
04

THIELE CENTRE
for applied mathematics in natural science

THIELE CENTRE
for applied mathematics in natural science

Bayesian regularization of diffusion tensor images

Jesper Frandsen, Asger Hobolth,
Eva B. Vedel Jensen, Peter Vestergaard-Poulsen
and Leif Østergaard

ISSN 1398-2699

www.thiele.au.dk

The T.N. Thiele Centre
Department Of Mathematical Sciences
University of Aarhus

Ny Munkegade Building 530
8000 Aarhus C
Denmark

Phone +45 89 42 35 15
Fax +45 86 13 17 69
Email thiele@imf.au.dk Research Report No. 03 January 2004



Bayesian regularization of
diffusion tensor images

This Thiele Research Report is also Research Report number 441 in
the Stochastics Series at Department of Mathematical Sciences,
University of Aarhus, Denmark.





Bayesian regularization of diffusion tensor images

Jesper Frandsen1, Asger Hobolth2, Eva B. Vedel Jensen3,
Peter Vestergaard-Poulsen1 and Leif Østergaard1

1Department of Neuroradiology, Centre for Functionally Integrative Neuroscience,
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Abstract

Diffusion tensor imaging (DTI) is currently being refined as a tool to study
the course of nerve fibre bundles in the human brain. Using DTI, the local
fibre orientation in each image voxel can be described by a diffusion tensor
which is constructed from local measurements of diffusion coefficients along
several directions. The measured diffusion coefficients and thereby the diffu-
sion tensors are subject to noise, leading to possibly flawed representations of
the three dimensional fibre bundles. Efforts to reduce noise by regularization
have so far been concentrated on the analysis of the primary diffusion direc-
tion. In this paper we develop a Bayesian procedure for regularizing the full
diffusion tensor field, fully utilizing the available three-dimensional informa-
tion of fibre orientation. The use of the procedure is exemplified on synthetic
and in vivo data.

Key words: Bayesian regularization, diffusion tensor imaging, Markov chain
Monte Carlo.
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1 Introduction

The human brain may be divided into two main components, grey matter and
white matter. The grey matter contains the functional centres of the brain and
has been studied for the last two decades by magnetic resonance imaging. This
type of imaging technique is essential for understanding how we perform cognitive
tasks, and may also be used to study a wide range of diseases. The white matter
connects the functional centres of the brain. The integrity and course of white
matter fibre bundles are of key importance in understanding the structural basis
of the functional integration of cortical centres in cognitive tasks, of the origin of
functional impairment in focal brain lesions, and finally brain plasticity.

With the development of diffusion tensor imaging, white matter microstructures
can be indirectly probed by measuring the directionality of Brownian movements of
free water (Basser et al., 1994, and Basser and Pierpaoli, 1996). By the hindrance of
water diffusion across the cell membranes of white matter fibre tracts, the local fibre
direction is believed to be inferable from the preferred free water diffusion direction,
as derived from diffusion coefficients measured locally along several directions. The
local fibre orientation in each image voxel are often described in terms of a diffusion
tensor which is constructed from the measured diffusion coefficients. The diffusion
tensor field forms the basis for determining the course of entire white matter fibre
bundles. In Figure 1, an example of a diffusion tensor field is shown.

Figure 1: An example of a tensor field, obtained by diffusion tensor imaging. To the
left, a slice of the brain is shown, indicating the position of the tensor field sample
of size 10×10×3 shown to the right. Each tensor is represented by its diffusion
function profile and its colour code by its fractional anisotropy index. For details,
see Sections 2 and 6.

Due to the inherent noise of DTI measurements, the diffusion tensors are in-
accurate, possibly leading to erroneous results in the derived white matter fibre
paths. Voxels are likely to be part of a well organized structure (for example, a
fibre direction perpendicular to that of all surrounding voxels in a well-ordered fibre
bundle is very unlikely). By using Bayesian regularization techniques this a priori

knowledge can be included in the analysis. In this paper we show that Bayesian
regularization can be performed on the field of diffusion tensors, fully utilizing their
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three-dimensional information on fibre orientation. The paper is a natural continu-
ation of a paper by Poupon et al. (2000) on Bayesian regularization of the primary
directions of the diffusion tensors. We use Markov chain Monte Carlo (MCMC) sim-
ulation procedures for the regularization and study the performance of the procedure
on synthetic and in vivo data.

The paper is organized as follows. In Section 2 we describe the field of diffusion
tensors, more generally the field of diffusion functions. In Sections 3 and 4, the
prior and likelihood models are discussed. The Bayesian regularization procedure
is described in detail in Section 5. In Section 6 we study the performance of the
regularization procedure on synthetic data, and in Section 7 we consider in vivo

data. An extension of the prior model is described in Section 8. Technical aspects
of the regularization are collected in two appendices.

2 The field of diffusion functions

Let W be the finite set of voxels representing the white matter. For each voxel
w ∈ W the true diffusion coefficient in a direction u ∈ S2 on the unit sphere is
denoted fw(u). Since the diffusion coefficient is the same in opposite directions we
have

fw(u) = fw(−u), u ∈ S2.

We denote the field of diffusion functions by

F = {fw : w ∈ W}.

As mentioned in the introduction, it is believed that the diffusion coefficient fw(u)
is large if u is close to the main direction of the nerve fibres passing through w.
One possibility for graphical representation of a diffusion function is the diffusion

function profile

{fw(u)u : u ∈ S2} (1)

which is the spatial surface having the distance fw(u) to the origin in the direction
u ∈ S2.

The diffusion function is commonly modelled as a quadratic form, cf. Basser et
al. (1994). In this case

fw(u) = u∗Σwu, u ∈ S2, (2)

where Σw is a 3× 3 positive semi-definite matrix, referred to as a tensor. The field
of tensors will also be denoted by F , for convenience. Let λw1 ≥ λw2 ≥ λw3 ≥ 0
be the eigenvalues of Σw with corresponding orthonormal eigenvectors uw1, uw2 and
uw3. In Figure 2, diffusion function profiles of quadratic diffusion functions (tensors)
are shown. The same type of graphical representaion of tensors is used in Figure 1.
If λw1 > λw2 a diffusion function of the form (2) attains its maximal value λw1 in
the unique unorientated direction u = ±uw1. This direction is called the primary

diffusion direction.
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Figure 2: Diffusion function profiles for quadratic diffusion functions (tensors) with
eigenvalues λ1 = λ2 = λ3 (left), λ1 = λ2 > λ3 (middle) and λ1 > λ2 = λ3 (right).

3 Prior model

In order to perform Bayesian regularization, a prior model must be defined on the
field of diffusion functions. In Bayesian analysis, Gibbs type distributions (also
sometimes referred to as Markov random fields) have been successfully applied as
prior models for low level tasks such as image restoration, see e.g. Geman & Geman
(1984), Besag (1986), Guttorp (1995) and Hurn et al. (2003). In the present paper,
the same type of approach is suggested for the field of diffusion functions. Under
the prior model, diffusion functions in neighbour voxels tend to be similar.

Let ∼ be a neighbourhood relation on W, indicating the voxels from which
local information is taken into account during regularization. In 3D, the common
neighbourhood structures are the 6, 26 or 32 nearest neighbours. In our application
we use the 26 nearest neighbours. A general Gibbs type prior density of F is

p(F) =
1

Zα
exp

(

−α
∑

w∼w′

d(fw, fw′)

||w − w′||

)

, (3)

where Zα is a normalizing constant and α > 0. The summation involves all pairs
of neighbour voxels. The function d(·, ·) measures the distance between diffusion
functions and ||w − w′|| is the Euclidean distance between voxel w and w′. In
principle any distance between diffusion functions can be used, with the constraint
that (3) should specify a proper prior, i.e. the integral of the exponential term
should be finite. Note that under the prior model high probability fields F have the
property that diffusion functions in neighbour voxels are similar.

As the diffusion function contains directional as well as size information the field
of diffusion functions is commonly normalized before any further analysis (Basser
and Pierpaoli, 1996). The function fw is hence replaced by

f̄w(u) =
fw(u)

∫

S2 fw(v) dv
4π

, u ∈ S2. (4)

Under the tensor model (2) we have

∫

S2

fw(v)
dv

4π
=

1

3
(λw1 + λw2 + λw3) = λ̄w, (5)
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cf. Appendix A, and (4) reduces to

f̄w(u) = u∗Σ̄wu, Σ̄w = Σw/λ̄w, u ∈ S2.

In the following we consider Gibbs type prior densities on the normalized diffusion
function field

p(F) =
1

Zα
exp

(

−α
∑

w∼w′

d(f̄w, f̄w′)

||w − w′||

)

. (6)

There are many possible choices of distances between diffusion functions. With-
out specific assumptions on the form of the diffusion functions we may choose

d(f̄w, f̄w′) = g
(

∫

S2

[

f̄w(u)− f̄w′(u)
]2

du
)

, (7)

where g : [0,∞) → [0,∞) is an increasing function with g(0) = 0. A simple choice
would be g(d) =

√
d.

If the tensor model (2) holds, the integral of (7) reduces to

∫

S2

[

f̄w(u)− f̄w′(u)
]2

du =

∫

S2

[

u∗(Σ̄w − Σ̄w′)u
]2

du =
8π

15

∥

∥Σ̄w − Σ̄w′

∥

∥

2
,

cf. Appendix A. Here the Frobenius norm

‖Σ‖ =
[

tr(ΣΣ∗)
]1/2

=

[ 3
∑

i=1

3
∑

j=1

σ2
ij

]1/2

,

cf. Basser and Pierpaoli (1996), is used on the space of 3 × 3 matrices Σ = {σij}.
Thus (7) reduces to

d(f̄w, f̄w′) = g(||Σ̄w − Σ̄w′ ||2), (8)

where the function g in (8) has the properties as in (7).
We now address the special case where only one eigenvalue is positive. Then

∫

S2

[

f̄w(u)− f̄w′(u)
]2

du =
48π

5
(1− [uw1 · uw′1]

2), (9)

where · indicates inner product, cf. Appendix A. Here, uw1 · uw′1 is cosine of the
angle between the two primary diffusion directions uw1 and uw′1. In this case,

d(f̄w, f̄w′) = g(1− [uw1 · uw′1]
2), (10)

where g in (10) has the same properties as in (7). Poupon et al. (2000) use a model
similar to (10) as prior for the primary diffusion direction.
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4 Likelihood model

Let us suppose that the DTI data set consists of the following measured diffusion
coefficients

F = {Fw(ui) : i = 1, . . . , k, w ∈ W}.
Here, u1, . . . , uk are the directions in which the diffusion coefficients are measured.
The minimum value of the number of directions k is 6.

The variability of a measured diffusion coefficient Fw(u) at voxel w in direction u
depends on the true value of the diffusion coefficient fw(u). Expressed more formally,
we have

Var(Fw(u)|F) = h(fw(u)). (11)

If we assume that the measured diffusion coefficients are independent and normally
distributed, then the likelihood becomes

p(F |F) =

[

∏

w∈W

k
∏

i=1

1
√

2πh(fw(ui))

]

exp

(

−1

2

∑

w∈W

k
∑

i=1

(Fw(ui)− fw(ui))
2

h(fw(ui))

)

. (12)

Because of detailed insight in the DTI scanning procedure, the likelihood model
can be given theoretical support for a particular choice of h. In DTI, the diffusion
coefficient Fw(u) in direction u is determined by the equation

Sw(u) = Sw0 exp(−bFw(u)),

where Sw0 is the signal intensity without any gradient, Sw(u) is the measured signal
intensity and b is the diffusion encoding strength factor. The signal intensities Sw(u)
and Sw0 follow Rice distributions1, Sw(u) ∼ R(a, σ2) and Sw0 ∼ R(a0, σ

2), cf. Sijbers
et al. (1998). The signal to noise ratio is defined for Sw(u) and Sw0 as SNR = a/σ
and SNR0 = a0/σ, respectively. If SNR is not too small (SNR ≥ 8), then according
to Appendix B the approximation

Fw(u) ∼ N
(

fw(u),
exp(2bfw(u)) + 1

(bSNR0)2

)

(13)

holds, i.e. noise is Gaussian. Under the tensor model, we have

Fw(u) ∼ N
(

λ̄wu∗Σ̄wu,
exp(2bλ̄wu∗Σ̄wu) + 1

(bSNR0)2

)

. (14)

Recall from (5) that

λ̄w =

∫

S2

E(Fw(u))
du

4π
,

and therefore λ̄w can be estimated by

λ̂w =
1

k

k
∑

i=1

Fw(ui),

if the experimental directions u1, . . . , uk are approximately systematically uniformly
distributed on S2.

1We say that S ∼ R(a, σ2) if S has the same distribution as
√

X2 + Y 2 where X and Y are
independent random variables, X ∼ N(a cosφ, σ2) and Y ∼ N(a sinφ, σ2).
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5 The Bayesian regularization procedure

We have used the Metropolis-Hastings algorithm (see, for instance, Gilks et al.
(1996)) to simulate a regularized field of diffusion functions from the posterior dis-
tribution

p(F|F ) ∝ p(F |F)p(F).

We have worked under the tensor model in which case the likelihood p(F |F) given
by (12) is determined by

fw(u) = λ̂wu∗Σ̄wu, h(fw(u)) =
exp(2bfw(u)) + 1

(bSNR0)2
.

The prior p(F) takes the form, cf. (6) and (8) with g(d) =
√

d,

p(F) =
1

Zα

exp

(

−α
∑

w∼w′

∥

∥Σ̄w − Σ̄w′

∥

∥

||w − w′||

)

.

We start from some suitable initial field

F0 = {Σ̄w(0) : w ∈ W}.

The transition from the field Ft at time t to the field Ft+1 at time t+1 is performed
as follows:

1. Choose a normalized diffusion tensor Σ̄ω, ω ∈ W, for updating.

2. Sample a candidate normalized diffusion tensor Σ̄′
ω from a proposal distribu-

tion q(·|Ft), which may or may not depend on the current state Ft of the
chain.

3. Accept the candidate tensor with probability β, where

β = min

{

p(F ′|F )q(Ft|F ′)

p(Ft|F )q(F ′|Ft)
, 1

}

.

Here F ′ is identical to Ft except for the diffusion tensor at ω, which is Σ̄′
ω.

4. If Σ̄′
ω is accepted, then Ft+1 = F ′, else Ft+1 = Ft.

The choice of diffusion tensor to update may be done at random or according to a
sequential ordering of the voxels. Another possibility is to use a random permutation
scheme where each diffusion tensor is visited once during a sweep of the algorithm,
but in random order, see e.g. Guttorp (1995, page 55).

In theory, the proposal distribution q may have any form (for regularity condi-
tions, see Roberts, 1996), but in practise it is important to select q carefully so that
the Markov chain {Ft} moves rapidly around the tensor space, yet has a reasonable
proportion of candidate tensors accepted. This can be achieved by ensuring that the
candidate tensor Σ̄′

ω is close to the actual tensor Σ̄ω of the chain, yet not so close
that it takes many steps to move around in tensor space.
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The tensor space consists of 3 × 3 normalized positive definite matrices. The
Wishart distribution generates positive definite matrices and a natural choice for
the proposal distribution is therefore a normalized Wishart distribution. Let X
be distributed according to the Wishart distribution W3(Σ̄/n, n) with mean Σ̄ and
degrees of freedom n. We then propose to use the distribution of the normalized
matrix X̄ as proposal distribution. In order to calculate the acceptance probability
we need the density of X̄ which is derived in the following proposition.

Proposition 1. Let X ∼ W3(Σ̄/n, n). Then the density of the normalized matrix
X̄ is given by

3

π3/2

Γ(3n
2

)

Γ(n
2
)Γ(n−1

2
)Γ(n−2

2
)

|X̄|(n−4)/2

tr(Σ̄−1X̄)3n/2|Σ̄|n/2
. (15)

Proof. According to Anderson (1958, Theorem 7.2.2), the density of X with respect
to the Lebesgue measure in R6 is

(n
2
)3n/2

π3/2

1

Γ(n
2
)Γ(n−1

2
)Γ(n−2

2
)

|X|(n−4)/2e−n tr(Σ̄−1X)/2

|Σ̄|n/2
, n ≥ 3.

Now consider the transformation

g : X = (x11, x21, x22, x31, x32, x33) →
(x11

t̄X
,
x21

t̄X
,
x22

t̄X
,
x31

t̄X
,
x32

t̄X
, t̄X

)

= (X̄, t̄X) = g(X),

where t̄X = (x11 + x22 + x33)/3. Note that the first five components X̄ of g(X)
correspond to the normalized matrix, while the last component t̄X is the scaling
factor. The Jacobian of g−1 is 3 t̄ 5

X and the density of g(X) becomes

3(n
2
)3n/2

π3/2

1

Γ(n
2
)Γ(n−1

2
)Γ(n−2

2
)

t̄
3n

2
−1

X |X̄|(n−4)/2e−nt̄X tr(Σ̄−1X̄)/2

|Σ̄|n/2
.

Integrating out with respect to t̄X the density of the normalized matrix X̄ is given by
expression (15) with respect to the Lebesgue measure in R5. 2

Let λi, i = 1, 2, 3, denote the eigenvalues of the product Σ̄′−1
ω Σ̄ω. Then we get

from Proposition 1

q(Ft|F ′)

q(F ′|Ft)
= (λ1λ2λ3)

n−2

[ 1
λ1

+ 1
λ2

+ 1
λ3

λ1 + λ2 + λ3

]3n/2

.

For the calculation of the posterior ratio p(F ′|F )/p(Ft|F ) it is important to notice
that the chain only updates the diffusion tensor in one voxel at a time and therefore
only terms in (6) and (12) involving this particular voxel contribute to the ratio.

Using that the density of X =
∑n

i=1 ZiZ
T
i is a W3(Σ̄/n, n) if Zi, i = 1, . . . , n

(n ≥ 3), are independent, each according to N3(0, Σ̄/n), it is easy to simulate from
the Wishart distribution. The value of the degrees of freedom n determines how
close the candidate tensor is to the current tensor; as n increases the density of the
proposal becomes more concentrated around the mean Σ̄.
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6 Synthetic data

To study the performance of the regularization procedure we analyzed the torus
model presented in Tournier et al. (2002). The fibre bundle is modelled as a torus
of radius R and circular cross-section of radius r. The side length of a voxel is taken
to be one unit length and each voxel is represented by its centre point.

At a voxel w inside the torus, a tensor Σw is positioned with primary diffusion
direction horizontal and perpendicular to the ray from O to w. The eigenvalues of
Σw satisfy

λw1 > λw2 = λw3 > 0

and are normalized such that λ̄w = 1 and Σw = Σ̄w. The degree of anisotropy is the
same for all tensors and is determined by δ = λw2/λw1. Since λ̄w = 1, we furthermore
have

λw1 = 3/(1 + 2δ).

In the DTI literature, the anisotropy is often specified by the fractional anisotropy
index

FA =

√

1
2

∑3
i=1(λwi − λ̄w)2

1
3

∑3
i=1 λ2

wi

,

cf. e.g. Basser and Pierpaoli (1996). In terms of δ, FA can be expressed as

FA =

√

(1− δ)2

1 + 2δ2
.

If a voxel w is outside the torus we let Σw = Σ̄w = I3. There is thereby no
preferred direction, δ = 1 and FA = 0. If the voxel is on the boundary of the torus,
the diffusion tensors are determined as a volume weighted average of the tensors
outside and inside the torus. Finally, noise is added in all k directions for each
voxel, according to the observation model (14) with λ̄w = 1.

The effect of regularization was assessed as follows. The normalized tensor field

{Σ̄w : w ∈ W}

was calculated and the noisy data

Fw(ui), i = 1, . . . , k, w ∈ W,

were simulated. Next, a least squares method was used to fit a 3×3 positive definite
tensor matrix Σ̄w(0) to the data in each voxel, cf. Fraleigh and Beauregard (1990,
page 315). The corresponding normalized tensor field is denoted

{Σ̄w(0) : w ∈ W}.

This tensor field was used as starting value for the Markov chain Monte Carlo
(MCMC) regularization algorithm described in Section 5.

The regularized tensor field at iteration t of the algorithm is denoted

{Σ̄w(t) : w ∈ W}.
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The average gain obtained by regularization was assessed by comparing the regular-
ized tensor field at iteration t to the true tensor field, i.e. by considering the average
tensor difference

1

|W|
∑

w∈W

||Σ̄w(t)− Σ̄w||

as a function of iteration number t.
Figure 3 shows the results obtained in an example where the parameters were

chosen as R = 7.5, r = 3 (in voxel units), FA = 0.6, α = 7.5, k = 17, b = 1000
and SNR0 = 25. These parameters are typical in a DTI setting. Tensors positioned
outside the torus were not regularized. In the upper panel of Figure 3, a central
section of the torus is shown. At each voxel, the projection onto the section of the
primary diffusion direction is shown before (left) and after (right) regularization. An
example of fibre tracking in the raw and regularized fields of tensors is also shown
in Figure 3, using an algorithm presented in Mori et al. (1999). Regularization
seemingly results in a more well-defined fibre orientation distribution. In the lower
part of Figure 3, the average tensor difference is shown as a function of iteration
number.

7 In vivo data

All the scanning experiments were performed on a normal adult male volunteer in a
1.5 T GE Signa system (GE Medical Systems, Milwaukee, WI, USA). The diffusion
weighted scanning was performed in k=14 directions isotropically distributed in
space. The diffusion encoding strength was characterized by a b-factor of 1000
s/mm2. The scanning resulted in 55 consecutive sections of the brain, each of
thickness 2.5 mm. Each section consisted of 128 by 128 pixels, covering an area of
22 by 22 cm. The dimensions of a voxel is therefore 1.7×1.7×2.5 mm. The scanning
time was 306 seconds. In addition, two scannings without diffusion encoding (b =
0 s/mm2) were acquired. This design was repeated 10 times providing 10 individual
data sets. Finally a T1 weighted sequence provided the anatomical images shown
in Figure 4 below. The observed diffusion coefficients will be denoted

Fw,i,j, w ∈ W, i = 1, . . . , k, j = 1, . . . , 10,

where Fw,i,j is the observed coefficient at voxel w ∈ W, direction i and replication j.
In order to get an impression of the individual data available we show in Figure 4
the central 10×10 slice of a representative 10×10×9 cube W ′ and its position in the
brain.

In order to find an appropriate value of the prior parameter α, we fitted a nor-
malized tensor Σ̄wj to each individual data set j at each voxel w. The averages

Σ̄w =
1

10

10
∑

j=1

Σ̄wj

were regarded as the ‘true’ tensors in an subsequent estimation of α. The total prior
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Figure 3: Upper left: Image of the projection of the primary diffusion direction and
the corresponding fibre tracking before regularization. Upper right: Image of the
projection of the primary diffusion direction and the corresponding fibre tracking
after regularization. Lower: Plot of the average difference between the true diffusion
tensors and the regularized diffusion tensors as a function of iteration number.

tensor difference

∑

w∼w′

||Σ̄w − Σ̄w′ ||
||w − w′|| (16)

is a sufficient statistic of the prior model which belongs to the family of exponential
models. According to standard exponential family theory, the maximum likelihood
estimate of α is the value at which the mean of the sufficient statistic equals the
observed value. Figure 5 shows the mean of the sufficient statistic as a function
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Figure 4: A slice of tensors determined from an individual data set and its position
in the human brain.

of α, determined by MCMC simulation, for voxels in the 10×10×9 cube W ′. The
observed value of the sufficient statistic is also indicated in Figure 5. The value of
α was estimated to be 7.5.

We applied our regularization procedure to each of the ten individual data sets.
All individual data sets gave similar results. In Figure 6 the average tensor difference

1

|W|
∑

w∈W

||Σ̄w1(t)− Σ̄w||

is shown for one of the data sets, as a function of iteration number t together with
the corresponding plot for the voxels in W ′.

In Figure 7, a central slice of tensors are shown before and after regularization
together with the average tensor field. The overall impression is that the tensors
after regularization resemble more closely the average tensors. The changes are
moderate but important from a practical point of view. Analyzing averages of two
data sets we found that the precision of the regularized tensors based on a single
scan corresponds to that of unregularized tensors based on two scans. The scanning
time may therefore be reduced by a factor of 2 if the regularization procedure is
used.
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Figure 5: Total prior tensor difference as a function of α for the representative
10×10×9 cube. The observed total tensor difference is 793 resulting in an α-estimate
of 7.5.

8 An extension of the prior model

It has been stressed recently that the diffusion in voxels with e.g. crossing fibres
can be quite complicated and not necessarily well characterized by the standard
diffusion tensor model (2), cf. Frank (2001).

In Frank (2002) and Alexander et al. (2002), a method of extending the tensor
model to more complex configurations of fibres is presented. The diffusion function
profile is modelled by truncating a spherical harmonic expansion at several orders.
If the spherical harmonic expansion is truncated at order 0 an isotropic tensor is ob-
tained, truncating at order 2 gives the tensor model, while higher order truncations
result in more complex diffusion function profiles. In order to describe multi direc-
tional fibres and improve the regularization such extensions are needed. The prior
model described in the present paper can be generalized to accommodate various
complex fibre configurations. One possibility is to use the notion of a marked field
of diffusion functions

Fm = {(fw, mw) : w ∈ W, mw ∈ {1, 2}}.

Here the mark mw = 1 refers to a voxel with one predominant fibre direction while
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Figure 6: Average tensor difference between tensors based on an individual data set
and the pooled data set. The upper curve is for all voxels in white matter while the
lower curve is for voxels in the 10×10×9 subsample.

Figure 7: Left: Tensors based on an individual data set before regularization.
Middle: Tensors after regularization (400 iterations). Right: Average tensor field.

mw = 2 refers to a fibre crossing. If we let n(F1) be the number of voxels with mark
1, then a generalized prior model is

p(Fm) =
1

Zα,β
βn(F1) exp

(

−α
∑

w∼w′

d((fw, mw), (fw′, mw′))

||w − w′||

)

.

The parameter β > 0 determines the fraction of voxels with crossing fibres. The
distance function should depend on whether the voxels w and w′ both represent
unidirectional fibre bundles or one of them is a fibre crossing location.
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Appendix A

In this appendix, we derive some results concerning integrals of diffusion functions
that can be described by the tensor model.

The first result concerns the normalization of a diffusion function of the form

fw(u) = u∗Σwu.

Let us write Σw as
Σw = A∗ΛA,

where Λ is a diagonal 3× 3 matrix with diagonal elements equal to the eigenvalues
of Σw and A is an orthogonal 3×3 matrix with row vectors equal to the eigenvectors
of Σw. Then,

∫

S2

(u∗Σwu)
du

4π
=

1

4π

3
∑

i=1

λwi

∫

S2

(u∗wiu)2 du.

The integrals on the right-hand side of this equation do not depend on i. Letting
u0 = (0, 0, 1)∗, the common value of the integrals becomes

∫

S2

(u∗0u)2 du =

∫ π

0

∫ 2π

0

(cos2 θ) sin θ dϕ dθ =
4π

3
,

where we have used polar coordinates. It follows that
∫

S2

(u∗Σwu)
du

4π
=

1

3
(λw1 + λw2 + λw3).

Next, we derive the explicit expression for
∫

S2

[

f̄w(u)− f̄w′(u)
]2

du (17)

under the tensor model. Let us write

Σ̄w − Σ̄w′ = A∗ΛA,

where Λ and A now contains the eigenvalues and eigenvectors of Σ̄w − Σ̄w′ . If the
eigenvalues of Σ̄w − Σ̄w′ are denoted µi, i = 1, 2, 3, then

∫

S2

[

u∗(Σ̄w − Σ̄w′)u
]2

du

=

∫

S2

[

µ1u
2
1 + µ2u

2
2 + µ3u

2
3

]2
du

=

∫ π

0

∫ 2π

0

[

µ1 sin2 θ cos2 ϕ + µ2 sin2 θ sin2 ϕ + µ3 cos2 θ
]2

sin θ dϕ dθ

=
8π

15

∥

∥Σ̄w − Σ̄w′

∥

∥

2
.

The last equality sign represents elementary, but somewhat lengthy calculations. It
is used that µ1 + µ2 + µ3 = 0 since Σ̄w and Σ̄w′ are normalized tensors.
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Finally, we want to find the explicit expression for (17) in the case where the
tensors have exactly one positive eigenvalue. Because of the normalization, the
common eigenvalue of the tensors is λ = 3. Furthermore,

u∗Σ̄wu = λ(u∗uw1)
2, u∗Σ̄w′u = λ(u∗uw′1)

2.

We find
∫

S2

[

f̄w(u)− f̄w′(u)
]2

du = λ2

∫

S2

[

(u∗uw1)
2 − (u∗uw′1)

2
]2

du

= λ2
[

2

∫

S2

(u∗uw1)
4 du− 2

∫

S2

(u∗uw1)
2(u∗uw′1)

2 du
]

.

The two integrals can be evaluated, using polar coordinates. Without loss of gener-
ality, it can be assumed that uw1 = (0, 0, 1)∗, and we obtain the result (9).

Appendix B

The Rice distribution R(a, σ2) with parameters a, σ2 > 0 is the distribution of√
X2 + Y 2, where X and Y are independent random variables, and

X ∼ N(a cos φ, σ2), Y ∼ N(a sin φ, σ2).

If SNR = a/σ is large enough, then

− ln
√

X2 + Y 2

can be regarded as normally distributed. The parameters in the approximating
normal distribution can be found by linearizing the function

f(x, y) = − ln
√

x2 + y2

around f(a cos φ, a sin φ) = − ln a. We find

f(x, y) = − ln a− cos φ

a
(x− a cos φ)− sin φ

a
(x− a sin φ).

Therefore,

− ln
√

X2 + Y 2 ≈ N(− ln a,
σ2

a2
).

It follows that the distribution of Fw(u) is approximately

Fw(u) ≈ N

(

1

b
ln

a0

a
,
σ2

b2
(

1

a2
+

1

a2
0

)

)

.

Writing fw(u) = 1
b
ln a0

a
and SNR0 = a0

σ
, we get (13).
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