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WAVE EQUATIONS FOR DUNKL DIFFERENTIAL-DIFFERENCE
OPERATORS

SALEM BEN SAÏD AND BENT ØRSTED

Abstract. Let k = (kα)α∈R be a positive-real valued multiplicity function re-
lated to a root system R, and ∆k be the Dunkl-Laplacian operator. For (x, t) ∈
RN×R, denote by uk(x, t) the solution to the deformed wave equation ∆x

kuk(x, t) =
∂ttuk(x, t), where the initial data belong to the Schwartz space on RN . We prove
that for k ≥ 0 and N ≥ 1, the wave equation satisfies a weak Huygens’ principle,
and only if (N − 3)/2 +

∑
α∈R+ kα ∈ N, a strict Huygens’ principle holds. Here

R+ ⊂ R is a subsystem of positive roots. As a particular case, if the initial data
are supported in a closed ball of radius R > 0 about the origin, the strict Huy-
gens’ principle implies that the support of uk(x, t) is contained in the conical shell
{(x, t) ∈ RN ×R | |t| −R ≤ ‖x‖ ≤ |t|+ R}. Our approach uses the representation
theory of the group SL(2, R), and Paley-Wiener theory for the Dunkl transform.
Also, we show that the (t-independent) energy functional of uk is, for large |t|,
partitioned into equal potential and kinetic parts.

1. Introduction

In a series of lectures at Yale University, J. Hadamard formulated two different
meanings of Huygens’ principle which are nowadays known as Hadamard’s major
and minor premises [14]. A typical statement of the major premise is “every point
on a wave front acts as a source of a new wave front, propagating radially outward”.
This statement is mainely the original principle proposed by Christiaan Huygens
in the 17th centry [22], and it holds for a general class of wave propagations. In
contrast to the major premise, the minor premise is a remarkable phenomena, that is
valid only for very special equations, and never happens in even dimensional spaces.
Mathematically, a second order hyperbolic equation satisfies Huygens’ principle in
the narrow sense (“minor premise”), if the solution of the corresponding Cauchy
problem at some point x depends not on all the Cauchy data, but only on its part on
the intersection of the characteristic conoid with vertex x with the Cauchy surface.
This means that the fundamental solution of the corresponding Cauchy problem
vanishes outside and inside the characteristic conoid, and thus must be located on
it. Indeed, because of the Huygens’ principle in the narrow sense that we can hear
each other, one has a pure propagation without residual waves. This is not the case
in the two dimensional space: when a pebble falls in water at a certain point x, the
initial ripple on a circle around x will be followed by subsequent ripples. Thus a
given point y will be hit by residual waves.

The problem of classifying all second order hyperbolic differential operators which
obey Huygens’ principle in the narrow sense, is known as the Hadamard’s problem.
This problem has received a good deal of attention and the literature is extensive
[33, 25, 5, 13, 26, 34, 30, 27, 17, 1, 2, 6]. (Of course, this list of references is not
complete). Nevertheless, this problem is still far from being fully solved. In the
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2 SALEM BEN SAÏD AND BENT ØRSTED

present paper, we shall treat a natural differential-difference operator of a similar
hyperbolic nature.

We will use the terminology “weak Huygens’ principle” for Hadamard’s major
premises, and “strict Huygens’ principle” for Hadamard’s minor premises.

The propagation of waves in RN is governed by the wave equation

∆xu(x, t) = ∂ttu(x, t), for (x, t) ∈ RN × R. (L)

Here ∆x denotes the usual Laplacian operator in the x-variable, and the subscript
t indicates differentiation in the t-variable. It is a well known fact that (L) pos-
sesses the weak Huygens’ principle for all N ≥ 1, and only for odd N ≥ 3 where
the strict Huygens’ principle holds [5]. In this paper, we will investigate the va-
lidity of the weak and the strict Huygens’ principle for (L) when the Laplacian ∆
is replaced by the differential-difference Dunkl-Laplacian operator associated with
Coxeter groups [7]. The main tools are the Paley-Wiener theory for the Dunkl trans-
form (or the generalized Fourier transform) [24], and the representation theory of
the group SL(2,R).

To be more specific, let G be a finite Coxeter group on RN with root system
R, and choose a positive subsystem R+ in R. Let k : R → R+, α 7→ kα, be a
multiplicity function. The Dunkl-Laplacian operator is given by

∆kf(x) = ∆f(x) + 2
∑

α∈R+

kα

{
〈∇f(x), α〉
〈α, x〉

− f(x)− f(rαx)

〈α, x〉2

}
,

where ∆ and ∇ are the usual Laplacian and gradient operators, 〈·, ·〉 is the standard
Euclidean scalar product in RN , and rα is the reflection on the hyperplane orthogonal
to the root α.

Consider the following Cauchy problem

∆kuk(x, t) = ∂ttuk(x, t), uk(x, 0) = f(x), ∂tuk(x, 0) = g(x), (D)

where the Cauchy data f and g are two Schwartz functions on RN . The main results
of this paper are:

Claim 1. (Weak Huygens’ principle) Assume that k ≥ 0, and N ≥ 1. For a given
y ∈ RN , the solution uk(x, t) depends only on the values of f(x~k y) and g(x~k y)

for ‖y‖ ≤ |t|. Here ‖y‖2 =
∑N

j=1 y
2
j , and ~k is a generalized translation. For k ≡ 0,

F (x~0 y) = F (x− y).

Claim 2. (Strict Huygens’ principle) Assume that k ≥ 0 and N ≥ 1. If

N − 3

2
+

∑
α∈R+

kα ∈ N,

then uk(x, t) depends only on the values of f(x ~k y) and g(x ~k y) (and their
derivatives) for ‖y‖ = |t|.

In particular, if x = 0, then in Claim 1 (resp. Claim 2) the solution uk(0, t)
will depend only on the values of f(y) and g(y) for ‖y‖ ≤ |t| (resp. ‖y‖ = |t|).
Furthermore, if the Cauchy data (f, g) are supported in a closed ball of radius
R > 0 about the origin, Claim 2 reads:

Claim 3. If (N − 3)/2 +
∑

α∈R+ kα ∈ N, the support of uk(x, t) is contained in the
conical shell

{(x, t) ∈ RN × R | |t| −R ≤ ‖x‖ ≤ |t|+R}.
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We can also give a different proof for Claim 3 using another approach based only
on de Jeu’s Paley-Wiener theorem for the Dunkl transform [24]. See the end of
Section 3 for a sketch of this approach; note that the details of this argument can
be found in the last section, which deals with the principle of energy equipartition
of a solution to (D).

Here is the outline of our approach. We start by proving that there exists two

tempered distributions P
(1)
k,t and P

(2)
k,t , where the solution uk to the Cauchy problem

(D) is uniquely given by

uk(x, t) = (P
(1)
k,t ∗k f)(x) + (P

(2)
k,t ∗k g)(x). (1.1)

Here ∗k is a Dunkl-type generalized convolution. Based on a Paley-Wiener the-

orem [24], we show that P
(`)
k,t , for ` = 1, 2, is supported inside the light cone

C := {(y, t) | ‖y‖ = ‖t‖} , i.e. in the set {(y, t) | ‖y‖ ≤ ‖t‖} . To prove the strict
Huygens’ principle, we use the representation theory of the group SL(2,R). In the

classical case, this approach goes back to R. Howe [18]. We show that P
(1)
k,t and

P
(2)
k,t are supported on the light cone C if and only if P

(`)
k,t , for ` = 1, 2, generates a

finite-dimensional sl(2,R)-module of dimension

dk,` =
N + 3

2
− `+

∑
α∈R+

kα.

On the other hand, for f ∈ C∞(RN), denote by Mf the spherical mean operator,
as first introduced in [28]

Mf (x, r) = d−1
k

∫
SN−1

f(x~k ry)wk(y) dω(y), x ∈ RN , r ≥ 0.

Here dk is a normalization constant, and wk is the G-invariant weight function
wk(x) :=

∏
α∈R+ |〈α, x〉|2kα , for x ∈ RN . A key result in Rösler’s paper [31], is that

the spherical mean operator is positivity-preserving. Keeping in mind (1.1), and
using the spherical mean operator for the Cauchy data (f, g), we prove that

uk(x, t) = dk

√
π

Γ(γk +N/2)

∫ |t|

0

r2γk+N−1 d

dt

(
S−γk−N−3

2
(t2 − r2)

)
Mf (r, x) dr

+ sign(t)dk

√
π

Γ(γk +N/2)

∫ |t|

0

r2γk+N−1S−γk−N−3
2

(t2 − r2)Mg(r, x) dr.

Here γk :=
∑

α∈R+ kα, and Sλ(x) := xλ−1
+ /Γ(λ) is the Riemann-Liouville distribu-

tion.
In the light of this integral representation of uk, and Rösler results on the spherical

mean operator, the two claims above become:

Claim 4. (Weak Huygens’ principle) Assume that k ≥ 0, and N ≥ 1. For a given
y ∈ RN , the solution uk(x, t) depends only on the values of f(y) and g(y) for
‖x‖ − |t| ≤ ‖y‖ ≤ ‖x‖+ |t|.

Claim 5. (Strict Huygens’ principle) Assume that k ≥ 0 and N ≥ 1. If (N−3)/2+∑
α∈R+ kα ∈ N, then uk(x, t) depends only on the values of f(y) and g(y) (and their

derivatives) for ‖y‖ ≥
∣∣‖x‖ − |t|

∣∣.
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In the last section we prove the energy equipartition theorem for the solution
uk. In this part we choose to work with smooth Cauchy data (f, g) supported in
the closed ball of radius R > 0 about the origin. The advantage of this choice is
to investigate, via Paley-Wiener theory for the Dunkl transform, the behavior of
the difference between the kinetic and potential energy of a solution uk to (D).
Indeed, if we denote by Kk[uk](t) the kinetic energy, and by Pk[uk](t) the potential
energy, then |Kk[uk](t)−Pk[uk](t)| decays like e−2s(|t|−R), for all t ∈ R and for fixed
s > 0. Thus the principle of energy equipartition holds for all |t| > R. However, if
we work with the Cauchy data (f, g) in the Schwartz space, the principle of energy
equipartition reads

lim
|t|→∞

Kk[uk](t) = lim
|t|→∞

Pk[uk](t) =
The total (t-independent) energy of uk

2
.

This paper is organized as follows: In Section 2 we give an abbreviated background
on the Dunkl theory. Section 3 is devoted to prove the main results, that is Claim
1, Claim 2, Claim 3, Claim 4, and Claim 5. In Section 4 we turn our attention to
the energy equipartition theorem.

2. Background

Throughout the paper, 〈·, ·〉 denotes the standard Euclidean scalar product in RN

as well as its bilinear extension to CN ×CN . For x ∈ RN , denote by ‖x‖ = 〈x, x〉1/2.
Denote by S (RN) the Schwartz space of rapidly decreasing functions equipped with
the usual Fréchet space topology.

Let G be a finite reflection group on RN with root system R, and fix a positive
subsystem R+ of R, normalized so that 〈α, α〉 = 2 for all α ∈ R+.

For α ∈ RN \ {0}, let rα be the reflection on the hyperplane 〈α〉⊥ orthogonal to α

rα(x) := x− 2
〈α, x〉
‖α‖2

α, x ∈ RN .

Then G is a subgroup of the orthogonal group O(N) generated by the reflections
{rα | α ∈ R}, and is called a Coxeter group. A multiplicity function on R is a
G-invariant function k : R → C. Setting kα := k(α) for α ∈ R, we have khα = kα

for all h ∈ G. The C-vector space of multiplicity functions on R is denoted by K .
If m := ]{G-orbits in R}, then K ∼= Cm.

For ξ ∈ CN and k ∈ K , in [7], Dunkl defined a family of first order differential-
difference operators Tξ(k) that play the role of the usual partial differentiation.
Dunkl’s operators are defined by

Tξ(k)f(x) := ∂ξf(x) +
∑

α∈R+

kα〈α, ξ〉
f(x)− f(rαx)

〈α, x〉
, f ∈ C 1(RN).

Here ∂ξ denotes the directional derivative corresponding to ξ. The definition of
Tξ(k) is independent of the choice of R+, and these operators mutually commute,
i.e. Tξ(k)Tη(k) = Tη(k)Tξ(k). Further, if f and g are in C 1(RN), and at least one of
them is G-invariant, then

Tξ(k)[fg] = gTξ(k)f + fTξ(k)g. (2.1)

We refer to [7, 10] for more details on the theory of Dunkl’s operators.
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The counterpart of the usual Laplacian is the Dunkl-Laplacian defined by

∆k :=
N∑

j=1

Tξj
(k)2,

where {ξ1, . . . , ξN} is an arbitrary orthonormal basis of (RN , 〈·, ·〉). By the normal-
ization 〈α, α〉 = 2, we can rewrite ∆k as

∆kf(x) = ∆f(x) + 2
∑

α∈R+

kα

{
〈∇f(x), α〉
〈α, x〉

− f(x)− f(rαx)

〈α, x〉2

}
,

where ∆ and ∇ denote the usual Laplacian and gradient, respectively. For the j-th
basis vector ξj, we will use the abbreviation Tξj

(k) = Tj(k).
Henceforth, K + denotes the set of multiplicity functions k = (kα)α∈R such that

kα ≥ 0 for all α ∈ R. For k ∈ K +, there exists a generalization of the usual
exponential kernel e〈·,·〉 by means of the Dunkl system of differential equations.

Theorem 2.1. (cf. [8, 29]) For k ∈ K +, there exists a unique holomorphic function
Ek on CN × CN characterized by

Tξ(k)Ek(z, w) = 〈ξ, w〉Ek(z, w) for all ξ ∈ CN , Ek(0, w) = 1. (2.2)

Further, the kernel Ek is symmetric in its arguments, and

Ek(λz, w) = Ek(z, λw), Ek(hz, w) = Ek(z, hw),

for z, w ∈ CN , λ ∈ C, and h ∈ G.

For complex-valued k, there is a detailed investigation of (2.2) by Opdam [29].
Theorem 2.1 is a weak version of Opdam’s result. For integral multiplicity, another
proof for Theorem 2.1 can be found in [3], by means of shift operators. The function
Ek is the so-called Dunkl kernel. When k ≡ 0, we have E0(z, w) = e〈z,w〉 for
z, w ∈ CN .

Let wk denote the weight function on RN defined by

wk(x) :=
∏

α∈R+

|〈α, x〉|2kα , x ∈ RN .

It is G-invariant and homogeneous of degree 2γk, with the index

γk :=
∑

α∈R+

kα.

Notice that by G-invariance of k, the definition of wk does not depend on the special
choice of R+. Further, we denote by dx the Lebesgue measure corresponding to 〈·, ·〉.

The Dunkl transform on the space L1(RN , wk(x)dx) of integrable functions on RN

with respect to wk(x)dx, is defined by

Dkf(ξ) := c−1
k

∫
RN

f(x)Ek(−ix, ξ)wk(x) dx, ξ ∈ RN ,

where ck denotes the Mehta-type constant

ck :=

∫
RN

e−‖x‖
2/2wk(x) dx. (2.3)

Many properties of the Euclidean Fourier transform carry over to the Dunkl trans-
form.
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Theorem 2.2. (cf. [9, 23]) For k ∈ K +, the following hold

(i) The Dunkl transform is a homeomorphism of S (RN). Its inverse is given by
D−1

k f(ξ) = Dkf(−ξ).
(ii) (L1-inversion) If f ∈ L1(RN , wk(x)dx), with Dk(f) ∈ L1(RN , wk(x)dx), then

f = D−1
k (Dk(f)) a.e.

(iii) (Plancherel formula) The Dunkl transform on S (RN) extends uniquely to
an isometric isomorphism of L2(RN , wk(x)dx).

In what follow we shall need a Paley-Wiener theorem for the Dunkl transform.
For R > 0, denote by C∞

R (RN) the space of smooth functions on RN with support
contained in the closed metric ball of radius R about the origin. Denote by HR(CN)
the space of entire functions f on CN with the property that for each integer M > 0,
there exists a constant αM such that

|f(z)| ≤ αM(1 + ‖z‖)−MeR‖Im(z)‖, z ∈ CN .

The following theorem can be found in [24].

Theorem 2.3. (Paley-Wiener Theorem) Let G be a Coxeter group and suppose that
k ∈ K +. Then the Dunkl transform Dk is a linear isomorphism between C∞

R (RN)
and HR(CN).

The above theorem was proved in [24] for Re(k) ≥ 0, and its geometrical form
was presented as a conjecture.

Another result needed in the sequel is a generalized translation operator. In [8],
Dunkl proved that for k ∈ K +, there exists a linear isomorphism Vk that intertwines
the algebra generated by the Dunkl’s operators with the algebra of partial differential
operators. The intertwining operator Vk is determined uniquely by

Tξ(k)Vk = Vk∂ξ for all ξ ∈ RN , VkPm(RN) ⊂ Pm(RN), Vk(1) = 1.

In [35], Trimèche used Vk to define a generalized translation operator on C∞(RN)
by

f(x~k y) := V x
k V

y
k (V −1

k f)(x− y), x, y ∈ RN .

Here the superscript denotes the relevant variable. When k ≡ 0, f(x~0y) = f(x−y).
Further, in [35], the author defined a generalized convolution ∗k by

(f ∗k g)(x) :=

∫
RN

f(y)g(x~k y)wk(y) dy.

By [35, Theorem 7.2]

Dk(f ∗k g)(ξ) = Dkf(ξ)Dkg(ξ) and f ∗k g = g ∗k f. (2.4)

3. Wave equations associated with Dunkl operators

For a multiplicity function k in K +, consider the Cauchy problem for the wave
equation associated with the Dunkl-Laplacian operator

∆kuk(x, t) = ∂ttuk(x, t), (x, t) ∈ RN × R,

uk(x, 0) = f(x), ∂tuk(x, 0) = g(x).
(3.1)

Here the functions f and g belong to S (RN). The subscript t indicates differentiation
in the t-variable. Next, we shall prove the following statements:
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(S1) Let k ∈ K + and N ≥ 1. For a given y, the solution uk(x, t) depends on the
values of f(x~k y) and g(x~k y) for ‖y‖ ≤ |t|.

(S2) Let k ∈ K +, N ≥ 1, and y ∈ RN . Under a condition involving N and k, the
solution uk(x, t) depends only on the values of f(x ~k y) and g(x ~k y) (and their
derivatives) for ‖y‖ = |t|.

Another way of saying (S1) is that uk is expressed as a sum of ∗k-convolutions of
f and g with distributions that vanish outside the ball of radius |t| about the origin.
Similarly, (S2) is equivalent to the fact that distributions we convolve f and g with
also vanish inside the ball of radius |t|. In analogy with the classical case, i.e. when
k ≡ 0, we shall say that (3.1) possesses the weak Huygens’ principle if uk satisfies
(S1), and (3.1) obey the strict Huygens’ principle if uk satisfies (S2).

For time being, we only assume k ∈ K + and N ≥ 1. Set

Uk(x, t) :=

[
uk(x, t)
∂tuk(x, t)

]
. (3.2)

Thus we may rewrite the wave equation in (3.1) as

∂tUk(x, t) =

[
0 1

∆k 0

]
Uk(x, t). (3.3)

Applying the Dunkl transform Dk to (3.3), in the x-variable, and using the fact that
Dk(∆kf)(ξ) = −‖ξ‖2Dk(f)(ξ), we obtain

∂tDk(Uk(·, t))(ξ) =

[
0 1

−‖ξ‖2 0

]
Dk(Uk(·, t))(ξ) := ADk(Uk(·, t))(ξ). (3.4)

Solving this ordinary differential equation, we get

Dk(Uk(·, t))(ξ) = etADk(Uk(·, 0))(ξ), (3.5)

where

etA =

[
cos(t‖ξ‖) sin(t‖ξ‖)

/
‖ξ‖

−‖ξ‖ sin(t‖ξ‖) cos(t‖ξ‖)

]
.

By the inversion formula for the Dunkl transform (Theorem 2.2(ii)), and the prop-
erty (2.4) of the generalized convolution ∗k, we have

Uk(x, t) = {Pk,t ∗k Uk(·, 0)} (x) (3.6)

:=

{[
P 11

k,t P 12
k,t

P 21
k,t P 22

k,t

]
∗k Uk(·, 0)

}
(x),

where Pk,t := D−1
k (etA), and[

P 11
k,t P 12

k,t

P 21
k,t P 22

k,t

]
=

[
D−1

k

[
cos(t‖ · ‖)

]
D−1

k

[
sin(t‖ · ‖)

/
‖ · ‖

]
D−1

k

[
− ‖ · ‖ sin(t‖ · ‖)

]
D−1

k

[
cos(t‖ · ‖)

] ]
(3.7)

is the 2×2 matrix of tempered distributions on RN obtained by applying the inverse
of the Dunkl transform, in the sense of tempered distribution, entrywise to etA. We
shall call the distributions P ij

k,t the propagators of the deformed wave equation. We
have proved:
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Theorem 3.1. The solution to the Cauchy problem (3.1) is given uniquely by

uk(x, t) = (P 11
k,t ∗k f)(x) + (P 12

k,t ∗k g)(x),

where, for a fixed t, P 11
k,t and P 12

k,t are the tempered distributions on RN given by

P 11
k,t = D−1

k [cos(t‖ · ‖)] , P 12
k,t = D−1

k

[
sin(t‖ · ‖)

/
‖ · ‖

]
.

From the form of Dk(Pk,t), one can observe that for each t, the function x 7→
uk(x, t) belongs to S (RN).

Before investigate the support of the solution uk and of the propagators, let us
make some observations regarding the estimate and the limit of uk(·, t) in L2(RN ,
wk(x) dx). We restrict our attention to the L2-behaviors because these are the
most physically interesting quantities. First, for all t ∈ R, we have the following
Strichartz-type inequality

‖uk(·, t)‖k ≤ ‖f‖k + ‖(−∆k)
−1/2g‖k. (3.8)

Here ‖ · ‖k denotes the norm in L2(RN , wk(x)dx). Secondly, as |t| → ∞, the function
t 7→ ‖uk(·, t)‖k has a definite limit depending on the initial data

lim
|t|→∞

‖uk(·, t)‖2
k = 1

2
‖f‖2

k + 1
2
‖(−∆k)

−1/2g‖2
k. (3.9)

It follows that if ‖uk(·, t)‖k → 0 as |t| → ∞, then

uk ≡ 0.

To prove (3.8) and (3.9), we express
∫

RN |uk(x, t)|2wk(x) dx in terms of Dk(uk(·, t))(ξ)
by means of the Plancherel formula. In view of

Dk(uk(·, t))(ξ) = cos(t‖ξ‖)Dkf(ξ) +
sin(t‖ξ‖)
‖ξ‖

Dkg(ξ), (3.10)

we obtain∫
RN

|uk(x, t)|2wk(x) dx

=
1

2

∫
RN

{
|Dkf(ξ)|2 +

|Dkg(ξ)|2

‖ξ‖2

}
wk(ξ) dξ

+
1

2

∫
RN

|Dkf(ξ)|2 cos(2t‖ξ‖)wk(ξ) dξ

+
1

2

∫
RN

|Dkg(ξ)|2

‖ξ‖2
sin(2t‖ξ‖)wk(ξ) dξ

+
1

2

∫
RN

Dkf(ξ)Dkg(ξ) + Dkf(ξ)Dkg(ξ)

‖ξ‖
sin(2t‖ξ‖)wk(ξ) dξ.

Above we used the familiar trigonometric identities for double angles. Now the
Strichartz-type inequality is clear. Equation (3.9) follows by using the classical
Riemann-Lebesgue lemma for the Euclidean Fourier sine and cosine transforms.

Now we turn our attention to the statements (S1) and (S2), stated in the beginning
of this section. In terms of the propagators, the first statement amounts to the fact
that P 11

k,t and P 12
k,t are supported inside the light cone C := {(x, t) ∈ RN×R | ‖x‖2−t2

= 0}, i.e. in the set {(x, t) ∈ RN×R | ‖x‖2−t2 ≤ 0}. The second statement amounts
to the fact that P 11

k,t and P 12
k,t are supported on the light cone C .
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To prove (S1), our method uses the Paley-Wiener Theorem 2.3 for the Dunkl
transform.

The first key observation is that the functions cos(t‖x‖) and sin(t‖x‖)/‖x‖ can be
extended to entire functions on CN . Indeed, for z ∈ C, the functions cos z and sin z/z
are both even, and thus we may consider the functions cos(

√
z) and sin(

√
z)/

√
z

which are entire analytic functions of z (even though
√
z it is not single-valued).

Thus, the analytic extensions of cos(t‖x‖) and sin(t‖x‖)/‖x‖, respectively, are

cos
(
t〈z, z〉1/2

)
,

sin
(
t〈z, z〉1/2

)
〈z, z〉1/2

,

since being the composition of analytic functions, and they coincide with the original
functions when z ∈ RN . In order to apply the Paley-Wiener theorem, we need to
show that ∣∣ cos(t〈z, z〉1/2)

∣∣, ∣∣∣∣sin(t〈z, z〉1/2)

〈z, z〉1/2

∣∣∣∣ ≤ ce|t| ‖Im(z)‖, (3.11)

which turn out to be true. Indeed, if we write 〈z, z〉1/2 = u + iv, and use the fact
that | cos(u+ iv)| and | sin(u+ iv)/(u+ iv)| are both bounded by e|v|, we obtain∣∣ cos(t〈z, z〉1/2)

∣∣, ∣∣∣∣sin(t〈z, z〉1/2)

〈z, z〉1/2

∣∣∣∣ ≤ ce|t| |v|.

To get the inequalities in (3.11), one have to prove that |v| ≤ ‖Im(z)‖. This follows
as the following: As 〈z, z〉 = (u + iv)2, we have u2 − v2 = ‖Re(z)‖2 − ‖Im(z)‖2

and uv = 〈Re(z), Im(z)〉. Thus by Cauchy-Schwartz-Buniakowsly inequality u2v2 ≤
‖Re(z)‖2‖Im(z)‖2. This together with u2−v2 = ‖Re(z)‖2−‖Im(z)‖2, implies v2(v2+
‖Re(z)‖2 − ‖Im(z)‖2) ≤ ‖Re(z)‖2‖Im(z)‖2. This amounts to(

v2 +
‖Re(z)‖2 − ‖Im(z)‖2

2

)2

≤
(
‖Re(z)‖2 + ‖Im(z)‖2

2

)2

,

which yields v2 ≤ ‖Im(z)‖2. Now, applying the Paley-Wiener Theorem 2.3, we
conclude that the propagators D−1

k [cos(t‖·‖)] and D−1
k [sin(t‖·‖)

/
‖·‖] are supported

in the set ‖x‖ ≤ |t|. We have proved:

Theorem 3.2. For all k ∈ K + and N ≥ 1, the propagators P 11
k,t and P 12

k,t are
supported inside the light cone C , i.e. in the set

{
(x, t) ∈ RN × R | ‖x‖ ≤ |t|

}
.

Thus, the following weak Huygens’ principle holds.

Theorem 3.3. (Weak Huygens’ Principle) Given a point y ∈ RN . If k ∈ K + and
N ≥ 1, the solution uk(x, t) to the Cauchy problem (3.1) depends only on the values
of f(x~k y) and g(x~k y) for ‖y‖ ≤ |t|.

Notice that the above theorem holds in all dimensions N. We shall now discuss
the strict Huygens’ principle which will holds only under a condition involving N
and the multiplicity function k. Our approach uses the representation theory of the
group SL(2,R), following [20]

We start by investigate certain symmetries and invariance of the deformed wave
equation, which are reflected in symmetries and invariance of the propagators. To
see this, we define the 2× 2 matrix

Pk =

[
P 11

k P 12
k

P 21
k P 22

k

]



10 SALEM BEN SAÏD AND BENT ØRSTED

of entrywise distributions on RN+1, where

P ij
k (ψ1 ⊗ ψ2) :=

∫
R
P ij

k,t(ψ1)ψ2(t) dt, i, j = 1, 2

for ψ1 ∈ S (RN) and ψ2 ∈ S (R). Here we used the fact that ψ1 ⊗ ψ2 ∈ S (RN) ⊗
S (R) ∼= S (RN+1). From the constructive proof of theorem 3.1, it follows that

∆kP
ij
k = ∂ttP

ij
k , i, j = 1, 2.

For g ∈ G, ψ ∈ S (RN+1), and for each t ∈ R, denote by πx the unitary action of
G on ψ(·, t) given by

πx(g)ψ(x, t) := ψ(g−1 · x, t).
By duality, we get the action π∗x of G on tempered distributions by the rule

π∗x(g)(T )(ψ) = T (πx(g)
−1ψ),

for ψ ∈ S (RN+1) and T ∈ S ∗(RN+1). Further, if τ is the operation of time-reflection
τ(x, t) = (x,−t), denote by

πt(τ)ψ(x, t) := ψ(x,−t).
Similarly to π∗x, we obtain the action π∗t on distributions.

Begin with a solution uk(x, t) to the Cauchy problem (3.1) with Cauchy data (f, g).
Then πx(h)uk(x, t) solves the the wave equation with initial data (πx(h)f, πx(h)g).
The analogue of (3.6) reads

πx(h)Uk(x, t) = {Pk,t ∗k πx(h)Uk(·, 0)} (x).

This amounts to

Uk(x, t) = π∗x(h) {Pk,t ∗k πx(h)Uk(·, 0)} (x) = {π∗x(h)Pk,t ∗k Uk(·, 0)} (x),

which implies

π∗x(h)P
ij
k,t = P ij

k,t, i, j = 1, 2.

The G-invariance of P ij
k,t can also be observed directly from (3.7). Plugging this into

the definition of P ij
k , we conclude that

π∗x(h)P
ij
k = P ij

k , i, j = 1, 2.

For the operation of time-reflection, clearly πt(τ)uk(x, t) = uk(x,−t) solves the
Cauchy problem (3.1) with Cauchy data (f,−g). Thus, the analogue of (3.6) reads[

uk(x,−t)
−(∂tuk)(x,−t)

]
=

{
Pk,t ∗k

[
f
−g

]}
(x),

which we may rewrite it as[
1 0
0 −1

]
Uk(x,−t) =

{
Pk,t ∗k

[
1 0
0 −1

]
Uk(·, 0)

}
(x), (3.12)

where Uk(x, t) is the collum vector (3.2). On the other hand, from (3.6), it follows
that Uk(x,−t) = Pk,−t ∗k Uk(x, 0). Comparing this with equation (3.12), we obtain

P ij
k,−t = (−1)i−jP ij

k,t for i, j = 1, 2,

which implies

π∗t (τ)P
ij
k = (−1)i−jP ij

k for i, j = 1, 2.
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Remark 3.4. From the time-reflection action on the propagators, it is clear that time
is reversible, except for a minus sign may appear when the second Cauchy datum
g or its Dunkl transform are involved. So the past is determined by the present as
well as the future.

Next, we shall investigate the symmetries of the propagators under a dilatation
operator. This will inform us on the degree of the homogeneity of the distributions
P ij

k , with i, j = 1, 2.
For λ > 0 and ψ ∈ S (RN+1), denote by

Sx
λψ(x, t) = ψ(λx, t), St

λψ(x, t) = ψ(x, λt),

where the superscript denotes the relevant variable. Set Sλ := Sx
λ ◦ St

λ. By duality,
the operators Sx

λ , S
t
λ, and Sλ act on distributions in the standard way.

We begin by looking to the symmetry properties of P ij
k,t under the dilatation Sλ.

Observe that if uk(x, t) is a solution to (3.1) with initial data (f(x), g(x)), then
Sλuk(x, t) solves the wave equation with initial data (Sx

λf(x), λSx
λg(x)). Thus

SλUk(x, t) =
{
Pk,t ∗k

[
Sx

λf
λSx

λg

]}
(x). (3.13)

On the other hand

SλUk(x, t) =

[
Sλuk(x, t)

∂t{Sλuk(x, t)}

]
=

[
uk(λx, λt)

λ{∂tuk}(λx, λt)

]
=

[
uk

λ∂tuk

]
(λx, λt)

=

[
1 0
0 λ

] [
uk

∂tuk

]
(λx, λt)

=

[
1 0
0 λ

] {
Pk,λt ∗k

[
f
g

] }
(λx)

=

[
1 0
0 λ

]
Sx

λ

{
Pk,λt ∗k

[
f
g

]}
(x).

Using the fact that if fλ(x) := λγk+N/2f(λx) then Dk(fλ)(ξ) = λ−γk−N/2Dk(f)(λξ),
one can check that Sx

λ preserves the convolution ∗k. Therefore

SλUk(x, t) =

[
1 0
0 λ

]{
Sx

λPk,λt ∗k

[
Sx

λf
Sx

λg

]}
(x)

=

[
1 0
0 λ

]{
Sx

λPk,λt ∗k

[
1 0
0 λ−1

] [
Sx

λf
λSx

λg

]}
(x). (3.14)

Comparing (3.13) with (3.14) gives Sx
λP

ij
k,λt = λj−iP ij

k,t, for i, j = 1, 2. Now the

symmetry properties of P ij
k follow as the following: For ψ1 ∈ S (RN) and ψ2 ∈
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S (R), we have

Sλ(P
ij
k )(ψ1 ⊗ ψ2) = P ij

k (Sx
λ−1(ψ1)⊗ St

λ−1(ψ2))

=

∫
R
P ij

k,t(S
x
λ−1(ψ1))S

t
λ−1(ψ2)(t) dt

= λ

∫
R
P ij

k,λt(S
x
λ−1(ψ1))ψ2(t) dt

= λ

∫
R
Sx

λ(P ij
k,λt(ψ1))ψ2(t) dt

= λ1+j−i

∫
R
P ij

k,t(ψ1)ψ2(t) dt

= λ1+j−iP ij
k (ψ1 ⊗ ψ2).

We summarize the above computations.

Proposition 3.5. Let k ∈ K +.

(i) The distribution P ij
k satisfies the deformed wave equation, i.e.

∆kP
ij
k = ∂ttP

ij
k , i, j = 1, 2. (3.15)

(ii) If g ∈ G and τ denotes the operation of time-reflection, then

π∗x(g)P
ij
k = P ij

k , π∗t (τ)P
ij
k = (−1)i−jP ij

k , i, j = 1, 2.

(iii) For λ > 0

SλP
ij
k = λ1+j−iP ij

k , i, j = 1, 2.

Next, we will prove similar statements for what we shall call the Dunkl-Fourier
transform of P ij

k . For ψ ∈ S (RN+1), denote by

DkFψ(x, t) := (2π)−1/2c−1
k

∫
RN+1

ψ(x′, t′)Ek(−ix, x′)eitt′wk(x
′) dx′ dt′.

For a distribution T of compact support, we write

DkF (T ) = D̃kF (T )(x, t)wk(x)dxdt

where

D̃kF (T )(x, t) := (2π)−1/2c−1
k T (Ek(−ix, x′)eitt′).

Since Ek(g · x, x′) = Ek(x, g · x′), for g ∈ G, and wk is G-invariant, thus, in the
light of Proposition 3.5(ii), it follows that

π∗x(g)DkF (P ij
k ) = DkF (P ij

k ), for all g ∈ G
and

π∗t (τ)DkF (P ij
k ) = (−1)i−jDkF (P ij

k ).

A crucial observation regarding DkF (P ij
k ) is that

(‖x‖2 − t2)DkF (P ij
k ) = 0, i, j = 1, 2. (3.16)

This follows by taking the Dunkl-Fourier transform of (3.15) together with the fact
that DkF (∆kψ)(x, t) = −‖x‖2DkF (ψ)(x, t) and DkF (∂ttψ)(x, t) = −t2DkF (ψ)(x, t).
Equation (3.16) says the distribution DkF (P ij

k ) is supported on the light cone
C =

{
(x, t) ∈ RN+1 | ‖x‖ − t2 = 0

}
, for i, j = 1, 2.



WAVE EQUATIONS FOR DUNKL DIFFERENTIAL-DIFFERENCE OPERATORS 13

Consider now the symmetry property of DkF (P ij
k ). In view of Proposition 3.5(iii)

and the fact that Ek(λx, x
′) = Ek(x, λx

′), we have

Sλ

[
DkF (P ij

k )
]

= Sλ

[
D̃kF (P ij

k )(x, t)wk(x)dxdt
]

= Sλ

[
D̃kF (P ij

k )
]
(x, t)Sλ [wk(x)dxdt]

= λ2γk+N+1D̃kF (P ij
k )(λx, λt)wk(x)dxdt

= (2π)−1/2c−1
k λ2γk+N+1P ij

k (Ek(−ix′, λx)eiλtt′)wk(x)dxdt

= (2π)−1/2c−1
k λ2γk+N+1P ij

k (Ek(−iλx′, x)eitλt′)wk(x)dxdt

= (2π)−1/2c−1
k λ2γk+N+1P ij

k

(
Sλ

[
Ek(−ix′, x)eitt′

])
wk(x)dxdt

= λ2γk+N+1DkF (Sλ−1P ij
k )

= λ2γk+N+i−jDkF (P ij
k ).

Similarly to Proposition 3.5, we get:

Proposition 3.6. Let k ∈ K +.

(i) The distribution DkF (P ij
k ) is supported on the light cone C , i.e.

(‖x‖2 − t2)DkF (P ij
k ) = 0, i, j = 1, 2.

(ii) If g ∈ G and τ denotes the operation of time-reflection, then

π∗x(g)DkF (P ij
k ) = DkF (P ij

k ),

π∗t (τ)DkF (P ij
k ) = (−1)i−jDkF (P ij

k )
, i, j = 1, 2.

(iii) For λ > 0

Sλ

[
DkF (P ij

k )
]

= λ2γk+N+i−jDkF (P ij
k ), i, j = 1, 2.

Next, we shall describe the structure of a representation of the universal covering

group ˜SL(2,R) of SL(2,R) on S (RN+1). This structure together with Proposition
3.5 and Proposition 3.6, allows to prove that the Cauchy problem (3.1) satisfies
the strict Huygens’ principle, under a condition involving N and k. We adapt the
method of R. Howe for the classical wave equation, i.e. when k ≡ 0 (cf. [18, 21]).

Choose x1, x2, . . . , xN as the usual system of coordinates on RN . Let

EN,1 :=
1

2
(‖x‖2 − t2), FN,1 := −1

2
(∆k − ∂tt),

HN,1 :=
N + 1

2
+ γk +

N∑
j=1

xj∂j + t∂t.

Using [16, Theorem 3.3], the following commutation relations hold

[EN,1,HN,1] = −2EN,1, [FN,1,HN,1] = 2FN,1, [EN,1,FN,1] = HN,1. (3.17)

These are the commutation relations of a standard basis of the Lie algebra sl(2,R).
Equation (3.17) gives raise to a representation Ωk of sl(2,R). On S (RN+1), the
representation Ωk can be described as

Ωk(sl(2,R)C) = sl+2 ⊕ sl02 ⊕ sl−2 , (3.18)
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where
sl+2 = Span{EN,1}, sl02 = Span{HN,1}, sl−2 = Span{FN,1}.

The decomposition (3.18) is an instance of the Cartan decomposition

sl(2,R)C = p+ ⊕ kC ⊕ p−,

where sl+2 ' Ωk(p
+), sl02 ' Ωk(kC), and sl−2 ' Ωk(p

−). Here k = u(2), the Lie algebra
of the compact group U(2). The integrated form of the Lie algebra representation Ωk

is an analogue of the metaplectic representation of the universal covering ˜SL(2,R)
of the group SL(2,R). If (N + 1)/2 + γk ∈ 1

2
Z \ Z, we obtain a representation of

the double covering Mp(2,R) of SL(2,R), and if (N + 1)/2 + γk ∈ Z we obtain a
representation of SL(2,R).

Remark 3.7. By [4], the Dunkl-Fourier transform is in ˜SL(2,R), as generated above.

Recall that (S2) is equivalent to the fact that the propagators P 11
k and P 12

k are
supported on the light cone C = {(x, t) | ‖x‖2 − t2 = 0}. Next we will present our
argument for the P ij

k ’s with i, j = 1, 2. Since C is the locus of zeros of ‖x‖2 − t2,

then P ij
k is supported on C if and only if

Em
N,1 · P

ij
k = 0

for some positive integer m, or

Fm
N,1 ·DkF (P ij

k ) = 0

for some positive integer m. In the light of Proposition 3.5(i) (or Proposition 3.6(i))
this amounts to saying the distribution P ij

k (or DkF (P ij
k )) generates a finite-dimen-

sional Ω∗
k(sl(2,R))-module. Thus the qualitative part of the strict Huygens’ principle

holds.

Theorem 3.8. The strict Huygens’ principle holds if and only if P ij
k (or DkF (P ij

k ))

is supported on the light cone C if and only if P ij
k (or DkF (P ij

k )) generates a finite-

dimensional Ω∗
k(sl(2,R))-module. In this case P ij

k and DkF (P ij
k ) belong to the same

module.

Claim 3.9. Strict Huygens’ principle cannot hold when

N + 1

2
+ γk 6∈ Z.

To prove the claim, we need the following branching decomposition of S (RN)

under the action of G × ˜SL(2,R). Those readers who are familiar with the theory
of Howe reductive dual pairs [18, 19] will find that our formulation can be thought
of as an analogue of Howe’s theory.

Recall that x1, . . . , xN denotes the usual system of coordinates on RN . Set

Hk :=
N

2
+ γk +

N∑
j=1

xj∂j,

E :=
Hk −∆k/4− ‖x‖2

2
, F :=

Hk + ∆k/4 + ‖x‖2

2
, H := −∆k

4
+ ‖x‖2.

Using again [16, Theorem 3.3], we can derive the following sl(2,R)-commutation
relations

[E,H] = −2E, [F,H] = 2F, [E,F ] = H. (3.19)
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What makes {E,F,H} important is the fact that H is the infinitesimal generator of
the maximal compact subgroup SO(2,R) of SL(2,R). Observe that E∗ = −F and
H∗ = H in L2(RN , wk(x)dx). This is a consequence of the fact that ∆k is symmetric,
while H ∗

k = −Hk as the bellow verification shows (you may require kα ≥ 1, and
after the formula is established the restriction can be dropped, i.e. back to kα ≥ 0,
by analytic continuation)∫

RN

Hkf(x)g(x)wk(x) dx = −
∫

RN

f(x)
{ N∑

j=1

xj∂jg(x)
}
wk(x) dx

+
(
γk −

N

2

) ∫
RN

f(x)g(x)wk(x) dx

−
∫

RN

f(x)g(x)
{ N∑

j=1

xj∂jwk(x)
}
dx,

where, using the Parseval identity, we have

N∑
j=1

xj∂jwk(x) = 2
N∑

j=1

xj

∑
α∈R+

kα

((
∂j〈x, α〉

)/
〈x, α〉

)
wk(x) = 2γkwk(x).

Equation (3.19), together with the observation above, gives raise to a unitary rep-
resentation ωk of sl(2,R). Similarly to Ωk, we may describe this representation as

ωk(p
+) = E, ωk(kC) = H, ωk(p

−) = F.

Here k = so(2), the Lie algebra of the compact group SO(2,R).
For g ∈ G, denote by π(g) the left regular action of G on S (RN)

π(g)f(x) = f(g−1x).

The action of G and sl(2,R) on S (RN) commute.
To investigate the structure of the representation ωk, note that for a polynomial

p ∈ P(RN)

eν‖x‖2p(−Tξ(k))e
−ν‖x‖2 = p(2ν〈ξ, ·〉 − Tξ(k)), for ν ∈ R.

This follows from the product rule (2.1). In particular, if p(x) =
∑N

j=1 x
2
j , we obtain

eν‖x‖2∆ke
−ν‖x‖2 = 4‖x‖2 + ∆k − 4νHk, for ν ∈ R.

Thus, we may rewrite the representation ωk as

ωk(p
+) = −1

8
e‖x‖

2

∆ke
−‖x‖2 , (3.20)

ωk(p
−) = 1

8
e−‖x‖

2

∆ke
‖x‖2 , (3.21)

ωk(k) = e−‖x‖
2
(
− ∆k

4
+ Hk

)
e‖x‖

2

. (3.22)

According to (3.21), the kernel of ωk(p
−) consists of functions of the form e−‖x‖

2
h(x)

where h is a harmonic polynomial, i.e. ∆kh = 0. Now by (3.22), we get

ωk(k)(e
−‖x‖2h(x)) = e−‖x‖

2

Hkh(x).

Thus e−‖x‖
2
h(x) is an eigenvector for wk(k) if and only if h is a homogeneous poly-

nomial. If h has degree m, then

wk(k)
(
e−‖x‖

2

h(x)
)

= (m+ N
2

+ γk)e
−‖x‖2h(x).
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Henceforth, for m ∈ N, set Hm(k) to be the space of harmonic homogeneous poly-
nomials on RN of degree m.

On the other hand, for fixed h ∈ Hm(k), let I h := {f(‖ · ‖2)h | f ∈ S (R+)}.
Since g ◦∆k ◦ g−1 = ∆k, the space I h is invariant under the action of G. Further,
using (3.20), one can checks that ωk(p

+) leaves I h invariant.
We summarize the consequences of the above computations.

Theorem 3.10. Let k ∈ K +.

(i) For N ≥ 1

S (RN) =

∞∑⊕

m=0

Hm(k)⊗I ,

where I denotes the space of G-invariant Schwartz functions.

(ii) As a G× ˜SL(2,R)-module, each space Hm(k)⊗I has the form

H̃m(k)⊗Wm+N
2

+γk
,

where Wm+N
2

+γk
is the ˜SL(2,R)-representation of lowest weight m + N

2
+

γk, and H̃m(k) := e−‖x‖
2
Hm(k). In particular, the summands are mutually

orthogonal with respect to the inner product on L2(RN , wk(x)dx).

Remark 3.11. The decomposition in (ii) could as well formulated for L2(RN , wk(x)dx)
as for the Schwartz space.

The following is then immediate.

Corollary 3.12. Under the action of ˜SL(2,R), the Schwartz space S (RN) decom-
poses as

S (RN) =
∞⊕

m=0

dim(H̃m(k))Wm+N
2

+γk
,

where

dim(H̃m(k)) =
(
m+N − 1
N − 1

)
−

(
m+N − 3
N − 1

)
.

If N > 1, this is always nonzero, but if N = 1, it is zero for m ≥ 2.

Clearly now the Claim 3.9 holds, since the spectrum of ωk(k) (or its dual) acting
on S (RN+1) (or S ∗(RN+1)) is (N + 1)/2 + γk + Z+, whilst the spectrum of ωk(k)
(or its dual) in finite dimensional modules is contained in Z. Thus the following is
proved.

Theorem 3.13. Strict Huygens’ principle must fail when

N + 1

2
+ γk 6∈ Z.

The above theorem leaves the possibility that Huygens’ principle may holds when
(N + 1)/2 + γk ∈ Z by investigate whether the necessary finite-dimensional
Ω∗

k(sl(2,R))-module exist, which it turn out to be true. Indeed, using Proposition
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3.5(iii) and Proposition 3.6(iii), we have
{ N∑

`=1

x`∂` + t∂t

}
(P ij

k ) = (1 + j − i)P ij
k ,{ N∑

`=1

x`∂` + t∂t

}
(DkF (P ij

k )) = (2γk +N + i− j)DkF (P ij
k ),

i, j = 1, 2

and therefore
HN,1P

ij
k = −

(
N + 1

2
+ γk + i− j − 1

)
P ij

k ,

HN,1DkF (P ij
k ) =

(
N + 1

2
+ γk + i− j − 1

)
DkF (P ij

k ).
i, j = 1, 2

Thus, if we assume (N − 1)/2 + γk + i− j ∈ N, with i, j = 1, 2, and keeping in mind

FN,1 · P ij
k = 0, EN,1 ·DkF (P ij

k ) = 0,

we can conclude that each distribution P ij
k , with i, j = 1, 2, generates a finite-

dimensional Ω∗
k(sl(2,R)) on S ∗(RN+1) of highest weight (N − 1)/2 + γk + i− j. It

is worthwhile to recall that for a finite-dimensional representation V of SL(2,R),

the operator F(dim V−1)
N,1 convert a highest weight vector to a lowest weight, up to a

constant [15, 36]. We now summarize all the above computations and discussions.

Theorem 3.14. Under the assumption

N − 1

2
+ γk + i− j ∈ N, (3.23)

the tempered distribution P ij
k generates an sl(2,R)-module of dimension

di,j(k) =
N − 1

2
+ γk + i− j + 1, i, j = 1, 2,

with highest wight vector DkF (P ij
k ) of highest weight

(
N−1

2
+ γk + i− j

)
. Further,

for each i and j, there exists a constant αi,j such that

P ij
k = αi,jF

di,j(k)−1
N,1 ·DkF (P ij

k ),

which is equivalent to

DkF (P ij
k ) = (−1)(N−1)/2+γkαi,jE

di,j(k)−1
N,1 · P ij

k .

By taking into account the condition (3.23) for both P 11
k and P 12

k , we obtain
(recall Theorem 3.8):

Theorem 3.15. (Strict Huygens’ Principle) Let uk be the solution to the Cauchy
problem (3.1) with the Cauchy data (f, g) ∈ S (RN)×S (RN). If

N − 3

2
+ γk ∈ N,

then uk(x, t) depends only on the values of f(x ~k y) and g(x ~k y) (and their
derivatives) for ‖y‖ = |t|.
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Now, let us consider the following Cauchy problem

∆kuk(x, t) = ∂ttuk(x, t), uk(x, 0) = f(x), ∂tuk(x, 0) = g(x), (3.24)

f, g ∈ C∞
R (RN), where C∞

R (RN) stands for the set of smooth functions with support
contained in the closed ball of radius R > 0 about the origin. In these circumstances,
Theorem 3.15 reads:

Theorem 3.16. If (N − 3)/2 + γk ∈ N, the support of the solution uk(x, t) to the
Cauchy problem (3.24) is contained in the conical shell{

(x, t) ∈ RN × R | |t| −R ≤ ‖x‖ ≤ |t|+R
}
, (3.25)

which is the union ⋃
‖y‖≤R

Cy (3.26)

where Cy is the light cone

Cy = {(x, t) | ‖x− y‖ = |t|} .

We start by the proof of the right hand side inequality in (3.25). Using the Paley-
Wiener Theorem 2.3 for the function f, one can prove that for each M ∈ N there
exists a constant αM such that, the entire function ξ 7→ Dk(f(·~k y))(ξ) satisfies

|Dk(f(·~k y))(ξ)| ≤ αM(1 + ‖ξ‖)−Me‖Im(ξ)‖(R+‖y‖).

Thus, f(· ~k y) is supported in the closed ball of radius R + ‖y‖ about the origin.
Similarly for g(·~k y). In view of Theorem 3.2 and Theorem 3.3, we conclude that
for all k ∈ K + and N ≥ 1, the support of the solution uk(x, t) to (3.24) is contained
in { (x, t) | ‖x‖ ≤ R + |t| } . Next, we prove the left hand side inequality in (3.25),
which holds only if (N − 3)/2 + γk ∈ N. By Theorem 3.15, the solution uk(0, t)
depends only the values of f(y) and g(y) for ‖y‖ = |t|. That is

uk(0, t) = 0 for |t| > R. (3.27)

By abuse of notation we write τz(k)f(x) for f(x ~k −z). If k ≡ 0, τz(0)f(x) =
f(x + z). One can checks that τz(k) commutes with ∆k − ∂tt. Thus, if uk(x, t) is a
solution to the Cauchy problem (3.24) with the Cauchy data (f, g), then τz(k)uk(x, t)
solves (3.24) with initial data (τz(k)f, τz(k)g). Since τz(k)f and τz(k)g have support

contained in B(o, R + ‖z‖), (3.27) implies that τz(k)uk(0, t) = 0 for |t| > R + ‖z‖,
i.e.

uk(z, t) = 0 for |t| > R + ‖z‖.
Finally, the set (3.25) coincides with the union (3.26) since: if (x, y) ∈ Cy with
‖y‖ ≤ R, then ‖x− y‖ = |t| so ‖x‖ ≤ ‖x− y‖ + ‖y| ≤ |t| + R and |t| = ‖x− y‖ ≤
‖x‖ + R, implies (3.25). Conversely, if (x, t) satisfies (3.25), then (x, t) ∈ Cy with
y = x− |t| x

‖x‖ = x
‖x‖(‖x‖ − |t|) which has norm less or equal to R.

However, we can prove Theorem 3.16 using another approach involving only the
Paley-Wiener Theorem 2.3. We shall sketch this approach at the end of this section,
and its details will be illustrate in the next section to prove the principle of energy
equipartition.

Next, we go back to the Cauchy problem (3.1) where the Cauchy data (f, g) ∈
S (RN)×S (RN). It is natural to think about some connection between solutions to
wave equations and spherical mean type operators. As in the classical case, we shall
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express the solution uk to (3.1) in terms of what is commonly called the Dunkl-type
spherical mean operator [28].

For f ∈ C∞(RN), denote by f 7→ Mf the Dunkl-type spherical mean operator
defined by

Mf (x, r) :=
1

dk

∫
SN−1

f(x~k ry)wk(y) dω(y), x ∈ RN , r ≥ 0,

where dk :=
∫

SN−1 wk(x) dω(x). According to [31, Theorem 4.1], there exists a unique

compactly supported probability measure σk
x,r such that

Mf (x, r) =

∫
RN

f(ξ) dσk
x,r(ξ),

and
supp(σk

x,r) ⊆
⋃
g∈G

{
ξ ∈ RN | ‖ξ − gx‖ ≤ r

}
.

A sharper statement on the support of σk
x,r is given in [31, Corollary 5.2]

supp(σk
x,r) ⊆

{
ξ ∈ RN | ‖ξ‖ ≥

∣∣‖x‖ − r
∣∣}. (3.28)

Before expressing the solution uk in terms of the spherical mean operator, let
us recall few known facts about the Riemann-Liouville distributions on the real
line [12].

Let Λ = {λ ∈ C | Re(λ) > 0}. Consider the locally integrable function on R
defined for λ ∈ C by

xλ−1
+ :=

{
xλ−1 x > 0,
0 x ≤ 0.

For ψ ∈ D(R), the corresponding regular distribution

〈xλ−1
+ , ψ〉 =

∫ ∞

0

xλ−1ψ(x) dx

is a holomorphic D∗(R)-valued function with respect to the variable λ ∈ Λ. It admits
an analytic continuation into the domain Λ∗ = {λ ∈ C | λ 6= 0, 1, 2, 3 . . .}, where

Resλ→m x
λ−1
+ =

(−1)m

m!
δ(m)(x), for m = 0, 1, 2, 3, . . . .

To eliminate these poles, one can divide xλ−1
+ by Γ(λ). Therefore, we may define an

entire D∗(R)-valued function, on the complex plane, by

C 3 λ 7→ Sλ(x) :=
xλ−1

+

Γ(λ)
∈ D∗(R).

This distribution is nowadays known as the Riemann-Liouville distribution. In par-
ticular

S−m(x) = δ(m)(x), for all m = 0, 1, 2, 3, . . . (3.29)

d

dx
Sλ(x) = Sλ−1(x).

Now we turn our attention to the relation between uk and the spherical mean
operator. By Theorem 3.1, we know that

uk(x, t) =

∫
RN

P 11
k,t(y)f(x~k y)wk(y) dy +

∫
RN

P 12
k,t(y)g(x~k y)wk(y) dy. (3.30)



20 SALEM BEN SAÏD AND BENT ØRSTED

Since P ij
k,−t = (−1)i−jP ij

k,t, we shall present proofs valid for t > 0, and make the
suitably altered statements for t ∈ R.

By [32], if F (x) = F0(‖x‖) where F0 : R+ → C, then DkF (ξ) = Hγk+N/2−1F0(‖ξ‖),
where Hα denotes the Hankel transform defined by

HαF0(r) :=
1

2αΓ(α+ 1)

∫ ∞

0

F0(s)
Jα(rs)

(rs)α
s2α+1 ds.

Here Jα denotes the Bessel function of the first kind. Thus, in terms of the spherical
mean operator, we may rewrite (3.30) as

uk(x, t) =

∫ ∞

0

r2γk+N−1

∫
SN−1

P 11
k,t(ry

′)f(x~k ry
′)wk(y

′)dω(y′) dr

+

∫ ∞

0

r2γk+N−1

∫
SN−1

P 12
k,t(ry

′)g(x~k ry
′)wk(y

′) dω(y′) dr

= dk

∫ ∞

0

r2γk+N−1Hγk+N/2−1Ft(r)Mf (r, x) dr

+ dk

∫ ∞

0

r2γk+N−1Hγk+N/2−1Gt(r)Mg(r, x) dr,

where Ft(s) = cos(ts) and Gt(s) = sin(ts)/s. On the other hand, we have

HαFt(r) =
1

2αΓ(α+ 1)rα

∫ ∞

0

cos(ts)Jα(rs)sα+1 ds

=


2
√
π

Γ(α+ 1)
t
(t2 − r2)−α− 3

2

Γ(−α− 1
2
)

if 0 < r < t

0 if 0 < t < r

(cf. [11, p. 32,formula (4)])

=
2
√
π

Γ(α+ 1)
tS−α− 1

2
(t2 − r2)

=

√
π

Γ(α+ 1)

d

dt

(
S−α+ 1

2
(t2 − r2)

)
.

Similarly for Gt, we have

HαGt(r) =


√
π

Γ(α+ 1)

(t2 − r2)−α− 1
2

Γ(−α+ 1
2
)

if 0 < r < t

0 if 0 < t < r

(cf. [11, p. 36, formula (28)])

=

√
π

Γ(α+ 1)
S−α+ 1

2
(t2 − r2).

We summarize the above computations.

Theorem 3.17. For all (x, t) ∈ RN × R

uk(x, t) = dk

√
π

Γ(γk +N/2)

∫ |t|

0

r2γk+N−1 d

dt

(
S−γk−N−3

2
(t2 − r2)

)
Mf (r, x) dr

+ sign(t)dk

√
π

Γ(γk +N/2)

∫ |t|

0

r2γk+N−1S−γk−N−3
2

(t2 − r2)Mg(r, x) dr.
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Keeping in mind Rösler’s results on the support of the measure σk
x,r associated

with Mf and Mg, Theorem 3.3 implies the following:

Theorem 3.18. (Weak Huygens’ Principle) Let k ∈ K +, N ≥ 1, and given a point
y ∈ RN .

(i) The solution uk(x, t) to the Cauchy problem (3.1) depends only on the values
of f(y) and g(y) in the union⋃

g∈G

{
y ∈ RN | ‖y − gx‖ ≤ |t|

}
.

(ii) A slightly weaker variant of (i) says: The solution uk(x, t) to the Cauchy
problem (3.1) depends only on the values of f(y) and g(y) in the set{

y ∈ RN | ‖x‖ − |t| ≤ ‖y‖ ≤ ‖x‖+ |t|
}
.

Similarly, by (3.28), Theorem 3.15 yields to:

Theorem 3.19. (Strict Huygens’ Principle) Let k ∈ K + and N ≥ 1. If

N − 3

2
+ γk ∈ N,

then the solution uk(x, t) to the Cauchy problem (3.1) will depend only on the values
of f(y) and g(y) in the set{

y ∈ RN | ‖y‖ ≥
∣∣‖x‖ − |t|

∣∣} .
Remark 3.20. (i) Note that, if the initial data (f, g) are supported inside a closed ball
of radius R about the origin, then, by means of Theorem 3.19, we recover Theorem
3.16.

(ii) Let G1 and G2 be two finite Coxeter groups on RN and RM , with root systems
R1 and R2, respectively. Set k1 and k2 to be the multiplicity functions on R1 and
R2, respectively. Consider the generalized wave equation

∆x
k1
uk1,k2(x, y) = ∆y

k2
uk1,k2(x, y) (x, y) ∈ RN × RM ,

where ∆k1 (resp. ∆k2) denotes the Dunkl-Laplacian operator associated with G1

(resp. G2). Here the superscript indicates the relevant variable. If N−M
2

+ γk1 −
γk2 − 1 ∈ N, then there exists a distribution T on RN × RM with singular support,

i.e. T is supported on the set {(x, y) ∈ RN × RM |
∑N

i=1 x
2
i =

∑M
i=1 y

2
i }, so that

(∆k1 −∆k2)T = δ.

We close this section by making the following comment. As we mentioned before,
we can prove Theorem 3.16 using another method involving only the Paley-Wiener
Theorem 2.3. We sketch this approach and its details will be illustrate in the next
section to prove the principle of energy equipartition.

Using (3.5) and the inversion formula of the Dunkl transform, we may rewrite uk

as

uk(x, t) =

∫ ∞

0

{
Φk(r, x) cos(tr) +

Ψk(r, x)

r
sin(tr)

}
dr, (3.31)

where

Φk(r, x) = r2γk+N−1

∫
SN−1

Dkf(rξ′)Ek(ix, rξ
′)wk(ξ

′) dω(ξ′),

Ψk(r, x) = r2γk+N−1

∫
SN−1

Dkg(rξ
′)Ek(ix, rξ

′)wk(ξ
′) dω(ξ′).
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If (N − 1)/2 + γk ∈ N, then, for fixed x, the integral formulas for Φk(r, x) and
Ψk(r, x) continue analytically to even functions for r ∈ C. In these circumstances,
(3.31) becomes

uk(x, t) =
1

2

∫
R

{
Φk(r, x) + sign(t)

Ψk(r, x)

ir

}
eir|t| dr.

Let r = a+ ib ∈ C. The holomorphic extensions Φk and Ψk satisfy

|Φk(r, x)| ≤ c0(k)|r|2γk+N−1e|b|‖x‖ sup
ξ′∈SN−1

|Dkf(rξ′)|,∣∣∣∣Ψk(r, x)

r

∣∣∣∣ ≤ c0(k)|r|2γk+N−2e|b|‖x‖ sup
ξ′∈SN−1

|Dkg(rξ
′)|.

If (N − 1)/2 + γk = 0, the last estimate gives a problem at r = 0. Thus we shall
exclude this case, and the condition (N−1)/2+γk ∈ N becomes (N−3)/2+γk ∈ N.
Indeed, the condition (N − 1)/2 + γk = 0 is equivalent to N = 1 and k ≡ 0, which
corresponds to the rank one classical wave equation, where it is well known that the
strict Huygens’ principle fails.

Applying the Paley-Wiener theorem to the Cauchy data (f, g), we conclude that,
for fixed s > 0, there exists a constant c depending only on k and the Cauchy data
of uk such that

|uk(x, t)| ≤ ce−s(|t|−‖x‖−R), for all (x, t) ∈ RN × R.

Now the left hand side inequality in (3.25) is rather clear.

4. Energy equipartition theorem

Energy is defined in physics as the ability to do work. “Kinetic energy” cor-
responds to energy in the form of motion, and “potential energy” corresponds to
energy in a form stored for later use. These are defined below for our wave equation
(we shall not comment on any physical significance).

In this section, we show that, under an assumption involving k and N, the dif-
ference between the kinetic and potential energies of a solution to (3.1) decays like
e−2|t|s, for fixed s > 0. Thus, the energy equipartition theorem holds. The equipar-
tition says when |t| is large, the kinetic and potential energies are both equal to the
half of the (t-independent) total energy.

For the time being, we only assume k ∈ K + and N ≥ 1.
Let uk(x, t) be a solution to the Cauchy problem (3.1). Define the kinetic and

potential energies by

Kk[uk](t) :=
1

2

∫
RN

|∂tuk(x, t)|2wk(x) dx,

Pk[uk](t) :=
1

2

∫
RN

N∑
j=1

|T x
j (k)uk(x, t)|2wk(x) dx.

Here the superscript x denotes the relevant variable. The total energy of uk is by
definition Ek[uk](t) := Kk[uk](t) + Pk[uk](t).

Before investigate the difference between the kinetic and potential energies, we
notice that Ek[uk](t) is a conserved quantity, i.e. Ek[uk](t) is independent of t. To
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see this, we express the total energy in terms of Dk(uk(·, t))(ξ). Since

Dk(T
x
j (k)uk(·, t))(ξ) = −iξjDk(uk(·, t))(ξ),

by means of the Plancherel formula, we obtain

Ek[uk](t) =
1

2

∫
RN

{
|∂tDk(uk(·, t))(ξ)|2 + ‖ξ‖2|Dk(uk(·, t))(ξ)|2

}
wk(ξ) dξ.

On the other hand, since

Dk(uk(·, t))(ξ) = cos(t‖ξ‖)Dkf(ξ) +
sin(t‖ξ‖)
‖ξ‖

Dkg(ξ), for all t ∈ R,

we compute

|Dk(uk(·, t))(ξ)|2 = cos2(t‖ξ‖)|Dkf(ξ)|2 +
sin2(t‖ξ‖)
‖ξ‖2

|Dkg(ξ)|2 (4.1)

+ 2
cos(t‖ξ‖) sin(t‖ξ‖)

‖ξ‖
Re

(
Dkf(ξ)Dkg(ξ)

)
,

and

|∂tDk(uk(·, t))(ξ)|2 = cos2(t‖ξ‖)|Dkg(ξ)|2 + ‖ξ‖2sin2(t‖ξ‖)|Dkf(ξ)|2 (4.2)

− 2‖ξ‖cos(t‖ξ‖) sin(t‖ξ‖)Re
(
Dkf(ξ)Dkg(ξ)

)
.

Thus we have proved

Ek[uk](t) =
1

2

∫
RN

{
‖ξ‖2|Dkf(ξ)|2 + |Dkg(ξ)|2

}
wk(ξ) dξ

=
1

2

∫
RN

{ N∑
j=1

|T x
j (k)f(x)|2 + |g(x)|2

}
wk(x) dx,

which is independent of the variable t.
Consider now the mater of the energy equipartition. Using (4.2) and repeating

the argument used above to prove the conservation of Ek[uk], we may rewrite the
kinetic energy as

Kk[uk](t) =
1

4
‖Dk(g)‖2

k +
1

4
‖〈·, ·〉1/2Dk(f)‖2

k

+
1

4

∫
RN

[
|Dkg(ξ)|2 − ‖ξ‖2|Dkf(ξ)|2

]
cos(2t‖ξ‖)wk(ξ) dξ

− 1

4

∫
RN

[
Dkf(ξ)Dkg(ξ) + Dkg(ξ)Dkf(ξ)

]
‖ξ‖ sin(2t‖ξ‖)wk(ξ) dξ,

using the familiar trigonometric identities for double angles. Here ‖ · ‖k denotes the
norm in L2(RN , wk(x)dx). Similarly, by (4.1) we obtain

Pk[uk](t) =
1

4
‖Dk(g)‖2

k +
1

4
‖〈·, ·〉1/2Dk(f)‖2

k

+
1

4

∫
RN

[
‖ξ‖2|Dkf(ξ)|2 − |Dkg(ξ)|2

]
cos(2t‖ξ‖)wk(ξ) dξ

+
1

4

∫
RN

[
Dkf(ξ)Dkg(ξ) + Dkg(ξ)Dkf(ξ)

]
‖ξ‖ sin(2t‖ξ‖)wk(ξ) dξ.



24 SALEM BEN SAÏD AND BENT ØRSTED

Now the difference between the kinetic and potential energies is given by

Kk[uk](t)−Pk[uk](t) =
1

2

∫
RN

[
|Dkg(ξ)|2 − ‖ξ‖2|Dkf(ξ)|2

]
cos(2t‖ξ‖)wk(ξ) dξ

− 1

2

∫
RN

[
Dkf(ξ)Dkg(ξ) + Dkg(ξ)Dkf(ξ)

]
× ‖ξ‖ sin(2t‖ξ‖)wk(ξ) dξ. (4.3)

Using the spherical-polar coordinates ξ = rξ′, we get

Kk[uk](t)−Pk[uk](t) =
1

2

∫ ∞

0

{Φk(r) cos(2tr)−Ψk(r)r sin(2tr)} dr,

where

Φk(r) = r2γk+N−1

∫
SN−1

{
|Dkg(rξ

′)|2 − r2|Dkf(rξ′)|2
}
wk(ξ

′) dω(ξ′)

Ψk(r) = r2γk+N−1

∫
SN−1

{
Dkf(rξ′)Dkg(rξ′) + Dkf(rξ′)Dkg(rξ

′)
}
wk(ξ

′) dω(ξ′).

Henceforth, we will choose to work with solutions to (3.1) where the Cauchy data
(f, g) belong to C∞(RN) and supported in the closed ball of radius R > 0 about
the origin. Further, by Remark 3.4, we shall often presenting proofs valid for t > 0,
and making the suitably altered statement for all t, without comment.

Since Ek(z, w) = Ek(z, w), it follows that ξ 7→ Dkf(−ξ) is the Dunkl transform

of f. Thus Dkf(ξ), similarly Dkg(ξ), belongs to the Paley-Wiener space HR(CN). In
particular, they can be extended to entire analytic functions on CN . Since wk(ξ

′)dω(ξ′)
is (−1)-invariant, the following lemma holds.

Lemma 4.1. If N−1
2

+ γk ∈ N, the functions Φk and Ψk continue analytically to
even functions of r.

In the light of the above lemma, we may rewrite Kk[uk](t)−Pk[uk](t) as

1

4

∫
R

[Φk(r) + irΨk(r)] e
2itr dr. (4.4)

Now, by the Paley-Wiener Theorem 2.3, and since SN−1 is compact, we conclude
that for any M ∈ N there exist two constants αM and βM such that

|Φk(p)| ≤ c0(k)αM(1 + |p|)−Me2R|Im(p)|,

|pΨk(p)| ≤ c0(k)βM(1 + |p|)−Me2R|Im(p)|,
(4.5)

with p ∈ C.
Fix s > 0. To find a bound for Kk[uk](t)−Pk[uk](t), we shift the contour in the

integral (4.4) from R to R + is. This idea was inspired by [2]. Thus

Kk[uk](t)−Pk[uk](t) =
1

4

∫
R
{Φk(r) + irΨk(r)} e2irt dr

=
e−2ts

4

∫
R
{Φk(r + is) + i(r + is)Ψk(r + is)} e2irt dr.

In view of (4.5), there exists a constant χM(k) such that∣∣Kk[uk](t)−Pk[uk](t)
∣∣ ≤ χM(k)e−2tse2Rs

∫
R
(1 + |r|)−M dr,
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and the following holds:

Theorem 4.2. For k ∈ K + and N ≥ 1, assume that

N − 1

2
+ γk ∈ N.

Let uk be a solution to the Cauchy problem (3.1), where the Cauchy data (f,g) are
supported in the closed ball of radius R > 0 about the origin. Fix s > 0. Then there
exists a constant C depending on k and (f, g) but not on s, such that∣∣∣Kk[uk](t)−Pk[uk](t)

∣∣∣ ≤ Ce−2s(|t|−R), for all t ∈ R.

The following is then immediate.

Theorem 4.3. (Energy Equipartition Theorem) Under the same assumptions as in
the previous theorem, we have

Kk[uk](t) = Pk[uk](t) =
Ek[uk](R)

2
for |t| ≥ R.

We close this section by making two comments. First, in the theorem above we
did not exclude the case N = 1 if k ≡ 0, since the classical wave equation on R×R
has an equipartitioned energy.

Second, it is possible to prove the energy equipartition theorem when the Cauchy
data (f, g) are two Schwartz functions on RN . In this case Theorem 4.3 reads

lim
|t|→∞

Kk[uk](t) = lim
|t|→∞

Pk[uk](t) =
Ek[uk](0)

2
.

To see this one needs to show that the integrals in (4.3) tend to zero as |t| → ∞.
This follows by means of the classical Riemann-Lebesgue lemma for the Euclidean
Fourier sine and cosine transforms.
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