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1 Introduction

This paper is about stochastic models for the evolution of DNA. For a set of aligned
DNA sequences, connected in a phylogenetic tree, the models should be able to
explain - in probabilistic terms - the differences seen in the sequences. From the
estimates of the parameters in the model one can start to make biologically inter-
pretations and conclusions concerning the evolutionary forces at work.

In parallel with the increase in computing power, models have become more
complex. Starting with Markov processes on a space with 4 states, and extended to
Markov processes with 64 states, we are today studying models on spaces with 4n

(or 64n) number of states with n well above one hundred, say. For such models it
is no longer possible to calculate the transition probability analytically, and often
Markov chain Monte Carlo is used in connection with likelihood analysis. This is
also the approach taken in this paper, and a time discretization of the process is
presented in order to make the calculations more feasible. Apart from the time
discretization we introduce a set of simple estimating equations, together with an
EM type algorithm, for finding the parameter estimates. A detailed derivation of
the asymptotic properties of the estimates is also given.

Before describing in more detail the content of the paper we very briefly explain
the structure of a DNA sequence.

1.1 DNA sequence

The hereditary information in an organism is carried by DNA (deoxyribonucleic
acid) molecules. Such a molecule has two complementary chains bound together in
a helix. Each chain is a string of four nucleotides: A, G, C, and T . The names
of these are adenine, guanine, cytosine, and thymine. The four nucleotides are
grouped into two purines: A and G, and two pyrimidines: C and T . In the two
complementary chains of the DNA molecule, A always forms a pair with T , and G
forms a pair with C. The bond between G and C is stronger than the bond between
A and T . A precise description of a nucleotide will not be given here, it suffices for
us to know that the DNA molecule is a string of letters from a four letter alphabet.
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To obtain a protein, part of the DNA molecule is transcribed into mRNA (mes-
senger RNA). The part that is transcribed need not be a noninterrupted part of
the DNA. Instead, there are blocks, known as exons and introns, that go into the
mRNA or are left out, respectively. The mRNA is next translated into a sequence
of amino acids. This involves a reading frame whereby the nucleotides are put to-
gether three by three, called codons, and each codon is translated into an amino
acid. Translation stops when a stop codon is encountered. There are three stop
codons: TAA, TAG, and TGA. There are only 20 amino acids, so that some of the
61 nonstop codons encode the same amino acid. Two codons that give the same
amino acid are called synonymous and nonsynonymous otherwise. To see the code,
that relates amino acids to codons, write genetic code in Google.

It is possible to have more than one reading frame so that a mRNA molecule
translates into two or three proteins. Also, one has parts of the DNA molecule that
are transcribed, but not translated into proteins.

The stochastic models in this paper are targeted towards the analysis of a short
stretch of DNA (typical corresponding to a gene) from two or more species. Before
using the models the sequences are aligned. Mathematically, an alignment consists
in placing the sequences in an array, where each entry is either a nucleotide or a
“gap”. A row corresponds to one of the sequences, and a column contains a set of
nucleotides that have all developed along the phylogenetic tree through mutations
from the same ancestral nucleotide at the root of the tree. Gaps in a column imply
either the insertion or the deletion of a nucleotide during evolution. For the models
in this paper we discard the columns that contain a gap and, thus, we consider only
the point mutations where a single nucleotide is replaced by another nucleotide.

The first stochastic models in this field assumed that the nucleotides along the
DNA sequence evolved independently of one another. For a protein coding part
of a DNA sequence these models were supplemented by models with independent
codons, but where nucleotides within a codon were dependent. We give a short
review of the independent sites models in Section 2 below. The main emphasis in
this paper is on models with dependence between codons. Attention is restricted
to short range dependence, where the evolution at one site depends on the two
neighbouring sites. The “contect dependent” of the title is in this paper a synonym
for “neighbour dependent”.

1.2 Overview of paper

As mentioned above we start in Section 2 with a review of the classical independent
sites models before turning to a review of some of the recent papers dealing with
neighbour dependence. Papers that introduce a new model or a new estimation
procedure has been included, although the list is not complete. It is often discussed
whether or not to use time reversible models in an evolutionary context. Following
the review section a characterization of time reversibility is given, with special em-
phasis on the relation to the properties of the stationary measure along the DNA
sequence. A discussion of time reversibility in relation to one of the papers being
reviewed is given in Appendix C. Turning to the main subject of this paper, a de-
scription of the continuous time model of Jensen and Pedersen (2000) for a coding
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sequence is given in Section 4. A time discretized version of this model is intro-
duced in the following section. A new estimation procedure is given based on an
analogue of the EM algorithm, and where conditional mean values are calculated
via a Markov chain Monte Carlo simulation. The Gibbs update within the MCMC
is described in detail. In Section 6 we specialize to a specific model. The discussion
in Sections 4 and 5 is based on a modelling of two aligned sequences. In Section
7 the general case of multiple sequences connected in a known phylogeny is given.
The concluding Section 8 is fairly theoretical with proofs of asymptotic properties of
the estimates obtained from the MCMC simulation. The asymptotic considerations
can be compared with the asymptotics of maximum likelihood estimates in hidden
Markov models, a subject where new results have appeared within the last few years.

2 Review

2.1 Continuous time Markov processes

Stochastic models for the evolution of DNA are usually continuous time Markov
processes defined through their infinitesimal rates. Let z(t) be a homogeneous con-
tinuous time irreducible Markov process with a finite state space. The (infinitesimal)
rate qij for a change from i to j is defined as qij = limt→0 P (z(t) = j|z(0) = i)/t.
The matrix Q with entries qij off the diagonal, and with qii = −

∑
j 6=i qij, is

called the rate matrix. Let P (t) = {pij(t)} be the transition matrix, that is,
pij(t) = P (z(t) = j|z(0) = i). It is a standard result (Karlin and Taylor (1975))
that P (t) is given by

P (t) = exp(tQ) =
∞∑

n=0

tnQn

n!
.

The matrix Q is called diagonalizable if the set of eigenvectors span the whole
space. In this case one can write Q = SDS−1, where D is the diagonal matrix of
eigenvalues, some of which can be complex and some of which can be identical, and
S is the matrix of columnwise eigenvectors. It is easy to see that this leads to the
important formula

P (t) = S exp(tD)S−1, (1)

where exp(tD) is a diagonal matrix with entries exp(tdii). In Appendix A a simple

formula for ∂P (t)
∂θ

is given for the case where the rates qij are functions of a parameter
θ.

2.2 Review of independent sites models

In this section we describe models where the sites (either nucleotides or codons) along
the DNA sequence evolve independently of one another. The models, therefore,
reduce to models for the evolution of a single site.

We first consider models at the nucleotide level. The HKY model (Hasegawa
et al. (1985)) has a parameter α for a transition (a change within {A,G} or within
{C, T}), a parameter β for a transversion (a change from one of the groups {A,G}
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and {C, T} to the other), and allows for a general stationary distribution π =
(πA, πG, πC , πT ) of the Markov process. The rate matrix is

A G C T

A −(απG + βπCT ) απG βπC βπT

G απA −(απA + βπCT ) βπC βπT

C βπA βπG −(απT + βπAG) απT

T βπA βπG απC −(απC + βπAG)

(2)

where πAG = πA +πG and πCT = πC +πT . That π indeed is the stationary distribu-
tion is shown in Section 3. This model contains two special cases. If π = (1

4
, 1

4
, 1

4
, 1

4
)

Kimura’s two parameter model (Kimura (1980)) is obtained. If, furthermore, α = β
the model of Jukes and Cantor (1969) appears. The HKY model is reversible as de-
scribed in Section 3. From that section one can also see the most general reversible
rate matrix. The eigenvalues and eigenvectors of the rate matrix (2) are given in
Appendix B.

The next model to be considered is the general strand symmetric model. In the
double stranded DNA molecule nucleotide A sits opposite to T and nucleotide G
sits opposite to C. In the strand symmetric model a rate qab equals the rate where
a and b are replaced by the nucleotides that they form a pair with. The general rate
matrix is

A G C T

A −(α+ β + δ) α β δ

G γ −(γ + ω + κ) κ ω

C ω κ −(γ + ω + κ) γ

T δ β α −(α+ β + δ)

(3)

The stationary distribution is π = (θ, 1−θ, 1−θ, θ)/2 with θ = (γ+ω)/(γ+ω+α+β).
The eigenvalues and eigenvectors of the rate matrix are given in Appendix B. If one
requires strand symmetry as well as reversibility, γ and ω must satisfy

γ = α
θ

1− θ
and ω = β

θ

1− θ
,

where 0 < θ < 1 is now a free parameter.
Turning to models for independent codons the situation is much more complex.

On one hand we should keep some of the modelling ideas from the nucleotide models
and, on the other hand, we should take into considerations the translation from the
codon to an amino acid. A change of the codon is called a synonymous change if it
does not change the amino acid and a nonsynonymous change if the amino acid is
being changed. It is generally believed that nonsynonymous changes occur relatively
more rarely than synonymous changes, since the former may change the function of
the protein. A change that produces a stop codon has zero probability, as this will
destroy the protein, and the model, therefore, effectively has 61 states. Also, the
only changes allowed are those where a single nucleotide is changed at each time
point.
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Muse and Gaut (1994) seem to be the first to make a model at the codon level
that differentiates between synonymous and nonsynonymous changes. The rate
λj(z|x), for a change of nucleotide xj within the codon x = (x1, x2, x3), is

λj(z|x) = µβ1NSπz,

where π is a set of “equilibrium frequencies” for the nucleotides, and 1NS is one
if the change is nonsynonymous and zero if the change is synonymous. Had there
been no stop codons, the stationary distribution for this Markov process would be
πx1πx2πx3 , and the stationary probability for a nucleotide z would be πz. When
there are stop codons the probabilities πx1πx2πx3 must be normalized to sum to one
over the 61 nonstop codons, and the stationary probability of a nucleotide z is only
approximatively equal to πz.

Goldman and Yang (1994) consider a more complex model incorporating a tran-
sition/transversion parameter as well as a differentiation between the different non-
synonymous changes. Letting x(j, z) be the codon where xj is replaced by z, and
letting πx be frequencies summing to one over the set of nonstop codons, the rates
are

λj(z|x) = µκ1tv exp
(
−dx,x(j,z)

/
V
)
πx(j,z).

Here 1tv is one for a transversion and zero for a transition, and dx,y is a distance
between the amino acids encoded by the codons x and y. Goldman and Yang
(1994) use distances between the amino acids given by Grantham (1974) and based
on molecular properties. From the theory in Section 3 it follows easily that this
model is reversible and that the stationary probabilities are proportional to πx.

The models by Muse and Gaut (1994) and by Goldman and Yang (1994) rep-
resent two extremes, the former having only 5 parameters and the latter having
63 parameters. Both Pedersen et al. (1998) and Schadt and Lange (2002) consider
models in between. Pedersen et al. (1998) consider the rates

λj(z|x) = µκ1tvβ1NSγ1CG(x)−1CG(x(j,z))πj
z,

where (πj
A, π

j
G, π

j
C , π

j
T ) is a set of nucleotide frequencies for each j = 1, 2, 3, and

1CG(x) is one if the codon x contains a nucleotide C followed by a nucleotide G and
is zero otherwise. This model has 12 parameters. Schadt and Lange (2002) consider
rates of the form

λj(z|x) = µ
1AG

ts
1 µ

1CT
ts

2 κ1tvk(x, x(j, z); ρ)πz,

where 1AG
ts is one for a transition within {A,G} and zero otherwise, and 1CT

ts is
one for a transition within {C, T} and zero otherwise. The function k(x, x(j, z); ρ)
depends on the amino acids only. The 20 amino acids are divided into 4 groups, and
k can take on 4 different values ρ0, . . . , ρ3 depending on the change being within a
group or between the groups. The model has 10 parameters. Using again the theory
in Section 3 it is seen that this model is reversible.

The independent sites models are often extended by allowing rate variation along
the sequence. In these models the rate matrix is multiplied by an individual rate
factor at each site. Often the factor is gamma distributed or can take on a small
number of values only. In the simplest case the site independence is kept by having
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the rate factors being independent. Alternative models let the rate factors consti-
tute a Markov chain along the sequence, leading to an analysis as for hidden Markov
models. Rate variation is not included in the models presented in this paper, al-
though the feature can easily be incorporated in the MCMC analysis performed.

2.3 Review of context dependent models

Let x = (x1, x2, . . . , xn) be a DNA sequence, where xi is either a single nucleotide
or a single codon, and let x(t) be the process at time t. In this section we review
papers where the rate for a change of xi depends on the two flanking values xi−1

and xi+1. Such models are called context dependent models.

Jensen and Pedersen (2000); Pedersen and Jensen (2001)
These two papers form the background for the present paper. A context depen-

dent model at the codon level is presented including the CG-depression effect. The
latter refers to the observation that in some parts of the genome one sees less Cs
followed by a G than the nucleotide frequencies would suggest. A discussion of the
relation between reversibility and the Markov property of the stationary measure is
given. A Markov chain Monte Carlo method is suggested for evaluating likelihood
ratios in the case of two sequences. This is a fairly slow procedure making it less
feasible for multiple sequences. The approach suggested in this paper makes the
model useful for multiple sequences also.

Arndt et al. (2003) [ABH]
In this paper the authors consider a context dependent model at the nucleotide

level suitable for the description of the noncoding parts of the genome. An approx-
imation to the stationary distribution is derived, and this is the only part of the
model used in the data analysis.

If λ(yi|xi−1, xi, xi+1) is the rate for a change of xi to yi, when the two neighbouring
nucleotides are xi−1 and xi+1, the context dependent model in [ABH] is of the form

λ(yi|xi−1, xi, xi+1) = λ0(yi|xi) + λl(yi|xi−1, xi) + λr(yi|xi, xi+1). (4)

Here λ0 is a rate not depending on the context, λl is a rate depending on the left
neighbour, and λr is a rate depending on the right neighbour. Actually, the possibil-
ity of a simultaneous change of both nucleotides that are neighbours is also allowed,
but this model is not used in the data analysis. Imagine now that the model is for a
double infinitely long sequence and that we want to find the stationary probabilities
πab = P (x1 = a, x2 = b). [ABH] use the Kolmogorov forward differential equations
to establish a set of equations for πab. These equations involve the triplet probabil-
ities πabc = P (x1 = a, x2 = b, x3 = c), and [ABH] introduce the approximation

πabc ≈
πabπbc

πb

(5)

in order to solve the equations. The differential equations are explained in Appendix
C below.

The authors do not discuss which parts of the rates (4) that are identifiable
from the stationary measure, nor do they delineate the cases for which the Markov
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approximation (5) is exact. From Proposition 4 in Section 3 below, one sees that the
stationary measure is a Markov chain if the rates are time reversible. However, the
additive structure in the rates (4) does not fit well with the multiplicative structure
in the reversible rates as given in Proposition 4. In Appendix C of this paper we
give a complete characterization for the simplified case of a two letter alphabet.

Arndt et al. (2003)

These authors use the model (4) from [ABH] with four parameters in λ0, one
nonzero term in λl (CG → CA), and one nonzero term in λr (CG → TG). A
star phylogeny is considered with the ancestor known. Instead of calculating the
true likelihood under the model, a “pseudo likelihood” is used. The latter involves
two approximations. The likelihood is approximated by a product of marginal likeli-
hoods of the form P (xi(T )|xi−1(0), xi(0), xi+1(0)), and to calculate the latter another
approximation is needed. This last step is not spelled out in full detail, but presum-
ably an approximate model is used where the λl term is left out for position i−1 and
the λr term is left out for position i + 1. The authors write that the probability is
calculated by iterating 64 differential equations. Alternatively, a 64× 64 transition
matrix exp(Qt) can be calculated using an eigenvalue decomposition.

Hwang and Green (2004)

Hwang and Green (2004) consider a general nonreversible context dependent
nucleotide model. Time is dicretized so that the average substitution rate in each
time step is less than 0.005. In each time step the nucleotides evolve independently
given the present sequence (this is in contrast to the model presented in this paper
where multiple reading frames enters). The distribution of the root sequence is
modelled by a second order Markov chain. The context dependent rates are modelled
completely freely with a total of 192 parameters. In one of the models considered,
the tree is divided into 12 parts so that 12× 192 parameters are used. A Bayesian
MCMC approach is used to obtain samples from the posterior distribution of the
parameters. In the MCMC updating step either a single parameter is updated or the
path of a single nucleotide is updated. A dataset with 19 mammalian species and
spanning approximately 1.7 Mb is used. With the large number of parameters one
should probably be cautious in the interpretations of the results. As an example the
authors point to a difference in the substitution rates for different groups (clades)
of species, but it is unclear if this difference can perhaps be caused by the use of a
clade specific normalization of the rates.

Siepel and Haussler (2004) [SH]

These authors consider N -tuples of nucleotides, where N is either 1, 2, or 3.
The marginal distribution of the process of an N -tuple over the phylogenetic tree
is modelled by a homogenous continuous time Markov process, where the rates
allow single nucleotide changes only. For each choice of N four models for the
rate matrix are considered: an unrestricted model, a reversible model, a strand
symmetric model, and a strand symmetric reversible model. The parameters are
estimated using a pseudo likelihood consisting of the product of the likelihoods from
the marginal distribution of nonoverlapping N -tuples. The actual maximization is
done using an EM algorithm where the full likelihood is based on the process at all
the nodes of the tree.
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[SH] do not discuss the quality of their model when viewed as an approximation
to a full context dependent model. Thus, a model formulated in terms of rates, that
depend on the neighbouring nucleotides, presumably do not lead to a homogenous
Markov process for an N -tuple of nucleotides. The quality of this approximation
is, therefore, of interest, as well as a translation of the rates from the full context
dependent model to the rates in the approximating marginal model of an N -tuple.
Unfortunately, there is no comparison in the paper with the data analysis of Hwang
and Green (2001), where the full context dependent model is used.

[SH] also consider the use of the N -tuple model to define a Markov model. Thus,
from the marginal model for an N -tuple over the phylogenetic tree a transition
matrix is obtained as the conditional distribution of the Nth term given the N − 1
first terms. The estimation within this model becomes complicated, and the authors
use the parameters obtained from the marginal N -tuple model. It is noted that the
log likelihood for the data becomes much larger for the Markov model as compared
to the model with independent N -tuples. A simple entropy inequality shows that
this increase is to be expected if the Markov model is a better fit to the data.
Actually, it would be interesting to see if the increase in the log likelihood is as one
would expect if the Markov model is the correct description of the data.

Christensen et al. (2004)
In this paper a codon model is considered, mainly for the analysis of two species.

The context dependency is through a CG depression across codon boundaries. A
pseudo likelihood is used, where the contribution from the ith codon is calculated as
though the evolutionary history of the two flanking nucleotides is known. The true
evolutionary history for a flanking nucleotide is approximated by either a history
with no changes if the nucleotides in the two sequences are identical, and a history
with one change in the middle of the time interval if the nucleotides in the two
sequences are different. A comparison with the full analysis described in this paper
shows that the estimates obtained from the pseudo likelihood are very close to the
maximum likelihood estimates.

3 Time reversibility

In this section we discuss time reversibility of different DNA evolutionary models,
ending up with a discussion of the relationship between time reversibility and the
Markov property of the stationary measure for context dependent models. The
setup is that of a finite state irreducible continuous time Markov process. The rate
matrix is Λ with entries λij. The transition probability pij(t) = P (x(t) = j|x(0) = i)
is given by the (i, j)th entry of exp(tΛ), and the stationary probabilities {πi} are
all positive. Considering the process in reverse time the transition probabilities are
given by

qij(t) = P (x(0) = j|x(t) = i) =
P (x(0) = j, x(t) = i)

P (x(t) = i)
=
πjpji(t)

πi

.

Time reversibility means that the transition probability in reverse time equals the
transition probability in forward time. From the above formula for qij(t) the time
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reversibility requirement can be written as πipij(t) = πjpji(t) for all i, j. Letting
t→ 0 one finds that time reversibility implies the detailed balance condition πiλij =
πjλji, for all i 6= j.

Lemma 1. The Markov process is time reversible if and only if there exists a sym-
metric function h(i, j) and a positive function g(i), such that the rates are given
by λij = g(i)h(i, j) for all i, j. In the latter case the stationary probabilities are
proportional to g(i)−1.

Proof. If λij = g(i)h(i, j) for all i, j, we define πi = g(i)−1
(∑

j g(j)
)
. The sym-

metry of h implies detailed balance, πiλij = πjλji, and this in turn gives that π is
the stationary distribution:

∑
i πiλij =

∑
i πjλji = 0. Detailed balance also gives

πipij(t) =
∑

n

πi
tn(Λn)ij

n!
=
∑

n

πj
tn(Λn)ji

n!
= πjpji(t),

so that the process is time reversible.
If, on the other hand, the process is time reversible, so that πiλij = πjλji for all

i, j, we define h(i, j) = πiλij and g(i) = 1/πi. Then, clearly, h is symmetric and
λij = g(i)h(i, j).

A general discussion of reversibility, including the above lemma, can be found
in Kelly (1979). If the Markov process has k states, the general reversible process
has 1

2
k(k− 1) + (k− 1) free parameters. One possibility is to choose the parameters

as {λi,j, j > i} together with a set of positive values {θj, j = 2, . . . , k}. The lower
triangular part of the rate matrix is then given by λji = θi

θj
λij, j > i, where θ1 = 1. In

this case the stationary probabilities are πi = cθi, where c is a normalizing constant.

Example 2. We consider the HKY model with rate matrix (2). To prove re-
versibility define g(i) = 1/πi, and let h(i, j) be πiπj times α for a transition and
πiπj times β for a transversion. The rates are then given by g(i)h(i, h), and since h
is clearly symmetric, the process is reversible according to Lemma 1. The stationary
distribution is g(i)−1 = πi which enters directly in the rates (2).

Next, we consider the general strand symmetric matrix (3). To see that this is
not a time reversible rate matrix look at the cycle A → G → C → A. Had the
process been time reversible, the equality

(πAα)(πGε)(πCγ) = (πGφ)(πCε)(πAβ)

holds. This reduces to αγ = φβ, which is clearly not satisfied in general, and the
process is not time reversible. Using a cycle to show the nonreversibility is known
as Kolmogorovs condition (Kolmogorov (1936); Kelly (1979)).

Example 3. Let the state space be the set of all nonstop codons. Thus, an
element of this space is of the form x = (x1, x2, x3) with xi ∈ {A,G,C, T}, and
x /∈ {TAA,TAG,TGA}. All models to be considered allow for a change of one
nucleotide only, at each time point. The rate for a substitution of xj by z is denoted
λj(z;x). We first describe a general class of reversible models. Let x(j, z) be the
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codon x with xj replaced by z, let 1CG(x) be one if x contains a C followed by G,
and let (πj

A, π
j
G, π

j
C , π

j
T ) be a set of frequencies for each j = 1, 2, 3. We consider rates

of the form

λj(z|x) = vj(x
j, z)πj

zγ
1CG(x(j,z))
1 γ

1CG(x)
2 wam(x, x(j, z)),

where the function vj is symmetric, and the function wam(x, x(j, z)) depends on the
amino acids only, and is symmetric in the two amino acids encoded by x and x(j, z).

To show reversibility of this model, define g(x) = γ
1CG(x)
2

/ [
γ

1CG(x)
1 π1

x1π2
x2π3

x3

]
and define the function h(x, y) to be zero if the two nonstop codons x and y differ
at more than one nucleotide position and define h to be

h(x, y) = vj(x
j, yj)wam(x, y)γ

1CG(x)+1CG(y)
1 π1

x1π2
x2π3

x3π
j
yj

when x and y differ at position j only. Clearly h(x, y) is symmetric in x and y, and
the rates are given by g(x)h(x, y). According to Lemma 1 the model is reversible
and the stationary measure is

π(x) =
γ

1CG(x)
1 π1

x1π2
x2π3

x3

Cγ
1CG(x)
2

,

where C is a norming constant.
To illustrate nonreversibility by a simple example we consider the rates

λj(z;x) =


γ1AA(x1,x2) j = 1,

γ1AA(x2,x3) j = 3,

γ1AAA(x1,x2,x3) j = 2,

and look at the cycle AAG → GAG → GGG → AGG → AAG. Had the process
been reversible, the following should be true

(πAAGγ)(πGAG1)(πGGG1)(πAGG1) = (πGAG1)(πGGG1)(πAGG1)(πAAG1).

This reduces to γ = 1 and, so, the process is not reversible.

We next consider a process with state space Ω = {x = (x1, . . . , xn) : xi ∈ S1
i , i =

1, . . . , n, (xi−1, xi) ∈ S2
i , i = 1, . . . , n+ 1}, where S1

i is a finite set. The set S2
i allows

for the possibility of neighbour restrictions. No restrictions correspond to taking
S2

i = S1
i−1 × S1

i . For a DNA string, where each xi = (x1
i , x

2
i , x

3
i ), S

1
i is usually taken

to be the set of nonstop codons. If the sequence contains a double reading frame, a
typical neighbour restriction is S2

i = {(xi−1, xi)|(x2
i−1, x

3
i−1, x

1
i ) ∈ S1}. We consider

models where the only changes x → y that are allowed are those where yi 6= xi for
some i and yj = xj for j 6= i. The rate for a change of xi depends on x through xi

and its two neighbours xi−1 and xi+1 only. Such models are called context dependent
models as opposed to independent sites models where the rate depends on xi only.
The rate for a change of xi to yi is written as

λi(yi|xi−1, xi, xi+1). (6)
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For i = 1 and i = n the rates are defined through given fixed values of x0 and xn+1.
We always assume that the rates are such that the Markov process is irreducible.
The stationary distribution is denoted ϕ and when the process is irreducible the
stationary probabilities ϕ(x) are strictly positive for all x ∈ Ω. We say that the
process satisfies the neighbour support condition if there exists z∗ ∈ Ω such that

(a, z∗i ) ∈ S2
i and (z∗i , b) ∈ S2

i+1 ∀ i, ∀ a ∈ S1
i−1, ∀ b ∈ S1

i+1. (7)

Proposition 4. Assume that the neighbour support condition is satisfied. Then, the
context dependent model is time reversible if and only if the rates λi can be written
as

λi(yi|xi−1, xi, xi+1) = gi(xi;xi−1, xi+1)hi(xi, yi;xi−1, xi+1), (8)

where hi is symmetric in its first two arguments and where gi can be written as

gi(xi;xi−1, xi+1) = qi(xi, xi−1)qi+1(xi+1, xi)

for some positive functions qi, i = 1, . . . , n + 1. In the latter case the stationary
probability ϕ(x) is proportional to

∏n+1
i=1 qi(xi, xi−1)

−1.

Proof. If the rates are on the form given in the proposition, we define

g(x) =
n+1∏
i=1

qi(xi, xi−1)

and

h(x, y) =


(∏i−1

j=1 qj(xj, xj−1)
∏n+1

j=i+2 qj(xj, xj−1)
)−1

hi(xi, yi;xi−1, xi+1)

when yi 6= xi, yj = xj, j 6= i,

0 otherwise.

Then, h is symmetric in (x, y), and the rates (8) are on the form g(x)h(x, y). From
Lemma 1 this implies time reversibility, and also gives the form of the stationary
distribution.

Assume now that the process is time reversible and let ϕ(x) be the stationary
distribution. The reversibility implies that

ϕ(x1, . . . , xi−1, xi, xi+1, . . . , xn)λi(yi|xi−1, xi, xi+1)

= ϕ(x1, . . . , xi−1, yi, xi+1, . . . , xn)λi(xi|xi−1, yi, xi+1).
(9)

Looking at this equation for fixed i and fixed (x1, . . . , xi−1, xi+1, . . . , xn), one sees
that the rates (6) for fixed i and fixed (xi−1, xi+1) are reversible. Using Lemma 1 we,
therefore, obtain that the rates are of the form given in (8) for a general function
gi. Using this, (9) is rewritten as

ϕ(x1, . . . , xi−1, xi, xi+1, . . . , xn)

ϕ(x1, . . . , xi−1, yi, xi+1, . . . , xn)
=
gi(yi;xi−1, xi+1)

gi(xi;xi−1, xi+1)
. (10)

This equation shows that in the stationary distribution the conditional distribution
of xi, given all the other variables, depends on (xi−1, xi+1) only. Below it is argued
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that the Hammersley Clifford Theorem is valid in our case. When using this the
above Markov property (10) implies that ϕ can be written as

ϕ(x) =
n+1∏
i=1

ϕi(xi, xi−1)

for some functions ϕi, i = 1, . . . , n + 1. Inserting this back into (10) we obtain the
form of gi specified in the proposition.

The original version of the Hammersley Clifford Theorem (see Besag (1974))
assumed a positivity condition, which corresponds to having the state space Ω being
a product space Ω =

∏
i S

1
i . To handle the neighbour restrictions that are present in

our general model, we need the version of the Hammersley Clifford Theorem given
in Kaiser and Cressie (2000). There the state space can be more general under an
assumption called the MRF support condition. The latter requires the existence of
z∗ ∈ Ω such that for any i and any point (z1, . . . , zi−1, zi+1, . . . , zn), belonging to
the marginal support of (x1, . . . , xi−1, xi+1, . . . , xn) under the stationary measure, it
holds that

(z1, . . . , zi−1, z
∗
i , zi+1, . . . , zn) ∈ Ω. (11)

In our case the marginal support of (x1, . . . , xi−1, xi+1, . . . , xn) cannot be larger than

Ω−i = {z = (z1, . . . , zi−1, zi+1, . . . , zn) : zj ∈ S1
j , j = 1, . . . , n, j 6= i,

(zj−1, zj) ∈ S2
j , j = 1, . . . , n+ 1, j /∈ {i, i+ 1}}.

From the neighbour support condition (7) we, therefore, see that (11) is satisfied.
The neighbour support condition actually also implies that the marginal support is
equal to Ω−i.

In a phylogenetic context the mathematical importance of time reversibility (and
stationarity) is that the likelihood of a set of sequences connected through a tree can
be calculated with the root of the tree positioned anywhere on the tree. The simple
basic step in this argument runs as follows. Consider a root with sequence x and
two branches descending from the root of lengths t1 and t2 and with the sequences
y and z at the end of the branches. The likelihood of (y, z) is then∑

x

φ(x)p(y|x; t1)p(z|x; t2) =
∑

x

φ(y)p(x|y; t1)p(z|x; t2)

= φ(y)p(z|y; t1 + t2),

where p(y|x; t) = P (x(t) = y|x(0) = x) is the transition probability. Using this
argument iteratively the root can be moved to any position on the tree.

4 Continuous time model

In this section we describe the class of context dependent codon models introduced
in Jensen and Pedersen (2000) and Pedersen and Jensen (2001). These models are
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defined in continuous time and this section sets the stage for the time discretization
of the next section.

Let x(t) be a codon sequence of length n at time t, x(t) = (x1(t), . . . , xn(t)). The
jth nucleotide of codon i is xj

i (t), j = 1, 2, 3. The models studied in the above two
mentioned papers are defined through rates λ of the form

λ
[
j, ν
∣∣x(j−2):(j+2)

i

]
, (12)

where x
(j−2):(j+2)
i = (xj−2

i , xj−1
i , xj

i , x
j+1
i , xj+2

i , ) and x−1
i = x2

i−1, x
0
i = x3

i−1, x
4
i = x1

i+1,

x5
i = x2

i+1. Here λ is the rate for a replacement of the nucleotide xj
i by ν. The

dependency on the two flanking nucleotides reflects the possibility of more than
one reading frame as well as the possibility of dinucleotide interactions. The full
likelihood, conditionally on the initial sequence x(0), from observing x(t) from time
zero to time one is a product

L(·|x(0)) =
n∏

i=1

3∏
j=1

Lj
i , (13)

where each term is the contribution from the events at the corresponding site. In
this likelihood enters x0 and xn+1, and here these are taken to be known and fixed.
Alternatively, one can consider the conditional likelihood given x0 and xn+1, in which
case (13) includes terms with i = 0 and i = n + 1 as well as a norming constant.
The total rate for a change of nucleotide xj

i is

λ
[
j
∣∣x(j−2):(j+2)

i

]
=
∑
ν 6=xj

i

λ
[
j, ν
∣∣x(j−2):(j+2)

i

]
,

and using this the individual terms Lj
i can be written as

Lj
i = exp

{
−
∫ 1

0

λ
[
j
∣∣x(j−2):(j+2)

i (s)
]
ds
} K∏

m=1

λ
[
j, xj

i (tm)
∣∣x(j−2):(j+2)

i (tm−)
]
, (14)

where K is the number of jumps for nucleotide j in codon i, and tm is the mth jump
time.

We now consider a class of models for the rates (12), for which the estimation of
the parameters based on the full likelihood (13) becomes simple. The substitutions
are divided into a number of different types. Possible types of jumps are synonymous
versus nonsynonymous and transitions versus transversions. Each type r has a
parameter θr attached to it. The rates (12) can be written as θRγ

[
j, ν
∣∣x(j−2):(j+2)

i

]
,

where R is the type of jump depending on all the arguments of γ. The term γ is
a product of codon or nucleotide frequencies and a function related to dinucleotide
interactions. The stationary distribution of the sequence depends on the γ part of
the rates only, and we choose to estimate the parameters of γ from the stationary
distribution of one of the observed sequences, x(0) say. For an explicit example
see Section 6 below. Having estimated the parameters of γ, the parameter θ is
estimated from the conditional distribution given x(0). Excluding a multiplicative
term, depending on γ only, (14) can be written as

Lj
i = exp

{
−
∑

r

θrW
ij
r

}∏
r

θN ij
r

r , (15)
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where N ij
r is the number of jumps of type r experienced by nucleotide j within

codon i, and W ij
r =

∫ 1

0
γr

[
j
∣∣x(j−2):(j+2)

i (s)
]

with γr the sum of γ
[
j, ν
∣∣x(j−2):(j+2)

i (s)
]

over those ν for which the jump is of type r, R = r. The likelihood equations for θ,
therefore, become

θrWr = Nr, j = 1, . . . , p, (16)

where Wr =
∑

i,j W
ij
r and Nr =

∑
i,j N

ij
r is the number of jumps of a particular type

r. From the definition of W ij
r one sees that equation (16) says in words that the

expected number of jumps of a particular type should equal the observed number.
In case θ is a function of a parameter ξ, the likelihood equation for ξ becomes∑

r

{Nr − θrWr}
1

θr

∂θr

∂ξ
= 0. (17)

Having observed x(0) and x(1) only, define Lm(θ) to be the marginal likelihood.
A classical formula says that

Lm(θ)

Lm(θ0)
= Eθ0

{
L(θ)

L(θ0)

∣∣∣∣x(0), x(1)} , (18)

where L(θ) is the full likelihood from observing all of x(t). Jensen and Pedersen
(2000) evaluated the mean value in (18) by a Gibbs sampler. The path of a single
codon were updated conditioned on the paths of all the other codons. The distri-
bution of the latter conditional path depends on the paths of the two neighbouring
codons only, making this a feasible approach. It was not possible to simulate di-
rectly from the conditional path and, instead, a path was suggested which were then
accepted with a suitable probability (Metropolis-Hasting step). When considering
more than two sequences, connected in a known phylogeny, the suggestion of a con-
ditional path becomes more complicated. This is the main reason for introducing a
time discretized version of the model where it is possible to simulate directly from
the conditional distribution of a codon path. Furthermore, the estimation approach
via a maximization of (18) can be quite demanding in terms of computer time. This
is because the variance of the simulated mean value grows exponentially with the
length of the DNA sequence. For this reason it is much better to use an estimating
function as for example

∂lm
∂θ

(θ) = Eθ

[
∂l

∂θ
(θ)

∣∣∣∣x(0), x(1)] , (19)

where l and lm are log likelihoods. Using the particular function in (19) can be com-
bined with an EM algorithm for finding the estimates, but more general estimating
functions can often be combined with an EM type algorithm. We consider such a
possibility below using a simple estimating function.

When the continuous time process is time discretized, let the probability of a
change be τ times the above rate (12), where τ reflects the length of the time step.
Furthermore, to make sure that at each time step a stop codon (one of TAA, TAG,
and TGA) is not introduced within a reading frame, nucleotides at positions 1 are
updated before nucleotides at positions 2 and 3, and nucleotides at positions 2 are
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updated before nucleotides at positions 3. Another way of thinking about this is
to imagine that each time step is subdivided into three steps and changes at the
jth codon position are only allowed at the jth of the three substeps. Taking into
account the restrictions from the reading frames in this way has no influence on
the fact that as the time step tends to zero the continuous time model is retrieved.
Instead of using the full likelihood from the discrete time model we use estimating
equations of the same form as (16) to estimate the parameters, that is, we equate
the expected number of jumps to the observed number of jumps. Of course, in the
limit where the time step tends to zero, the estimates from the continuous time full
likelihood are recovered.

The discrete time model is an approximation to the continuous time model.
However, when the evolutionary distance between the two sequences is small we
think of the discrete time model as representing reality equally well as the continuous
time model even though the number of discrete time steps is taken to be a small
number.

5 Time discretized model: two sequences

5.1 Set-up

Let x(m) be the codon sequence at the discrete time points m = 1, . . . ,M . The
observed sequences are y = x(0) and z = x(M). Substitutions that produce a stop
codon are not allowed and, therefore, we let the state space of x(m) be all sequences
with no stop codons along the sequence within the relevant reading frames. Using
this state space one avoids writing the prohibition of stop codons explicitly in the
instantaneous substitution rates.

To take into account multiple reading frames we let in our most general model the
probability of a change in codon position j depend on the two previous nucleotides,
the two following nucleotides, as well as the nucleotide being changed. Also, as
mentioned above, changes at position one within a time step takes place before
changes at position two that in turn takes place before changes at position three.
Formally, the transition probability for a change of xj

i (m) to the new nucleotide ν
can functionally be written as

p1

(
ν
∣∣x2

i−1(m), x3
i−1(m), x1

i (m), x2
i (m), x3

i (m)
)
,

p2

(
ν
∣∣x3

i−1(m), x1
i (m+ 1), x2

i (m), x3
i (m), x1

i+1(m+ 1)
)
,

p3

(
ν
∣∣x1

i (m+ 1), x2
i (m+ 1), x3

i (m), x1
i+1(m+ 1), x2

i+1(m+ 1)
)
,

(20)

where pj is the probability for a change in position j. Note, how p2 and p3 incorporate
the rule that all nucleotides at codon positions one are updated before nucleotides at
positions two, that in turn are updated before nucleotides at positions three. When
calculating the likelihood function for the path the two boundary codons x0(m) and
xn+1(m) are considered nonrandom (typically these will be a start codon and a stop
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codon). The likelihood function, conditionally on x(0), is then

L =
M∏

m=1

n∏
i=1

p1

(
x1

i (m)
∣∣x2

i−1(m− 1), x3
i−1(m− 1), xi(m− 1)

)
× p2

(
x2

i (m)
∣∣x3

i−1(m− 1), x1
i (m), x2

i (m− 1), x3
i (m− 1), x1

i+1(m)
)

× p3

(
x3

i (m)
∣∣x1

i (m), x2
i (m), x3

i (m− 1), x1
i+1(m), x2

i+1(m)
)
. (21)

For the estimation to be described below we want to simulate the process x(t),
t = 1, . . . ,M − 1, conditionally on the values of x(0) and x(M). This is done via
a Markov chain Monte Carlo method using a Gibbs update, that is, we update the
path xj

i (m), m = 1, . . . ,M , conditionally on the paths of all the other nucleotides.

5.2 Gibbs update

In order to perform the Gibbs update, we need the conditional distribution of the
nucleotide path xj

i (m), m = 1, . . . ,M , given the paths of all other nucleotides. To
make the formulae below more transparent, the path of interest is denoted by ν(m),
m = 1, . . . ,M . Collecting all the terms in (21) that contain the relevant path, it is
seen that the conditional density is proportional to:

case j = 1:

M∏
m=1

p2

(
xi−1(m)2

∣∣x3
i−2(m− 1), x1

i−1(m), x2
i−1(m− 1), x3

i−1(m− 1), ν(m)
)

× p3

(
x3

i−1(m)
∣∣x1

i−1(m), x2
i−1(m), x3

i−1(m− 1), ν(m), x2
i (m)

)
× p1

(
ν(m)

∣∣x2
i−1(m− 1), x3

i−1(m− 1), ν(m− 1), x2
i (m− 1), x3

i (m− 1)
)

× p2

(
x2

i (m)
∣∣x3

i−1(m− 1), ν(m), x2
i (m− 1), x3

i (m− 1), x1
i+1(m)

)
× p3

(
x3

i (m)
∣∣ν(m), x2

i (m), x3
i (m− 1), x1

i+1(m), x2
i+1(m)

)
, (22)

case j = 2:

M∏
m=1

p3

(
x3

i−1(m)
∣∣x1

i−1(m), x2
i−1(m), x3

i−1(m− 1), x1
i (m), ν(m)

)
× p1

(
x1

i (m+ 1)
∣∣x2

i−1(m), x3
i−1(m), x1

i (m), ν(m), x3
i (m)

)
× p2

(
ν(m)

∣∣x3
i−1(m− 1), x1

i (m), ν(m− 1), x3
i (m− 1), x1

i+1(m)
)

× p3

(
x3

i (m)
∣∣x1

i (m), ν(m), x3
i (m− 1), x1

i+1(m), x2
i+1(m)

)
× p1

(
x1

i+1(m+ 1)
∣∣ν(m), x3

i (m), x1
i+1(m), x2

i+1(m), x3
i+1(m)

)
, (23)
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case j = 3:

M∏
m=1

p1

(
x1

i (m+ 1)
∣∣x2

i−1(m), x3
i−1(m), x1

i (m), x2
i (m), ν(m)

)
(24)

× p2

(
xi(m+ 1)2

∣∣x3
i−1(m), x1

i (m+ 1), x2
i (m), ν(m), x1

i+1(m+ 1)
)

× p3

(
ν(m)

∣∣x1
i (m), x2

i (m), ν(m− 1), x1
i+1(m), x2

i+1(m)
)

× p1

(
x1

i+1(m+ 1)
∣∣x2

i (m), ν(m), x1
i (m), x2

i+1(m), x3
i+1(m)

)
× p2

(
xi+1(m+ 1)2

∣∣ν(m), x1
i+1(m+ 1), x2

i+1(m), x3
i+1(m), x1

i+2(m+ 1)
)
,

where for m = M the terms in the product with m+ 1 are not present. Since each
term in the product

∏M
i=1 depends on ν(m) and ν(m− 1) only, we can rewrite these

conditional densities as an inhomogeneous Markov chain for m = 1, . . . ,M . This
is also true when ν(M) is fixed at the value given by the z-sequence. The Markov
structure makes it easy to simulate a new path ν(m), m = 1, . . . ,M .

Let us formally write one of the products in (22), (23), and (24) as

M∏
i=1

gm(ν(m); ν(m− 1)). (25)

Then the inhomogeneous Markov chain is given by the transition probabilities

qm(ν(m)|ν(m− 1)) =
gm(ν(m); ν(m− 1))hm(ν(m))

hm−1(ν(m− 1))
,

where the functions hm, m = 0, . . . ,M , are defined recursively by

hM(ν) = 1(ν = zj
i ),

and for m = M, . . . , 1:

hm−1(ξ) =
∑

ν

gm(ν; ξ)hm(ν). (26)

5.3 Estimation

As mentioned in Section 4, the model contains a parameter θ that we want to
estimate based on the transition probabilities. In this section we describe an EEE
algorithm for finding the estimates. EEE is an acronym for Expectation-Estimating-
Equation. The probabilities and expectations below are for the conditional measure
given x(0). Let

Ψ(θ, x(·)) = 0 (27)

be an estimating equation for the parameter θ based on observing x(m) at all time
points m = 1, . . . ,M . Observe x(M) (and x(0)) only, this equation is not useful.
Instead, we obtain an estimate θ̂ by solving the estimating equation

Eθ[Ψ(θ, x(·))|x(M)] = 0. (28)
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To solve this equation, an iterative procedure is used, where θk+1 is found from θk

by solving
Eθk

[Ψ(θ, x(·))|x(M)] = 0.

The expectation is calculated using MCMC and the Gibbs update described in
the previous subsection. For articles related to the EEE algorithm see Heyde and
Morton (1996), Rosen et al. (2000), and Elashoff and Ryan (2004).

Let L(θ, x(·)) be the full likelihood from observing all the evolutionary events
and let L(θ, x(M)) be the likelihood from observing x(M) only. We write the latter
formally as

∫
L(θ, x(·))dµ[x(·)|x(M)] and, similarly, we write

Eθ[Ψ(θ, x(·))|x(M)] =

∫
Ψ(θ, x(·))L(θ, x(·))dµ[x(·)|x(M)]∫

L(θ, x(·))dµ[x(·)|x(M)]
.

To calculate the “observed information”, the derivative of the left hand side of
Eθ[Ψ(θ, x(·))|x(M)] is written as

J(θ) = − ∂

∂θ
Eθ [Ψ(θ, x(·))|x(M)]

=

∫ [
−∂Ψ

∂θ
(θ, x(·))L(θ, x(·))−Ψ(θ, x(·))∂L

∂θ
(θ, x(·))

]
dµ[x(·)|x(M)]

L(θ, x(M))

+

∫
Ψ(θ, x(·))L(θ, x(·))dµ[x(·)|x(M)]

L(θ, x(M))2

∫
∂L

∂θ
(θ, x(·))dµ[x(·)|x(M)]

= Eθ

[
−∂Ψ

∂θ
(θ, x(·))

∣∣∣∣x(M)

]
− Vθ

[
Ψ(θ, x(·)), ∂l

∂θ
(θ, x(·))

]
, (29)

where l is the log likelihood corresponding to the likelihood L. When inserting θ = θ̂
the covariance term reduces to the conditional mean of the product of the two terms,
and thus

J(θ̂) =

{
Eθ

[
−∂Ψ

∂θ
(θ, x(·))

∣∣∣∣x(M)

]
− Eθ

[
Ψ(θ, x(·)) ∂l

∂θ
(θ, x(·))

∣∣∣∣x(M)

]}∣∣∣∣
θ=θ̂

. (30)

For the usual EM algorithm, where Ψ(θ, x(·)) = ∂l
∂θ

(θ, x(·)), the corresponding for-

mula is given in Louis (1982). For the maximum likelihood estiamte J(θ̂) is used as
the asymptotic variance, however, in the general case we also need to calculate the
variance Σ(θ) of Eθ [Ψ(θ, x(·))|x(M)] to obtain the asymptotic variance

J(θ̂)−1Σ(θ̂)J(θ̂)−1

of θ̂.
Let us for a moment consider the continuous time model and let us take Ψ to

be the score function as given through (16) and (17). To calculate the observed
information, the conditional means of the terms Wr and the conditional means of
the terms (Nr − θrWr)(Ns − θsWs) are needed. For the time discretized model we
take the estimating function Ψ to resemble the score function from the continous
time model, and when the number of time steps M is large, this analogy can be
used to calculate the observed information.
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6 Specific model

We now consider a specific model where the transition probabilities pj(·|·) from (20)
are a product of three terms. First, there is a term A that is symmetric in the
old and new nucleotide. Typically, this term depends on whether the change is a
transition or a transversion and whether the amino acid is changed in one of the
reading frames in use. Next, there is a term caused by dinucleotide interactions and,
finally, a term D dependent on the new nucleotide. Often, D represents nucleotide
frequencies. Let v = (v1, v2, v3) be a generic codon and let v−1, v0 be the nucleotides
at positions 2 and 3 in the left flanking codon and let v4, v5 be the nucleotides at
positions 1 and 2 in the right flanking codon. The transition probability for a change
of vj to ν, j = 1, 2, 3, is

pj(ν
∣∣vj−2, vj−1, vj, vj+1, vj+2)

= Aj(ν, v
j; vj−2, vj−1, vj+1, vj+2)

φj(v
j−1, ν)φj+1(ν, v

j+1)

φj(vj−1, vj)φj+1(vj, vj+1)
Dj(ν), (31)

where φ4 = φ1. We also consider the model with Dj(ν) replaced by D(v(j, ν)),
where v(j, ν) is the codon obtained from v by replacing vj by ν. In this way codon
frequencies enter instead of nucleotide frequencies. The φ terms in this expression
represent dinucleotide interaction. The nominator, where ν enters, can be seen
as a selection mechanism, whereas the denominator, that depends on the present
nucleotides only, can be seen as a change in the mutation rate. The model with the
φ part of (31) replaced by the more general term

φj(v
j−1, ν)φj+1(ν, v

j+1)

ψj(vj−1, vj)ψj+1(vj, vj+1)

can be treated in exactly the same way as the model (31).

6.1 Stationary distribution

The model with transition probabilities (31) is time reversible and the stationary
distribution for a sequence x = (x1, . . . , xn) is given by

π(x) =
1

C
φ1(x

3
n, x

1
n+1)

2

n∏
i=1

φ1(x
3
i−1, x

1
i )

2φ2(x
1
i , x

2
i )

2φ3(x
2
i , x

3
i )

2D1(x
1
i )D2(x

2
i )D3(x

3
i ),

(32)

where C is a norming constant and x0 and xn+1 are fixed. For the model whereDj(ν)
is replaced by D(v(j, ν)), the term D1(x

1
i )D2(x

2
i )D3(x

3
i ) in the stationary density is

replaced by D(x1
i , x

2
i , x

3
i ).

To prove the above statement, we show directly that π(x)p(y|x) = π(y)p(y|x)
for a one step transition probability p(·|·). Since, in our model, nucleotides at codon
positions 1 are updated before nucleotides at positions 2 and 3, one can look at these
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transition probabilities seperately. Let us consider updatings at codon positions 1
and let the present sequence be x and the new sequence be y, where

y2
i = x2

i and y3
i = x3

i , i = 1, . . . , n.

The aim is to prove that

π(x)
n∏

i=1

p1(y
1
i

∣∣x2
i−1(m), x3

i−1(m), x1
i (m), x2

i (m), x3
i (m))

= π(y)
n∏

i=1

p1(x
1
i

∣∣y2
i−1(m), y3

i−1(m), y1
i (m), y2

i (m), y3
i (m)). (33)

Terms in the products where y1
i = x1

i can be removed. Similarly, when inserting
(31), the A1 term can be removed due to the symmetri in the first two arguments.
The equation (33) then reduces to∏

i:y1
i 6=x1

i

φ1(x
3
i−1, x

1
i )φ2(x

1
i , x

2
i )φ1(x

3
i−1, y

1
i )φ2(y

1
i , x

2
i )D1(x

1
i )D1(y

1
i )

=
∏

i:x1
i 6=y1

i

φ1(x
3
i−1, y

1
i )φ2(y

1
i , x

2
i )φ1(x

3
i−1, x

1
i )φ2(x

1
i , x

2
i )D1(y

1
i )D1(x

1
i ),

which is clearly true. Updatings at positions 2 and 3 are treated in the same way.
For the model where Dj(ν) is replaced by D(v(j, ν)) the term D1(x

1
i )D1(y

1
i ) in the

above argument is replaced by D(xi)D(yi).

When looking at (32), one should keep in mind that the state space is all se-
quences with no stop codons along the sequence in the relevant reading frames.

6.2 Estimation

We split the estimation into two steps. For parameters entering φj and Dj, j =
1, 2, 3, we use the stationary density (32) to find estimates. Details on how to solve
this estimation problem are given in Appendix D. For parameters entering Aj we
use the transition probability when going from the y-sequence to the z-sequence, and
the optimization is done via the stochastic EEE algorithm mentioned in subsection
5.3.

As an example, consider the Goldman and Yang model (2), with one reading
frame only, defined by

Aj =


τ if synonymous transition,

τβ if synonymous transversion,

τξ if nonsynonymous transition,

τη if nonsynonymous transversion.

(34)

Here τ has the interpretation of a time distance between the two sequences. The
full likelihood (21) is in this case

τN1(τβ)N2(τξ)N3(τη)N4

∏
m,i,j:

xj
i (m)=xj

i (m−1)

pj, (35)
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where Ni, i = 1, . . . , 4, counts the number of jumps of the particular types given
in (34). In (35) the argument of pj has been left out. Each of these pj terms
consists of 1 minus a linear combinations of τ , τβ, τξ, and τη, and there is a large
number of different linear combinations. Maximization of this function cannot be
done analytically and, instead, we suggest to base the estimation on a set of simple
estimating equations. The suggestion is to equate the expected number of changes
of a particular type to the actual number in the full likelihood. We then take the
conditional mean (via simulations), given the observed sequences, on both sides
of the equation and solve the resulting equation. In explicit terms, this gives the
equation

θr

M∑
m=1

n∑
i=1

3∑
j=1

∑
(ν,xj

i (m−1))∈Tr

ω(ν; i, j,m)Dj(ν)

=
M∑

m=1

n∑
i=1

3∑
j=1

1
[
(xj

i (m), xj
i (m− 1)) ∈ Tr

]
, (36)

where

ω(ν; i, j,m) =
φj(x̃b, ν)φj+1(ν, x̃a)

φj(x̃b, x
j
i (m− 1))φj+1(x

j
i (m− 1), x̃a)

, φ4 = φ1,

with

x̃b =

 x3
i−1(m− 1) j = 1,

xj−1
i (m) j = 2, 3,

and x̃a =

 xj+1
i (m− 1) j = 1, 2,

x1
i+1(m) j = 3.

In this equation θ1 = τ , θ2 = τβ, θ3 = τξ, and θ4 = τη, and Tr is the corresponding
set of changes according to (34).

When running the EEE algorithm, we simulate the conditional mean of both
sides of (36) (not including θr), using the present values of the parameters, and find
a new value of θr as the ratio of the two conditional means. To find the conditional
mean, given the observed sequences y and z, the Gibbs sampler from subsection 5.2
is used.

Let us write the conditional mean of (36) in the form

θrgr = hr, r = 1, 2, 3, 4. (37)

When we consider a model with restrictions on the parameters the analogy to (17)
is used to obtain a set of estimating equations. As an example, when we consider
the restriction η = βξ the analogy to (17) gives the equations

h1 + h2 + h3 + h4 = τ(g1 + βg2 + ξg3 + βξg4),

h2 + h4 = τβ(g2 + ξg4),

h3 + h4 = τξ(g3 + βg4),

that are easily solved.
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6.3 Comparison with pseudolikelihood estimates

In Christensen et al. (2004) a pseudo likelihood is suggested for obtaining simple es-
timates in the type of models considered in this paper. The psudo likelihood consists
of a product over codon sites of the probabilities related to the evolutionary events
at the site, and can be maximized using an EM algorithm. A comparison with the
estimates obtained using the method of this paper was given. Using simulated data
with various degrees of dinucleotide interactions, in the form of CG-depression, it
was found that the two sets of estimates were almost identical for small to moderate
evolutionary distances between the two sequences. The method in Christensen et al.
(2004) has as yet been developed for the analysis of two sequences only.

7 Three (or more) sequences

We now extend the model to the case of several sequences connected in a phyloge-
netic tree. To make the notation as simple as possible, we consider the case of three
sequences, where all the features of the multiple sequence case are present.

The three sequences are connected in a 3-star tree. The likelihood is calculated
as though the observed sequence y is the ancestor that develops along branch 1 into
a sequence a at the inner node. The sequence a next develops into the observed
sequences z and u along branches 2 and 3. Along each branch there is a process as
above with M discrete time steps. The branch length appears through a separate
value of τ in (34) for each branch. Below we start by generalizing the Gibbs update
from Subsection 5.2 to the case here and next generalize the estimation procedure
of Subsection 6.2. We conclude with the analysis of a small data set.

7.1 Gibbs update

In (25) the terms entering the conditional distribution of a nucleotide path along a
branch are given. For a 3-star tree there are three sets of products as in (25), one for
each branch. For a branch ending at an inner node, in our case branch 1, the Mth
term in (23) and (24) is slightly changed. In (23) the two terms with p1 are doubled
for m = M since there is a term for each of the two branches descending from the
inner node. Similarly, for (24) the four terms with p1 and p2 are doubled for m = M .
We use an upper index k to indicate the branch on gm from (25) and on the path
ν(m). Thus ν1(0) is the observed nucleotide yj

i from the y-sequence, ν2(M) is the
observed nucleotide zj

i from the z-sequence, and ν3(M) is the observed nucleotide
wj

i from the w-sequence. Furthermore, ν2(0) = ν3(0) = ν1(M). Now define the
functions h1

m(ν), h2
m(ν), and h3

m(ν) by the backward recursion in (26) with

h2
M(ν) = 1(ν = zj

i ), h3
M(ν) = 1(ν = wj

i ),

and

h1
M(ν) = h2

0(ν)h
3
0(ν).
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Then the conditional path is given as an inhomogenous Markov chain with transition
probabilities

qk
m(νk(m)|νk(m− 1)) =

gk
m(νk(m); νk(m− 1))hk

m(νk(m))

hk
m−1(ν

k(m− 1))
,

where one first simulates ν1(1), . . . , ν1(M) and next simulate ν2(1), . . . , ν2(M) and
ν3(1), . . . , ν3(M).

For a general tree, we use the same method, where hk
m(ν) is calculated backward

in time (with respect to m and k), and a new path is simulated forward in time.

7.2 Estimation

We consider the model (34) with the same transition probabilities along the three
branches except for a different time scaling τk, k = 1, 2, 3.

Let us write equation (37) in the form

θrg
k
r = hk

r , (38)

where θr for r = 1, 2, 3, 4 is τk, τkβ, τkξ, and τkη, respectively, and where k = 1, 2, 3
is the branch number. In (38) gk

r and hk
r are the conditional means of the terms in

(36), given the observed sequences, which are calculated by simulations using the
Gibbs update. The 12 equations of the form (38) are reduced to 6 equations by
summing some of them. The resulting equations are∑

r

hk
r = τk

(
gk
1 + βgk

2 + ξgk
3 + ηgk

4

)
, k = 1, 2, 3, (39)

and ∑
k

hk
2 = β

∑
k

τkg
k
2 , (40)∑

k

hk
3 = ξ

∑
k

τkg
k
3 , (41)∑

k

hk
4 = η

∑
k

τkg
k
4 . (42)

We have used an iterative procedure to solve the above equations. For fixed values
of β, ξ, and η, we find τ1, τ2, and τ3 from (39), and then use the new values of τj
to obtain new values of β, ξ, and η from (40-42). Since the above equations are
analogous to the likelihood equations for the continuous time model, the iterative
procedure is an iterative partial maximization algorithm (sometimes called Zellner’s
twostage procedure). Properties of this kind of iterative maximization are given in
(Lauritzen, 1996, Appendix A.4) and in (Drton, 2004, Appendix A).

7.3 Data example

We consider three short aligned sequences from sus (domestigated pig), man, and
mouse consisting of 337 codons. The accession number of the human gene is
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NM 012111 (the gene name is AHA1), and the three sequences used here are part
of the investigation in Jørgensen et al. (2005). The alignment of the three sequences
is gap free. We use the model with one reading frame given in (31) and (34) with

φ1(a, b) = φ2(a, b) = φ3(a, b) = λ1(a=C,b=G). (43)

When λ < 1 this is the socalled CG-depression where CG pairs are seen more rarely
than predicted from the nucleotide frequencies. Furthermore, for each j we let Dj(ν)
be a probability distribution on the four nucleotides. The stationary distribution
(32), on the set of sequences with no stop codons, can then be written

1

C
λ2NCG

3∏
j=1

T∏
ν=A

Dj(ν)
N(j,ν), (44)

where NCG is the number of CG pairs along the sequence and Nj(ν) is the number
of times the nucleotide ν appears at codon position j. We estimate λ and Dj(ν)
from this marginal distribution. Details of the estimation are given in Appendix D.

The estimates of the CG-depression and the nucleotide probabilities obtained
from the marginal distribution of the sequences are

λ = 0.50± 0.054,

A G C T

position 1 0.253 0.407 0.158 0.183

position 2 0.332 0.178 0.267 0.224

position 3 0.180 0.321 0.335 0.164

With λ ≈ 0.50 these data shows a clear CG-depression. The algorithm described
in this paper, for estimation based on the transition probabilities, was run with
M = 40 time steps in each branch of the tree. We obtained estimates both using all
three sequences connected in a 3-star tree and using two sequences only: sus-man,
sus-mouse, and man-mouse. The estimated Goldman-Yang parameters are

β ξ η

3-star 0.37± 0.082 0.080± 0.021 0.019± 0.0064

sus-man 0.25 0.061 0.015

sus-mouse 0.35 0.076 0.027

man-mouse 0.38 0.070 0.026

Note that these values indicate that the nonsynonymous transversion rate η is
roughly the product of β and ξ. The estimate of the branch length τ , together
with the standardized version T , calculated as the expected number of nucleotide
changes per codon, are

τ , 3-star T, 3-star T, 2-seq

sus-star 0.012± 0.0022 0.17 0.17

star-man 0.0067± 0.0017 0.10 0.10

star-mouse 0.018± 0.0029 0.25 0.24
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The last column contains the expected number of nucleotide changes per codon
obtained by performing three seperate estimations for a pair of sequences.

The standard deviations were calculated from the observed information which
were found as described in section 5.3. We used the approximation to the observed
information in the continuous time model as obtained from the discrete time ap-
proximation.

8 Asymptotics

As will be explained below the process xi, i = 1, . . . , n, can be viewed as a Markov
chain. When observing xi(M) only, we are, therefore, in the situation of a hidden
Markov chain. Asymptotic results as n→∞ for the maximum likelihood estimator
in a hidden Markov chain can be found in Douc et al. (2004), Jensen and Petersen
(1999), Baum and Petrie (1966). The situation in this paper differs from the above
papers by considering an estimate obtained from an estimating equation and by
having boundary conditions at each end of the Markov chain.

We start by establishing exponential mixing of the evolutionary process along
the sequence. Using this, and a central limit theorem based on the work of Götze
and Hipp (1983), we prove asymptotic normality of the estimating function in (28).
Convergence of the observed information is established from the mixing properties
and from ergodicity. Using these results, established in Subsections 8.1-8.4, standard
asymptotic theory gives the asymptotic normality of the estimate of θ obtained from
solving (28)

8.1 Mixing

For simplicity we consider the model with one reading frame only, given through
(34) with β ≤ 1, ξ ≤ 1, ζ ≤ 1, and with 3τ < 1. In this case the full likelihood (21)
becomes

w1(x1)
n∏

i=2

w(xi, xi−1)wn(xn), (45)

where, leaving out some of the functional arguments, w is given as

w(xi, xi−1) =
M∏

m=1

p3

(
x3

i−1(m)|·
)
p1

(
x1

i (m)|·
)
p2

(
x2

i (m)|·
)
, (46)

and w1 contains p1 and p2 only, and wn contains p3 only. The structure in (45) implies
that, when conditioning on xi, the past (x1, . . . , xi−1) and the future (xi+1, . . . , xn)
are independent, which means that xi, i = 1, . . . , n, is an inhomogeneous Markov
chain. The inhomogeneity is because xi(0) is fixed and acts as a parameter in w.
Below we consider in some of the arguments the process with no conditioning on
x(0), in which case w includes the terms

3∏
j=1

φj(x
j−1
i (0), xj

i (0))Dj(x
j
i (0)) (47)
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from the stationary density (32), and now the Markov chain is homogeneous. De-
pending on whether one conditions on x(0) and x(M) the Markov chain has 61K

states with K = M − 1, M , or M + 1. For a finite state Markov chain it is fairly
easy to obtain mixing results and we describe this below. This is relevant when one
thinks of the number of time steps M as small and fixed. However, when looking
at the time discretized model as an approximation to the continuous time model,
the limit M → ∞ is of interest and it becomes relevant to make mixing estimates
independent of M .

Let Ns = {xs|xs(m) = xs(m − 1),m = 1, . . . ,M} be the event of no jumps in
codon s. Also, we use the notation p(As|ur, vt) = P (Xs ∈ A|xr = u, xt = v) and the
corresponding notation when conditioning on one variable only. For the case of M
fixed there exists a ρ < 1 such that, for all s and all values of u, v, we have

P (Ns|us−1, vs+1) ≥ 1− ρ. (48)

Here the conditioning is on xs−1 = u and xs+1 = v and the same bound trivially
applies when conditioning on xs−1 = u only. The proof of (48) runs as follows. We
write formally the conditional probability of xs given xs−1 and xs+1 as

1

Z

M∏
m=1

p3(x
3
s−1(m)|·)p1(x

1
s(m)|·)p2(x

2
s(m)|·)p3(x

3
s(m)|·)p1(x

1
s+1(m)|·), (49)

where Z is a normalizing constant. Let γ = min{β, ξ, ζ, 1−3τ} ≤ 1 (remember that
β ≤ 1, ξ ≤ 1, ζ ≤ 1, and 3τ < 1). In the case of no jumps in xs, we bound each
term in the product from below by γ(1− 3τ)(1− 3τ)(1− 3τ)γ leading to the lower
bound

1

Z
γM(1− 3τ)3MγM . (50)

Similarly, to get an upper bound for (49), we use the bound 1 for the first p3 term
and the last p1 term as well as the remaining terms when there are no jumps, and
the bound τ when there is a jump. This gives the bound τK , where K is the number
of jumps in xs, and summing over K lead to the bound Z ≤ (1+τ)3M (here we have
counted all jump sequences although some of these contain a stop codon). Thus
1−ρ in (48) can be taken as [(1−3τ)/(1+τ)]3Mγ2M . When there is no conditioning
on x(0), (47) is included in (49) and the sum runs from m = 0. However, this does
not change the above estimation of 1 − ρ. Note, also, that for the parameters in a
compact set we can choose ρ independent of the parameters so that (48) is valid for
all values of the parameters.

We next study the mixing properties of xi conditioned on xi(M), i = 1, . . . , n.
This process is again an inhomogenuous Markov chain. To obtain a result as in
(48), consider (49), now with xs(M) fixed. If xs(M) = xs(0), we use as above the
event Ns of no jumps in xs. If xs(M) 6= xs(0), we use another event where xs(0)
is changed to xs(M) in the smallest number of jumps (at most 3 jumps) using the
first few time points. Instead of (50), this gives the lower bound

1

Z
γM(γτ)q(1− 3τ)3M−qγM ,
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where q is the number of nucleotide changes between xs(0) and xs(M). For the
norming constant Z in (49) the upper bound from before applies, the difference
being that more jump sequences that are not allowed are included in the upper
bound. Thus, we again obtain a lower bound as in (48) for a suitable value of ρ.

Let r < s and let A be a fixed set. Define D(r) = maxu P (xs ∈ A|xr = u), d(r) =
minu P (xs ∈ A|xr = u), and Sr = {z : P (xr = z|xr−1 = u) > P (xr = z|xr−1 = v)}.
Proceeding as in Doob (1953, page 198), it is seen that

D(r − 1)− d(r − 1) = max
u,v

[P (As|ur−1)− P (As|vr−1)]

= max
u,v

∑
z

P (As|zr) [P (zr|ur−1)− P (zr|vr−1)]

= max
u,v

∑
z

(D(r)− d(r)) [P (zr|ur−1)− P (zr|vr−1)]

≤ (D(r)− d(r)) max
u,v

[P (Sr|ur−1)− P (Sr|vr−1)]

≤ (D(r)− d(r))ρ. (51)

Iterating, we obtain

max
u,v

|P (As|xr = ur)− P (As| = vr)| ≤ ρs−r, (52)

which shows that the process xi, i = 1, . . . , n, is mixing exponentially fast.
Let r < s < t and defineD(r), d(r), and Sr as above, except that the conditioning

is on xr = u as well as xt = w. The steps in (51) can now be repeated by adding
xt = w to the conditioning event. The same bound as in (51) is obtained because

P (Nr|ur−1, wt) =
∑

v

P (Nr|ur−1, vr+1)P (vr+1|ur−1, wt)

≥
∑

v

(1− ρ)P (vr+1|ur−1, wt) = 1− ρ.

As in (52) we obtain

max
u,v

|P (As|ur, wt)− P (As|vr, wt)| ≤ ρs−r.

A similar argument gives

max
u,v

|P (As|wr, ut)− P (As|wr, vt)| ≤ ρt−s.

Combining the two latter bounds lead to

max
a,b,u,v

|P (As|ar, bt)− P (As|ur, vt)|

≤ |P (As|ar, bt)− P (As|ur, bt)|+ |P (As|ur, bt)− P (As|ur, vt)|
≤ ρs−r + ρt−s. (53)

It is clear, also, that a similar argument can be used when considering the joint
probability of (xs−1, xs, xs+1), reducing the power of ρ by 1.

To summarize, the mixing result (52) and (53) can be used for the homogeneous
process, where both x(0) and x(M) are stochastic, for the process where we condition
on x(0) or x(M), and for the process where we condition on both x(0) and x(M).

28



8.2 Central limit theorem

The estimating function Ψ in (27), for the case when all of x is observed, takes in
our case the form

Ψ(θ, x) =
n∑

i=1

ψi(θ) with ψi(θ) = ψ(θ, xi−1, xi, xi+1), (54)

where the ith term in the sum relates to the evolutionary events in codon i. We
use the notation E(·|(i1, i2)) for the conditional mean given xi1:i2(M) = (xi1(M),
xi1+1(M), . . . , xi2(M)), and E(·|[i1, i2]) for the conditional mean given xi1:i2(M) as
well as xi1 and xi2 . The estimating funtion (28), based on observing x(M) only, is
then

Eθ

(
Ψ(θ, x)

∣∣(1, n)
)

=
n∑

i=1

Eθ

(
ψi(θ)

∣∣(1, n)
)
, (55)

where the expectation Eθ is for the measure conditioned on the value of x(0). We
want to show a central limit theorem for this sum.

The central limit theorem given in Jensen (2005), based on the work of Götze
and Hipp (1983), is taylored to a situation as here. There are two requirements:
an exponentially fast mixing of a set of sigma algebras {Dj}, and an approximation
with an exponentially small error in k to the individual terms in the sum by a
variable measurable with respect to {Di−k:i+k}. For the case here let {Di} be the
σ-algebras generated by xi(M), which and exponentially mixing according to (52).
Note that this is true both for the conditional process given x(0) as well as the
stationary process where the distribution of x(0) is included. Furthermore, using
(53), the conditional mean Eθ

(
ψi(θ)

∣∣(1, n)
)

can for each k be approximated by a
function of xi−k:i+k(M) with an error that is exponentially small in k. The precise
argument runs as follows. Since the state space is finite, there exists a constant c1
such that

|ψ(θ, x̄i)| ≤ c1 for all x̄i = (xi−1, xi, xi+1). (56)

Then, for the case i− k ≥ 1 and i+ k ≤ n, one finds that∣∣Eθ

(
ψi(θ)

∣∣(1, n)
)
− Eθ

(
ψi(θ)

∣∣(i− k, i+ k)
)∣∣

=

∣∣∣∣∫ Eθ

(
ψi(θ)

∣∣[i− k, i+ k]
) {
P
(
d(xi−k, xi+k)

∣∣(1, n)
)

− P
(
d(xi−k, xi+k)

∣∣(i− k, i+ k)
)}∣∣∣∣

≤ 2c1 max
A,a,b,u,v

|P c(x̄i ∈ A|ai−k, bi+k)− P c(x̄i ∈ A|ui−k, vi+k)|

≤ 2c1
(
ρk−1 + ρk−1

)
, (57)

according to (53) for the measure P c conditioned on x(0) and x(M). When i−k < 1
the approximation Eθ

(
ψi(θ)

∣∣(1, i+ k)
)

is used instead together with (52). This
gives the bound 2c1ρ

k−1 instead of (57). Similarly, when i+ k > n, only one of the
terms in (57) is used. The requirement in Jensen (2005) is that the mean of (57) is
exponentially small, but since (57) is not stochastic this is of course trivially true,
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both for the conditional process given x(0) as well as the stationary process where
the distribution of x(0) is included.

In conclusion, a central limit theorem for (55) holds, both in the stationary
process with x(0) stochastic and in the conditional process given x(0).

8.3 Uniform convergence of “observed information”

We now study J(θ) from (29). In (29), as well as in all of this section, the expec-
tations, variances, and mixing bounds are from the conditional process given x(0).
Recall that ψu(θ) = ψ(θ, x̄u) given in (54) and define ψs

u(θ) to be the sth coordinate
of ψu and define ψrs

u (θ) = − ∂
∂θr
ψs

u(θ). The full likelihood (21) can be written as∏n
u=1 ωu(θ), where ωu(θ) depends on x̄u and is given by

ωu(θ) =
M∏

m=1

p1(x
1
u(m)|·)p2(x

2
u(m)|·)p3(x

3
u(m)|·).

Define ωr
u(θ) = ∂

∂θr
ωu(θ). The (r, s) entry of the ν × ν matrix 1

n
J(θ) is now

1

n

n∑
u=1

Eθ

(
ψrs

u (θ)
∣∣(1, n)

)
− 1

n

n∑
u,v=1

Vθ

(
ψs

u(θ), ω
r
v(θ)

∣∣(1, n)
)
.

We first show uniform convergence with respect to θ.
As above, let Pθ(·|(m1,m2)) be the conditional distribution given xi1:i2(M) and

let Pθ(·|[i1, i2)] be the conditional distribution given xi1:i2(M) as well as xi1 and xi2 .
If i1 < 1 the conditioning is with respect to (x1:i2(M), xi2) only, and similarly If
i2 > n the conditioning is with respect to (xi1:n(M), xi1) only. The corresponding
changes in the derivations below are not spelled out. Since ω and its derivatives are
continuous and the state space is finite, one trivially has the existence of a constant
c2 such that for all i

|ωr
i | ≤ c2 for |θ − θ0| ≤ δ0. (58)

Finally, let ν be the dimension of θ.

Lemma 5. Let hu be a function of x̄u with |hu| ≤ 1. For |θ − θ0| ≤ δ0 we have

|Eθ(h
u|[i1, i2])− Eθ0(h

u|[i1, i2])| ≤ 2c2(i2 − i1 + 1)ν|θ − θ0|.

Proof. Let pu
θ be the density of Pθ(x̄u ∈ ·|[i1, i2)]. We first obtain a bound on the

derivative of pu
θ . To this end write

pu
θ =

∑(1)∏i2
i=i1

ωi∑(2)∏i2
i=i1

ωi

,

where
∑(1) is the sum over the possible values of (x(i1+1):(u−2), x(u+2):(i2−1)) and

∑(2)

is the sum over the possible values of (x(i1+1):(i2−1)). The derivative is then∣∣∣∣∂pu
θ

∂θr

∣∣∣∣ =

∣∣∣∣∣
∑(1)∑i2

j=i1
ωr

j

∏i2
i=i1

ωi∑(2)∏i2
i=i1

ωi

−
∑(1)∏i2

i=i1
ωi(∑(2)∏i2

i=i1
ωi

)2( (2)∑ i2∑
j=i1

ωr
j

i2∏
i=i1

ωi

)∣∣∣∣∣
≤ 2c2(i2 − i1 + 1)pu

θ .
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From this bound one finds

|Eθ(h
u|[i1, i2])− Eθ0(h

u|[i1, i2])| =
∣∣∣∣∫ 1

0

∑
x̄u

hu d

dt
pu

θ0+t(θ−θ0)dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

∑
x̄u

hu

d∑
r=1

(θ − θ0)r
∂

∂θr

pu
θ0+t(θ−θ0)dt

∣∣∣∣
≤ ν|θ − θ0|2c2(i2 − i1 + 1)

∫ 1

0

∑
x̄u

pu
θ0+t(θ−θ0)dt

= ν|θ − θ0|2c2(i2 − i1 + 1),

which proves the lemma.

Lemma 6. Let hu be a function of x̄u with |hu| ≤ 1. For |θ− θ0| ≤ δ0 and for any
integer l we have

|Eθ(h
u|(1, n))− Eθ0(h

u|(1, n))| ≤ 8ρl−1 + 2c2(2l + 1)ν|θ − θ0|.

Proof. From the mixing (53) (conditioning on x(0) and x(M)) and arguing as in
(57) the bound

|Eθ(h
u|(1, n))− Eθ(h

u|[u− l, u+ l])|

=

∣∣∣∣∫ Eθ(h
u|[u− l, u+ l]))Pθ(d(xu−l, xu+l)|(1, n))− Eθ(h

u|[u− l, u+ l])

∣∣∣∣
≤ 2(ρl−1 + ρl−1),

is obtained,which is valid for all |θ − θ0| ≤ δ0. Using this and Lemma 5 we obtain
the bound

|Eθ(h
u|(1, n))− Eθ0(h

u|(1, n))| ≤ |Eθ(h
u|(1, n))− Eθ(h

u|([u− l, u+ l]))|
+ |Eθ(h

u|[u− l, u+ l])− Eθ0(h
u|[u− l, u+ l])|

+ |Eθ0(h
u|[u− l, u+ l])− Eθ0(h

u|(1, n))|
≤ 4ρl−1 + 2c2(2l + 1)ν|θ − θ0|+ 4ρl−1,

which gives the result of the lemma.

From the continuity of ψ and its derivatives, and the finiteness of the state space,
there exist, trivially, bounds c3, c4 such that for all i and all |θ − θ0| ≤ δ0

|ψrs
u (θ)| ≤ c3 and |ψrs

u (θ)− ψrs
u (θ0)| ≤ c4|θ − θ0|. (59)

Lemma 7. Uniform convergence of conditional average:

lim
δ→0

sup
n

sup
|θ−θ0|≤δ

∣∣∣∣ 1n
n∑

u=1

Eθ

(
ψrs

u (θ)
∣∣(1, n)

)
− 1

n

n∑
u=1

Eθ0

(
ψrs

u (θ0)
∣∣(1, n)

)∣∣∣∣ = 0.
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Proof. From (59)) it follows that∣∣∣∣ 1n
n∑

u=1

Eθ

(
[ψrs

u (θ)− ψrs
u (θ0)]

∣∣(1, n)
)∣∣∣∣ ≤ c4|θ − θ0|, (60)

and from Lemma 6 one sees that∣∣∣∣ 1n
n∑

u=1

[
Eθ

(
ψrs

u (θ0)
∣∣(1, n)

)
− Eθ0

(
ψrs

u (θ0)
∣∣(1, n)

)]∣∣∣∣ ≤ 8ρl−1 + 2c2(2l + 1)ν|θ − θ0|.

(61)

If for example we take l = δ−1/2, the sum of the two terms (60) and (61) is of order
δ1/2 when |θ − θ0| ≤ δ and, thus, the result of the lemma follows.

Above we introduced c1 and c2 such that for all u and all |θ − θ0| ≤ δ0

|ψs
u(θ)| ≤ c1 and |ωr

u(θ)| ≤ c2.

Similarly, from continuity and the finiteness of the state space there exist constants
c5 and c6 such that

|ψs
u(θ)− ψs

u(θ0)| ≤ c5|θ − θ0| and |ωr
u(θ)− ωr

u(θ0)| ≤ c6|θ − θ0|. (62)

Lemma 8. There exists a constant c7 such that for |θ − θ0| ≤ δ0 and for any
integer l we have∣∣∣Vθ

(
ψs

u(θ), l
r
v(θ)

∣∣(1, n)
)
− Vθ0

(
ψs

u(θ0), l
r
v(θ0)

∣∣(1, n)
)∣∣∣

≤ c7
{
ρl−1 + (1 + l + |u− v|)|θ − θ0|

}
.

Proof. From (56), (58), and (62) one finds∣∣∣Vθ

(
ψs

u(θ), ω
r
v(θ)

∣∣(1, n)
)
− Vθ

(
ψs

u(θ0), ω
r
v(θ0)

∣∣(1, n)
)∣∣∣

=
∣∣∣Vθ

(
ψs

u(θ)− ψs
u(θ0), ω

r
v(θ)

∣∣(1, n)
)

+ Vθ

(
ψs

u(θ0), ω
r
v(θ)− ωr

v(θ0)
∣∣(1, n)

)∣∣∣
≤ 2(c5c2 + c1c6)|θ − θ0|.

Next, from Lemma 6 it follows that

|Eθ(ψ
s
u(θ0)|(1, n))− Eθ0(ψ

s
u(θ0)|(1, n))| ≤ c1(8ρ

l−1 + 2c2(2l + 1)ν|θ − θ0|),

and

|Eθ(ω
r
v(θ0)|(1, n))− Eθ0(ω

r
v(θ0)|(1, n))| ≤ c2(8ρ

l−1 + 2c2(2l + 1)ν|θ − θ0|),

which together give

|Eθ(ψ
s
u(θ0)|(1, n))Eθ(ω

r
v(θ0)|(1, n))− Eθ0(ψ

s
u(θ0)|(1, n))Eθ0(ω

r
v(θ0)|(1, n))|

≤ 2c1c2(8ρ
l−1 + 2c2(2l + 1)ν|θ − θ0|).
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Proceeding as in the proof of Lemma 6, conditioning on x(u−l,v+l) (for the case v > u)
instead of x(u−l,u+l), we find

|Eθ(ψ
s
u(θ0)ω

r
v(θ0)|(1, n))− Eθ0(ψ

s
u(θ0)ω

r
v(θ0)|(1, n))|

≤ c1c2
{
8ρl−1 + 2c2(2l + |u− v|+ 1)ν|θ − θ0|

}
.

The bound stated in the lemma now follows on combining the above error terms.

Lemma 9. Uniform convergence of conditional covariance:

lim
δ→0

sup
n

sup
|θ−θ0|≤δ

∣∣∣∣∣ 1n
n∑

u,v=1

Vθ

(
ψs

u(θ), ω
r
v(θ)

∣∣(1, n)
)
− 1

n

n∑
u,v=1

Vθ0

(
ψs

u(θ0)ω
r
v(θ0)

∣∣(1, n)
)∣∣∣∣∣

= 0.

Proof. In the proof we skip the indices r and s in ψs
u and lru. The mixing (53)

(conditioning on x(0) and x(M)) gives that∣∣Vθ

(
ψs

u(θ), ω
r
v(θ)

∣∣(1, n)
)∣∣ ≤ 4c1c2ρ

|u−v|−2, (63)

(Ibragimov and Linnik (1971)). Together with Lemma 8 this gives∣∣∣∣∣
n∑

v=1

Vθ

(
ψu(θ), ω

r
v(θ)

∣∣(1, n)
)
− Vθ0

(
ψs

u(θ0)ω
r
v(θ0)

∣∣(1, n)
)∣∣∣∣∣

≤
∑

v:|v−u|>l

4c1c2ρ
|u−v|−2 +

∑
v:|v−u|≤l

c7
{
ρl−1 + (1 + l + |u− v|)|θ − θ0|

}
≤ c11l

{
ρl−1 + l|θ − θ0|

}
.

Taking l = δ−1/4, the latter bound tends to zero and the proof of the lemma is
completed.

8.4 Convergence of the “observed information”

When considering the limit as n→∞ of the “observed information”

−∂Eθ(Ψ
(
θ)|x(M))/∂θ

we no longer condition on x(0), that is, the stationary density (32) is included in
the full likelihood (45). In this case the underlying Markov chain is homogeneous.
This homogeneous Markov chain has positive probability for all the possible tran-
sitions and, so, has a stationary initial distribution. We can, therefore, extend the
Markov chain into a stationary process from −∞ to +∞. The probability measure
for x1, . . . , xn then corresponds to a segment of the stationary process, but where
the joint distribution of (x1, xn) is different from that derived from the stationary
process. Probabilities from the stationary process are indicated by a bar above the
appropiate quantities.

For convenience the argument θ0 is not displayed in the following. For the
stationary process let P̄ (·|(−∞,∞)) be the measure conditioned on (xi(0), xi(M)),
with −∞ < i <∞.
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Lemma 10. As n→∞ we have the following convergence in probability

1

n

n∑
u=1

Eθ0

(
ψrs

u (θ0)
∣∣(1, n)

)
→ Ēθ0 (ψrs

0 (θ0))

Proof. We first prove that the variance of the average in the lemma tends to zero.
Using an argument similar to (57) one has

E(ψrs
u |(1, n)) = E(ψrs

u |(u− l, u+ l)) +O(ρl),

and this gives

V̄ (E(ψrs
u |(1, n)), E(ψrs

v |(1, n)))

= V̄ (E(ψrs
u |(u− l, u+ l)), E(ψrs

v |(v − l, v + l))) +O(ρl).

Also, the mixing of the stationary process implies a covariance bound as in (63),
and this gives

V̄ (E(ψrs
u |(u− l, u+ l)), E(ψrs

v |(v − l, v + l))) = O
(
ρmax(0,|v−u|−2l)

)
.

Taking l = |v − u|/4 and combining the above two expressions give

V̄ (E(ψrs
u |(1, n)), E(ψrs

v |(1, n))) = O
(
ρ|u−v|/4

)
,

which implies that

V̄

(
1

n

n∑
u=1

E(ψrs
u |(1, n))

)
= O

(
1

n

)
.

Thus, it suffices to study the limiting behaviour of the average in the lemma. The
latter mean is

1

n

n∑
u=1

Ē (E(ψrs
u |(1, n))) .

Using the mixing properties (53) (conditioning on x(0) and x(M)), and an argument
as in (57), it follows that∣∣E(ψrs

u |(1, n))− Ē(ψrs
u |(−∞,∞))

∣∣ =

∣∣∣∣∫ E(ψrs
u |[1, n])P (d(x1, xn)|(1, n))

−
∫
E(ψrs

u |[1, n])P̄ (d(x1, xn)|(−∞,∞))

∣∣∣∣
≤ 2c3(ρ

u−2 + ρn−u−1).

Since Ē
(
Ē(ψrs

u |(−∞,∞))
)

= Ē(ψrs
u ) the latter bound implies∣∣∣∣ 1n

n∑
u=1

Ē (E(ψrs
u |(1, n)))− Ē(ψrs

0 )

∣∣∣∣ ≤ 1

n

n∑
u=1

2c3(ρ
u−2 + ρn−u−1)

=
2c3
n

2

ρ(1− ρ)
,

which clearly tends to zero as n→∞. Thus the lemma has been proved.
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The limit of the covariance part of (29) is somewhat more difficult to obtain.

Lemma 11. We have∣∣V (ψs
u, ω

r
v

∣∣(1, n)
)
− V̄

(
ψs

u, ω
r
v

∣∣(−∞,∞)
)∣∣ ≤ 3c1c2

(
ρmin{u,v}−2 + ρn−max{u,v}−1

)
.

Proof. Write E(·|(1, n)) =
∫
E(·|[1, n])P (d(x1, xn)|(1, n)) and Ē(·|(−∞,∞)) =∫

E(·|[1, n])P̄ (d(x1, xn)|(−∞,∞)). From the mixing (53) (conditioning on x(0) and
x(M)) it is seen that∣∣E (ψs

uω
r
v

∣∣(1, n)
)
− Ē

(
ψs

uω
r
v

∣∣(−∞,∞)
)∣∣ ≤ c1c2

(
ρmin{u,v}−2 + ρn−max{u,v}−1

)
,∣∣E (ψs

u

∣∣(1, n)
)
− Ē

(
ψs

u

∣∣(−∞,∞)
)∣∣ ≤ c1

(
ρu−2 + ρn−u−1

)
,∣∣E (ωr

v

∣∣(1, n)
)
− Ē

(
ωr

v

∣∣(−∞,∞)
)∣∣ ≤ c2

(
ρv−2 + ρn−v−1

)
Combining these three bounds the result of the lemma follows.

Lemma 12. As n→∞ we have∣∣∣∣ 1n
n∑

u,v=1

V
(
ψs

u, ω
r
v

∣∣(1, n)
)
− 1

n

n∑
u=1

∞∑
v=−∞

V̄
(
ψs

u, ω
r
v

∣∣(−∞,∞)
)∣∣∣∣→ 0.

Proof. We write Vuv for V
(
ψs

u, ω
r
v

∣∣(1, n)
)

and V̄uv for V̄
(
ψs

u, ω
r
v

∣∣(−∞,∞)
)

and define
J(u) = {1 ≤ v ≤ n : |u− v| ≤ nα}. Using the mixing bound (63) and Lemma 11 it
follows that

1

n

n∑
u,v=1

Vuv =
1

n

n∑
u=1

∑
v∈J(u)

Vuv +O

(∑
j>nα

ρj

)

=
1

n

n∑
u=1

∑
v∈J(u)

V̄uv +O

(
1

n

n∑
u=1

∑
v∈J(u)

ρmin{u,v} + ρn−max{u,v}
)

+O
(
ρnα)

=
1

n

n∑
u=1

∑
v∈J(u)

V̄uv +O

(
nα

n

)
+O

(
ρnα)

=
1

n

n∑
u=1

∞∑
v=−∞

V̄uv +O

(
1

n

n∑
u=1

∞∑
j=min{u,nα}

ρj

)
+O

(
nα

n
+ ρnα

)

=
1

n

n∑
u=1

∞∑
v=−∞

V̄uv +O

(
ρnα nα

n
+ ρnα

)
.

Taking α = 1
2

the O(·) term tends to zero and the lemma has been proved.

Lemma 13. Under P̄ we have

1

n

n∑
u=1

∞∑
v=−∞

V̄
(
ψs

u, ω
r
v

∣∣(−∞,∞)
)
→

∞∑
v=−∞

Ē
[
V̄
(
ψs

0, ω
r
v

∣∣(−∞,∞)
)]

as n→∞.

Proof. Since the underlying Markov process xi under P̄ is ergodic, the sum wu =∑∞
v=−∞ V̄

(
ψs

u, ω
r
v

∣∣(−∞,∞)
)

is ergodic. The ergodic theorem, therefore, gives that
1
n

∑n
u=1wu → Ē(w0).
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9 Concluding remarks

The time discretized model presented in this paper can be used for a moderately
sized phylogenetic tree and for moderately sized sequence lengths. The mixing of
the process along the sequence is fast making the Gibbs sampler a feasible tool for
calculating mean values. This makes the EM algorithm (or the EEE algorithm) a
very useful tool for obtaining parameter estimates. In this respect the method of
this paper is an improvement over the estimation method in Jensen and Pedersen
(2000). Furthermore, asymptotic normality of the estimates has been rigorously
derived.

The actual model used in the data example is not crucial. Many other models
can be used within the framework given here. Time reversibility is used in a crucial
way for obtaining a simple stationary measure. However, the time reversibility is not
used in the MCMC analysis, and the latter can, therefore, be used for any context
dependent model. We must then have a rooted phylogenetic tree, and unless the
root is observed we need a stochastic model for the root sequence. For simplicity
a Markov chain along the root sequence seems appropriate, and with such a model
the asymptotic results are still valid.
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A Derivatives of exp(tQ)

We consider the situation in Subsection 2.1 with a continuous time Markov process
given through the rates qij. Let the rates qij = qij(θ) be functions of a scalar
parameter θ and make the assumption that Q = SDS−1, where D is the diagonal
matrix of eigenvalues. Define G = S−1 ∂Q

∂θ
S and define a matrix F with entries Fij

equal to t exp(tDii) if Dii = Djj, and equal to (exp(tDjj) − exp(tDii))/(Djj −Dii)
otherwise.

In Kalbfleisch and Lawless (1985) the following derivation is given:

∂P (t)

∂θ
=

∞∑
n=1

n∑
l=1

tn

n!
Ql−1∂Q

∂θ
Qn−l = S

[ ∞∑
n=1

n∑
l=1

tn

n!
Dl−1GDn−l

]
S−1

= S

[∑
ab

Gab

∞∑
n=1

n∑
l=1

tn

n!
Dl−1

aa D
n−l
bb Iab

]
S−1

= S
[∑

ab

GabFabI
ab
]
S−1

= S[G ◦ F ]S−1,

where Iab is the matrix with (a, b)th entry equal to one and all other entries being
zero, and where G ◦ F is the matrix with entries GabFab.

B Eigenvalues and eigenvectors for nucleotide

models

The HKY model (Hasegawa et al. (1985)) has rate matrix (2). Recall that πAG =
πA + πG and πCT = πC + πT . The eigenvalues and eigenvetors of this rate matrix
are

eigenvalues

0 −β −β −(απAG + βπCT )

A 1 1 −πCT/πAG 1

G 1 1 −πCT/πAG −πA/πG

C 1 −πAG/πCT 1 0

T 1 −πAG/πCT 1 0

where the eigenvectors are below the horizontal line.

For the general strand symmetric model with rate matrix (3) we divide the
discussion of eigenvalues and eigenvectors into a number of different cases. Define

a = (α+ β + 2δ)− (γ + ω + 2κ) and b = a2 + 4(α− β)(γ − ω).
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When α 6= β and b 6= 0 the eigenvalues and eigenvectors are

eigenvalues

0 −(γ + ω + α+ β)
a+

√
b

2
− (α+ β + 2δ)

a−
√
b

2
− (α+ β + 2δ)

A 1 1 1 1

G 1 −γ + ω

α+ β

a+
√
b

2(α− β)

a−
√
b

2(α− β)

C 1 −γ + ω

α+ β
− a+

√
b

2(α− β)
− a−

√
b

2(α− β)

T 1 1 −1 −1

with the eigenvectors below the horizontal line. When α = β and b > 0 the two last
eigenvalues become −(γ+ω+2κ) and −(α+β+2δ), with corresponding eigenvectors
(0, 1,−1, 0) and (1, c,−c,−1), where c = (ω−γ)/(α+β+2δ− (γ+ω+2κ). Finally,
when b = 0 the eigenvectors no longer span the 4 dimensional space and (1) cannot

be used. Let λ1 = 0, λ2 = −(γ + ω + α + β), and λ3 = a+
√

b
2

− (α + β + 2δ), where
the last expression reduces to λ3 = −(γ + ω + 2κ) when α = β. Instead of (1), one
finds that

exp(tQ) = S


1 0 0 0

0 etλ2 0 0

0 0 etλ3 tξetλ2

0 0 0 etλ3

 ,

where ξ = α − β when α 6= β and ξ = γ − ω when α = β. The matrix S has its
first three columns equal to the eigenvectors from before, and the fourth column is
(0, 1,−1, 0) when α 6= β and equal to (1, 1,−1,−1) when α = β.

C Calculations in the model of Arndt, Burge,

and Hwa (2003)

Consider a double infinitely long sequence evolving according to the rates (4). Let
fab(t) = P (x1(t) = a, x2(t) = b) be the probability at time t. The Kolmogorov
forward differential equations can, in the notation used here, be written as

f ′ab(t) =
∑
x0,x3

{∑
c 6=a

λ(a|x0, c, b)fx0cbx3(t) +
∑
d6=b

λ(b|a, d, x3)fx0adx3(t)

−
(∑

c 6=a

λ(c|x0, a, b) +
∑
d6=b

λ(d|a, b, x3)

)
fx0abx3(t)

}
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=
∑
c 6=a

{
[λ0(a|c) + λr(a|cb)]fcb(t) +

∑
x0

λl(a|x0, c)fx0cb(t)

}
+
∑
d6=b

{
[λ0(b|d) + λl(b|ad)]fad(t) + +

∑
x3

λr(b|dx3)fadx3(t)

}
−
[
λ0(|a) + λ0(|b) + λr(|ab) + λl(|ab)

]
fab(t)

−
{∑

x0

λl(|x0, a)fx0ab(t) +
∑
x3

λr(t|bx3)fabx3(t),

}
, (64)

where the notation with a λ without its first argument implies a summation over the
rates, and f with three indices is the probability of three consequtive nucleotides
fabc(t) = P (x1(t) = a, x2(t) = b, x3(t) = c). Letting t → ∞, the left hand side
becomes zero and on the right hand side f can be replaced by the stationary prob-
abilities π. To solve these equations Arndt et al. (2003) use the approximation in
(5), which is exact if the stationary measure along the sequence is a Markov chain.

We next consider a characterization of the cases where the stationary measure is
a Markov chain along the sequence. Consider a proces (x1, . . . , xn), where the rates
are given by (4), and where there are fixed values x0 and xn+1 that define the rates
at the two ends of the sequence. We look for cases where the stationary measure ϕ
can be written in the form

ϕ(x) = φ1(x1)φ2(xn)
n∏

i=2

φ(xi|xi−1),

where φ(a|b) is the transition probability of a Markov chain. Also, we have in mind
n → ∞ so that factors related to φ1 and φ2 are not of importance. The equation
that ϕ has to satisfy, in order to be the stationary measure, is

∑
x ϕ(x)λxy = 0 for

all sequences y, where λxy is the rate for a change of x to y. In our case there can
be a change at one position in the sequence only, at each time point. The equation
then becomes

0 = ϕ(y)
n∑

i=1

∑
ν 6=yi

λ(yi|yi−1, ν, yi+1)
ϕ(ν|yi−1)ϕ(yi+1|ν)
ϕ(yi|yi−1)ϕ(yi+1|yi)

(65)

− ϕ(y)
n∑

i=1

∑
ν 6=yi

λ(ν|yi−1, yi, yi+1)

= ϕ(y)

{
h1(y0, y1, y2) +

n−1∑
i=2

h(yi−1, yi, yi+1) + h2(yn−1, yn, yn+1)

}

= ϕ(y)

{∑
a,b,c

Ny(a, b, c)h(a, b, c) + h1(y0, y1, y2) + h2(yn−1, yn, yn+1)

}
,

where φ(y1|y0) and φ(yn+1|yn) should be replaced by φ1(y1) and φ2(yn), respectively.
In the last equation Ny(a, b, c) is the number of triplets (yi−1, yi, yi+1), i = 2, . . . , n−
1, with the value (a, b, c), and

h(a, b, c) =
∑
ν 6=b

λ(b|a, ν, c)φ(ν|a)φ(c|ν)
φ(b|a)φ(c|b)

−
∑
ν 6=b

λ(ν|a, b, c).
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The terms h1 and h2 in (65) are not of importance when n→∞. It is tempting to
think that having (65) equal to zero for all sequences y implies that h(a, b, c) = 0
for all combinations of (a, b, c). However, as the special case below shows, this need
not be true.

To obtain explicit results we now specialize to the case of a two letter alphabet,
that is, xi ∈ {A,B}. Using the notation ¬A = B and ¬B = A, the model (4) has a
total of nine parameters:

λ0(B|A) = 1, λ0(A|B) = γ, λl(¬b|ab) = κab, λr(¬a|ab) = ωab,

where a, b ∈ {A,B}. Note that this is by itself an overparametrization: there are
only eight different rates λ(¬b|abc). If κa1a2 is the smallest of the κ values and,
similarly, ωb1b2 is the smallest of the ω values, then these two terms cannot be
identified individually, only their sum κa1a2 + ωb1b2 can be identified. Furthermore,
we parametrize the Markov chain ϕ by

φ(B|A) = α, φ(A|B) = β. (66)

This Markov chain has stationary probabilities πA = β/(α+β) and πB = α/(α+β).
Manipulating the equations (64), together with the approximation (5), give the
following equations for α and β

(ξAB − ξBB)β2 + (ξBA − ξAA)αβ + (ξAA + ξBA − ξAB + 3ξBB)β = 2ξBB, (67)

ξAAβ − ξBBα = (ξAA + ξAB − ξBA − ξBB)αβ, (68)

where

ξAA = 1 + κAA + ωAA = λ(B|AAA), ξBB = γ + κBB + ωBB = λ(A|BBB),

ξAB = γ + κAB + ωBA = λ(A|ABA), ξBA = 1 + κBA + ωAB = λ(B|BAB).

Equation (67) is derived from (64) with (ab) = (BB), and equation (68) is the
difference between (67) and the equation derived from (64) with (ab) = (AA). The
equations in (67) and (68) show how some of the rates do not enter the Markov
chain approximation to the stationary measure.

To study when the stationary measure has the Markov structure, we look at
the equations in (65) using the parametrization (66) of the Markov chain. Taking
the y sequence to consist entirely of As or entirely of Bs, we find h(AAA) = 0
and h(BBB) = 0. Writing down the expressions for the h functions, one sees that
h(AAA) = 0 implies h(ABA) = 0 and h(BBB) = 0 implies h(BAB) = 0. Next, we
consider a y sequence where AAB is repeated, which gives h(AAB) + h(BAA) = 0
(using h(ABA) = 0). Again, writing down the equations one finds that h(AAB) +
h(BAA) = 0 implies h(ABB) + h(BBA) = 0. The above 6 equations for the h
functions suffice for (65) to be satisfied for all y in the limit n→∞. The argument
for this runs as follows. Starting from one end of the y sequence, the h terms
cancel with one another so that at most two terms are left. To understand this we
consider a number of cases. Consider a subsequence starting with ab and consisting
of abbk(¬b) with k ≥ 0. The sum of the h functions is h(ab(¬b) when k = 0 and
h(abb) + (k − 1)h(bbb) + h(bb(¬b)) = h(abb) + h(bb(¬b)) when k > 0. In both cases
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there are at most one nonzero h term along the sequence. Furthemore, all these
subsequences end with the letters b(¬b) and if ab = AB or ab = BA the sum of the
h functions is zero. Thus, for the full sequence, irrespectively of the value of the
two first letters, there is at most two nonzero terms in the cumulative sum of the h
functions. Let us now consider the three equations h(AAA) = 0, h(BBB) = 0, and
h(AAB) + h(BAA) = 0 in more detail. The three equations take the form

ξ11(1− α)2 = ξ12αβ, ξ22(1− β)2 = ξ21αβ,

(ξ11 + ξ21)(1− α) = (ξ22 + ξ12)(1− β).

Manipulations of these equations give

α =
ξ11

ξ11 + ξ12
, β =

ξ12
ξ11 + ξ12

, (69)

ξ11ξ22 = ξ12ξ21. (70)

With these values of α and β and using (70), equations (67) and (68) are both ful-
filled. In summary, if and only if (70) is satisfied the stationary measure is a Markov
chain with transition probabilities given by (69). The stationary process being a
Markov chain does not automatically imply that the process is time reversible. We
need one more restriction on the parameters apart from (70), namely

ξAA(γ + κAB + ωBB) = ξAB(1 + κAA + ωAB).

D Estimation based on stationary distribution

Estimation of the nucleotide frequencies Dj(ν) from (31) and the CG-depression λ
from (43) through maximization of (44) is difficult due to the normalizing constant
C. In Jensen and Pedersen (2000) a fairly accurate approximation to C is given.
To make the maximization easier we estimate, for fixed λ, Dj(·) from the condi-
tional distribution of the nucleotide at position j given the values of the flanking
nucleotides. For position 1 there are a total of 6 different conditional distributions
and the likelihood becomes(

T∏
ν=A

D1(ν)
N(1,ν)

)
[D1(A) + λ2D1(G) + λ2D1(C) +D1(T )]−K(1,1) (71)

× [D1(A) + λ2D1(G) +D1(C) +D1(T )]−K(1,2)

× [D1(A) +D1(G) + λ2D1(C) +D1(T )]−K(1,3)

× [D1(A) + λ2D1(G) +D1(C)]−K(1,4)[D1(A) +D1(G) +D1(C)]−K(1,5),

where the last two terms reflect that stop codons are not allowed. Here N(1, ·) and
K(1, ·) are all counts. Next, introduce a reparametrization by

(D1(A), D1(G), D1(C), D1(T )) = (eα1 , eα2 , eα3 , 1)/(eα1 + eα2 + eα3 + 1).
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Differentiating the logarithm of (71) with respect to α1, the likelihood equation can
be written as

eα1 = N(1, A)

[
N(1, T )

eα1 + eα2 + eα3 + 1
+

K(1, 1)

eα1 + λ2eα2 + λ2eα3 + 1

+
K(1, 2)

eα1 + λ2eα2 + eα3 + 1
+

(K1, 3)

eα1 + eα2 + λ2eα3 + 1

+
K(1, 4)

eα1 + λ2eα2 + eα3
+

K(1, 5)

eα1 + eα2 + eα3

]−1

, (72)

with similar expressions when differentiating with respect to α2 and α3. We solve
these equations iteratively by inserting the present parameter value on the right
hand side of (72) and solving for α on the left hand side.

Inserting the estimates for Dj(ν), as a function of λ, in (44) the estimate of
λ is found by numerically maximizing this expression. To this end we use the
approximation in Jensen and Pedersen (2000) for the normalizing constant C. The
second derivative of this profile log likelihood function can also be found numerically.
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