
DEPARTMENT OF OPERATIONS RESEARCH
UNIVERSITY OF AARHUS

Working Paper no. 2003/1

Bicriterion shortest hyperpaths in random
time-dependent networks

Lars Relund Nielsen
Kim Allan Andersen
Daniele Pretolani

ISSN 1600-8987

Department of Mathematical Sciences Building 530, Ny Munkegade
Telephone: +45 8942 1111 DK-8000 Aarhus C, Denmark
E-mail: institut@imf.au.dk URL: www.imf.au.dk

Bicriterion shortest hyperpaths in random

time-dependent networks

Lars Relund Nielsen∗ Kim Allan Andersen

Department of Operations Research

University of Aarhus

Ny Munkegade, building 530

DK-8000 Aarhus C

Denmark

Daniele Pretolani∗

Dipartimento di Matematica e Informatica

Università di Camerino

Via Madonna delle Carceri

I-62032 Camerino (MC)

Italy

Abstract

In relevant application areas, such as transportation and telecommunications,
there has recently been a growing focus on dynamic networks, where arc lengths
are represented by time-dependent discrete random variables. In such networks,
an optimal routing policy does not necessarily correspond to a path, but rather to
an adaptive strategy. Finding an optimal strategy reduces to a shortest hyperpath

problem that can be solved quite efficiently.
Bicriterion shortest path problems have been extensively studied for many years.

Recently, extensions to dynamic networks have been investigated. However, no at-
tempt has been made to study bicriterion strategies. This is the aim of this paper.

Here we model bicriterion strategy problems in terms of bicriterion shortest hy-

perpaths. For several problems arising in this context, optimal solutions can be found
quite efficiently. Moreover, the general problem of listing efficient strategies can be
successfully dealt with by means of heuristic methods. A computational experience
is reported, where we consider several variants of the above problems. Finally, the
relevant features of the bicriterion hyperpath model are discussed and compared to
the classical bicriterion path approach.

∗Corresponding authors (e-mail: daniele.pretolani@unicam.it;relund@imf.au.dk)

1

Keywords: random time-dependent networks, bicriterion shortest path, directed hy-

pergraphs, shortest hyperpath.

1 Introduction

One of the most classical problems encountered in the analysis of networks is the shortest
path problem. Traditionally the shortest path problem was a single objective problem
with the objective being minimizing total distance or travel time. Nevertheless, due to
the multiobjective nature of many transportation and routing problems, a single objective
function is not sufficient to completely characterize most real-life problems. In a road
network for instance, two parameters, time and cost, can be assigned to each arc. Clearly,
often the fastest path may be too costly or the cheapest path may be too long. Therefore
the decision maker must choose a solution among the paths, where it is not possible to find
a different path such that time or cost is improved without getting a worse cost or time,
respectively (efficient path). The problem is called the bicriterion shortest path problem
(bi-SP) and has generated wide interest in multicriterion linear integer programming, see
e.g. [8, 9]. Garey and Johnson [11] showed that bi-SP is NP-hard since there can be
exponentially many different efficient paths.

Several solution methods has been developed to solve bi-SP. They can be partitioned
into two main categories, namely path/tree approaches and node labelling (label setting/label
correcting) methods. For node labelling methods see [3, 25]. The path/tree methods can
be further partitioned into “two-phases” methods and “pure K-shortest path” methods.
In Martins [4] the K-shortest path method was used and the problem was solved by first
finding an upper bound on one criteria and then using a K-shortest path procedure to find
all efficient solutions below that upper bound. The method seems to be slow, since there
are too many paths to search [18]. In Mote [18] a two-phases approach was considered.
First phase found the extreme nondominated points using an LP-relaxation and second
phase searched for more nondominated points using a label correcting approach. More
recently, interactive approaches which find only a part of the nondominated solutions have
been studied [7, 6]. Here the two-phases method is used where the first phase finds the ex-
treme nondominated points by solving shortest path problems and the second phase finds
more nondominated points by using a K-shortest path procedure. For a recent overview
of solution methods for bi-SP we refer to [24].

In relevant application areas, such as transportation and telecommunications, several
other extensions of the shortest path problem have been considered. Hall [12] introduced
the problem of finding the minimum expected travel time (MET) through a dynamic
network where arc lengths are represented by time-dependent random variables. He pointed
out that the best route through the network is not necessarily an origin-destination path,
but rather a strategy that assigns optimal successors to a node as a function of time. Note
the MET problem can be seen as a stochastic multistage recourse model (see [2]). A decision
is taken each time we leave a node and after each stage the travel time for the path traveled
so far is known. Pretolani [23] showed that finding the optimal MET strategy reduces

2

to solving a shortest hyperpath problem on a time expanded directed hypergraph when
discrete random variables are assumed. For directed hypergraphs, shortest hyperpaths
have been well examined and fast algorithms exist, see among others [10, 14, 15, 19].

Now, consider the minimum expected travel time path problem (METP) in random
time-dependent networks which consists in finding a path that minimizes expected travel
time. Hall [12] showed that METP can not be solved using standard shortest path methods
and later METP has been proven to be NP-hard even for (non-random) time-dependent
networks [23]. Nonetheless, there have been a few attempts to solve the METP problem
on random time-dependent networks [22]. Furthermore, recently a bicriterion version of
the METP problem has been considered where efficient paths are searched. Here the first
criteria is MET and the second is expected cost [16, 17]. Since METP is NP-hard, only
an approximation of the true set of efficient paths is found.

To the authors’ knowledge, no one has yet tried to find efficient strategies instead of
efficient paths. Since a strategy corresponds to a hyperpath, this amounts to search efficient
hyperpaths.

In this paper we model bicriterion strategies in terms of bicriterion shortest hyperpaths.
For several problems arising in this context optimal solutions can be found quite efficiently.
Furthermore, the general problem of listing all efficient strategies can be successfully dealt
with by means of heuristic methods. A two-phases approach is used where first phase finds
efficient strategies on the boundary of the solution space by using a NISE-like procedure
[5]. In the second phase we find efficient strategies by searching inside the solution space,
by means of a newly developed K-shortest hyperpath procedure (see [21]).

The paper is organized as follows. Directed hypergraphs and random time-dependent
networks are introduced in Section 2. The bicriterion shortest hyperpath problem is de-
scribed in Section 3 and different procedures are developed. In Section 4 computational
results are reported. Finally, we summarize original contributions and topics for further
research in Section 5.

2 Directed Hypergraphs

A directed hypergraph is a pair H = (V , E), where V = (v1, ..., vn) is the set of nodes, and
E = (e1, ..., em) is the set of hyperarcs. A hyperarc e ∈ E is a pair e = (T (e), h(e)), where
T (e) ⊂ V denotes the set of tail nodes and h(e) ∈ V \ T (e) denotes the head node. Note
that a hyperarc has exactly one node in the head, and possibly several nodes in the tail.
A more general class of hypergraphs, where hyperarcs can have several nodes in the head,
was introduced by Gallo et al. [10]. The class of hypergraphs considered here were denoted
as B-graphs in [10].

The cardinality of a hyperarc e is the number of nodes it contains, i.e. |e| = |T (e)|+ 1.
We call e an arc if |e| = 2. The size of H is the sum of the cardinalities of its hyperarcs:

size(H) =
∑

e∈E

|e| .

3

We denote by

FS(u) = {e ∈ E | u ∈ T (e)}

BS(u) = {e ∈ E | u ∈ h(e)}

the forward star and the backward star of node u, respectively. A hypergraph H̃ = (Ṽ , Ẽ)
is a sub-hypergraph of H = (V , E), if Ṽ ⊆ V and Ẽ ⊆ E . This is written H̃ ⊆ H or we say
that H̃ is contained in H.

A path Pst in H is a sequence:

Pst = (s = v1, e1, v2, e2, ..., eq, vq+1 = t)

where, for i = 1, . . . , q, vi ∈ T (ei) and vi+1 = h(ei). A node v is connected to node u if a
path Puv exists in H. A cycle is a path Pst, where t ∈ T (e1). This is in particular true if
t = s. If H contains no cycles, it is acyclic.

Definition 1 Let H = (V , E) be a hypergraph. A valid ordering in H is a topological
ordering of the nodes

V = {u1, u2, . . . , un}

such that, for any e ∈ E , if h(e) = ui and (uj ∈ T (e)) then j < i.

Notice that, in a valid ordering any node uj ∈ T (e) precedes node h(e). The next theorem
has been proven by Gallo et al. [10], and generalizes a well-known property of acyclic
directed graphs:

Theorem 1 H is acyclic if and only if a valid ordering of the nodes in H is possible.

Note that a valid ordering in an acyclic hypergraph is in general not unique, which is also
the case for acyclic directed graphs. An O(size(H)) algorithm finding a valid ordering is
given in [10].

2.1 Hyperpaths and hypertrees

Consider a hypergraph H = (V , E). A hyperpath πst of origin s and destination t, is an
acyclic minimal hypergraph (with respect to deletion of nodes and hyperarcs) Hπ = (Vπ, Eπ)
satisfying the following conditions:

1. Eπ ⊆ E

2. s, t ∈ Vπ =
⋃

e∈Eπ

(
T (e) ∪ {h(e)}

)

3. u ∈ Vπ \ {s} ⇒ u is connected to s in Hπ.

We say that node t is hyperconnected to s in H if there exists in H a hyperpath πst. Note
condition 3 and the minimality imply that, for each u ∈ Vπ \ {s}, there exists a unique
hyperarc e ∈ Eπ, such that h(e) = u; hyperarc e is the predecessor of u in πst. Conversely,
condition 3 can be replaced by:

4

4. BS (s) = ∅; |BS(v)| = 1 ∀v ∈ N .

where N = Vπ \ {s}. The definition of hyperpath can be extended to hypertrees.

Definition 2 A directed hypertree with root node s is an acyclic hypergraph Ts = ({s} ∪
N , ET) with s 6∈ N satisfying condition 4.

It is not difficult to show that a directed hypertree Ts = ({s}∪N , ET) contains a unique s-u
hyperpath for each node u ∈ N . Moreover, Ts can be described by a predecessor function
p : N → E ; for each u ∈ N , p(u) is the unique hyperarc in Ts which has node u as the head.
An emphasized hypertree in an acyclic hypergraph is shown in Figure 3 (see Section 2.3).

2.2 Shortest and K-shortest hyperpaths

Consider a hypergraph H where each hyperarc e is assigned a non-negative real weight
w(e). Given a hyperpath πst in H, a weighting function Wπ assigns a weight Wπ(u) to each
node u in πst. The weight of hyperpath πst is Wπ(t). In particular, we consider additive
weighting functions, that can be defined by the recursive equations:

Wπ (u) =

{
w(p(u)) + F (p(u)) u ∈ Vπ \ {s}
0 u = s

(1)

where F (e) is a nondecreasing function of the weights of the nodes in T (e). Several weight-
ing functions have been introduced in the literature (see e.g. [1, 10, 13]); here, we consider
two of them, namely the distance and the value.

The distance function is obtained by defining F (e) as follows:

F (e) = max
v∈T (e)

{Wπ (v)}

and the value function is obtained as follows:

F (e) =
∑

v∈T (e)

ae (v) Wπ (v)

where ae(v) is a nonnegative multiplier defined for each hyperarc e and node v ∈ T (e).
In this paper, we shall concentrate on a particular case of the value function, namely the
mean, that arises when for each hyperarc the multipliers sum up to one:

∑

v∈T (e)

ae(v) = 1, ∀ e ∈ E .

The distance (value, mean) of a hyperpath πst is the weight of πst with respect to the
distance (value, mean) weighting function. Trivially, for each hyperpath the mean is a
lower bound on the distance.

5

7

4 8

2 4

0 0 4

0

0 0 4

2 2

1
4

1

1

1/2 1/2

1/4 3/4

1/8 1/2 3/8

Figure 1: The hyperpath π.

Note that the value of an s-t hyperpath π defined by the predecessor function p can be
written as:

W (πst) =
∑

u∈Vπ\{s}

fπ(u)w(p(u)) (2)

where fπ is defined by the following recursive equations:

fπ(u) =

{
1 u = t∑

e∈FS(u) ae(u)fπ(h(e)) u ∈ Vπ \ {s, t}
(3)

Intuitively, fπ(u) is the “contribution” of the node weight Wπ(u) to the hyperpath weight
W (πst), and can be computed by processing the nodes backwards according to a valid
ordering V for π. More precisely, the following proposition holds.

Proposition 1 Given any valid ordering V of the nodes in the hyperpath π, we have that
fπ(u) does not depend on the values of fπ for nodes that precede u in V .

Example 1 A hyperpath π is shown in Figure 1; the weight w(e) is given close to each
hyperarc e. We consider the mean weighting function, where multipliers are defined as:
ae(u) = 1/2 if |T (e)| = 2 and ae(u) = 1 otherwise. The weight Wπ(u) is reported inside
each node u; the number close to u is fπ(u).

The shortest hyperpath problem consists in finding the minimum weight hyperpaths
(with respect to a particular weighting function) from an origin s to all nodes in H hy-
perconnected to s. The result is a shortest hypertree Ts which provides minimum weight

6

hyperpaths to all hyperconnected nodes. The shortest hyperpath problem has been shown
to be polynomially solvable provided that the hypergraph does not contain decreasing cy-
cles. In this situation, quite efficient procedures for finding the shortest hypertree exist,
see [10] for a general overview. In this paper we shall concentrate on acyclic hypergraphs,
that clearly contain no decreasing cycles. For this particular case, a simple and fast short-
est hyperpath procedure exists (procedure SFT-Acyclic, see [10]) whose computational
complexity is O(size(H)).

The K-shortest hyperpaths problem consists in ranking the first K s-t hyperpaths in
non-decreasing order of weight, with respect to a given weighting function, and for a given
pair of nodes s and t. In a more general version, that we shall consider here, all the
hyperpaths with weight up to a given upper bound must be ranked. This problem can be
considered as a hypergraph extension of the classical K-shortest paths problem in graphs.

Efficient algorithms for K-shortest hyperpaths were developed in [21]. These algorithms
are based on an implicit enumeration method, where the set of solutions is partitioned into
smaller sets by recursively applying a branching step. Given the hypergraph H, denote by
Π the set of hyperpaths from s to t. Assume that a shortest hyperpath π is known with
valid ordering

V = (s = u1, u2, . . . , uq+1 = t)

In the branching step, the set Π\{π} is partitioned into q subsets Πi, 1 ≤ i ≤ q as follows:

- s-t hyperpaths in Πq do not contain hyperarc p(uq+1), that is p(t);

- for 1 ≤ i < q, s-t hyperpaths in Πi contain hyperarcs p(uj), i + 1 < j ≤ q + 1, and
do not contain hyperarc p(ui+1).

In this case, finding a shortest hyperpath πi ∈ Πi reduces to solving a shortest hypertree
problem on a hypergraph Hi, obtained from H as follows:

- for each node uj, i + 1 < j ≤ q + 1, remove each hyperarc in BS(uj) except p(uj);

- remove hyperarc p(ui+1) from BS(ui+1).

We say that Hi is obtained from H by branching on node ui+1. As a consequence, each
set Πi can be represented by the corresponding hypergraph Hi. A branching operation on
π returns the set of hypergraphs B(H) = {Hi : 1 ≤ i ≤ q}, representing the partition
{Πi : 1 ≤ i ≤ q} of Π \ {π}.

The algorithms developed in [21] maintain an ordered list L of subproblems; each sub-
problem pr corresponds to a particular subhypergraph Hr. At each step, a subproblem
pr is selected from L, and the shortest s-t hyperpath πr in Hr (if any) is stored. Then,
branching is applied to πr, adding to L the returned hypergraphs. The various algorithms
differ in the way subproblems are ranked in L.

In the basic version (procedure Yen) each subproblem pr is ranked according to the
weight of the shortest hyperpath πr in Hr. In a faster version (procedure LBYen) problems
are ranked according to a lower bound on the weight of the shortest hyperpath. In this way,

7

(i, j), t (a, b), 0 (b, c), 1 (b, c), 2 (b, d), 1 (b, d), 2 (b, d), 4 (c, d), 2 (c, d), 3
I(i, j, t) {1, 2} {2, 3} {3} {3} {5, 6} {6, 7} {3, 4} {4, 5}

Table 1: Input parameters.

hyperpaths are not necessarily stored in the right order; however, the following property
holds:

Property 1 When a subproblem with lower bound lb is selected from L, all the hyperpaths
with weight less than lb have been stored.

Thus both procedures Yen and LBYen can be used to find all hyperpaths with weight
up to a given upper bound. Furthermore, it can be proved that the lower bound used
in procedure LBYen gives the actual shortest hyperpath length on acyclic hypergraphs.
Therefore, for this particular case, a specialized and quite efficient version of procedure
LBYen can be devised, denoted as AYen.

Procedure LBYen can also be adapted to the case where we do not have a lower bound
on the hyperpath weight, but just an estimate. In this case, Property 1 does no longer
hold, i.e. procedure LBYen becomes a heuristic method for generating “good” hyperpaths.
Clearly, the quality of the method depends on the tightness of the estimate. An application
of this approach, based on a particular estimate function, will be discussed in the following
sections.

2.3 Random time-dependent networks

In a random time dependent network (RTDN), often referred to as dynamic network, the
travel time through an arc is a random variable of which the distribution depends on the
departure time. In particular, we concentrate on discrete RTDNs, where both departure
and travel times are integers in a finite interval.

Hall [12] introduced the problem (denoted as MET here) of finding the minimum ex-
pected travel time through a dynamic network. He pointed out that the best route in a
dynamic network does not necessarily correspond to an origin-destination path, but rather
to a strategy, that assigns optimal successors to a node as a function of time. Hall also
proposed a solution approach to finding an optimal strategy, but he did not provide an
actual algorithm. Moreover, he observed that the proposed approach was supposed to be
effective only for networks of limited size.

As shown in [23], directed hypergraphs can be used to model discrete dynamic networks;
the minimum expected travel time problem then reduces to solving a suitable shortest
hyperpath problem. We illustrate the hypergraph model by means of the following example.

Example 2 Consider the topological network G = (N,A) in Figure 2, where a is the origin
node and d is the destination node. Recall that travel times along arcs in G are discrete,

8

a

b

c

d

Figure 2: The topological network G.

a0

s

d 7d 6d 5d 4d 3

c 3c 2

b 4b 2b 1

3 4 5 6 7

7/2 9/2

3 9/2 13/2

15/4

Figure 3: The time expanded hypergraph H.

integer valued random variables. For each arc in G, the possible departure and arrival
times are listed in Table 1. Here a pair ((i, j), t) corresponds to a possible leaving time t
from node i along arc (i, j), while I(i, j, t) denotes the corresponding set of possible arrival
times at node j. For each t′ ∈ I(i, j, t) we denote by pijt(t

′) the corresponding probability.
For the sake of simplicity, we assume that each random variable has a uniform distribution,
i.e. for each t′ ∈ I(i, j, t) we have pijt(t

′) = 1/|I(i, j, t)|. For example, if we leave node c at
time 2 along arc (c, d) we arrive at node d at time 3 or 4 with the same probability 1/2.

Observe that it is not possible to arrive at node b (from node a) at time 4, however, it
is possible to leave node b (towards node d) at time 4. Here we assume that a passenger
arriving at node b at time 2 can wait in node b until time 4, and then proceed along arc

9

(b, d); we also assume that waiting is not allowed elsewhere.
Given G and Table 1, a time expanded hypergraph H =(V , E) can be defined as follows.

Introduce a node it for each possible departure or arrival time t from/at node i. For each
pair ((i, j), t) create a hyperarc eij(t) =

(
{jh : h ∈ I((i, j), t)}, it

)
. Moreover, introduce

an arc
(
{b4}, b2

)
to represent waiting at node b from time 2 to time 4. Finally, a dummy

node s and dummy arcs es(t) =
(
{s}, dt

)
are created. The time expanded hypergraph

H is shown in Figure 3; numbers close to nodes will be explained later. Note that the
orientation of the hyperarcs is opposite to the orientation of arcs in G, and that solid lines
define a hypertree Ts in H.

As shown in [23], each strategy in G is represented by a hypertree Ts in H; the prede-
cessor p(it) in Ts provides the successor (an arc in G) for node i at time t. For example,
the hypertree in Figure 3 states that if we leave node b at time 1, then we travel along arc
(b, d), while if we leave node b at time 2 we travel along arc (b, c).

Let us assign the following weights and multipliers to the hyperarcs in H:

• For each arc e =
(
{u}, v

)
in H, let ae(u) = 1;

• For each remaining hyperarc e = eij(t), let ae(u) = pijt(t
′) for each node u = (jt′ ∈

T (e));

• Assign a weight t to each arc es(t);

• Assign weight zero to the remaining hyperarcs.

Consider a strategy represented by hypertree Ts. It can be proved [23] that the expected
arrival time at the destination for a traveller leaving node i at time t is given by the mean
W (it) of the unique hyperpath from s to it in Ts. Clearly, given the pair (i, t), arrival time
and travel time coincide, up to the additive constant t. Therefore, MET reduces to finding
optimal expected arrival times, i.e. to a minimum mean hyperpath problem in H.

The hypertree Ts in Figure 3 represents the strategy that minimizes expected arrival
times for each node and departure time. Expected arrival times are given, close to each
node.

Note that the time expanded hypergraph is acyclic: a valid ordering is obtained by
ranking nodes in reverse order of time. In addition, the size of H is proportional to the size
of the input data. Since the minimum mean hyperpath problem in acyclic hypergraphs
can be solved in linear time, we can state the following proposition:

Proposition 2 The MET problem in discrete dynamic networks can be solved in linear
time.

Optimal strategies under different objectives can be found by using suitable weights,
multipliers, and weighting functions. In this paper, we shall consider generic expected cost
criteria. Moreover, we shall consider min-max problems, where the goal is to minimize
the maximum possible cost or arrival time. These problems reduce to solving a minimum

10

distance hyperpath problem [23]. Additional features, such as time windows, can be easily
introduced in the model, but shall not be considered here.

Consider now a path strategy, that assigns to each node i ∈ G the same successor arc
(i, j) for each possible departure time from i. It can be shown that a path strategy defines
an origin-destination path in G. The minimum expected travel time path problem (METP)
consists in finding the path strategy that minimizes expected travel times. Equivalently,
METP can be defined as the problem of finding the origin-destination path in G that
minimizes the expected travel time.

Hall [12] observed that METP cannot be solved by standard shortest path methods,
and proposed a dual enumerative solution method. However, he provided no computational
complexity results. Later, METP has been proved [23] to be NP-hard also for standard
(i.e. non-random) time-dependent networks. In light of the above results, we stress on the
fact that finding an optimal path in a discrete dynamic network is in general a difficult
problem, while finding an optimal strategy (i.e. a hyperpath) is easy. This observation
motivated the extension of the hyperpath model to bicriterion problems, that we explore
in the next section.

3 Bicriterion shortest hyperpaths

In this section we consider the bicriterion shortest hyperpath problem (bi-SBT) which is
the extension to directed hypergraphs of the bicriterion shortest path problem (bi-SP). It
is evident that bi-SBT has a much richer structure than bi-SP due to the possible choices
of weighting functions. Furthermore, combinations of different weighting functions are now
possible. Nevertheless, the standard terminology usually adopted in the formal treatment
of bi-SP immediately extends to bi-SBT. Therefore, here we introduce the terminology for
bi-SBT directly, and consider bi-SP as a particular case. After a formal statement of the
problem, we introduce the two-phases method for bi-SP. Then, we discuss the parametric
weight shortest hyperpath problem, which is then used to devise a two-phases method for
bi-SBT.

We focus on the application to random time-dependent networks (see Section 2.3) where
the two criteria may correspond to time as well as cost, and the purpose may be to minimize
the expected as well as the maximum possible time or cost. This can be accomplished
by suitably choosing the mean and distance functions for the two objectives. Note that
cost and time can be treated in a uniform way. Here we concentrate on the mean/mean
case, where two mean functions with the same multipliers (corresponding to probabilities)
are considered. The resulting problem is denoted by bi-SBTm/m. Two other choices of
weighting functions for the two criteria are considered, namely the distance/distance case
bi-SBTd/d and the mean/distance case bi-SBTm/d.

Given a hypergraph H, assume that each hyperarc e is assigned two real weights w1(e)
and w2(e). Furthermore, let Wi (π) , i = 1, 2 denote the weight of hyperpath π using
weights wi(e). The bicriterion shortest hyperpath problem (bi-SBT) can now be informally

11

stated as follows:
min
π∈Π

{(W1(π),W2(π))} (4)

where Π is the set of possible s-t hyperpaths. Here, minimization is intended in terms of
Pareto-optimality, that is, finding hyperpaths where the two weights are minimal in the
sense that we cannot improve one weight without worsening the other. In order to formally
define problem (4), we need a few definitions. We follow the terminology of [24].

Definition 3 A hyperpath π ∈ Π is efficient if and only if

@path π̃ ∈ Π : W1(π̃) ≤ W1(π) and W2(π̃) ≤ W2(π)

with at least one strict inequality; otherwise π is inefficient.

Efficient hyperpaths are defined in the decision space Π, and their counterpart are points
in the criterion space:

W =
{
W (π) ∈ IR2 | π ∈ Π

}

where W (π) ∈ IR2 is the vector with components W1(π) and W2(π).

Definition 4 A point W (π) ∈ W is a nondominated criterion point if and only if π is an
efficient hyperpath. Otherwise W (π) is a dominated criterion point.

Let us define

ΠEff = {π ∈ Π| π is efficient}

WEff =
{
W (π) ∈ R2 | π ∈ ΠEff

}

Now we are in a position to explain what “solving” problem (4) means. It means finding
the set of efficient hyperpaths ΠEff , or equivalently, the set of nondominated criterion points
WEff .

The criterion points can be partitioned into two kinds, namely supported and unsup-
ported. The supported ones can be further subdivided into extreme and nonextreme. To
this aim, let us define the following set

W≥ = conv (WEff) ⊕
{
w ∈ IR2 | w ≥ 0

}
;

where ⊕ as usual denotes direct sum, and conv(W) denotes the convex hull of W .

Definition 5 W (π) ∈ WEff is a supported nondominated criterion point if W (π) is on the
boundary of W≥. Otherwise W (π) is unsupported.

Definition 6 A supported point W (π) is a extreme if W (π) is an extreme point of W≥.
Otherwise W (π) is nonextreme.

12

2 4 6

2

4

6

W
2

W
1

W
1

W
3

W
2

W
5

W
4

W
6

Figure 4: The criterion space.

Notice that unsupported nondominated points (in fact, all vectors in W) are dominated
by a convex combination of extreme supported points [26]. It is well known that a set of
nondominated points Φ =

{
W 1,W 2, . . . ,W k

}
⊆ IR2 can be ordered such that:

W 1
1 < W 2

1 < ... < W k
1 , W 1

2 > W 2
2 > ... > W k

2

We call Φ an ordered nondominated set. In the following, we use the term frontier to denote
the ordered nondominated set of extreme supported points in W .

We shall also need the concepts of ε-domination and ε-approximation. The definitions
below follow the terminology given in [27].

Definition 7 A point (W1,W2) ε-dominates point
(
Ŵ1, Ŵ2

)
if

Ŵ1 ≥ (1 − ε) W1, Ŵ2 ≥ (1 − ε) W2

Definition 8 A nondominated set Φ1 is an ε-approximation of another nondominated set
Φ2 if for each point Ŵ ∈ Φ2 there exists W ∈ Φ1 such that W ε-dominates Ŵ .

Example 2 (continued) Assume that some hyperarcs in Figure 3 are assigned two weights
as shown in the following table; the remaining hyperarcs are assigned zero weights.

eab (0) ebc (1) ebd (1) ebc (2) ebd (2) ebd (4) ecd (2) ecd (3) es (5)
(1, 1) (0, 1) (6, 0) (0, 4) (2, 0) (4, 0) (0, 2) (0, 2) (0, 4)

In this particular case there are 6 hyperpaths from node s to node a0 depending on
the choice of predecessor in node b1 and b2. In criterion space the corresponding vectors
W = (W1,W2) are given by: W 1 = (1, 7), W 2 = (2, 4), W 3 = (4, 5), W 4 = (3, 3), W 5 =
(5, 2) and W 6 = (6, 1). These points are illustrated in Figure 4; the solid lines represent
the frontier, that contains the four extreme supported nondominated points W 1,W 2,W 4

13

W
i

W
i + 1

W2

i

W1

i

W2

i+1

W1

i+1

ub 1

ub 0

Search direction

Figure 5: A triangle defined by W i and W i+1.

and W 6. Note that the frontier defines three triangles, shown with dashed lines, where it
may be possible to find unsupported nondominated points such as W 5. Points which do
not lay inside the triangles such as W 3 are dominated.

The two-phases approach has been widely developed in the bi-SP literature, see e.g. [6,
7, 18]. As the name suggests, the method splits the search for nondominated points into
two phases. In phase one the frontier is determined; this defines the triangles in which
further nondominated points may be found. Phase two proceeds to search the triangles
one at the time.

Graphically, the triangle search resembles a “sweeping line” procedure, as illustrated in
Figure 5. The line containing the two points W i and W i+1 is moved upwards, and a point
W (π) is considered when the line intersects it. In principle, the line should span the whole
triangle, up to the vertex marked ub0 in Figure 5. However, when a new nondominated
point is found inside the triangle, the upper limit can be updated to ub1, since the remaining
part of the triangle cannot contain efficient points.

Computationally, the two-phases method requires to solve shortest hyperpath and K-
shortest hyperpaths problems with respect to a parametric weight, that is a linear combina-
tion of the two criteria. These problems will be considered next. The two-phases method
for bi-SBT, as well as some approximated variants, will be described in detail later.

3.1 The Parametric Weight Problem

Let γ : (Π, IR+) → IR+ denote the parametric weight of a hyperpath π:

γ (π, λ) = W1(π)λ + W2 (π) .

Given λ > 0, the parametric weight shortest hyperpath problem, denoted by SBT(λ),
consists in finding a hyperpath with minimum parametric weight. We shall denote by
γ(λ) and π(λ) the minimum parametric weight and an optimal hyperpath (there may be
many) for SBT(λ), respectively.

For a fixed λ, consider the hyperpaths with the same parametric weight δ; clearly, the
corresponding points in the parametric space belong to the same straight line, defined by

14

the equation:
λW1 + W2 = δ. (5)

Therefore, solving SBT(λ) amounts to finding the minimum parametric weight δ such that
the corresponding line (5) intersects W . It follows immediately that for each λ a hyperpath
with minimum parametric weight corresponds to a supported point. Note also that, for
increasing δ, line (5) moves upwards. In other words, the triangle search described above
corresponds to a K-shortest hyperpath procedure, where hyperpaths are ranked according
to their parametric weight.

It is well known that, as long as directed graphs are considered, SBT(λ) reduces to
solving a standard shortest path problem where each arc a is assigned a weight wλ(a) =
w1(a)λ + w2. Remarkably, this property can be extended to the bi-SBTm/m case. Let
Hλ = (V , E) denote the hypergraph in which the weight on each hyperarc e ∈ E is wλ (e) =
w1 (e) λ + w2 (e). The following theorem holds.

Theorem 2 Consider problem SBT(λ) for the bi-SBTm/m case, and let Wλ(π) denote
the mean of a hyperpath π in Hλ. For every λ > 0 and for every π ∈ Π we have that
Wλ (π) = γ(π, λ).

Proof It suffices to write the mean Wλ(π) of the s-t hyperpath π according to (2):

Wλ(π) =
∑

u∈Vπ\{s}

fπ(u)wλ(p(u))

=
∑

u∈Vπ\{s}

(
fπ(u)w1(p(u))λ

)
+

(
fπ(u)w2(p(u))

)

= λ
∑

u∈Vπ\{s}

fπ(u)w1(p(u)) +
∑

u∈Vπ\{s}

fπ(u)w2(p(u))

= γ(π, λ).

Unfortunately, a result similar to Theorem 2 does not hold for bi-SBTd/d, as shown by the
following example.

Example 2 (continued) Consider the hypergraph in Figure 3, and assume λ = 1. The
minimum distance s-a0 hyperpath π in Hλ has weight Wλ (π) = 8. However, if we consider
the two distance functions separately, the minimum parametric weight in H is γ(1) =
5 + 7 = 12.

Note that in the above example we have Wλ (π) ≤ γ(λ). This property holds true in
general as shown in Theorem 3 below.

Theorem 3 Consider problem SBT(λ) for the bi-SBTd/d case, and let Wλ(π) denote the
distance of a hyperpath π in Hλ. For every λ > 0 and for every π ∈ Π we have that
Wλ (π) ≤ γ(π, λ).

15

Proof For each u in π, denote by Wλ(u), W1(u) and W2(u) the distance of node u in
π with respect to the weights wλ, w1 and w2, respectively. Consider a valid ordering
V = (u1, ..., up) for π. We shall prove by induction that for each ui in V , Wλ(ui) ≤
W1(ui)λ + W2(ui). The property clearly holds for u1 = s. Assume now that the property
holds for each node preceding u = ui in V . Then

Wλ(u) = max
v∈T (p(u))

{Wλ(v)} + wλ(p(u))

= max
v∈T (p(u))

{Wλ(v)} + w1(p(u))λ + w2(p(u))

≤
(

max
v∈T (p(u))

{W1(v)} + w1(p(u))
)
λ +

(
max

v∈T (p(u))
{W2(v)} + w2(p(u))

)

= W1(u)λ + W2(u).

Hence we have that Wλ(π) ≤ γ(π, λ).

A similar result holds for the bi-SBTm/d case. The proof is not presented here, but it
follows the same kind of reasoning as the proof of Theorem 3.

Theorem 4 Consider problem SBT(λ) for the bi-SBTm/d case, and let Wλ(π) denote the
mean of a hyperpath π in Hλ. For every λ > 0 and for every π ∈ Π we have that
Wλ (π) ≤ γ(π, λ).

Theorems 3 and 4 show that bi-SBTd/d and bi-SBTm/d are harder than the bi-SBTm/m

case, since we cannot solve the SBT(λ) problem efficiently in these cases. Solving a shortest
hyperpath problem on Hλ provides a lower bound π(λ) and a feasible solution γ(λ). In
order to find good quality solutions for SBT(λ), we also developed a greedy heuristic
procedure, derived from the Dijkstra-like shortest hyperpath procedure given in [10]. The
heuristic incrementally builds a hypertree by adding a node (and its predecessor hyperarc)
at each step. For each node u not yet in the hypertree a temporary label is maintained; this
label corresponds to the parametric weight of a particular hyperpath from s to u in Hλ.
At each step, the node with minimum label is selected. Clearly, the above heuristic is not
complete, since it considers only one locally optimal hyperpath for each node. Nevertheless,
it often provides a solution quite close to a supported point.

In our computational experience, Wλ(π) will be used as a lower bounding function for
SBT(λ), while the hyperpath returned by the greedy heuristic will be used as an estimate
(or upper bound) function.

3.2 First phase: Finding the frontier

Now consider the first phase of bi-SBT which consists in finding the frontier and the
corresponding efficient hyperpaths. For bi-SP, this can be done in several ways, e.g. by
parametric linear programming [18]; however, the most effective approach is based on a
NISE like algorithm (see [5]). This method builds the frontier incrementally, adding one
point at the time.

16

W
+

W
-

W
1

W
2

W
1

W
2

Figure 6: Using ε-dominance in the first phase (m/m case).

Let the ordered nondominated set Φ = {W 1,W 2, . . . ,W k} denote the frontier. At the
beginning, the two points W 1 and W k are determined. To this aim, we must be able to
find a shortest hyperpath w.r.t. one criterion when the other one is fixed to its minimal
weight. This can be done quite easily, see for example [23].

Consider now a pair of consecutive points W i = W (πi) and W i+1 = W (πi+1) in the
subset of Φ determined so far. Compute the slope of the line containing them, that is the
value λ such that γ(πi, λ) = γ(πi+1, λ), and solve problem SBT(λ). Similar to the bi-SP
case, if γ(λ) < γ(πi, λ) then π(λ) is efficient, and W (π(λ)) is a frontier point between
W i and W i+1 in the ordered set. In this case, the process is recursively repeated on
the pairs

{
W i,W (π(λ))

}
and

{
W (π(λ)),W i+1

}
. If otherwise γ(λ) = γ(πi, λ) then either

π(λ) ∈ {πi, πi+1} or π(λ) is a nonextreme supported point.
As we shall see in Section 4, the set of extreme nondominated points can be very large,

resulting in high CPU times. In some cases, we may be satisfied with an ε-approximation
of the true frontier. Consider the four extreme nondominated points in Figure 6 found
during the first phase. Any extreme nondominated points between W + and W− must
belong to the shaded area. In an ε-approximation of the frontier no new extreme points
between W+ and W− have to be found if each point inside the shaded area is ε-dominated
by either W+ or W−, i.e. if

(1 − ε) W−
1 λ1 + (1 − ε) W+

2 ≤ γ
(
W 1, λ1

)
or

(1 − ε) W−
1 λ2 + (1 − ε) W+

2 ≤ γ
(
W 2, λ2

) (6)

where λ1 denotes the slope defined by W 1 and W+ and λ2 the slope defined by W 2 and
W−. We omit the proof of correctness of Condition (6) here.

Procedure PhaseOne, given below, finds an ε-approximation of the true frontier. The
points W+ and W− are the current points used to define the slope λ and Φ is the current
ordered set of extreme points. Given a point W ∈ Φ, we let Wnext denote the point following
W in Φ. Clearly, the true frontier is obtained by omitting the control on Conditions (6) in
Step 4.

17

Procedure PhaseOne(ε)

Step 1 find the upper/left point W ul and the lower/right point W lr;

if W ul = W lr then STOP (there is one nondominated point);

otherwise set Φ =
{
W ul,W lr

}
; W− = W ul;

Step 2 W+ = W−; if W+ = W lr then STOP;

Step 3 W− := W+
next;

Step 4 if Conditions (6) are satisfied, go to Step 2; otherwise set

λ =
∣∣(W−

2 − W+
2)/(W−

1 − W+
1)

∣∣ ;

find the shortest hyperpath π in Hλ;

Step 5 if W (π) is a new extreme point then set Φ := Φ ∪ {W (π)} and go to Step 3;

otherwise go to Step 2.

Phase one requires to solve problem SBT(λ). Theorem 2 shows that this can be done
efficiently for the bi-SPTm/m case. For the bi-SPTd/d and bi-SPTm/d cases, an approximated
frontier can be computed by solving SBT(λ) approximately, as shown before. Note that an
approximate frontier may contain only a subset of the true frontier points, and may also
contain dominated points. Nevertheless, the approximate frontier defines a set of triangles
that can be searched (approximately) in phase two.

Moreover, since SBT(λ) is solved approximately, it may happen that W (π) dominates
some points in the current frontier set Φ. In this case, it might be necessary to remove the
dominated points, thus, a slightly more complex implementation of Step 5 is required to
maintain Φ.

3.3 Phase two: Looking into the triangles

After the first phase an ordered set Φ =
{
W 1,W 2, ...,W k

}
has been found (which might

be an approximation of the true frontier); Φ gives rise to a set of k − 1 triangles in
which further nondominated points are searched in phase two. Note that each triangle is
searched independently, thus some triangles may be ignored. If the interactive approach is
adopted (see [7, 6]) a decision maker may discard some triangles a priori, based on external
informations.

Let us consider the bi-SBTm/m case first, and let the current triangle be defined by W q

and W q+1 in Φ. Note since Theorem 2 holds W q and W q+1 are extreme nondominated
points of the true frontier. Furthermore, if there exists another extreme nondominated
point between W q and W q+1, which is not in Φ, then it must be ε-dominated by W q or W q+1

according to (6). Hence is the corresponding triangle also ε-dominated and not searched.
In our computational experience, we denote the triangles searched “large” triangles (or
“gaps”).

Theorem 2 also assures that the true ranking of the parametric weights can be ob-
tained. We can thus search the triangle using the K-shortest hyperpaths procedure AYen
(see Section 2) until all hyperpaths which may correspond to nondominated points inside

18

the triangle have been found. As shown before, the maximum parametric weight to be
considered is λW q+1

1 + W q
2 , obtained from the upper right vertex of the triangle. Recall

that this upper bound can be decreased during the search, if new nondominated points are
found. See [21] for further algorithmic details.

Clearly, the efficiency of phase two depends on how many points of W lay inside the
triangle. Unfortunately, in the m/m case there may be a huge number of such points, and
hence the search procedure may be unacceptably slow. This behaviour can be intuitively
explained considering the vector fπ used in (2). By looking at the recursive equations (2),
the reader can easily argue that fπ(u) may be very small for some node u ∈ π. This is
true, in particular, if hyperarc size is large and π contains long s-t paths. In this situation,
a change in the predecessor of node u would have a negligible impact on the two weights
of the hyperpath.

More formally, consider a predecessor function p defining a hypertree in the acyclic
hypergraph H, and let π be the s-t hyperpath contained in the hypertree. Obtain p′ from
p by changing the predecessor of a node u in π. It has been shown in [23, 21] that p′ defines
a hypertree, containing an s-t hyperpath π′ 6= π. Considering equations (3) (we omit the
details here) it can be shown that

W (π′) = W (π) + fπ(u)
(
Wπ′(u) − Wπ(u)

)
.

Roughly speaking, for a sufficiently small fπ(u) any choice of p′(u) would give almost the
same weight of π and π′. Thus we can expect a huge number of hyperpaths with more or
less the same weights.

In order to overcome this difficulty, it is necessary to reduce the number of hyperpaths
generated by the K-shortest procedure. Consider the branching operation on hyperpath π
in procedure AYen. Given a valid ordering V for the nodes, consider the subhypergraph
Hi ∈ B (H), where we delete the predecessor of node u = ui+1 in π. Recall that the
predecessor of the nodes following u in V are fixed, thus we have fπ̃(u) = fπ(u) for each
s-t hyperpath π̃ in Hi, according to Proposition 1. For each criterion c ∈ {1, 2}, let Wc(u)
denote the weight of node u in hyperpath π, and let mc(u) (mc(t), respectively) denote the
mean of the shortest s-u (s-t, respectively) hyperpath in Hi. Note that mc(u) and mc(t)
can be easily computed by inspecting BS(u); see [21] for details.

Our goal here is to detect the situations where Hi can be discarded from the list L of
subproblems under consideration. The following simple rule defines one such situation.

Rule 1 Suppose that m1(t) ≥ W1(π) and m2(t) ≥ W2(π). Then all hyperpaths of Hi are
dominated by π.

Rule 1 considers the current branching hyperpath π. A stronger rule can be obtained
by considering the whole set Φ of nondominated points currently found in the first and
second phase. Moreover, we may adopt ε-dominance, rather than pure dominance. This
is summarized in the following rule:

Rule 2 Suppose that for some W (π̄) ∈ Φ it is m1(t) ≥ (1 − ε)W1(π̄) and m2(t) ≥
(1 − ε)W2(π̄). Then all hyperpaths of Hi will be ε-dominated.

19

While searching a triangle defined by W q and W q+1 only points inside the triangle are of
interest. The following rule also considers ε-dominance:

Rule 3 If m1(t) ≥ W q+1
1 (1−ε) or m2(t) ≥ W q

2 (1−ε), then all hyperpaths in Hi correspond
to points either outside the triangle or ε-dominated by either W q or W q+1.

Rules 1-3 are ε-safe, since they guarantee ε-dominance, that is, the set of nondominated
points found by applying the rules is an ε-approximation of the true set of nondominated
points in the triangle. Unfortunately, in most cases these rules do not prune enough
subproblems to speed up the triangle search significantly. Therefore, we must adopt an
approximated triangle search procedure, referred to as ε-search.

The goal of ε-search is not to obtain ε-dominant solutions; instead we simply want to
prevent the K-shortest hyperpath procedure from getting stuck due to the huge number
of almost equivalent hyperpaths. The basic idea behind ε-search is quite simple: when
branching on hyperpath π, we do not want to consider hyperpaths corresponding to points
that are “too close” to W (π). One way to prevent this is by skipping subproblem Hi when
fπ(u) is too small. Let us denote by ε1 a lower bound on fπ(u). We consequently have the
following very simple rule:

Rule 4 If fπ(u) ≤ ε1 then discard subproblem Hi.

In the context of random time-dependent networks, fπ(at) denotes the probability of
arriving at node a at time t, according to the strategy defined by π. The s-at hyperpath
in π defines a substrategy for travelling from a to the destination, leaving at time t; this
substrategy has a probability fπ(at) of being used. From our previous observations, we
can conclude that the hypergraph model cannot discriminate between substrategies that
occur with low probability. From a decision-maker point of view, Rule 4 simply means
that low-probability substrategies are not examined. Remark that this approach may be
quite reasonable in an on-line setting, where a situation such as “leave node a at time t”
would be considered only when - and if - the situation occurs.

Even if fπ(u) > ε1, we can skip subproblem Hi if, for both criteria, the actual im-
provement that can be obtained by changing the predecessor of u is small. The maximal
improvement for criterion c at node u is Wc(u) − mc(u). As discussed above, this gives
an improvement (Wc(u) − mc(u))fπ(u) at node t. If this improvement is small for both
criteria we skip subproblem Hi. In the following rule, the improved weights at t for both
criteria are compared to some previously found nondominated point. Here, ε2 denotes a
lower bound on the improvement.

Rule 5 Suppose that there exists hyperpath π̄ ∈ Φ satisfying W1(π)−(W1(u)−m1(u))fπ(u) ≥
(1 − ε2)W1(π̄) and W2(π) − (W2(u) − m2(u))fπ(u) ≥ (1 − ε2)W2(π̄). Then discard sub-
problem Hi.

Note that the set of points determined by ε-search ε-dominates the true set of nondom-
inated points for some ε, but we cannot determine how good the approximation is, i.e. the
value of ε. However, an upper bound on ε can be found for each triangle examined. To

20

this aim, it suffices to compute the minimum ε needed to ε-dominate all the points in the
segment joining W q to W q+1. This value is referred to as εa in Section 4.

Now consider the bi-SBTd/d and bi-SBTm/d cases. Unfortunately Theorem 2 does
not hold here, so we cannot apply procedure AYen. However, there are two possible
alternatives. First, we may apply procedure LBYen, using the lower bound function for
SBT(λ) discussed earlier. In light of Property 1, we would obtain a complete method, that
is, all the hyperpaths with parametric weight below the upper bound would be obtained.
A second alternative consists in using an estimate of problem SBT(λ) within procedure
LBYen. As discussed earlier, this approach provides an approximation of the required set
of hyperpaths.

In fact, both alternatives will be used within ε-search, and thus return an approxima-
tion. Note that ε-safe and ε-search rules can be adapted to the distance weighting function,
except for Rule 4. The reason why ε-search is needed is that triangles may contain quite
a lot of points, as for the bi-SBTm/m case. This can be explained intuitively as follows.
Consider a node v and let p(v) = e in a shortest hyperpath. Assume that u ∈ T (e) is
a maximum distance node, that is, W (v) = W (u) + w(e). Now suppose that we branch
on a node u′ ∈ T (e), u′ 6= u: the change in the predecessor of u does not affect W (v),
unless the distance of u′ becomes greater than W (u). In other words, we may have a lot
of hyperpaths with exactly the same distance.

Finally, recall that only an approximation of the frontier can be found in the first phase.
Therefore new extreme nondominated points may be found during the second phase. If
this is the case the current K-shortest procedure is stopped and restarted on the triangles
defined by the new point. Other choices would be possible, but computational testing
shows that this choice is acceptable in terms of computation time.

4 Computational Results

In this section we report the computational experience with the two-phases method de-
scribed in Section 3. The procedures have been implemented in C++ and tested on a
1 GHz PIII computer with 1GB RAM using a Linux Red Hat operating system. The
programs has been compiled with the GNU C++ compiler with optimize option -O.

We also implemented a particular generator of test hypergraphs, denoted as TEGP
(Time-Expanded Generator with Peaks). This program includes several features inspired
by typical aspects of road networks (congestion effects, waiting, random perturbations
etc.). Note that TEGP like other generators only models a fraction of a real network.
However, it provides alternative choices that may affect the behaviour of the algorithms.

The generator considers cyclic time periods. In each cyclic period there are q peak
periods (e.g. rush hours). Each peak consists of three parts; a transient part p1 where the
traffic increases, a pure peak part p2 where the traffic stays the same and a transient part p3

where the traffic decreases again. The time horizon consists in one or more cyclic periods;
peaks are placed at the same time in each cycle.

A underlying grid graph G of base b and height h is assumed, and we search optimal

21

p
1

p
2

p
3

p
3

p
2

p
1

Figure 7: Peak effect and random perturbation.

routes from the bottom-right corner node (root r) to the upper left corner node (destination
d). This choice is motivated by the fact that each root-destination path has at least b+h−2
arcs, and there are an exponential number of such paths in G. For each arc (i, j) in G a
travel time mij ∈ [lbt, ubt] and two weights wijk ∈ [lbw, ubw], k = 1, 2, are generated. Here
wijk and mij represent the weights and the average travel time out of the peaks. We refer
to wijk as the static costs of arc (i, j). We assume that grid arcs have symmetric travel
times and costs, i.e. mij = mji and wijk = wjik, k = 1, 2.

Let T denote the time horizon size, that is, the (finite) number of time instants in a cycle
multiplied by the number of cycles. Each node v in G is now expanded to T nodes vt. Fur-
thermore, a dummy origin node s and dummy arcs es (t) = ({s} , dt) are created. Finally,
each arc (i, j) in G is expanded to hyperarcs of the form eij (t) = ({jh : h ∈ I (i, j, t)} , it).
Here it denote the leaving time from node i and I (i, j, t) the set of possible arrival times.
We assume that the travel time distribution for hyperarc eij(t) is a rough approximation of
the normal distribution with mean µij (t) and standard deviation σij (t). The mean µij (t)
follows a pattern like the dotted line in Figure 7: at the beginning of a peak it increases
from mij to mij (1 + η), where η denote the peak increase parameter, then stays the same
during the pure peak period, and then decrease to mij again. The same is the case for the
standard deviation, which is defined by σij (t) = ρµij (t) where ρ is the standard deviation
mean ratio. Note that this setting gives higher mean travel time and higher dispersion in
peaks. Waiting arcs ({it+1} , it), 1 ≤ t ≤ T − 1 for each node in G except the root and
the destination can also be generated. We consider two wait options: no waiting allowed,
i.e. no waiting arcs, and zero cost waiting arcs.

Before applying the two phase method all the nodes and hyperarcs that do not belong
to s-t hyperpaths are deleted in a preprocessing step. This results in a hypergraph like the
one in Figure 3, where some of the nodes vt do not exist. Note that the parameters mij,
η and ρ impact on the topological structure of the expanded hypergraph: larger values of
these parameters yield larger hyperarcs, and yield smaller hypergraph after preprocessing.

The generation of the hyperarc weights takes into account three components: the static
costs, the peak effect, and a random perturbation. The peak effect for the weights is similar
to the one for travel time. For each hyperarc eij(t) we define the costs wijk (t) = wijk (1 + η),
k = 1, 2.

22

The random perturbation introduces small variations in the hyperarc weights, due to
other factors not intercepted by the peak implementation, e.g. special information about
the cost at exactly that leaving time. For each hyperarc eij (t) we generate a perturbation
ξ ∈

[
−rangeξ, rangeξ

]
, where rangeξ is small percentage. Then, the weight wk(eij(t)) of

hyperarc eij (t) becomes wijk(t)(1+ ξ). Note that wk(eij(t)) follows a pattern like the solid
line shown in Figure 7.

Many different weight options are possible with TEGP; Here, we report on three of
them, denoted as c/c - neg cor, c/c - no cor and t/c.

In the first option, both weights represent a cost, and the two costs are assumed to be
negatively correlated. This is a typical situation in haz-mat transportation, where travel
cost and risk/exposure are conflicting. In this case, the static costs wijk, k = 1, 2 are
generated so that if one belongs to the first half of the interval [lbw, ubw] then the other
belongs to the second half. Note that the arcs in FS(s) are assigned zero weights.

The second option is similar to c/c - neg cor ; however, here no correlation is assumed
(c/c - no cor), i.e. both weights wijk are generated randomly in [lbw, ubw] .

Finally, the time/cost (t/c) case can be considered. Here the first criterion corresponds
to time and the second to cost. Recall that in this case the first weight on each hyperarc
is zero and on the dummy arcs es (t) the first weight is t. The second weight behaves like
in the c/c cases.

Note that weight options and rangeξ do not affect the topological structure of the
hypergraph. In the following a class of hypergraphs defines a set of hypergraphs with
the same topological structure. Several combinations of classes, weight options and wait
options will be reported. Our main focus will be on the m/m case.

Finally, remark the number of ways the options and input parameters of TEGP can be
combined are tremendously high and a large number of hypergraphs was generated with
TEGP and tested. Only a small fraction of the tests are reported here, since most of them
lead to similar results.

4.1 The mean/mean case

The tests for this case can be split into two groups. First, some preliminary tests are
carried out to point out the impact of some features of TEGP, and to justify the relevant
parameter setting. Second, tests are carried out on different weight and waiting options.
In all the tests the procedures use both ε-safe and ε-search rules, which are applied in
the order the rules are mentioned in Section 3. All the problems generated have been
preliminarily tested using safe rules only. Unfortunately, as pointed out in Section 3, this
led to unacceptable CPU times.

The preliminary tests were carried out to examine the effect of peak increase changes
and changes in the range of the random perturbation separately. Four hypergraph classes
was used; the number of nodes, arcs, hyperarcs and the peak increase percentage η after
preprocessing are reported in Table 2. For all classes an underlying grid size of 5 × 8 was
used. The time horizon contains one cycle of 144 time instants, i.e. 12 hours divided in
5 minutes intervals. Each cycle has two peaks with a total length of 5 hours (each period

23

Class 1 2 3 4
Nodes 3342 2817 2314 1862
Arcs 102 90 81 76
HArcs 10976 9262 7612 6132
η (pct) 0 50 100 150

Table 2: Hypergraph classes for preliminary tests (grid size 5×8).

ndom εa CPU
Class Φ Gaps Ave Max Ave Max Ave Max

t/c
1 4 3 19 59 1.80 4.12 0.30 0.86
2 55 3 8 26 1.78 3.75 0.20 0.75
3 64 4 6 15 1.60 3.84 0.17 0.30
4 70 3 11 31 1.55 4.59 0.19 0.41

c/c (neg cor)
1 7 6 135 690 1.55 10.46 11.42 122.08
2 140 14 20 306 1.23 10.59 4.13 168.89
3 138 9 78 589 1.44 4.84 17.49 189.48
4 154 8 70 308 1.88 15.42 14.42 182.26

Table 3: Preliminary tests: change peak increase η.

p1-p3 last 1 hour and 40 minutes) and the first peak starts after half an hour (t = 6). The
interval of possible off-peak mean travel times is [lbt, ubt] = [4, 8] , i.e. a mean travel time
between 20 and 40 minutes. Furthermore, an off-peak cost interval [lbc, ubc] = [1, 1000] is
used. The deviation mean ratio is set to ρ = 0.25 in all classes. Classes differ in the peak
increase percentage η. In class 1 η is set to zero, in class 2 it is set to 0.5, in class 3 it is
set to 1 and in class four is set to 1.5. Finally no waiting arcs are allowed. Preliminary
tests were run with ε-safe and ε-search parameters ε = ε1 = ε2 = 0.01.

First, the effect of a peak increase without a random perturbation is considered (range ξ =
0). The four classes are considered separately. For each class two weight options were con-
sidered, namely t/c and c/c (neg cor), and five hypergraphs were generated (with different
seeds) for each weight option. In Table 3 we report the average frontier size (Φ) and number
of gaps. Moreover, for each triangle searched by the second phase, we recorded the number
of new nondominated points found (ndom), εa (reported in percent, see Section 3) and the
CPU time in seconds. The average and maximum values (over the five hypergraphs) are
reported in the Table.

Table 3 shows that the frontier size grows when the peak increase grows. On the other
hand, a larger frontier tends to define smaller triangles, and this gives less nondominated
points. In conclusion, it is relevant to model the peak effect in TEGP. Note also that

24

ndom εa CPU
Class rangeξ Φ Gaps Ave Max Ave Max Ave Max

t/c
1 0 4 3 19 59 1.80 4.12 0.31 0.85
1 5 36 3 5 9 1.78 4.06 0.18 0.70
1 10 57 3 5 9 1.78 4.01 0.21 0.54
1 20 85 3 5 21 1.82 3.90 0.25 0.79
1 50 157 3 10 37 1.59 3.68 0.62 3.32

c/c (neg cor)
1 0 7 6 135 690 1.55 10.46 11.07 113.71
1 5 93 13 20 364 1.23 10.27 2.56 85.99
1 10 118 13 15 230 1.21 9.90 2.08 54.80
1 20 171 11 14 78 1.21 8.51 1.25 31.80
1 50 360 11 12 104 1.10 2.73 1.02 24.48

Table 4: Preliminary tests: change random perturbation.

option c/c (neg cor) is much harder than t/c, as shown by the values of εa.
Next we test the effect of changing the random perturbation without a peak effect.

That is, we only consider class 1 where η = 0 and then change range ξ. For each range and
weight option five hypergraphs were generated and tested with the same rule parameters
as before.

Results are shown in Table 4 where five possible range values (reported in percent)
are considered. Like for peak increase, increasing the range make the number of extreme
nondominated points higher. Consider the εa columns; here average and maximum εa

fall when the range increases indicating that the triangles searched becomes smaller and
nondominated points are found closer to the frontier. This is also reflected in the CPU
columns where the CPU time falls. We can conclude that a larger random perturbation
gives easier problems. Note that the same does not hold in the peak increase tests, hence
it seems that the effect of the random perturbation is more relevant.

The preliminary tests show that both parameters η and rangeξ must be chosen with
caution. In the final tests the peak increase is set to η = 1, while the range of the random
element to rangeξ = 0.1. A larger rangeξ might results in too easy problems.

In the second group of tests, we consider four hypergraph classes with two different grid
sizes and two wait options. The grid size, number of nodes etc. after preprocessing are
shown in Table 5. The input parameters are set as discussed in the preliminary tests. For
grid size 10×10 travelling from the root to the destination may take more than 144 time
instances and hence two cycles are used. We consider all three weight options mentioned
above and for each option we generate ten hypergraphs. In all tables below, average and
maximal values over the ten hypergraphs are reported.

We consider the first and second phase separately and start by looking at the results
for the first phase shown in Table 6. Column “Wopt” reports which weight option is used:

25

Class 1 2 3 4
Gridsize 5×8 5×8 10×10 10×10
Nodes 2254 2263 14877 14886
Arcs 80 2262 196 14885
Harcs 7383 7405 53220 53241
Waiting no yes no yes

Table 5: Hypergraph classes for the final tests.

Class Wopt Φ CPU Φε CPU Gaps xI yI

Grid size 5×8
1 1 75 2.10 20 0.32 2 38 125
1 2 76 2.21 25 0.42 5 78 86
1 3 169 4.89 60 1.03 10 170 416
2 1 183 6.03 32 0.58 3 80 153
2 2 78 2.44 22 0.43 5 63 83
2 3 137 4.36 43 0.89 10 147 349

Grid size 10×10
3 1 318 56.89 36 3.57 2 74 207
3 2 457 131.46 56 4.95 4 168 212
3 3 761 136.36 105 10.01 10 375 746
4 1 437 88.13 44 4.38 3 112 261
4 2 221 46.43 36 4.12 5 103 109
4 3 319 60.37 75 8.28 15 223 448

Table 6: First phase (final tests).

t/c (Wopt = 1), c/c - no cor (Wopt = 2) or c/c - neg cor (Wopt = 3).
Columns “Φ” and “CPU” report the results when the exact set of extreme nondomi-

nated points are found, while the next two columns report results when an ε-approximation
is found with ε = 0.01. The number of triangles searched by the second phase are re-
ported in column “Gaps”. Finally, xI and yI report the relative increase from the up-
per/left point W ul to the lower/right point W lr for the first and second criteria, defined as
(W lr

1 − W ul
1)/W ul

1 and (W ul
2 − W lr

2)/W lr
2 , respectively.

First, compare the exact results against the approximated ones. Here the number of
extreme nondominated points is significant lower for the approximation, resulting in large
savings in CPU time. This implies that the set of “large” triangles can be determined at
much lower cost by an approximate phase one. Anyway, it must be remarked that the
number of “large” triangles (column “Gaps”) is quite limited even if compared to the size
of the approximated frontier. That is, the frontier contains many points close to each
other. In this situation, a decision maker may be satisfied by the options offered by phase

26

ndom CPU εa εb

Class Wopt U Ave Max Ave Max Ave Max Ave Max
Grid size 5×8

1 1 0 14 63 2,67 21,03 1,83 3,65 1,81 4,93
1 2 0 13 50 0,48 2,33 1,51 3,28 1,50 2,48
1 3 0 16 171 0,87 25,05 1,08 2,75 1,41 3,77
2 1 1 22 80 28,79 104,30 1,59 4,80 1,87 5,95
2 2 2 39 184 34,80 95,86 1,72 5,59 2,29 7,60
2 3 2 83 705 28,65 110,19 1,61 9,79 2,36 15,44

Grid size 10×10
3 1 0 9 43 2,75 13,81 1,04 1,48 1,17 1,56
3 2 0 28 232 52,79 438,43 1,22 2,45 1,59 2,54
3 3 1 75 638 76,00 514,72 1,30 6,48 1,90 12,20
4 1 2 27 173 220,11 500,77 2,22 9,73 3,27 15,30
4 2 2 76 322 203,80 488,96 2,14 14,53 3,70 27,60
4 3 4 134 1150 176,35 834,07 1,31 6,85 2,03 9,83

Table 7: Second phase (ε1 = 0.01).

one, which would make phase two redundant.
Next, let us consider the exact frontier solution and compare the different waiting

possibilities. For weight option t/c the number of extreme nondominated points raise
when waiting arcs with zero costs are used. A possible explanation is that waiting may
make the mean travel time a bit higher (first criteria) but may make the mean cost lower,
introducing more nondominated points. Thus the upper/left point stays the same, but the
lower/right point becomes larger. This is confirmed by the values xI and yI , that are larger
when waiting is allowed. For the c/c weight options the situation is opposite: the number
of extreme points falls when waiting is allowed. Indeed, waiting can make both costs become
lower in some cases, thus some better solutions may arise. In graphical terms, the frontier
moves towards the origin of the octant and “shrinks”, resulting in smaller values xI and
yI .

Consider now the second phase. We allowed at most 10,000 hyperpaths to be generated
for each searched triangle, and we recorded the number of unfinished triangles (column
U) where the K-shortest procedure terminated before reaching the upper bound on the
parametric weight. For each hypergraph we recorded the average and maximum number of
nondominated points found inside the triangles (ndom), the average and maximum CPU
time for searching a triangle (CPU) and the average and maximum values of εa and εb.
Here εb denotes the minimum value such that, for any two adjacent nondominated points
of the triangle, at least one of the two εb-dominates the other.

Two values of the ε-search parameter ε1 were used, namely 0.1 and 0.01. The results
are reported in Table 7 for ε1 = 0.01 and in Table 8 for ε1 = 0.1. In both tables epsilons

27

ndom CPU εa εb

Class Wopt U Ave Max Ave Max Ave Max Ave Max
Grid size 5×8

1 1 0 5 13 0.20 0.90 2.00 4.41 2.00 4.93
1 2 0 5 27 0.16 0.65 1.82 3.30 1.94 3.46
1 3 0 6 60 0.17 1.78 1.23 2.76 1.65 3.77
2 1 0 15 85 21.80 93.21 1.49 4.65 1.64 5.41
2 2 1 35 170 32.98 94.70 1.62 5.68 2.14 7.74
2 3 1 54 591 20.14 99.67 1.35 6.13 1.91 11.29

Grid size 10×10
3 1 0 5 23 1.93 11.00 1.08 1.65 1.22 1.47
3 2 0 10 88 2.75 24.10 1.35 2.54 1.71 3.25
3 3 0 10 141 6.85 340.05 1.13 2.00 1.55 3.05
4 1 1 23 147 233.95 499.77 2.13 9.73 3.14 15.30
4 2 2 61 219 185.27 491.26 2.03 14.57 3.50 27.66
4 3 2 52 350 93.17 502.56 1.19 5.36 1.79 7.61

Table 8: Second phase (ε1 = 0.1).

are reported in percent and the CPU time in seconds.
Consider Table 7 first, and observe that in general we find good results for most trian-

gles. The average value of εa is between 1.04 and 2.22 in percent, moreover, εa does not
seem to be affected by the hypergraph size. However, in few triangles poor values of εa

are found. This does not necessarily mean that a poor approximation of the true set of
nondominated points is found. Recall that εa is an upper bound on the value needed for
the approximation to ε-dominate the exact solution; this upper bound might be poor in
some cases. More important, εa is found by comparing the approximation to the frontier.
High values of εa may be due to the fact that the true set of nondominated points lay deep
inside the triangle.

If we compare the different weight options we see that the uncorrelated cases produce
fewer nondominated points than the correlated one. This is a well known behaviour in the
bi-SP case, see e.g. [25]. Not surprisingly, the t/c option seems to find even fewer points
than c/c (no cor), since for t/c, we use a zero first weight on each hyperarc. Clearly, the
CPU time grows significantly for the larger hypergraphs, however, it is relatively stable for
the three weighting options. On the contrary, CPU time is affected by the introduction of
waiting, which makes the solution space much wider.

Now consider Table 8, where ε1 = 0.1 has been used. Here Rule 4 is stronger, thus a
worse approximation may be expected; this is actually the case when waiting is not allowed,
indeed the average value of εa grows. However, the increase in εa is small and good savings
in CPU time can be obtained. Moreover, for the zero cost waiting ε1 = 0.1 yields better
approximations, and fewer unfinished gaps. Note also that the number of nondominated

28

12000 15000

8000

9000

0.2

0.1

0.01

Figure 8: Changing ε1 in a difficult triangle.

points inside a triangle falls, but the “space” between adjacent points, i.e. εb, tends to
decrease. We may argue that a higher value of ε1 make the triangle search less selective
but faster, and allows to search “deeper” in the triangles. The effect of increasing ε1 is
shown in Figure 8, where we consider one difficult gap, and we plot the results obtained
with ε1 = 0.01, ε1 = 0.1 and ε1 = 0.2. Here a lot of points close to the two vertices of the
triangle are found when ε1 = 0.01 is used, but the search stops before the whole triangle is
searched resulting in large values of εa and εb. For increasing ε1 less points are generated,
but the triangle is searched deeper, and a better overall approximation is found. However,
note that many points found with ε1 = 0.01 dominate the points found with ε1 = 0.2.
Similar observations can be made for ε2 too.

Finally, a few short remarks can be made about the “success rate” of Rules 1-5. All
these rules proved to be useful in reducing the search space, except perhaps Rule 3, whose
success rate was below 1%. Obviously, the success rate of the rules depend on the order in
which they are applied. For example, the success rate of Rule 5 which is tested after Rule
4 dropped from 23% for ε1 = 0.01 to 3% for ε1 = 0.1.

4.2 The distance/distance case

As pointed out in Section 3 this case is harder to solve, since we cannot solve SBT(λ)
exactly. Here, we compare several approximated versions of phase two, based on different
settings. For each generated hypergraph, the best solutions found with the different settings
were merged into a nondominated set Φs, representing the best known solution of the
hypergraph. Since the true frontier cannot be computed in this case, we used Φs as a
touchstone for comparing the relative performance of the various settings.

Only one weight option, namely c/c neg cor, is considered here. Note that the t/c

29

Class Φ CPU εΦs

1 6 0.79 4.66
2 9 1.48 5.90
3 12 35.54 6.54
4 15 18.26 6.53

Table 9: Results frontier approximation (d/d case).

option is not relevant in this context. Indeed, the maximum distance with respect to the
time criterion cannot be greater than the time horizon. Thus, efficient solutions can be
found rather trivially by solving minimum cost hyperpath problems for different settings
of the time horizon. This simpler approach can be much more effective in practice.

Let us first consider the first phase. Here an approximation is found by using both the
estimate and the lower bound function. The number of frontier points (Φ) and the CPU
time was recorded. Moreover, the ε needed for the approximated frontier to ε-dominate the
frontier in Φs is reported. The results, shown in Table 9, show that the number of frontier
points is much smaller compared to the m/m case and hence larger triangles have to be
searched. Furthermore, only a rough approximation of Φs is obtained (εΦs

between 4.66
and 6.54 percent). However, recall that in the second phase a triangle search is restarted
if a new extreme nondominated point is found.

For what concerns the second phase, let us consider in detail the use of the estimate
function. Clearly, this function does not rank hyperpaths exactly. This can be seen in Fig-
ure 9 where an example of the ranking of the parametric weight using the estimate function
is shown. Suppose that the search is stopped as soon as the first weight over the upper
limit ub is generated. In this case, we may miss some (possibly efficient) hyperpaths with
weight below ub. This difficulty can be faced as follows. Split the sequence of generated
hyperpaths into intervals of length l. The minimal weight w of the estimate function for
each interval is then computed, and compared against ub. Thus, the search may stop after
generating k = l, 2l, 3l, . . . hyperpaths (k = 6l in the figure).

The estimate function was used with ε-safe and ε-search, with ε2 = 0.01. Four different
values of l were preliminary tested, namely, l = 1, 10, 20, 50; we only report l = 1 and
l = 10 here, since greater values of l did not improve the solution significantly. We also
used the lower bounding function with ε-safe and ε-search. In these cases, at most 10,000
hyperpaths were allowed for each triangle. Finally, we performed one test with the estimate
function and ε-safe rules only; in this case, only 100 hyperpaths were allowed.

The results for the four settings are shown in Table 10, where “Gaps” denote the
number of triangles defined by the frontier when the second phase stops, “Newf” the
average number of new extreme points found, and “εΦs

” the average and maximum value
needed for the points to dominate each triangle of Φs.

First of all, observe that the quality of the approximations is relatively stable in the four
settings. As expected, the choice l = 10 gives better results than l = 1, without increasing
the CPU times. Moreover, the estimate performs better than the lower bound; this may

30

ub

k

W

l k
1

Figure 9: Ranking of hyperpaths when the ub function is used.

ndom CPU εb εΦs

Class Gaps Ave Max Newf Ave Max Ave Max Ave Max
Estimate function (ε-safe and ε-search. l = 1)

1 6 2 8 1 0.19 0.63 5.84 22.43 2.04 10.95
2 10 4 26 1 18.20 111.05 2.73 18.66 1.10 7.92
3 12 3 12 1 3.51 21.60 3.73 25.30 1.23 8.59
4 17 9 94 1 459.99 2186.61 2.00 23.49 0.65 7.38

Estimate function (ε-safe and ε-search. l = 10)
1 6 2 8 1 0.54 1.76 5.57 22.43 1.39 7.99
2 10 4 26 1 12.20 108.09 2.68 18.66 1.04 7.92
3 12 3 12 2 6.38 27.87 3.66 25.30 1.15 6.85
4 17 9 94 2 309.08 2185.27 1.92 23.49 0.58 7.38

lb function (ε-safe and ε-search)
1 6 2 7 1 0.27 1.06 5.06 23.10 3.07 16.67
2 10 3 20 1 12.62 165.83 2.48 12.21 1.26 7.74
3 12 3 12 5 89.13 345.44 3.73 25.30 1.10 15.09
4 17 6 47 1 591.01 3987.53 2.46 24.33 1.01 11.91

Estimate function (ε-safe l = 50)
1 6 2 7 2 2.84 10.74 5.72 36.34 2.09 18.26
2 10 1 3 10 2.00 6.63 5.33 29.26 2.08 12.67
3 12 3 12 5 89.13 345.44 3.61 25.30 1.10 15.09
4 16 1 6 16 17.48 80.40 4.62 31.24 2.24 14.08

Table 10: Results second phase (d/d case).

suggest that the lower bounding function is not tight enough, hence a lot of hyperpaths
with parametric weight above ub are generated.

The most interesting results are obtained when the estimate function is used with ε-

31

ndom CPU εb

Class Φ CPU Gaps Ave Max Newf Ave Max Ave Max
1 6 0.35 6 1 8 2 0.27 1.15 5.65 32.43
2 11 0.65 12 3 23 2 6.13 126.25 2.63 29.05
3 12 12.86 12 2 12 1 7.84 48.35 4.76 38.24
4 17 9.05 17 9 91 2 498.81 4592.02 1.82 24.80

Table 11: Results for the m/d case.

safe rules. In this case, the search procedure is expected to be more accurate, since less
hyperpaths are skipped with respect to ε-search. This is actually the case, since more
new frontier points are found using ε-safe rules. However, the procedure quickly begins to
stall, i.e. the parametric weight does not increase. For this reason, we limited the number
of generated hyperpaths to 100, which explains the low CPU times. Roughly speaking,
we may argue that ε-safe rules search more accurately close to the frontier, but don’t go
deep into the triangles. Interestingly, the resulting approximation is comparable to the
one obtained by ε-search. From the above observations, we may conclude that different
settings return different set of points, and that the union of these sets (i.e. Φs) may be a
good approximation of the true set of efficient points.

4.3 The mean/distance case

Finally we consider the m/d case. Here only weight option c/c neg cor is considered and
tested using the estimate function with ε-safe, ε-search and l = 10 (ε = ε2 = 0.01 and
ε1 = 0.1). The results, reported in Table 11, show that the number of frontier points and
unsupported nondominated points is more or less the same as for the d/d case. However,
the number of new frontier points found in phase two increases slightly, while the value εb

tends to increase.

5 Conclusion

In this paper we considered bicriterion routing problems in random time dependent net-
works, in particular, we introduced and investigated the generation of efficient (Pareto-
optimal) strategies. Bicriterion problems in dynamic networks have already been con-
sidered in the literature, however, the generation of efficient strategies has not yet been
proposed. The choice of this approach was motivated by two simple observations. First,
finding optimal strategies in dynamic networks is easy, while finding paths is difficult.
Second, strategies are more general and thus more effective than paths.

We reduced the generation of efficient strategies to a bicriterion shortest hyperpath
problem in acyclic directed hypergraphs. This problem was solved by a suitable extension
of the classical two-phases approach for bicriterion shortest paths. Even though several

32

hyperpath models have been proposed in the literature, the bi-SBT problem has not yet
been considered. The main contributions of this paper can be summarized as follows.

First consider the problem, already treated in the literature, of minimizing expected
costs or travel times, i.e. the m/m case. Here we showed that the parametric weight prob-
lem is easy, since the results from graph theory can be extended to hypergraphs. Therefore,
finding the frontier in the first phase is easy. By contrast, no easy path problem exist in
random time-dependent networks. From a decision makers’ point of view finding the fron-
tier might be enough in some cases, for example, in a transportation application (e.g.
haz-mat) where routing is chosen on-line, based on updated information. Furthermore,
by using a two phase method, the frontier can be used to guide the search for the second
phase if interactive/on-line methods are used.

For the second phase approximation methods were needed to let the method converge,
since the criteria space is so dense that not all nondominated points inside the triangles can
be found. As pointed out this is a result of the fact that the model does not discriminate
between sub-strategies with low probability. However, by introducing ε-safe and ε-search
rules to prune the search, this situation can be dealt with. Computational tests showed that
the rules are successful and good approximations can be found. Note that approximation
methods was also necessary to find bicriterion shortest paths in random time-dependent
networks (see e.g [16]). However, finding strategies instead of paths provide us with a more
flexible/general model, since e.g. different weighting functions can be used. This flexibility
comes at the expense of computational complexity if the d/d and m/d cases are considered.

For the d/d and m/d case we showed that the parametric weight problem is harder to
solve. However, we have a lower bound and a heuristic estimate function, that can be used
in the two-phases method. Theoretically, the lower bound can be used to obtain an exact
method. In practice however the estimate function finds a better approximation.

Finally, note that, as in many multicriterion analysis frameworks, our goal is not the one
of “solving” the problem, but rather the one of providing a reasonable set of alternatives.
To this aim, our approach seems to be more general and flexible than the enumeration of
paths.

Clearly, the two-phases method developed in this paper may be improved, in particular
better lower bound and estimate functions may be found. Also, alternate techniques for
finding good approximations of the efficient set could be investigated. Moreover, we believe
that the results in this paper provide a stimulating starting point for further research.
First, note that our model extends quite easily to the bicriterion shortest path problem in
dynamic networks, and it would be possible to adapt our algorithms to the enumeration of
path strategies. Then, a direct comparison of the strategy and path approaches might be
tried. Next, parametric shortest hyperpath methods [20] might be used to find the frontier
in the d/d or m/d cases. Finally, more effective branching strategies for the d/d case is
under consideration, which may speed up the search in phase two. These topics will be
the subject of forthcoming papers.

33

References

[1] G. Ausiello, P.G. Franciosa, and D. Frigioni. Directed hypergraphs: Problems, al-
gorithmic results, and a novel decremental approach. In Lecture Notes in Computer
Science 2202, pages 312–328. Springer Verlag, 2001.

[2] J.R. Birge and F. Louveaux. Introduction to stochastic programming. Springer Series
in Operations Research. Springer-Verlag, New York, 1997.

[3] J. Brambaugh-Smith and D. Shier. An empirical investigation af some bicriterion
shortest path algorithms. European Journal of Operational Research, 43:216–224,
1989.

[4] J.C.N. Climaco and E.Q.V. Martins. A bicriterion shortest path algorithm. European
Journal of Operational Research, 11:399–404, 1982.

[5] J. Cohen. Multiobjective Programming and Planning. Academic Press, New York,
1978.

[6] J.M. Coutinho-Rodrigues, J.C.N. Climaco, and J.R. Current. An interactive bi-
objective shortest path approach: Searching for unsupported nondominated solutions.
Computers and Operations Research, 26:789–798, 1999.

[7] J.R. Current, C.S. ReVelle, and J.L. Cohen. An interactive approach to identify the
best compromise solution for two objective shortest path problems. Computers and
Operations Research, 17(2):187–198, 1990.

[8] M. Ehrgott. Multicriteria optimization, volume 491 of Lecture Notes in Economics
and Mathematical Systems. Springer-Verlag, Berlin, 2000.

[9] M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjective
combinatorial optimization. OR Spektrum, 22(4):425–460, 2000.

[10] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and applica-
tions. Discrete Applied Mathematics, 42:177–201, 1993.

[11] M. Garey and D. Johnson. Computers and Intractability. A Guide of the Theory of
NP-Completeness. W.H.Freeman, 1979.

[12] R.W. Hall. The fastest path through a network with random time-dependent travel
times. Transportation Science, 20(3):182–188, 1986.

[13] R.G. Jeroslow, K. Martin, R.L. Rardin, and J. Wang. Gainfree Leontief substitution
flow problems. Mathematical Programming, 57:375–414, 1992.

[14] R. De Leone and D. Pretolani. Auction algorithms for shortest hyperpath problems.
Siam J. Optim., 11(1):149–159, 2000.

34

[15] E.D. Miller-Hooks. Adaptive least-expected time paths in stochastic, time-varying
transportation and data networks. Networks, 37(1):35–52, 2000.

[16] E.D. Miller-Hooks and H.S. Mahmassani. On the generation af nondominated paths
in stochastic, time-varying networks. Technical report, University of Texas at Austin,
1998.

[17] E.D. Miller-Hooks and H.S. Mahmassani. Optimal routing of hazardous materials
in stochastic, time-varying transportation networks. Transportation Research Record,
1645:143–151, 1998.

[18] J. Mote, I. Murthy, and D.L. Olson. A parametric approach to solving bicriterion
shortest path problems. European Journal of Operational Research, 53:81–92, 1991.

[19] S. Nguyen and D. Pretolani. Shortest hyperpath problems on oriented hypergraphs.
Technical report, Centre de recherche sur les transports, September 1994.

[20] Lars Relund Nielsen. A bicriterion and parametric analysis of the shortest hyperpath
problem. Progress report, University of Aarhus – Department of Operations Research,
2001. Available at http://home.imf.au.dk/relund/.

[21] L.R. Nielsen, K.A. Andersen, and D. Pretolani. Finding the K shortest hyper-
paths: algorithms and applications. Technical Report WP-2002-2, Department of
operations research, University of Aarhus, September 2002. Submitted, Available at
http://home.imf.au.dk/relund/.

[22] G.H. Polychronopoulos and J.N. Tsitsiklis. Stochastic shortest path problems with
recourse. Networks, 27:133–143, 1996.

[23] D. Pretolani. A directed hypergraph model for random time dependent shortest paths.
European Journal of Operational Research, 123:315–324, June 2000.

[24] A.J.V. Skriver. A classification of bicriteria shortest path (BSP) algorithms. Asia-
Pacific Journal of Operational Research, 17:199–212, September 2000.

[25] A.J.V. Skriver and K.A. Andersen. A label correcting approach for solving bicriterion
shortest path problems. Computers and Operations Research, 27:507–524, sep 2000.

[26] R.E. Steuer. Multiple Criteria Optimization: Theory, Computation and Application.
Wiley Interscience. Wiley, 1986.

[27] A. Warburton. Approximation of pareto optima in multiple-objective, shortest-path
problems. Operations Research, 35(1):70–79, 1987.

35

