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On functors associated to a simple root

Volodymyr Mazorchuk and Catharina Stroppel

Abstract

Associated to a simple root of a finite-dimensional complex semisimple Lie
algebra, there are several endofunctors (defined by Arkhipov, Enright, Frenkel,
Irving, Jantzen, Joseph, Mathieu, Vogan and Zuckerman) on the BGG cat-
egory O. We study their relations, compute cohomologies of their derived
functors and describe the monoid generated by Arkhipov’s and Joseph’s func-
tors and the monoid generated by Irving’s functors. Natural transformations
between elements of these monoids are investigated. It turns out that the
endomorphism rings of all elements in these monoids are isomorphic. We also
use Arkhipov’s, Joseph’s and Irving’s functors to produce new generalized
tilting modules.

1 The results

Associated to a simple root of a semisimple complex Lie algebra, there exist several
endofunctors on the principal block of O0. These functors can be used to describe
the structure of the category O0 (see e.g. [Jo1], [Jo2], [AS]), or to construct principal
series modules (see e.g. [AL]). They also give rise to derived equivalences via tilting
complexes (see e.g. [Ric], [MS]). The Temperley-Lieb algebra was categorified in
[BFK] via such endofunctors restricted to certain parabolic versions of O0. In that
context also the natural transformations play a very important role. In the following
we study the interplay of endofunctors associated to a simple root on the principal
block of the category O, some natural transformations between them and explain a
connection to tilting theory. To be more precise we need to introduce some notation.

Let g be a semisimple complex finite-dimensional Lie algebra with a fixed trian-
gular decomposition g = n−⊕h⊕n+. Let W be the corresponding Weyl group with
the length function l, the unit element e, the longest element w0, and the Bruhat
ordering <. The letter ρ denotes the half-sum of all positive roots. There is the
so-called dot-action of W on h∗ defined as w · λ = w(λ + ρ)− ρ. Let O denote the
BGG-category O introduced in [BGG] and O0 its principal block, that is the inde-
composable block of O containing the trivial g-module. For a simple reflection s let
gs denote the corresponding minimal parabolic subalgebra of g, strictly containing
h ⊕ n+. We denote by Os

0 the corresponding parabolic subcategory, which consists
of all locally gs-finite objects from O0. We call a module s-free, if none of the com-
position factors in its socle is gs-finite. Let C = S(h)/(S(h)W ·

+ ) be the coinvariant
algebra of W with respect to the dot-action. Its subalgebra of s-invariants (under
the usual action) is denoted by Cs (see [So1]). For x ∈ W we denote by ∆(x) ∈ O0

the Verma module of the highest weight x · 0 and by P (x) its projective cover with
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simple head L(x). Associated to a fixed simple reflection s we have the following
endofunctors of O0:

• the translation functor θ = θs through the s-wall;

• the shuffling functor C = Cs, defined as the cokernel of the adjunction mor-
phism adjs : ID → θ (see [Ir1]);

• the coshuffling functor K = Ks, defined as the kernel of the adjunction mor-
phism adjs : θ → ID (see [Ir1]);

• Zuckerman’s functor Z = Zs given by taking the maximal Os
0-quotient;

• Joseph’s completion G = Gs defined in [Jo1];

• Arkhipov’s twisting functor T = Ts (see e.g. [AS]);

• The functor Q given as the cokernel of the natural transformation g : ID → G
(for the definition of g see [Jo1, 2.4]);

• Because of [KM, Section 4] we call E = G2 Enright’s completion functor.

The functor Z can be characterized as the functor taking the maximal quotient
which is annihilated by T (or, equivalently, by G). We define Ẑ : O0 → O0 as the
endofunctor given by taking the maximal quotient annihilated by C (or, equivalently,
by K), i.e. the maximal quotient containing only composition factors of the form
L(y), y < ys. Although the definition is very similar, the properties of the functors
Z and Ẑ are quite different (see Remark 1.2 and Theorem 2 below).

Let d be the usual contravariant duality on O0. For an endofunctor X of O0

we denote by X′ the composition X′ = dXd. If X1, X2, Y are endofunctors on
O0 and h ∈ Hom(X1, X2) we denote by hY the induced natural transformation in
Hom(X1Y, X2Y). For h ∈ Hom(X1, X2) we also set h′ = d hd ∈ Hom(X′

1, X
′
2).

In Section 2 we give a more elegant proof of the fact G ∼= T′ from [KM]. This re-
sult allows as to simplify the exposition and redefine Arkhipov’s functor as T = G′.
In Section 2 we also prove some similarities between the pairs (T, G) and (C, K)
of functors (Proposition 2.4), but also show some remarkable differences (Proposi-
tion 2.6).

For a right/left exact endofunctor F on O0 we denote by LF/RF its derived
functor with i-th (co)homology LiF/RiF . Our first result is the following theorem:

Theorem 1. There are the following isomorphisms of functors:

1. R1K ∼= Ẑ.

2. R1G ∼= Z, in particular R1G ∼= ID on Os
0.

3. L1Z ∼= Q, in particular Q ∼= Q′.

4. RiG2 ∼=


ZG if i = 1,

Z if i = 2,

0 if i > 2.

and RiK2 ∼=


ẐK if i = 1,

Ẑ if i = 2,

0 if i > 2.
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Dual statements hold for Z′, T, Ẑ′, and C.

Remark 1.1. RiG ∼= 0 for i > 1 by [AS]; L2Z ∼= Z′ and LiZ ∼= 0 if i > 2 follows
from [EW], and RiK ∼= 0 for i > 1 follows from [MS]. �

Remark 1.2. The derived functor LẐ has a more complicated structure than LZ.
This is already evident for the Lie algebra sl3. In fact, by a direct calculation one
can show that in this case L6Ẑ 6= 0. It follows that, in general, there is no involutive
exact equivalence F on O0 sending L(x) to L(x−1). The same statement can also
be obtained using the following general argument:

Let A be a finite-dimensional associative algebra and Λ be an indexing set of the
isoclasses S(λ), λ ∈ Λ of simple A-modules. Assume that F is an exact equivalence
on A−mod such that F (S(λ)) ∼= S(σ(λ)) for some permutation σ on Λ. For J ⊂ Λ
let ZJ denote the functor given by taking the maximal quotient containing only
simple subquotients indexed by J . Then it is easy to see that the functors F−1Zσ(J)F
and ZJ are isomorphic.

Let g = sl3 and s, t be the two simple reflections. Let J = {e, t, ts}, Ĵ = {e, t, st}
and J ′ = {e, s, ts}. Then J ∼= Ĵ via w 7→ w−1 and J ∼= J ′ via ww0 7→ w−1w0.
By definition we have Z = ZJ , Ẑ = ZĴ , and Ẑt = ZJ ′ . It is easy to check that

ZP (t) has length 4, but both, ẐP (t−1) and ẐtP (s) = ẐtP ((st)−1w0), have length
3. In particular, there is neither an involutive exact equivalence sending L(x) to
L(x−1), nor an involutive exact equivalence sending L(xw0) to L(x−1w0). This is
very surprising. �

We describe the monoids generated by {G, T} and {C, K} respectively:

Theorem 2. The functors T and G satisfy the relations

TGT ∼= T, GTG ∼= G, T3 ∼= T2, G3 ∼= G2,

T2G ∼= T2, G2T ∼= G2, TG2 ∼= GT2,

and their isoclasses generate the monoid S = {ID, T, G, TG, GT, T2, G2, TG2} of
(isoclasses of) functors. The columns and rows of the following egg-box diagrams
represent respectively Green’s relations R and L, on S (see [La, Chapter II]):

ID
G TG

GT T
G2 T2 GT2

Theorem 3. The functors C and K satisfy the relations

CKC ∼= K, KCK ∼= K, C3K ∼= C2, K3C ∼= K2,

C2K2C ∼= C2K, K2C2K ∼= K2C, CK2C2 ∼= KC2, KC2K2 ∼= CK2.

Assume that s does not correspond to an sl2-direct summand of g. Then the iso-
classes of the functors C and K generate the (infinite) monoid

Ŝ = {ID, KC2K ∼= CK2C, Ki, Ci, KCi, CKi, K2Ci, C2Ki : i > 0}.

The columns and rows of the following egg-box diagrams represent respectively Green’s
relations R and L, on Ŝ:

ID
K CK

KC C
Ci, i > 1, Ki, i > 1, CKi, KCi,

C2Ki, i > 0 K2Ci, i > 0 i > 1, KC2K

The only idempotents in Ŝ are ID, KC, CK, C2K2, K2C2, KC2K.
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Before describing morphism spaces between such functors, we want to give an
impression of their rather complex interplay. We need some preparations to for-
mulate the corresponding Theorem 4, in which we show relations between functors
from S.

According to [AS, Remark 5.7], T is left adjoint to G and g′ is up to a scalar
the composition of T(g) with the adjunction morphism TG−→ID. We fix a′ ∈
Hom(TG, ID) such that g′ = a′ ◦ T(g) and set a = d(a′)d (the existence of a′ also
follows from the independent result Hom(TG, ID) ∼= C of Theorem 5 which ensures
that up to a scalar there is only one natural transformation “of degree zero”). Let
z : ID→→Z, and p : G→→Q be the natural projections, i = d(p)d, m′ = (T2(g))−1◦ iTG,
and m = d(m′)d. We will see later that all these maps are well-defined.

Theorem 4. Figure 1 presents a diagram of endofunctors on O0 for some isomor-
phisms α and h. One can choose h such that all configurations containing only solid
arrows commute. The sequences labeled by numbers are exact.
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Figure 1: Commutative diagram involving T and G

We prove the following result on natural transformations between arbitrary com-
positions of G and T :

Theorem 5. 1. For X ∈ S there is a ring isomorphism End(X) ∼= C.

2. For X, Y ∈ S we have Hom(X, Y) 6= 0 and this space is given by the X-row

4



and Y-column entry in the following table:

X \ Y ID G T GT TG G2 T2 GT2

ID C C 1 C 2 C 3 4
G 1 C 5 4 1 C 6 4
T C C C C C C 4 C

GT 2 C 1 C 7 C 8 4
TG C C 4 C C C 4 C
G2 3 4 6 4 8 C 9 4
T2 C C C C C C C C

GT2 4 C 4 C 4 C 4 C

.

The spaces described by the same number are isomorphic and we have the
following inclusions:

A : 7
� � // 2

� � // 4
� � // C B : 8

� � // 3
� � //� n

��=
==

==
==

6

1
0�

@@�������
9

C : Cs � � // 5

3. There is an isomorphism of rings End(Z) ∼= Cs.

We describe the endomorphism spaces of the elements from Ŝ and natural trans-
formations between the idempotents in the following theorem:

Theorem 6. 1. For X ∈ Ŝ there is a ring isomorphism End(X) ∼= C.

2. For idempotents X, Y ∈ Ŝ the space Hom(X, Y) is given by the X-row and
Y-column entry in the following table:

X \ Y ID CK KC C2K2 K2C2 KC2K

ID C 1 C 2 C 3
CK C C C 4 C C
KC 1 5 C 2 C 3

C2K2 C C C C C C
K2C2 2 2 4 6 C 4
KC2K 3 3 C 4 C C

.

The spaces described by the same number are isomorphic and we have the
following inclusions:

5 ↪→ 1 ↪→ 3 ↪→ C, 4 ↪→ C.

Remark 1.3. The coinvariant algebra has a natural Z-grading given by putting
h in degree one. Using the graded versions of C and K from [MS] (and a similar
construction for G and T) we get isomorphisms of graded vector spaces as listed in
the theorem. �
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Let P = ⊕x∈W P (x) be a minimal projective generator of O0 and set I = dP .
For M ∈ O0 the category Add(M) is defined as the full subcategory of O0, which
consists of all direct summands of all finite direct sums of copies of M . Recall (see
[Wa]) that M ∈ O0 is called a generalized tilting module if Ext>0

O0
(M, M) = 0 and if

P has a finite Add(M)-coresolution, i.e. there exists an exact sequence 0 → P →
M0 → · · · → Mk → 0 of finite length k with Mi ∈ Add(M) for 1 ≤ i ≤ k. If,
additionally, the projective dimension of M is one then M is called a classical tilting
module, see [HR]. Dual notions define generalized and classical cotilting modules.
For a fixed reduced expression w = s1 · · · sk ∈ W we set Tw = Ts1 · · ·Tsk

and
Gw = Gs1 · · ·Gsk

. The resulting functors are (up to isomorphism) independent of
the chosen reduced expression (see [Jo1], [KM]). The following result describes a
lattice of (generalized) tilting and cotilting modules in O0 constructed using twisting
and completion functors.

Theorem 7. Let w ∈ W .

1. Each of the modules Pw = TwP and Iw = GwI is both, a generalized tilting
module and a generalized cotilting module.

2. We have the following equalities for projective and injective dimensions:

projdim(Pw) = injdim(Iw) = l(w)

and

injdim(Pw) = projdim(Iw) = 2l(w0)− l(w).

In particular, if s is a simple reflection then Ps (Is resp.) is a classical
(co)tilting module.

3. TwPw0 ∼= Iww0 and GwIw0 ∼= Pww0. In particular, Pw0 ∼= Iw0 ∼= T is the
characteristic (co)tilting module in O0.

Remark 1.4. Let x ∈ W be fixed. The module TxTw0P ∼= TxPw0 ∼= TxT is the
direct sum of all x-twisted tilting modules as defined in [St1] and characterized by
certain vanishing conditions with respect to twisted Verma modules. If x = e we get
the sum of all (usual) tilting modules. The twisting functors define naturally maps
as follows:

{indec. projectives} Tx−→ {x-twisted indec. projectives}
Tw0x−1

−→
Tw0x−1

−→ {(e-twisted) tiltings} Tx−→ {x-twisted tiltings} =

= {xw0-completed indec. injectives}
Tw0x−1

−→ {indec. injectives}.

The maps are all bijections, their inverses induced by the corresponding completion
functors. �

For a reduced expression w = sksk−1 · · · s1 ∈ W we set Cw = Cs1 · · ·Csk
and

Kw = Ks1 · · ·Ksk
. Up to isomorphism, the functors do not depend on the chosen

reduced expression, see [MS]. We will prove the following analog of the previous
theorem:
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Theorem 8. Let w ∈ W .

1. Each of the modules wP = CwP and wI = KwI is both, a generalized tilting
module and a generalized cotilting module.

2. We have the following equalities for projective and injective dimensions:

projdim(wP) = injdim(wI) = l(w)

and

injdim(wP) = projdim(wI) = 2l(w0)− l(w).

In particular, sP (and sI resp.) is a classical (co-)tilting module for any simple
reflection s ∈ W .

3. Cw(w0P) ∼= w−1w0I and Kw(w0I) ∼= w−1w0P. In particular, w0P ∼= w0I ∼= T is
the characteristic (co)tilting module in O0.

Question 1.5. According to [AR] every generalized tilting module T for an asso-
ciative algebra A corresponds to a resolving and contravariantly finite subcategory
in A−mod consisting of all A-modules admitting a finite coresolution by Add(T ).
What are the subcategories ofO0, which correspond to the various generalized tilting
objects from above?

2 Preliminary properties of our functors

In this section we collect some fundamental statements concerning natural trans-
formations between our functors. As a corollary we get a short argument for the
existence of an isomorphism T ∼= G′ (which was originally proved in [KM]).

By [So1] we have Endg(P (w0)) ∼= C, and thus we can define the functor V : O0 →
C−mod, M 7→ Homg(P (w0), M). Let G̃ denote the right-adjoint of T, which exists
by [AS].

Lemma 2.1. VG̃ ∼= V and G̃ ∼= ID when restricted to projectives.

Proof. Note that TP (w0) ∼= P (w0) and Endg(P (w0)) is given by the action of the
center Z of the universal enveloping algebra of g ([So1]). On the other hand, the
action of Z commutes naturally with T by definition. This allows us to fix a natural
isomorphism T ∼= ID on Add(P (w0)). This ensures that (for any M ∈ O0) the
following isomorphisms are even morphisms of C-modules:

VM = Homg(P (w0), M) ∼= Homg(TP (w0), M) ∼= Homg(P (w0), G̃M)

= VG̃M.

All the isomorphisms are natural and the first statement follows. Let Ṽ denote the
right-adjoint of V. By [So1, Proposition 6] we have ṼV ∼= ID on projectives and
therefore also G̃ ∼= ṼVG̃ ∼= ṼV ∼= ID, since G̃ preserves the category of projectives.
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We fix an isomorphism of functors ϕ : ID ∼= G̃ defined on the category of
projectives. For M ∈ O0 we choose a projective presentation

P1
γ′−→ P0

γ
� M.

Then the left square of the following diagram commutes and induces the map ϕM

as indicated:

G̃P1

G̃γ′ // G̃P0

G̃γ // G̃M

P1
γ′ //

ϕP1

OO

P0
γ // //

ϕP0

OO

M

ϕM

OO�
�
�

.

Lemma 2.2. The maps ϕM , M ∈ O0, define a natural transformation from ID to
G̃.

Proof. First we have to check that ϕM is independent of the chosen presentation.

Let Q1
β′−→ Q0

β
� M be another projective presentation of M . Consider the com-

mutative diagram:

G̃P1

G̃γ′ // G̃P0

G̃γ // G̃M

P1
γ′ //

ϕP1

OO

P0
γ // //

ϕP0

OO

M

h

OO

Q1
β′ //

ϕQ1

��

ξ′

OO

Q0
β // //

ϕQ0

��

ξ

OO

M

h′

��
G̃Q1

G̃β′ // G̃Q0

G̃β // G̃M

,

where the projectivity of Q1 and Q0 is used to get ξ′ and ξ such that the diagram is
commutative. Since ξ is a map between projectives, we obtain G̃ξ ◦ ϕQ0 = ϕP0 ◦ ξ.
Hence

h′ ◦ β = G̃β ◦ ϕQ0 = G̃γ ◦ G̃ξ ◦ ϕQ0 = G̃γ ◦ ϕP0 ◦ ξ = h ◦ γ ◦ ξ = h ◦ β,

by the commutativity of the diagram. Since β is surjective, we obtain h = h′. Hence,
ϕM is well-defined. The naturality follows by standard arguments.

Proposition 2.3. G is right adjoint to T. In particular, there exists a natural
transformation T → ID non-vanishing on Verma modules.

Proof. Lemma 2.2 implies the existence of a non-trivial natural transformation T →
ID as assumed in [AS, Proposition 5.4]. The statement now follows from [AS,
Proposition 5.4] and [KM, Lemma 1].

Proposition 2.4. (1) (T, G) is an adjoint pair of functors. The adjunction mor-
phism adjT : TG → ID is injective with cokernel Z, and the adjunction morphism
adjT : ID → GT is surjective with kernel Z′.

8



(2) (C, K) is an adjoint pair of functors. The adjunction morphism adjC : CK → ID
is injective with cokernel Ẑ, and the adjunction morphism adjC : ID → KC is
surjective with kernel Ẑ′.

(3) The functors TG and GT preserve both surjections and injections (but are nei-
ther left nor right exact).

(4) The functors CK and KC preserve both surjections and injections (but are nei-
ther left nor right exact).

Remark 2.5. The twisting functor T can be described and generalized as follows
(this was also observed by W. Soergel): We consider O0 as the category mod−A
of finitely generated right modules over A = Endg(P) with endofunctor T. To
each simple object L(w) we have the corresponding primitive idempotent ew ∈
A. Let e be the sum of all ew taken over all w such that TL(w) 6= 0 and define
T̃ = − ⊗A AeA : mod−A → mod−A. By definition we get T(AA) ∼= T̃(AA) and
the inclusion AeA ↪→ A induces a non-trivial element ϕ ∈ Hom(T̃, ID). Applying
[KM, Lemma 1] one gets T̃ ∼= T as endofunctors of mod−A. This description
allows a generalization of twisting functors to a very general setting. The definitions
immediately show that the cokernel of ϕM is always the largest quotient of M , such
that HomA(eA,M) = 0 and one easily derives T̃3 ∼= T̃2. However, if G̃ denotes the
right adjoint of T̃, then the adjunction morphism T̃G̃ → ID does not need to be
injective in general. �

Proof of Proposition 2.4. In this proof for M ∈ O0 we denote by [M ] the class of
M in the Grothendieck group of O0.

The first part is proved in [AS, Section 5]. For the part (3) it is enough to
show that both, TG and GT, preserve surjections. Assume f ∈ Hom(M, N) for
some M , N ∈ O0 is surjective. The adjunction morphism adjT is surjective. Then
adjTN ◦f = GT(f) ◦ adjTM is surjective; in particular, so is GT(f).

Let im be the image of G(f). Then T(G(f)) : TGM→→T(im) is surjective and
so is T(i) : T(im)→→TGN , since the cokernel of i : im ↪→ GN is annihilated by T.
The composition of both surjections is exactly TG(f) and so we are done: part (3)
follows.

Concerning statement (4), it is enough to prove the claim for CK. Let us first

show that CK preserves inclusions. Let M
f

↪→ N
g
� L be a short exact sequence

in O0. Applying K gives an exact sequence S of the form KM ↪→ KN � L′ where
L′ is a submodule of KL. By definition of K, the socle of KL, and hence also of
L′, contains only simple modules not annihilated by θs, hence L1C(L′) = 0 by [MS,
Section 5]. In particular, CS is exact, and therefore CK(f) is an inclusion.

On the other hand, applying K to M
f

↪→ N
g
� L yields an exact sequence T of

the form KM ↪→ KN → KL � X, where KX = CX = 0 by [MS, Proposition 5.3].
Applying the right exact functor C to T and using CX = 0 we obtain that CK(g)
is a surjection. This shows part (4).

By [MS, Section 5] the adjunction morphism defines an isomorphism CK ∼= ID
when restricted to modules having a dual Verma flag. Let M ∈ O0 with injective
cover i : M ↪→ I. Let adj = adjC for the moment. Then i ◦ adjM = adjI ◦ CK(i).
The latter is injective, hence adjM has to be injective as well. Note that [CK(M)] =
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[θK(M)]− [K(M)] = [θ2(M)]− [θ(M)]− [K(M)] = [θ(M)]− [K(M)] for any M ∈ O0.
Hence [M ]−[CK(M)] = [Ẑ(M)]. Dual statements hold for adjC. Part (2) follows.

The following result is surprising in comparison with Proposition 2.3 (note that
the argument of Lemma 2.1 does not work if we replace G̃ by K as K does not
commute with the action of the center of O0).

Proposition 2.6. 1. There is no natural transformation c : C → ID non-
vanishing on Verma modules.

2. There is no natural transformation k : ID → K non-vanishing on Verma
modules.

Proof. We consider the defining sequence 0 → K
i→ θ

adjs→ ID. It induces an exact

sequence Hom(ID, K)
i◦
↪→ Hom(ID, θ)

◦ adjs→ Hom(ID, ID). We have Hom(ID, θ) ∼= C,
more precisely, the morphism space is generated by the adjunction morphism adjs
and the center C of the category O0 (see [Ba]). If now ϕ ∈ Hom(ID, K) does not
vanish on Verma modules, then, up to a scalar, i ◦ ϕ = adjs, hence adjs ◦i ◦ ϕ =
adjs ◦ adjs 6= 0 (see [Be, Sections 2 and 3] or [An, Lemma 2.2]). This contradicts the
exactness of the original exact sequence.

3 Proof of Theorem 1

Theorem 1 (1) follows immediately from [MS, section 4] and the definition of Ẑ.

Proof of Theorem 1 (2). Let H be the category of Harish-Chandra bimodules with
generalized trivial central character from both sides (see [So2]). By [BG], the cat-
egory O0 is equivalent to the full subcategory of H given by objects having trivial
central character from the right hand side. Let θr

s : H → H denote the right trans-
lation through the s-wall. When considering O0 as a subcategory of H, the functor

G is defined as the kernel of the adjunction morphism θr
s

adj−→ ID (see [Jo1]). Using

the Snake Lemma we obtain that R1G is isomorphic to the cokernel of θr
s

adj−→ ID.
Note that R1G(M) is locally gs-finite ([AS, Corollary 5.9]). Since the top of θr

sM
is s-free, we obtain that it is maximal with this property. Hence R1G ∼= Z and, in
particular, R1G ∼= ID on Os

0.

Remark 3.1. Theorem 1(2) has independently been proved in [Kh] by completely
different arguments. �

Proof of Theorem 1(3). Recall from above that the functor Z is isomorphic to the

cokernel of the θr
s

adj−→ ID. Let M ∈ O0 and P2
h→ P1

f→ P0 � M be the first three
steps of a projective resolution of M . Consider the commutative diagram in Figure 2
(on page 11). The Snake Lemma gives a natural surjection GM→→Z(P1/ Ker f).
We claim that this even induces a natural surjection GM→→Ker f/Im h. Indeed, if
x ∈ ZP1 such that f(x) = 0 and x 6∈ Im h, we can choose y ∈ P2 such that p2(y) = x.
If f(y) = 0 then y = h(z) for some z ∈ P3; hence x = p2 ◦ h(z) = h ◦ p3(z), which
is a contradiction. Therefore, f(y) 6= 0 and Z(P1/ Ker f) surjects onto Ker f/Im h
providing a surjection Φ : G→→L1Z. We have to show that Φ induces an isomorphism
Q ∼= L1Z.
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GP2
//

� _

��

GP1
//

� _

��

GP0
//

� _

��

GM� _

��
θr

sP2
//

adj

��

θr
sP1

//

adj

��

θr
sP0

// //

adj

��

θr
sM

adj

��
P2

h //

p2
����

P1
f //

p1
����

P0
// //

p0
����

M

ZP2
h // ZP1

f // ZP0

.

Figure 2: A commutative diagram

Claim 3.2.

L1Z∆(x) ∼=

{
∆(sx)/∆(x), if x > sx,

0, if x < sx.

In particular, Φ induces an isomorphism Q ∼= L1Z on Verma modules.

Proof. We prove the claim by induction on l(x). It is certainly true for x = e.
Assume it to be true for x and let t be a simple reflection such that xt > x. The
short exact sequence ∆(x) ↪→ θt∆(x) � ∆(xt) induces an exact sequence

L1Z∆(x) ↪→ L1Zθt∆(x) → L1Z∆(xt) → Z∆(x) → Zθt∆(x) � Z∆(xt). (3.1)

If x > sx then l(sxt) ≤ l(sx) + 1 = l(x) < l(xt). Since x > sx and sxt > xt, we
have Z∆(x) = Z∆(xt) = Zθt∆(x) = 0. By induction hypothesis, (3.1) reduces to

∆(sx)/∆(x) ↪→ θt(∆(sx)/∆(x)) � L1Z∆(xt),

implying L1Z∆(xt) ∼= ∆(sxt)/∆(xt).
If sx > x and sxt < xt then xt > x implies sxt = x. Hence Z∆(xt) = Zθt∆(x) =

Zθt∆(x) = 0, and L1Zθt∆(x) ∼= θtL1Z∆(x) = 0 by induction hypothesis. We get

L1Z∆(xt) ∼= Z∆(x) ∼= ∆(x)/∆(sx) = ∆(sxt)/∆(xt).

If sx > x and sxt > xt then we have (L1Z)θt∆(x) ∼= θt(L1Z)∆(x) = 0 by
induction hypothesis, and the last terms of (3.1) form the exact sequence

∆(x)/∆(sx) ↪→ θt∆(xt)/∆(sxt) � ∆(xt)/∆(sxt).

This implies that L1Z∆(xt) = 0 and the claim follows.

Claim 3.3. Φ induces an isomorphism Q ∼= L1Z on modules having a Verma flag.

Proof. Let S be a short exact sequence of modules having a Verma flag; then we have

a commutative diagram S
gS
↪→ G(S)→→Q(S) → L1Z(S), where the composition of the

last two maps is Φ. Since g is an injection, Q(S) is left-exact by the Snake Lemma.
The sequence L2Z(S) is identical zero, because L2Z ∼= Z′ by [EW, Theorem 4.3].
Therefore, L1Z(S) is left-exact. The Five-Lemma implies the claim.
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Claim 3.4. Φ induces an isomorphism Q ∼= L1Z on modules having a dual Verma
flag.

Proof. Let S be a short exact sequence of modules having a dual Verma flag; then
G(S) is exact ([AS, Theorem 2.2]) and hence Q(S) is right exact. On the other hand
L1Z(S) is right exact as well, since ZM = 0 for any module having a dual Verma
flag. The Five-Lemma completes the proof.

Let M ∈ O0. By Wakamatsu’s Lemma ([Wa, Lemma 1.2]) there exists a short
exact sequence S : Y ↪→ X � M , for a certain X having a Verma flag and some Y
with a dual Verma flag. Since R1G(Y ) = 0 ([AS, Theorem 2.2]), the sequence G(S)
is exact, and hence Q(S) is right exact. Since ZY = 0, L1Z(S) is right exact, as
well. The Five-Lemma implies that Φ induces an isomorphism QM ∼= L1ZM . We
immediately get Q ∼= Q′, since L1Z ∼= (L1Z)′ by [EW, Theorem 4.3]. Theorem 1(3)
follows.

Proof of Theorem 1 (4). Recall the isomorphism R1G ∼= Z from the first part. By
[AS], we have RiG = 0 for all i > 1. Since G(d∆(e)) is acyclic for G ([AS, Theo-
rems 2.2 and 2.3]), we have the Grothendieck spectral sequence RpG(RqG(X)) ⇒
Rp+qG2(X). We immediately get R1G2 ∼= ZG and R2G2 ∼= Z2 ∼= Z and RiG2 = 0
for i > 2. This proves the first part of Theorem 1(4).

The second part is proved by analogous arguments provided that we know that
K(I) is K-acyclic for any injective object I. This is equivalent to the statement
that the head of K(I) contains no compositon factor L(w) with ws > w. There
is a short exact sequence X ↪→ Y � I, where X has a dual Verma flag and Y is
the projective-injective cover of I. Using that K is exact on sequences of modules
having a dual Verma flag, we get a surjection K(Y ) � K(I). In particular, it follows
that the head of K(I) is embedd into the head of K(Y ) ∈ Add(P (w0)). The latter
contains only copies of L(w0). This completes the proof.

4 Proof of Theorem 2

We start by verifying the indicated relations. By duality, it is enough to prove every
second statement.

The isomorphism TGT ∼= T: Evaluating the exact sequence of functors

0 → TG↪→ID � Z → 0, (4.1)

from Proposition 2.4(1) at T gives rise to the exact sequence 0 → TGT↪→T �
ZT → 0. Further ZT = 0, as the head of any T(M) is s-free by [AS, Corollary 5.2],
hence we obtain TGT ∼= T.

The isomorphism G3 ∼= G2 is proved in [Jo1].
The isomorphism T2G ∼= T2: Applying T to (4.1) gives the exact sequence

(L1T)Z → T2G→T � TZ → 0. (4.2)

Theorem 1 gives L1T ∼= Z′, in particular, T(L1T)Z = 0 ([AS, Corollaries 5.8 and
5.9]). Moreover TZ = 0. This means that we can apply T to (4.2) once more to
obtain an isomorphism T3G ∼= T2. Since T3 ∼= T2 we finally get T2G ∼= T2.
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The isomorphism TG2 ∼= GT2: Evaluating the adjunction morphism adjT :
TG ↪→ ID at GT2 we get TGGT2 ∼= TG2 ↪→ GT2. Evaluating ID � GT at TG2 we
obtain TG2 � GTTG2 ∼= GT2 and hence TG2 ∼= GT2.

To complete the proof it is now enough to show that all the functors from S are
not isomorphic (Green’s relation are easily checked by direct calculations). An easy
direct calculation gives the following images under our functors:

ID G T G2 T2 TG GT GT2

∆(s) ∆(e) T∆(s) ∆(e) T∆(s) ∆(s) ∆(s) ∆(s)
∆(e) ∆(e) ∆(s) ∆(e) T∆(s) ∆(s) ∆(e) ∆(s)

T∆(s) ∆(s) T∆(s) ∆(e) T∆(s) T∆(s) ∆(s) ∆(s)

The claim follows.

5 Proof of Theorem 3

By duality it is enough to prove every second relation.
The isomorphism CKC ∼= C: The proof is analogous to that of TGT ∼= T in

Section 4.
The isomorphism C3K ∼= C2: Applying C to the short exact sequence CK ↪→

ID � Ẑ produces a short exact sequence X ↪→ C2K � C, where CX = 0. Applying
C once more we obtain the desired isomorphism.

The isomorphism C2K2C ∼= C2K: Applying K to the short exact sequence Ẑ ′ ↪→
ID � KC produces a short exact sequence K ↪→ K2C � X, where KX = CX = 0.
Applying now C gives rise to Y ↪→ CK � CK2C, where KY = CY = 0. Applying
C once more gives the isomorphism.

The isomorphism KC2K2 ∼= CK2: Evaluating the short exact sequence Ẑ ′ ↪→
ID � KC at CK2 we obtain the short exact sequence Ẑ ′CK2 ↪→ CK2 � KC2K2.
The statement follows if we show that Ẑ ′CK2 = 0. The injection CK ↪→ ID gives
an injection CK2 ↪→ K. On the other hand, Ẑ ′K = 0 since, by the definition of K,
any composition factor in the socle of KM is not annihilated by θ. As CK2 ↪→ K
we get that Ẑ ′CK2 = 0 as well.

It is easy to see that, using the relations we have just proved, any product of C
and K can be reduced to one of the elements of Ŝ.

Assume now that s does not correspond to an sl2-direct summand of g. We do
a case-by-case analysis to show that all functors in Ŝ are different. We start with
the following general observation.

Lemma 5.1. Assume that X : O0 → O0 is left exact, X(P (w0)) ∼= P (w0), and
there is a natural transformation ϕ : ID → X on the category of projective-injective
modules in O0, such that ϕP (w0) is an isomorphism. Then X fixes the isoclasses of
projectives.

Proof. Let P be projective. Consider an exact sequence P ↪→ I0 → I1, where I0 and
I1 are projective-injective. Then the square on the right hand side in the following
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diagram with exact rows commutes

0 // P
f //

h

���
�
� I0

g //

ϕI0

��

I1

ϕI1

��
0 // XP

X(f) // XI0
X(g) // XI1

and hence we obtain the induced map h, which is an isomorphism by the Five
Lemma.

All Ki are different. We fix a simple reflection t such that st 6= ts. By a direct
calculation one obtains that KiP (t), i > 0, is not projective, in particular, Ki does
not preserve projectives in O0. Now any isomorphism ϕ : Ki → Kj, i < j, induces
a natural transformation ID → Kj−i on the category Ki(O0), which contains the
subcategory of projective-injective modules in O0. It follows from Lemma 5.1 that
Kj−i preserves the category of projective modules in O0, a contradiction.

All Ci are different by dual arguments.
We consider now Ŝ as a Z-graded monoid with deg(C) = 1 and deg(K) =

−1. This is possible as the defining relations are homogeneous with respect to
this grading. It follows from the relations that for any X ∈ Ŝ and for all i large
enough we have CiX ∼= Cj for some Cj. Since we have already shown that all
Cj are different, it follows that the elements of Ŝ having different degree are not
isomorphic. In particular, changing the exponent i in the expression for X ∈ Ŝ gives
a non-isomorphic functor. The rest will be checked case-by-case.

Ki is not isomorphic to CKi+1 for i > 0: We have CKi+1∆(e) ∼= ∆(s) and
Ki∆(e) ∼= ∆(e) for all i.

Ki is not isomorphic to C2Ki+2 for i > 0: We have Ki+2∆(e) ∼= ∆(e) 6∼= C∆(s) ∼=
C2Ki+2∆(e).

K is not isomorphic to K2C, since Kd∆(e) 6∼= K2d∆(e) ∼= K2Cd∆(e).
We proved that Ki (where i > 0) is not isomorphic to any other functor in the

list. By duality, the same holds for Ci.
KC is not isomorphic to CK: Assume, they are isomorphic, then C ∼= CKC ∼=

CCK ∼= C2K which we have proved to be wrong.
KCi is not isomorphic to K2Ci+1 for i > 0: We have KCid∆(e) ∼= Kd∆(e) 6∼=

K2d∆(e) ∼= K2Ci+1d∆(e).
KC2 is not isomorphic to C2K: We have KC2d∆(e) ∼= Kd∆(e) ∼= d∆(s) and

C2Kd∆(e) ∼= C2d∆(s) ∼= Cd∆(e) ∼= d∆(e).
KC is not isomorphic to KC2K: Assume, they are isomorphic. Then K ∼= KCK ∼=

KC2K2 ∼= CK2, which we know is wrong.
Hence the functors KCi, i > 0, differ from all the others in the list. Duality gives

the same property for CKi.
K2C2 is not isomorphic to C2K2 and K2C is not isomorphic to C2K3: By defini-

tion the socle of K2C2M contains only composition factors which are not annihilated
by θ (for any M ∈ O0). On the other hand C2K2∆(e) ∼= C2∆(e) ∼= C∆(s) is an
extension of ∆(s) with ∆(e)/∆(s). In particular, the socle is gs-finite. The same
argumentation applies to the second pair.

K2C2 is not isomorphic to KC2K: Assume, they are isomorphic then K2C ∼=
K2C2K ∼= KC2K2 ∼= CK2. We have already proved that this is not possible.
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Hence K2Ci, i > 0, (and dually C2Ki) differs from all other functors from the
list. And therefore, any two functors from the list are not isomorphic.

The statements concerning Green’s relations and idempotents are obtained by a
direct calculation.

6 Proof of Theorem 4

It will be enough to prove roughly half of the statements. The other half will follow
by duality.

Lemma 6.1. All maps indicated in the diagram as inclusions are injective; and all
projections are surjective.

Proof. By duality, it is enough to prove the statement for inclusions. The injectivity
of z′, i′, i′T , z′T , z′T 2 is given by definition. For the maps G(g′) and G(g) the statement
follows from the left exactness of G and the fact that G is zero on locally gs-finite
modules. The map Z′(iT) is injective because of the left exactness of Z′ and the
injectivity of iT. The injectivity of a′ follows from [AS, Proposition 5.6], since a′ is
up to a non-zero scalar the adjunction morphism adjT : TG → ID.

Let us now prove the statement for ZG(g). By definition of Q we have the
following exact sequence of functors: G ↪→ G2 � QG. It gives rise to the exact
sequence

0 ∼= L1Z(QG) → ZG
ZG(g)−→ ZG2

G(pG)
� ZQG ∼= QG.

This implies that ZG(g) is injective.

Claim 6.2. T2(g) : T2 → T2G is an isomorphism. In particular m′ is well-defined
and injective.

Proof. Let K and K ′ be defined by the following exact sequence of functors:

K
� � // ID

g //

q

"" ""EEEEEEEE G // // K ′

im(g)
. �

j
<<zzzzzzzz

,

Since T2K = 0 we get an isomorphism T2(q) : T2 → T2(im(g)) where im(g) denotes
the image of of g. Applying T to the second short exact part gives a short exact
sequence K̃ ↪→ T(im(g)) � TG for some K̃ such that K̃(M) is locally gs-finite for
all M ∈ O0. Applying T once more gives an isomorphism T2(j) : T2(im(g)) → T2G
since TK̃ = 0. Composing T2(j) ◦ T2(q) = T2(g) implies the first statement. The
injectivity of m′ follows from the injectivity of iTG.

Claim 6.3. There exists a unique isomorphism h : TG2 → GT2 such that

g ◦ g′ = G(g′ ◦ g′T) ◦ h ◦ T(gG ◦ g).
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Proof. We start proving uniqueness. If h and h̃ are two such morphisms, then h− h̃
induces a morphism from Z′T to G since Z′T = ker(g ◦ g′) (this will be proved later
in this section). However, Hom(Z′T, G) = 0 as the socle of GM is s-free and Z′TM
is gs-finite for any M ∈ O0.

It is left to prove the existence. Note that TG2 ∼= GT2 by Theorem 2. For any
h ∈ End(TG2, GT2) the natural transformation ϕ(h) = G(g′ ◦ g′T) ◦ h ◦ T(gG ◦ g)
belongs to Hom(T, G) and, comparing the action on the projective-injective module
P (w0) ∈ O0 we see that ϕ is injective, hence an isomorphism (by the independent
Theorem 5). The claim follows.

We proceed with the map Q′T(g). Let M ∈ O0 and consider the map gM :
M → GM . The map T (gM) fits into the exact sequence Q′M → TM → TGM . To
calculate Q′T(g) we consider the following commutative diagram:

Q′Q′M = 0 //
� _

��

Q′TM
Q′T(gM ) //

� _

��

Q′TG(M)� _

��
TQ′M = 0 //

��

T2M
T 2(gM ) //

��

T2GM

��
TGQ′M = 0 // TGTM

TGT(gM ) // TGTGM

,

where the first row is the kernel sequence and hence is exact. It follows that Q′T(g)
is injective. The injectivity of Q(g ◦ g′) is proved by analogous arguments. This
completes the proof of Lemma 6.1.

Lemma 6.4. All configurations containing only solid arrows commute.

Proof. We use the notations from Figure 3. The squares /.-,()*+2 , /.-,()*+6 , /.-,()*+9 , and 7654012310 commute
by definition. The commutativity of /.-,()*+3 follows from the commutativity of /.-,()*+2 , /.-,()*+9 ,
and 7654012310 . The squares /.-,()*+1 , and /.-,()*+4 commute since z′ is a natural transformation and
Z′ and Z′T are functors (note that g′T = T(g′)). The commutativity of /.-,()*+5 reads
iT = z′T2 ◦ Z′(iT ), which is true as Z′ = ID on gs-finite modules. The commutativity
of /.-,()*+7 reads iT = m′ ◦ Q′T(g), which is equivalent to T2(g) ◦ iT = iTG ◦ Q′T(g),
the latter being true as i is a natural transformation. Commutativity of /.-,()*+8 means
i ◦ Q′(a′) = g′T ◦m′, which is equivalent to i ◦ Q′(a′) = g′T ◦ (T2(g))−1 ◦ iTG. Since i
is a natural transformation we have i ◦Q′(a′) = T(a′) ◦ iTG and our equality reduces
to T(a′) ◦ iTG = g′T ◦ (T2(g))−1 ◦ iTG. To prove the latter it is enough to show that
T(a′) = g′T ◦ (T2(g))−1, which follows from g′T = T(g′) and the definition of a′. The
remaining configurations commute by duality.

To complete the proof of Theorem 4 it is left to prove the exactness of the indi-
cated sequences. By duality, it is sufficient to prove the exactness of the sequences
1 to 10. The sequences 8 and 3 are exact by the definitions of a and Q respectively.
The exactness of 4 follows from [AS, Proposition 5.6]. The exactness of 7 follows
from T(g′) = g′T and the exactness of the sequence, dual to 3. Applying the left
exact functor Z′ to the short exact sequence 7 and using Z′Q′ = Q′ shows that 5 is
exact. The exactness of 6 follows by comparison of characters from the facts that
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Q′T
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����
��

��
��

�
� o

��?
??

??
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??
� _

��

||
ID

��?
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QG

/.-,()*+5 /.-,()*+6
Z′T2

����

� � // T2 //

??���������

����

G2 // //

?? ??����������

�� ��?
??

??
??

??
? ZG2

____??????????

Q′TG
/�

/.-,()*+7 /.-,()*+8
??���������

// // Q′
t T

����
��
��
��

Q � � // QGT

OOOO

/.-,()*+4
Z′T

� � //

��

T //

/.-,()*+2

��

������
��
��
��

�� ��/
//

//
//

/ G // //
� ?

OO

WWWW////////

ZG
?�

OO

/.-,()*+9 7654012310

/.-,()*+1 TGt T

����
��
��

// // TG2 ∼ // GT2 � � //
4�

GG��������
GT

* J

WW////////

/.-,()*+3
Z′

� � // ID
||

ID
||

// //

WWWW//////

gg

Z

OO

Figure 3: Schematic picture of the diagram from Theorem 4

Q′T(g) is an inclusion and Q′(a′) is a surjection. The exactness of 10 follows by
evaluating the exact sequence 8 at modules of the form GM .

Let us now show that 2 is exact. The cokernel Coker of g◦g′ : T → G is gs-finite
since already the cokernel of g is gs-finite, see [Jo1]. Further, for any M ∈ O0 we
have that Q(M) is the maximal gs-finite quotient of GM since the head of TM is
s-free. This implies the exactness of the sequence 2 and also of 9 at the term G. By
uniqueness of the canonical maps the exactness in T follows by duality. Exactness
of 1 follows by analogous arguments.

7 Proof of Theorem 5

We abbreviate Hom(X, Y ) = HX,Y for X, Y ∈ S. By duality we have vector space
isomorphisms HX,Y

∼= HY ′,X′ .

Proposition 7.1. End(X) ∼= C as algebras for any X ∈ S.

Proof. For X = ID the statement is well-known and follows from [So1], since
End(ID) ∼= C ∼= Endg(P (w0)). Note that GP (w0) ∼= TP (w0) ∼= P (w0) (see [AS,
Proposition 5.3]); hence XP (w0) ∼= P (w0) for all X ∈ S. This means that sending
ϕ ∈ End(ID) to X(ϕ) defines an injective algebra morphism from C to End(X) for
every X ∈ S, as already the map ϕP (w0) 7→ X(ϕP (w0)) is injective. We only have to
check the dimensions.

We claim that Φ : End(T) → Endg(TP (w0)), ϕ 7→ ϕP (w0), is injective. Assume
that Φ(ϕ) = 0. Let P ∈ O0 be projective with injective hull i : P ↪→ I. The cokernel

Q has a Verma flag, hence 0 → TP
Ti
↪→ TI→→TQ → 0 is exact (see [AS, Theorem
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2.2]). Since I is a direct sum of copies of P (w0), we have ϕI = 0 and therefore
ϕP = 0. Since T is right exact we get ϕM = 0 for any M ∈ O0. Hence Φ is injective
and End(T) ∼= C. We get End(G) ∼= C by duality.

The adjointness from Proposition 2.4 together with Theorem 2 imply End(T2) ∼=
Hom(ID, G2T2) ∼= Hom(ID, G2) ∼= End(T ) ∼= C, End(GT) ∼= Hom(TGT, T) ∼=
End(T) ∼= C and also End(GT2) ∼= Hom(TGT2, T2) ∼= End(T2) ∼= C. The remaining
parts follow by duality.

Claim 7.2. HX,Y 6= 0 for any X, Y ∈ S.

Proof. Since both X and Y are isomorphic to the identity functor when restricted
to A = Add(P (w0)) (see Lemma 2.1) we can fix a natural transformation ϕ ∈
Hom(X|A, Y |A) ∼= C of maximal degree. For M ∈ O0 indecomposable, M /∈ A, we
set ϕM = 0. For M ∈ O0 arbitrary we fix an isomorphism αM : M ∼= M1 ⊕ M2,
such that M1 is a maximal direct summand belonging to A and set ϕM := X(α−1

M )◦
(ϕM1 ⊕ϕM2) ◦X(αM). We claim that this defines an (obviously nontrivial) element
ϕ ∈ HX,Y . Indeed, let M ∼= M1 ⊕ M2 and N ∼= N1 ⊕ N2 and f ∈ Homg(M, N)
with decomposition f =

∑2
i,j=1 fi,j such that fi,j ∈ Homg(Mi, Nj). Then ϕN ◦

X(f1,1) = Y (f1,1) ◦ ϕM by definition of ϕ. The definitions also immediately imply
0 = Y (f2,2) ◦ ϕM = ϕN ◦ X(f2,2). Moreover, we also have 0 = ϕN ◦ X(f1,2) and
0 = Y (f2,1) ◦ ϕM . Indeed, if Y (f1,2) ◦ ϕM 6= 0 or ϕN ◦ X(f1,2) 6= 0 then either
a direct summand of Y (M1) embeds into Y (N2) or X(M2) surjects onto a direct
summand of Y (N1). Both contradict the following statement: Assume R ∈ S and
M ∈ O0 does not have P (w0) as a direct summand then neither so does R(M).
Let first R ∈ {G, C}. If P (w0) is a direct summand of R(M) then R′RM surjects
onto R′P (w0) ∼= P (w0), hence P (w0) is a direct summand of R′RM . The inclusion
R′R ↪→ ID from Proposition 2.4 implies that P (w0) is a submodule (hence a direct
summand) of M . Dual arguments apply to R ∈ {T, K} and the claim follows.

Claim 7.3. The C-entries in the table of Theorem 5 are correct.

Proof. The statement is obtained by playing with the adjointness of T and G using
Proposition 7.1 and the identities from Theorem 2. Let X, Y ∈ S. We have
isomorphisms HT2,X

∼= HT2G2,X
∼= HG2,G2X

∼= HG2,G2
∼= C. This gives the spaces in

question in the seventh row (and the sixth column by duality). The isomorphisms
HTG,ID

∼= HG,G
∼= C and HTG,GX

∼= HT2G,X
∼= HT2,X

∼= C imply the claim for the fifth
row (and the fourth column by duality). The spaces in question in the first, third
and fourth rows follow from HTX,GY

∼= HT2X,Y
∼= C and HGT,G

∼= HTGT,ID
∼= HT,ID

∼=
HID,G, HID,GTG

∼= HT,TG. ¿From HGT2,G
∼= HTGT2,ID

∼= HT2,ID
∼= C and HGT2,GT2

∼=
HTGT2,T2

∼= HT2,T2
∼= C we get the spaces in the last row. This completes the

proof.

To proceed we use the following general statement:

Proposition 7.4. Let A be an abelian category with enough projectives. Let F , J , H
be endofunctors on A. Assume that F preserves surjections, and for any projective
P ∈ A there exists some N ∈ A such that F (P ) ∼= FH(N). Then the restriction
defines an injective map Hom(F, J) ↪→ Hom(FH, JH).
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Proof. It is enough to show that for any ϕ ∈ Hom(F, J) such that ϕH = 0 we have
ϕ = 0. Let M ∈ A with projective cover f : P � M . We choose N ∈ A such that
F (P ) ∼= FH(N). The first row of the following commutative diagram is exact, since
F preserves surjections.

FH(Q) ∼= FP
f // //

ϕH(Q)

��

F (M)

ϕM

��

// 0

JH(Q) // // GM

.

The surjectivity of f and ϕH(Q) = 0 imply ϕM = 0.

The spaces with labeling different from 4: The indicated equalities with labeling
different from 1 and 4 follow directly by duality. By [AS], the adjunction morphism
adjT : ID � GT(P ) is an isomorphism on projectives. Hence, we may apply Propo-
sition 7.4 to F = ID, J = T, and H = GT to obtain HID,T ↪→ HGT,TGT

∼= HGT,T.
Further, the adjunction morphism adjT : TG ↪→ ID is injective, hence HG,TG ↪→ HG,ID

and HGT,T ↪→ HID,T by duality.
The equality of the spaces denoted by 4: we have the following isomorphisms

HGT2,TG
∼= HTG2,TG

∼= HG2,GTG
∼= HG2,G (7.1)

HG,GT2
∼= HTG2,T

∼= HG2,GT
∼= HTG,T2 (7.2)

HG2,GT2
∼= HTG2,T2

∼= HGT2,T2 (7.3)

HG,GT
∼= HTG,T . (7.4)

Note that all the spaces labeled by 4 occur in this list. The inclusion TG ↪→ ID
provides inclusions GT2 ∼= TG2 ↪→ G and TG2 ∼= TG2T ↪→ GT; hence HG2,GT2 ↪→
HG2,G and HG,TG2 ↪→ HG,GT (i.e. (7.3) is ‘included’ in (7.1) and (7.2) is ‘included’
in (7.4)). Applying Proposition 7.4 with F = GT2, J = T and H = T (F = ID,
J = GT2, H = G respectively) we get inclusions HGT2,T ↪→ HGT2,T2 and HID,GT2 ↪→
HG,GT2G

∼= HG,GT2 (i.e. (7.2) is ‘included’ in (7.3) and (7.1) is ‘included’ in (7.2)).
Hence, all the spaces from (7.1)–(7.4) have the same dimension.

The existence of the inclusions from A: The inclusion TG ↪→ ID implies HGT,TG ↪→
HGT,ID. Applying Proposition 7.4 to F = ID, J ∈ {T, TG}, and H = G2, (this is
possible since G2(P ) ∼= P for any projective P ) we get inclusions HID,T ↪→ HG2,TG2

and HID,TG ↪→ HG2,TG2 . Finally, the inclusion G ↪→ G2 gives HG2,G ↪→ HG2,G2
∼= C.

The existence of the inclusions from B: Applying Proposition 7.4 to F = ID,
J = T2 and H ∈ {G, G2}, we obtain the inclusions

HID,T2 ↪→ HG,T2 , HID,T2 ↪→ HG2,T2 . (7.5)

Finally, using again the adjunction TG ↪→ ID we get HG2,TG ↪→ HG2,ID.
The existence of the inclusion C: We use the following result (which generalizes

without problems to arbitrary parabolic subalgebras):

Proposition 7.5. There is a natural isomorphism of rings End(Z) ∼= Cs.
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Proof. Denote by I∆ the direct sum of all indecomposable projective-injective mod-
ules in Os

0 and consider I∆ as an object in O0. We claim that Φ : ϕ 7→ ϕQ de-
fines an isomorphism End(Z) ∼= Z(Endg(I

∆)), where the latter denotes the cen-
ter of Endg(I

∆). Note that Z(Endg(I
∆)) ∼= End(IDOs

0
) ([St2, Theorem 10.1]) and

End(IDOs
0
) is isomorphic to Cs ([So1], [BGS]).

Φ is injective: Let ϕ ∈ End(Z), ϕI∆ = 0 and let P be a projective object in O0.
We fix an inclusion i : ZP ↪→ J1, where J1 = ⊕i∈I1I

∆ for some finite set I1 (see [Ir2]).
Since Z is the identity on Os

0 we have ϕP = ϕZP and 0 = ϕJ1 ◦ Z(i) = Z(i) ◦ ϕZP .
The injectivity of Z(i) implies ϕP = 0. Let M ∈ O0 be arbitrary with projective
cover f : P→→M . Then ϕM ◦ Z(f) = Z(f) ◦ ϕJi

, i.e. ϕM = 0, since Z is right exact.
Φ is surjective: Let g ∈ Z(Endg(I

∆)). For P ∈ O0 projective we fix a coresolu-
tion

ZP
i

↪→ J1
h−→ J2,

where Ji
∼= ⊕i∈Ii

I∆ for some finite sets Ii (i = 1, 2). For the existence of such a
tilting resolution one can use [Ir2] and arguments, analogous to that of [KSX, 3.1]
(see [St2]). By definition, g induces a natural map gZP ∈ Endg(ZP ) making the
following diagram commutative:

ZP
� � Z(f) //

gP

��

ZJ1
Z(h) //

gJ1

��

ZJ2

gJ2

��
ZP

� � Z(f) // ZJ1

Z(h) // ZJ2

.

Setting gP = gZP defines a natural transformation g̃ : Z → Z, when restricted to the
additive category of projective objects in O0 such that g̃I∆ = g. The right exactness
of Z ensures that g̃ extends uniquely to some g̃ ∈ End(Z). Hence Φ is surjective. In
particular, End(Z) = Z(Endg(I

∆)) = Z(Os
0)
∼= Cs.

The remaining part from Theorem 5 follows if we prove the following statements:

Proposition 7.6. Let F : A → B be a dense functor between two categories A and
B. Then the restriction gives rise to an injective linear map End(IDB) ↪→ End(F ).
In particular, ZQ : O0 → Os

0 provides an inclusion Cs ↪→ HG,T.

Proof. The first statement of the proposition is obvious. Since ZQM = M for any
M ∈ O0 we may consider Q = ZQ as a functor from O0 to Os

0. We claim that Q is
dense, i.e. for any N ∈ Os

0 there exists an K ∈ O0 such that ZQ(K) ∼= N . Indeed, let
P � N be a projective cover of N in O0 with kernel K. Applying G to K ↪→ P � N
we obtain the exact sequence GK ↪→ GP → GN and GN = 0. In particular,
GK ∼= GP . Since the socle of P , and therefore also of K, is annihilated by Z, the map
gK is injective (see [Jo2]). Hence we have QK ∼= (GK)/K ∼= (GP )/K ∼= P/K ∼= N .

By Theorem 4 we have morphisms G
p−→ Q

α−1

−→ Q′ i
↪→ T, where α−1 is an

isomorphism. We consider the linear map ξ : End(Q) → HG,T defined as ξ(ϕ) =
i ◦ α−1 ◦ ϕ ◦ p. Since p is surjective, i is injective, and α−1 is an isomorphism, ξ
defines an inclusion End(Q) ↪→ HG,T. To complete the proof it is now enough to show
that End(Q) contains Cs. This follows directly from the first part of the proposition,
since End(ZO0)

∼= Cs (by Proposition 7.5 and [BGS]).
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Remark 7.7. The case g = sl2 shows already that some spaces HX,Y , X, Y ∈ S
can be smaller than C. Indeed, in this case we have HG,ID

∼= C and HGT,TG
∼= C.

Although the remaining ‘unknown’ spaces from Theorem 5 are isomorphic to C in
this particular example, the isomorphism is accidental and is not given by a natural
action of C on P (w0) (in contrast to the cases, which are known to be isomorphic
to C from Theorem 5). �

8 Proof of Theorem 6

Let I(Ŝ) denote the set of all idempotents in Ŝ. For X, Y ∈ I(Ŝ) we set HX,Y =
Hom(X, Y).

Proposition 8.1. End(X) ∼= C as algebras for any X ∈ Ŝ.

Proof. An injective algebra morphism from C to End(X) for every X ∈ Ŝ is con-
structed using the same arguments as in Proposition 7.1. The arguments, analogous
to that of Proposition 7.1, also give an isomorphism End(C) ∼= C.

Let us show that End(C2) ∼= C. We claim that the evaluation ϕ 7→ ϕP (w0)

defines an inclusion End(C2) ↪→ Endg(C
2P (w0 · 0). Assume ϕP (w0) = 0 and let

P ∈ O0 be projective with injective hull i : P ↪→ I. We get an exact sequence
0 → ker C2(i) → C2P → C2I. By assumption we have 0 = ϕI ◦ C2(i) = C2(i) ◦ ϕP .
In particular, the image of ϕP is contained in the kernel of C2(i). On the other hand
Homg(C

2P, ker C2(i)) ↪→ Homg(θCP, ker C2(i)) ∼= Hom(CP, θ ker C2(i)) = 0, since
θ ker C2(i) = 0. Therefore, ϕP = 0 and hence ϕ = 0, since C2 is right exact.

If i > 2 then we have

End(Ci) ∼= Hom(ID, KiCi) ∼= Hom(ID, K2C2) ∼= End(C2) ∼= C.

End(KCi) ∼= Hom(CKCi, Ci) ∼= End(Ci) ∼= C, i > 0; and End(K2Ci) ∼= Hom(C2K2Ci,
Ci) ∼= End(Ci) ∼= C, i > 1.

Finally, there are isomorphisms End(CK2C) ∼= Hom(K2C, KCK2C) ∼= End(K2C)
∼= Hom(C2K2C, C) ∼= Hom(C2K, C) ∼= Hom(CK, KC) and it is left to show that
Hom(CK, KC) embeds into C as a vector space. For this we show that the map
Φ : Hom(CK, KC) → Endg(P (w0)) ∼= C, ϕ 7→ ϕP (w0) is injective. Assume that
ϕP (w0) = 0. Since both CK and KC preserve injections (see Proposition 2.4), from
the injection i : P ↪→ I above we obtain that ϕ must be zero on all projective
modules. Taking a projective cover of any M ∈ O0 and using the fact that both CK
and KC preserve surjections (see Proposition 2.4), we obtain that ϕ is zero. The
rest follows by duality.

Note that KC preserves projective modules, since the adjunction from Proposi-
tion 2.4 is an isomorphism on projective objects.

Equality of the spaces labeled by 2: The inclusion CK ↪→ ID from Proposition 2.4
induces an inclusion HK2C2,CK ↪→ HK2C2,ID. By duality we have HK2C2,CK

∼= HKC,C2K2

and HK2C2,ID
∼= HID,C2K2 . Applying Proposition 7.4 to F = ID, H = KC, and J =

C2K2 we obtain HID,C2K2 ↪→ HKC,C2K2 and thus all these four spaces are isomorphic.
Equality of the spaces labeled by 3: The inclusion CK ↪→ ID induces an inclusion

HKC2K,CK ↪→ HKC2K,ID. By duality we have HKC2K,CK
∼= HKC,CK2C and HKC2K,ID

∼=
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HID,CK2C. Applying Proposition 7.4 to F = ID, H = KC, and J = CK2C we obtain
HID,CK2C ↪→ HKC,CK2C and thus all these four spaces are isomorphic.

Equality of the spaces labeled by 4: Evaluating CK ↪→ ID at KC gives an inclusion
CK2C ∼= KC2K ↪→ KC. Applying Hom(K2C2, −) produces HK2C2,KC2K ↪→ HK2C2,KC.
By duality we have HK2C2,KC2K

∼= HKC2K,C2K2 and HK2C2,KC
∼= HCK,C2K2 . Applying

Proposition 7.4 to F = CK, H = KC, and J = C2K2 we obtain HCK,C2K2 ↪→
HCK2C,C2K2 and thus all these four spaces are isomorphic.

Applying the duality implies that all other spaces labeled by the same number
coincide.

All spaces labeled by C are correct: For the diagonal entries this follows from
Proposition 8.1 above. For any X ∈ I(Ŝ) we have HC2K2,X

∼= HK2,K2X
∼= HK2,K2

∼= C
and HX,K2C2

∼= C by duality. That HCK,KC
∼= C was shown in the proof of Propo-

sition 8.1. Using adjunction and duality we have HCK,KC2K
∼= HC2K,C2K

∼= C and
HID,KC

∼= HC,C
∼= C ∼= HK,K

∼= HCK,ID.
It is left to establish the claimed inclusions. Applying Hom(KC, −) to the in-

clusion CK ↪→ ID we get HKC,CK ↪→ HKC,ID. Applying Proposition 7.4 to F = ID,
H = KC, and J = CK we obtain HID,CK ↪→ HKC,CK2C. Applying Proposition 7.4 to
F = KC2K, H = KC, and J = CK we obtain HKC2K,CK ↪→ HCK2C,CK2C

∼= C. Apply-
ing Hom(K2C2, −) to the inclusion KC ↪→ K2C2 obtained above we get HK2C2,KC ↪→
HK2C2,K2C2

∼= C.

Remark 8.2. Behind our argumentation is the following general fact: Let F and G
be two endofunctors on O0. Assume that F preserves surjections and G preserves
injections. Then the map Hom(F, G) → Endg(P (w0)), ϕ 7→ ϕP (w0), is injective.
Indeed, let ϕP (w0) = 0. Since the injective envelope of any projective P ∈ O0 belongs
to Add(P (w0)), we can use that G preserves injections to obtain ϕP = 0. Taking
now the projective cover of any M ∈ O0 and using that F preserves surjections we
obtain ϕM = 0.

One can show that K2C2 preserves injections and C2K2 preserves surjections,
which implies that HX,Y ↪→ C for all X ∈ {ID, CK, KC2K, C2K2, Ci, KCi : i > 0} and
Y ∈ {ID, KC, KC2K, K2C2, Ki, CKi : i > 0}. �

9 Proof of Theorem 7

We have Exti
O0

(Pw,Pw) = HomDb(O0)(LTwP ,LTwP [i]) = Exti
O0

(P ,P) = 0, i > 0,
(see [AS]).

Claim 9.1. P admits a finite coresolution by modules from Add(Pw).

Proof. Let w ∈ W . If l(w) = 0, the statement is obvious. Assume, it is true for all
w̃ where l(w̃) ≤ l(w) and let s be a simple reflection such that sw > w. We have to
show that P has a finite Add(Psw)-coresolution. Since Ext>0

O0
(Px,Px) = 0, for all

x ∈ W , the arguments from [Ha, Chapter III] or [MO, Lemma 4] reduce the problem
to showing that there exists a w̃, l(w̃) ≤ l(w), such that P w̃ admits a coresolution
by modules from Add(Psw). Since all Tx commute with translation functors, it
is enough to prove the statement for Tŵ∆(e) ∼= ∆(ŵ). We choose w̃ such that
sw = w̃t for some simple reflection t with l(w̃t) > l(w̃) and consider the short exact
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sequence ∆(e) ↪→ P (t) � ∆(t). Applying Tw̃ we obtain the short exact sequence
∆(w̃) ↪→ Tw̃P (t) � ∆(sw). Since P (t) ∼= TtP (t), it follows that Tw̃P (t) ∼= TswP (t).
Thus, Tw̃P (t), ∆(sw) ∈ Add(Psw), and hence ∆(w̃) has a coresolution by modules
from Add(Psw).

We proved that Pw is a generalized tilting module for any w ∈ W . Since O0

has finite projective dimension, it is a generalized cotilting module as well ([Re,
Corollary 2.4]).

The remaining assertions from the first part of the theorem follow by duality.
Since Tw0∆(e) ∼= ∆(w0) is a tilting module and Tw0 commutes with translations, it
follows that Pw0 ∼= T ∼= Iw0 (see also [KM]). Let w ∈ W and sw > w (i.e. sww0 <
ww0). The adjunction morphism TsGs ↪→ ID gives TswTw0P ∼= TsTwTw0P ∼=
TsGww0I ∼= TsGsGsww0I ↪→ Gsww0I. Comparing the characters and using duality
shows the second part of the theorem.

It remains to prove the formulas for the homological dimensions. Twisting func-
tors commute with translation functors, hence we get

projdim(Pw) = projdim(Tw∆(e)) = projdim(∆(w))

and

injdim(Pw) = injdim(∆(w)).

For Verma modules the values are easy to compute and are given by the formulas
from the theorem. The remaining statements follow by duality.

10 Proof of Theorem 8

We start with the following

Proposition 10.1. Let w ∈ W and M ∈ O0 be a module having a Verma flag.
Then L1Cs(Cw−1M) = 0 for any simple reflection s such that ws > w. In partic-
ular, Cw−1P is acyclic for Cs for any projective object P and hence LCsLCw−1

∼=
L(CsCw).

Proof. By [MS, Section 5], Cw−1M has a w−1-shuffled Verma flag. Hence, using
Theorem 1, it is enough to show that the socle of every w−1-shuffled Verma module
Cw−1∆(x) contains only L(y) such that ys < y. But Cw−1∆(x) is at the same time
a w−1w0-coshuffled dual Verma module and sw−1w0 < w−1w0 as ws > w. This
implies that Cw−1∆(x) ∼= KsN for some N ∈ O0 and thus Cw−1∆(x) has desired
socle by definition of Ks.

Claim 10.2. wP is a generalized (co-)tilting module.

Proof. The case w = e is clear. Assume the statement to be true for w ∈ W and let
s be a simple reflection such that sw > w. By definition

0 → P (x)
adjs(P (x))−→ θsP (x) −→ CsP (x) → 0
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is exact for any x ∈ W . Applying Cw and using the previous proposition we get an
exact sequence

0 → CwP (x)
adjs(P (x))−→ CwθsP (x) −→ CwCsP (x) → 0.

Since CwCs
∼= Csw (see [MS]) and CwθsP (x) ∼= CwCsθsP (x) ∼= CswθsP (x), CwP (x)

has a two-step coresolution with modules from Add(CwsP). Since LCw induces an
equivalence on the bounded derived category of O0 (by Proposition 10.1 and [MS])
we have Ext>0(CwP , CwP) ∼= Ext>0(P ,P). The arguments from Claim 9.1 show
that wP is a generalized tilting module, hence also a generalized cotilting module
by [Re].

Now let us prove Theorem 8(3). Using Proposition 10.1 and [MS, Section 5] the
statement reduces to verifying that w0P ∼= T . Since Cw0 maps Verma modules to
dual Verma modules, Proposition 10.1 implies that Cw0P has a dual Verma flag and
satisfies Exti

O0
(Cw0P , d ∆(x)) = 0 for all x ∈ W . From [Ri] it follows that Cw0P

has a Verma flag as well and thus Cw0P ∼= T .
Let L = L(y) ∈ O0 be a simple object and M ∈ O0 be a module with Verma

flag. Then Proposition 10.1 gives

Exti
O(CsCwM, L) ∼= HomDb(O0)(L(CsCw)M, L[i])

∼= HomDb(O0)(CwM,RKsL[i]).

The latter is Exti+1
O (CwM, L) if y < ys and it is Exti

O(CwM, KsL) otherwise (see
[MS]). In particular, M = P gives projdim(wsP) ≤ projdim(wP) + 1, and M = T
gives projdim(CwsT ) ≤ projdim(CwT ) + 1. However, we know that projdim(T ) =
injdim(T ) = l(w0) (see e.g. [MO]) and projdim(I) = l(w0) and all the formulae for
homological dimensions follow.

Remark 10.3. It is well-known (see e.g. [AL], [Ma]) that the set of twisted Verma
modules are equal to the set of shuffled Verma modules. This is not the case for
projective objects. In fact, if g = sl3 and s, t are the two simple reflections, then
direct calculations show that CsP (t) is neither a twisted projective nor a completed
injective object. �
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by L. Angeleri Hügel, D. Happel and H. Krause.

[So1] W. Soergel, Kategorie O, perverse Garben und Moduln über den Koinvari-
anten zur Weylgruppe. J. Amer. Math. Soc. 3 (1990), no. 2, 421–445.

[So2] W. Soergel, The combinatorics of Harish-Chandra bimodules. J. Reine
Angew. Math. 429 (1992), 49–74.

[St1] C. Stroppel, Homomorphisms and extensions of principal series representa-
tions. J. Lie Theory 13 (2003), no. 1, 193–212.

26



[St2] C. Stroppel, Category O: Quivers and Endomorphism rings of Projectives.
Represent. Theory 7 (2003), 322-345.

[Wa] T. Wakamatsu, Stable equivalence for self-injective algebras and a general-
ization of tilting modules. J. Algebra 134 (1990), no. 2, 298–325.

Volodymyr Mazorchuk, Department of Mathematics, Uppsala University, Box 480,
751 06, Uppsala, Sweden, e-mail: mazor@math.uu.se,
web: “http://www.math.uu.se/̃ mazor/”.

Catharina Stroppel, Department of Mathematics, Aarhus University, Ny Munkegade
116, 8000 Aarhus C, Denmark. e-mail: stroppel@imf.au.dk,
web: http://home.imf.au.dk/stroppel/.

27


