
DEPARTMENT OF OPERATIONS RESEARCH
UNIVERSITY OF AARHUS

Working Paper no. 2004 / 2

Solving a large-scale precedence constrained
scheduling problem with elastic jobs
using tabu search

Christian R. Pedersen, Rasmus V. Rasmussen
and Kim A. Andersen

ISSN 1600-8987

Department of Mathematical Sciences Building 530, Ny Munkegade
Telephone: +45 8942 1111 DK-8000 Aarhus C, Denmark
E-mail: institut@imf.au.dk URL: www.imf.au.dk



Solving a large-scale precedence constrained

scheduling problem with elastic jobs using

tabu search

Christian R. Pedersen a,∗, Rasmus V. Rasmussen a,∗,
aDepartment of Operations Research, University of Aarhus, Ny Munkegade,

Building 530, 8000 Aarhus C, Denmark

Kim A. Andersen b

bDepartment of Accounting, Finance and Logistics, Aarhus School of Business,

Fuglesangs Allé 4, 8210 Aarhus V, Denmark

Abstract

This paper presents a solution method for minimizing makespan of a practical large-
scale scheduling problem with elastic jobs. The jobs are processed on three servers
and restricted by precedence constraints, time windows and capacity limitations.
We derive a new method for approximating the server exploitation of the elastic
jobs and solve the problem using a tabu search procedure. Finding an initial feasi-
ble solution is in general NP-complete, but the tabu search procedure includes a
specialized heuristic for solving this problem. The solution method has proven to
be very efficient and leads to a significant decrease in makespan compared to the
strategy currently implemented.

Key words: Large-scale scheduling, elastic jobs, precedence constraints, practical
application, tabu search.

1 Introduction

This paper focuses on a specific problem provided to us by the Danish telecom-
munications net operator, Sonofon. By the end of each day a rather large num-
ber of jobs (End-of-Day jobs) have to be processed on exactly one particular of

∗ Corresponding authors. Tel.: (+45) 89423536; fax: (+45) 86131769.
Email addresses: roed@imf.au.dk (Christian R. Pedersen),

vinther@imf.au.dk (Rasmus V. Rasmussen), kia@asb.dk (Kim A. Andersen).



three available servers. The objective is to schedule the jobs on the machines in
order to minimize makespan. This task is complicated by the fact that a large
number of precedence constraints among the jobs must be fulfilled, that time
windows must be obeyed and that capacity limitations must be respected. In
addition, the jobs are elastic which means that the duration of a particular
job depends on the capacity assigned to the job. Elasticity of jobs complicates
the problem considerably and has to the best of our knowledge not yet been
considered in large-scale scheduling.

The applications of scheduling problems are wide-spread, and hence a con-
siderable amount of promising research has been devoted to such problems
both within the operations research literature and the computer science lit-
erature. Especially during the past decade algorithms merging operations re-
search techniques and constraint programming (CP) have proved efficient as
exact solution methods for solving scheduling problems. Among a number of
interesting CP contributions to small- or medium-scaled scheduling problems
we mention the work by Jain and Grossmann [1], Hooker and Ottoson [2],
Hooker [3] and Baptiste et al. [4,5]. For large-scale problems, meta heuristics
in particular have shown promising results.

One classical meta heuristic that has been successfully applied to scheduling
problems is tabu search, due to Glover [6] and Glover and Laguna [7]. The
papers on tabu search are numerous, but let us for brevity only mention a few
which all appeared recently and consider scheduling problems. Grabowski and
Wodecki [8] consider large-scale flow shop problems with makespan criterion
and develop a very fast tabu search heuristic focusing on a lower bound for the
makespan instead of the exact makespan value. Ferland et al. [9] consider a
practical problem of scheduling internships for physician students and propose
several variants of tabu search procedures. The last three papers all consider
the problem of scheduling a number of jobs to a set of heterogeneous machines
under precedence constraints, with the objective of minimizing makespan. In
Porto et al. [10] a parallel Tabu Search heuristic is developed and proved
superior to a widely used greedy heuristic for the problem. In Chekuri and
Bender [11] a new approximation algorithm is presented, but unfortunately,
no computational results are reported. Finally, in Mansini et al. [12] jobs with
up to three predecessors each are considered among groups of jobs requiring
the same set of machines. The problem is formulated as a graph-theoretical
problem. In the paper a number of approximation results are provided, but
no computational experience is reported.

Clearly, the vast solution space and the complexity of the present problem
called for a heuristic procedure. Due to the high flexibility of tabu search and
its promising results with scheduling problems, we chose that method.

The contributions of this paper can be summarized as follows:

2



• We present a special designed heuristic based on tabu search to solve a large-
scale practical problem provided to us by a large Danish telecommunications
net operator, Sonofon. Today Sonofon faces the problem that the average
completion time exceeds the deadline by 41 minutes. This means that with
the existing scheduling strategy new hardware needs to be purchased in
order to keep satisfying the given requirements. This paper shows that the
existing hardware is, in fact, sufficient to complete the jobs in time and
indeed spare capacity is available, when a good schedule is chosen.

• The algorithm is capable of handling large-scale scheduling problems with
precedence constraints among jobs and time windows, and a new approxi-
mate method for scheduling elastic jobs is developed.

• A heuristic procedure for obtaining an initial feasible solution is provided.
This proves to work very well on the specific application which cannot be
solved by traditional IP/CP code.

• The solution method provides a significant improvement in makespan com-
pared to the strategy currently implemented by Sonofon, and an improve-
ment of 25 percent to the current solution is reported within 17 minutes
of computation time. Sonofon expects to use the obtained solution in the
future.

• The algorithm quickly finds a good solution and can be aborted at any time.
Therefore as long as the jobs are known just prior to the actual scheduling
process our algorithm is capable of producing a good feasible schedule.

The remaining part of the paper is organized as follows. In Section 2, we
present the practical problem offered by Sonofon, followed by the derivation
of a hybrid IP/CP model. In Section 3, we give a thorough introduction to
the developed tabu search heuristic, and computational results are provided
in Section 4.

2 Problem formulation

The Danish telecommunications net operator, Sonofon, faces a three-machine
scheduling problem, with 346 End-of-Day jobs (EOD). Each job is dedicated
to a particular server, it cannot be shared among the servers, and it has to be
processed without preemption 1 .

The scheduling time horizon runs from 7.00 pm to 8.00 am, and each job
receives a time window in which it should be processed. Unfortunately, the
time windows are wide, leaving numerous feasible starting times for each job.
Since most scheduling tools applying Constraint Programming relies heavily
on propagation techniques, the wide time windows have a negative influence

1 Preemption means that jobs can be interrupted during processing.

3



on the performance of such scheduling packages. The time windows will be
explored further in Section 3.1. Since the servers immediately after complet-
ing the EOD-jobs are assigned to other operations, the objective will be to
minimize makespan.

Because of interrelations between jobs, a number of precedence constraints
must be fulfilled. It might occur that a job need information from a database
to which another job (a predecessor) has written earlier.

In a real-world application each job can execute with varying capacity con-
sumption during its runtime, as illustrated by job 1 in Figure 1(b). However,
due to limitations of server exploitation, we can assume that each job has an
upper bound of capacity consumption. In Figure 1(a) we have illustrated a
situation in which three jobs are placed at a machine to start processing at
time 0. Each of the three jobs is assumed to have a maximal capacity con-
sumption of 15 units, and the machine has capacity 30. Since all the jobs are
scheduled to start at time 0, they must share the available capacity, as shown
in Figure 1(b). Observe that in Figures 1(a) and (b) the two corresponding
boxes for a job have the same area. This would be an incorrect representation
of a real-world application, since in general (duration × capacity) increases
with decreasing capacity, due to lost server efficiency from swapping 2 . This
fact is represented by the inclusion of the shaded area in Figure 1(c).

0

10

20

30

40

0 10 20 30 40

capacity

time

(a)

job1

job2

job3

0

10

20

30

40

0 10 20 30 40

capacity

time

(b)

job1

job2

job3

0

10

20

30

40

0 10 20 30 40

capacity

time

(c)

job1

job2

job3

Figure 1. (duration × capacity) increases with decreasing capacity.

In our setup we shall assume that the capacity consumption for a job remains
constant during its runtime. Opposed to other literature on large-scale schedul-
ing we do not restrict time and capacity consumption to be given beforehand.
Instead we assume that jobs are elastic, and hence allow the time and capacity
consumption to be found during the optimization process. We deal with the
non-linear functionality between time and capacity consumption by a rough

2 Swapping or trashing means time being spent for reading jobs into and out of the
temporary memory, not processing any job.

4



approximation representing each job as a choice between three boxes, (see
Figure 2).

0

5

10

15

20

0 5 10 15 20 25

capacity

time

box1

box2

box3

Figure 2. Three representations of a job.

The dimensions of the boxes for a given job j are explained in Table 1, where
capj (timej) corresponds to the capacity (duration) for the job-box having the
least capacity consumption (and hence the longest duration) 3 . The second
and third column gives the capacity and time consumption for a given box,
and the last column gives (capacity consumption × duration). Notice that,
by a 50% decrease in capacity, (capacity consumption × duration) increases
by 10%. This trade-off between capacity assigned to a particular job and
its duration was determined in correspondence with Sonofon and reflects the
specific problem rather closely.

Table 1
Dimensions of boxes representing job j.

l capjl timejl (capjl × timejl)

1 4 · capj 25/121 · timej 100/121 · capj · timej

2 2 · capj 5/11 · timej 10/11 · capj · timej

3 capj timej capj · timej

Since the representation of scheduling problems is greatly simplified using the
terminology from constraint programming, we too, shall adapt such a notation.
Hence for our problem we derive a hybrid IP/CP model which is to be solved
by a heuristic procedure, more specifically by a tabu search algorithm. Let us

3 Time constitutes an average longest runtime provided by Sonofon from historical
data.

5



introduce the following notation,

M = {1, 2, 3} - Machines

J = {1, . . . , n} - Jobs

P = {(j, k)| job j shall precede job k} - Precedence constraints

Mm = {j| job j shall be processed on machine m} - Job-machine constraints

L = {1, 2, 3} - Boxes for each job

For each job j, we introduce the four variables:

j.start - Starting time

j.duration - Duration

j.end - Completion time

j.capacity - Capacity consumption

connected by the implicit constraint j.start+ j.duration = j.end. In addition,
we have the parameters:

Rm - Capacity available on machine m, ∀m ∈ M

[aj , bj ] - Time window for job j, ∀j ∈ J

timejl - Duration of the l’th box for job j, ∀j ∈ J, ∀l ∈ L

capjl - Capacity consumption of the l’th box for job j, ∀j ∈ J, ∀l ∈ L

Let xjl denote a binary variable which is 1 if box l is chosen for job j and 0
otherwise. Introducing the artificial job makespan with zero duration, we can
state our model as follows:

6



(IP/CP)

min makespan.end

s.t.
∑

l∈L

xjl = 1 ∀j ∈ J (1)

j.duration =
∑

l∈L

(xjl · timejl) ∀j ∈ J (2)

j.capacity =
∑

l∈L

(xjl · capjl) ∀j ∈ J (3)

aj ≤ j.start ∀j ∈ J (4)

j.end ≤ bj ∀j ∈ J (5)

j precedes makespan ∀j ∈ J (6)

j precedes k ∀ (j, k) ∈ P (7)

cumulative





















{j.start}j∈Mm

{j.duration}j∈Mm

{j.capacity}j∈Mm

Rm





















∀m ∈ M (8)

xjl ∈ {0, 1} ∀j ∈ J, ∀l ∈ L

(9)

where cumulative is a global constraint in CP, stating that, at all times, the
total capacity is not exceeded by the capacity consumption of running jobs.
The constraint can be rewritten as

cumulative ((t1, . . . , tn) , (d1, . . . , dn) , (r1, . . . , rn) , R)

m
∑

{j|tj≤t≤tj+dj}

rj ≤ R ∀t

where the vector (t1, . . . , tn) represents starting times of jobs 1, . . . , n, with
duration (d1, . . . , dn) and capacity consumption (r1, . . . , rn). Available capac-
ity is R.

The above constraints (1) choose a box for each job, yielding a specific time
and capacity consumption in cooperation with (2) and (3). Constraints (4)
and (5) consider time windows. Constraints (6) together with the objective
function minimize the completion time of the last job. Constraints (7) handle
precedence constraints (j precedes k means j.end ≤ k.start), whereas (8)
handles resource consumption for each machine.

7



3 Tabu search

To obtain a solution to the given problem we need the starting time and
the box size for each job since then the completion times, the durations and
the capacity consumptions are implicitly determined. However, the numerous
possible starting times for each job prevent us from using the starting times
explicitly in the solutions. Instead we use the box size for each job and a
sequence which specifies the order of the starting times. In the following we
let jp denote the number of the job at position p in the corresponding sequence.
Now the sequence specifies that since job j1 is before job j2 in the sequence,
j2 must start no earlier than j1. A solution to a problem with 9 jobs is shown
in Figure 3 where the sequence is defined by j1 . . . j9 and the box choices by
the box numbers ljp

stated below.

1 2 3 4 5 6 7 8 9

4 2 6 5 9 3 7 1 8

2 1 1 3 1 2 2 3 1

jp

ljp

p

Figure 3. Sequence and box choices for example with 9 jobs.

Given both a box size for each job and a job sequence the corresponding opti-
mal solution can be found or infeasibility can be proven. This means that the
size of the solution space has been dramatically decreased without excluding
optimal solutions. How to complete the solution to find the exact starting
times for each job is discussed in Section 3.3.

Before the tabu search can start, an initial feasible solution is needed. A solu-
tion is feasible, if it is possible to schedule all jobs according to the sequence
and the box sizes and still satisfy all time windows, capacity constraints and
precedence constraints. It turns out that the problem of finding an initial solu-
tion is very hard, but a heuristic method for solving this problem is presented
in Section 3.2.

Elements and features of the tabu search such as the neighbourhood, tabu
lists, intensification strategies and diversification strategies are discussed in
Sections 3.4, 3.5, 3.6 and 3.7, respectively. Part of the notation is inhereted
from Chiang and Russell [13].

3.1 Preprocessing

In order to detect infeasible solutions quickly we tighten the time windows by
considering precedence constraints. If a job j, has a time window (0, t), but
at the same time is a successor of another job ĵ, then the time window can
be adjusted to start at the earliest completion time for job ĵ. To do this, a

8



precedence graph G is constructed where all jobs are represented by a node, and
all precedence constraints by a directed arc between the two nodes involved,
pointing away from the predecessor.

For all connected components in the graph the following procedure adjusts the
beginning of the time windows. Let C ⊆ G be a connected component, and
let j ∈ C be a job in C. Then aj denotes the earliest starting time, and timej1

denotes the minimal duration for job j. We let Pj denote all predecessors of
job j, note Pj ⊂ C. The earliest starting times for the jobs in C are now
adjusted by setting aj = max{aj , ai + timei1 ∀i ∈ Pj} for all j ∈ C, but in
an order such that all predecessors of j have been adjusted before j. Such an
order exists, since otherwise a directed cycle would exist, and the jobs would
be impossible to schedule. The latest completion times can be adjusted in a
similar manner by starting with the jobs in C having no successors.

3.2 Initial solution

Garey and Johnson [14] have shown that, for a similar setup, the decision
problem on determining the existence of a feasible schedule with a makespan
less than a given deadline (in our case 8.00 am) is NP-complete in the strong
sense. In this section we shall describe a heuristical procedure to generate an
initial feasible solution for this particular instance. The procedure is divided
into five steps where the first three steps use the precedence graph to generate
a sequence. In the fourth step, box sizes are chosen. If the solution obtained
is feasible the procedure stops, and otherwise Step 5 relaxes the problem and
uses the tabu search to find a feasible solution.

Step 1

Notice, to obtain a feasible solution, three groups of constraints must be ful-
filled simultaneously, namely precedence constraints, time window constraints
and capacity constraints. To ensure fulfilment of the precedence constraints,
we use the precedence graph described in Section 3.1 to divide the jobs into
layers. The successor of a job will always be in a higher layer than the job
itself, and the jobs in one layer cannot start before all jobs in preceding layers
have started. However, this dividing process faces the risk of assigning jobs
with late time windows to an early processing layer. This could happen if an
entire component of the precedence graph has to be processed after a certain
time, but the first job is assigned to layer 1. Jobs from other components,
which could be processed early, would then be stalled if they were in layer 2,
and the entire schedule would be delayed. Hence in our derivation of layers,
we introduce a variable start and initialize it to 0. Then we assign jobs that
have no predecessors and are able to start before or at time start. All their
successors, having no other predecessors and being able to start before or at

9



time start, are then scheduled in the next layer etc. When no more jobs can
be assigned due to either time window constraints or precedence constraints,
the variable start is increased by a constant amount of time, and a new level
of layers can be derived with jobs being able to start before the new limit. The
jobs are numbered consecutively, starting with the jobs on the lowest layer.
This continues in an iterative fashion, until all jobs have been numbered, and
we have a sequence containing all jobs.

Step 2

This step is very similar to Step 1 except the layers are generated backwards.
This means that the layer containing the last jobs are generated first, and
then the preceding layers are generated one by one. Again the successor of a
job will always be in a higher layer than the job itself, and the job in one layer
cannot start before all jobs in the preceding layer have started.

Step 3

The sequence from Step 1 has the disadvantage that all jobs without prece-
dence constraints and time windows are scheduled first. This means that jobs
which could have been scheduled later might delay some of the large com-
ponents of the dependency graph. The sequence developed in Step 2 has the
opposite problem since in this case the jobs with few constraints are sched-
uled very late and might cause jobs to break their time windows. Hence in
this step we obtain a new sequence by taking a convex combination of the two
sequences from Steps 1 and 2. This is done by calculating the convex combi-
nation of the positions in the two sequences for each job and then sequencing
the jobs according to these numbers. Ties are broken arbitrarily. Notice that
the new sequence still satisfies all precedence constraints.

Step 4

First we choose a box size for each job j on machine m according to the
following scheme:

xj1 = 1 if 0 < capj3 ≤
Rm

10

xj2 = 1 if Rm

10
< capj3 ≤

Rm

4

xj3 = 1 if Rm

4
< capj3

These choices have proven efficient in the particular problem. After the boxes
have been chosen a check is made to see if the sequence obtained in Step 3
together with the box choices constitute a feasible solution.

Step 5

If the solution from Step 4 is infeasible we use the tabu search to find a
feasible solution. The problem is relaxed by setting bj = ∞ for all j, i.e. the
time windows have no upper limit. Notice that this problem always has a
feasible solution when the capacity requirement for each job is less than the
capacity on the corresponding machine. The objective in this part of the tabu

10



search is to minimize the number of jobs which violate their time windows,
and the search stops when a solution with value 0 has been found.

3.3 Completing a solution

As mentioned the solutions used in the tabu search only consist of a box choice
for each job and a job sequence which determines the order of the starting
times. This solution must be completed to include the exact starting and
completion times for each job, since fulfilment of time windows and capacity
constraints must be checked in order to prove feasibility of the solution. Since
this check is done for all considered moves in each iteration the efficiency of the
procedure has great influence of the overall performance of the tabu search.

Before the procedure is outlined it should be mentioned that the sequences
given to the procedure always satisfy the precedence constraints, i.e. if j must
be completed before ĵ can start, then j will always precede ĵ in the sequence.

The procedure exploits the fact that an optimal schedule with respect to the
given sequence and box choices can be generated by scheduling one job at a
time in the order of the sequence without backtracking. Since jp is the job
at position p in the sequence we know that when jp is about to be sched-
uled all jobs jp̄ with p̄ < p have been scheduled and jp−1.start ≤ jp.start

due to the sequence. Furthermore, all the jobs that have been scheduled so
far, start before or at jp−1.start and therefore the capacity consumption on
each machine must be decreasing in time after jp−1.start. The optimal start-
ing time for jp will hence be the first time after max{ajp

, jp−1.start} and
max{jp̄.end|jp̄ is predecessor of jp} for which the capacity consumption, on
the machine m used to process jp, is less than or equal to Rm − jp.cap. Hence
a job is started the first time the four conditions shown in Figure 4 are fulfilled.

0

10

20

(a)

ajp jp−1.start

capacity

time

job jp−1

job jp−2

job jp

0

10

20

(b)

jp−1.start ajp

capacity

time

job jp−1

job jp−2

job jp

0

10

20

(c)

ajp jp−1.start

capacity

time

job jp−1

job jp−2

job jp

0

10

20

(d)

ajp jp−1.start

capacity

time

job jp−1

job jp−2

job jp

pre. con.

Figure 4. Scheduling the job jp. The limiting constraints are: (a) The sequence, (b)
time window, (c) capacity, (d) precedence constraint.

When the starting time of jp has been determined the procedure checks if
jp.end ≤ bjp

to see if the time window constraint is satisfied. If so, jp+1 is
scheduled and otherwise the solution is infeasible and the procedure stops.
If all jobs are scheduled we have a feasible solution since all constraints are
satisfied, and the makespan is equal to max{j.end|j ∈ J}.

11



3.4 Neighbourhood

To characterize the neighbourhood of a given solution x̄ we define two kinds of
moves. A position move (see Figure 5(a)) keeps the box sizes of x̄ but changes
the position of one job in the sequence, whereas a box move (see Figure 5(b))
maintains the job order of x̄ but changes the box choice for a single job.
Notice that, if the job j at position 5 in the job list is moved to position
2, not only does j get a new position, but the jobs at position 2, 3 and 4
are moved to the subsequent position. The neighbourhood for solution x̄ can
now be characterized as the union of solutions obtained by a single box move
and solutions obtained by a single position move which fulfils the precedence
constraints.

1 2 3 4 5 6

4 2 6 5 9 3

2 1 1 3 1 2

1 2 3 4 5 6

4 2 6 5 9 3

2 1 1 3 1 2

3
(a) (b)

Figure 5. (a) position move, (b) box move.

The cardinality of the neighbourhood is O(n2) due to the large number of
position moves, and in the present implementation we must consider approx-
imately 120,000 moves (some are ignored due to violation of the precedence
constraints) for each solution. The ability to select only part of the neighbour-
hood for examination is therefore crucial. We use two methods for limiting the
number of possible moves.

3.4.1 Restricting position moves

By introducing a limit movelimit on how far a job can move, the number
of considered position moves are reduced. This leads to faster iterations but
might restrict the search from choosing some very good solutions. To avoid
the search from stalling due to the restriction, the entire neighbourhood is
examined every time the algorithm has performed non-improving moves for a
predefined number of iterations. This makes the search capable of performing
a single time consuming move and then a number of fast iterations to exploit
the new conditions.

3.4.2 Candidate lists

The Elite Candidate List approach (see Glover and Laguna [7]), is used to
limit the number of position moves by only evaluating moves belonging to

12



candidate lists. In this setup two lists are used, and they are constructed by
evaluating the neighbourhood of the initial solution. All moves which lead to
an improving makespan are stored in list 1, and all moves leading to the same
makespan are stored in list 2. In the following iterations only moves from the
two candidate lists are considered. First the moves in list 1 are evaluated,
and if one of these moves leads to an improving makespan the best move is
chosen. If list 1 does not contain an improving move the moves in list 2 are
evaluated, and the best move considering both list 1 and list 2 is chosen. When
a move has been chosen from one of the candidate lists both lists are updated
by deleting all moves conflicting with the chosen one. This means that, if
a position move for job j is chosen, then all other position moves for job j

are deleted from the candidate lists and correspondingly for box moves. The
candidate lists are used until no improving move has been found in the lists.
When this happens both lists are deleted, and two new lists are generated by
examining the possible moves of the current solution. Notice that, this might
not be an evaluation of all possible moves, since the position moves might be
restricted as explained in Section 3.4.1.

The underlying assumption of the strategy is that a move which performs
well in the current solution will probably also lead to improvements in the
following iterations.

3.5 Tabu list

The corner stone in tabu search is the use of short-term memory by generating
a tabu list. The tabu list TabuList stores the move from an iteration and keeps
it for T imeInTL iterations. This is done by keeping the iteration number î,
and when î + T imeInTL ≤ iter the move is deleted from the list. The tabu
list differentiates between the two kinds of moves, but the number of the job
involved is always stored. If a box (position) move is performed for job j the
tabu list restricts job j from performing a new box (position) move in the
following T imeInTL iterations, unless the aspiration criterion is satisfied.
The aspiration criterion implemented checks if an improved makespan can
be obtained by performing the forbidden move. If this is the case the tabu
restriction is suspended, and the search is allowed to perform the move.

Storing all position or box moves for a single job in the tabu list is very
restrictive, since it excludes a lot of moves, but it has been implemented due
to the size of the solution space.

The tabu search implemented here has the ability to dynamically adjust the
variable T imeInTL which determines the number of iterations for which a
move is tabu. T imeInTL is decreased by the parameter zdecrease = 0.9

13



every time the search is trapped in a solution without a non-tabu or feasible
neighbour and increased by zincrease = 1.1, when the same makespan has
been found in many successive iterations.

In addition a variable steps is counting the number of moves without a change
in T imeInTL, and T imeInTL is decreased by zdecrease if steps exceeds a
fixed threshold movingaverage. This adjustment helps the search to avoid a
lot of bad moves which could be the result of a long tabu list.

3.6 Intensification strategy

The implementation of the intensification strategy is very similar to the im-
plementation of the tabu list. A list IntenArray holds moves which have led
to improvements of the makespan. The moves are kept for Intensize itera-
tions, and corresponding moves for the same job are not allowed while the
move is in the IntenArray. For example, if a position move is performed for
job j in iteration î, a new position move cannot be performed for j before
iteration î+ Intensize. However, the intensification status is not considered if
a job satisfies the aspiration criterion. In this case the job can be chosen even
though the move is in the intensification array.

3.7 Diversification strategies

The algorithm contains two kinds of diversification strategies. The first strat-
egy is active throughout the search and helps the algorithm to perform a
thorough search in the current region of the solution space, while the other
strategy forces the search to change the region.

3.7.1 Penalized move value

The quality of a move is measured by movevalue, which gives the difference
between the current makespan and the makespan obtained by performing the
move, movevalue = newTime − curT ime. This movevalue could be used to
guide the search, but in order to implement the first diversification strategy
a penalized move value pmv is introduced. The pmv takes into account how
many times the job has been moved before:

pmv =











movevalue + α · Move[j], if movevalue ≥ 0

movevalue, if movevalue < 0

14



where Move[j] counts the number of moves performed by job j and α is a
parameter to adjust the penalty. By choosing moves according to lowest pmv,
the algorithm automatically follows the diversification strategy.

3.7.2 Escape procedure

In order to move the search from one region of the solution space to another, an
escape procedure is invoked when too many successive iterations have resulted
in the same makespan. The procedure makes a number of random moves which
lead the algorithm away from the current region. During the escape procedure
only feasible moves are allowed, since a feasible solution must be available
when all the moves are performed.

The general tabu search procedure adjusted according to the strategies above
can be seen in Figure 6.

4 Computational results

Since the present problem is a large-scale scheduling problem, traditional
IP/CP code is unable to solve it. We implemented the problem in OPL Studio
(by ILOG [15]) and provided it with the search strategy to start with box
choices according to the scheme in Step 4 of Section 3.2. OPL Studio with
default setting was unable to solve the problem in 24 hours. In fact, within 24
hours OPL Studio was unable even to find a feasible solution to the problem,
whereas our algorithm provided a feasible solution in 1 min, 5 sec. Notice that,
all computational results reported in this section have been found using an
Intel Xeon 2.67 GHz processor with 4 GB Ram.

By comparing the average makespan reported by Sonofon 4 and the makespan
obtained by our algorithm with a näıve lower bound we show that significant
improvements can be gained within a short amount of time.

To obtain the lower bound we disregard the precedence constraints. This allows
us to schedule the three machines independently. Then for each job we let total

capacity consumption be (capacity consumption × duration) for the smallest
possible box (box 1). Now, for a particular machine we are able to construct
a sequence by ordering the jobs according to the starting time of their time
windows, ties are broken arbitrarily. When the jobs are scheduled according
to this sequence and treated as totally elastic without variation of the total

4 The average makespan was found using the historical data that constituted the
specifications for the jobs.

15



1 procedure tabu search

2 time = 0
3 adjust time windows (3.1)
4 find initial solution (3.2)
5 iter = 0
6 while ((iter < maxiter) ∧ (time < timelimit)) do

7 curmove = ∅
8 update TabuList
9 update IntenArray

10 if (candlist1 ∪ candlist2 = ∅) then

11 create new candlist with respect to restrictions (3.4.1 & 3.4.2)
12 end if

13 for all (moves in candlist1) do

14 complete the resulting solution (3.3)
15 check the TabuList and IntenArray (3.5 & 3.6)
16 if no improving move has been found check candlist2
17 choose curmove according to pmv (3.7.1)
18 end for all

19 if (curmove = ∅) then

20 decrease T imeInTL and let steps = 0 (3.5)
21 end if

22 else

23 update curSol by performing curmove
24 add the move to tabulist (3.5)
25 add the move to IntenArray if it leads to an improvement (3.6)
26 end else

27 update candlist (3.4.2)
28 if (iterations with same makespan = escaperepetion) then

29 use escapeprocedure (3.7.2)
30 end if

31 iter++
32 end while

33 end procedure

Figure 6. Pseudo code for the tabu search algorithm. Numbers in parentheses refer
to the corresponding sections.

capacity we obtain a lower bound on the makespan. The lower bound for the
present problem is 591 minutes.

The algorithm presented in this paper yields a makespan of 614 min, which
is 3.89 percent above the lower bound. The average makespan obtained by
Sonofon on the other hand is 821 min and hence is 38.92 percent above the
lower bound. By a direct comparison of the two makespans it can be seen that
our schedule saves 25.21 percent of scheduling time compared to the strategy
implemented by Sonofon.

16



The best solution was found in 16 min, 44 sec, and hence the algorithm can be
used on a daily basis to schedule the jobs which have to be processed during
the night. Furthermore, Figure 7 shows that the significant improvements are
obtained in a rather short amount of computation time, and afterwards only
small improvements are made. This means that the algorithm is still applicable
even though the job specifications are unknown until just prior to the actual
scheduling process.

makespan

time

Lower bound

(4.00 am) 540

(5.00 am) 600

(6.00 am) 660

(7.00 am) 720

(8.00 am) 780

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000

current sol.
best sol.

Figure 7. Makespan in minutes as a function of CPU time in seconds. A point is
inserted after every 50 iterations of the algorithm.

In addition, the solution of the algorithm can be used to examine how the
available capacity is used. Figure 8 shows a very uneven server exploitage
during the night, and in particular if jobs were moved from machines 1 and 3
to machine 2 the makespan could be reduced.

0

5

10

15

20

19 24 04 08

Machine 1

capacity

time
0

5

10

15

20

19 24 04 08

Machine 2

capacity

time
0

5

10

15

20

19 24 04 08

Machine 3

capacity

time

Figure 8. Capacity consumption on the three servers.

We have also tested the benefits of scheduling all jobs on one large server in
stead of three separate ones. Our algorithm yields a makespan of 518 minutes
in 1 hour, 4 minutes of computation time and therefore supports such an
implementation. This scenario has been considered by Sonofon but is not
implementable with their current hardware.

17



Acknowledgements

We would like to thank Morten Bech Kristensen (Sonofon), Lars Jørgensen
(Sonofon) and Lars Grynderup (DM-Data) for data supply and many helpful
discussions.

References

[1] Jain V, Grossmann IE. Algorithms for hybrid MILP, CP models for a class of
optimization problems. INFORMS Journal on Computing 2001;13(4):258-276.

[2] Hooker JN, Ottosson G. Logic-based Benders decomposition. Mathematical
Programming 2003;96:33-60.

[3] Hooker JN. Logic-based Benders methods for planning and scheduling. Lecture
given at ISMP 2003.

[4] Baptiste P, Le Pape C. Constraint propagation and decomposition techniques
for highly disjunctive and highly cumulative project scheduling problems.
Constraints 2000;5(1-2):119-139.

[5] Baptiste P, Le Pape C, Nuijten W. Constraint-based scheduling: Applying
constraint programming to scheduling problems. Norwell, Ma: Kluwer Academic
Publishers, 2001.

[6] Glover F. Tabu search - Part I. ORSA Journal on Computing 1989;1(3):190-206.

[7] Glover F, Laguna M. Tabu search. Norwell, Ma: Kluwer Academic Publishers,
1997.

[8] Grabowski J, Wodecki M. A very fast tabu search algorithm for the permutation
flow shop problem with makespan criterion. Computers and Operations
Research 2004;31(11):1891-1909.

[9] Ferland JA, Ichoua S, Lavoie A, Gagné E. Scheduling using tabu search methods
with intensification and diversification. Computers and Operations Research
2001;28(11):1075-1092.

[10] Porto SCS, Kitajima JPFW, Ribeiro CC. Performance evaluation of a parallel
tabu search task scheduling problem. Parallel Computing 2000;26:73-90.

[11] Chekuri C, Bender M. An efficient approximation algorithm for minimizing
makespan on uniformly related machines. Journal of Algorithms 2001;41:212-
224.

[12] Mansini R, Speranza MG, Tuza Z. Scheduling groups of tasks with precedence
constraints on three dedicated processors. Discrete Applied Mathematics
2004;134:141-168.

18



[13] Chiang W-C, Russell RA. A reactive tabu search metaheuristic for the
vehicle routing problem with time windows. INFORMS Journal on Computing
1997;9(4):417-430.

[14] Garey MR, Johnson DS. Computers and intractability. A guide to the theory
of NP-completeness. New York: W.H. Freeman and Company, 1979.

[15] ILOG, ILOG Optimization Suite - white paper 2001. URL:
http://www.ilog.com.

19


