eIITIN
\i @ P,?O

S %,
UNIVERSITY OF AARHUS § F5 &
DEPARTMENT OF MATHEMATICS %A& ' g

N
s TAs A\R‘f\\{-J

ISSN: 1397-4076

A GENERAL FRAMEWORK FOR p-ADIC POINT
COUNTING AND APPLICATION TO ELLIPTIC
CURVES ON LEGENDRE FORM

By Marc Skov Madsen
Preprint Series No.: 2 January 2004
Ny Munkegade, Bldg. 530 http://www.imf.au.dk

DK-8000 Aarhus C, Denmark institut@imf.au.dk



A General Framework fop—adic Point Counting
and Application to Elliptic Curves on Legendre
Form

Marc Skov Madsen

January 12, 2004

Abstract

In 2000 T. Satoh gave the firg—adic point countingalgorithm for elliptic
curves over finite fieldsSatoh’s algorithnwas followed by theSsSTalgorithm and
furthermore by theAGM and MSSTalgorithms for characteristic two only. All
four algorithms are important télliptic Curve Cryptography

In this paper we present a general framework eadic point counting and
we apply it toelliptic curves on Legendre formWe show how the\—modular
polynomialcan be used for lifting the curve and Frobenius isogeny toather-
istic zero and we show how the associatedltiplier gives the action of the lifted
Frobeniusisogeny on the invariant differential. The result is a p@iotnting al-
gorithm which is simpler and more practical than known atons for general
elliptic curves. The algorithm extends the MSST algoritltnodd characteristics.

Keywords: Point Counting, Elliptic Curves, Legendre For@ryptography,
A—modular form.

Thanks: J.P. Hansen, N. Lauritzen, P. Gaudry, T. Satoh, priga.

1 Introduction

In 2000 T. Satoh gave the firgt-adic point counting algorithm for ordinary elliptic
curves over finite fields of characteristic at least five (J16patoh’s Algorithmwas
soon extended to characteristic two and three ([22, 5, 4ptelLSatoh’s algorithm
was improved by T. Satoh, B. Skjernaa and Y. Tagu&88T [18, 17]). Motivated
by applications to cryptography the characteristic twaedaas been intensely studied
and improved. This has resulted in the Arithmetic—Georodtiean algorithmAGM,

[8, 15]) and Modified SST algorithmMSST [6]).

In this paper we give a presentation of the basic framewonk/figh p—adic point
counting algorithms can be explained.pAadic point counting algorithm consists of
two parts: Alifting part where the elliptic curve angd'th power Frobenius isogeny is
lifted to characteristic zero andreorm partwhere trace of the'th power Frobenius
isogeny and the number of points on the curve is determinedigrm computation.
The input to the norm computation is the action of the lifteddenius on the invariant
differential.

We apply the basic framework fgr-adic point counting to ordinamfliptic curves
on Legendre formi.e. elliptic curves on the forriy/Fq @ y? = X(x— 1)(x— 7). We
find that the lifting part can be done using themodular polynomialFurthermore we



find that the norm part is especially simple because theracfithe lifted p'th power
Frobenius isogeny on the invariant differential is givertly associatethultiplier.

The resultingp—adic point counting algorithm for Legendre elliptic cusve sim-
pler and more practical in odd characteristic than knownrdtlgms for general elliptic
curves. The algorithm may be seen as extending the MSSTithligoto odd char-
acteristics. We include examples and data from experinientharacteristic two to
nineteen.

Keywords: p—adic point counting, Elliptic Curves, Legendre Forkx;modular
form, A-Modular Polynomial, Elliptic Curve Cryptography, Satehlgorithm, AGM,
SST, MSST.
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2 Background Material

This section contains the basic framework fisiadic point counting, Elliptic curves on
Legendre form and the&—modular polynomial. We assume that the reader is familiar
with elliptic curves at least to the level of Silverman’s kq§20, p.1-188]). We also
assume the reader is familiar with theadic numbers and unramified extensions (See
Appendix A.1, [14] or [5]).

In the following p will denote a prime anéq the finite field withg = p" elements. We

let Qp denote thep—adic numbers and, the ring ofp-adic integers. We l&)q denote

an unramified field extension @f, of degreen andZ the associated ring of integers.
Elements oZq can be approximated by elementsZgf/ p‘Zq. The precision of the

approximation is given by, Asi grows the approximation improves. The elements of

Zq4/P'Zq can be represented by polynomials of degree at mest with coefficients



in Z/p'Z. This means that thp-adic integers are very practical for calculations on a
computer.

The surjectiveeduction modulo pnorphismZy — Fq with kernelpZq links char-
acteristic 0 and characteristic If x € Zq maps tox € Fq thenX is called thereduction
modulop of x andx is called dlift of X. We can lift other objects from characterisgic
to to characteristic 0 as well: Thgth power Frobenius map : Fq — Fq can be lifted
to theFrobenius SubstitutioR : Qq — Qq. The Frobenius Substitutichis the unique
element in the Galois group Gg)q, satisfying

Z(x) =xP modp

forallx € Zq.

2.1 The Basic Framework for p—adic Point Counting

In this section we present the basic framework by which ghadic point counting
algorithms can be understood.

Let E/Fq denote an ordinary elliptic curve, i.e. an elliptic curvetwhon—trivial
p—torsion subgroup. Le!Trq : E — E theq'th power Frobenius isogeny. We define the
trace of theg'th power Frobenius isogeny by

Tr(Frq) = Frq+ Flr\q

whereFr is the dual ofFry. The trace is in fact an integer. The numbeFg#rational
points on the elliptic curve is related to the trace by

#HE(Fq) = g+ 1—Tr(Frg). (1)

So it is enough for point counting to determine the trace.sT™ain be done using the
invariant differential.
Let @ denote the invariant differential da. We see that

Fi(@) + iy (@) = (Fig + Fig)* (@) = Tr(Fi)@.

Thus the action of the'th power Frobenius and its dual on the invariant differahti
leads to information on the trace, but only modplsince we are working in charac-
teristic p. To overcome this difficulty we lift the situation to charaistic 0.

In practice we lift thep'th power Frobenius isogerfr, : E — ZE to the unramified
extensiorQq of the p-adic number§p!. Then we use the following Theorem.

Theorem 2.1 LetE/Fq denote an ordinary elliptic curvér, : E — XE the p’th power
Frobenius isogeny anHry : E — E the g'th power Frobenius isogeny. Assumgs
is an elliptic curve reducing t&/Fq modulo p and thaFr, : E — ZE is an isogeny
defined oveRq and reducing td=r, modulo p. Lety denote the invariant differentials
on E. Note thato* is the invariant differential orZE.
There is a unique M Qg satisfying
1

Fro(w®) = o

1SinceE is ordinary the lift of thep'th power Frobenius isogeny exists and is unique up to isphiem
overQq (Theory ofcanonical lift[12, 13]). How this lift is found in practice is the contenttbg algorithms
by Satoh, Skjernaa, Gaudry, Harley and Vercauteren.




Furthermore pMe Zg and the action otfr\p on the invariant differentiado is given by
Fip (@) = (PM)oF.

Finally the trace of the g'th power Frobenius isogeny is giby

= 1
Tr(Frg) = Nog/q, (77) + Nog/@p (PM)
whereNq,/q, : Qq = Qp denotes the norm.
PrRoOOF Appendix A.2.

The result is an integer. The formulation and proof of Thao&1 is due to the
author. The idea to use the norm computation was first destiibthe paper [18] by
T.Satoh, B. Skjernaa and Y. Taguchi.

A p-adic point counting algorithm based on the above Theorerbealivided into
two parts. Alifting part where thg'th power Frobenius isogeny is lifted to charac-
teristic zero and aorm partwhere the trace of thg@'th power Frobenius isogeny is
determined by a norm computation.

We will be needing the following Lemma by Skjernaa [22] foe tlifting part of
our algorithm.

Lemma 2.2 Let E/Fq be an elliptic curve with (E) ¢ F.. Assume that FQq and
E’/Qq are elliptic curves reducing t& and=~E modulo p. Assume furthermore that
there exists a p-isogeny & E’ defined oveQq. Then the p—isogeny reducesdtahe
p’'th power Frobenius isogerly — ~E modulo p.

2.2 Legendre Elliptic Curves

We begin this section by restating a definition and a Projoosftom Silverman [20,
p. 53-55].

Definition 2.3 A Weierstrass equation is ilregendre fornif it can be written as
y? = X(x—1)(x—A)

We note that a Weierstrass equation in characteristic twotismooth. Thus an
elliptic curve on Legendre form is always defined over a fidldad or zero charac-
teristics. We also note that [20, Theorem V.4.1] gives aly @as/ to determine if an
elliptic curve on Legendre form is ordinary.

Let F denote a field with ch@F) # 2.

Proposition 2.4 Two elliptic curves E/F : y? = x(x— 1)(x—A) and E,/F : y? = Xx(x—
1)(x— W) on Legendre form are isomorphic over the algebraic closaref F if and
only if

1 B op—1
71 IJ'J 1_ u? u_ 17 'J }

Elliptic curves on Legendre form over finite fields have ralyeipeen studied in the
paper [2] by Auer and Top. We will be using the following Lemmdracted from the
proof of [2, Prop.2.2]..

1
Ae{w =
{“u

Lemma 2.5 Assumé, /Fq:y? =Xx(x—1) (x—A) is an elliptic curve on Legendre form.
Then Ejy) € Fzif and only ifA € F ..



2.3 TheA—modular polynomial

In this section we use the conceptobdular formgo justify the existence and proper-
ties of theA—modular polynomiaf2. For an introduction to modular forms see Lang
[10] or Schoeneberg [19].

It is well known that to every lattice in the complex planerthés an associated
elliptic curve on Weierstrass form (Silverman [20, Chaptd). An elliptic curve on
Weierstrass form can obviously be brought onto Legendra fiyr moving its 2—torsion
points using some fixed algorithm (Silverman [20, Prop IA]L So to every in the
upper complex half planel we have a lattic&Z + tZ in the complex plane and an
associated elliptic Curvey () : y? = x(x—1)(x—A(1)) on Legendre form. Thus we
have just defined a function: H — C. This function is rigorously defined and studied
in [1, p.277-282] and [3, Chapter 4]. It is shown thais a modular form for the
congruence subgroup modulo two.

Let p denote a fixed odd prime. Define: H — C by p(t) = A(pt). Using the
theory of Riemann Surfaces it can be shown that there existsique, monic and
irreducible polynomiafp(X,Y) € C(X)[Y] with (A, ) as root, i.e.

Qp()\a H) =0.

Furthermore it can be shown thap is a symmetric polynomial il andY with integer
coefficients. The polynomidl, has degre@+ 1 in each variable and it satisfies the
Kronecker relation

Qp(X,Y) = (X =YP)(XP—Y) modp )

We callQ, theA—-modular polynomial
TheA—modular polynomiafd, can be calculated in practice for “small” values of
p. See [3, p.133] for a discussion of this. F.ex.

Qa(X,Y) = (Y=X)*—128/X(1-Y)(1—X)(2—Y =X +2YX)

We will need the fact that the set pfisogenies between elliptic curves on Legen-
dre form (modulo isomorphism) is the affine curve given byxkhmodular polynomial
Qp. We state this as a Theorem.

Theorem 2.6 Let E,/C : y? = x(x— 1)(x— ) and B,/C : y? = x(x — 1)(x— A) be
elliptic curves on Legendre form.
There exists a p—isogeny : E, — E), if and only if the sef, %1, 1-y, ﬁ, T “;ul}
contains a root of the equation
QP(XJ)\) =0 (3)

If uis a root then there is an isogeny, : E, — E, defined oveQ(A, ).
PROOF (cf. [3, Chapter 4]).

So far the above definitions and properties are analogobstinéory of the modu-
lar form j and thej—modular polynomiab, used in Satoh’s algorithm. Now we state
a Lemma that, as far as the author knows, has no analogue wladinglwith j and
®p.

Lemma 2.7 Let E,/C : y? = x(x—1)(x— ) and B, /C : y? = X(x— 1)(x— A) be elliptic
curves on Legendre form wip(1,A) = 0. Lety, : E, — E) denote a p—isogeny as
in Theorem 2.6. Leaby, (resp.wy) denote the invariant differential onyEresp. §).



The action of}, on the invariant differential is given by

i 1
Wp(oy) = M,
where MV, satisfies
2 HI-—p)dr
P A@d=MN)du
dQp
with d %

PrRoOOF (cf. [3, Chapter 4]).

Remark 2.8 There exists modular forms k and u satisfyi{g) = k(1) = u8(t). They
also induce modular polynomials having properties as almmreesponding to the el-
liptic curves K : y? = x(x— 1)(x—k?) and E, : y? = x(x— 1)(x— u®). The associated
k—and u—modular polynomials are even simpler thandtheodular polynomial. F.ex.
for p = 3 the u—modular polynomial is

X4 — Y4 4 2XY(1— X2Y?)

3 Point Counting on Legendre Elliptic Curves

In this section we deploy the framework fpradic point counting to ordinary elliptic
curves on Legendre form. We assume odd characteristics ealdnaith the case of
characteristic two in a remark. We give pseudo code for therdthm and references
for some of the more general and technical aspects of theithign We also give

examples and data from experiments.

3.1 The Algorithm

Let p denote an odd prime argp= p" a power ofp. LetE5/Fq: y? =X(x—1)(x—A)
denote an ordinary elliptic curve on Legendre form witl F 2. LetFry: Ey — Exy
denote thg'th power Frobenius isogeny.

Lifting Part

We will now see that th@'th power Frobenius isogeny can be lifted to character-
istic zero by solving an equation involving themodular polynomia®, € Z[X, Y] of
Section 2.3.

Using the Kronecker relation (2) we see that

- = dQp — =~ dQp — =~
Qp(3A\,A) =0 and W(Z)\,)\) #0 and W(Z AN =0
This implies, as pointed out by Vercauteren in [4], that ¢hisra unique\ € Zq satis-
fying B
Qp(3\,A\) =0 and A=A modp. (4)

Then the Legendre elliptic cuni, /Qq : y* = X(x— 1)(x— A) reduces tdEy /Fq mod-
ulo p and furthermore from Theorem 2.6 we know there ip-dsogenyE, — Eg;.
According to Lemma 2.2 we may assume that this is a lift ofgthth power Frobenius
isogeny. We denote the liftgglth power Frobenius by Rr: Ey, — Es.



Norm Part

We determine the action of the liftgalth power Frobenius isogeny on the invariant
differential and the trace of thgth power Frobenius isogeny.

Letwandw?” denote the invariant differentials & andEy,. According to Lemma
2.7 the action of Ry on the invariant differentiab? is given by Fg(ooz) = Mipoowhere

_3A(1—3N) dQp/dX(3A,N)
(PMo)* = =P~ T 237 deyav (T )

It follows from Theorem 2.1 that
— 1
Tr(Frq) = NQq/Qp(M—p) +Ngy/q, (PMp).

The number ofF¢-rational points orE, can be found from the relationE§ =

g+ 1—Tr(Frg). In practice we only need to determine(Fry) modulo pV, where
N = [log,(4,/q+1)]. This follows from the inequalityTr(Frq)| < 2,/q (Hasse-Weil).

Pseudo code
We summarize the above by giving a pseudo code algorithm.

Algorithm 1: OrderLegendre
In A€ Fq\Fp

Out : The number ofq—rational points oEj : y* = x(x— 1) (X=A).
External: SolveModular, pAdicNorm, HasseWitt, SquareRoot

begin
N = [log,(4,/a+1)1; ~
A = SolveModular(Qp,A,N + 1);
. dQp/dX(EAN) yiv.
to = pAdicNorm(— pm, N);
t = SquareRoot(tp, HasseWitt(A),N);
if t >2,/qthen
L t=t—p";
return g+ 1—t;
end

The algorithmSolveModular solves the modular equation, i.8olveModular
determines a satisfying

Qp(ZAA) =0 modp™™t and A=X modp
the algorithmpAdicNorm gives thep—adic norm of elements ifig, i.e.

~ dQ,/dX (A, ZA) .
t2 = Noy/ep (_dep/dY()\,Z)\) modp’,

The algorithmHasseWitt calculates the trace modujoof the q’'th power Frobenius
isogeny orE; as described in Corollary A.15. The algorittijuareRoot calculates
the square root modulpV.



The algorithm$olveModular andpAdicNormare essential tp—adic point count-
ing so they have been given a lot of attention and differerdivas are at hand. There-
fore we content ourselves to giving the references [18, 17, @1]. The algorithm
SquareRoot can based on Newton iterations together with a trick. Thekti$ to
calculate the inverse of the square root first, because teeavwid inversions.

Remark on characteristic two

We end this section by relating our algorithm to the MSST athm in characteris-
tic two. In characteristic two a Weierstrass equation ondrglye form is not a smooth
curve and therefore not an elliptic curve. Instead (Seef§2]should consider ordinary
elliptic curves on the form

Ea/Fq: Y +xy=x+73g

In [6] Gaudry describes the MSST algorithm which is an aldponifor point count-
ing on ordinary elliptic curves on the form

Eayz6/Fq: Yo +Xy=>3+2xX+3
The MSST algorithm can be described in the same way as Algor&.1. It uses the
k—modular polynomigifor the lifting part and the associated multiplier for thermo
part.
3.2 Examples
Example 3.1 Our setupis p=3, n= 7, Fq = Fp[X /(X' +x®+ 233 + x* +x*+ 1) and
Zq=ZpX/ (X +x8+2C +x*+x3+1). We letd = [x] € Fq anda =[] € Zq. We
study the elliptic curve
Eyx/Fq:Y2=X(X=1)(X=7)
with A = 2a%+ @+ o + 2. From [3, p.105] we find
Q3(X,Y) = (X=Y)*—128XY(1-X)(1-Y)(2—X—Y +2XY)

The calculations of the algorithm gives

N = 5
A = 39%°+630°+30% + 1160 + 1210° + 550 + 29  modpN*t
t, = 157 modp"

#E,(Fq) = 2168

Example 3.2 In the Tables below we give some timings for our implemeontiti We
used a 600MHz Thinkpad X20 laptop running Linux versionlB4.4. The implemen-
tation was done in C++ using the gcc compiler and the librarTL* and Gnu MP.

2k is a modular form satisfying? = A. See [3, Chapter 4]

3In characteristic two we are using the MSST algorithm withemy special optimizations for character-
istic two. In odd characteristic the dominant step of themepmputation is the Teichmuller lift which is
not needed in characteristic two. This explains the biggase when going from characteristic two to three.

“Number Theory Library. http://www.shoup.net.

Shttp://mww.swox.com/gmp!/.



We used the descriptions in [17] for ti$@1veModular and pAdicNorm algorithms.
We remark that asymptotically faster algorithms have beaepgsed ([7, 11]).

TheA—modular polynomials where found in [3, p.127ff+Exercisg.4a]. The size
of the fieldFq is given by the number of “bits”, where g 2°',

p | 50bits | 100bits| 150bits| 200bits| 300bits| 500bits
2 | 0.04s| 0.275s| 0.915s| 1.995s| 6.56s | 17.415s
3 | 0.04s| 0.16s | 0.54s | 1.02s | 3.31s | 14.14s
5 | 0.03s| 0.1s 0.3s 0.62s | 2.21s | 7.88s
7 | 0.02s| O0.1s 0.23s | 0.62s | 1.64s 8.25s
11| 0.02s| 0.13s | 0.27s | 0.51s | 1.84s | 9.14s
13| 0.02s| 0.09s 0.3s 0.56s | 2.05s 8.9s
17| 0.03s| 0.11s | 0.36s | 0.68s | 2.48s | 6.83s
19| 0.04s| 0.12s | 0.41s | 0.78s | 2.89s 7.8s

Table 1: Lifting part

p | 50bits | 100bits| 150bits| 200bits| 300bits| 500bits
2 | 0.04s| 0.15s | 0.49s | 0.665s| 2.085s| 4.67s
3 | 0.08s| 0.31s | 0.94s | 1.565s| 4.795s| 20.085s
5 | 0.065s| 0.235s| 0.63s | 1.17s | 3.31s | 10.335s
7 | 0.03s| 0.25s | 0.45s 1.2s 2.215s| 9.44s

11| 0.03s | 0.175s| 0.48s | 0.755s| 2.315s| 9.525s
13| 0.04s | 0.185s| 0.52s | 0.78s | 2.41s | 9.535s
17| 0.04s| 0.2s 0.6s 0.89s | 2.69s | 6.11s
19 | 0.045s| 0.225s| 0.65s | 0.975s| 2.93s | 6.61s

Table 2: Norm part

The tables shows that the algorithm is practical for crypagahic applications.

3.3 Final Remarks

In this paper we have given the basic frameworkgeadic point counting and applied
this to elliptic curves on Legendre form. This results in #itient algorithm for point
counting on these curves using themodular polynomial. It would be interesting to
be able to compute the-modular polynomial for higher values pfthan described in
the literature ([3, p. 133]) and thus extending the valuep fifr which the algorithm
is practical.

Even though th€anonical Liftmay be avoided in the explanation of mamyadic
point counting algorithms it lies beneath all of them. Sodtuld be interesting to have
a better understanding of it. F.ex. it would be interestmbdve elementary proofs for
the existence and uniqueness of the canonical lift for emgielliptic curves.



A Appendix

A.1 The p—Adic Numbers and Unramified Extensions

In this section we provide the reader with an introductioth®mp—adic numbers, un-
ramified extensions and the Frobenius substitution. Theegmtation is very much
inspired by the excellent treatment in Neukirch [14].

Let p denote a prime.

A.1.1 Thep-Adic Numbers

Everyx € Q\ {0} can be written uniquely as= ¥p' whereu,v € Z \ (p) andi € Z.
We define

Vp(X) :=1.

Furthermore we letp(0) := o. We callvy : Q = ZU {} the p—adic valuatiorof Q.
It has the following properties

1. vp(X) =0 & x=0.

2. Vp(xy) = Vp(X) + Vp(y)-

3. vp(x+Y) > min{vy(x),vp(y)}, with equality if vp(x) # vp(y).
The p—adic absolute valug|, : Q — R is defined by

Xp=pel.
It is a called anon—archimedian absolute valsece it satisfies
1. |x|p > O for allx € Q with equality iff x = 0.

2. |xylp = |X|plylp for all x,y € Q.
3. |x+Ylp < max{|X|p, Iylp} with equality if|X|p # |yip.

Imitating the construction dR as the completion a with respect to the ordinary
absolute valu¢| on Q we can define thg—adic number), as the completion o
with respect to thg—adic absolute valug|p.

To be more explicit leR denote the set of Cauchy sequence®iwith respect to
|-|p andN the set of null sequences, i.e. sequences convergingRasta ring andN a
maximal ideal inR. Let

Qp:=R/N
ThenQy is a field withQ C Qp since every elemente Q can be viewed as the constant
sequencéx), € R. The p—adic valuation and absolute value are extended to elements
x=(X) € Qp by

Vp(x) = lim vp(x)
Xp = limxi[p

Note thatix|, = p~** for all x € Q,. As for the field of real numbers one proves

Proposition A.1 The fieldQp is complete with respect {9, andQ is a dense subset.

10



LetZp:={x€ Qp| |X|p < 1}. This easily seen to be a ring and the closurg af
Qp with respect td-|p. The elements of , are calledp—adic integers We note that
the set of units i}, = {x € Zp | x|p = 1} and thatpZp = {x € Zp | [X|p < 1}. We
also note thap(x) = max{i € N | xe p'Zp} forall x € Z,. So a number is small with
respect tq-|, if it is divisible by a high power op.

Proposition A.2
Z/p"Z~Zp/p"Zp

foralln>1.

PrROOF The injectivity of the canonical map is clear. The surjetfifollows from
the following argument: Lex € Z, be given. Sinc&, is the closure oF there exists
a€ Zsuchthaix—alp, < p™. l.e.x—ae p"Zp.

The surjectiveeduction modulo pnorphismZ, — Fp with kernelpZ , links char-
acteristic 0 and characteristic If x € Z, maps tox € F thenxis called thereduction
modulop of x andx is called dift of x.

Lemma A.3 A seriesy;x; in Qp is convergent iffimi_«|Xi|p = 0.
PrROOF
= Well known.

<: if M > Nthen

M N M
Xi— ) Xi|p= Xilp< max {|x
|i; i i;) ilp |i=g+1 I|p_N+1§i§M{| i|p}

So (3N ox)n is a Cauchy sequence @y, and therefore convergent.

Corollary A.4 Every element & Z has a unique expression asiaylor seriesn p

2=3 a p
i=
with g € {0,1,...,p—1}.
Every element g Q, has a unique expression ad.aurent seriefn p

with g € {0,1,...,p—1}.

Proposition A.2 and Corollary A.4 are essential for the pecat understanding of
Zp. Anelementy aip' € Zq as above is approximated by the elemgfit! aip' €
Z/pNZ. Notice that the part we throw away hgsadic norm at mosp~N. So the
greater theN the better the approximation. Furthermore the @y@"\Z is very easy
to implement on a computer. The reader should compare thietsituation when we
represent the real number system on a computer. We can omdifeha finite number
of decimals so we cut off from a certain point. But the moremiats we use the better
the approximation.
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A.1.2 Unramified Extensions

Proposition A.5 LetQp C K be a finite field extension of degree n. THgponQp
may be extended uniquely to a non—archimedian absolutewalK. The extension is
given by the formula

lafp = {/Nk/q,(@)  ,YaeK
Furthermore K is complete with respect|tf.
PROOF [14, Prop.l1.4.8].

For a finite field extensio@, C K we define

Ok = {xeK|xp<1}
Ok = {xeoc|Xp=1}
M = {Xe€Ok||Xp<1}
Nk := Ok/Mk

We note thatg is the set of units ir0x and Mk is a maximal ideal irOx. 'k is a
field and sincd=, ~ Z,/ pZ, we have a field extension

Definition A.6 A finite field extensio®p C K of degree n isunramifiedif the field
extensiorFp C Ik (is separable and) has degree n.

Proposition A.7 Every unramified extension K @, of degree n is on the form

K=~ Qp[/(f(x)

where fe Z[x] is a monic polynomial of degree n and the reductfos F[X] is irre-

ducible. Furthermoredx ~ Z[x]/(f(x)), Mk = (p) andlk ~ Fp[X]/(f(x)).
Conversely a finite extension Qf, on the above form is unramified.

PROOF SinceFp C Ik is a separable field extension of degrethere exists a monic,
irreducible polynomiaf € Fp[x] of degreen such that

Mk = Fpl/(T(x))

Let f € Z[x] denote a monic lift off, i.e. f is monic and reduces tbmod p. A small
exercise shows that thate Qp[x] is irreducible.

SinceOk / Mk ~ Fp[X]/(f(x)) there exist® € Ok such thatf (8) € M. By Hensel's
Lemma ([14, 11.4.6]) there existy € Ok such thatf (@) = 0 andy = @ mod M.
SinceQp C Qp[X]/(f(x)) has degreea we find thatk = Qp[W] ~ Qp[X]/(f(X)).

Everyx € Ok \ {0} can now be written

n—-1 )
p™x= Z}a@w'
=
withn> 0, a € Z, and at least ong; € Z,. Assumen > 0. Reducing mo@ we see
that
n-1 .
0= anw'
|=

But sincel is a root of the irreducible polynomidl € Fy[X] of degreen all the’s
must be zero (Contradiction). l.e=0.
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If x e Mk a similar argument shows that (p).

Corollary A.8 There exists (up to isomorphism) exactly one unramifiechsida of
Qp of degree n. It is denoted §q where g= p". The corresponding ring of integers
is denoted by q.

ProOF LetK andL be unramified extension €f, of degree. Since every every finite
field of degreeg = p" is uniquely determined we know thBt ~ Ik ~ Fp[X]/(f(X))
for some monic, irreducible polynomidle Fp[X of degreen. If f € Z[x] is a monic
lift of f of degreenthen it follows directly from the proof of Proposition A.7ah

K= Qq[/(f(x) ~L

For the rest of this section we assuf@gis given as in Proposition A.7 by a poly-
nomial f € Z[x] monic of degree and with irreducible reduction modufpand we let
a=x+(f) €Qq

Corollary A.9
Zq/P"Zq~ (Z/P"Z)X/(F(¥)
foralln> 1.
The surjectiveeduction modulo pnorphismZy — Fq with kernelpZ links char-

acteristic 0 and characteristic If x € Zq maps tox € Fq thenX is called thereduction
modulop of x andx is called dift of x.

Corollary A.10 Every element & Zq has a unique expression asfaylor seriesn p

oo n-1

z=5 (Y ajal)p
2, 2%
with & ; € {0,1,...,p—1}.

Every element & Q, has a unique expression ad aurent seriegn p

[ee]

-1
z= 3% (5 aol)pf
PRPRL
with & ; € {0,1,...,p—1}.

Corollary A.9 and A.10 are essential for the practical ustherding oZ4. An ele-
menty;” (3 =5a,jal) p' € Zq as above is approximated by the elemgfig' (3 -5 ai ja))p' €
(z/pNZ)[X]/(f(x)). Notice that the part we throw away hpsadic norm at mogp—N.

So the greater thid the better the approximation. Furthermore the (BgpNZz)[x]/(f(x))
is very easy to implement on a computer. The reader shoulghamsrthis to the situ-
ation when we represent the real number system on a compdiéecan only handle
a finite number of decimals so we cut off from a certain poinit e more decimals
we use the better the approximation.
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A.1.3 The Frobenius Substitution

Corollary A.11 LetX : Fq— Fq denote the p'th power Frobenius. The Galois group
Galp,/q, is cyclic of degree n generated by the unique elerzer@q — Qq making
the following diagram commutative

Zq—2>74

"

(The vertical map is reduction mod p).
Definition A.12 X is called theFrobenius substitution

PROOF Write Qq= Qp[X]/(f(x)) with f asin the Proposition. Thefy = Fp[X]/(f(x)).
Let 8 = X + () and8 = X + (). The roots off are8,(@),...,=" *(@). It fol-
lows from Hensel's Lemma that for eatlr 1 there exists a uniqug; € Zq such that
f(yi) =0 andy; =3'(8) modp. We define € Gal,q, by

2:Qq — Qq
0 — U1

Then sincef (1(6)) = 5 f(8) = 0 andx'(8) = 6P we see thak' (8) = ;. It follows
that Ga{Qq/Qp) =< Z > and the diagram is commutative.
A.2 Proof of the Main Theorem of p—adic Point Counting

Theorem A.13 Let E/Fq denote an ordinary elliptic curvetry : E — ZE the p'th
power Frobenius isogeny artey : E — E the g'th power Frobenius isogeny. Assume
E/Qq is an elliptic curve reducing t&/Fq modulo p and thafr, : E — 2E is an
isogeny defined ove®q and reducing toFr, modulo p. Letw and w> denote the
invariant differentials on E andE.

There is a unique Mt Qq satisfying

):M&)

Furthermore pMe Zg and the action olfr\p on the invariant differentiado is given by
Frp () = (PM)G.
Finally the trace of the g'th power Frobenius isogeny is giby
— 1
Tr(Frg) = NQq/Qp(M) + Ngg/q,(PM) (5)
whereNq,/q, : Qq = Qp denotes the norm.

PROOF An elliptic curve is a genus 1 curve and therefore the astmt@q—vector
space of holomorphic differentials is 1-dimensional. Tihiplies that the set consist-
ing of the invariant differential is a basis. So the existeand uniqueness M € Qq

is clear (The action of Fyis not zero since characteristic 0).
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The action ofF/r\p on the invariant differential is given by the following calation
where we use the fact that fis a p-isogeny (degrees are invariant under reduction
([21, Prop. 11.4.4])).

pw® = (Frpo Frp)*(00%) = Frp (Fr5(w?)) = —Frp ()

Since the elliptic curv& and the isogeny kris defined oveQq we can apply the
Frobenius substitution to them. Thus we are able to drawdhewing commutative
diagram where the vertical arrows denote reduction mogulo

Frg

n—-1
T Fl’p ZlE ZFI’p Z”*ZFrpz l Ezn—l':rp T
— ﬁ'p _ ﬁ'p ﬁ'p 1. ﬁ‘p —
E SE STE E

ﬁ‘q

The isogeny Fyis the composition of the liftegh'th power Frobenius isogenies. We
see that it reduces to tligth power Frobenius isogeny modufp The action of Fg on
the invariant differential can be found by the following @alation where we use the
fact that the Galois group for the field extensiQg/Qp is generated by the Frobenius
substitution.

1 1 1 1

Fra(w) = Frpo2Fryo---o0 (Zn_lFr;‘))(u)) MM eI T NQq/Qp(M)w

In the same way we find thEAtr;((n) = Ngqg/q,(PM). Therefore

~ 1
Tr(Fie)o= (Fra + P = (Noy, () + Noyo,(PM) ) ©

Combining [20, Prop V.2.3] and [21, Prop I1.4.4] we see thdFiy) = Tr(Frq) and so
Equation (5) follows.
A small argument using Equation (5) shoﬁr% Zq. So reducing modulp we find

fr’;(mf) = (MT)G). SinceFrp, is inseparable it follows from [20, 11.4.2.c] thaﬁ =0
and thusﬁ € pZq. An argument as before shows thl € Zq and using the fact that

F;Eo is separableH is ordinary) it follows tha{ pM) # 0 and thuspM € Zg

A.3 The Hasse—Witt Matrix

In point counting we are often able to find the square of theetiaf theq'th power
Frobenius isogeny. In order to extract the trace itself byida iterations we need the
trace modula. In odd characteristic we can find this by using the Hasse-Wtrix
as stated in Manin [9]. In point counting this is an often nmmed but never clearly
stated fact. So we think its time to give an elementary probé proof is an extension
of the simple casg = p for elliptic curves as found in Manin [9].

Let p denote an odd prime argp= p".
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Proposition A.14 Let E/Fq: y? = f(x) denote an elliptic curve on Weierstrass form
andfrq E — E the q'th power Frobenius isogeny. Leta denote the k1 coefficient

of f( ) . Then
Tr(Frg) = Ngy/r,(8p-1) modp

PROOF We see that

1+q=Tr(Frq) =#E(Fg) =1+ 0+ Z: (L:‘)>

g-1
v

where the brackets denote the Legendre symbol. §adir= — Yaerq f(Q) mod p.

- -1 - a-1 .
If we write (x) 2" = 2:02 bix' we see thay qcr, fa)z = 2?3 bi ¥ qer, O Using
the fact thaf is cyclic it is easy to see

Zaizo (i#0 modg—1) and Zam(q_1)=—1 (m>1).
ae a

€rq

So
Tr(Frq) =bg—1 modp

Now we findbg_;. We see that

1 Mt P14

(9% =[]0

? 3 ajxl then(f(x)"z' )P 21 2 ap xIP'. Since the only solution of

Iffx)% =3
Mo+ mp+...+m_1p"t=qg-1
with0< m < 3'“%1 is {my = p— 1}; it follows that
n—1

b_l— a. N[: F(a l)
q IEL p—1— a/ p—

Corollary A.15 LetE;/Fq:y* =x(x—1) (x—A) denote an elliptic curve on Legendre
form. Then B
Tr(Frg) = (—1)™Hp(A) modp

where Hy(t) = 3™, (Mt and m= 251,

PrROOF Use Silverman [20, Proof of V.4.1.b].
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