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Abstract

We determine the variance-optimal hedge when the logarithm of the underlying
price follows a process with stationary independent increments in discrete or con-
tinuous time. Although the general solution to this problem is known as backward
recursion or backward stochastic differential equation, we show that for this class
of processes the optimal endowment and strategy can be expressed more explicitly.
The corresponding formulas involve the moment resp. cumulant generating function
of the underlying process and a Laplace- or Fourier-type representation of the con-
tingent claim. An example illustrates that our formulas are fast and easy to evaluate
numerically.

1 Introduction

A basic problem in mathematical finance is how an option writer can hedge her risk by
trading only in the underlying. This question is well understood in frictionless complete
markets. It suffices to buy the replicating portfolio in order to completely offset the risk.
This elegant approach works well in the standard Black-Scholes or Cox-Ross-Rubinstein
setup, but not much beyond.

On the other hand, it has often been reported that real market data exhibits heavy tails
and volatility clustering. Two common ways to account for such phenomena are some sort
of stochastic volatility or jump processes or a combination of both. In this paper, we adopt
the second approach and assume that the logarithmic stock price follows a general process
with stationary, independent increments, either in discrete or continuous time. Processes
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2 Variance-optimal hedging for PIIS

of this type play by now an important role in the modelling of financial data (cf. Madan &
Seneta (1990), Eberlein & Keller (1995), Eberlein et al. (1998), Barndorff-Nielsen (1998)).

Since replicating portfolios typically do not exist in such incomplete markets, one has
to choose alternative criteria for reasonable hedging strategies. If you want to be as safe
as in the complete case, you should invest in a superhedging strategy (cf. e.g. El Karoui
& Quenez (1995)). In this case you may “suffer” profits but no losses at maturity of the
derivative, which is very agreeable. On the other hand, even for simple European call
options only trivial superhedging strategies exist in a number of reasonable market models
(“buy the stock”, cf. Eberlein & Jacod (1997), Frey & Sin (1999), Cvitanić et al. (1999)).

Alternatively, you may maximize some expected utility among all portfolios that differ
only in the underlying and have a fixed position in the contingent claim. Variations of
this approach have been investigated by Föllmer & Leukert (2000), Kallsen (1998, 1999),
Cvitanić et al. (2001), Delbaen et al. (2002).

In this paper, we follow a third popular suggestion, namely to minimize some form of
quadratic risk (cf. Föllmer & Sondermann (1986), Duffie & Richardson (1991), Schweizer
(1994), and Schweizer (2001) for an overview). This can be interpreted as a special case of
the second approach if we allow for quadratic utility functions.

Quadratic hedging comes about in two different flavours: local risk-minimization as in
Föllmer & Schweizer (1989), Schweizer (1991) and global risk-minimization (i.e. variance-
optimal hedging, mean-variance hedging) as in Duffie & Richardson (1991), Schweizer
(1994). Roughly speaking, one may say that locally optimal strategies are relatively easily
to compute but hard to interpret economically whereas the opposite is true for the globally
optimal hedge. This paper focuses on the second problem but as a by-product, we also
obtain the locally optimal Föllmer-Schweizer hedge. In discounted terms, the global prob-
lem can be stated as follows: If H denotes the payoff of the option and S the underlying’s
price process, try to minimize the squared L2-distance

E
(
(c + GT (ϑ)−H)2

)
(1.1)

over all initial endowments c ∈ R and all in some sense admissible trading strategies
ϑ. Here, GT (ϑ) =

∫ T

0
ϑtdSt (resp. GT (ϑ) =

∑T
n=1 ϑn∆Sn in discrete time) denotes the

cumulative gains from trade up to time T . The idea is obviously to approximate the claim
as closely as possible in an L2 sense. Even though one may argue that one should not
punish gains, the clarity and simplicity of this criterion is certainly appealing. Since it
is harder to explain, we do not discuss local risk-minimization here, but refer instead to
Schweizer (2001).

By way of duality, quadratic optimization problems are related to (generally signed)
martingale measures, namely the Föllmer-Schweizer or minimal martingale measure for
local and the variance-optimal martingale measure for global optimization. A similar du-
ality has been established and exploited in many recent papers on related problems of
utility maximization or portfolio optimization (cf. Foldes (1990, 1992), He and Pearson
(1991a,b), Karatzas et al. (1991), Cvitanić & Karatzas (1992), Pliska (1997), Kramkov
& Schachermayer (1999), Cvitanić et al. (2001), Schachermayer (2001), Kallsen (2000),
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Goll and Kallsen (2000, 2003)). Roughly speaking, the minimal martingale measure is the
martingale measure whose density can be written as 1 +

∫ T

0
ϑtdMt for some ϑ, where M

denotes the martingale part in the Doob-Meyer decomposition of S. The integrand ϑ can
be determined relatively easily in terms of the local behaviour of S, which may be given
by a stochastic differential equation or by one-step transition probabilities in discrete time.
By contrast, the variance-optimal martingale measure is characterized by a density of the
form c +

∫ T

0
ϑtdSt for some c ∈ R and some (generally different) integrand ϑ. Here, it is

usually much harder to determine ϑ. This holds with one notable exception, namely if
the so-called mean-variance tradeoff (MVT) process is deterministic, in which case both
measures coincide. More specifically, the integrands ϑ above tally because the difference∫ T

0
ϑtdSt−

∫ T

0
ϑtdMt is a constant and can be moved to c. In this case of deterministic MVT,

globally risk-minimizing hedging strategies can be computed from locally risk-minimizing
ones. The setup in this paper is among the few models of practical importance where the
condition of deterministic MVT naturally holds.

The process formed by conditional expectation of the option’s payoff under the minimal
resp. variance-optimal martingale measure can be interpreted as a derivative price process.
In jump-type models one has to be careful at this point because these measures are generally
signed and may lead to arbitrage. Therefore, we do not pursue this topic further although
this “price process” is implicitly calculated in the paper.

Even in the case of deterministic MVT, the actual computation of variance-optimal
hedging strategies involves the joint predictable covariation of the option’s “price process”
and the underlying stock. For general claims, it may not seem evident how to obtain this
covariation. It can be computed quite easily if the payoff is of exponential type ezXT ,
where X := log( S

S0
) denotes the process with stationary, independent increments driving

the stock price S. The reason is that the “price process” for such exponential payoffs
under the variance-optimal martingale measure is again the exponential of a process with
stationary independent increments, which leads to handy formulas for the corresponding
hedge. Since the optimality criterion in (1.1) is based on an L2-distance, the resulting
hedging strategy is linear in the option. This suggests to write an arbitrary claim as a linear
combination of exponential payoffs. Put differently, we work with the inverse Laplace (or
Fourier) transform of the option. This will be done in Section 2 for discrete-time and in
Section 3 for continuous-time processes, respectively. One could go even one step further
and generalize the results to arbitrary processes with independent increments for they still
share the important property of deterministic MVT. However, we chose not to do so in
order not to drown the arguments in technicalities and because this more general class
plays a minor role in applications. Since the first version of this paper circulated, the idea
to use Fourier or Laplace transforms with Lévy processes has been applied independently
in the framework of option pricing by Carr & Madan (1999) as well as Raible (2000) and,
very recently, in the context of quadratic hedging by Černý (2004).

Section 4 illustrates the application of the results. We compare the variance-optimal
hedge of a European call in a pure-jump Lévy process model to the Black-Scholes hedge as
a benchmark. Since the results in the subsequent sections rely heavily on bilateral Laplace
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transforms, the appendix contains a summary of important results in this context.
To keep the presentation and notation simple, we confine ourselves to one single under-

lying. Extensions to the multivariate case and to path-dependent claims will be provided
elsewhere. For unexplained notation we refer the reader to standard textbooks on stochas-
tic calculus as e.g. Protter (1992) or Jacod & Shiryaev (2003).

2 Discrete time
Let (Ω, F , (Fn)n∈{0,1,...,N}, P ) denote a filtered probability space and X = (Xn)n=0,1,...,N a
real-valued process with stationary, independent increments in the sense that

1. X is adapted to the filtration (Fn)n∈{0,1,...,N},

2. X0 = 0,

3. ∆Xn := Xn −Xn−1 has the same distribution for n = 1, . . . , N ,

4. ∆Xn is independent of Fn−1 for n = 1, . . . , N .

We consider a non-dividend paying stock whose discounted price process S is of the form

Sn = S0 exp(Xn)

with some constant S0 > 0. We assume that E(S2
1) = S2

0E(e2X1) < ∞, which implies
that the moment generating function m : z 7→ E(ezX1) is defined at least for z ∈ C with
0 ≤ Re(z) ≤ 2. Moreover, we exclude the degenerate case that S is deterministic. Put
differently, Var(eX1) = m(2)−m(1)2 does not vanish.

Our goal is to determine the variance-optimal hedge for a European-style contingent
claim on the stock expiring at N with discounted payoff H. Mathematically, H denotes
a square-integrable, FN -measurable random variable of the form H = f(SN) for some
function f : (0,∞) → R. More specifically, we assume that f is of the form

f(s) =

∫
szΠ(dz) (2.1)

for some finite complex measure Π on a strip {z ∈ C : R′ ≤ Re(z) ≤ R} where R′, R ∈ R
are chosen such that E(e2R′X1) < ∞ and E(e2RX1) < ∞. Typically we choose R′ = R, i.e.
Π is concentrated on the straight line R + iR.

Remark. Loosely speaking, the option’s payoff at maturity is written as a linear combi-
nation of powers of the underlying or exponentials of X. Put differently, its payoff function
is a kind of inverse Mellin or Laplace transform of the measure Π. To be more specific, let
us consider the case R′ = R. Denote by ` the inverse Laplace transform of Π in the sense
that `(x) =

∫ R+i∞
R−i∞ ezxΠ(dz) for x ∈ R. Then

H = f(SN) = f(exp(XN + log(S0))) = `(XN + log(S0)).
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Up to a factor eRx, the function ` is just the characteristic function of a measure on the
real line (namely the measure ν with Π(B) = ν(R+ iB) for Borel sets B ⊂ R). The reason
to consider R 6= 0 is simply that ` cannot be written as the characteristic function of a
finite measure for important claims as e.g. European calls.

The variance-optimal hedge minimizes the L2-distance between the option’s payoff and
the terminal value of the hedging portfolio. To be more specific, define the set Θ of
admissible strategies as the set of all predictable processes ϑ such that the cumulative
gains Gn(ϑ) :=

∑n
k=1 ϑk∆Sk are square-integrable for n = 1, . . . , N . We call ϕ ∈ Θ

variance-optimal hedging strategy and V0 ∈ R variance-optimal initial capital if c = V0 and
ϑ = ϕ minimize the expected squared hedging error

E
(
(c + GN(ϑ)−H)2

)
(2.2)

over all initial endowments c ∈ R and all admissible strategies ϑ ∈ Θ.
In our framework the variance-optimal hedge and its corresponding hedging error can

be determined quite explicitly:

Theorem 2.1 The variance-optimal initial capital V0 and the variance-optimal hedging
strategy ϕ are given by

V0 = H0 (2.3)

and the recursive expression

ϕn = ξn +
λ

Sn−1

(Hn−1 − V0 −Gn−1(ϕ)) , (2.4)

where the processes (Hn), (ξn) and the constant λ are defined by

g(z) :=
m(z + 1)−m(1)m(z)

m(2)−m(1)2
,

h(z) := m(z)− (m(1)− 1)g(z),

λ :=
m(1)− 1

m(2)− 2m(1) + 1
, (2.5)

Hn :=

∫
Sz

nh(z)N−nΠ(dz),

ξn :=

∫
Sz−1

n−1g(z)h(z)N−nΠ(dz).

The optimal hedge V0, ϕ is unique up to a null set.

Remark. One may also consider a similar problem where the initial endowment c = V0 is
fixed and the mean squared difference in (2.2) is minimized only over the strategies ϑ ∈ Θ.
This risk-minimizing hedging strategy for given V0 is determined as in Theorem 2.1 but
now V0 in (2.4) denotes the given initial capital instead of the solution to (2.3).
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Theorem 2.2 The variance of the hedging error E((V0 + GN(ϕ) −H)2) in Theorem 2.1
equals

J0 :=

∫ ∫
J0(y, z)Π(dy)Π(dz),

where
a(y, z) := h(y)h(z)

m(2)−m(1)2

m(2)− 2m(1) + 1
,

b(y, z) := m(y + z)−
(
m(2)m(y)m(z)−m(1)m(y + 1)m(z)

−m(1)m(y)m(z + 1) + m(y + 1)m(z + 1)
) (

m(2)−m(1)2
)−1

,

J0(y, z) :=


Sy+z

0 b(y, z)
a(y, z)N −m(y + z)N

a(y, z)−m(y + z)
if a(y, z) 6= m(y + z)

Sy+z
0 b(y, z)Nm(y + z)N−1 if a(y, z) = m(y + z).

The proofs of Theorems 2.1 and 2.2 are to be found at the end of this subsection.

The basic example is of course the European call option H = (SN −K)+. Its integral
representation (2.1) is provided by the following

Lemma 2.3 Let K > 0. For arbitrary R > 1, s > 0, we have

(s−K)+ =
1

2πi

∫ R+i∞

R−i∞
sz K1−z

z(z − 1)
dz.

Proof. For Re(z) > 1 we have∫ ∞

−∞
(ex −K)+e−zxdx =

K1−z

z(z − 1)
.

The assertion follows now from Theorem A.3. �

The representation of some other payoffs can be found in the appendix.

Remark.

1. Using 1
z(z−1)

= 1
z−1

− 1
z

and substituting z−1 for z we can write the variance-optimal
initial capital for the European call option as

V0 = S0Ψ
(1)

(
log

(
S0

K

))
−KΨ(0)

(
log

(
S0

K

))
with

Ψ(j)(x) :=
1

2πi

∫ R−j+i∞

R−j−i∞
h(z + j)N ezx

z
dz.



Variance-optimal hedging for PIIS 7

This resembles the pricing formulas for European calls in the Black-Scholes and the
Cox-Ross-Rubinstein model. But note that Ψ(j)(x) may not be a distribution function
in general.

2. For the application of Lemma 2.3 we need slightly more than second moments of X1

and hence SN . This seems counter-intuitive because the payoff grows only linearly in
SN . It is in fact possible to derive the optimal hedge in the case where only second
moments exist. The idea is to consider the difference of the call and the stock (cf.
(A.3)). Since the stock itself corresponds to the unit mass Π = ε1, one immediately
obtains an integral representation (2.1) of the call in the strip 0 ≤ Re(z) ≤ 1.

The remainder of this subsection is devoted to the proofs of Theorems 2.1 and 2.2. As it
has been noted by Schweizer (1995), the variance-optimal hedge can be obtained from the
option’s Föllmer-Schweizer decomposition if the so-called mean-variance tradeoff process
of the option is deterministic. The latter is defined as

Kn :=
n∑

k=1

(E(∆Sk|Fk−1))
2

Var(∆Sk|Fk−1)
=

(m(1)− 1)2

m(2)−m(1)2
n.

The Föllmer-Schweizer decomposition plays a key role in the determination of locally risk-
minimizing strategies in the sense of Föllmer & Schweizer (1989), Schweizer (1991) and it
is defined as follows.

Definition 2.4 Denote by S = S0+M +A the Doob decomposition of S into a martingale
M and a predictable process A. The sum H = H0 +

∑N
n=1 ξn∆Sn + LN is called Föllmer-

Schweizer decomposition of H ∈ L2(P ) if H0 is F0-measurable, ξ ∈ Θ, and L is a square-
integrable martingale with L0 = 0 that is orthogonal to M (in the sense that LM is a
martingale). We will use this notion as well if H, H0, ξ, L are complex-valued.

In discrete time any square-integrable random variable admits such a decomposition,
which can be found by a backward recursion (cf. Schweizer (1995), Proposition 2.6). How-
ever, since this method does not yield a closed-form solution in our framework, we do not
use these results. Instead we proceed in two steps. Firstly, we determine the Föllmer-
Schweizer decomposition for options whose payoff is of power type. Secondly, we consider
claims which are linear combinations of such options in the sense of (2.1). Here, we rely
on the linearity of the Föllmer-Schweizer decomposition in the claim.

Lemma 2.5 Let z ∈ C with Sz
1 ∈ L2(P ). Then H(z) = Sz

N admits a Föllmer-Schweizer
decomposition H(z) = H(z)0 +

∑N
n=1 ξ(z)n∆Sn + L(z)N , where

H(z)n = h(z)N−nSz
n,

ξ(z)n = g(z)h(z)N−nSz−1
n−1,

L(z)n = H(z)n −H(z)0 −
n∑

k=1

ξ(z)k∆Sk, (2.6)

and g(z), h(z) are defined in Theorem 2.1.
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Proof. The statement could be derived from Proposition 2.6 and Lemma 2.7 of Schweizer
(1995) but it is easier to prove it directly.

Since Sz
1 is square-integrable, all the involved expressions are well defined. From (2.6)

it follows that

∆L(z)n = Sz
n−1h(z)N−n

(
ez∆Xn − h(z)− g(z)(e∆Xn − 1)

)
. (2.7)

Since

E
(
ez∆Xn − h(z)− g(z)(e∆Xn − 1)

)
= m(z)− h(z)− g(z)(m(1)− 1) = 0, (2.8)

this implies that E(∆L(z)n|Fn−1) = 0 and hence L(z) is a martingale.
The Doob decomposition S = S0 + M + A of S satisfies

∆An = E(∆Sn|Fn−1) = Sn−1(m(1)− 1) (2.9)

and hence ∆Mn = Sn−1

(
e∆Xn −m(1)

)
. In view of (2.7) we obtain

∆Mn∆L(z)n = Sz+1
n−1h(z)N−n

(
e∆Xn −m(1)

) (
ez∆Xn − h(z)− g(z)(e∆Xn − 1)

)
.

From

E
(
e∆Xn(ez∆Xn − h(z)− g(z)(e∆Xn − 1))

)
= m(z + 1)− h(z)m(1)− g(z)m(2) + g(z)m(1)

= 0

and (2.8) it follows that E(∆Mn∆L(z)n|Fn−1) = 0 and hence ML(z) is a martingale as
well. �

Proposition 2.6 Any contingent claim H = f(SN) as in the beginning of this subsection
admits a Föllmer-Schweizer decomposition H = H0+

∑N
n=1 ξn∆Sn+LN . Using the notation

of the previous lemma, it is given by

Hn =

∫
H(z)nΠ(dz),

ξn =

∫
ξ(z)nΠ(dz),

Ln =

∫
L(z)nΠ(dz) = Hn −H0 −

n∑
k=1

ξk∆Sk.

Moreover, the processes (Hn), (ξn), (Ln) are real-valued.

Proof. Firstly, note that
∫

E(|∆L(z)n|2)|Π|(dz) < ∞, where |Π| denotes the total vari-
ation measure of Π in the sense of Rudin (1987), Section 6.1. From Fubini’s theorem we
conclude that

E(∆Ln1B) = E

(∫
∆L(z)nΠ(dz)1B

)
=

∫
E(∆L(z)n1B)Π(dz) = 0
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for any B ∈ Fn−1. Hence L is a martingale. Similarly, it is shown that ML is a martingale
as well. The assertion concerning the decomposition follows from Lemma 2.5.

Since H and Sn are real-valued, we have

0 = (H0 −H0) +
N∑

n=1

(ξn − ξn)∆Sn + (LN − LN),

which implies that 0 = Im(H0) +
∑N

n=1 Im(ξn)∆Sn + Im(LN). Since the Föllmer-Schweizer
decomposition of 0 is unique (cf. Monat & Stricker (1995), Theorem 3.4), we have that
H0, ξn, Ln are real-valued for n = 1, . . . , N . �

Finally, we apply the preceding results to determine the variance-optimal hedge.

Proof of Theorem 2.1. As it is observed by Schäl (1994), Proposition 5.5, the process
S has deterministic mean-variance tradeoff. From Proposition 2.6 and Schweizer (1995),
Theorem 4.4 it follows that the variance-optimal hedging strategy ϕ satisfies

ϕn = ξn + λn(Hn−1 −H0 −Gn−1(ϕ)),

with
λn :=

∆An

E(∆S2
n|Fn−1)

=
λ

Sn−1

(cf. (2.9)). Moreover, the variance-optimal initial capital equals V0.
For the uniqueness statement suppose that Ṽ0 ∈ R, ϕ̃ ∈ Θ lead to a variance-optimal

hedge as well. Define V̂0 := 1
2
(V0 + Ṽ0) and ϕ̂ := 1

2
(ϕ + ϕ̃) ∈ Θ. It is easy to verify that

E
(
(V̂0 + GN(ϕ̂)−H)2

)
< 1

2
E
(
(V0 + GN(ϕ)−H)2

)
+ 1

2
E
(
(Ṽ0 + GN(ϕ̃)−H)2

)
if V0 + GN(ϕ) and Ṽ0 + GN(ϕ̃) do not coincide almost surely. Hence

V0 − Ṽ0 + GN(ϕ− ϕ̃) = 0.

In particular, GN(ϕ− ϕ̃) is FN−1-measurable. We obtain

0 = Var(GN(ϕ− ϕ̃)|FN−1)

= Var((ϕ− ϕ̃)N∆SN |FN−1)

= ((ϕ− ϕ̃)NSN−1)
2(m(2)−m(1)2),

which implies that (ϕ−ϕ̃)N = 0 almost surely. By induction, we conclude that (ϕ−ϕ̃)n = 0

for n = N − 1, . . . , 1 and hence also V0 = Ṽ0.
The remark following Theorem 2.1 follows from Schweizer (1995), Proposition 4.3. �
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Proof of Theorem 2.2. According to Schweizer (1995), Theorem 4.4, the variance of
the hedging error equals

N∑
n=1

E
(
(∆Ln)2

) N∏
k=n+1

(1− λk∆Ak) (2.10)

with λk = λ
Sk−1

and ∆Ak as in (2.9). Since ∆Ln =
∫

∆L(z)nΠ(dz), we have that

(∆Ln)2 =

∫ ∫
∆L(y)n∆L(z)nΠ(dy)Π(dz)

and hence
E
(
(∆Ln)2

)
=

∫ ∫
E (∆L(y)n∆L(z)n) Π(dy)Π(dz) (2.11)

by Fubini’s theorem. Equation (2.7) implies

∆L(y)n∆L(z)n = Sy+z
n−1h(y)N−nh(z)N−n

(
ey∆Xn − h(y)− g(y)(e∆Xn − 1)

)
×
(
ez∆Xn − h(z)− g(z)(e∆Xn − 1)

)
.

Since E(Sy+z
n−1) = Sy+z

0 m(y + z)n−1 etc., we have

E (∆L(y)n∆L(z)n) = Sy+z
0 (h(y)h(z))N−nm(y + z)n−1b(y, z)

with

b(y, z) = m(y + z)−m(y)(h(z)− g(z))−m(y + 1)g(z)

− (h(y)− g(y))(m(z)− h(z) + g(z)− g(z)m(1))

− g(y)
(
m(z + 1)−m(1)(h(z)− g(z))− g(z)m(2)

)
.

This expression coincides actually with b(y, z) in the statement of the theorem. Conse-
quently, we have shown

N∑
n=1

E (∆L(y)n∆L(z)n)
N∏

k=n+1

(1− λk∆Ak)

= Sy+z
0 b(y, z)a(y, z)N−1

N∑
n=1

(
m(y + z)

a(y, z)

)n−1

= Sy+z
0 b(y, z)

a(y, z)N −m(y + z)N

a(y, z)−m(y + z)

unless the denominator vanishes in the last equation. In view of (2.10) and (2.11), we are
done. �
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Let us briefly discuss the structure of the variance-optimal hedge. The process ξ in the
Föllmer-Schweizer decomposition coincides with the locally risk-minimizing strategy. The
process Hn = H0 +

∑n
k=1 ξk∆Sk + Ln appearing on the right-hand side of the Föllmer-

Schweizer decomposition may be interpreted as a “price process” of the option. However,
since this process may generate arbitrage, one should be careful with this interpretation.
But note that the difference between the locally and globally optimal hedging strategy in
(2.4) is proportionate to the difference between this “option price” Hn−1 and the investor’s
current wealth.

3 Continuous time

We turn now to the continuous-time counterpart of the previous section. Similarly as
before, (Ω, F , (Ft)t∈[0,T ], P ) denotes a filtered probability space and X = (Xt)t∈[0,T ] a real-
valued process with stationary, independent increments (PIIS, Lévy process) in the sense
that

1. X is adapted to the filtration (Ft)t∈[0,T ] and has càdlàg paths,

2. X0 = 0,

3. the distribution of Xt −Xu depends only on t− u for 0 ≤ u ≤ t ≤ T ,

4. Xt −Xu is independent of Fu for 0 ≤ u ≤ t ≤ T .

As in the discrete-time case, the distribution of the whole process X is determined by the
law of X1. The latter is an infinitely divisible distribution which can be expressed in terms
of its Lévy-Khinchine representation. Alternatively, one may characterize it by its cumulant
generating function, i.e. by the continuous mapping κ : D → C with E(ezXt) = etκ(z) for
z ∈ D := {z ∈ C : E(eRe(z)X1) < ∞} and t ∈ R+. For details on Lévy processes and
unexplained notation we refer the reader to Protter (1992), Sato (1999), and Jacod &
Shiryaev (2003).

The discounted price process S of the non-dividend paying stock under consideration
is supposed to be of the form

St = S0 exp(Xt)

with some constant S0 > 0. Again, we assume that E(S2
1) = S2

0E(e2X1) < ∞, which means
that z ∈ D for any complex number z with 0 ≤ Re(z) ≤ 2. Moreover, we exclude the
degenerate case that S is deterministic, i.e. we have κ(2)− 2κ(1) 6= 0.

As in Section 2 we consider an option with discounted payoff H = f(ST ) where f is
given in terms of a finite complex measure Π (cf. (2.1)). The choice of the set of admissible
trading strategies is a delicate point in continuous time. Following Schweizer (1994), Section
1, we choose the set

Θ :=

{
ϑ ∈ L(S) :

∫ ·

0

ϑtdSt ∈ H 2

}
,
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which is well suited for quadratic optimization problems. Here, the space H 2 of semi-
martingales is defined as follows:

Definition 3.1 For any real- or complex-valued special semimartingale Y with canonical
decomposition Y = Y0 + N + B, we define

‖Y ‖H 2 := ‖Y0‖2 +
∥∥∥√[N, N ]T

∥∥∥
2
+ ‖var(B)T‖2,

where var(B) denotes the variation process of B and ‖ · ‖2 the L2-norm. By H 2 we denote
the set of all real- or complex-valued special semimartingales Y with ‖Y ‖H 2 < ∞.

In our setup, this set can be expressed more easily as follows:

Lemma 3.2

Θ =

{
ϑ predictable process: E

(∫ T

0

|ϑt|2S2
t−dt

)
< ∞

}
Proof. From Lemma 3.6 below we conclude that At = κ(1)

∫ t

0
Su−du and

〈M, M〉t = (κ(2)− 2κ(1))

∫ t

0

S2
u−du (3.1)

for the canonical decomposition S = S0 + M + A of the special semimartingale S. Hence
we have

At =

∫ t

0

λud〈M, M〉u (3.2)

with λu := λ
Su−

and λ := κ(1)
κ(2)−2κ(1)

. Therefore, the mean-variance tradeoff process

Kt =

∫ t

0

λ2
ud〈M, M〉u =

κ(1)2

κ(2)− 2κ(1)
t

in the sense of Schweizer (1994), Section 1 is deterministic and bounded. According to
Schweizer (1994), Lemma 2, we have that ϑ ∈ Θ holds if and only if ϑ is predictable and
E(
∫ T

0
|ϑt|2d〈M, M〉t) < ∞. Since∫ T

0

|ϑt|2d〈M, M〉t = (κ(2)− 2κ(1))

∫ T

0

|ϑt|2S2
t−dt,

the assertion follows. �

If we denote by Gt(ϑ) :=
∫ t

0
ϑudSu the cumulative gains process of ϑ ∈ Θ, then the

variance-optimal initial capital and variance-optimal hedging strategy can be defined as in
the previous section (with T instead of N).

The following characterizations of the variance-optimal hedge and its expected squared
error correspond to Theorems 2.1 and 2.2. They are proved at the end of this subsection.
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Theorem 3.3 The variance-optimal initial capital V0 and the variance-optimal hedging
strategy ϕ are given by

V0 = H0

and the expression

ϕt = ξt +
λ

St−
(Ht− − V0 −Gt−(ϕ)), (3.3)

where the processes (Ht), (ξt) and the constant λ are defined by

γ(z) :=
κ(z + 1)− κ(z)− κ(1)

κ(2)− 2κ(1)
,

η(z) := κ(z)− κ(1)γ(z),

λ :=
κ(1)

κ(2)− 2κ(1)
, (3.4)

Ht :=

∫
Sz

t e
η(z)(T−t)Π(dz),

ξt :=

∫
Sz−1

t− γ(z)eη(z)(T−t)Π(dz).

The optimal initial capital is unique. The optimal hedging strategy ϕt(ω) is unique up to
some (P (dω)⊗ dt)-null set.

The remark following Theorem 2.1 on risk-minimizing hedging for fixed initial endowment
V0 applies in continuous time as well.

Theorem 3.4 The variance of the hedging error E((V0 + GT (ϕ) − H)2) in Theorem 3.3
equals

J0 :=

∫ ∫
J0(y, z)Π(dy)Π(dz),

where

α(y, z) := η(y) + η(z)− κ(1)2

κ(2)− 2κ(1)
,

β(y, z) := κ(y + z)− κ(y)− κ(z)

− (κ(y + 1)− κ(y)− κ(1))(κ(z + 1)− κ(z)− κ(1))

κ(2)− 2κ(1)
,

J0(y, z) :=


Sy+z

0 β(y, z)
eα(y,z)T − eκ(y+z)T

α(y, z)− κ(y + z)
if α(y, z) 6= κ(y + z),

Sy+z
0 β(y, z)Teκ(y+z)T if α(y, z) = κ(y + z).
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Remark. If (µ, σ2, ν) denotes the Lévy-Khinchine triplet of X (relative to the truncation
function x 7→ x1{|x|≤1}), then we have

κ(z) = µz +
σ2

2
z2 +

∫ (
ezx − 1− zx1{|x|≤1}

)
ν(dx)

for z ∈ D (cf. Sato (1999), Theorem 25.17). In particular, we have κ(z) = µz + σ2

2
z2 for

Brownian motion. Note that

Φ

(
x− µ

σ

)
=

1

2πi

∫ R+i∞

R−i∞

e(x−µ)z+σ2

2
z2

z
dz

for any R > 0, where Φ denotes the cumulative distribution function of N(0, 1). Using
the same decomposition and substitution as in the remark following Lemma 2.3, one easily
shows that V0 and ϕ in Theorem 3.3 coincide with the Black-Scholes price and the repli-
cating strategy in the case of a European call H and Brownian motion X. This does not
come at a surprise because perfect hedging is clearly variance-optimal.

The hedging strategy ϕ in Theorem 3.3 is given in feedback form, i.e. it is only known
in terms of its own gains from trade up to time t. From a practical point of view, these
gains are obviously known to the trader. However, they cannot be computed recursively as
in the discrete-time case. Therefore, one may prefer an explicit expression for Gt(ϕ) from
a mathematical point of view. It is provided by the following

Theorem 3.5 Suppose that P (∆Xt = log(1 + 1/λ) for some t ∈ (0, T ]) = 0. Then the
gains process of the variance-optimal hedging strategy ϕ in Theorem 3.3 is of the form

Gt(ϕ) = E (−λX̃)t

(∫ t

0

ξuSu− − λ(Hu− − V0)

E (−λX̃)u−
dYu

)
,

where the processes X̃, Y are defined as

X̃t := L (S)t :=

∫ t

0

1

Su−
dSu, (3.5)

Yt := X̃t +

∫ t

0

λ

1− λ∆X̃u

d[X̃, X̃]u.

Remark. The condition on X is equivalent to assuming that the Lévy measure of X puts
no mass on log(1 + 1/λ). This holds for any model of practical importance. Moreover,
observe that X̃, Y are both Lévy processes (cf. Kallsen & Shiryaev (2002), Lemma 2.7 and
straightforward calculations). Recall that the stochastic exponential E (U) of a real-valued
Lévy process or any other semimartingale U can be written explicitly as

E (U) = exp
(
Ut −

1

2
[U,U ]t

)∏
u≤t

(1 + ∆Uu) exp
(
−∆Uu +

1

2
(∆Uu)

2
)
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(cf. Protter (1992), Theorem II.36).

The remainder of this section is devoted to the proof of Theorems 3.3–3.5. The approach
parallels the one in the previous section. As before, we determine the Föllmer-Schweizer
decomposition of the claim and apply results that relate this decomposition to the variance-
optimal hedge.

Lemma 3.6 Let z ∈ C with Sz
T ∈ L2(P ). Then Sz is a special semimartingale whose

canonical decomposition Sz
t = Sz

0 + M(z)t + A(z)t satisfies

A(z)t = κ(z)

∫ t

0

Sz
u−du (3.6)

and

〈M(z), M〉t = (κ(z + 1)− κ(z)− κ(1))

∫ t

0

Sz+1
u− du, (3.7)

where M = M(1) corresponds to z = 1 as in the proof of Lemma 3.2.

Proof. Note that almost by definition of the cumulant generating function, N(z)t :=
e−κ(z)tSz

t is a martingale. Integration by parts yields Sz
t = eκ(z)tN(z)t = Sz

0 +M(z)t +A(z)t

with M(z)t =
∫ t

0
eκ(z)sdN(z)u and A(z) as claimed. Moreover, we have

[M(z), M ]t = [Sz, S]t

= Sz+1
t − Sz+1

0 −
∫ t

0

Sz
u−dSu −

∫ t

0

Su−dSz
u

= M(z + 1)t −
∫ t

0

Sz
u−dMu −

∫ t

0

Su−dM(z)u + (κ(z + 1)− κ(z)− κ(1))

∫ t

0

Sz+1
u− du.

Note that the first three terms on the right-hand side are local martingales. Since 〈M(z), M〉
is the predictable part of finite variation of the special semimartingale [M(z), M ], Equation
(3.7) follows. �

Definition 3.7 Denote by S = S0 + M + A the canonical special semimartingale decom-
position of S into a local martingale M and a predictable process of finite variation A. The
sum H = H0 +

∫ T

0
ξtdSt + LT is called Föllmer-Schweizer decomposition of H ∈ L2(P ) if

H0 is F0-measurable, ξ ∈ Θ, and L is a square-integrable martingale with L0 = 0 that is
orthogonal to M (in the sense that LM is a local martingale). We will use this notion as
well if H, H0, ξ, L are complex-valued.

The existence of a Föllmer-Schweizer decomposition was established in Schweizer (1994),
Theorem 15 in our case of bounded mean-variance tradeoff. It can be expressed in terms
of a backward stochastic differential equation. Since the latter may be hard to solve, we
do not use this result. Instead, we prove directly that the continuous-time limit of the
expressions in Section 2 leads to a Föllmer-Schweizer decomposition.
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Lemma 3.8 Let z ∈ C with Sz
T ∈ L2(P ). Then H(z) = Sz

T admits a Föllmer-Schweizer
decomposition H(z) = H(z)0 +

∫ T

0
ξ(z)tdSt + L(z)T , where

H(z)t := eη(z)(T−t)Sz
t ,

ξ(z)t := γ(z)eη(z)(T−t)Sz−1
t− ,

L(z)t := H(z)t −H(z)0 −
∫ t

0

ξ(z)udSu, (3.8)

and γ(z), η(z) are defined in Theorem 3.3. Moreover, M is a square-integrable martingale
and hence L(z)M is a martingale.

Proof.
Partial integration and (3.6) yield

H(z)t = H(z)0 +

∫ t

0

eη(z)(T−s)dM(z)u + (κ(z)− η(z))

∫ t

0

eη(z)(T−s)Sz
u−du

and ∫ t

0

ξ(z)udSu =

∫ t

0

ξ(z)udMu + κ(1)γ(z)

∫ t

0

eη(z)(T−s)Sz
u−du.

Since κ(z) − η(z) − κ(1)γ(z) = 0, the predictable part of finite variation in the special
semimartingale decomposition of L(z) vanishes and we have

L(z)t =

∫ t

0

eη(z)(T−s)dM(z)u −
∫ t

0

ξ(z)udMu, (3.9)

which implies that L(z) is a local martingale.
From (3.7) for z and 1 instead of z it follows that

〈L(z), M〉t =

∫ t

0

eη(z)(T−s)d〈M(z), M〉u −
∫ t

0

ξ(z)ud〈M, M〉u

=
(
κ(z + 1)− κ(z)− κ(1)− γ(z)(κ(2)− 2κ(1))

)∫ t

0

eη(z)(T−s)Sz+1
u− du

= 0.

Consequently, L(z)M is a local martingale as well.
Similar calculations yield

〈L(z), L(z)〉t = 〈L(z), L(z)〉t

=

(
κ(2Re(z))− 2Re(κ(z))− |κ(z + 1)− κ(z)− κ(1)|2

κ(2)− 2κ(1)

)
×
∫ t

0

e2Re(η(z))(T−s)S
2Re(z)
u− du (3.10)
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and ∫ T

0

|ξ(z)t|2S2
t−dt =

∣∣∣∣κ(z + 1)− κ(z)− κ(1)

κ(2)− 2κ(1)

∣∣∣∣2 ∫ T

0

e2Re(η(z))(T−t)S
2Re(z)
t− dt. (3.11)

Since

E(S
2Re(z)
t− ) = E(S

2Re(z)
t ) = S

2Re(z)
0 etκ(2Re(z)) ≤ S

2Re(z)
0

(
1 ∨ eTκ(2Re(z))

)
< ∞, (3.12)

it follows that E(〈L(z), L(z)〉T ) < ∞. Therefore L is a square-integrable martingale.
Similarly, (3.11) and (3.12) yield that ξ ∈ Θ. Equations (3.7) and (3.12) for 1 instead

of z imply that M is a square-integrable martingale. �

Lemma 3.9 There exist constants c1, . . . , c5 ≥ 0 such that

Re(η(z)) ≤ c1 (3.13)

0 ≤ κ(2Re(z))− 2Re(κ(z))− |κ(z + 1)− κ(z)− κ(1)|2

κ(2)− 2κ(1)
≤ −c2Re(η(z)) + c3 (3.14)

|γ(z)|2 ≤ −c4Re(η(z)) + c5

for any z ∈ C with R′ ≤ Re(z) ≤ R, where γ, η are defined as in Theorem 3.3.

Proof. Since κ is continuous, there is a constant c6 ≥ 0 such that

|κ(2Re(z))| ≤ 2c6 (3.15)

for any z with R′ ≤ Re(z) ≤ R. Since 〈L(z), L(z)〉 is increasing, (3.10) yields

κ(2Re(z))− 2Re(κ(z))− |κ(z + 1)− κ(z)− κ(1)|2

κ(2)− 2κ(1)
≥ 0.

In particular
Re(κ(z)) ≤ 1

2
κ(2Re(z)) ≤ c6

and
|κ(z + 1)− κ(z)− κ(1)|2

κ(2)− 2κ(1)
≤ 2c6 − 2Re(κ(z)), (3.16)

which implies

|κ(1)γ(z)|2 ≤ c7 − c8Re(κ(z)) ≤ c2
9 + 1

4
(Re(κ(z)))2 ≤

(∣∣1
2
Re(κ(z))

∣∣+ c9

)2
for some c7, c8 ≥ 0 and c9 :=

√
c7 + 4c2

8. This yields

Re(η(z)) = Re(κ(z))− Re(κ(1)γ(z))

≤ Re(κ(z)) + |κ(1)γ(z)|
≤ c10 + 1

2
Re(κ(z)) (3.17)

≤ c9 + 2c6 =: c1
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with c10 := c9 + 3
2
c6. Inequality (3.16) also yields

|γ(z)|2 ≤ c11 −
c4

2
Re(κ(z))

for some c11, c4 ≥ 0, which, together with (3.17), leads to

|γ(z)|2 ≤ c11 − c4(Re(η(z))− c10) = c5 − c4Re(η(z))

with c5 := c11 + c4c10. Finally, the second inequality in (3.14) follows from (3.15), (3.17),
and κ(2)− 2κ(1) ≥ 0. �

Proposition 3.10 Any contingent claim H = f(ST ) as in the beginning of this subsection
admits a Föllmer-Schweizer decomposition H = H0 +

∫ T

0
ξtdSt + LT . Using the notation

of Lemma 3.8, it is given by

Ht =

∫
H(z)tΠ(dz), (3.18)

ξt =

∫
ξ(z)tΠ(dz),

Lt =

∫
L(z)tΠ(dz) = Ht −H0 −

∫ t

0

ξudSu.

Moreover, the processes (Ht), (ξt), (Lt) are real-valued.

Proof. Let z ∈ C with R′ ≤ Re(z) ≤ R. Since |H(z)t|2 = e2Re(η(z))(T−t)S
2Re(z)
t , we have

that E(|H(z)t|2) is bounded by some constant which depends only on R,R′ (cf. (3.12) and
(3.13)). It follows that Ht is a well-defined square-integrable random variable. Similarly,
(3.10), (3.12), and Lemma 3.9 yield after straightforward calculations that

E
(
|L(z)t|2

)
= E

(
〈L(z), L(z)〉t

)
≤ E

(
〈L(z), L(z)〉T

)
is bounded as well by such a constant. Therefore, Lt is a well-defined square-integrable
random variable as well. Finally, (3.11) and Lemma 3.9 yield that E(|ξ(z)tSt−|2) and
also E(

∫ T

0
|ξ(z)u|2S2

u−du) are bounded by some constant which depends only on t, R,R′.
Therefore ξ is well defined and ξ ∈ Θ by Lemma 3.2. The same Fubini-type argument
as in discrete time shows that E((Lt − Lu)1B) = 0 and E((MtLt − MuLu)1B) = 0 for
u ≤ t , B ∈ Fu (cf. Proposition 2.6). Hence L is a square-integrable martingale which is
orthogonal to M . To be precise, we interpret L as the up to indistinguishability unique
modification whose paths are almost surely càdlàg (cf. Protter (1992), Corollary I.1). By
Fubini’s theorem for stochastic integrals (cf. Protter (1992), Theorem IV.46), we have∫ ∫ t

0

ξ(z)udSuΠ(dz) =

∫ t

0

∫
ξ(z)uΠ(dz)dSu =

∫ t

0

ξudSu.
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Together with (3.18) and (3.8) it follows that H0, ξ, L do indeed provide a Föllmer-Schweizer
decomposition of H. As in the proof of Proposition 2.6, the uniqueness of the real-valued
Föllmer-Schweizer decomposition yields that the processes (Ht), (ξt), (Lt) are real-valued.

�

Proof of Theorem 3.3. According to the proof of Lemma 3.2, the mean-variance
tradeoff process of S in the sense of Schweizer (1995), Section 1 equals

Kt =
κ(1)2

κ(2)− 2κ(1)
t =

∫ t

0

λ

Su−
dAu.

In view of Proposition 3.10, the optimality follows from Theorem 3 and Corollary 10 of
Schweizer (1994).

As in the proof of Theorem 2.1 it follows that V0 = Ṽ0 and GT (ϕ) = GT (ϕ̃) if Ṽ0, ϕ̃ de-
note another variance-optimal hedge. Observe that the local martingale Nt := −

∫ t

0
λudMu

satisfies 〈N, N〉T =
∫ T

0
λ2

ud〈M, M〉u = KT where λu is defined as in the proof of Lemma
3.2. From Choulli et al. (1998), Propositions 3.7, 3.9(ii) and the remark after Definition
5.4, it follows that G(ϕ− ϕ̃) is a E (N)-martingale in the sense of that paper. By Propo-
sition 3.12(i) in the same paper, it is determined by its terminal value GT (ϕ− ϕ̃) = 0, i.e.
Gt(ϕ− ϕ̃) = 0 for any t ∈ [0, T ]. Hence

0 = E ([G(ϕ− ϕ̃), G(ϕ− ϕ̃)]T )

= E

(∫ T

0

(ϕ− ϕ̃)2
t d[S, S]t

)
= E

(∫ T

0

(ϕ− ϕ̃)2
t d[M, M ]t

)
= E

(∫ T

0

(ϕ− ϕ̃)2
t d〈M, M〉t

)
= (κ(2)− 2κ(1))E

(∫ T

0

(ϕ− ϕ̃)2
t

S2
t−

dt

)
.

This implies that ϕt(ω) = ϕ̃t(ω) outside some (P (dω)⊗ dt)-null set. �

Proof of Theorem 3.4. Similarly as in Lemma 3.6, it is shown that

〈M(y), M(z)〉t = (κ(y + z)− κ(y)− κ(z))

∫ t

0

Sy+z
u− du.
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From (3.9), 〈L(y), M〉 = 0, and (3.7) it follows that

〈L(y), L(z)〉t =

∫ t

0

e(η(y)+η(z))(T−s)d〈M(y), M(z)〉u

−
∫ t

0

γ(z)e(η(y)+η(z))(T−s)Sz−1
u− d〈M(y), M〉u

= β(y, z)

∫ t

0

e(η(y)+η(z))(T−s)Sy+z
u− du. (3.19)

Consequently, ∫ T

0

e−(KT−Kt)d〈L(y), L(z)〉t = β(y, z)

∫ T

0

Sy+z
t− eα(y,z)(T−t)dt, (3.20)

where K denotes the mean-variance tradeoff process as in the proof of Lemma 3.2. Since
E(Sy+z

t− ) = Sy+z
0 eκ(y+z)t, an application of Fubini’s theorem yields

E

(∫ T

0

e−(KT−Kt)d〈L(y), L(z)〉t
)

= Sy+z
0 β(y, z)

∫ T

0

eκ(y+z)t+α(y,z)(T−t)dt,

which equals J0(y, z).
Observe that

Re〈L(y), L(z)〉 =
1

2

(〈
L(y) + L(z), L(y) + L(z)

〉
−
〈
L(y), L(y)

〉
−
〈
L(z), L(z)

〉)
and 〈

L(y) + L(z), L(y) + L(z)
〉

≤
〈
L(y) + L(z), L(y) + L(z)

〉
+
〈
L(y)− L(z), L(y)− L(z)

〉
= 2
〈
L(y), L(y)

〉
+ 2
〈
L(z), L(z)

〉
.

In the proof of Proposition 3.10 we noted that E(〈L(z), L(z)〉T ) and hence also the expected
total variation of Re(〈L(y), L(z)〉t) is bounded by some constant which depends only on
R,R′. By replacing L(z) with iL(z), it follows analogously that the total variation of
Im(〈L(y), L(z)〉t) is bounded by a similar constant. Therefore∫ ∫

〈L(y), L(z)〉tΠ(dy)Π(dz)

is a well-defined continuous, predictable, complex-valued process of finite variation. Since

L2
t =

∫ ∫
L(y)tL(z)tΠ(dy)Π(dz),
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an application of Fubini’s theorem yields that

L2
t −

∫ ∫
〈L(y), L(z)〉tΠ(dy)Π(dz)

is a martingale. This implies

〈L, L〉t =

∫ ∫
〈L(y), L(z)〉tΠ(dy)Π(dz)

by definition of the predictable quadratic variation. Another application of Fubini’s theo-
rem yields∫ T

0

e−(KT−Kt)d〈L, L〉t =

∫ ∫ ∫ T

0

e−(KT−Kt)d〈L(y), L(z)〉tΠ(dy)Π(dz)

and hence

E

(∫ T

0

e−(KT−Kt)d〈L, L〉t
)

=

∫ ∫
E

(∫ T

0

e−(KT−Kt)d〈L(y), L(z)〉t
)

Π(dy)Π(dz)

=

∫ ∫
J0(y, z)Π(dy)Π(dz).

By Schweizer (1994), Corollary 9, the left-hand side of the previous equation equals the
variance of the hedging error. �

Finally, we prove the explicit representation of the gains process.

Proof of Theorem 3.5. By (3.3), G(ϕ) solves the stochastic differential equation

Gt(ϕ) =

∫ t

0

(
ξu +

λ(Hu− − V0)

Su−

)
dSu −

∫ t

0

λ

Su−
Gu−(ϕ)dSu

=

∫ t

0

(ξuSu− + λ(Hu− − V0))dX̃u +

∫ t

0

Gs−(ϕ)d(−λX̃)u.

By Jacod (1979), (6.8) this equation has a unique solution, which is given by

Gt(ϕ) = E (−λX̃)t

×

(∫ t

0

ξuSu− − λ(Hu− − V0)

E (−λX̃)u−
dX̃u +

∫ t

0

ξuSu− − λ(Hu− − V0)

E (−λX̃)u

d[X̃, λX̃]u

)
.

Since E (−λX̃)u = (1− λ∆X̃u)E (−λX̃)u−, the assertion follows. �

4 Examples with numerical illustrations
In this section we illustrate how the approach is applied to concrete models that are
considered in the literature. As an example we provide numerical results for the normal
inverse Gaussian model. The other setups lead to similar figures.
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4.1 Discrete-time hedging in the Black-Scholes model

Suppose the underlying follows geometric Brownian motion with annual drift parameter µ
and volatility σ. The continuously compounded riskless interest rate is denoted by r. If
there are N trading days per year (e.g. N = 252), then the discounted daily log returns
are normally distributed with mean (µ− r − σ2/2)/N and variance σ2/N .

Let us consider an option expiring in T trading days from now. If trading is restricted
to times kT/n for k = 0, 1, . . . , N , the market becomes incomplete. Theorem 2.1 applies
with the moment generating function

m(z) = exp

(((
µ− r − σ2

2

)
z +

σ2z2

2

)
T

Nn

)
. (4.1)

If continuous trading is permitted, the Black-Scholes market is complete. Hence the
hedging error is exactly zero. The variance-optimal capital and hedging strategy are given
by the Black-Scholes price and delta hedging, respectively. It can be verified easily that
this agrees in fact with the formulas in Theorems 3.3 and 3.4, where the relevant cumulant
function is

κ(z) =
1

N

((
µ− r − σ2

2

)
z +

σ2z2

2

)
.

4.2 Merton’s jump-diffusion with normal jumps

In the jump-diffusion model considered by Merton (1976), the logarithmic stock price is
modelled as a Brownian motion with drift µ and volatility σ plus occasional jumps from
an independend compound Poisson process with intensity λ. A particularly simple and
popular case is obtained when the jumps are normally distributed, say with mean β and
variance δ.

m(z) = exp

((
(µ− r)z +

σ2z2

2
+ λ(eβz+δ2z2/2 − 1)

)
T

Nn

)
and

κ(z) =
1

N

(
(µ− r)z +

σ2z2

2
+ λ

(
eβz+δ2z2/2 − 1

))
,

respectively. Note that Merton uses a slightly different parameterization.

4.3 Hyperbolic, NIG, and VG models

The hyperbolic, normal inverse Gaussian (NIG), and the variance gamma (VG) Lévy pro-
cesses are subfamilies or limiting cases of the class of generalized hyperbolic models, which
all fit in the general framework of this paper. We refer to Eberlein & Raible (2001) for
further details. For the choice of parameters α, β, δ, µ, σ, ν, ϑ below time is measured in
days rather than years.
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4.3.1 Hyperbolic model

The moment generating function in the hyperbolic case is of the form

m(z) =

( √
α2 − β2√

α2 − (β + z)2

K1

(
δ
√

α2 − (β + z)2
)

K1

(
δ
√

α2 − β2
) e(µ− r

N
)z

)T
n

, (4.2)

where K1 denotes the modified Bessel function of the third kind with index 1. Some
care has to be taken if T/n is not an integer. The T/n-th power in (4.2) is in fact the
distinguished T/n-th power (cf. Sato (1999), Section 7). The cumulant function equals

κ(z) = Ln

( √
α2 − β2√

α2 − (β + z)2

K1

(
δ
√

α2 − (β + z)2
)

K1

(
δ
√

α2 − β2
) e(µ− r

N
)z

)
.

Here Ln denotes the distinguished logarithm, see Sato (1999), Section 7.

4.3.2 Normal inverse Gaussian model

The moment generating function of the normal inverse Gaussian model is given by

m(z) = exp

((
δ
(√

α2 − β2 −
√

α2 − (β + z)2
)

+
(
µ− r

N

)
z
) T

n

)
.

Consequently, the cumulant function equals

κ(z) = δ
(√

α2 − β2 −
√

α2 − (β + z)2
)

+
(
µ− r

N

)
z.

4.3.3 Variance gamma model

As final example let us consider the variance gamma model as described in Madan et al.
(1998), based on the VG Lévy process with parameters σ, ν, ϑ plus a linear drift with
rate µ. The discounted returns for intervals of length T/n have the moment generating
function

m(z) =

(
e(µ− r

N
)z

(
1− νϑ− 1

2
νσ2

1− νϑz − 1
2
νσ2z2

) 1
ν

)T
n

.

The cumulant function needed for continuous-time hedging is given by

κ(z) =
(
µ− r

N

)
z +

1

ν
ln

(
1− νϑ− 1

2
νσ2

1− νϑz − 1
2
νσ2z2

)
.
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4.4 Numerical illustration

Figures 1–3 illustrate the results for a European call in the normal inverse Gaussian model,
compared to Black-Scholes as a benchmark. The daily parameters of the normal inverse
distribution, namely α = 75.49, β = −4.089, δ = 0.012, µ = 0, were estimated by
Rydberg (1997) for Deutsche Bank. The parameters for the benchmark Gaussian model
are chosen such that both models lead to returns of the same mean and variance. The
annual continuously compounded interest rate is set to 4%. We consider a European
call option with strike price 100 maturing in three months from now. Figure 1 shows
the variance-optimal initial capital as a function of the stock price in the NIG model
for both continuous and weekly rebalancing of the hedging portfolio. The Black-Scholes
price is plotted as well for comparison. One may observe that the three curves cannot be
distinguished by eye, i.e. they do not differ much in absolute terms. A similar picture is
obtained for the hedge ratio at time 0 as a function of the initial stock price (cf. Figure 2).
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Variance-optimal endowment for NIG (maturity = 3 months, 12 discrete trading dates)
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Continuous NIG endowment

Black-Scholes price

Figure 1: Variance-optimal initial capital for normal inverse Gaussian returns

The Black-Scholes delta provides a good proxy for the optimal hedge in the NIG model for
both continuous and weekly rebalancing. As a result one may say that the Black-Scholes
approach produces a reasonable hedge for the European call even if real data follows this
rather different jump-type model. The similarity ceases to hold when it comes to the
hedging error, which vanishes in a true Black-Scholes world. Figure 3 shows the variance
of the hedging error as a function of the number of trades. E.g., weakly rebalancing of the
hedging portfolio corresponds to 12 trades. The horizontal line in Figure 3 indicates the
hedging error for continuous rebalancing in the NIG model. The two decreasing curves
refer to the discrete hedging error in the NIG and the Gaussian case, respectively. In the
latter case it converges to 0, which is the error in the limiting Black-Scholes model. As
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Figure 2: Variance-optimal initial hedge for normal inverse Gaussian returns
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far as the size is concerned, the variance of the error in the weekly rebalanced NIG setup
(0.584 = 0.762) equals approximately the sum of the error in the corresponding Gaussian
model (0.453, due to discrete rather than perfect hedging) and the inherent error in the
continuous-time NIG model (0.137, due to incompleteness from jumps). The standard
deviation 0.76 of the hedging error in the discrete NIG case may be compared to the
Black-Scholes price 4.50 of the option.

A Bilateral Laplace transforms
Definition A.1 Let f : R → C be a measurable function. The (bilateral) Laplace trans-
form f̃ is given by

f̃(z) =

∫ +∞

−∞
f(x)e−zxdx (A.1)

for any z ∈ C such that the integral exists.

The Laplace transform f̃ is also denoted by L [f(x); z] or by LII [f(x); z] when it is neces-
sary to distinguish the bilateral from the usual (unilateral) Laplace transform. The latter
is defined by the same integral, but starting from 0 instead of −∞.

We say that the Laplace transform f̃(z) exists if the Laplace transform integral (A.1)
converges absolutely, or, in other words, if it exists as a proper Lebesgue integral as opposed
to an improper integral. The following lemma shows that the domain of a Laplace transform
is always a vertical strip in the complex plain. It may be empty, degenerate to a vertical
line, a closed or open left or right half-plane, or all of C.

Lemma A.2 Suppose that f̃(a) and f̃(b) exist for real numbers a ≤ b. Then f̃(z) exists
for any z ∈ C with a ≤ Re(z) ≤ b.

Proof. This is obvious because |f(x)e−zx| = |f(x)|e−Re(z)x ≤ |f(x)e−ax|+ |f(x)e−bx|. �

From

f̃(u + iv) =

∫ +∞

−∞
f(x)e−(u+iv)xdx =

∫ +∞

−∞
euxf(−x)eixvdx (A.2)

we see that L [f(x); u+iv] = F [euxf(−x); v], where the last expression denotes the Fourier
transform of the function x 7→ euxf(−x). Hence all properties of the bilateral Laplace
transform can be reformulated in terms of the Fourier transform and vice versa.

There are many inversion formulas for the Laplace transform known in the literature.
We will use the so-called Bromwich inversion integral, which can be justified by the fol-
lowing theorem.



Variance-optimal hedging for PIIS 27

Theorem A.3 Suppose that the Laplace transform f̃(R) exists for R ∈ R .

1. If v 7→ f̃(R + iv) is integrable, then x 7→ f(x) is continuous and

f(x) =
1

2πi

R+i∞∫
R−i∞

f̃(z)ezxdz, for x ∈ R.

2. If f is of finite variation on any compact interval, then

lim
ε→0

1

2
(f(x + ε) + f(x− ε)) = lim

c→∞

1

2πi

R+ic∫
R−ic

f̃(z)ezxdz, for x ∈ R.

Proof. The first statement follows from Rudin (1987), Theorem 9.11 and (A.2). For the
second assertion cf. Doetsch (1971), Satz 4.4.1. �

Let us consider the Laplace transform representations of a number of simple payoff
functions. They are mostly taken from Raible (2000) and they can be derived by straight-
forward calculations from Theorem A.3. Interestingly, the put option payoff is expressed
by the same integral as the call, but with the vertical line of integration to the left of zero,
i.e.

(K − s)+ =
1

2πi

∫ R+i∞

R−i∞
sz K1−z

z(z − 1)
dz (R < 0).

A related example is the payoff

(s−K)+ − s =
1

2πi

∫ R+i∞

R−i∞
sz K1−z

z(z − 1)
dz (0 < R < 1). (A.3)

While this does not correspond to an option arising in practice, it can be used to compute
the variance-optimal hedge for calls and puts in a situation when the moment or cumulant
function of the underlying exists in 0 ≤ Re(z) ≤ 2, but in no larger strip. This is actually
the natural minimal integrability requirement in the present setup.

The power call (cf. Reed (1995)) can be represented by

((s−K)+)2 =
1

2πi

∫ R+i∞

R−i∞
sz 2K2−z

z(z − 1)(z − 2)
dz (R > 2),

which generalizes to higher integer powers as

((s−K)+)n =
1

2πi

∫ R+i∞

R−i∞
sz n!Kn−z

z(z − 1) · · · (z − n)
dz (R > n),
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and even to arbitrary powers α > 1 by

((s−K)+)α =
1

2πi

∫ R+i∞

R−i∞
szKα−zB(α + 1, z − α)dz (R > α),

where B denotes the Euler beta function, which can be expressed by the more familiar
Euler gamma function,

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
.

The self-quanto call can be written as

(s−K)+s =
1

2πi

∫ R+i∞

R−i∞
sz K1−z

(z − 1)(z − 2)
dz (R > 2).

The digital option with payoff function f(s) = 1[K,∞)(s) coincides almost surely with
the payoff function

f(s) = 1
2
1{K}(s) + 1(K,∞)(s) (A.4)

if the law of SN resp. ST has no atoms. Using Statement 2 in Theorem A.3, the latter can
be expressed as

f(s) = lim
c→∞

1

2πi

∫ R+ic

R−ic

sz K−z

z
dz (R > 0). (A.5)

This suggests to apply the results of the previous sections to the measure

Π(dz) =
1

2πi

K−z

z
dz (A.6)

in the case of the digital option. However, this measure is not of finite variation. Never-
theless, the main statements remain valid if we interpret the integrals as Cauchy principal
value integrals.

Lemma A.4 Theorems 2.1, 2.2, and 3.3–3.5 hold for the digital option (A.4) and the
measure (A.6) if the integrals are interpreted in the principal value sense, i.e.

Hn := P -lim
c→∞

∫ R+ic

R−ic

Sz
nh(z)N−nΠ(dz), (A.7)

ξn := P -lim
c→∞

∫ R+ic

R−ic

Sz−1
n−1g(z)h(z)N−nΠ(dz), (A.8)

J0 := lim
c→∞

∫ R+ic

R−ic

∫ R+ic

R−ic

Re(J0(y, z))Π(dy)Π(dz) (A.9)

etc., where P -lim refers to convergence in probability. In continuous time, the correspond-
ing limit for ξt(ω) is to be interpreted in (P (dω)⊗ dt)-measure.
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Proof. We will show the assertion in the continuous-time setting. The discrete-time case
follows similarly.

Step 1: For c ∈ R+ define H(c) := f c(ST ) with

f c(s) :=

∫ R+ic

R−ic

szΠ(dz).

Since K−z

2πiz
= −K−z

2πiz
, it follows that H(c) is real-valued. For s ∈ R+ we have

f(s)− f c(s) = lim
c′→∞

1

2πi

(∫ R+ic′

R+ic

(
s

K

)z
1

z
dz +

∫ R−ic

R−ic′

(
s

K

)z
1

z
dz

)

= lim
c′→∞

1

π

∫ c′

c

Re

(
(s/K)R+ix

R + ix

)
dx.

The integrand equals(
s

K

)R(R cos(x log( s
K

))

R2 + x2
+

R2 sin(x log( s
K

))

(R2 + x2)x
−

sin(x log( s
K

))

x

)
Since supc∈R+

|
∫∞

c
sin(x)

x
dx| < ∞ (cf. Abramowitz & Stegun (1968), Section 5.2), it follows

that
sup
c∈R+

|f(s)− f c(s)| ≤ usR

for some u ∈ R+. Consequently, (H(c) −H)2 ≤ u2S2R
T ∈ L2 for any c ∈ R+, which implies

that H(c) c→∞→ H in L2 by dominated convergence.
Step 2: Denote by H = H̃0 +

∫ T

0
ξ̃tdSt + L̃T the Föllmer-Schweizer decomposition of H,

which exists e.g. by Monat & Stricker (1995), Theorem 3.4. Moreover, let H
(c)
t , ξ

(c)
t , L

(c)
t

be defined as in Proposition 3.10 for the claim H(c). By Theorem 3.8 in Monat & Stricker
(1995), we have H

(c)
0 → H̃0,

E

(∫ T

0

(ξ
(c)
t − ξ̃t)

2d〈M, M〉t
)
→ 0, (A.10)

and E((L
(c)
T − L̃T )2) → 0 for c →∞. Since L(c), L are martingales, this implies L

(c)
t → L̃t

in L2 and hence in probability for any t ∈ [0, T ]. Together with (3.2), we obtain∫ t

0

(ξ(c)
u − ξ̃u)dMu → 0,∫ t

0

(ξ(c)
u − ξ̃u)dAu → 0,

and hence ∫ t

0

ξ(c)
u dSu →

∫ t

0

ξ̃udSu
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in probability for any t ∈ [0, T ]. Moreover, we have ξ(c) → ξ̃ in measure relative to
P (dω) ⊗ dt (cf. (A.10) and (3.1)). Together, we obtain that H̃0, ξ̃t, L̃t coincide with the
expressions in Proposition 3.10 for H if the integrals are interpreted in the principal value
sense. Theorems 3.3 and 3.5 now follow precisely as in Section 3.

Step 3: Denote by J
(c)
0 , J̃0 the variance of the hedging error for H(c) and H, respectively.

In a Hilbert space the mapping x 7→ ‖x−P (x)‖2 is continuous if P denotes the projection
on some closed subspace. Hence J

(c)
0 → J̃0 for c →∞. Since Theorem 3.4 is applicable to

H(c), it follows that J̃0 concides with J0 in (A.9). �

The log contract of Neuberger (1994) does not seem to fit into this framework as the
logarithm has no Laplace transform. Nevertheless we can express it as a difference of two
payoffs, namely its positive and negative part. The former has a Laplace transform for
Re(z) > 0, the latter for Re(z) < 0 and we have

log(s) =
1

2πi

∫ R+i∞

R−i∞
sz 1

z2
dz − 1

2πi

∫ R′+i∞

R′−i∞
sz 1

z2
dz

with R′ < 0 and R > 0.
Finally, let us emphasize again that the whole approach is linear in the claim. Hence,

we immediately obtain the variance-optimal hedge for any linear combination of the payoffs
above, as e.g. bull and bear spreads, collars, etc.
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