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view to spatio-temporal modelling

Kristjana Ýr Jónsdóttir∗, Ute Hahn†, Eva B. Vedel Jensen∗

1 Introduction

In recent years, models for inhomogenous spatial point processes have been studied
quite intensively, see [1, 2, 3, 4] and references therein. The majority of the
inhomogeneous models has been constructed by introducing inhomogeneity into
a homogeneous template point process X, defined on a bounded subset X of R

k.
In most cases it is assumed that the template process is a homogeneous Markov

point process with a density fX with respect to the restriction of the unit rate
Poisson point process Π to X . Inhomogeneity may be introduced by using a
non-constant first-order term in the density. Quite different approaches are in-
homogeneity by independent inhomogeneous thinning and transformation of the
template process. Inhomogeneity may also be constructed such that the resulting
inhomogeneous process is a locally scaled version of the template process.

The inhomogeneous point processes mentioned above have mainly been studied
in the case where the interaction between the points can be characterized as
inhibition. The log Gaussian Cox processes constitute a very tractable alternative
model class for clustered inhomogeneous point patterns, cf. [5] and [6]. Here,
space-time modelling can be developed very elegantly, as demonstrated by an
example of modelling a plant population. Spatio-temporal processes are also very
important in the modelling of earthquakes. A popular model for clustered patterns
in this field was suggested by Hawkes [7]. For a short review on spatio-temporal
point processes in environmental statistics, see [8].

In the present paper we will give a short review of recent inhomogeneous purely
spatial point processes, with a view to spatio-temporal modelling.

2 Inhomogeneous spatial point processes

In principle, any given homogeneous point process can be turned into an inhomo-
geneous point process by independent thinning with a survival probability p(η)
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that depends on the location η ∈ X . As Baddeley et al. show [2], second order
functions as Ripley’s K-function can be defined for thinned point processes such
that they coincide with the corresponding second order functions of the original
process. However, thinning changes the interaction structure. Thus, if a very
regular point process is subjected to inhomogeneous thinning, regions of low in-
tensity seem to exhibit almost no interaction and look similar to a realization of
a Poisson process.

Another method that is applicable on any process is to generate inhomogeneity
by a nonlinear transformation of the spatial coordinates. Jensen and Nielsen [3]
prove that the process resulting from transformation of a Markov point process
is again Markov. Transformation does in general not preserve (local) isotropy of
the template process.

Ogata and Tanemura [9] and Stoyan and Stoyan [1] suggest to introduce in-
homogeneity into Markov or Gibbs models by location dependent first order in-
teraction. As an example, consider a Strauss template X on X with parameters
β > 0, γ ∈ [0, 1] and R > 0, which is defined by a density

fX(x) ∝ βn(x)γs(x), s(x) =
∑

η 6=ξ∈x

1(‖η − ξ‖ ≤ R), (1)

with respect to the unit rate Poisson process on X . The resulting inhomogeneous
process has density

fX(x) ∝
∏

η∈x

β(η)γs(x), s(x) =
∑

η 6=ξ∈x

1(‖η − ξ‖ ≤ R) (2)

with respect to the unit rate Poisson process. For such an inhomogeneous process,
the degree of regularity in the resulting process depends on the intensity as in the
case of thinning, described above.

A fourth approach that preserves locally the geometry of the template model,
in particular the degree of regularity and also isotropy, was introduced in [4].
It can be applied to models that are specified by a density with respect to the
unit rate Poisson process. The idea of the approach is that a location dependent
scale factor c(η) > 0 changes the local specification of the model such that in
a neighbourhood of any point η ∈ X , the inhomogeneous process behaves like
the template process scaled by the factor c(η). This is achieved by defining the

locally scaled process Xc by a density f
(c)
Xc

with respect to an inhomogeneous

Poisson process of rate c(η)−k. The density f
(c)
Xc

is obtained (up to a normalizing
constant) from the template density fX by replacing all d-dimensional volume
measures νd that occur in the definition of fX by their locally scaled counterparts
νd

c , where νd
c (A) :=

∫
A

c(u)−dνd(du) for all A ∈ Bk.
A locally scaled version of the Strauss process has thereby the density

f
(c)
Xc

(x) ∝ βn(x)γsc(x), sc(x) =
∑

η 6=ξ∈x

1(ν1
c ([η, ξ]) ≤ R), (3)
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where ν1
c ([η, ξ]) :=

∫
[η,ξ]

c(u)−1ν1(du) is the locally scaled length of the segment

[η, ξ]. This modification applies to all Markov point processes where the higher
order interaction is a function of pairwise distances. The resulting inhomogeneous
point process is again Markov, now with respect to the neighbour relation

η ∼ ξ ⇐⇒ ν1
c ([η, ξ]) ≤ R.

Since evaluation of the integral in the locally scaled length measure may be com-
putationally expensive in the general case, the scaled distance of two points may
be approximated by

ν1
c ([η, ξ] ≈

‖η − ξ‖

(c(η) + c(ξ))/2
. (4)

Using (4) in (3), and adjusting the first order term in (3), we get the density fXc

of Xc with respect to the unit rate Poisson process as

fXc
(x) ∝ βn(x)γsc(x)

∏

η∈x

c(η)−k, sc(x) =
∑

η 6=ξ∈x

1(‖η − ξ‖ ≤ c(η)+c(ξ)
2

R). (5)

As shown in [4], if the scaling function is slowly varying compared to the inter-
action radius the local intensity in a point η of such a locally scaled process is
in good approximation proportional to c(η)−k. Figure 1 shows a realization of a
locally scaled Strauss process.
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Figure 1: Result of a simulation from a locally scaled Strauss
process on [−1, 1]2, with parameters β = 100, γ = 0.01, and
R = 0.1, and scaling function was set to c(η) = 2‖η‖2 + 0.1.
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3 An example of an inhomogeneous space-time

point process

Let Z = {(ξ, t)} be a space-time point process on a bounded set X × (0, T ] ⊂
R

k × R+ and define Z<t = {(η, s) ∈ Z, s < t}. We let c1 : R
k → R and c2 : R+

be positive and bounded local scaling functions for space and time, respectively.
Then a natural extention of the purely spatial locally scaled strauss process is the
space-time process Z defined by the following density fZ of Z with respect to a
unit rate Poisson point process on X × (0, T ]

fZ(z) ∝ βn(z)γsc(z)
∏

(ξ,t)∈z

1

c1(ξ)kc2(t)
,

where
sc(z) =

∑

(ξ,t)∈z

∑

(η,s)∈z<t

1[‖ η − ξ ‖≤ c1(η)R].

Notice that the distance at which two points η and ξ are defined to be neighbours
depends on the location via the scaling function c1, however now only the scaling
function at the “older” point is taken into account.

Figure 2 shows a simulation of the process Z on [−1, 1]2×(0, 12] with β = 100,
γ = 0.01 and R = 0.1. The local scaling functions are defined by c1(ξ) = 0.2+4 ‖
ξ ‖2 and c2(t) = 0.2 + 0.05t. Notice the similarity with Figure 1.
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Figure 2: Result of a simulation from a space-time process on [−1, 1]2 × (0, 12],
with β = 100, γ = 0.01, R = 0.1, c1(ξ) = 0.2 + 4 ‖ ξ ‖2 and c2(t) = 0.2 + 0.05t.
The figure shows the point pattern at times t = 2, 4, 8, 12.
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