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Abstract

In this paper we analyze an (s;Q) inventory model with unit Poisson demand,

several demand classes and lost sales. When dealing with di�erent demand classes the

usual approach is to control the inventory by critical levels at which stock is reserved

for demand of high priority. We present two di�erent rationing policies, a simple

critical level policy where the critical levels are constant, and an optimal policy where

the critical levels are allowed to depend on the time since the actual outstanding

order (if any) was issued. As the simple policy is much easier to implement in practice

we investigate the cost di�erence of using the simple policy instead of the optimal

policy in a numerical study. We also compare the two rationing policies with the best

non-rationing policy.

Keywords: Inventory, rationing, Markov processes, lost sales, several demand classes.

1 Introduction

In this paper we consider an inventory system with several demand classes. Usually it

is assumed that all customers are equally important, but in practice this is rarely the

case. As an example consider a spare part inventory company in the airline industry.

Keeping an airplane grounded can be very expensive, and the cost of not being able

to satisfy demand from an airline can therefore be very high. These costs are usually

speci�ed in a contractual agreement. Di�erent airlines may, however, value the cost of a

grounded airplane di�erently, and the company may reject demand from some airlines in

order to be able to satisfy airlines with higher priority. Another example can be found

in a two{echelon inventory model, where lateral shipments between retailers are allowed.

Each retailer will then face two kinds of demand; normal demand and demand from other
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retailers. Usually the retailer will consider normal demand more important than demand

from other retailers. Thirdly, we mention another two{echelon inventory model, where

the warehouse faces demand from several retailers that might be of di�erent importance,

due to di�erent stockout or expediting costs (See Axs�ater, Kleijn & de Kok [1]).

The considered inventory system is controlled by a rationing policy speci�ed by critical

levels. For each demand class except the one with highest priority, demand is rejected when

the actual inventory level is at or below the critical level assigned to the class. In this

way it is possible to save stock for possible future high{priority demand. A simple policy

has constant critical levels, whereas a time remembering policy allows the critical levels to

depend on the time elapsed since the actual outstanding order (if any) was issued.

The �rst contributions in the area of rationing policies are periodic review models.

Veinott [14] analyses a model with several demand classes and zero lead time, and intro-

duces the concept of critical levels. Topkis [13] proves the optimality of a time remembering

policy for the same model in both the backorder and the lost sales case. He divides each

period into a �nite number of subintervals, and allows the critical levels to depend on

the time till the next review. Recently, Frank, Zheng & Duenyas [4] have considered a

periodic review model with two demand classes, one stochastic and one deterministic. The

deterministic demand has to be satis�ed but the stochastic demand can be rejected. De-

mand is observed by the beginning of each period, after which a replenishment order can

be placed. It is assumed that orders arrive instantaneously so that the replenishment can

be used to satisfy the observed demand. The purpose of rationing is therefore not to save

stock for high priority demand, but rather to postpone an order placement one period.

They show that the optimal rationing policy either satis�es all the stochastic demand or

results in a remaining inventory which is an integer multiple of the deterministic demand

per period.

The literature on rationing policies in a continuous review setting deals with two types

of inventory policies, base{stock policies and (s; Q) policies. Ha [5] and Dekker, Hill

and Kleijn [3] both consider lot{for{lot inventory systems with several demand classes.

Dekker, Hill and Kleijn [3] �nd good simple critical level policies for the case of generally

distributed lead times. Since they do not consider time remembering policies they cannot

guarantee optimality. Ha [5] shows optimality of the simple critical level policy for the

same model with exponentially distributed lead times. Simple critical level policies for an

(s; Q) inventory model are �rst analyzed by Nahmias & Demmy [10], who �nd �ll rates for

a model with two demand classes and Poisson demand. This is done by conditioning on the

so{called 'hitting time', the time where the inventory level 'hits' the critical level. They

do not consider optimization. Moon and Kang [9] generalize their results to a model with

compound Poisson demand, and �nd optimal rationing levels in the case of deterministic

demand and several demand classes. The paper most related to the present is Melchiors,
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Dekker and Kleijn [8], who present a method for �nding an optimal simple policy for the

(s; Q) inventory model with two demand classes and lost sales. They �nd the exact cost

of a simple critical level policy and in a numerical study they compare the critical level

policy with the best non{rationing policy. The only paper considering time remembering

policies in a continuous review setting is Teunter & Klein Haneveld [11], who present

simple methods for �nding good time remembering policies for an inventory model with

two demand classes and backordering. Using marginal analysis they recursively determine

values of the remaining lead time for which it is optimal to reserve 1; 2; : : : units of stock

for high priority demand.

In this paper we analyze the (s; Q) inventory model with several demand classes, lost

sales and constant lead times. Using Markov decision theory we �nd an optimal time

remembering policy. Our decisions are allowed to depend on the inventory level and, if

the inventory level is below the reorder level, the time since the order was placed. We

show that this policy is a critical level policy and that the critical levels are decreasing in

time. The Markov decision model discretizes the lead time, and approximates the demand

during the lead time by a Bernoulli process. Johansen & Thorstenson [7] use a similar

approach to �nd optimal emergency order policies. Since a time remembering policy can

be di�cult to implement in practice, we also show how to �nd a good simple critical level

policy, and in a numerical study we compare the two policies with each other and with

the best non-rationing policy. Note that the inventory system analyzed is identical to that

analyzed in Melchiors, Dekker and Kleijn [8]. However, we consider time remembering

policies and our model allows more than two demand classes.

The paper is organized as follows. In Section 2 we introduce the necessary notation and

specify the average cost of a rationing policy. Section 3 focuses on �nding the optimal time

remembering policy, and in Section 4 we present a heuristic for �nding good simple policies.

In Section 5 we investigate the properties of the policies by means of some numerical

examples, and �nally, some concluding remarks and directions for further research are

given in Section 6.

2 The model

We now introduce the assumptions and notation used throughout the paper. We consider

an inventory model with n demand classes. Class j has unit Poisson demand with rate

�j . All demand not satis�ed immediately is assumed to be lost (or expedited). The

classes are distinguished by their stock out cost �j , and we rank the classes such that

0 < �n < �n�1 < � � � < �1. Let �i =
Pi

j=1 �j be the demand rate from customers of

the classes 1 to i. The ranking ensures that �i is the demand rate from customers with a

stockout cost of at least �i. Let �(i) be the expected stockout cost incurred per unit time
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by not satisfying demand from customers of the classes i+1 to n, i.e. �(i) =
Pn

j=i+1 �j�j

for 0 � i < n and �(n) = 0. For each replenishment order there is a �xed ordering cost

K, and a constant lead time L. The unit holding cost per time unit is h > 0.

We analyze the rationing policy in the context of an (s; Q) policy where Q > s. This

condition and the lost sales assumption ensure that at most one order is outstanding at

any time. This means that in contrast to Nahmias & Demmy [10] (where the assumption

of only one outstanding order is an approximation, due to the backorder environment)

our results are exact so far. Assuming that s and Q are �xed, we shall formulate a

semi{Markov decision model with �nite state space S0 [ S1. Let IN denote the set of

non{negative integers, and suppose that the constant lead time consists of N subintervals

each of length L=N . The set of states when no order is outstanding is

S0 = fi 2 INj s < i � s+ Qg

and the set of states when one order is outstanding is

S1 = f(i; t) 2 IN � INj 0 � i � s; 0 � t � Ng:

Here i denotes the inventory level and t denotes the number of subintervals elapsed since

the outstanding order was issued. There are two kinds of decision epochs: just after

a demand has been satis�ed when no order is outstanding and the beginning of each

subinterval when one order is outstanding. In each decision epoch we choose an action.

An action prescribes the set of classes we are willing to satisfy until a new decision is

made. Let the action a 2 f0; 1; 2; : : : ; ng prescribe that we satisfy demand from classes 1

to a and that we reject demand from classes a+ 1 to n. Let A be the set of actions that

can be represented in this way. We will later show that the optimal action in each state

belongs to A. The rate of demand that we are willing to satisfy when choosing action a

is �a. Since we do not allow backlogging we set a = 0 in states where the inventory level

is zero.

The number N of subintervals is chosen such that the probability of more than one

demand in each subinterval is negligible. We can then approximate the real demand

process during the lead time (which is Poisson) by a Bernoulli process (see e.g. C� inlar [2]).

A Bernoulli process is a sequence of independent trials with outcome either one or zero.

Each of the subintervals can be viewed as such a trial where the outcome is one if a

demand that we are willing to satisfy occurs, and zero otherwise. The success probability

in each subinterval, i.e. the probability of outcome one, depends on the chosen action

and is p1(a) = L�a=N . Also let p0(a) = 1 � p1(a) denote the probability of outcome

zero. The approximation considerably simpli�es the further calculations and we have

veri�ed by simulation that it has almost no in
uence on the obtained results as long as

the subintervals are small enough.
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The system evolves as follows: When there is no order outstanding we jump from

state i 2 S0 to state i � 1 2 S0 if i > s + 1, since all demand has unit size. When a

demand is satis�ed in state s+1 2 S0, an order is placed and we jump to state (s; 0) 2 S1.

During the lead time in states (i; t) 2 S1 with i > 0 we can jump to two di�erent states.

With probability p0(a) we jump to state (i; t + 1) and with probability p1(a) we jump

to state (i � 1; t + 1). In states (0; t) 2 S1 we jump to state (0; t + 1) since we do not

allow backlogging. When the replenishment arrives in state (i; N) 2 S1 we jump to state

i+Q 2 S0.

The expected time between two decision epochs when choosing action a, and no order

is outstanding, is

�i(a) = 1=�a for i 2 S0:

During the lead time the expected time between two decision epochs is

�i;t = L=N for (i; t) 2 S1;

independently of the chosen action. Now let us consider the expected one{step cost. The

expected one{step cost incurred in state i, when no order is outstanding and the action a

is chosen, is

Ci(a) = �i(a)[hi+ �(a)] for i 2 S0:

During the lead time the one{step cost incurred in state (i; t) when choosing action a is

Ci;t(a) = �i;t[hi+ �(a)] for (i; t) 2 S1:

Note that we make a small error by assigning holding costs based on the stock in the

beginning of each subinterval, but when N is large this error is negligible. Finally, we

have to add the order cost K in each order cycle. The timing of the allocation of the

order cost does not in
uence the analysis, so for convenience we will add it when the state

Q 2 S0 occurs.

We will consider a policy described by the following parameters:

s Reorder point at which an order is placed

Q Order quantity, Q > s

k(i) When no order is outstanding and the inventory level is i, satisfy demand

from classes 1 to k(i)

l(i; t) When one order is outstanding, the inventory level is i and the time since the

replenishment order was placed is between tL=N and (t+ 1)L=N ,

satisfy demand from classes 1 to l(i; t).
Observe that the assumption of at most one demand per subinterval has only to do with

the analysis. If the policy is implemented in practice, it is able to deal with more than
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one demand per subinterval, and the assumption of at most one demand per subinterval

is therefore not restrictive. The considered policy is not necessarily a critical level policy.

To be a critical level policy it must satisfy

l(i+ 1; t) � l(i; t) for i = 1; 2; : : : ; s� 1 and t = 0; 1; : : : ; N � 1 (1)

and

k(i+ 1) � k(i) for i > s: (2)

This means that there, for each class j � 2 and for all t, exists a unique critical level

cj(t) =maxfijl(i; t) < jg(= 0 if l(1; t) � j). This is the highest level of inventory where

we will not serve class j. Similarly let cj(�) be the highest inventory level above s at

which we will not satisfy demand class j. If k(s + 1) � j we will always satisfy demand

from class j when there is no order outstanding and cj(�) is not de�ned. Policies with a

critical level above the reorder point was introduced by Melchiors, Dekker and Kleijn [8],

who also characterize when this type of policies is optimal. Observe that, if l(i; t) is a

constant function of t for all i, then the policy is a simple critical level policy.

We will now specify the long{run average cost per unit time (henceforth referred to

as cost for simplicity) of using the considered policy. Note that the inventory process is

regenerative with regeneration points when the state Q 2 S0 occurs, and de�ne a cycle as

the time between two consecutive regeneration points. We then have from the renewal{

reward theorem (see e.g. Tijms [12]) that the cost of the policy is the expected cost of one

cycle divided by the expected length of one cycle.

We compute the expected cost and length of a cycle by a backwards recursive procedure

starting in the regeneration point. Let Z(i) be the expected cost incurred until we reach

the next regeneration point starting in state i 2 S0. Let Y (i) be the expected time until

we reach the next regeneration point starting in state i 2 S0. Note that Z(i) and Y (i)

can be found by the recursive formulae

Z(i) = Ci(k(i)) + Z(i� 1) for i 2 S0 (3)

and

Y (i) = �i(k(i)) + Y (i� 1) for i 2 S0: (4)

The recursion is initialized with Z(Q) = K and Y (Q) = 0. Since the inventory level

cannot be higher than s + Q, we compute Z(i) and Y (i) for i = Q;Q+ 1; : : : ; s+ Q. We

can now jump to the situation just before the order arrives. Let z(i; t) be the expected

cost incurred until we reach the regeneration point starting in state (i; t). Also let y(i; t)

be the expected time until we reach the next regeneration point starting in state (i; t).
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Initialize with z(i; N) = Z(i+Q) and y(i; N) = Y (i+Q) for 0 � i � s. Now

z(i; t) = Ci;t(l(i; t)) + p0(l(i; t))z(i; t+ 1)

+p1(l(i; t))z(i� 1; t+ 1) for 0 < i � s and 0 � t < N

z(0; t) = �(0) + z(0; t+ 1)

and

y(i; t) = �i;t + p0(l(i; t))y(i; t+ 1)

+p1(l(i; t))y(i� 1; t+ 1) for 0 < i � s and 0 � t < N

y(0; t) = �i;t + y(0; t+ 1)

can be found by recursion for t = N � 1; N � 2; : : : ; 0 and i = 0; 1; : : : ; s. Finally, let

Z(s) = z(s; 0) and Y (s) = y(s; 0) and compute Z(i) and Y (i) by (3) and (4) for i =

s + 1; s+ 2; : : : ; Q. The cost of the policy is

g =
Z(Q)

Y (Q)
:

3 The optimal policy

The optimization procedure in this section is based on the semi-Markov decision theory

(see e.g. Tijms [12]). We will �nd the optimal policy within the class of policies discussed

in Section 2. We assume that the order-size Q is �xed, and use a tailor{made policy

iteration algorithm, described in the Appendix, to �nd optimal values of k(i), l(i; t) and s.

The algorithm is designed such that the policy found satis�es the average cost optimality

equations for the semi{Markov decision model, which means that the policy is optimal.

In the following theorem we characterize the structure of the optimal policy. The three

statements are all based on the average cost optimality equations. The theorem is proved

in the appendix.

Theorem. The optimal rationing policy is described as follows:

a The optimal action in each state belongs to A.

b The optimal policy is a critical level policy.

c The critical levels of the optimal policy are decreasing in the time t, i.e. the policy

found by the policy iteration algorithm satis�es

l(i; t+ 1) � l(i; t) for i = 1; 2; : : :s; and t = 0; 1; : : : ; N � 1:
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The theorem considerably simpli�es the search for the optimal policy. The policy iteration

algorithm does not consider optimization of the order size Q. However, all our numerical

tests have indicated that the minimum cost is quasi{convex in Q, and Q can therefore be

found by neighbourhood search starting e.g. with the Economic Order Quantity computed

by considering the deterministic version of the problem where the demand classes are

aggregated to one. Our procedure for �nding the optimal policy computes the optimal

value of Q in this way. For each value ofQ, the optimal values of k(i), l(i; t) and s are found

by the policy iteration algorithm. Let Ropt denote the optimal policy. The procedure has

been implemented in Pascal, and is very e�cient.

4 The simple policy

The optimal policy can be di�cult to implement in practice. We shall therefore in this

section describe how to �nd good simple policies with constant critical levels that do not

depend on the time t. De�ne c = (c2; c3; : : : ; cn) where cj denotes the critical level of

demand class j. We denote the simple policy by (c; s; Q). This policy can obviously be

evaluated by the method presented in Section 2, by letting

k(i) = maxfjjcj < ig for i 2 S0:

Similarly, let

l(i; t) = maxfjjcj < ig for (i; t) 2 S1:

Let g(c; s; Q) denote the cost of the simple policy (c; s; Q). We will not try to �nd an

optimal simple policy but instead focus on a heuristic that performs very well.

We use neighbourhood search to determine the optimal value of Q. For each Q, we

search for the optimal value of s by enumeration from Q � 1 to 0. For given values of s

and Q we �nd a good c{vector by an algorithm similar to the one suggested by Dekker,

Hill & Kleijn [3]. Let ej be the vector consisting of zeroes at all entries except at the j'th

entry where it equals one, and let ck be the c{vector considered in iteration k. If s = Q�1

then start with c1 = (0; 0; : : : ; 0) otherwise let c1 be equal to the best c-vector found for

(s + 1; Q). Let j = n. Let c2 = c
1 + ej . If g(c2; s; Q) < g(c1; s; Q) let j := j � 1 and

continue like this until g(ck+1; s; Q) > g(ck; s; Q) or j = 2. Now let j = n and start over

improving the so far best obtained vector, and continue until no further improvements can

be made.

As in Melchiors, Dekker & Kleijn [8], we have observed that it is possible to end up in

local minimas when searching for s for a given value of Q. Therefore we use enumeration.

The backwards enumeration over s is chosen because we have observed that the best c{

vector increases as s decreases, which mean that we can use the best c{vector for (s+1; Q)
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as a start vector when searching for the best c{vector for (s; Q). The order size Q is found

by neighbourhood search starting with the Economic Order Quantity. As observed for the

optimal policy found in Section 3, the cost of a simple policy has been quasi{convex with

respect to Q in all our numerical tests.

The policies described in this and the previous section are applicable to inventories

with n equal to the number m of di�erent demand classes, but in practice it might be too

confusing if m is large. Typically one then would try to aggregate the m customers into

a small number, n, of demand classes. The problem of �nding n optimal partitions of m

demand classes is very complicated, but it should be possible to �nd sound partitions by

aggregating similar demand classes according to their stockout costs.

5 Numerical Results

In this section we illustrate the properties of the policies introduced in the previous sec-

tions. We will �rst investigate one of the base cases described in Melchiors, Dekker and

Kleijn [8], and then compare the simple and the optimal policy with each other and with

the best non-rationing policy on a larger set of data.

Our results obviously depend on the choice ofN . Using high values ofN when comput-

ing the policies will lead to a more precise representation of the Poisson process, and the

policies found will be better than those found with lower values of N . For the examples in

this section, the cost of a policy R is found by evaluating the policy with N = 10000. The

cost of a policy is denoted 
(R). In a numerical study we have found that the di�erence

in cost between evaluating using N = 10000 and N = 100000 are within 0:004%. We do

not, however, use N = 10000 when we �nd the optimal and the simple policy. We have

experienced that using N = 500 gives solutions where the costs are within 0.002 % of

that of the policy found using N = 10000. The policies in this section are all found using

N = 500.

Example 1

In this example, we consider an inventory system with two demand classes and the fol-

lowing characteristics: L = 1, h = 1, K = 100, �1 = 1, �2 = 10, �1 = 1000, and

�2 = 10. The optimal policy has sopt = 13 and Qopt = 48, and the best simple policy is

(c; ss; Qs) = (2; 14; 48). In Figure 1, the critical level c2(t) of the optimal policy is depicted

together with the critical level of the best simple policy. The critical level of the optimal

policy is decreasing in time, illustrating part b of the theorem. The �gure illustrates the

advantage of the optimal policy. In the beginning of the lead time we will reject demand

class 2 at a higher level, and by the end of the lead time we will not reject demand class

2 at all. That is, the optimal policy dominates the simple in two situations: when the
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ss
sopt

inventory level

L0
t

c2(t)

c2

Figure 1: The critical levels c2(t) of the optimal policy and c2 of the simple policy for

Example 1 (n=2).

demand in the beginning of the lead time is high, and when demand from class 2 appears

by the end of the lead time. In most cases the inventory level will not reach the critical

level and the only di�erence between the simple and the optimal policy will in these cases

be the reorder level. The cost of the two policies are 
(Ropt) = 51:84 and 
(Rs) = 52:49,

respectively, a di�erence of 1:25%.

In order to illustrate the rationing policy with several demand classes, we will change

the example slightly, by diving demand class 2 up into 3 di�erent demand classes, with

�2 = 1, �3 = 2, �4 = 7 and �2 = 40, �3 = 12:5, �4 = 5. The optimal policy has sopt = 11

and Qopt = 48 with 
(Ropt) = 50:72, and the simple policy is (c; ss; Qs) = (1; 2; 3; 13; 48)

with 
(Rs) = 51:79, a di�erence of 2:1%. The critical levels are shown in Figure 2. The

structure is basicly the same as in the original example. The way the two examples are

constructed, allows us to compare the cost of the original example with the cost of the

modi�ed example to see what di�erence it makes when three very similar demand classes

(2,3 and 4 in the modi�ed example) are joined into one (class 2 in the original example), as

mentioned in the discussion by the end of Section 4. For the optimal policies the increase

in cost incurred by aggregating the three demand classes is 2.2 %, and for the simple

policy the increase in cost is 1.3 % compared with the cost of the unaggregated problems.
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c4(t)

c3(t)

c2(t) c4
c3
c2

ss

sopt

inventory level

L0
t

Figure 2: The critical levels of the optimal and the simple policies for Example 1 (n=4).

Cost comparisons

Let Rnon be the best non-rationing policy. To �nd Rnon, we aggregate all demand classes

into one and let

�non1 =
X
i

�i and �non1 =
X
i

�i�i=�n:

We can then �nd the best simple policy for the one demand class problem. Let 
(Rnon)

be the cost of the best non-rationing policy. De�ne the (relative) cost reduction of using

the simple rationing policy instead of the non-rationing policy as

CRs =

(Rnon)� 
(Rs)


(Rnon)

and the (relative) cost reduction of using the optimal rationing policy instead of the non-

rationing policy as

CRopt =

(Rnon)� 
(Ropt)


(Rnon)
:

Finally, de�ne the (relative) cost di�erence of using the optimal rationing policy instead

of the simple rationing policy as

CD =

(Rs)� 
(Ropt)


(Ropt)
:

We have computed the best non-rationing policy, the best simple policy and the optimal

policy for 27 examples with 4 demand classes. In all examples we have chosen h = 1 as
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the monetary unit, and L = 1 as the time unit. In the examples we have varied the

total demand rate �4, and for each value of �4 investigated three di�erent allocations

of the total demand. Let �j=�4 denote class j's share of total demand, and let �=�4

be a demand allocation vector. Finally we have considered three di�erent values of the

stockout cost vector, �. We have not investigated changes in the order cost K. The results

are reported in Table 1. CRs, CRopt and CD all increase as the di�erence between the

stockout costs increase, with the highest values for � = (10000; 1000; 100; 10) as expected.

Similarly, CRs, CRopt and CD all increase as we allocate more demand to the classes

with lowest priority. The bene�t of the rationing policy is that it rejects low priority

demand during the lead time, thereby reducing the need for safety stock. As we allocate

more demand to the low-priority classes, the cost reductions CDs and CRopt increase.

A possible explanation for the in
uence on CD is that the situations where the optimal

policy dominates the simple policy depend on demand from low priority demand. In order

not to satisfy too much low priority demand during the �rst part of the lead time, there

has to be low priority demand. And similarly, in order to satisfy low priority demand when

there is su�cient stock by the end of the lead time, we need low priority demand. We

note, however, that the observation (at least with respect to CD) does not hold rigorously.

We have made small numerical tests where the demand allocation is changed marginally,

where the observed e�ect on CD is quite unpredictable.

Now, let us investigate the e�ect of increasing the total demand rate �4. There seems

to be no systematic e�ect on CRs. However, both CRopt and CD increase (except in

the case � = �(1), � = �(3)). Since demand is Poisson, increasing the demand rate

will increase the variance of the demand as well and we will thereby more often end up

in the situations where the optimal policy dominates the simple one. This explains why

it is only the optimal policy (and hence CRopt and CD) that bene�ts from the increase

in total demand rate. We note that in 26 of the 27 examples the reorder point of the

optimal policy is lower than that of the non-rationing policy. The reorder point of the

simple policy is lower than that of the non-rationing policy in 21 examples.

The average values of CRs, CRopt and C are 2:02%, 3:39% and 1:43%, respectively.

Whether or not it is worthwhile to use the optimal policy instead of the simple, depends

on the given problem. For the investigated examples it appears that by using the simple

policy the cost reduction compared with the non-rationing policy is about half the size of

the cost reduction obtained by using the optimal policy.

6 Conclusions

In this paper we have shown how to �nd simple and optimal rationing policies for an

(s; Q) inventory model with lost sales and several demand classes. The optimal policy is
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a critical level policy with critical levels that are decreasing in the time t elapsed since

the outstanding order (if any) was issued. The simple policy is easy to implement and in

many cases the cost di�erence of using the simple policy instead of the optimal is very

small. However, in cases with high demand rate, and in particular if the stockout cost of

the most important class is high, the di�erence between the simple and the optimal policy

can be signi�cant (in the investigated examples we recorded a di�erence of 2.71 %).

We have only considered Poisson demand. The extension to compound Poisson is an

interesting challenge for future research. This will increase the variability of the demand

and we therefore expect that the performance of the optimal policy will be considerably

better than that of the simple policy. The development of a model with non{deterministic

lead times is also very relevant in the context of inventory rationing.

Appendix

The tailor{made policy iteration algorithm

Suppose that the order size Q is �xed. For a policy with cost g, the relative values are

de�ned as

w(i) = Z(i)� gY (i) for i 2 S0

v(i; t) = z(i; t)� gy(i; t) for (i; t) 2 S1

The relative value of each state can be interpreted as the di�erence in expected long{run

total cost of starting in this state rather than in the regeneration state Q 2 S0. The semi{

Markov version of Theorem 3.2.1 in Tijms [12] tells that an optimal policy, i.e. one that

minimizes the cost of running the system, can be found by solving the following equations

with respect to v, w and g.

w(i) = mina

8<
:Ci(a)� g�i(a) +

X
j2S0

P(i);(j)(a)w(j)

9=
; for i 2 S0 (5)

v(i; t) = mina

8<
:Ci;t(a)� g�i;t +

X
(j;r)2S1

P(i;t);(j;r)(a)v(j; r)

9=
; for (i; t) 2 S1 (6)

Here P(�);(�) are the transition probabilities. When a solution to these equations is found,

the optimal policy is speci�ed by the actions minimizing the right hand side of the equa-

tions. The cost of this policy is g. We solve the equations by a policy iteration algorithm.

Initially, g is computed as the cost of some easily evaluated policy with cost g < �(0). In

each iteration g is given and we solve the equations with respect to v and w. Let g0 be

the cost of the new policy speci�ed by the actions minimizing (5) and (6). If g0 = g, we

have solved (5) and (6) and thereby found the optimal policy. If g0 � �(0), it is optimal

13



to reject all demand and hold no inventory. Otherwise we set g := g0 and perform another

iteration based on the new value of g.

We will now describe how to solve the equations in more detail. Let g be the cost of

the previously found policy. Due to the structure of the Markov chain, we can write (5)

as

w(i) = mina fj(i; a) = Ci(a)� g=�a + w(i� 1) g for i > Q:

Initialize the recursion scheme by letting w(Q) = K and compute the values of the states

i = Q + 1; Q + 2; : : : ; 2Q � 1 recursively (Recall that the reorder point can be at most

Q � 1). It is easy to show that j(i; a) convex in a and that its minimum is found as the

highest value of a that satis�es

hi+�(a) + �a�a � g: (7)

From part b of the theorem we get that k(i) � k(i � 1), and we can therefore use the

following algorithm to �nd k(i). If k(i � 1) = n or if a = k(i � 1) + 1 does not satisfy

(7), then set k(i) = k(i� 1). Otherwise increase a by one until (7) is not satis�ed and set

k(i) = a� 1.

Now consider the situation just before the order arrives. Initialize with v(i; N) =

w(i + Q) for i = 0; 1; : : : ; Q � 1. For i = 0 and t = N � 1; N � 2; : : : ; 0, the values are

easily found since we can only choose a = 0,

v(0; t) = �(0)� g
L

N
+ v(0; t+ 1):

For i = 1; 2; : : : ; Q� 1 and t = N � 1; N � 2; : : : ; 0, the values are given by

v(i; t) = mina

�
ft(i; a) = Ci;t(a)� g

L

N
+ p0(a)v(i; t+ 1) + p1(a)v(i� 1; t+ 1)

�
:

It is easy to show that ft(i; a) is convex in a. Moreover, the action a that minimizes ft(i; a)

is the highest value of a that satis�es

v(i� 1; t+ 1)� v(i; t+ 1) � �a: (8)

To �nd this a, we use part b and c of the theorem. Let ~a = maxfl(i� 1; t); l(i; t+ 1)g. If

~a = n or if a = ~a + 1 does not satisfy (8), then l(i; t) = ~a. Otherwise increase a by one

until (8) is not satis�ed and set l(i; t) = a� 1.

All we need now is to compute the values w(i) for i � Q. At this point we have to

choose the reorder point s. The average cost optimality equation with respect to ordering

is

w(i) = min

8<
:v(i; 0);mina

8<
:Ci(a)� g(R)�i(a) +

X
j2S0

P(i);(j)(a)w(j)

9=
;
9=
; for i 2 S0:
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Since we have to place an order when i = 0, set w(0) = v(0; 0).

Now if

v(i; 0)< mina fj(i; a)g (9)

we will place an order in state i 2 S0 and set w(i) = v(i; 0). Otherwise we set

w(i) = mina fj(i; a)g

This minimization is identical to that for values w(i) with i > Q. Compute in this way the

values w(i) for i = 1; 2; : : : ; Q. We have not been able to prove that if (9) is not satis�ed

for i, then it will not be satis�ed for i + 1 either. Therefore, to ensure global optimality

we investigate all i < Q. The reorder point s is found as the highest i 2 S0 that satis�es

(9).

We have now described how to �nd the decisions that lead to the minimum value of

all w(i) and v(i; t). For these decisions, compute Y (i) and y(i; t) as described in Section

2. We can then �nd the cost of the new improved policy g0 = g + w(Q)=Y (Q). If

w(Q)=Y (Q) = 0 we have found a solution (g; fw(i)gi2S0; fv(i; t)g(i;t)2S1) to the average

optimal cost equations and the algorithm terminates with the optimal policy speci�ed by

the reorder point s and fl(i; t)g(i;t)2S1 andfk(i)gi2S0. Otherwise we repeat the iteration

with g equal to g0.

The algorithm converges in a �nite and small number (typically 4-6) of iterations.

Proof of part a) of the theorem

Let B =2 A be a set of classes. For n < 3 the proof is trivial. We therefore assume n � 3.

By de�nition there must exist a; b; c 2 IR with a < b < c such that a; c 2 B and b =2 B.

We will prove that the action B is dominated by either Ba = B n fcg or Babc = B [ fbg.

For a set of classes A,

ft(i; A) =
L

N
(hi� g +

X
j2A

�j�j + (
X
j2A

�j)v(i� 1; t+ 1) + (N=L�
X
j2A

�j)v(i; t+ 1)):

Recall that the optimal action in state (i; t) is the set of classes that minimizes ft(i; A).

Thus for B to dominate Ba and Babc in state (i; t) 2 S1

ft(i; Babc)� ft(i; B) =
�bL

N
[v(i� 1; t+ 1)� v(i; t+ 1)� �b]

and

ft(i; Ba)� ft(i; B) =
�cL

N
[v(i; t+ 1)� v(i� 1; t+ 1) + �c]
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must both be positive. This cannot happen since the classes are ordered such that �b > �c,

and the action B is therefore either dominated by Ba or Babc. By a similar argument we

can prove that B is dominated by Ba or Babc in states i 2 S0 as well. Now repeat the

procedure on the dominating action, until the action belongs to A.

Proof of part b) of the theorem

First we will prove that the optimal policy satis�es (1). By (8) this is the case if for all t

v(i+ 1; t)� v(i; t) � v(i; t)� v(i� 1; t) for i = 1; 2; : : : ; Q� 2: (10)

Note that this is the condition for convexity in i. We will prove (10) by induction on t.

Recall that k(i) =arg minaj(i; a). When t = N we have

v(i+ 1; N)� 2v(i; N)+ v(i� 1; N)

= w(i+ Q+ 1)� 2w(i+ Q) + w(i+Q� 1)

= j(i+Q+ 1; k(i+ Q+ 1)� w(i+ Q)� j(i+Q; k(i+Q) + w(i+Q� 1)

� j(i+Q+ 1; k(i+ Q+ 1)� w(i+ Q)� j(i+Q; k(i+Q+ 1) + w(i+Q� 1)

= c(i+ Q+ 1; k(i+Q+ 1))� g=�k(i+Q+1) � (c(i+ Q; k(i+ Q+ 1)) + g=�k(i+Q+1))

� 0

Now suppose inductively that (10) is true for t = N;N � 1; : : : ; r+ 1.

Recall that l(i; t) =arg minafft(i; a)g. Now

v(i+ 1; r)� 2v(i; r)+ v(i� 1; r)

= fr(i+ 1; l(i+ 1; r))� fr(i; l(i; r))� fr(i; l(i; r))+ fr(i� 1; l(i� 1; r))

� fr(i+ 1; l(i+ 1; r))� fr(i; l(i+ 1; r))� fr(i; l(i� 1; r)) + fr(i� 1; l(i� 1; r)):

Since the holding and the penalty costs cancel out together with gL=N , this equals

p0(l(i+ 1; r))[v(i+ 1; r+ 1)� v(i; r+ 1)] + (1� p0(l(i+ 1; r)))[v(i; r+ 1)� v(i� 1; r+ 1)]

+(1� p1(l(i� 1; r)))[v(i� 1; r+ 1)� v(i; r+ 1)]

+p1(l(i� 1; r))[v(i� 2; r+ 1)� v(i� 1; r+ 1)]

= p0(l(i+ 1; r))[v(i+ 1; r+ 1)� v(i; r+ 1)� v(i; r+ 1) + v(i� 1; r+ 1)]

+p1(l(i� 1; r))[v(i; r+ 1)� v(i� 1; r+ 1)� v(i� 1; r+ 1) + v(i� 2; r+ 1)]

+v(i; r+ 1)� v(i� 1; r+ 1) + v(i� 1; r+ 1)� v(i; r+ 1)

� 0:

The last inequality follows from the induction hypothesis, completing the induction.

To conclude that the optimal policy is a critical level policy we only need to prove (2),

which follows directly from (7).
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Proof of part c) of the theorem

We will now prove that l(i; t+ 1) � l(i; t) for all t by induction on t. By (8) this is the

equivalent to

v(i+ 1; t+ 1)� v(i; t+ 1) � v(i+ 1; t)� v(i; t) for i = 1; 2; : : : ; Q� 2 (11)

for all t. We note that (11) is equivalent to the de�nition of a two-dimensional super-

modalar function (see e.g. Heyman & Sobel [6]). First we need to prove

v(i+ 1; N)� v(i; N)� v(i+ 1; N � 1) + v(i; N � 1) � 0:

It is easy to show that l(i; N � 1) = k(i+ Q).

Now insert

w(i+ 1)� w(i) =
h(i+ 1) + �(k(i+ 1))� g

�k(i+1)

and p1(a) = �aL=N and we �nd

v(i+ 1; N)� v(i; N)� v(i+ 1; N � 1) + v(i; N � 1)

= w(i+ 1 + Q)� w(i+Q)� fN�1(i+ 1; l(i+ 1; N � 1)) + fN�1(i; l(i; N � 1))

= w(i+ 1 + Q)� w(i+Q)�
L

N
[h(i+ 1) + �(k(i+ 1 + Q))� g]

�p1(k(i+ 1 +Q))[w(i+Q)� w(i+ 1 +Q)]� w(i+ 1+ Q)

+
L

N
[h(i) + �(k(i+ Q))� g] + p1(k(i+Q))[w(i� 1 + Q)� w(i+ Q)]� w(i+Q)

= �
L

N
[h(i+ 1) + �(k(i+ 1 +Q))� g � �k(i+1+Q)[w(i+ 1 +Q)� w(i+ Q)]]

+
L

N
[h(i) + �(k(i+ Q))� g � �k(i+Q)[w(i+Q)� w(i� 1 +Q)]]

= �
L

N
[h(i+ 1) + �(k(i+ 1 +Q))� g � h(i+ 1 +Q)��(k(i+ 1 +Q)) + g]

+
L

N
[h(i) + �(k(i+ Q))� g � h(i+Q)��(k(i+Q)) + g]

= 0:

Suppose inductively that (11) is true for t = N;N � 1; : : : ; r+ 1. Now

v(i+ 1; r)� v(i; r)� v(i+ 1; r� 1) + v(i; r� 1)

= fr(i+ 1; l(i+ 1; r))� fr(i; l(i; r))� fr�1(i+ 1; l(i+ 1; r� 1)) + fr�1(i; l(i; r� 1))

� fr(i+ 1; l(i+ 1; r))� fr�1(i+ 1; l(i+ 1; r))� fr(i; l(i; r� 1)) + fr�1(i; l(i; r� 1))

= p0(l(i+ 1; r))[v(i+ 1; r+ 1)� v(i; r+ 1)� v(i+ 1; r) + v(i; r)]+ v(i; r+ 1)� v(i; r)

+p1(l(i; r� 1))[�v(i� 1; r+ 1) + v(i; r+ 1) + v(i� 1; r)� v(i; r)]� v(i; r+ 1)� v(i; r)

� 0

by (11) and the induction is complete.
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Problem Parameters Rnon Rs Ropt

� �=�4 (s; Q) (c; s; Q) (s; Q) CRs CRopt CD

�(1) �=�4(1) 8,33 (0,0,1,3),8,32 7,33 0.36% 0.75% 0.39%

�(1) �=�4(2) 7,33 (0,0,0,2),7,33 7,33 0.65% 1.32% 0.68%

�(1) �=�4(3) 7,33 (0,0,0,1),6,33 6,33 0.73% 1.57% 0.85%

�(2) �=�4(1) 11,32 (0,0,2,5),10,33 10,33 0.94% 1.74% 0.81%

�4 = 5 �(2) �=�4(2) 10,33 (0,0,1,5),9,33 9,33 1.72% 2.94% 1.26%

�(2) �=�4(3) 10,32 (0,0,1,3),8,33 7,33 3.06% 4.38% 1.38%

�(3) �=�4(1) 13,32 (0,1,3,7),12,32 12,32 1.92% 2.79% 0.89%

�(3) �=�4(2) 12,33 (0,1,2,5),11,32 10,33 3.28% 4.90% 1.70%

�(3) �=�4(3) 12,32 (0,0,2,4),9,33 8,33 5.14% 6.98% 1.98%

�(1) �=�4(1) 15,46 (0,0,1,3),15,46 14,46 0.36% 1.18% 0.82%

�(1) �=�4(2) 14,46 (0,0,1,2),14,47 13,46 0.57% 1.55% 0.99%

�(1) �=�4(3) 13,46 (0,0,0,2),12,47 12,46 0.63% 1.72% 1.11%

�(2) �=�4(1) 18,47 (0,0,2,6),18,46 17,46 1.17% 2.19% 1.05%

�4 = 10 �(2) �=�4(2) 18,46 (0,0,1,5),17,46 16,46 1.77% 3.31% 1.59%

�(2) �=�4(3) 17,46 (0,0,1,4),15,46 14,46 2.97% 4.72% 1.83%

�(3) �=�4(1) 21,46 (0,1,4,8),20,46 19,46 2.00% 3.51% 1.57%

�(3) �=�4(2) 20,46 (0,1,3,7),18,46 17,46 3.55% 5.54% 2.11%

�(3) �=�4(3) 20,46 (0,0,2,5),16,46 15,46 5.23% 7.49% 2.44%

�(1) �=�4(1) 21,57 (0,0,2,4),21,57 20,57 0.50% 1.33% 0.84%

�(1) �=�4(2) 21,56 (0,0,1,3),20,56 19,57 0.76% 1.77% 1.03%

�(1) �=�4(3) 19,57 (0,0,0,2),19,56 18,57 0.80% 1.87% 1.09%

�(2) �=�4(1) 26,56 (0,0,2,7),25,56 24,56 1.10% 2.35% 1.28%

�4 = 15 �(2) �=�4(2) 25,56 (0,0,2,6),23,56 22,56 1.85% 3.66% 1.88%

�(2) �=�4(3) 24,56 (0,0,1,4),21,57 20,56 2.95% 4.97% 2.12%

�(3) �=�4(1) 29,56 (0,2,5,10),27,56 25,57 2.05% 3.66% 1.67%

�(3) �=�4(2) 28,56 (0,1,3,8),25,56 23,56 3.47% 5.80% 2.48%

�(3) �=�4(3) 27,56 (0,1,2,5),23,56 20,57 5.11% 7.62% 2.71%

Table 1: Rnon, Rs, Ropt, CRs, CRopt and CD for 27 examples. For all examples K = 100,

h = 1 and L = 1. Stockout costs are �(1) = (100; 50; 25; 10), �(2) = (1000; 500; 100; 10),

�(3) = (10000; 1000; 100; 10). Demand allocations are �=�4(1) = (1=2; 1=4; 1=8; 1=8),

�=�4(2) = (1=4; 1=4; 1=4; 1=4), �=�4(1) = (1=8; 1=8; 1=4; 1=2).
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