).

De�nition 17 A collection of functions F is called a P{Glivenko{Cantelli
class if the uniform version of the law of large numbers holds in outer prob-
ability or outer almost surely, i.e. if

sup
f2F

jIPnf � Pf j ! 0 :

De�nition 18 A collection of functions F is called a P{Donsker class if
there exists a tight Borel measurable element G P in l1(F) such that

G n :=
p
n(IPn � P )) G P in l1(F)

A collection of functions is P{Donsker if the sample paths of the empirical
process are su�ciently continuous in the index. For a probability measure P
de�ne the seminorm �P (f) by

�P (f) =
q
P (f � Pf)2 = kf � PfkL2(P ) : (44)

A set F is �P {totally bounded if for every � > 0 it can be covered with
�nitely many balls of �P{radius �. This is equivalent to the closure of the
space being compact.

Theorem 19 A class F of measurable functions is P{Donsker if and only
if the following two conditions are met
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(i) The empirical process is asymptotically continuous: for every � > 0,

lim
�#0

lim sup
n!1

P �
 

sup
�P (f�g)<�

���G n [f ]� G n [g]��� > �

!
= 0 : (45)

(ii) F is �P{totally bounded.

For more useful theorems to prove the Donsker property in practical sit-
uations we need covering numbers and entropy conditions. These theorems
state that if the class F can be covered with a su�ciently small number of
balls then the class is Donsker. Two useful tools here are the concept of VC-
classes and smoothness of functions in F . In particular, chapters 2.5 through
2.7 of van der Vaart and Wellner (1996) give such results. The usefulness of
Donsker theorems is clear from this overview of semiparametric models.
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