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INTRODUCTION

The inspiration for this thesis comes from mathematical physics, especially path integrals
and the Chern-Simons action. Path integrals were introduced by Feynman in late 1940’s and
they have recently been applied to purely geometric problems. The work [33] of Edward Witten
on the topological quantum field theory has been found very attractive by many enthusiastic
mathematicians. Although the ideas of quantum field theory are far from mathematically
understood, they seem to give unifying framework for many recent invariants in low dimensional
topology. One of the important ingredients in formulating 3-dimensional topological gauge field
theories is the Chern- Simons functional.

In quantum theory, for a compact Lie group G, we consider a G-bundle over an oriented
3-manifold M and a connection A which can be regarded as a Lie algebra valued one form on
the G-bundle. We can define the Chern-Simons functional by

S(A) =< S(A),[M] >= / TP(A),

where TP(A) = g5Tr(AdA + 2A AN AN A) is the Chern-Simons form and Tr is an invariant
quadratic form on }. One can use this functional as the lagrangian of a quantum field theory.

The Lagrangian formualtion of quantum theory leads us to ”"path integrals”;
Z(M) — /627riS(A)dA

over the space of all connections on the 3-manifold.

In 1989 Witten proposed a formulation of a class of 3-manifold invariants as generalized
Feynman integrals taking the form above (see also Dijkgraaf-Witten [8], Rabin[29)]).

In Chern-Simons theory for which we follow Chern-Simons [7], the parameter which defines
the “path” varies the connection. In our case, the path corresponds to a connection and the
subdivision in the path corresponds to the subdivision in order to compute the variation of the
Chern-Simons class for a connection.

Now, we recall Huebschmann [17] for the Chern-Simons function, let M be a smooth closed,
oriented manifold and consider a G-bundle on I x M with a connection w on M, parametrized
by I = [0,1] or equivalently, as a path of connections. The Chern-Weil construction assigns
to an invariant homogeneous degree k polynomial P on the Lie algebra g the characteristic
form P(F,) on I x M of degree 2k. Integration along the fibers of the canonical projection
w: I x M — M yields the secondary Chern-Simons form T'P(w) on M of degree 2k — 1 with

dTP(w) = P(F,(1)) — P(F,(0)),

where P(F,(0)) and P(F,(1)) are the characteristic forms on M induced by the embedding
to: M — I x M and i1 : M — I x M defined with reference to the two end points of I. Given
a (2k — 1)-cycle ¢ of M, [ TP(w) yields a real number which modulo 1 only depends on the
gauge equivalence classes of the two connections wy and w;. Then given a principal G-bundle
¢ and a cycle ¢ of M, after having fixed a connection wg on &, on the space of base gauge
equivalence classes of connections on &, we define a G- invariant function S with values in R/Z:
Pick a path w of connections from wy to wy, assign to wy on the fixed value S(wy) and given
any wy on &, define S(w;) by

S(wy) = / TP(w) + S(wy) mod Z.
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Let E — M be a bundle and {U;};,c; be an open covering of M. We can define a
connection on this bundle by pulling back the canonical connection on the universal
bundle. Every trivial bundle has a flat connection. Local trivializations define flat connec-
tions w; in Ey,. So w; € A'(Ey,,}) is a connection on Ey,. By choosing a partition of unity
{vitier and w = 3. ; piw; will be a connection on £. We want to see how many connec-
tions we can get in this way and we consider the space of such connections in order to see
the analogy of path integration. Let’s take a nerve of U = {U;}ic; and its fat realization
IINMy|| = | AP x NMy(p)/ ~. Now, look at the following diagram

[N M| E

\
M?
here the section s : M — AP x NMy; defines a partition of unity since @;(z) # 0, z € M,
hos = id, hence varying ¢t € AP corresponds to a simplicial construction P.S. closely related to
the prismatic subdivision |||P.S. ||. This is the motivation how one can use the path integration
and Chern-Simons functional by means of subdivision, that is, the path integration is interpreted
as an integral over AP. That is how our case can be thought as a model of the path integration.
One can find infinitely many connections for each fix p. Finally we obtain formulas for the
effect of the prismatic subdivision to the lattice gauge field for Chern-Simons theory. It would
be an interesting problem to study the behaviour of the Chern-Simons functional when p — oo.

More precisely, the aim in this thesis is to find formulas for the variation of a Chern-
Simons class for a given bundle F' — |S|, where S is a simplicial set, with a connection w by
using prismatic subdivision. I have been inspired by Phillips-Stone’s article [27] in which they
compute the Chern-Simons character of a lattice gauge field. In their work, they take a generic
SU (2)-valued lattice gauge field u on a triangulation A of a manifold M of dimension > 3. A
G-valued lattice gauge field (l.g.f) on A is a collection u = {u;;} of group elements, one for
each 1-simplex < ij > of A, subject to the condition u;; = u;;~'. They construct from u a
principal SU(2)-bundle £ over M and a piecewise smooth connection w. They define a canonical
connection follows from Dupont [9] in Milnor’s universal G-bundle {AG = (ma 1 EAG — BAG)
and a corresponding canonical Chern-Simons form. They extend l.g.f. to a G-valued parallel
transport function (p.t.f.) over A which consists of a family V' of piecewise smooth maps
of cubes into G with the cocycle and compatibility conditions. This gives rise to define a
classifying map f : A — BaG which leads to the construction of a pseudo section. They use
the pseudo section to integrate the pulled-back Chern-Simons form from the universal bundle.
By using the bar construction established by Eilenberg and MacLane [14], they compute the
Chern-Simons character from each 3-simplex ¢ € A. They compare the Chern-Simons class
S(w) with the Chern-Simons class for the canonical connection for SU(2) and the second one
is already zero. In our case, we do the variation of the Chern-Simons class for a connection for
a general case. Since they work on a special case and SU(2) is 2-connected, everything works
without any problem. In our case there is no trivialization and such a cycle property to get a
section. Therefore we would have to follow another way to calculate the related formula for the
Chern-Simons character. For further information, one can see Freed [15], Huebschmann [17],
Liischer [19], Phillips-Stone [23],[24],[26],[28].

The Chern-Simons form and character have been introduced by S.S. Chern-J. Simons [7] and
by taking this article as a base J. Cheeger and J. Simons have studied on differential characters
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in [6]. Lattice gauge fields were introduced by K. Wilson in [32] to represent classical field
configurations in Monte Carlo evaluations of path integral solutions of quantum field theories.
L.g.f.’s have been used to find a new way of computing the second Chern number (the topological
charge) of a principal SU(2)-bundle £ over a triangulated 4-manifold M by Phillips-Stone [25],
if £ has a connection.

The prismatic subdivision plays an important role in the thesis. It has also been used by
McClure-Smith [21] to give a solution of Deligne’s Conjecture. An affirmative answer to the
Deligne’s conjecture has been given by Kontsevich and Voronov. The prismatic subdivision was
discovered independently and various times by e.g., Lisica-Mardesic [18] and Batanin [1], [2].
There is a related edgewise subdivision discovered by Quillen, Segal, Bokstedt and Goodwille
and it has also been studied by Hsiang and Madsen. The edgewise subdivision of a simplex
is a subdivision of the prismatic subdivision. A special case of the edgewise subdivision was
given by Bokstedt-Brun-Dupont in an unpublished note [4] and applied by the same authors
in [3]. It can be defined as a chain map from the singular chain complex of any topological
space into itself. In the construction given in [4], one uses the Alexander-Whitney map and
the definition is closely related with the Eilenberg-Whitney map (see MacLane [20] (chapter 8,
p.238)). Although it is quite similar to the barycentric subdivision, it has better properties in
the sense that it divides a simplex into simplices which are more precise. The construction in
[4] was quite useful to give the geometric interpretion of the realization of the prism complex
P,Sy.....q, and it motivated me to construct a canonical homeomorphism L : || [P.S]| || — || [S.| ||
and Alexander-Whitney diagonal map. This homeomorphism is one of the main statements in
the thesis. We would like to point out that we are not using the edgewise subdivision in our
construction. In our case, it is enough to use prismatic subdivision , since we want to make a
simplex as small as possible along the edges.

We have used also some other tools in this thesis. One of the most important of them is the
simplicial currents given by Dupont-Just [13]. The complex A*||X]|| of simplicial differential
forms defined in Dupont [11] plays the role of the differential forms on a manifold. In their
article, the aim is to introduce a complex €2, || X|| of simplicial currents on a simplicial manifold
X, with properties similar to the complex of currents on a manifold. We have used this article
to define some required extensions in the simplicial currents and the chain homotopy between
them.

Now, we are going to give a brief outline for the thesis:

The first two chapters deal with some definitions of simplicial constructions and Alexander-
Whitney map and they contain some preliminaries.

Chapter 3 contains the edgewise subdivision construction given in [4] as a motivation to
define the map
AW(A) : |S| = |E,S| = 15| x ... x|S|(p+ 1 — times)

by using the Alexander-Whitney map. This map is defined by means of a simplicial construc-
tion. The important property here is that |P,S | corresponds to a subdivision of the simplex in
1S |. 1,(t) - |P,S.| — |S] leads us to find the chain map

aw : Ci(S) — C..(PS)

op
which is induced by ,(t)"! for t € A .
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In chapter 4, we examine the prism complex | P,S | and establish a canonical homeomorphism

LIPS = IS

where || [S] || = ||[A%|| x |S.| and A™ is the simplicial set with one element ¢, = (0,...,p) in
each degree. Moreover, it is shown that there exists a well-defined chain homotopy
us IS = 1S

In chapter 5, an analogy between a nerve for a simplicial complex and a nerve for a sim-
plicial set is given by defining P,Sy, .. There is a projection |P,Sg. ¢ — |PpSqo..q,]- We
point that |F,Sy,. q,| corresponds to the p-th nerve of |P,Sy, . 4| for the covering |S| by stars
{r=Y(o) | o € Sp}, where r : S — Sy is a retraction and S, := S,,; is the star complex.
The reason is to construct the new complex P,S. is that there is no well-defined classifying
map || |[PS|| — BG and there is a homotopy equivalence || [PS| | ~ ||S||. Nevertheless
I1PS| || = || |PS] | induced from the projection given above is a homotopy equivalence.
Then we construct a classifying map

m: || |PS| | — BG.

At the end of the chapter in proposition 5.2, we show that S is a deformation retract of B,S.
with r : B,S. — S,.

Chapter 6 deals with transition functions for a given bundle F' — |S| and admissible trivial-
izations. We also show that there is a bundle F' — |S|, S is a simplicial set, and trivializations
with transition functions for a given set of transition functions satisfying some relations in
proposition 6.8.

Chapter 7 includes the construction of the classifying map m for a given bundle F' — |S]
and admissible trivialization and also it contains the construction of a map k : [|S|| — BG
defined with aid of transition functions.

Chapter 8, we work on the chain level in order to solve the problem of lifting to |P.S|.
Lifting us we get a lifting Hy : ||S|| — || [P.S.] || of the family u; defined in chapter 4. However
on the space level, there is no any way to lift Hs, but it can be done on the chain level which
leads us to examine the double complex C, .(PS) as a family of {C,,(PS)} of modules with
boundary maps given in proposition 8.1.

In chapter 9, we consider || |S| || and show that there exists a map of bicomplexes
awp : CL(A®) @ Ci(S) — CL(PS),

where C,(A) is the chain group with only one generator in each degree and awy is an extension
of ug on the chain level. We also define a chain map aw; as an extension of ;.

In chapter 10, we briefly review some general information about spectral sequences and
filtration. After that we examine the homology H(C.(PS)) = H(C.(S)) for the prism complex
PS.. In proposition 10.5 and proposition 10.6, we calculate the spectral sequences ’ EWL2 and
"Enp'. We also give a remark about the similar calculation for PS.

Chapter 11 deals with the lifting problem. First we show that the chain maps uy and u;
given in chapter 8 are chain homotopic via chain homotopy s. In proposition 11.3, we find a
lift ao for Ugp-
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Chapter 12 contains the chain homotopy T between the chain maps awy and aw; given in
chapter 9. In order to define this chain homotopy, we need to follow some steps given by lemma
12.2 and lemma 12.3. After defining T', we show that there is a lift awq for awy.

In chapter 13, we start giving the definition of a dual simplicial de Rham complex as in
Dupont [11]. Tt also deals with some definitions and properties for a complex €2, || X || of simplicial
currents as in Dupont-Just [13] on a simplicial manifold X. This is used as a tool in this thesis.

Chapter 14 deals with the extensions of the chain maps awy and aw; to the simplicial
currents. We show that there exists a map of bicomplexes

awg” : Q(A®) @ C,(S) — Q,.(PS)
and there exists a chain map
awg' 1 A (A®) ® C,(S) — Quo(PS).

These two maps awq” and awq! correspond to the extensions of awy and aw;, respectively. At
the end of the chapter, we show that there is a chain homotopy so’ between the extensions
awa? and awq'. Moreover, we also show that there is a lift awo? for awg’.

Chapter 15 reviews some general information about characteristic classes, Classical Chern-
Weil theory and Chern-Simons theory. We also give the Chern-Simons form as a differential
character due to Chegeer-Simons [6]. In corollary 15.11 (see Dupont-Kamber [12]), we give the
Chern-Simons class Sp,(w) € H*"Y(M,R/Z), where P € I*(G) and u € H**(BG, A). At last,
we give the difference of the evaluation of the Chern-Simons classes for two different connections
wy and ws on a cycle as a difference form as follows;

< Spalwn), [M] > — < Spu(wi), [M] >= /WP(F@) _ /MTP(wl,wg),

where T'P(wy, ws) = fol iayaP(Fz)dt, © = (1—t)wy +tws in M x [0,1] = W?* P is a polynomial
of the two connections w; and ws defined on F.

The last chapter 16 includes the applications of the prismatic constructions to the gauge
field. In this chapter, we start with the definition of a connection w, induced from the canonical
connection, in a simplicial bundle and as well as in the universal bundle FG' — BG. We then
give a formula for the variation of the Chern-Simons class for a given bundle F' — |S| with the
connection w. We evaluate the difference of the Chern-Simons classes for two connections on a
cycle defined on Q, . (PS) which covers the cycle on C,(S). This can be expressed in a different
way as follows; we evaluate a Chern-Simons class for the given bundle with w on the difference
of two cycles defined on Q*V*(PS ). We give the main formula for the variation with theorem
16.6. Furthermore, the lifting awo? defines a cycle 2z on QH(pS). Since the Chern-Simons
class is related to the second Chern class of the bundle, we will give the variation in corollary
16.7 in terms of the Chern form for the bundle with the canonical connection on the cycle Z
defined on Q, .(PS) via aiwg’.
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Chapter 1

SIMPLICIAL CONSTRUCTIONS AND CLASSIFYING SPACE

In order to understand the concept of a bundle over a simplicial set, we will first review some
essential definitions of simplicial constructions. We give a brief review of classifying spaces of
lie group GG. Much more information of the ingredient in this chapter can be found in the
mathematical literature, for example in Dijkgraaf-Witten [[8]], Dupont [[10]], Milnor [], Segal

It
Definition 1.1 ( Standard n-Simplex ) :

Let us consider A" in R™! the convex hull of the set of canonical basis vectors
e; = (0,...,1,...,0) with 1 on the i-th place, i = 0,...,n. That is,

A" = {t = (ty,...t,) ER"[1 >t > .. >1t,>0}.

Let ¢ : A"t — A" § = 0,...,n, be the inclusion on the i-th face and 7 : A" — A" be
the degeneracy map, j = 0,...,n . The identities with the face and the degeneracy maps are as

follows:
ij—1 C_
i 8‘8] . 1<
ge = { 81+18j ZZ ,j;
I A
nn' = i—1,,j ; .
noon t>7,
and o
gloni! i<
0 oe' = ' id 1=7J,1=7+1
elon i>g+1,

Simplices are building blocks of a polyhedron. An n-simplex to represent an n-dimensional
object, the vertices (p;) must be geometrically independent, that is, no (n — 1)-dimensional
hyper plane contains all the n+ 1 points. A 0-simplex py is a point, or a vertex, and a 1-simplex
(pop1) is a line, or an edge. A 2-simplex (popip2) is defined to be a triangle with its interior
included and a 3-simplex (pop1p2ps) is a solid tetrahedron.
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Definition 1.2 ( Simplicial Set ) :

A simplicial set S is a sequence S = {S,}, ¢ =0, 1,2, ..., of sets together with face operators
€18 — Sq-1, 1 =0, ...,q, and degeneracy operators 7; : S, — Sg41, ¢ = 0, ..., ¢, which satisfy
the following identities

. €j—1&; 1 <j
€i€j = . S
€i€y1 - 12 ],

IR B/ ES L/ N
i3 {Uﬂh’—l D>,

and
77]'_1 o&; . /l < J
g;0M; = id @ i=ji=j5+1
njogi—1 : 1>j+1,
Definition 1.3 ( Simplicial Map ) :

A simplicial map is a map of simplicial sets which is a sequence of maps commuting with
the face and degeneracy operators.

Example ( Singular n-Simplex ) :

Let M be a C* manifold. A C'*° singular n-simplex in M is a C*° map o : A" —M, where A"
is the standard n-simplex. Let So°(M) denote the set of all C* singular n-simplices in M. Let
g A"l — A" j =0,...,n, be the inclusion on the i-th face. Define ¢; : S*(M) — S (M),
i=0,...,nbye(c) =00, o€ S>M).

Definiton 1.4 ( Simplicial Space ) :

Let S = {5,;}, ¢ =0, 1,... be a simplicial set and suppose that each S, is a topological space
such that all face and degeneracy operators are continuous. Then S is called a simplicial space
and associated to this is so-called fat realization, the space || S]| is given by

1511 =] A" x S/ ~

n>0
with the identifications
(e't,x) ~ (t,em), t€ A" 2€S,,and i=0,..,n, n=1,2,....
We can give the geometric (thin) realization of S which is denoted by |S| with the common
identifications

(n't,x) ~ (t,mx), t € A" 2€S,,and i=0,..,n, n=0,1,....

Remark : A space whose only face operators defined is called A-space.
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Definition 1.5 ( Differential k-Form ) :

Let S = {S,} be a simplicial set. A differential k-form ¢ on S is a family ¢ = {¢,},
o € ],S, of k-forms such that

i) o is a k-form on the standard simplex A? ( i.e., every k- form on AP can be expressible
in the form 20§i0<.,.<ik§pai0mikdtio A ... ANdt;, where a;,_; are C*° functions on AP, so the set
{dti,...,dt,} generates the set of k- forms A*(AP) on AP ), where A*(AP) is the set of k-forms
on AP, for o € S),.

i) 0o = (6) 00, i = 0,...,p, 0 €Sy, p=1,2,..., where ' : AP~1 — AP is the i-th face
map.

Example :

Let S = S°°(M) be the set of all C*° singular simplices in M, for M a C*° manifold. Then w
is a k-form on M, we get a k-form ¢ = {¢,} on S*(M) by putting ¢, = o*w for o € S,°(M).

Remark :

We have for any C'° manifold M a natural transformation i : A*(M) — A*(S*°(M)) which
is injective, so one can think of simplicial forms on S*°(M) as some generalized kind of forms
on M.

Definition 1.6 ( Classifying Spaces and group cohomology ) :

In order to define the cohomology of a topological group GG, we need to introduce the concept
of a classifying space. A classifying space BG is the base space of a principal G-bundle EG,
the so-called universal bundle, with the following fundamental property: Any principal G-
bundle E over a manifold M allows a bundle map into the universal bundle and any two such
morphisms are smoothly homotopic. The classifying map is written as v : M — BG for the
induced map of the base manifolds. The topology of the bundle E is completely determined by
the homotopy class of 7, that is, the different components of the space Map(M, BG) corresponds
to the different bundles £ — M. It can be shown that up to homotopy BG is uniquely
determined by requiring FG to be contractible, that is, any contractible space with a free
action of GG is a realization of FG.

Theorem 1.7 :

There is a topological space BG, called the classifying space for GG such that the characteristic
classes are in 1-1 correspondence with the cohomology classes in H*(BG).

The construction is as follows:

As usual A" C R™"! is the standard n-simplex with barycentric coordinates t = (to, ..., t,,).
Let G = G x ... x G (n + 1-times) and let

EG=||A"x G/ ~

n>0

with the following identifications:

(£, (goy s Gn)) ~ (t, (g0, -Gir s Gn)) st EA™ Y g0y g €G L i =0,...,10.
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Now G acts on the right on EG by the action

(t, (905 - 9n))g = (t,(90g; -+, gng))-

v¢ : EG — BG is a principal G-bundle and we let BG = EG/G with 74 : EG — BG the
projection. The elements in H*(BG,Z) are called universal characteristic classes, since under
v* they give rise to cohomology classes in H*(M,Z) that depends only on the topology of the
bundle E.

Definiton 1.8 ( Simplicial Manifold ) :

A simplicial set S = {S;}, ¢ = 0,1, ..., is called a simplicial manifold if all S, are C*
manifolds and all face and degeneracy operators are C'*° maps.

Remark :

Although the classifying space BG is not a manifold, it is the realization of a simplicial
manifold, that is, a simplicial set where the set of p simplices constitute a manifold.

Definition 1.9 ( Simplicial n-Form ) :

A simplicial n-form ¢ on the simplicial manifold S = {S,} is a sequence p = {p®} of
n-forms o® on AP x S, such that

(" x id) p® = (id x &) %P~V

on AP"1x S i=0,...,p,p=0,1,... Notice that ¢ = {p®} defines an n-form on |_|;°:0Ap X Sp
and the above condition is the natural condition for a form on ||.S|| in view of the necessary
identifications given in definition 1.8. Let’s denote the restriction ©® of p to AP x S, as ¢.

Remark : When S is discrete, Definition 1.9 agrees with Definition 1.5.

Let A"(S) denote the set of simplicial n-forms on S. The exterior differential on AP x S,
defines a differential d : A"(S) — A"*1(S) and we have the exterior multiplication

A AT(S) @ A™(S) — A™HT(S)

satisfying the necessary identities which are associativity and graded commutativity. The
complex (A*(S),d) is the total complex of a double complex (A*!(S),d’,d"). An n-form ¢
lies in AFH(S), k + 1 =n iff parxs, is locally of the form

p=>_ dti, A ... Ndty, Ndzy A A dxg,

@iy . iy, 4107

where (%o, ...,t,) € AP and {x;} are the local coordinates in .S,. So

Sy =[], A™(S)

and d = d' + d”, where d' is the exterior derivative with respect to the barycentric coordinates
(to, ..., t,) and d” is (—1)* times the exterior derivative with respect to the z-variables.
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Definition 1.10 ( Simplicial G-Bundle ) :

Let G be a lie group with its lie algebra g. A simplicial G-bundle 7 : F' — S is a sequence
of differentiable G-bundles 7, : F,, — S,, where F' = {F,}, S = {S,} are simplicial manifolds.
7 is a simplicial differentiable map and the right group action is defined by Gy : F' — F, g€ G
which is simplicial.

A connection, 6, in this bundle is a 1-form on F' with coefficients in g such that AP x Fp|9
is a connection in the usual sense in the bundle A? x F,, — AP x S,,.

Definition 1.11 ( Simplicial Diagonal Map ) :
For any simplicial set S, As = s x s defines a simplicial map A : § — S x S called the
simplicial diagonal map.

Remark : All structures make sense as a A-space.

Definition 1.12 ( Triviality of Bundles ) :

If a fibre bundle can be written as a direct product of the base and the fibre then it is called
as trivial.

Theorem 1.13 :

A principal bundle is trivial if and only if it admits a global section.

Proof :

< Let (E,m, M,G) be a principal bundle and let s € T'(M, E) be a global section. So there
exists a homeomorphism E — M x G by using s. Since the right action is transitive and free,
any element f € F is uniquely written as s(m).g for some m € M and g € G.

Define a map ¢ : E — M x G by 1(s(m)g) = (m, g) which is a homeomorphism so F is
trivial bundle M x G.

= Suppose £ = M x G. Let o : M x G — FE be a trivialization and take a fixed element
g € G. So sy : M — E which is defined by sy (m) = ¢(m, ¢’) is a global section. O

We would like to finish this chapter with the following remarks.
Remark :

The curvature of a trivial bundle is zero since a connection w in a trivial G-bundle F' is
induced from the Maurer-Cartan connection in the principal G-bundle G — pt. This connection
is called as flat connection.

Remark :

If we are given a covering U = {U,} and a system of transition functions, one can construct
a corresponding principal G- bundle:

The total space is defined as | | U, x G/ ~ such that (u,g9) € U, x G identified with
(u,tga(u).g) € Us x G, Yu € U, |JUp and g € G.



Chapter 2

ALEXANDER-WHITNEY MAP

It is well-known that for two simplicial modules A and B, one can define a chain map
Ci(Ax B) — C,(A)®Cy(B). We want to do this for the simplicial space level in general.
In order to do this, we need some motivation with Alexander-Whitney map and Eilenberg-
Zilber theorem. So we give a few facts and theorems about Alexander-Whitney map without
their proofs. As a general reference, one can see MacLane ([20]) (p. 239).

Theorem 2.1 ( The Eilenberg-Zilber Theorem ) :

If U and V are simplicial sets, then U x V' is the simplicial set with (U x V) = U, x V,
the cartesian product of sets and
gi(u,v) = (gu,ev)
mi(u,v) = (niu,mv),
i=0,...,nforu € U,,veV,and n > 0 in the case of ¢; (where ¢; : S, — S,,_1, 7; : Sp — Sni1,

i =0,...,n are the i-th face and the i-th degeneracy operators of S).

Let 1 : X XY — X, m : X XY — Y be the projections on X and Y. Each singular
simplex o : A" — X x Y is determined by its projections m0 and myo, while g;m;0 = 7je;0,
nimjo = m;n;0. Hence,

o — (mo, o)

provides an isomorphism
S(X xY)=S(X)xS(Y)
of simplicial sets. The computation of the singular homology of X x Y is thus reduced to the

computation of the homology of a cartesian product of simplicial sets.

There is a parallel product for simplicial modules A and B (i.e., a simplicial A-module is
meant a simplicial set in the category of all A-modules) over a commutative ring. The cartesian
product A x B is defined to be the simplicial module with (A x B), = A, x B, and

gila®b) = ga®eb,
nila®b) = nia®mnb,
1=0,....,nfora € A,,b€e B, and n > 0 in the case of ¢;.

We will write a x b instead of a ® b of A,, ® B,, to avoid confusion. This insures that there
is a natural isomorphism of simplicial modules

F(UX V)= FU X FV,
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for F(U x V) in dimension n is the free module generated by the set U, x V, and
F(U x V) = (FU,) @ (FV,).

Theorem 2.2 :

For simplicial modules A and B over a commutative ring A, C, denotes the chain complex,
there is a natural chain equivalence

C.(A x B) = C.(A) ® C.(B).

Lemma 2.3 :
For simplicial modules A and B, there exists a natural chain map
f:C(Ax B)— Cy,(A)® C.(B)

which is the identity in dimension zero. Any two such natural maps f are chain homotopic via
a homotopy which is natural.

Proposition 2.4 :

For each non-negative integer n, C,,(M™) is acyclic.

Lemma 2.5 :

For simplicial modules A and B, there exists a natural chain map
g:Cy(A)®C,(B) — C,(A x B)

which is the identity in dimension zero. Any two such natural maps ¢g are homotopic by a chain
homotopy natural in A and B. Denote the last face in the simplicial set S by €, that is, for
a € S, set éa = g,a. Thus, for any exponent n — i, " 'a = g;41...€,0.

Theorem 2.6 :

For any simplicial modules A and B, a natural chain map f : C.(A x B) — C.(A) ® C.(B)
for the “Eilenberg-Zilber” theorem is given by

flaxb)=> &""a®ecih, a € Ay, b€ B,
1=0

f is known as the “Alexander-Whitney map”.

Theorem 2.7 :

For any simplicial modules A and B, a natural chain transformation g for the Eilenberg-
Zilber theorem is given, for a € A,, b € B, by (2.1)

gla®b) = Z (—1)E(U)(an...77w1a X Ty, Ty D),

(v,w)
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where the sum is taken over all (p,q)-shuffles (v,w) and e(v) is the sign defined by

? ovi— (1 —1). g is natural, ¢ ® b has dimension p + ¢, and so do 7y,...7, and 7,,...7,, -

Geometrically, g provides a “triangulation” of AP x A? of two simplices. Specifically, take
a € MP and b € M9, so “a” has vertices (0,1, ...,p). In this vertex notation,

Ny @ = (50, -+, Ipq)
with 0 =4p <14y < ... <ipyq = p, and iy = ix41 precisely when k is one of wy, ..., w,.

Similarly, 1, ...100,0 = (Jo, -+, Jp+q)> With jx = jr41 precisely when k is one of vy, ...,v,. The
simplex displayed on the right of ( 2.1 ) then has the form

(i()a ceey ip+q) X (jO? ---ajp+q>7

where the first factor is degenerate at those indices k for which the second factor is not
degenerate.  This symbol may be read as the (p + ¢)-dimensional affine simplex with
vertices (ig,jr) in AP x A% These simplices, for all (p,q)-shuffles, provide a simplicial
subdivision of AP x Af.

For example, if p=2, g=1, A? x Al is a triangular prism and the three possible (2,1)-shuffles
triangulate this prism into 3 simplices

(0122) x (0001) , (0112) x (0011) , (0012) x (0111) ,

each of dimension 3.

Definition 2.8 ( Simplicial Diagonal Map and Diagonal Map ) :

For any simplicial set U, Au = u x u defines a simplicial map A : U — U x U called the
simplicial diagonal map. U determines the simplicial abelian group Fz(U) and hence the
chain complex C,(FzU) which we write simply as C,(U); each C,(U) is the free abelian group
generated by the set U,, with @ = > (—1)'¢;. The diagonal induces a chain transformation
C.(U) — C.(U x U); also denoted by A. If f is any one of the natural maps from the Eilenberg-
Zilber theorem the composite

w=fA:C,(U)— C.(UxU)— C,(U) ® C.(U),

is called a diagonal map in C,(U). Since f is unique up to a (natural) chain homotopy, so is
w. Since A is associative ((A x 1)A = (1 x A)A) and f is associative up to homotopy, there
is a homotopy (w ® 1)w ~ (1 ® w)w.



Chapter 3

PRISMATIC SUBDIVISION

In this chapter, we want to define |S| — |E,S | by using Alexander-Whitney map for a simplicial
space S. In order to understand this map, we would like to explain what |E,S | is and define
|P,S | as follows:

Let S be a simplicial set and E,S = S x ... x §. The projections correspond to the face
—_—

p+1—times
operators and the repetitions correspond to the degeneracy operators. We will mention these

operators explicitly in the next chapter.

First, let us define the p+ 1-prism complex F,S, ., in a similar way used for a bisimplicial
set P1.Sg.q @s in Bokstedt-Brun-Dupont [4] by the following construction

Pqu07QIa---7Qp = Pgo+qi+...+qp+p-

As a motivation and in order to make the following remark clear, suppose S is a simplicial
set with face operators ¢; : S,, — S,_1 and degeneracy operators n; : S, — Spi1, 1 =0,...,n.
We can associate this to a bisimplicial set P.S_, where P,S,, 4, and &, =¢;, 0/ =1;,1 =0, ..., o,

I/ " __ ;
€5 = Ejtqot1, M = Mj+ao+1> J = 0,0, qa
Note :

%

Sometimes we drop ”.” in the realizations unless a prism complex is considered. This should
be clear from the context.

Now, we give the geometric interpration of |P,S | by the following remark;

Remark :

|P,S |M = |_| AT X AT X St gptp/ ™

go+...+qp=1

when p = 1, then we get

|PISqo,lI1‘m = |_| AT X AT x SQO+Q1+1/N

qo+q1=1

A% x A x S| |AT x A® x Sy /.

11
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Let’s take S = A2 then

So = {{0}, {1}, {2}}
Sl = {{O,1},{0,2},{1,2},{0,0},{1,1},{2,2}}
Sy = {{0,0,1},{0,1,1},{0,0,2},{0,2,2},{1,1,2},{1,2,2},{0,0,0},{1,1,1},{2,2,2},{0,1,2}}

here {0,1},{0,2},{1,2} are the non-degenerate elements in S, since the others are reduced
from the degeneracy operator

m:Se — 51
{0y — {0,0}
{1} — {L1}
{2t — {22},

and except {0, 1,2} the others are degenerate elements in Sy, they follow from 7; and 7y as
follows;

m:S1 — S

{0,1} — {0,1,1}
{0,2} — {0,2,2}
{1,2} — {1,2,2},

and

M :S1 — Sy

{0,1} — {0,0,1}
{0,2} — {0,0,2}
{1,2} — {1,1,2}
{0,0} — {0,0,0}
{1,1} — {1,1,1}
{2,2} — {2,2,2}.

If we check which elements are degenerate in the prism complex we need to use the
degeneracy operator 7y”. By the definition 79" = ngi041 : PlSO,Om — PlSo,l[”. So {0,0,1}
is not a degenerate element in the prism complex. The boundary of A? x A! x S, for this
element is (01) and (00) by using 0" = egy0+1 = €1 and ;" = e1,041 = €9, respectively.
Then, one can find that {0,0, 1}, {0,0,2},{1,1,2},{0,1,2},{0,1,1},{0,2,2}, {1, 2,2} are non-
degenerate elements in the prism complex so we will compute the boundaries for these elements
corresponding to (0,1),(0,0),(02), (00), (12),(11), (02),(01) come from ey, g5 and (12), (02),
(11),(01), (22),(02), (22), (12) come from &y, €y, respectively.

Proposition 3.1 :

Let S be a simplicial set. One can construct the Alexander-Whitney diagonal map,

AW(A) - |S| = |E,S| = 15| x ... x|S|(p+ 1 — times)
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by AW (A)(lg,...qp () (5),y) = v(s,y), where g o (t) : AT x .. x A% — AWFT-+&HP and
v:|P,S| — |E,S|.

Proof :

At first instance, let’s define v for p = 1 as follows;

The map v
v AT X AT X Sy a1 — AT X AT xS, xS,

is defined by
V(% st y) = (s 81, 60Ty, 50T y).

For p = 2, it is defined as v(sY, !, s%,y) = (s, s, 52, EnFa2t2y goaotlgntly cototat2y)
In the same way, we get this map in general as;

0 P — (0 D xq1+...+qp+p qo+1zq2+...+qp+p—1 qo+...+qp+p
v(s” ..., sPy)=(s", ..., 8" ¢E PPy g E PPy PTPy)

and we have

|PpS-| — |EpS-|
z TAW(A)
15|

By the simplicial construction P,S,
AW (A) diagonal map is defined by

AW (lgy,..q, ()(5), ) = (5", ... 8", ),

where we have the following modification of [,(¢) as in [4];

= Sgo+..4qp+p We know that |P,S | = [S]. So the

0,-+5qp

Lig,oqy(t) T AT X X AT — ATFFaTP,
induced by 1,(t) : |P,S| — |S.| , where

A% ={(s" ...,5,) ERE | 1> 5" > ... >3," >0}

and
Ap — {(tl, ...7tp) E RP ‘ 1 Z tl Z Z tp 2 0}

For t = (t1,....,t,) € AP, g, 4, (t) is defined as:

lqo,..A,Qp(t)(‘SO? ceey Sp) = (810<1 - tl) + tla vy Sqoo(]' - tl) + tla tla
s1'(ty — to) + ta, .o, Sgy (t1 — to) + Lo, Lo,
517 byt — tp) F tpy ooy Sqp P (Epmr — ) + tp, s

p p
S1 tp, vy qu tp)

These maps define a natural map of realizations [,(t) : |[P.S.| — |5, that is,

- A40 q qgo+...+qp+p
L(t) : A" x . x A" x Py o — A PP X Sgot ot aptp-
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Thus
p(t) = lg,...q, () x id.

Note :
We will only use the notation ,(¢) instead of . 4 (t) to avoid the confusion.
Note :

We are using the prismatic subdivision in our construction. We could use the edgewise
subdivision which can be defined by the Eilenberg-Zilber map |S| x ... x [S.| — |S. x ... x S,
but the formulae would be complicated and it would not give us an advantage.

Proposition 3.2 :
oP op
)For t € A where A ={(t1,...,t,) | 1 >t; > ... > t, > 0}, the map
bp(t) - [PoS]| — [S5]

is a homeomorphism and 1,(t) " is cellular.

oP
2) For t € A , L)' induces the map of cellular chain complexes

Ci(S) — C..(PS) is given by
aw(z) = Z Mo+ +ap—1+p—1 © -+ © Tgo (L) (go,....a)
qo+...Fqp=n
where x € 5,,.

3) For the i-th face map &' : AP™' — AP we have [,(¢'(t)) = l,—1(t) o m;, where
7 = proj; X puiy and pi) © BpSyq. . qn — Pp—15g,....di.....q, are the face operators corresponding to
deleting the elements qo + ... + ¢i—1 + 4, ..., qo + ... + ¢; + i. It deletes (¢; + 1)- elements.

Proof :

1) In order to see that [,(t) is surjective, take an element from righthand-side and find its
pre image on the left hand side. This procedure defines the inverse to 1,(t).

Let us consider the case p = 1;

. Ad0 q1 qo+q1+1
() : AT X AT X Py gy — A X Sgotai+1-

Suppose that (k,z) € A" x S, and find gy such that 5" > ... > s,," > 3 > ... > 5,,° > 0.
Then, for s* = 2s; — 1 where 1 <1i < ¢y and s' = 25j4q0+1, Where 1 < 5 < ¢, we have

L(t)(s", 5" 1go) = (lgg.ar (1)(5”,81) ag) ~ (™o, (B)(5, 5), ) = (i, ).

Then

L) h AP G AT X AT X P
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is defined by I, (t) "' (k,z) = (s°, 51, 7).
In other words, /;(t)”" sends A™ x {z} to uggiglAqo X AT X gz}, -

For the case p=2;

. A0 Q1 q2 go+q1+q2+2
la(t) : AT X AT X A X Py gy,q0 — A X Sgo+q1+g2+2-

By following the same way as above, we can define Iy(t)~".

Suppose  that  (k,x) € A" x S, and find  ¢g,q1  such  that

S1' > >80 > 2> > 8,0 >3 > 0> 8,7 > 0. Then, for s = 3s; — 2, where
1<i<q, st = 3Sj4q0+1 — 1, where 1 < j < ¢ and s? = 3Sktgo+q+2 Where 1 < k < g9, we
have

l2 (t)(sov 517 827 Ngo+q1+1 © U(on> = (l(JO,CI17Q2 (t)(sov 817 82)7 Ngo+q1+1 © 77610*T)
~ (n?o 77q(H_ql—|r1lqo,tz1,qz (t)(soa 317 32)7 )
= (k,x).

Thus lo(t)~" sends A™ x {z} to | | A X AT X AL X {141 © Ngo T}

go+q1+q2=n q0,91,92°

In general,
N q qo+--+qp+p
L(t) : AT x .. x A% x P AN PP X S0t aptp

is defined by

lp(t)(so, oo S Mot tayatp1 © - 0 Nge) = (lgo 0 (t)(s°, ..., sP), Nao+-tap14p—1 © ++ © NgoT)
~ (P o.. oplottaotemly (1) (80, 8P), @),

Thus lp(t)(fl) sends A"x {z} to |_|q0+__+qp:nAqo X XA X {Ngo 4. 4qy_14+p—1 © - © nqox}qo,...,qp'

obp
By using the modification of ,(t), we can show that [,(¢) is a homeomorphism for t € A .
We only do this for p =1,
ll(t) AP x AT x Sqo+q1+1 — Aq0+ql+1 X Sqo+q1+1

is defined by
ll(t)(sov Sl? UQOx> = (ll(t)(sov 81)7 77610x> ~ (nqoll(t>(507 81)7 .T),
where (n®l(t)(s%, s'),z) € AT x S ..

The function of n% here is to delete the (gy + 1)-st element, ¢;, as
nqoll(t)(so, Sl) = 77q0 (810<1 — tl) + tl, ceey Sqoo(l — tl) + tl, tl, Slltl, ceny Sqlltl)

then
anO . AQO+Q1+1 N AQO‘HH

is defined by

(L (1)(s% 8Y) = (5121 — t1) + t1, o0y 8" (1 — t1) +t1, 81 1, o, 80, 1),
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Thus

l (t)(s()? 817 ntIoI) ~ (nqoll (t)(s()? 81)7 I)
One can easily show that [;(¢) is & monomorphism.
If 1(2)(s”, sV, ngea’) = 11(£)(s°, 8%, g ) then we need to show that

0

(30/’ 31/7 77q0$,) = (5 7317 nqow)'

By using the definition of ;(t), we get

(™l ()(s”

0_ 0 0_ ¢ 0 o1 _ o 1/ 1_ . U
It follows that s1° = 517 ,...,8¢," = Sg0° ,51° = 51" 5.-1; Sqi” = Squ" -

Moreover [(t) is surjective:
ol
For all u® € Ao+l (0 sy e A® x A% t e A | such that

L()(s% s = u® = (un, oo, Ugg gy 11)-

From the definition of [1(¢), we can write

L)(s%s") = ul= (5121 —t) +t, 0,85 (1 —1) + 1,8, 81", 0, 8¢, 1)

UL, ooy Ugotgr+1)

It follows by substituting ¢ by ug,4+1 we get

0 _ U1 — Ug+1 0 _ Ug — Ugyt1 1 _ Ugo+2 1 _ Ugotqi+1
§10 = Sy = S = —— ., S =

1 — gyt 1 — g1’ Ugo+1 Ugy+1
here s® € A? and s* € A%, since u® = (uq, ..., Ugy g +1) € ALTNT! gatisfies the following
12w > .0 2 ugy 2 Ugg1 = oo = Uggrg+1 = 0.
Similarly one gets 1 > s > ... > sqoo > 0 and since ug41 > Ugt2, We have
1>s5>...> sqol > 0.
Thus 3% € A% st € A? for all u® € A®FTO+L that is, [;(¢) is surjective.

2) Now, consider the usual CW structure (see Bredon [5] (chapter 4, p.198)) on |P,S | and
|S.|. The map I,(t)"" is cellular, since it converts the low dimensional cell in |S | into the cell
in |P,S|, that is, L,(t) " (|S.|") € |P,S.|". So it induces a chain map of the associated cellular
chain complexes. If we let P, denote the total complex of the bicomplex associated to the
bisimplicial set P.S, then this map is given by the formula:

aw(z) = Zqozon% (I)QOJI—QO )

and we have in general,
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aw(x) = E _ MNgo+..+qp—14p—1 © -- O Ngo+q1+1 © Tlgo (x)
qo+...+gp=n

Moreover aw is a chain map.
Let us check it for the case p = 1:

We have two differentials in the bicomplex P Sy, 4, = Sqo+q1+1, 90, q1 = 0 given by

I o N
g = Zr:O( 1)'e,,
T .
e = Z (—1) gor41-

r=0

Let = € S, so that aw(z) € @q0+q1:n5n+l- We compute the composition of aw with the
differential . The component of € o aw(z) = (' 4+ (=1)P&")(Ng () in P1Sy, 4 18,

qo+1 r q1+1 r
coaw(r) = 3 1) e (@) + (D" (1) g Oy ()
= (20— + (=)™ i) g1 () + (1) (Egop1 — oo + (1) g sgqii2) g0 (2)
= (200 Ngos1 — - + (=1)™F egu 1 0 mgpr) () +
(_1)(]0 (5110+1 O Mgy — - + (_1>q1+1€q0+Q1+2 © 77!10)(3:)

= Ngo(20 = &1+ o+ (1) eg) (2) + (=) id +
(_1>q0 (1d — Mgo€qo+1 + ...+ (_1>Q1+177q0€QO+(11+1)(x)

= My (D) e (@) + g (1D (1) g (@)

= (Y (D @)+ (YT () o) (@)

= (X 1) @)

r=0
= Tl © ()
= awoe(x)

so that € o aw = aw o £, which means that aw is a chain map.

Let us show that it is a chain map for p = 2. We have to consider that we have three

~Y !

differentials in the multi-complex P2Sy 41,00 = Sqotq1+aa+2> 90, q1, G2 > 0 denoted by &', ", €.
Let x € S, so that aw(x) € ®qo+Q1+q2:nS”+2' We need to check
coaw(r) = awoe(x).

eoaw(z) = (€' + (=1)"e" + (=1)* ") (Ngo+41+177a0 (2))

in Py 4.4, Where

qo

! T

g = E (=1D)'e,
r=0
T

1 T

g = E —1)¢
7‘:0( ) qo+r+1>
a2

mo__ r

€ - E r—O(_l) €qo+qr+r+2-
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The components of € o aw(x) in PySy) 4,4, are

q1+1

(Io+ r
go aw(r) = Z —1)'e, 0 Ngo+q1+2 © Ngo+1(T) + (_1)qOZT:0 (1) €go+r+1 © Mgo+gr+2 © Tgo (T) +

q2+2
1)q0+qlz =0 <_1)T€QO+Q1+T+2 © Ngo+q1+1 © Tgo <I)

(—

(80 ( ) €q0 + (_1>q0+15¢I0+1)77QO+111+2 © 77QO+1<'T> +
( 1) [5QO+1 — ...+ (_1)q1+1€%+q1+2]77q0+q1+2 © qu(ﬂﬁ) +
(—
(—

)qo-i-ql [€q0+q1+2 s (—1)q26qo+q1+42+2 + (—1)QQ+1qu+q1+q2+3 +

2
)q2+ 5qo+q1+q2+4}nqo+q1+l 0 7o ()

= TMgo+q1+1 © Tlgo (50 — ...+ (_1) 8qo) + (_1)q0+177q0+q1+1 (:13) +
1
(_1)q0 [UQO+Q1+1 + Ngo+q1+1 © nqo(_€QO+1 + ...t (_1)q1€QO+(J1) + <_1)Q1+ UQOKI) +

2
(_1)qo+q1 (a0 = Nao+ar+1 © Mo (Eqoraqut1 + - + (_1)q2+ Eqotartaa+2)](T)

qo+q1+g2+2 r
= Tgo+q1+1 © quzrzo (=17 (z) + <_1)q0+177qo+q1+1<x> +
1
(= 1) Ngorqrr1(x) + (1) g () + (= 1) gy ()
qo+q1+g2+2 r
= TNgo+q+1 © nqozrzo (_1) é}(fE)
= Tgo+q1+1 © Tgo © 8(%)

= awoe(x).
Thus, aw is a chain map for p = 2. It can be shown for general p.
3) For the i-th face map €' : AP~1 — AP we have

L) = () o .
In other words, we have got a commutative diagram,

1 x |P,S| =2 AP x |P,S|

lidxm— \Llp
lp_1

AP x| P,

It gives us the required equality. Let us see this commutativity for p =2, ¢ = 2:
The diagram becomes

1 E2><id 2
A x ‘PQS’HA X |PQS|

\LidXWz llQ
I

Al X |P18| |S|
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The maps are defined as follows;

(e* xid)(t, s, s', 8%

) (
(id x m5)(t, 8%, ', 8%, 0) = |
l((tO)sss,x) (
2)) (

where my = pry X f1(2). We need to take the equivalent element of (I;(¢)(s°, s'), p2)x), since it is in
ABFBFL SQ0+Q1+1'

Then
(L()(s°, "), py) ~ (DL () (s, 8", ).

We shall show that
(I3(t,0)(s% 8%, s2), 2) = (u P11 (t)(s°, s1), x), since I is a monomorphism.

ie.,

Lo(t,0)(s%, 8", s%) = p@L () (s, s").
Then the left hand side is

L(t,0)(s% s',8%) = (51°(1—1t) +t, .., 85 (1 — 1) +t,t,5(t—0)+0,..., 8, (t —0) + 0,0,
512.0, ..., 84,2.0)
= (51%(1—=t) + 1,085 (L —t) + 1,8, 81, .., 84,1, 0,0, ..., 0)

and the right hand side is

@L)(s%,8Y) = pP(s°(1 =) 41,550 (1 =) + 1,1, 51, ..., 84, '1)
= (5:°(1—t) + 1,0, 5,°(1 — ) + 1,1, 81, .., 84,1, 0,0, ..., 0),

where
M2y - Sq0+Q1+qz+2 - SQ0+Q1+1

is the face operator corresponding to

p® o Adwtatl _ Adotateat2

such that

1P (5.0(1=t) 4t .y 80, (1—t) 41, t, 817, ooy 5, 1) = (510 (1=t)+t, ...y 80, (1—t) 41, L, 51, ..., 54,1, 0,0, ...

Hence I5(t,0)(s%, st, s2) = u@1;(t)(s°, s1). It follows that the diagram commutes. d



Chapter 4

SIMPLICIAL CONSTRUCTIONS, PRISM COMPLEXES AND REALIZATIONS

Let X be a topological space. This can be considered as a simplicial topological space by
X, = X with the face and the degeneracy operators are the identity.

In this case |[X|[ = |A®[| x X, where [[A®| =] ., AP/~ denote the fat realization of X
and | X| denote the geometric (thin) realization of X. Also we have the simplicial topological
space £ X where E,X = X x ... x X for all p. Then the diagonal map

—_—

p+1—times
A: X, — E,X, for allp,
defines a map of simplicial spaces, in particular a map of fat realizations

X = E Xl

In this chapter, we want to replace X by |S.| where S is a simplicial set. For this, we
must use instead the prism complex |P,S | defined before. Notice that the sequence of spaces
|P,S | is not a simplicial space but only a A-space since one can not define sensible degeneracy
operators. In particular, we are going to show that there is a canonical homeomorphism of fat
realizations

Ll [PS]I = IS =A%]x[S],
where [|[A®| = || AP/~ given by et ~ ¢, Vt € AP i =0,..,p,p=1,....

Let us replace X by a simplicial space |S| and define (p+1)-prism complex
E,S =5 x..xS.
—_——

p+1—times

The (geometric) realization of E,S. is defined by

|E,S|= ]S x..x8]
= |[S]x..x|9]
= |_| AP X X AT X Sy XX Sy
q0;---,9p

with the necessary equivalence relation which follows from that the projections correspond to
the face operators and the repetitions correspond to the degeneracy operators as follows:

mi ¢ |EpS.| — |Ep—1S| project on the i-th factor and ¢; : |E,S| — |E,+1S.| repeat the i-th
factor. Although 7;’s are cellular, ie., m;(|E,S|™) c |E,_1S|™, 6;’s are not cellular, since
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when we define 9; : A% — A% x A% we see that ¢; do not convert the low cell in |E,S | into
the cell in |E,;1S|. That is why, we define the fat realization of |E,S | instead of defining the
geometric realization of |E,S |.

Lemma 4.1 :

Let’s consider the (p + 1)-prism complex P,Sy, . 4. One can define the face operators on
the sequences of space {|P.S |}, hence obtain the fat realization:

I 1PS|I=]]A” x RS/~

where

PS = |A® x . X A X Syt gip/~

Let us define the face and the degeneracy operators on || |[P.S | ||
The face operators m; on |P,S| are induced by
(A® X .. X AP) X Syor ygip — (AT X X A% AT) X Syt it oip
where m; = (proj;) x gy and
16y © PoSao,ap = Po-150,. iy

are the face operators corresponding to

M(i) . Aq0+~n+fji+m+q;;+p—1 .y AQ0Fttaptp

take (€0, ..., €qototditotapip—1) O (€0 s €qottaptn)s deleting  the  elements
qo+ ...+ Gi—1+1,...,qo+ ...+ ¢q; + 1. It deletes (g; +1)- elements. ji;)’s depend on qo, ..., ¢, and .

In contrary to this, there is no degeneracy operator. Since,

UIGKE PpSQO7--~7qp - p+1SQO:-~~7Qini»~~-7qP

are associated to the diagonal map

AL x X AT — AD x . x A% x AT x ... x AP,

0;’s are the degeneracy operators corresponding to

n(i) . AGOF it ittt Adot gt tptp

which take (e, ..., €q+.. 42+ 4qptp+1) tO (€0,-rs €qoh..tqt..+qp+p)s Tepeating the sequence
G+ ...+ q_1+7%..,q9 + ... + ¢ + ¢ which is not monotonely increasing. Therefore, there
is no degeneracy operator. So the necessary equivalence relation is

('t (5,9)) ~ (£, mi(s,))

for Vi.

21
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Lemma 4.2 :

Let S be a simplicial set. Then there is a map

L[ IPS T = [ IS] ] given via ().

Proof :

1l

We have || |PS | ||[—=|| |[E.S| ||, here

11PS] =] A7 x|BS ]/~
and by using the inverse of [,(t), we get

idxly,

LIAP % [S], . " D Ar x X |PpS |/~
since [,(t) is a homeomorphism.

In particular, we have a commutative diagram for each p and each n,

idxly, \Z/H

LA \SI/NHH |[PS| || ——I [ES] ]
T o g I "
AP x |8 |/~ || |PS™] || == |E.S™] |
For n = 0; the lower row becomes,
ar 180/ ps o) | M ps o
then we get
AP x Sy AP x Se MNP w0 G % x S,

By extending this, one gets

P AP x | PSP AR o 5 )],

Note :

The maps [, : |P,S| — |S.| do not commute with the face operators m; only up to homotopy.
This can be seen by the following diagram.

| PS] S|

S e

’prls.’
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here lp—l O T n~ lp.

Corollary 4.3 :

The maps L, : AP x |P,S |/~ — AP x|S|/. given by L,(t,x) = (t,1,(t)(x)) induce a
homeomorphism

L[ [PST = (ISl (4-2)

where the right hand side whose the face and the degeneracy operators are given by the identity.

Proof :
L is well-defined, that is, L,(¢'t,z) ~ L, (¢, mx), in other words, (¢'t, z) ~ (¢, mx).
Ly(E't, ) = (Eh () (2)) ~ (6l (t) 0 mi(2)) = Ly (t ),

since 1,(e'(t)) = ,_1(t) o m; for the i-th face map &' O

Corollary 4.4 :

D PSP =[S ]
is a homeomorphism.

Proof :

We can filter both sides of ( 4.1 ) by the p-skeletons, i.e., the images of A? x |P,S | and
AP x |S] as
LO [ PSP || — | [S®]

oPp op
and show that L® is a homeomorphism by using the fact that L : A x |PS| — A x |S|
is a homeomorphism. This can be shown by using an induction on the skeleton. It is a
homeomorphism for the zero skeleton and assume that L~ is a homeomorphism and

1PS|® | =] |A” < |PS|/ ~.

oP
| JAP x |PS| can be written as | JAP™! x |[PS || JA x |PS|.

op
Similarly || |S.|® H = | |AP x ]S|/ ~ and | JA? x |S| = | JAP™E x |S|]JA x |S].
already know that A X |PS|— A x |S.| is a homeomorphism and the first part L~V is also
a homeomorphism by the induction. Thus L® is a homeomorphism. Il

Corollary 4.5 :

L] |PS] || — ]S is the composition of L and the projection. That is,

| IPS] =1 18] 122 1S,

Furthermore, it is a homotopy equivalence.
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Note :

The map above is just induced by AP x |P,S | — [S| given by (¢,z) — [,(t)(x). A homotopy
inverse is given by the inclusion |S| = A% x |PyS| C || |[PS.| ||. On the other hand, we have
another homotopy equivalence

w 1S = S]]

which is defined by
AP x S, —*—= AP x |S |

. - idxinc
diagx i

AP x AP x S,

takes (t,z) to (t,t,x), since
u r0j
IS 1=l IS| |15

is a natural map.

Corollary 4.6 :

We can define a map v as a composition of L=! and u as follows;

IS == 1S] | == [PS] ||

This is a homotopy equivalence, since L is a homeomorphism then L~! is continuous. u is
a homotopy equivalence then L~! o u is a homeomorphism.

Note :

There is a commutative diagram

.....

where v(t, z) = (t, (0, ...,0),z). It follows that v induces the composite

L~ ou |IS] = | [PS] I

Actually v is given by the map of A-spaces,
v 8, = B8] 2 (A" x (BS,..0)
where S, is discrete : v(z) = ((0,...,0),z).
Note :

The composite of A-spaces

SP*U>|PPS-|*V>|EPS-|
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is given by x — (v(x),...,vp(z)) € Sy X ... x Sy where v; : S, — Sy is associated with
{0} — {0, ..., p} sending 0 to i. Hence

lvoull - [SII = I ESIO I S I ES] |

We have a diagram
AP x S, —— AP x |S|

:Eﬁ\\ T

AP x AP x S,

Now we can define the homotopy us:
us =[S = ST,

that is,
us : AP x S, — AP X AP xS

is defined by
us(ty, ..ty x) = ([1 — (1 —t1)6, ..., 1 — (L —t,)0,1 — 0], (t1, ..., tp, T))
for 0 < 6 < 1. Here,

w(t,z) = (1,...,1,t,2)
= (2""(0),t,)
~ (0,t,z) € A" x |S|
and
u(t,z) = (¢,0,t,2)
= (ePtt t, 2)
(.t x)
= u(t,z).

In order to get a property for a good point, we need to find a relation among the points in
AP and the points in AP, In this map, the gap lengths will be

(1= 11)3, (t1 — )0, oo, (£ — £,)0,£,8,1 — 6.

We want to put the points in AP*! between two points in A? by a 1-1 order. (f1,...,t,) can
fit into a single gap only if the gap length is > ¢t; —¢,,. Since 1 — (1 — ¢3)d > t; does not all fit
into the first gap.

So only the last two are possible, i.e., either
1—(1—t,)6>t >t,>1—4

or
1-0>1

25
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When § — 1, As = {t € AP|both possibilities hold} — {0}. We can write a set of unwanted

points as

Then Cs — OAP when § — 1. So the wanted points’ set is {t € AP|Vi 1 — (1 —t;)d > t;}.

Proposition 4.7 :
us : |[S|— || 1S || is well-defined.

Proof :
Let’s remember the necessary equivalence relations:

The equivalence relation ~ on ||.S || is;

(e't,x) ~ (t,&:).

The equivalence relation ~ on || |S] || is;

('t (t, 7)) ~ (t,e(t, ).

The equivalence relations ~ on |S | are;
(t,r) = (e't,w) ~ (t,&:1),

and '
(nzt? l’) ~ (t> 77235)7
since &' = id.

Let’s see it for the case 1 = 0,

us(e®(ty, o tp),®) = us((1,ty,..stp),2) = (1,1 — (1 =11)8, ..., 1 — (1 — ¢,

t
(
(1— (1 =)0, ... 1 — (1 —1,)8,1 —6,20(%(t1, ..., ), 7))
= 1-(1—-t)d,...,1 = (1—1,)0,1 =0, (t1, ..., t,), 0)
(1,1 — (1 —=t1)8, . 1 = (1 = £,)8,1 = 8, (°(¢1, ..., 1), )
(L1 = (1 =)0, ... 1 = (1 = £,)8,1 — 6, (t1, ..., tp, ).

On the other hand,

1-— (]_ — t1)5, . 1-— (]_ - tp)é, 1-— 5, (tl, ...,tp,€0£(7>>

U5(t1, ...7tp,60$) (
(1= (1—t1)0,.... 1 = (1 —1,)0,1 = 6,ep(t1, ..., tp, )
(
(

2

21— (1 —=t1)6, .., 1 — (1 —,)0,1 = 68), (t1, e tp, T))
1,1 — (1 —£1)8, .., 1 — (1 —1,)6,1 — 0, (1, ..., 1,), z)).

So
us(e’t, ) ~ us(t, o).

N a)
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Similarly the same result is taken for all ¢ =0, ...,p + 1.

Note that € will repeat the i-th element ¢ = 1,...,p. Note that, it makes “one” the first

element for i = 0 and makes

ugs is well-defined.

¢

‘zero” the last element for ¢ = p + 1.

g
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Chapter 5

SIMPLICIAL SETS AND STAR COMPLEX

In this chapter, we will give an analogy between a nerve for a simplicial complex and a nerve
for a simplicial set.

Let K be a simplicial complex and K’ denote its barycentric subdivision consisting of
simplices of the form [0, D 0,1 D ... DO 0p]. This subdivision is the nerve of this simplicial
complex considered as an ordered set and hence a category. This is also the nerve of the covering
by the stars.

If we study with a simplicial set then the case will be different as follows;

For a simplicial set S, we will construct another simplicial set S. and a retraction r : S, — Sy
such that {r~'(o) | o € Sp} corresponds to the covering of stars. If X is a topological space
then we have a diagonal map

X - X x..xX.
But if we replace X by a simplicial set S, we have seen that we have to replace X, by P,S.
but not S,.
By a retraction r : S. — Sy, the covering is {r~1(c) | 0 € Sp}. So the nerve of |P,S|

covering r~!(o) (o € Sy) will correspond to |B,S |, where

Pqu07---7QZ) = Sqo+...+qp+2p+1’

In the simplicial complex case, X, will be replaced with |S|. This will be mentioned more
in proposition 5.2.

Let’s define the star complex S, := S,;; with the face and degeneracy operators inherited
from those of S,41 as¢e; : S; — S,y and n; : S; — Sy41, where i =0, ...,q. Leti: Sy — |S| and
r:]S| — Sy be defined in degree q by i(t,y) = (t,n,0 ... o poy) and r(t,x) = (0,&0 0 ... 0 g,2),
where y € Sy and x € S;41. Then we have:

Proposition 5.1 :

This map i : Sy — |S.| is a deformation retract with retraction r : |S.| — Sy by the following
homotopy

Hy:|S]—|S]
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defined by Hy(t,z) = ((1 — A)(t,0) + A(1,...,1),nm,2) such that H(t,x) ~ ior(t,x) and
H()(t,f,(]) ~ id|§q‘.

Proof :

Let’s take the homotopy as
Hy:| |A™ x5, — | |A7x S,

Then
Hi(t,x)=(,..,1,n,x) = gl o . og" 0),n,x
1( ) ( Nq ) ( ( ) Nq )

g—times
~ (0,&0...64-114)
(0, m0e0-..€q—1%)
= 4(0,g9...60-17)
= dor(t,x) €95;.

where £°(0) = 1, €1(0) = 0.
H()(t, l‘) = (t7 0, 77q$) = (eqa nqﬁ)

~ (t, EqTgT)
= (ta .Z')
= idig,.
Thus H) gives us a deformation retract Sy of |S,]. O

We would like to give some relevant remarks;
Remark:

1) Hence |S| has the same number of components as the number of vertices of S, and
each is contractible even though S is not contractible. On the other hand let’s write a similar
homotopy to see the relation between |S,| and S,. In order to compactify |S|?, let’s write a
homotopy

Hy: AT x S, 1 — A?x S\{e?A7 x S}

where A? x S, \{e?A97! x S} = |S,|\|S,_1|. Instead of taking |S,|\|S, 1], we can take |S, ;|
which is compact. This is a way of saying how one can compactify |S,]|.

2) If K is a simplicial complex and K is the barycentric subdivision considered as a simplicial
set then |K’| is the union of the stars, r~(c), 0 € Ky = K. For the construction of the
corresponding nerve, the situation is more complicated, because the diagonal X — X x ... x X
for a topological space is replaced for a simplicial set S. by the map P,S — S x ... x S. We
shall therefore construct a similar complex P,S corresponding to the p-th nerve of the covering
by stars. Before giving the structure of |P,S |, let’s express that it can be thought as a nerve
of |P,S | for the covering of |S | by the stars {r~!(c) | o € Sp}.

In the case of a manifold X, the nerve of a covering is the simplicial space defined by

NXy, = J Wi (- (U3

29
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where U = {U, };cs is the covering of X and the disjoint union is taken over all (p + 1)-tuples
(io, ceey Zp> with (Uio ﬂ ﬂ Uip> 7£ @

In the case of a bundle over a manifold X, the classifying map is a map [|[NXy, || — BG.

In our case of a simplicial set S, N Xy, is replaced by | P,S | which is homotopy equivalent
to the set S,. Then we will have the AW map,

|B,S| — |S] x ... x|S|

and by the fact that |S | has the same homotopy type of Sy, we have |B,S| — |S| x ... x |S| —
Sp X ... X 5p. We can fix the last vertex and we have a trivialization. It gives us a trivial bundle
over each |S | and then over | P,S | by pullback via AW. On the other hand we have the following
diagram

I.F Fx..xF Fso X ... X FSO

| | |

AP X |P,S|—= AP x |S | x ... x |S|——= Sy X ... X Sy

and

Gx..xG/G

|

|P,S| —— % X .. X %.

It gives us a bundle over |P,S | with trivialization for fix p and we have a canonical map
my for all t € AP, but when we consider || |P.S| ||, we cannot have a bundle with trivialization
since there is gluing appears.

By the homotopy equivalence || |PS| || =S|, we then get the classifying map. Now let’s
give the structure of |P,S | and S:

PquO,...,qp is defined by Pquo,‘..,qp = Sgot..tqp+2p+1, Where qo + ... + g, = n, with some
face and degeneracy operators inherited from the face and degeneracy operators of S, 9,41 as
follows:

The face operator are
i) .
€j() D Sny2pr1 — Sni2p

defined by

ej(i) 1= Egototaiatit2is J=0,.,q but j #2i+1+ qu'
k=0

So PquO“_,,qp has only n + p face operators, so we are skipping the p + 1 face operators

{€q0+1: Eaorar+3s -1 Eqototapt2p i -

Similarly the degeneracy operators

i) .
nj() D Snt2pt1 — Sni2pt2
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can be defined by

0 = Dot rasarivais 3= 0,..,q; but j # 2 +1+ qu-
2

We have an inclusion
AT x PpS - Aq-i—l X Sn_|_2p+1

with the elements in A%"! which can be taken by putting zero at the last coordinate in the
elements in A? so the inclusion A? — A9 takes (si,...,8,) to (s1,...,8,,0). It induces a
surjective but not an injective map of realizations. So

|Pp5.| — [B,S |
is not in general a homotopy equivalence.
Now, let’s define
| |PS]| || = |_|Ap X AP x X A% X P,Sy o/
with the necessary equivalence relations:
('t (5,)) ~ (t,mi(s,9)),

where m; = (proj;) X ;) are the face operators on |P,S|.

Ky - 5n+2p+1 - STL—I-?P—(IZ'—I
are the face operators corresponding to

Iu(i) S A2l An+2ptl

take (€0, ..., €go-rtdittap+2p—1) 1O (€0, s €qoto.t . bgninps1 ) DY deleting the vectors with indices
(go+ oo+ i1+ 24, ...,q0 + ... + ¢ + 20+ 1). It deletes g; + 2 elements. So

K@) = Eqotntqi14+2i © -+ O Egototgi+2i+15 T = 0,..,p.

There is no degeneracy operator on |P,S |, since it does not give a monotonely increasing
sequence. We will consider the face and degeneracy operators on P,S. for the other equivalence
relations as

(t, (e7s,y)) ~ (t,s,¢;9) and (t, (1s,y)) ~ (t,s,1;9).
With the aid of A% C A%*! we have an inclusion

AP X AP X X AT X PS> AP AP AT S, o

Then this defines maps of realizations

AP x |P,S|—= AP x |P,S |

- l(z)
LP
AP X | Sp|
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where L, is the composition and

5 i
HES] == [PS]]

.

IS

We would like to give two interesting remarks;

Remark: Note that the horizontal map is also defined by
A X X A" X Spiopn — AT XX AT X Sy,

which takes

0 P 0 D
(3 yeeey S ,:L‘) to (S 300055 Ego+1 O Egotqr+3 © - © 5(]0+---+11p+2p+1x)7

where x € Sy 19p41.

Remark: The simplicial set P,S. should not be confused with P,S. which are defined by
PySq....qp = Sntp = Snypt1 With face and degeneracy operators inherited from those of Sy, p41.
The face operators
5j(i) : 5n+p - _n+p—1
defined by
&Y = €got..tgirtss
Jj=0,...,q but j # ¢, + 1. Similarly, the degeneracy operators

77j(i) : Snap — _n+p+1

can be defined by

() . .
1j = TNgo+...+qi—1+3>

j=0,..,q but j # g, + 1. So we have n + p face and degeneracy operators. Since |P,S] is
contractible, we do not have a nice relation between |P,S | and |P,S|. One can ask why we do
not use |P,S | instead since we know |S | ~ Sy. |P,S| ~ |S| =~ Sp. Hence also || |[P.S| || & Sp.
|P,S | is homotopy equivalent to | S| which is trivial. There is no point to define a classifying
map on a bundle which is already trivial.

Proposition 5.2 :

Let i : S, < P,S. be an inclusion defined by i(t,z) = (t,0,m90...onz) = (t,0,72,0 ... 0 o)
and r : P,S. — S, be the retraction defined as r(t,y) = (£,0,£¢ © ... 0 €955 0 £3,¥).

1)i: S, — P,S is a deformation retract with the retraction r.

2) There is a diagram of homotopy equivalences
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I1SII—> | |1PS] || (5-9)
\ lf
| Pf. |
1S ]

3) There is a commutative diagram

HPS | —=IIES] |

! |

HES]—1 [ES] ]

Proof:

1) Let’s define the homotopy
Hy: AP x A7 D  x AP xS, — AP X AD x o x A% X S, 900
as
Hy(t,s,9) = (£, (1 = A)(s°,0) + A(1, ey 1), ooy (1= A)(87,0) + A(L, ooy 1), D2p © v © g ),

where S,4, = |pp5q0_1 1| and Snt2ptl = |Pp5qo,---,qp|'

yedp
Then
Hi(t, s, = (¢ 1,...1,...,1,...,1,9p49,0...0
1(t, s, y) ( Tn-+2p Tgo¥)
go—times qp—times

= (t,e®.%0),e1.E%(0), ., e E(0), Mit2p © Mnegyr2p—2-- a0+ +2Ta0 V)

~ (t,0,€0..-Eqo—18q0+2 - Eqo+a1+1Eqo+a+4---Eqo+a1+a2+3E qotaqi-+aa+6--Eqo-+q1+a2-+as-+5E qo-+a1-Hga+as+8 -
Eqot-tap—1+20—3E g0+ +ap-1+2p+--Ent 2p—1Tn+2pTIn—gp+2p—2-- Nao-+a1 +2M0 Y )

= (£, 0, M2p72p—2E0--Eqy—1Eq0+2--En—gp—gp-1+2p+1En—gp—qp—1+2p—2--En—gy+2p—3TIn—gy—gp—1+2p—4
En—gp+2p—1-+-En+2p—2Tn—gy—qp—1—ap—2+2p—6-- T+ a1 +a2-+g3+6 o+ 1 +2-+47Tgo-+01+27q0 Y )

- (t7 0, N2pTl2p—2---16€0---Eqo—1Eq0+2---Eqo+a1+q2+3C qo+q1+q2+6 - -Eqo+q1+a2+q3+5

77l10+Q1+Q2+477QO+Q1+277q0‘€f10+CI1+tI2+CI3+4-~-5n+p71y)

(t> 0, 772:0772]?—2"'77677477250'"EQO—1€QO+2"'EQO+Q1+177q0€QO+Q1+2~--5n+p—1y)

= (£, 0, M2pTop—2-- I6NATRTIOEO---Eg0—1Equ+1--Eqotar Eqo-+a1+2-+-Eqo+a1+g2+1--En—gyp---Entp—1Y)

= (t,0,ney)

= i(t,0,gy)
70 T(t, y) < 52p+1,
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where

N2p--Mo = S2p+1 — Op,

o 13

50‘-~5qo—15qo+1--‘gqo+q15qo+q1+2~-5q0+q1+q2+1---5n—qp+p'-'€n+p—1 . Sn+p — Sp.

Ho(t,s,y) = (t,5°,0,...,8",0, 112y 0 ... 0 1ge¥)

t,e®s”, ... e8P, Th+2p © Nn—gp+2p—2-+Nao+a1+27g0 Y)
by 5, €qoqotq+2-- 871-1-2197771—&-210-“77<10y)

t,s,y)

= idpe -

(,
= (@
~
= (

So, this homotopy gives that idjp g ~io7.
2) The first homotopy equivalence is induced by the inclusion given in 1).

We have defined v : || S || — || |PS| | as a composition of us : ||S|| — || |S]] and
LS| = || |PS]||. Here L is a homeomorphism and L~' is continuous. wus is a
homotopy equivalence so v is a homotopy equivalence.

In the remark we already defined

P |PS|— AP x [PS.

So it induces a homotopy equivalence

HPS] = I PST.

Thus we have the required diagram of homotopy equivalences.

3) Let’s see the following diagram is commutative;

AP x |P,S | —Rp 15 ] x ... x |5

| |

AP x |P,S | NP x IS % ... x|S]

(id x AW)(t, 8%, ..., sP,y) = (t,8°, ..., P, E0FTawt2py
504‘{0-&-25%;12-&-...—&-qp"‘2p—1y7 )
ft, 80 ... 8P Nttty godot2ztattapt2p=ly, - Y = (80 8P gy EVT Ty
qu+150Q0+25~q2+-..+Qp+2p—1y’ " )
On the other hand
f, 8% 8P y) = (t,8° ., 8" EnipiiEntopi1y)
(id x AW)(t, 5% ..., P, Enipit-Enpoprry) = (8,8% ., 8P ENTH0FPe 1 enion 1Y,

+1zg2+...+qp+
50110 g9 ap p€n+p+1'~'€n+2p+1y7 ..... )
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Let’s check the first components;

~qitAap+20 gt tgp+
Eqor1EM w2 _— o WHPe 1 Enyapil

n42p+1—(qo+1) _  zntp—
Egor18 P @+ = gntp O ypt1--Entoptl

€q0+1€q0+2+--EntpEntp+1---En+2pt1

One can show that the other coordinates are the same.

So fo(id x AW) = (id x AW) o f.

= Egot1--EntpCntptl---Ent2ptl-

35



Chapter 6

BUNDLES ON SIMPLICIAL SETS AND TRANSITION FUNCTIONS

In this chapter, we will define transition functions for a given bundle over a simplicial set
and admissible trivialization. Conversely, we will also show that for a given set of transition
functions satisfying some certain relations, there is a bundle over a realization of a simplicial

set and trivializations with transition functions.

Definition 6.1 ( A bundle over a simplicial set ) :

A bundle over |S| is a sequence of bundles over A? x ¢ for all p, where o € S, and with

commutative diagrams;

Feio F,

| |

J
APl x e,0—> AP x o

and

i
F77j0' Fo‘

| |

-
AP x njo —= AP x o

with the compatibility conditions:

1<y
g iz

and

36
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Given a G-bundle F' — |S|, G a lie group, since AP is contractible, we can choose a trivial-
ization ¢, : F,, — AP x 0 x G for a non-degenerate o € S,. If o is degenerate, that is, there
exists 7 such that o = n;7, then the trivialization of ¢ is defined as pullback of the trivialization
of 7, that is, v, = n* (,).

Definition 6.2 ( Admissible Trivialization ) :

A set of trivializations is called admissible, in case @, for o = ;7 is given by ¢, = " (¢,).

We have thus proved:

Lemma 6.3 :

Admissible trivialization always exists.

Now, let us construct the transition functions for a simplex o € S, before giving the following
proposition:

Given a bundle and a set of trivializations, we get for each face 7 of say dim7 = ¢ < pin o, a
transition function v, . : A? — G. E.g., if 7 = ¢;0 then the transition function v, ., : AP S @
is given by the diagram

AP (5,0) X G—2> AP x (0) x G

L

APl x g0 AP x o

where g;,0 =7 and © = p, 0 &' 0 ¢, , !. So
{vo+|o € S, and T is a face of o}

are the transition functions for the bundle over |S|. Now, we can give the statement:

Proposition 6.4 :

Given a bundle on a simplicial set and admissible trivializations, the transition function
Usr, where 7 is a face of o, satisfies;

i) o is nondegenerate: if v = ¢;0 and 7 = g;y then

Vgr = (Vg © si).v%T.

This is called the cocycle condition.

ii)o is degenerate: If 0 = n;0’ and 7 = ¢;0 then when ¢ < j for 7 = 1;_;7" one gets 7" = ¢;0’

and when ¢ > j + 1 for 7 = ;7" one gets 7" = ¢;_;0’. For the other cases, i = j or i = j + 1,
7 = ¢’. Then the transition functions satisfy:

Voot i<
- 1 i=ji=j+1
Vorronp 10>+ 1

UO’,T
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i—1)

iii) If 7 is a composition of face operators of o, e.g., 7 = &~ ("Vg i =1, ... p then

p—z’—l)

Vorr = (Une15 0 (€7) ). (vst0,226 © (€7) - (Vzp-+1)5 -1 O €") -Van—ir-

Proof :
i) If o is non-degenerate:

v = gjo and T = g;y then we can see the cocycle condition which is expressed in the
proposition. In order to see this, let’s take AP~2 and by using the trivializations look at the
diagram below

AP=2 x @ APl x G——= AP x G

| | |

— €i — €j
AP—2 X gig0 —= AP 1 X ejo—=AP x o

That is, the transition function v, , : AP"? — @ is the multiplication of pullback of the
transition function v,.,, via the face map et AP72 — AP~ with the transition function
Ve,g.e0e50 © AP72 — G. This can be written as

Vo,r = Vogicjo = (UO',Ejo' o gi)-vajo,sisja
then we get the result.

ii) If o is degenerate:

If 0 =10’ and 7 = ¢;0 then 7 = (¢; 0 n;)0’ and it is equal to
7’]]‘_161‘0', 1<y

T:Ei’rljo'/: ].OJ . Z:j,Z:]+1

7’]j€i_10/ D> ] + 1.

For the first case i < j:

If o =njo’ and 7 = ;0 then

7= (giomn;)o’ = (nj_10¢&;)0’

So e;_17 = (gj_10m;—10¢;)0’, then there exists 7/ such that ¢,_y7 = 7" . Thus for 7 = n;_17/,
7! = g;0'. Similarly the second part, i > 7 + 1, can be shown.

By using the following diagram

AP x G AP x G——= AP x G

| N

_ i Ui
AP~L x Eﬂ]j(T/ = S AP x T]jO',HApfl X o'

we get
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_ _ )
Vo' 7 = 'UU’,emja’ - (UU’,njU’ o¢ )-Unja’,amja’a

where njo’ =0, 7 =¢i0, 7' =¢i0' and 0 € 5, 0’ € 5,1, T € Sp_1, 7' € Sp_o. Here vgr 40 is

1. So we have

UU’,T = UO’,T'

On the other hand when ¢ < j we have the following diagram:;

APl % @G AP2 x G——= AP x G

N S

— n _ e —
AP L% 773',187;0'/4)Ap 2 x 51'0'/4)Ap L x o’

Then we have
_ _ i—1
Vo', r = Vo' 1mj_1e50" = (UU’@'U' o1’ )‘UEW',T'

The transition function, v, -, is identity. So we have
_ Jj—1 _
Vo' .7 = Ug' g;0' O 1] = Uo,r
as required. That is, the transition function v, , is the pullback of the transition function v,

via /7L
P 1%
Vo r = 77J ! ('Uo-’,T’)-

The second case it = j,1 =7+ 1
Uo./p./ = (/00'/7773'0'/ O 6]')'/07]]'0'/70/ =
since both parts on RHS are 1. For the last case i > j + 1, we get

_ J
Vo' .7 = (UU’,Q—W’ on )'U€¢—10’777j€i—10"

Similarly the second part is 1 so by the same idea used for the first case, we only have

Vo r = Vg 77 O 77j-

Thus we have the required equalities.

i) If 7 = &7=(0=Yg i =1, ..., p, then

. . 7 . . i+1 p—1 D
Al x dig—S s Al x P igt—s . AP x Elg—=5AP X 0.
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By using the same idea in i), we get

Vor = (UU,€P*iUO€Z)'U€P*iU,T

_ i+1 i ) )
- (U07€p7(i+l)a. o¢g o¢e ).(Uép—(i+1)o-7é'pfio- o¢g )‘/ng_ZO',T

= (Upz150 ("1 0...08")..(Var-(i41) g piq © E") Vep—igrr

pfifl)

= (Voo 0 (e)7").(va1g 224 © () o (Vap-(41) g i © E") Vi 7

A o
= (Voeyo © () ).(Veporey 160 © (E))eciVzmmig s

S0 Uy, is defined in terms of the other transition functions with the composition of some
face maps for 7 = & (Vg = (g;0....0¢,)0, i =1, ..., p. O

Proposition 6.5 :

Assume that we have a bundle over |S|. Then

1) There exists admissible trivialization such that the transition function is given by

Vge,o = 1if 2 < p.

2) For 7 = &~ (=Vg i =1,..,p, we get v,, as product of some transition functions:

—1 p—i—1>

Vor = (Vg 0 (€))7 7). (0215 0 (€ Py

(vz2y 0 (€9 (Va1 0 (€)1 (Vz10).

3) The transition functions v, , satisfy the compatibility conditions:

i Voo @ 1<p—1
Vy,0€" = AT
Vep_10-Vepo i=p—1

4) For a degenerate o, we have
Vo 01 = Upo-

for Vj.

Proof :

1) First of all let’s define a special case of trivialization by induction on the dimension of
the non-degenerate simplex.

One has a bundle over |S| so I — A x Sj is a O-bundle. By choosing a trivialization we
get ' = G. One also has 1-bundle on A! x S; for the degeneracy elements and by admissible
trivialization for the degeneracy elements in Sy, we get ¢, = 7;*(¢,). For the non-degenerate
elements in S; we delete the first vertex < 0 > then it is shrunk to < 1 >. So the identity on
< 0 > is extended to whole simplex.
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The idea is the same for 2-simplex. We have a trivialization on each face but we can
not extend this to the whole simplex because of the obstruction theory. Let us define the
trivialization on the 2-simplex by the homotopy: H; : A? — A? defined by

Ht<A2\€2A1) = id|A2\E2A1
Ho(A%) = id,
Hi(A%) = A2\2AL

The homotopy tells us that the identity on A*\e?A! is extended to the whole simplex.

In general: Let A C X and F' — X be a principal bundle. A is a deformation retract of
X such that H : X x I — X, Hy(X) = idyx, H1(X) = id4 and H;(X) C A. It induces an
isomorphism Hy"(F') = H,*(F).

Then

A is contractible so each principal G bundle over A is trivial. Thus, one can define the
trivialization on the whole simplex by the homotopy theory. So the homotopy H; : A? — AP,
in general, is defined by

Ht(Ap\gpAp_l) =1 |AP\EPAP—1
Hy(AP) = id,,
Hy(AP) = AP\ePAP,

Thus we get the trivialization on the whole simplex extending the given trivialization on
AP\eP AP~ = Uf:_ol e! AP~ Hence given trivializations of F},, for dimension of 7 < p, we obtain
a special kind of trivializations ¢, : F, — AP x G for each non-degenerate o extending those
on o x e!AP7 < p.

If o is degenerate say o = 7;7 then we define the trivialization for F, by pullback via n’
from AP~! x 7. Now for these, we get the transition functions Vg e,o from the diagram,

g OE 0pe &

AP G—— AP x G

| |

— Ei
AP xgio—=AP X0

If © < p then p, 0 & = ., since AP"1 < AP is an inclusion and we delete some first
vertices. Hence
Vogio = 1, 1 < p.

2) This is the reformulation of the previous proposition, since for i = p, we put v, = Vs,epo
Then, for 7 = &~"Vg i =1,.. p, we get v,, as given in the statement.

3) For j = p, we have v = ¢,0 and 7 = ¢;7, and also 7' = ¢;0 and 7 = ¢,_17/, when (i < j),
in proposition 6.4, put v = ¢,0 and 7 = ¢;7y then

T = Ei&p0 = Ep—1&40.
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Hence by the cocyle conditions;
_ i
Uo,siepo - (Uo,spcr o€ )-Uspo,eispa
-1
’UU,Ep—l&'U = (UU,EN © sp )'vfz‘U»Ep—lfz’U

and v,c,0 = Vo and when i < p, vyc0 oeP~! = id, follows from 1), so the first equation becomes

_ )
Vo eiepe = (Vg ©€") Vepociepo-

The second one is,

/UO',Epflé‘iO' = USZ'O"
Thus we get

(VgoeP Nvee + i=p—1
Veio = i ;
vyoet 1 i<p—1

In other words, we have

Vy0€" = 1

i Voo @ 1<p-—1
Vep_10-Vepo ci=p—1

4) From ii) in proposition 6.4, we put i = p and we get

1 1<y
Ugyor = Lo i=jii=j+ ]
vgron? o1 >7+1,
since only the last case gives vy, = v, © 7’ when i = p, o' € S,_1. For the other cases
1 < p—1, we get vy g0 © = Unso' o’ OF at most p — 1, we get vy, o0 © n’~L. That is

why the transition functions will be 1. For the last case, we have vy, o, 07/ = vy 0 n’. By
interchanging ¢’ with o, we get the required equalities. U

Note :

The transitions functions are generalized lattice gauge fields. Lattice gauge field is defined
on 1-skeleton and one can extend this to p — 1 simplex. So we get the transition functions on

AP,
Proposition 6.6 :

Given a bundle, one can find the admissible trivializations such that the transition functions
are determined by functions v, : AP"! — G for o € S, nondegenerate.
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Proposition 6.7 :
Suppose given a set of functions
Vg - AP @

for o € S, for all p, satisfying the compatibility conditions
o= g s r<p]
Vep_10-Vepo ci=p—1
and

— J
Upso = Vg O 1.

Then one can define for each ¢ € S, and each lower dimensional face 7 of o, a function v, ,
such that i) and ii) in proposition 6.4 hold and such that

_Jve o= p
UU’T_{ 1 : i<np.

Proof :

For a lower dimensional face 7 of o write 7 = ¢;, 0...0¢;, 0 and define v, . as in proposition 6.5
2). It is enough to show that v, is well-defined for 7 of codimension 2. That is, for 7 = ¢;¢;0
we must prove that

_ %
’UO',E»L'E]‘O' - (UU,EjU SRS )-’Uaja,aisjo
and
_ j—1
,UO‘,EJ‘,1€¢U - (,UO‘,EZ'O' oeg )'UEZ'O‘,EJ‘?lEiO'

are equal when 7 < j.

We know that v, satisfies the compatibility conditions above. Now

_ )
Vogiepe = (Vo ©E") Ve 0eie,0

— p—1
UO’,épflé‘iO' - (UU,éiO' SNS )'UéiO',EpflEiO'

By using the first and the second conditions given in the statement, we get

(vg 0 62-) y _ Vool =V 1 1 <p—1
o Vepo,eiepc — -1 _ . y
pEmER Vep_10-Vepo  Vepo = Vep_yo = L=p—L

On the other hand, we have

(Uagaogp_1> Vege 1o = 1.?)51'0 : Z<p—1
Eq ° 10,Ep—1¢€4 . y
i (TP lweg, o @+ 1=p—1

So
Voo @ 2<p—1

p—1 _
(UU@U o¢g )'U6iU,€p—1é‘iU - { v . i =p— 1
Ep—10 - - .
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When i < j for g;e;0 = 7 and €_16; = T, vy, gives the same compatibility conditions.

S0 vy, is well-defined. O

Proposition 6.8 :

Given a set of transition functions v, , satisfying i) and ii) in proposition 6.4, there is a
bundle F' over |S| and trivializations with transition functions v, ..

Proof :

Let’s define
F, =A’xoxG

where o € S), as a trivialization. Similarly, let F. , := APt x gjo0 x G, gj0 € S,_1. We want
to define

g AP X (g0) x G — AP x (o) x G

by using the transition functions and an appropriate face map as follows:

APl % (gj0) x G- AP x (0) x G

L

AP x g0 AP X 0.

Then
&(t,ej0,9) = (€(t),0,V5c,0(t).9),

where t € AP~ and Voeso AP~1 — G, From the definition of trivialization, the diagram above
is commutative. We need to show that the compatibility conditions hold:

=i =j—1
Sig 6'6] 1<
gtigd i>j
We have
p—2 & p—1 &
AP2 X gigjo X G—= AP Xgjo x G—= AP x 0 X G
0 \L i l
AP72 X gigjo APt x gj0 —= AP x o
and
R (=i
& o' (t,eigjo,g) = &(E'(t,eig50,9))

(
= (&Tiéfj_l(t), g, (Uo'75jo' S 5i(t))-vsja,ei€ja(t)‘g)

when 7 < j.
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We know that v,, is well-defined from proposition 6.7, where 7 = ¢;e;0. That is,
(Vog,o0 © €'(t) Ve 00i0,0(t) and  (Vpero © €7H(E)) Ve, 1ei0(t) Wwill give wus the same
compatibility conditions when ¢ < 7. Then

ge(t,eigjo) = (€'€77H(t), 0, (Vyeyo © 5j’1(t)).vgig,gjflem(t).g)
= gi(gj_l (t), €0, Uam,ajqaia(t) .9)

E_iE_j_l(t, 6j_16i0', g)

g'& Nt  eig50,9).

When ¢ > j, we get

gt eiejo) = &

From proposition 6.7, (Vg.c,e 0 € (1))-Ve,0.056,0 (1) and (Vgery 10 © €7 (1)) -Veyyi0,6,6,,10 () Give the
same compatibility conditions when ¢ > j. Thus
gg(t, cigjo) = &1

(gj (t)’ €i+10, U€i+1075j5i+10'(t) -g)
_ g

& (t,ejeir10,9)
= &M (t, g0, 9).
In order to get the compatibility conditions for the degeneracy operators let’s define
7 AP X (no) x G — AP x (o) x G

as follows: '
AP % (;0) x G—L= AP x (o) x G

L,

7].7
AP X pio AP X o

7 (t,nj0,9) = (17 (t),0,1.9),

where ¢t € AP*! and the transition function becomes identity, since

UVor=1j7<p+1landj=0,..p.

So we can get the required compatibility conditions
WD B A
7N = —i—1-j . .
nn 1>
as follows: . '
APF2 5 pinio x G APHL X pio x GT AP xoxG

L

APT2 x minio AP % o AP X o
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and

7t mimno.g) = 70 (t),n0,1.9)
= (n'(t),0,1.19).
Then
7 (tnmio, g) = ('’ (1), 0, 9)
when ¢ < 7. So finally we get

7 (t,nimso, 9) = 77 (¢t mimio, g)-
The other case can be shown similarly.
The last compatibility conditions are
o S 1<j
e = 1 i=ji=j+1
g-lgl o i> g+ 1.

We have a diagram

- = 7
APt xginio x G+ AP x 10 x G —= AP1 x ¢ x G

N .

— e’ n’
AP 1 X €iN;0 AP x n;o AP—I X 0.

So

njgi (t, gin;o, g) = ﬁj<€i(t)a n;0, Uﬂjo,smja(t)'g)
= (e'(t), 0, 10p,060,0(t).9).

Then
N (e (t),01g) + i<j
ﬁjéﬂ(ta €150, g) = ] (1't7 g, vnja,amja(t)~g) Pl = ],Z - j +1
(M (1), 0, Unyoemo(t).g) © i>j+ 1

From the first part of proposition 6.4 and the definition of & and 7*, we get

g Nt 180, g) ¢ i<
TE(temo,g) = (t,ejpmo,g) + i=gi=j+1

~i—15

€ nj(ta Nj€i-10, Unja,njsi,lo(t)g) o> ] + 1.

At the last case vyo.nie;, 10 = Voei_10 © n’ and this is not identity when i — 1 < p, but we can
see that

’F/jgi(ta 6i77j0-7 g) = (6i_177j(t>7 0,Vge;_10 © n](t)g)
'71<77jt7 €i—10, 19)
= &' (t,mjei10,9)
_lﬁj(t7€i77jo-7 g)

Il
R

|
oL,
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Thus we get the compatibility conditions as
giﬁj_1<t7 8i77j07 g)

Pt emo,g) =1  (tem;o,g)
gilﬁ] (t7 51'773'(77 g)

Corollary 6.9 :

47

1 <]
i=ji=j+1
i> 541

Given a set of functions v, satisfying the compatibility conditions in proposition 6.7, one can
construct a bundle F' over |S| and the trivializations with the transition functions Voepo = Vo

and v, ., = 1 when ¢ < p and v,,, = v, o 1)’ for a degenerate o.

Proof :

It directly follows from Proposition 6.7 and Proposition 6.8.



Chapter 7

TRANSITION FUNCTIONS, REALIZATIONS AND CLASSIFYING MAP

In this chapter, we construct a map m : || |[P.S| | — BG for a given bundle F on |S| and
admissible trivialization and also we construct a map k : ||S|| — BG with aid of transition
functions.

Now, look at the bundles which are defined over some simplicial sets in the following diagram;

(po L)' F——=Arx P2 - pp

HEST == IS] 1| 15
where (po L)*F is the pullback of F' by po L.

Let F be defined as a subset of
(s, f) €AV X A% x5 A% X F o m(f) = (L(1)(s). )}
where t € AP, s € A® x ... x A% f € F, and y € S+,

So (po L)*F can be modelled by F by the following proposition.

Proposition 7.1 :
There is a canonical isomorphism
(po L)'F — F

where (po L)"F is a bundle over || |[PS| |. This map is defined as a projection on the last
factor F'. The equivalence relations I’ are as follows;

i) (e't, 5,71 f) ~ (t,mis, f)
where £ € AP71 s € A x .. x A%, f € F, .
i1) (t,g(i)jsl,égi)f') ~ (t, s, f)
where t € AP, s € A® x .. X A%t x . X A% f' € F, y€ S,y

i) (t, s iy 1) ~ (¢, 8, )

48
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where t € AP, ' € A x .. x A% x L x A ff e F, y € Syipii

Proposition 7.2 :

Let 7 : (po L)*F — AP x F and the projection of AP x F on the second factor be given.
Then the composition map
¢ (poL)F—F

is a well-defined simplicial map.

Proof :

Let’s see the equivalence relations under g;

i) (€', s, iV f) ~ (t,m;s, f)

where
TR ] — F
:u . |An+p7qi71 XSn+p7q7;71 |An+pxsn+p
and
1(i) © Sntp = Sntp-gi—1
i=0,...,p.

q(&'it, S, ﬂ(z)f> = ﬂ(l)f and Q(taﬂ'iS? f) = f

We want to see that

Avf ~ f
Then
T80 F) = (O (5). 1)
~ (EUO(T(5), )
= (Ie")(s),y)
= Wy(f)
So .
AOf ~ f
i) If

(tv E(i)j8/7 g(l)]f,) ~ (ta 8/7 f/>
where t € AP 8 € A? x .. X A%t x . x A% f € F, y€ S, , 1 and

5(1) F]An+p*1 XSptp—1 EA”JFPXSTL_H,

q(t,ewy’s ew’ f') = ew’ f and q(t, s, f') = [



30 TRANSITION FUNCTIONS, REALIZATIONS AND CLASSIFYING MAP

We want to see

'~
Then
o0 Ea’ 1) = () (Ew?s)mPy)

where n(i)jy S Sn—l—pa 6_(i)jf/ < F|An+szn+p'

(lp (t) (E(@')jsl), n(i)jy) ~ (nj (i)lp(t) (€(i)js’, y)

= (L(H)($),y)
= 7Ty(fl>~
Thus
q(t,ew’s e f1) ~ q(t, s, f')
iii) If

<t7 77(z‘)j5/7 ﬁ(z)ﬂf/> ~ <t7 8/7 f/)
where t € AP ' € A® x ... x A% x X A% f € F, y € S,ipi1, and

T
77(2) : F]A”+P+1xsn+p+1 - ‘A"'*‘sznﬂ)'

Q(t,n(i)jsl,ﬁ(i)jf/> = ﬁ(i)jf/ and q(t,s', f') = f'
Then

oy (M 1) = () (n6)’s"), £,)

Whel"e sj(l)y c Sn+p7 ﬁ(l)jf/ € ﬂA"+pXSn+p'

Then
L (w’s).e;) ~ (6@l (nws), y)
= (L))
= 7Ty(f,)-
Thus

q(t, ey’ s’ 1) ~q(t, s, f).
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Now, we can give a statement to define a classifying map & : ||S|| — BG. We have a diagram

fro o BG
11PS]|]"—~ B
s

)

As we mentioned before that there is any well-defined map || [P.S| || — BG in the sense we
wish, so we can define a map m : || |P.S| || = BG by the following proposition:

Proposition 7.3 :

Given a bundle F' on |S] and admissible trivialization with the function v, ,, where 7 is a
lower face of y, one can construct a map m : || |P.S| || — BG by

mlt,s,y) = (L vao-ny 0, (00 GE)(s) 7
V115 (072 (L (1)(5)) 7
Uﬂ(p)yaﬂ@)y(p(pil)(lp(t)<3)))717 /Uy,ﬂ(p)y(p(p)(lp(t)(s)))ila 1)'

Proof :

Let’s start with a given bundle F' on |S| and an epimorphism |P,S | — |S.|, so

F F
|P.S|—=15]

Transition functions which we will use to define m will be taken from the bundle F' — |S].

Let’s take y € S, 42,41 and [,(t)(s) € A" We already defined 1,(¢)(s) before:
lp(t)(SO, 0, ceey Sp_l, 0, Sp, 0) = <810(1 - tl) + tl, ceey Sqoo(l - tl) + tl, tl, tl,
Sll(tl - tg) + t2, ey 8q11<t1 — tz) -+ t2,t2,t2,
$177 (b1 — ty) + gy oy Sgp P (o1 — tp) + by tp, b,

p p
517y, ..., 84,71, 0).

For convenience, we drop p in [,(t)(s) and use {(¢)(s). So
pPPUE)(s) = (1%L —t1) +t1y ey S (L — 1) + t1,t, 1,
s1°(tr — ta) + ta, ., 8, (tr — L2) + ta, 1o, L,

ceey

Slp_l(tp—l - tp) + tp? Y quqp_l(tp—l - tp) + tpa tp)7

ol
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where p®) ;= "=+~ o o nn+2 deletes g, + 2 elements.

There is a fibre at (I(t)(s),y), by using the trivialization ¢, : F, — A" x 4 x G and
the projection on the last factor, we get Fy, — G. Let’s denote this composition by ¢, (f) where
[ =)(5),v), fy € Fuwys)w)» ¥ € Snt2p+1- On the other hand

F,

hy = AT gy x G

Puepyy -

gives us
Puiyy * Fugyy = G-

By the definition,

@y(ﬁ(p)fy) = Uymp)y(p(p)l(t)(3))-@u<p)y(f)u(

P)y

where the transition function is

. n+2p—qp—1
Vyouipyy A — G,

where
[(p) © Snt2pt1 — Sn+2pqul

is defined by f1(y) 1= €ny2p—g, © --- © Ensopt1, deletes g, + 2 elements.

The last component in 7(t, s, f,) is defined via the trivialization o, (f) which is @,(f).
In order to find the p-th component, we will use the transition function vy, ,. Then this

component will be
1 ~

Uy,u(p)y(P(p)l(t)(S))_ By (f)-

To get the other coordinates in the image, we apply the same method several times. In
general

Fiy - Sn+2z‘+1—zg""1qp_j T Pn42i-1-0 g,

1=1,...,p.
In general one can write

p(l)l(t)(S) = (810(1 — tl) —+ tl, vy Sqoo(l — tl) + tl,tl,tl,
Sll(tl — tQ) + tg, ceey Sqll(tl — tQ) + tz,tg,tg,

Sli_l(tz’—l - tz) + iy St]z‘—li_l@i—l - ti) + 1, ti)’
i=1,..,pand pWi(t)(s) = yot-Faat2ilo opnt2r,

Note : itV = fig) = pi).
Then the p-1-st component is

Uiy (PP U () ™ B (F)
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where p®~V](t)(s) deletes q,_; + 2-elements in p®(t)(s), that is,
P b P

p(”_l)l(t)(s) — 77n—qp—qp_1+2p—3 0. o 777L+2p‘

Let’s denote

AP = ity 0 .0 figy)
i =0,...,p — 1, which deletes the elements (qo + ... + ¢ + 2t — 1,....,n + 2p + 1). It deletes
Gir1+ ..+ +2(p—i)=n—(q+...+¢)+2(p— i) elements.

Thus
m(t,s, fy) = (60150, (DU (8)) vy (0P1(E) ()7 2y (f),

Vaery 5y (PP L) ()™ 05, 4501y (07D U ()™ 0y (0P 1) ()70, (),
Uiy (0P (L) ()™ 0y (PP (1) (5)) 24 (F),

Uy (PP (1) () 2y (),
2y(f)).

In other words,

m(t,S,fy) = (t7 (Uyﬁ(p)y(p(p)l(t)(s))"'vﬁ(P—l)y,ﬁ(my(p(l)(l(t>(s>>>_l@y(f>,
(PPUE)(5))- 07,z (PP U (8)) 021y 600, (0P (L) ()7 2 (F),
(i (PP (L) (9)))- 03, i@y (PP U (5))) 7 2y (),
Vi (PP U (5)) 712y (),

y(f)).

(Uyu ¥

By using proposition 6.5 2), we can simplify m as:

Mt s, fy) = (60,50, U1)($)) "0, (F),

(0,1, (P2 (U() () 2y (), (7.-41)
)

2y(f))-
By the definition EG = ||[NG|| and v : NG — NG, here
NG(p) =G x ... x G and NG(p) =G x ... X G,
~——— ~——

p+1—times p—times
is given by

Y(Gos - 9p) = (Gog1 ™+ s Gp—1Gp ) (7.-43)
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So we can identify BG = ||[NG||. Then the required map is

m(t,s,y) = (t,v50- 1>yH(,o)y(p(l)(l(t)(s)))_l,...,
Va0, (0P (U(E)(5))
(D) () Uymp)y(/)(p)(l(f)(s)))*l?1)-

Uﬂ(p)yvﬂ@)y

Proposition 7.4 :

Given a bundle F' on |S| and by using the previous proposition, one can show that the map
m: F — EG is well-defined.

Proof :

For the first equivalence relation:

i) If ‘ o )
(e't, (5.1 f,)) ~ (£, proji(s), fucyy)

where t € AP s = (52,0,...,87,0), y € Sprapr1, f#(i)y € F,y and i f, € F, then we will
show that ‘ o .
m({fz'[;’ (87 ﬁ(Z)fy)) ~ Th(t, pI'Oji(S), fu(i)y)

When i = p, it follows from

(et s, 1l f) = (71,0, 50, (P V1P ()" 0y (BP ),

(00, (PP~ (U(e71) (s
Uy,ﬁ@)y(p(p_l) (U(e")(s)
Vg iy (PP (L) (5))) " (P ),
2y(17' 1)),

~ (v, oy (PUEE) ()7 oy (1P ),

ceey

By the definition vy,ﬂ(p)y(p(p)(l(spt)(s)))*l.@y(ﬂ(p)f) = @ﬂ(p)y(f) and if we substitute in the
equation above and using the necessary cocycle conditions we get

Th(t,projp(s),fu(my) = (6 Vg u(p>y(p( ' )l<5pt)(3))_1@u(p>y(f>v

<Uu<p)y7ﬂ(3)’u(p>y(p( )N( )(l<5pt)(3))) Sou(my(f)
,Uu(p)y,ﬂ@)’u(p)y(p(p 1)M(p)(l<€pt)(s))) SOM(p (f~)
Pugyu(f))-
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where p®1(e?t)(s) = I(t)(proj,s).

When i = 0, it follows from

(e 5,10 f) = (%0, 50, (P VU ()" oy (B ),

95

By the definition vyﬁ(o)y(u(o)(l(aot)(s)))_l.@y(ﬁ(o)f) = gﬁﬂ(o)y(f) and if we substitute in the

equation above and using the necessary cocycle conditions

Uy oy = Yynoy- Yoy vt koyy

Uy, 100y b(py ¥y Uy o)y Vi) b0y 1 (pyy

we get
m(ta prOjO(S)a fum)y) = (tv UWO)y,,a(P*l)’u(O)y(/O(Q)M(O)l(got)(S))_l@u(o)y(f)a

ceey

<Uu(o)y7ﬂ(2)/#(o)y(p(pil)lu'(())(l<€0t)(5)))71@#(0)y(f>7
Uu(o)y7u(p)/ﬂ(o>y(p(p)ﬂ(o)(l(got)(s)))_l@u(o)y(f)a
@M(o)y(f))a

where 1(91(c%)(s) = I(t)(projys).

For i =1,...,p — 1, by using the same fact that we get the required equivalent elements.

ii) If

(ta Ej(i)s7 &:]fN) ~ (t7 S, faj(i)y)
Then we will show that

ﬁl(t, gj(i)87 gjf) ~ m(t7 S, fsj(i)y)7
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For ¢« = p,j = q,, we get

m(t, e 5,67 f) = (8,0, 50, (PVUE)(5) 7 0, (€ f)

caey

8y(27 ).

On the other hand

m(t7 57 f6n+2py) = (t7 U8n+2py’ﬁ(1’)/5n+2p'y(p(l),l(t)(8))_1¢€n+2py<f)’

(V5 2y (P2 (L) (3)) ™ P ()
Ve o i ningy (P (L) (8))) ™ Py ()
Ve apiirensany (PP (L) () T Py (),
Pensan(f)-

From the definition vy, ., '@y (E% f = @, oy f) and Vyensopy = 1d and cocycle
conditions, we get

(t vy, (P VU () By (€7 ), . 2y (7)),
what we wanted. For the other cases i = 0,...,p — 1, it can be shown similarly.
iii)If ' N )
(tv 77](2')37 ﬁjf) ~ (ta S, fnj(i)y)

Then we will show that

m(tv 77j(i)37 ﬁ]f> ~ ﬁ’L(t, S, fnj(i)y)a
j = O7 ey @
It follows from ii) in proposition 6.4 and admissible trivialization. U
Proposition 7.5 :
Let ||S]| be the fat realization of S. One can define

k:||S|| — BG

k(t7 Z‘) = (t7 [Uezmepx(o)]_l? [U€3m€px(t1>]_17 X3)
[Usp_lspx(Up7377p72?7p71t)]71: [’Uspx(npiznpilt)]i%
a0 ).

» : o 1
as a composition of m and an inclusion i : A? x S, < AP x (A%)P™ x Sy, 14,
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Proof :

Let’s take all s* = 0. Then n = 0, y € Sypr1. The map S, — Sypy1 is defined by
Mop © Nap—2 © ... 0 Mox, © € Sp. In order to define the transition functions, we need to find the
elements in A?P*! by

1t)(0,...,0) = (t1, t1, ta, ta, ooy by £, 0).

Hp) @ Sapt1 — Sop—1 corresponds to fi(p) = €2, 0 Expi1-

The element in A%~ follows from
p(p)l(t)(()) = (tla t1, 1,12, ..., tp—l) tp—la tp)a
where pP) 1= n?P~1 o 5P,
In other words,

PPI)(0) =P Lo o oc? o oel(ty, ..., tp).

For the p-th component, let’s write vy,wp)y(p(p)(l(t)(O)) in terms of x:

vy,“(p)y(p(p)(l(t)(s))) = Uy,52p52p+1y(772p_1 on?oe® o o . ocl(ty,...,1,))

= Uy iy o on® o o Loe! (ty, ..., tp)).
vnpﬂy,@pszpﬂy(n%_l onPoe® o o . ocl(ty,...,1,))

= 0, (e e (b, o 1)) ey (NP P00 E (e )

= Uy (EP e (b, oo t)) Vegy iy (PP P00 e (s ty))
U52p+1y(772p73 0.0 (ty,...,1,))

— 0y (¥ P00l by, 1))

- Unp_l051o...oagp_gonzp_4o...on0a: (tl, eeey tp)

= v (tr, . tp)
= Ux(tl, ...,tpfl).

This transition function is defined on AP~!.

For the p — 1-st element, we will do the same thing for v (P=1(1(t)(0)) Then we get

() YDy (p

Uspx(np_277p_1(t17 ceey tp)) - U&:pm<t17 ceey tp—Q)a
which is a transition function defined on AP~2.
Similarly for the p — 2-nd component, we get v, ,e,o(t1, ..., t,—3) defined on AP~3.

One can write
ﬁ(i) =n?lo . on®

Y
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For the 2-nd component, we get ve,. .,.(t1), and For the 1-st component, we get vz, ,.(0).

Thus
Rt F) = (P 1) ey ,0(0)] 0y (),
Vg (np_lt)vepw(np_277p_lt)--'Uspfﬁpx(np_377p_277p_1t)]_l@y(f)7
el 0y O~ 01 (), [P 0) 2, (),
@y(f))-
So

k<t’ LU) = (t7 [Ué?z..-é?px(())]_l? [U€3-~€pw(t1>]_lv X)
[ng—lf':px(npignpi%fnilt)]717 [Uspx(np7277p71t)]il, (7-113)
o2 (P ~1)] 7).

We can also show that the composition k := m o4 is well-defined.
If (7, ) ~ (t,e;2) then we must see that
k(e’t,x) ~ k(t,g;x),
where t € AP~ and z € S,
When j = p,
k(ePt,x) = (&P, [UEQ,,_pr(epO)]’l,

[’Uag...apx(fptl)] _17

[Usp lep-T(T} 77 np 1€pt>]717
[Uap ( P2 p 1€pt)]

[va (11" 15”75)] Y

~ (6 [V ey (EP0)] T o v (PR )]
= (t’ [vaz 8pr( )] 17"'7vapx(np_2t)]_1)
= (t,[Vegep_ 15,,3:(0)]_1, ooy [V (1, ...,tp_g)]_l).
On the other hand,
k:=moi(t,e,xr) = m(t,0,...,0,7m9p-2 0 ... 0 NoEHT)
= (t, [ver.ceprepa(0 ) 7[1152 eprepa(tr)]” g [Uspa:(npi%)]il)
= (1, [ve,. Ep— 1apx(5 O)] s [Ves.. apx( 2tl)] [Uapx(np_lt)]_l)
= (t [U62..46p71spz(0)] 1 [Uspz(tlw' s p— 2)] )
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When j = 0,

k:(sot,x) = (50t, [v@__,apx(sOO)]_l,
[Usg.“spm(gotl)]ila
[Ve,_yepa (2072 0P E)) 7,
Ve (P 2P0 )T
[z (P10

~ ( [Uss..-epa:(oatl>]_lv~'7 [Uepx(g ' 377p 2t)] ! [ (5 n' Qt)] )
7[U€053~~~5p1‘(t1)]717' [U€0€px(np P 2t)] 17 Ve ( P 2t>] )
[ Vea (17 724)]7)

[
) Uazag...ap_laox(tl)]_l U&‘p 1on(77p 377p Qt)
(t,éol‘).

(t
= (
k

One can show this for the k =1,...,p — 1.

Proposition 7.6 :

One can see that
i ||S|| = I [PS] |

is simplicial.

Proof :

it AP xS, — AP x (AT X Sy
is defined by

i(e*t,x) = (¢",0,...,0,y)
~ (taoaaoau(k)y)

On the other hand
i(t,epx) = (1,0,...,0,m2p—2 0 ... 0 oERT).

When k = p, one gets

i(e’t,x) = (£,0,...,0,y)
t,O,...,O,M(p) )
t,O, ceey 07€2p€2p+1y)

t, 0, ceey 0, Top—2 © ..772€pl')

29
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Let’s also do it for k£ = 0;

i(e%,z) = (¢",0,...,0,y)
) 0)y>

(e
(t,0
(t,0 0 5051y)
(¢,0
(t,0
(t,0

2

,0, ..., 0, €0817M2pN2p—2--- 1270 )
) 50, Map—2 © ..10EOELTNOT)
-0, m2p—2 0 ..10E0T)

= (t,gga:).

One can show this for k = 1,...,p — 1. Thus the inclusion preserves the equivalence relation

on |[S]]. O



Chapter 8

ALGEBRAIC POINT OF VIEW

In this chapter , we are going to explain briefly why we need to work on the algebraic level and
how the lifting problem will appear in this construction although we are going to mention the
lifting problem later with details.

Recall the diagram (5.1) of homotopy equivalences given in the proposition 5.2,

15| =11 [P.S] |
|

us\ I Pf I

IS

We have defined the homotopy us in the chapter 4 as follows;
udzApxSpﬁApHxApxSp
is defined by
us(t,z) = ([1 — (1 —t1)d,....,1 — (1 —t,)0,1 — 9], (¢, z))

such that we(t,z) = (1,..,1,t,z) = (e2..e%0),t,z) ~ (0,t,z) € A°x|S]| and
ui(t, ) = (t1, .., tp, 0,8, 2) = (¢,0,t,2) = (P71t t,2) ~ (¢, t,2) € AP x |S].

In the diagram above, there is a lifting Hs of a family us with the end points uy and wq,
where H; is a homotopy between wy and u; and ug : S, — FPySq,, w1 : S, — F,50,..0-

y, Pj.L |

IS —z= I 1S

So in the following diagram

ug lifts to Hs but on the other hand in the following diagram

AL
|

1
IS == 1 1S

61
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although u; can be lifted to i, ug can not since when we take f~1(A% x |PyS|) = A x |S|
which is contractible but |S | is not. So there is no way to lift ug. Therefore the homotopy Hj
can not be lifted. However it is possible to do this lifting on the chain level therefore we will
work on the algebraic level. On the other hand on the space level there is a difference between
I|S)]| and |S.|, we need to carry the problem onto the chain level so there will be no difference
in terms of the chain complex of a simplicial set although we consider two different realizations
of S. So to be able to find this lifting, we switch the picture to that of the chain complex of
PS.

In order to remedy the lifting problem, let’s start by giving a definition of the chain complex
of PS :

A bicomplex ( a double complex ) C,.(PS) is a family of {C,,(PS)} of modules with
boundary maps 0" : C,,,(PS) — Cp_1,(PS) and 9" : C,,,(PS) — Cpn—1(PS) such that

d9 =0, 9"0" =0and 99" + 99 = 0. (8-1)

Thus C,,(PS) is a bigraded Z-module with the tow differentials. Then the total complex
C.(PS) is given by

Co(PS) = P Cpn(PS)

p+n=m
with the boundary operator 0 = 0’ + 0" satisfying ( 8.1 ).
Cypn(PS) = @qo+...+qp:nZ[Pqu° ,,,,, qp] - @qﬁ.ﬁqp:nzsnw(qo ~~~~~ ap)»

so there is a natural map ®q0+...+qp:nZSn+p(q0 ,,,,, o) — Chyp(S) and there is a map
Cpn(PS) — Cpyn(S). In order to get the right homology for || |[P.S| ||, we need to define
the differential 9 on the double complex as a sum of two differentials, i.e., 9 = 0’ + 9”".

On the other hand, we can find the sign convention by the following diagram

PS —=ES

N

S,

The sign conventions in £.S and in S give a motivation to get the correct sign in P.S. since
the differentials are preserved under the maps in the diagram above. So the differential 0 can

be thought as Zj;’é’ (=1)¢;.

Proposition 8.1:
Cpn(PS) is a double complex with the external and the internal differentials, namely given

O =3P (=1)etetam,and 97 = fill (—1)i_1+2§;% %d0)  where d denotes the i-th

differential. Thus the differential is defined as

0=0+0"
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Proof :
Let’s define the differentials;

For ', we are going to use the external differentials (horizontal differentials) p(;) given in
chapter 5:

PpSq0,ap = Po-1540,dist
for 0", we are going to use the internal differentials (vertical differentials) ; as follows;
PoSqoay = PoSgoriti=1.eop

with go + ... + i1+ < j < qo+ ... + ¢ +1 for ¢; > 0 (g will be used, since p;y = 0) or for
¢; = 0 (pg will be used since the degree for p will be reduced one) give 9" and 0 respectively.
If ¢; # 0 then p(;y = 0 so the differential will be only of the form of 9”. If ¢;’s are not zero then
in order to see that 90 = 0, it is enough to see 0”"9"” = 0. It follows from that one deletes j-th
and ¢-th coordinates when ¢ < 5 and j < i, since by interchanging and arranging this, one can
see that they will be cancelled out. Then 0’0" + 9”9 = 0 will also follow automatically, since
d' is a chain map of degree —1 for the boundary 0” so "0’ = —0'd". If ¢; = 0 then for the
differential @ we take 0" which is defined by ;) written in terms of only one ;. So 90 = 0 will
follow by using the same idea as above. Thus one can define the differentials carefully with the

sign conventions;
P

a/ = Z (_1>r+q0+“.+qrilﬂ(r),

r=0

and
p+1

o' = Z (_1>i—1+23;%) qjd(i)’
i=1
where d®@ denotes the i-th differential. Thus the differential is defined as

0=0+09".

Example :

As an example, we can take p = 2, since it is obvious for p = 1. We want to show that
(0 +0")0 (0" + 0") for Cao(PS). First let us see &' 0d'. From the definition, 0" : P,Sy0 — P150,0
gives ' = oy — p(1) + fue2) (since ¢;'s are zero).

0 0d = (o) + rm)lko — 1oy + 1)
= (€0—€1)(€0—51+€2)
= E0Eg — Ep€1 + EpEe — €1€0 + E1€1 — €19
= 0.

Obviously 9" = 0 since gy = ¢; = 0. If ¢;’s are not zero then p; = 0 so we only use
0". Let’s see 0" 0 0" = 0 for C}2(PS), where gy = ¢ = 1. There are 2 internal differentials
d = 20:0 (=1)"e, and d" = Zglzo (—=1)"€go4rs1- Then

a// o 8” _ (d/ + (_1)qod//)(d/ + (_1)qo+1d//)

dold/ + (_1>QO+1d0//d// + (_1)q0d1/d/ + (—1)2q0+1d1”d”.

63
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comes from the definition of 0" = d + (—1)q°+1d”, where d' : P1S117 — P1Sp1 and
d// . PlSl,l — Plsljo.

By substituting ¢y = ¢1 = 1, we get

000" = —(g0—e1)(e2 —e3) + (61 — &2)(e0 — €1)
= 0.

One can show the same result for p > 0.

The last thing is to show
a/oall_i_a//oa/:().

Let’s show this by using some examples. First let’s assume qop = ¢ = ¢2 = 0. Then
0" = 0 and the required equality follows automatically. For the other possibilities, that is, some
¢;’s are not zero then the computation will be a little bit complicated. For example assume
g0 = 1,q1 = g2 = 0, then by using the definition of 0" = o) — p1(1) + f(2) and 0" = g9 — &1, we
can write the boundary 0 for Cy;(PS) as g9 — €1 + €2 — €3 and the required equality becomes

/ /! /! /
0 o0 +a od = (80—€1+€2)<€0—€1)(€2—€3)
= €00 — €0E1 — €1€0 + €161 + €960 — €961 + €0E9 — €gE3 — €1€2 + €1€3
= 0.

Thus, one can see
8/06”—}-8”08,:0.
for all p,q; > 0.

Remark :

The differential 0 fits together into Z;‘:{; (—1)j5]~. This can be seen by the following
examples;

Forp=2,ifgo =0 (d" =0), ¢1 =1 () = 0) and g2 = 1 (p1(2) = 0) then

(9' + 8” Eo — [81 - 52] + (—1)2+0+1[83 — 84]

= Eg—€1+Er—€3+¢&4
242

= > (=g

J=0

If go =1 () =0), 1 =1 () =0) and g2 = 0 (d” = 0) then

8’ + 8” = (—1)464 +e9g—¢€1+ (—1)1+1€2 — &3
= gp—¢e1ter—e3+¢y
242

= Y (-1

j=0
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Forp=3,ifq =0 (d =0),¢1 =1 (@) =0) and g2 =0 (d"” =0), g3 = 1 (p1(3y = 0) then,

O+0" = e+~ — )]+ (=1 es + [(=1)* " (es — &5)]
= Eg9g— €1 +tEy—€3+E4—¢€5
242 .
= > (-1)g
=0

Thus the differential 0 = &' + 0”.



Chapter 9

EXTENSIONS OF u; AND uy

We have the following diagram
I1PS| |
7

s

E=- || [PS||

In this chapter, we want to find the extensions awy and aw; of ug and wuy, respectively in
the following diagram

C..(PS) (9.1)

on the chain level.

Remark :

Let S be an arbitrary simplicial set. Suppose S = A[m] and x € S,,, then there is a

simplicial map f, : A[m] — S defined as f,(0, ..., m) = x for a generator ¢,,, = (0, ...,m) € A[m],
that is, f,(0,...,,...,m) = g,z and f,(0, ..., 4,4, ...,m) = n:z.
Remark :

By using the previous remark it is enough to construct chain maps for the case of S as a
standard simplex. Let’s take S as a standard m-simplex, S,, = A[m]| and we can define the
chain maps ug,u1 by ug : S, — Po(Sy)p = Sm = Sp and uy : S, — Py(So,..0) = Sm = S
(in this case p = m), where m =n+p, n = qo + ... + gp. In general, the elements in P,Sy, . .
are denoted by (g, ..., %gy, Ggg+1s - iq0+q1+1, ...) (increasing sequence). Thus ug and u; are defined

as up(0,...,m) = (0,1, ...,m) and uy(0,...,m) = (0,1, ....,m), respectively.

Remark :

I 1S] ]l = [|]A%|| % |S.|, where A is the simplicial set with one element ¢, = (0, ..., p) in each
degree and the boundary operators are defined as djt, = -1, © = 0,...,p and

[A®]] = | 5, AP/~, where €'t ~ t, t € AP~'. Hence C.(A™) is the chain group with only one
generator in each degree as follows;
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tp = (0,...,p) € C,(A>) is a generator so

d, = Z(—1)i(0,...,¢,...,p)

Thus (9.2)

o0 — 0 : pisoddorp=0
tp -1 ¢ p=2k k=1, ..

Lemma 9.1 :

Let S be a simplicial set. There exists a map of bicomplexes;
awg : CL(A®) @ C.(S) — CL(PS)

defined for S = A[n] by (9.3)

awo(ty ® (0,..,m)) =y (=L)PRHETIE (0 1 g g, e et s )

0<ip<...<ip-1<n

Moreover awy is a chain map on the total complexes.

Proof :

We need to show that

' awy = awyd and 0" awy = awyd”

In order to show the first equality, let’s take p = 1 = n and see

' awy(t1 ® (0,1)) = awe(d' (11 ® (0,1))).

awe(11 @ (0,1)) = Y (=1)™(0,1, ..., dp, ., 1)

G’awo(Ll(X)(O,l)) = al((Qv 71)_ 7171))
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On the other hand

awy(9' (1, ® (0,1))) = awp Z )10 ® (0,1))

awo( ® (0,1))
=0

In general, when p is odd and n > 1, it is obvious that d'aw = awd’. On the other hand
when n > 1 and p is even, it becomes complicated, so for simplicity take p = 2 and n = 1, we
get

O

awg(t2 ® (0,1)) = (0, 1,

dawg(to ® (0,1)) =

wg

1)+ (0,

—~

I>—‘

)+(0,1,1,1)

0,
—(0,

'_l
O
—_

~—

On the other hand

awe(9' (12 ® (0,1))) = awe(t; ® (0,1))
1,

= (0,0,1) - (0,1,1)
One can show that aw, commutes with ¢ for all n and even p.
For the second equality, let’s take again p = 1,n = 1, then
awo(nn @ (0,1)) = (0,0,1) — (0,1,1)
a”aw()(l/l ® (Oa 1)) = _(Qv l) + (Q7 Q) - (l7 l) + (Qa l)
awed” (11 ® (0,1)) = awo(t1 ® (=1)((1) — (0)))

One can show that awy commutes with 9" Vp, n. Moreover, it directly follows from the first
part that awg is a chain map on the total complexes for all p. U

Lemma 9.2 :

Let S be a simplicial set. There exists a chain map aw,, for S = A[n], defined by (9.4)

awl(bp® (0,...,n)) = Z (_1)pq0+.“+qp71(97"'ai_(]?i_oa-'-ai;p_—lw“aip)'

0<ip<...<ip_1<n

Proof :

We need to show that d o aw; = aw; o J. Let’s take p = 1 = n then
dawy (11 ® (0,1)) = 9((0,0,1) — (0,1,1))
awd(1; ® (0,1)) = awi(—11 @ (1) + 11 ® (0))
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One can show that aw, is a chain map for all p. O

Remark :

One can easily see that awg(ip ® x) = ug, by taking S = Aln| as follows;

awo(to ® (0,1,...,n)) = > (0,1,....i)

0<ip<n
= (0,1,...,n)
uo(O,l,...,n) S P(]Sn

On the other hand the extension aw; of u; is defined as

awi (Lo @ =) = uy ()



Chapter 10

SPECTRAL SEQUENCES

In this chapter, we are going to examine the homology for the prism complex P.S. which is
denoted by H(C,(PS)). Therefore we are going to give some definitions and facts about spectral
sequences followed from MacLane [20] (chapter 11, p.318) and a statement which explains the
reason of the algebraic construction. For convenience we use the same indices as in the previous
chapter.

A Z-bigraded module is a family £ = {E,,} of modules, one for each pair of indices
p,n € Z. A differential d : E — E of bidegree (—r,r — 1) is a family of homomorphisms
{d:E,, = Eyrnir1}, one for each p,n, with d> = 0. Then H(F) = H(FE,d) is the bigraded
module {H,,(E)} defined as

Hyn(E) =Ker(d: Eyp — Eprpir—1)/d(Epyrpn—rt1)-

If F' is made into a Z-graded module E' = {E,,} with total degree m by E,, =3 . _  Ey,,
d induces a differential d : E,, — E,,_; with the usual degree -1 and H({E,,},d) is the graded
module obtained from H,,(E) as H,, =) H,,.

p+n=m
Definition 10.1 ( Spectral Sequence ) :

A spectral sequence E = {E",d"} is a sequence E?, E®, ... of Z-bigraded modules, each with
a differential d" : E,,," — Ep_ypnir—1’, ¥ = 2,3, ... of bidegree (—r,r — 1) and with isomorphism

HE,d)=2E™", r=23,..

Each E™*! is the bigraded homology module of the preceding (E",d"), that is,

E,, "' =Kerd" /d" (Epirm—ri1")-

Definition 10.2 ( Filtration ) :

A filtration F, = F,C, of chain complexes (C,,0) of R-modules is given by
0 C FRC. € IO, C ... C F,C, C ... C C,, where R is a commutative ring with unit.
This filtration is always assumed to be finite in each degree. Then we may give a definition of
an associated spectral sequence of a filtration.
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Definition 10.3 ( Associated Spectral Sequence ) :

Assume we have have a filtration F), = F,C, as in the definition above. Then there is an
associated spectral sequence {E,,,"}, m = 0,1,...,00, which is a sequence of bigraded chain
complexes with differentials

d":E,," — Ey e such that B, = Kerd" /d" (Eprrn—ri1"),

‘ p7n

where p,n > 0 and if for each k there exists a ¢ such that F,C; = C; for i < k then d,,,” =0
for r >t and p +n < k, so that E,,,"”"' = E,,/"* = ... = E,,,°. In particular

Ep,nl = Hp i (Fp/Fp)
and d' : E,,,' — E, 1, is the boundary map in the exact sequence

0= Fpr/Fpo— Fy/Fy 90— F,/F, 1 — 0.

Moreover E" converges to H(C,), that is, there is an induced filtration
Fp(H(Cy)) = Im(H(Fp.) — H(CL))

such that
0C FyH(C,) CF1H(C,) C ... CF,H(C,) C...C H(C))

and there is a canonical isomorphism

Eppn™ = FpHp+n/Fp—1Hp+

We have given the total complex C,(PS) before. This chain complex has two filtrations

'FpC’m = @ Ck,m—k and ”FnCm = @ Cm—k,k7

k<p k<n
associated spectral sequences {'E,,,",’d"} and {"E,,","d"} both converging to H(C,). Here
'Epn' = Hy(Cpu,0"), "Enp' = Hy(Cop, @). (10.1)
and

'Eyn? = Hy(H,(C..,0"),9), "E,,* = H,(Hy,(C,.,0),0"). (10.2)

Proposition 10.4 :

Suppose H,(C,,) =0 for p>0and n=0,1,.... Let C_y,, = coker(d' : Cy,, — Cjy,). Then
the edge map e induced by the projection C,,, — Cp,, — C_1,, is a homology isomorphism
e, : H(C,) — H(C_y,,0").

Proof :

By using ( 10.2 ), we get,

" 2 _ :
En,p - { Hn(C—l,*) Dop= O7
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and for r > 2, "E,,* ="E,,". On the other hand for p =0

Em,OOO = FmHm/Fm—le = Hm<C*)

Thus H,,(C,) = E;, 0™ =2 H,,,(C_1 ), where m = n + p. O

Before giving the following proposition, let’s recall some notations we are going to use. We
have || [S] [| = [|A%]| x [S| where [|A%®]| = ||, AP/ ~ and we know that |P.S| and |S| are
homeomorphic under [. The chain complex C,(A>) is the chain group with only one generator
L, in each degree and the boundary operator 0 is defined as before in ( 9.2 ).

Proposition 10.5 :
H.(C.(PS),0) = H.(C.(9)).

Proof :

There is a map between two bicomplexes

awo : C.(A%®) @ C.(S) — C.(PS) (10.3)

We have showed that awgo d” = 9" o awg in the previous chapter. On the left hand side we
have a double complex and the differential 0’ is identity on C.(S) and for this double complex
we have 'E,,' = H,(C,., ") independent of p since in ( 10.3 ) 'E,." is the same for Vp. By
( 10.2 ), we have

/E 2: 0 : p>0
pn H,(C.(S)) : p=0,

Geometrically, H.(C.(PS),0) =  H.(|PS|,0") follows from the definition.
H.(|PS|,0) = H,.(]S|) since [ is a homeomorhism. Thus H,(C,(PS)) = H.(C.(S5)). O

Proposition 10.6 :
We have for the double complex "E,,,' = H,(C. ,(PS),d)

"E 1_ 0O : n>0
np H,(C.(S)) : n=0,

Proof :

Before giving the proof, let’s explain some notations:

We have given the double complex of PS in the chapter before as

Cypn(PS) = @ A _ L[ Py Sy, qp] = @

----- ap)-

So when we take S as a standard m-simplex, S, = A[m], the elements in the double complex

are denoted by the following partition (g, ..., igy, lggt+1s s bgotqu+1s ----)s Where n 4+ p = m, here
there are p + 1 groupings.
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One can easily show that Hy(C.o(PS)) = H(C.(S)) since Cpo(PS) = @_,Sp. On the
other hand, one can also easily show that H;(C,(PS)) = 0. We have C},1(PS) = @}_,Sp+1.
An element in this chain complex is denoted by (0, ..., 1,...,0), where 1 is in the i-th place.

~——

p+1—times

Now we prove the proposition by introducing a filtration F,, = F,C,(PS) of the total complex
C.(PS) which is given by 0 C FyC.(PS) C F1C.(PS) C ... C F,C.(PS) C ... C C,(PS). Fy(5)
is given by the partitions of form (0, ..., 0, 1),

S3(0.0.0 < 7540000.0)

S1(1)=<z—52(0,1)

€0—E1

By the chain contraction 7y we get H(Fy(S)) = 0. On the other hand F(S)/Fy(S) is given
by the partitions of the form (0, ...,1,0), i.e., the complex F}(S) is given by

S11) < S2001) < S3(0,0,1) < 94(0,0,0,1)- -

S201,0) < 593(0,1,0) < 54(0,0,1,0)

Fy(S) is a sub-complex of Fi(S) and by the quotient group Fi(S)/Fy(S), we have a short
exact sequence

The quotient gives us

So(1,0) < 93(0,1,0) < 94(0,0,1,0) < ---
and by the contraction ny we get H(F(S)/Fo(S)) =0. Thus H(F(S)) = 0.
In order to make the characterization of the filtration clear, we need some notations:

Let the type of elements in P,Sg, . 4, where gy + ...q, = 1, be denoted by (qo, ..., gp). Fi(5)
will be characterized by putting at most ¢ zeros after 1 in the sequence, i.e., at most one is
1 and the remainders are 0. Thus one can see H(C,(PS)) = 0 by using an induction on the
filtration, since C,(PS) = |2, FiC,(PS) and H(C.(PS)) = @, H(F;(C.(PS)). Therefore
H(C,1(PS)) =0.

We can also show that H(C,2(PS)) = 0. Although H(C,,(PS)) = 0 for n > 2, it is quite
complicated to write the filtration. Therefore, we will also show that this result is true when
n = 2 and one can follow the same idea for n > 2 .

We know that Cy,2(PS) = @,2, Spr2 = Cpa(PS) = CA(PS)CIV(PS), here we have two
different types of elements (0, ...,2,...0) and (0,...,0,1,1) come from C®(PS) and CV(PS),
respectively. For the first type of elements, we will exactly follow the same idea as before when
n = 1. The filtration F;(S) will be characterized by putting at most i zeros after 2 in the
sequence. The rest follows from the case when n = 1. Thus H(C®(PS)) = 0. For the second
type of elements C:V) (PS), let’s start with F(S) given by the partition of the forms (0, ..., 1,1)
as

S3(1,1) <55 04(0.1.1) 5= 95(0,0.1, 1< 5:96(0.0,0.1,1);

73



74 SPECTRAL SEQUENCES

here the chain contraction is 1y so we get H(Fy(S)) = 0. On the other hand Fi(S)/Fy(S) is
given by the partitions (0,...,1,0,1) and (0, ...,0,1,1,0) then F;(S) is
S301,1) < Sa0,1,1) < 55(0,0,1,1) < 56(0,0,0,1,1)++
54(1,0,1) A 55(0,1,0,1) — 56(0,0,1,0,1)'-‘

54(1,1,0) — 55(0,1,1,0) — 56(0,0,1,1,0)---

By the same idea as before H(Fi(S)/Fy(S)) = 0 and H(Fy(S)) = 0 then by the short
exact sequence we get H(F;(S)) = 0. By using an induction on i in F;S, one can see that
H(F,CV(PS)) = 0.

In general we can determine the filtration F;S by putting at most
¢ zeros after 1 in the gy — th, 0 zero after 1 in the ¢;11 — st
1 — 1 zeros after 1 in the gg — th, 1 zero after 1 in the ¢; — th

i — 2 zeros after 1 in the gy — th, 2 zeros after 1 in the ¢;_; — st

© — 3 zeros after 1 in the ¢y — th, 3 zeros after 1 in the ¢;_» — nd

ceey
ey

ceey

3 zeros after 1 in the gy — th, i — 3 zeros after 1 in the ¢4 — rd
2 zeros after 1 in the gy — th, ¢ — 2 zeros after 1 in the ¢35 — rd
1 zero after 1 in the gy — th, ¢ — 1 zeros after 1 in the ¢ — nd

0 zero after 1 in the gy — th, 7 zeros after 1 in the ¢; — st

places in F;S/F;_ 1S, respectively. Thus we get H(CV(PS)) = 0.

We  already  know  C,2(PS) = cowprs) o CcOY(PS)  and
H(C,2(PS) = H(C®(PS))® H(CHY(PS)) = 0.
By using the same idea for the filtration, one can see H(C, ,(PS)) = 0 for n > 2. O

We would like to close this chapter with one interesting remark.
Remark :
One can try to compute the same thing for C, ,,(PS). This computation is quite complicated

but one can give an idea as follows;

—n2m S
Si_ 853 <=—255

L E

50<751<T752

The first diagram commutes;
(e —e1)(eoey) = epeoea — €16082

= £p&of1 — €0€2€3

E0€0€2 — €1€0&2

= 80(8061 — 8263).
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There are various ways of defining the map S; — S5 which are ngng, m2m0 and ny7;. The
chain homotopy between id and nygo is —n;2. That is, (10.4)

(5081 — 5283)(—7712) =id — No€o-

It is not so clear what the chain homotopy S is. H(S) is the direct sum of H(C(PS))
but H,(C.o(PS)) could be likely larger then H(S) since H,(C.o(PS)) = H,(S) + Kere. Let’s
denote H(C") for the homology for the first sequence and H(C?) for the second sequence. Let’s
take an element y € H(C') and 3 = y — ney € Kere since e(y — ney) = ey — ey = 0. We have
Kere — H(C®) — H(C"). So y =y + ney and 7 is injective. We know that E> = H(S)/Kere
and E>* = H(S) so Hy(C,o(PS) = H(S) = Hp.Then some of the homologies may be killed by
some for n > 0.



Chapter 11

THE LIFTING PROBLEM

We are going to give the lifting problem explicitly and by considering the diagram (5.1), we
will examine the lift of uy. First we need a motivation for this.

Let C, and C, be chain complexes and suppose that there is a chain complex D, and chain
maps ug, u1 : D, — C in the following diagram:

e —

such that u, lifts to @; and such that a sequence of homomorphisms s; : D; — Cj41 is the chain
homotopy, i.e., 0o s+ so0d = u; — ug.

Lemma 11.1 :

Suppose [ is surjective and D, is a free chain complex in each degree. Then s and wug lift
to § and ug, respectively. In fact, lift s to s : D; — Cj,; arbitrarily such that f o s =s. Define
Uy =U; — (00 8§+ §00). Then 1y is a chain map and d o §+ 500 = 4y — .

Proof :

Define @9 = 1 — (00 5+ §00). Let’s show that 1 is a chain map and f o @y = ug. For the
first one, we need to see that 0 o g = g o 0.
Odolgy = 0oy —DoS500

fbooa = aloa—ﬁogoa

It follows from that u; is a chain map. For the second part of the proof, we have

fotug = fouy—(fodos+ fo500)
= u — (0o fos§+s00)
= u; — (Dos+s00)
= wu; — (u; — )

= U’O
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Now let’s recall some of the remarks in the chapter 9;
Remark :

Let S be an arbitrary simplicial set. Suppose S = A[m] and = € S,,, then there is a
simplicial map f, : Alm] — S defined as f,(0, ...,m) = x for a generator ¢,, = (0, ...,m) € A[m],
that is, f.(0,...,7,....,m) = g;z and f.(0,...,7,1,...,m) = n;x.

Remark :

By using the previous remark it is enough to construct a chain homotopy for the case of S
as a standard simplex. Let’s take S as a standard m-simplex, S,, = Alm| and we can define
the chain maps wug, w1 by ug : S, — Po(Sg)p = Sm = Sp and uy : S, — P,(So,..0) = Sm = Sp
(in this case p = m), where m = n+p, n = qo+...4+¢qp. In general, the elements in P,S,, . , are

-----

denoted by (%o, ..., %, tgo+1s ---s tgo+qr+1, ---) (increasing sequence). Thus u and u; are defined as
up(0,...,m) = (0,1,...,m) and u;(0,...,m) = (0,1, ....,m), respectively.

Proposition 11.2 :

Let ug and u; be given as above. Then these chain maps uy and u; are chain homotopic.
Proof :

We can define s, : Cp,(S) — Cp,p1(PS) arbitrarily.

For m = 0, ug = uy : So — ZSy = Co(PS). Let’s find the chain homotopy s, in general.

We have P,Sy,... 4, Where qo + ... + ¢, = n, and the elements in F,S5,, ., are denoted by
(205 vy Tggs Ggot1s -+ bgot-qut1s --)- Now, let’s define

S0(0
51(0,1
050(0
500(0, 1

) = (0,0) € P1Soo

) = (0,0,1) - (07 1,1) € P,Sp00 — P1S1p

) = (0+0")s ( ) = (20— &1 +0)(0,0) = (0) = (0) =0

)

851(071) == (a,+a// ,1) (80—51+€2+O)(0,Q,l) — (€2+€0 —81)(0,1,1)

(0 01
= (0,1) = (0,1) +(0,0) = (0,1) = (1,1) + (0, 1)
= +u1(0,1) —up(0,1)

Thus

881(0, 1) + S()@(O, 1) = ul(O, 1) - ’LLO(O, 1)

7
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Let’s do this one more step;

9(0,1,2) = (1,2) = (0,2) +(0,1)
816(0,1,2) = 81(]_ 2)—51( 2)

= (17 172) (1 2) (Q?Q?Z) + (7_2 2) (0 0, 1) (07 L, 1)
52(0,1,2) = (0,0,1,2) —(0,11,2) + (0,1,2,2) € P3Sp 00,0 — P2S1,00 + P12
0s9(0,1,2) (0 + 0")s2(0,1,2)

= (e0—e1+e—e3+0)(0,0,1,2) — (2 —e3+0 —€1)(0,1,1,2) +
(—es3+e0—e1+62)(0,1,2,2)

= (0,1,2)-(0,1,2) +(0,0,2) - (0,0,1) —
(0,1,2) +(0,1,1) — (1,1,2) + (0, 1,2) —
(0,1,2) +(1,2,2) = (0,2,2) + (0, 1,2)

Thus

(510 + 8s2)(0,1,2) = (0,1,2) — (0,1,2) = u1(0,1,2) — uo(0,1,2).

One can write a general formula for the chain homotopy s,, as;

sm(0,1,.om) =D (=1)'(0,1, ..., 4, ..., m).

One can easily check that s,,0 + 0s;,11 = w1 — ug;

m+1

sm0(0,1,om+1) = D (=15,(0,... j, com + 1)
j=0
m+1

_ Z[Z (=)0, .oyiydy s Jy ey m 4 1) +

j=0 0<i<j
> (U0, g g e m £ 1)]
j<i<m+1
m—+1 .
Omi1(0,1,.om+1) = D (=1)'0(0,1,...,i,4,.....,m + 1)
=0
m+1

= Y IO D)™,y oy m+ 1) +

i=0 0<j<i

S (U0, e e m 1)

i<j<m+1

So

(5m0 + 08m41) (0, cocym + 1) = > (0,.i—1,d,om41) = (0, i i+1,..,
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Thus, for a general S the formula is (11.1)
Sm(x) = Z (_1)1772(1‘)(2,0 ..... 0) € Pm H—lS(zO ..... 0)
=0

where s, : Cpo(S) — Cri1(PS), m=n+p, (p=m—i+1).

Then
Sma + 8Sm+1 = Uy — Up Cm+1(5) — m+1(PS)

Note : The formula (11.1) for a general S will be used in the future references.

Proposition 11.3 :

In the following diagram

one can find a lift for wug.

Proof :

By using Lemma 11.1 for an arbitrary lift to s such that f o § = s one can find a lift g
by defining g = @; — (00 §+ §0 ). One can find a lifting § with the following computation.
Although after the projection on C,(PS), we get the same components, § may not cover the
elements coming from s. For instance, look at the following case:

50(0) = (0_ 0_) € P1Sy
$1(0,1) = (0, 1,1) = (0,1,1,1,1) € P»Sg 00 — P1S10
051(0,1) = (o § (0,1) = (g0 — €1 + €2+ 0)(0,0,0,0,1,1) — (g0 — &1 + £2)(0,1,1,1,1)
= (_ ) (0_ 1_)+(M7M)—(7_172)+(0 1,1,1) - (0,1,1)

= —35

—~

In the last line, one should get (0,0,1,1
e!, we have (0,1) but (0,0,1,1) # (0,1,1,1). One should con81der a difference to get the right
covermg as follows;

051(0,1) + 8,0(0,1) = (0,1,1,1)—(0,1,1)+ (0,0,1,1) — (0,0,1,1)
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Thus 70(0,1) = (0,0,1,1) —

55(0,1,2) =

935(0,1,2) =

95,(0,1,2) 4+ 5,0(0,1,2) =

Thus

aO(Ov 17 2) -

10(0,1,2,3) =

0,1,1,1) +

THE LIFTING PROBLEM

(0,1,1) = @ (0,1) — (95,(0,1) + 50(0,1)).

(0,0,0,0,1,1,2,2) - (0,1,1,1,1,2,2) + (0,1,2,2,2,2) €
P380,0,00 — P2S1,00 + P1S20

(0" +9")3,(0,1,2)

(€0 — &1+ &2 — 3+ 0)(0,
g9 —e3+e9+¢1)(0,1,

Ez+¢€0— €1 +€2)(0 1
,2) —(0,0,1,1, ;
71717 72)+(071717 71)

)
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2,2,3,3) = (0,1,1,1,2,2,3,3) + (0,1,1,2,2,3,3) —
2,3,3)+(0,1,2,2,3,3) — (0,1,2,3,3,3) + (0,1,2,3,3)
) — (035(0,1,2,3) + 5,0(0,1,2,3)
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One can check that §,,0 + 05,11 = U1 — Uog;

m+1
500, 1, om+1) = > (=1)50(0,..0, ], cym +1)
5=0
m—+1 o
= > I (=)0, iy e fo g, m A Lm 4 1)
j=0 0<i<j
S (0O ey Lm A 1)]
j<i<m+41
m—+1
88m+1(0 1 am+1) = Z(_1)18(0717 48,01, 7m+17m+1)
i=0
= DU (U0, Gy iy ey m o L m 4 1)
i=0 0<j<s
Z ( 1)”]“(0,...,...,2,2,2,_, Gidyem 1, m 4 1)]
1<j<m—+1
So
m+1
(8m0 + 05,11)(0,....om + 1) = [(0,....i = 14,4,0,...m+1,m+1)—
i=0
0,...,4,4,i+ 1,0+ 1,....m+1,m+ 1)
= (w 1,. m+1,m+1)—(M,E,...,m—l—l,m—l—l)—l—
0,,1,1,..,m+1,m+1)-(0,1,1,2,2,....m+1,m+1),
, o+
(0,1, m—1,mmmm+1m+1)—
(O,...,m,m,m+1,m+1)—|—
0,....mm+1,m+1,m+1)—(0,...m+1,m+1)
= w(0,...,m+1) = [a(0,....m+1) — (5,0 4+ 3m+1)(0, ..., m + 1)].
where
u1(0,...,m+1) = (0,0,1,1,...m+1,m+1)— (_12 ,m+1m+1)+
(0,1,1,2,2,...m+1m+1),..,—(0,1,...m—1mmmm+1,m+1)+
0,....m,m,m+1,m+1)— (O mm+1m+1m—|—1)+
0,....m+1,m+1)
So

o (0, .m) =Y (0,eiii+ 141, omom) = (0, d i+ 1i+ 141 .. mm)

These can be written in terms of degeneracy operators as follows;

m

Sm(x) = (_1)i77i2 O7); 0141 0...0 ﬁm(i)(i,o ,,,,, 0) € Pm—i-ﬁ-lS(i,O ,,,,, 0)
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and

and

THE LIFTING PROBLEM



Chapter 12

THE CHAIN HOMOTOPY T AND THE REQUIRED LIFTING awy

So far we have considered the following diagram

11PS] |
o
ISI =211 1P |

and found the lift of ug. Moreover, we found the extensions awg and aw; of uy and u; on the
chain level, respectively. Now look at the diagram

ik
et
T aw
(

CL(A®) ® () C..,

on the chain level, we look for the required lifting aw.

Proposition 12.1 :

There is a chain homotopy T’

awo(t1 @ ) — aw (11 @ ) + s(x) € Cpy1 (PS) 0

Ty ®x)= { (—=1)Plawg(tps1 @ ) — aw(tpy1 @ x)] € Crypy1(PS) g i 0. (12.1)

between aw; and awy which can be found as a composition of two chain homotopies.

In order to make this statement clear, we will examine this into some steps:

Lemma 12.2 :

The chain map € : C,(A®) — C,(A™) is the augmentation which is zero for p > 0 and
id otherwise. Then in C,(A*) there is a chain homotopy D between e and id such that
0D + DO = e —id.

Proof :
We have C,.(A®) — C,(A*). D is defined by D(t,) = (—1)"1p41. One can easily check that
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THE CHAIN HOMOTOPY T AND THE REQUIRED LIFTING atwg

this gives us a chain homotopy:

(0D + D0)(1) = O((=1)"tps1) + D(O1y)

=(4V§§ %+D§; ) tp-1)
= i;—m%4r%+§;—n%4f*%
If p > 0 then
(0D +D3)(1) = (1)t + (=1)" oo+ ()P (= 1)1 + (1) (1)t + (1) (1),
If p = 0 then

(0D + DO) (o) = (9D)(to) + (DI)(10)

So if p > 0 then €(¢,) = 0, that is, 9D + DO = —id, and if p = 0 then

(0D + DO)(t0) = €(w) ®id(ep) — (id @ id)(z0)
(id ® id — id ® id)(co)
= 0.

Thus D is a chain homotopy between € and id. O

Now, we want to get a chain homotopy s between vy and id via D.

Lemma 12.3 :
There is a chain homotopy 5 : C,(A®) ® Ci(S) — Ciy1(A®) @ C4(S) which is defined by

D ®id such that 95+ 50 =id®id — (ild®ido e ® id) = id ® id — € ® id.

Proof :
One can directly check that 05 + 50 = id ® id — € ® id.
05+ 50 (®id+id®0)(D ®id) + (D ® id)(0 ® id +id ® 9)
= (-1D)°D@id+ (-1)""'"D®d+ (-1)’Do®id+ (-1)’D® d
(0D + DO) ®id (D is a chain homotopy)
(id —¢) ®1id
id ®id — e ®id.
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g

Now we can explicitly give the chain homotopies T}, T, which are used for the chain homo-
topy 1" between aw; and awy.

Proof of Proposition 12.1 :

By using the chain homotopy 77 between (awy — aw;) o id and (awg — aw;) o vy by the
composition of § with awg — aw;:

T1 = (awy — awy) 0 5 : CL(A®) @ Ci(S) — Ciy1(A®) @ C(S) — Ciuy1(PS).

So
Ti(,,®@2) = ((awy— awy)o5)(t, ® x)
= (awg — awy)(D(1p) @ x)
= (1) [awo(tp+1 ® 7) — aw: (p1 @ )],
We have
awg — awy = (awy — awy) oid A (awy — awy) o vy,
and

C.(A®) ® C,(9)

i
C.(5)

and vy = iopr := (id®id)o(e ® id) = e®id and € induces a homomorphism €, : Hy(Ci(A®)) — Z
and A* is contractible.

From the diagram above, we have vy = 7 o pr and awg o ¢ o pr = ug o pr. In the previous
chapter we have defined the chain homotopy s : C,(S) — Ciy1(PS) between ug and uy. Then
by using the same idea as above, we can find a chain homotopy 75 between ug o pr and u o pr
as follows:

Ty :=sopr: Cu(A®) @ C(S) — Ci(S) — Ciy1(PS)
which is defined by

To(t, @) = (sopr)(, @) = { (o) € OHH(PS[)) gi 8

Finally, we end up by getting the composition of these two chain homotopies 77 and T3 in
order to find the chain homotopy T'. T is defined by T" = T} + T5 which is the chain homotopy
between awy and aw; and we get

T(, ® z) = awo(tn @ ) —awr( @ x) + s(x) € Cpy1 (PS) + p=0
P (—1)Plawo(tpr1 @ x) — awq (tpy1 ® )] € Crgpy1(PS) = p>0.

If we take S = Aln|, x € S,

B awg(t; ® (0,...n)) —awy (11 @ (0,...,n) + s(0,....,.n) € C, 1 (PS) : p=
Tty ®(0,..,m)) = { (—1)"[awo(tps1 @ (0, ...,n)) — awy(tps1 R0, ..., n)] € Cpypr1(PS) : p>0.
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86 THE CHAIN HOMOTOPY T AND THE REQUIRED LIFTING atwg

Now, let’s show that T" is a chain homotopy between aw; and awy, i.e., there exists T" such
that
OT +T0 = aw, — awy.

For p =0, S = A[l], we have

T(o®(0,1)) = awp(t; ® (0,1)) — aw;y(t; ® (0,1)) + s(0,1)
= (0,0,1) —2(0,1,1) +(0,1,1)

=) =

T (o ®(0,1)) = (0,0) —(L,1)+(0,1) - (0,1)

On the other hand

TO(,w®(0,1)) = T(wo® (1-0))
(1) = (0))) — awi (1 ® ((1) — (0))) + s(1) — s(0)
)

= awy(yy ®

(L,1) —(

LO —
[==)

Then

OT +TI) (0 ® (0,1)) = (0,1) = (0,1) = u1(0,1) = up(0,1)
= aw; (ko ® (0,1)) — awp(o ® (0,1)).

For p =0 and n > 0, one can easily show the same equality as follows;

T (Ly®@x) = Oawy(ty ® x) — daw; (11 ® x) + Is(x)
TO(p@z) = T(1p® 0x)
= awp(yy ® 0r) — aw; (11 ® dz) + s(0x)
(OT +TO)(tp®@x) = Jdawp(ty ® x) — daw; (1 ® ) 4+ awe(ty ® Ox) — aw; (11 ® Ox) +
0s(x) + sox
= awed(ty ® z) — aw10(11 ® x) + awe(t; ® 0z) — aw (1 @ Ox) +
(aw; — awp) (Lo ® )
= —awp(ty ® 0z) 4+ awq (11 ® 0x) + awy(1y ® Ox) — aw; (11 ® Jz) +
(awy — awp) (Lo ® )

= awi(o®x) — awg(Lg @ x).

For p > 0, one can show the same result as follows;

(0T +TO)(1y®@z) = I[(—1)(awo(tps1 ® x) — aw;(tpr1 @ )]+ T (0, @ x4+ (—1)P1, ® Ox)
= (=1 awe(Ftppr @ ) + (=) awg(Frper @ ) — (—1)Pawy (Drppy @ ) —
(=) aw, (ty1 @ 0x) + T(O1, @ x) +
oot 06) ~ s 0]
(e

= awy (L, ® ) — awp(l, ® )

since when p is odd dt, = 0 and Jt,41 = tp, and when p is even di, = t,,—1 and O,y = 0. O
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Corollary 12.4 :

There is a lift awy in the diagram

Ci(PS)]

atg
if

C.(A®) ® C.(S§“— C.(PS)

Proof :

[ is surjective and aw; has a lift. Then by lemma 11.1, T" and awy lift to T and awy,
respectively. In fact, lift 7' to T : CL.(A*) @ C4(S) — Ciy1(PS) arbitrarily such that foT =T.
Define awy = aw, — (0T + T0). Then atvy is a chain map and

8T -+ T@ = Clﬂ)l — Gﬂ)o,

follows from lemma 11.1. O
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Chapter 13

SIMPLICIAL CURRENTS

In this chapter, we will start giving the definition of a dual complex to the de Rham complex
on a simplicial set as in Dupont [11]. We aim to give the definition f a complex Q.|| X| of
simplicial currents as in Dupont-Just [13] on a simplicial manifold X, with similar properties
to the complex of currents on a manifold. Let’s start with the definition of a dual simplicial
complex. (A*(A7?),d) is the usual de Rham complex on AY. Then the simplicial de Rham
complex (A*(S),d) consists in degree k of the simplicial k- forms, ie., ¢ = {&,}, 0 € ||, 5,
such that

i) ps € A¥(AP) for o € | ], S, and

i) ¢ero = (£') g, i =0,..,p, 0 €Sy, p=1,....

Furthermore (d¢), = d¢,.

Definition 13.1 :

Let S be a simplicial set. A dual complex to the de Rham complex S is defined by

An(S) = é AP(A™P) @ Cryp(9), (13.1)

p=0
where C,,1,(S5) is the usual n + p-th chain group of S, with the boundary operator
0:A,(8) — A,1(5)

defined by

38
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where w € AP(A™*P), o € S,4,. One can easily check that J o 0 = 0 as follows;

dodweao) = I(-D)'dw@o+ Y (—1)'(e)w®eo]

= (=) (=1)"ddw ® o + (—=1)" % (=1 () dw @ g;0 +
()Y (D) W) @ e + Y () () w eoeo
n+p
= (=" Z (—1)"(e") dw @ g;0(1 — 1)

= 0

Lemma 13.2 :

The natural inclusion Z, : Ci(S) — A.(S) given by Z.(0) =1 ® 0, 0 € S, is a chain map.
It induces an isomorphism in homology. We have chain maps

T A™(S) — C™(S) , £ : C™(S) — A(S)
given by Z*(¢)g = [xn 0o, ¢ € A™(S),0 € S,. We have a pairing
AM(S) ® A, (S) > R

given by < ¢, w ® 0 >= [,.., ¢ Aw, where ¢ € A*(S), w € AP(A"?), 5 € S,,,. The second
chain map is given by &£*(¢), = nl! Zm:n Wr.Cuy(o), 0 € Sp, ¢ € C"(S), where
I = (igy.yin) with ¢ < ip < 43 < ... < 4y < p, pur + S, — S, is the face operator
corresponding to the inclusion u! : A™ — AP onto the n-dimensional face spanned by {e;, ..., €, },
and wr = ZZ:O (—1)st%dtlo NN dtzé NN dtin'

Lemma 13.3 :

There is a chain map

E i Au(S) — CL(9)
defined by

E(weo)=n!) UM wr A w] (o),

[I|=n

where w € AP(A™*P), o € S,4,. This induces an isomorphism in homology
& - H(AL(S)) — H(C.(9))

which is inverse to Z,.



90 BEDIA AKYAR

Lemma 13.4 :

A simplicial map f : S — S’ induces a chain map f. : A,(S) — A,(S") given by
filw®o)=w® f(o), we AP(A™P), 0 € S,4p. Its dual

frA(S") — A™(S)
is given by (f*¢), = ¢, that is, < f*¢, T >=< ¢, £L.T >, p € A*(S'), T € A,(S).

After this preparation, we can give the definition of simplicial currents and some necessary
facts. The space .|| X|| will correspond to the dual space of the complex A*|| X || of simplicial
differential forms which is an associative, graded commutative algebra. In this case the de
Rham theorem gives a quasi-isomorphism from the complex C.(X) of singular chains on X
to the complex €2,(X) of compactly supported currents on X. One needs to equip the space
A*|| X || with a natural Frechét topology in order to give a definition of the simplicial currents.
One can see the monograph [31] for the theory of Frechét spaces. (p. 85).

Definition 13.5:

The simplicial n-forms have been defined in definition 1.9 as the space
A"|X|| = {¢p € I AMAF x X)) | (€8 x id)*¢® = (id x &;)p* D},
The space of simplicial n-currents is the dual space
]| X = A" X

with the necessary topology.

Remark : Another construction of a complex of simplicial currents follows from the defi-
nition 13.1, in the case of a discrete simplicial set. This complex embeds in €, ||X|| as a dense
sub-complex with the same homology. The extended complex of ( 13.1 ) to general simplicial
manifolds gives a complex formula (13.2)

An(X) = P EP AH(AY) @ D i(X)
k=0 1=0
with differential

dweT)=(-1)dv@T+» (-1)'(e)we (), T+ (-1)we ol

i=0
In order to see ( 13.1 ), we take k =n+p,n =1 in ( 13.2 ), then

AS) = @A) & ()

p=0

= D AR S Cor(S).

p=0
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For the future reference when we take X, = A, it gives

Ap(A®) = é AR (AR ® Cp(A™).

k=0
We give the simplicial de Rham theorem for currents as follows:
Corollary 13.6 :

There is a natural isomorphism

H (LX) = H([1X]]).

We can give another definition of .|| X]|| as follows:

Definition 13.7 :

There is an alternative definition of €2, || X]|| as the following quotient space

Q.|| X = @Q B x Xp)/spanc (e’ x id), U — (id x &)U | U € Q,(AF1 x X;)}.

Theorem 13.8 :

There is a natural, continuous isomorphism

Q)X = Q)X

Theorem 13.9 :

There is a quasi-isomorphism

A (X) = Q1 X,

where A, (X) is embedded as a dense subspace and €, || X]|| is regarded as a completion of A, (X)
with a suitable topology.

Before giving the following corollary, let’s observe bicomplexes A**|| X || and €2, .|| X]||. Let
AT X = (AP (AR x X)) (A" IXl,

Q.| X = AP X)) = {U € Q.|| X]|| | U(A”SHXH) = 0 unless (r,s) = (p,q)}. We get bicom-
plexes (A**|| X |, da, d;) and (.|| X |, Oh, O¢) with total complexes (A*||XH d) and (.|| X ||, Oq).

We can also give the simplicial deRham theorem for currents for a simplicial manifold X.
Corollary 13.10 :

For each ¢ the chain complexes (Q.,||X],0q") and (C.,(X),0') are naturally chain
homotopy equivalent. In fact there are natural maps of bicomplexes

T': Con(X) = Qo X, €72 Q| X = Cun(X)
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such that £ o Z' = id, and chain homotopies
Qp gl XN = Qprr,of| X]

such that
I/ e} g, —id = 5’89’ + 85)/8,, (‘) 8 " ,

here

I’(T) =10 xT , TeC,q(X)

p'z (T Aap), , TeQ (A" X)), k>p
[I|=p
S(T)= > |1/ (T Nay).
0<|I|<p

We will always consider the dual to the Poincaré lemma operator h;" which increase the
degree by k + 1, I = (ig,i1,...,77) denotes a sequence of integers such that
0§10<Z1<<1‘[|§k},

1]
oy = Z (=1)t,dtig A oo Ny, A A dE

j=0

irp-

We have the following isomorphisms

a((|x|) = H(AX],d)
H.([X]) = HQ.[X],0).

I

Now, we are ready to find the extensions awq’ and awq® of awy and aw,, respectively, in
the simplicial currents.



Chapter 14

EXTENSIONS OF awy AND aw;

We have defined the maps awy and aw; in the chapter 9 on the chain level. In this chapter we
want to extend them to the simplicial currents. So (9.1) becomes

Q..(PS)

0, (A®) ® C.(ST“2>Q, . (PS)
Now we are going to define the chain maps awo® and awq!.

Lemma 14.1 :

Let S be a simplicial set. There exists a map of bicomplexes;
awg” : QL (A®) @ C,(S) — Q. .(PS)

defined for S = Aln| by

awe®(UR(0,..,n)) = Y (=D)IOTADi ) ana ®(0, g, 0y i1 e ),

qo+...+qpt1=n

where U € Q,(A%), that is, U : AP(AP™) - R, 1awy. xawet € Qn(PS).
Proof :

For simplicity, let’s take p =1, [ = 0, n = 1 and show that

9o/ awa’ = awa’0q’ and 9y awa’ = awaoq” .

awe’(U ® (0,1)) = Z (=1)*U x 1pwoxan @ (0, ..., 10, g, ..., 1)
go+q1=1
U><1AO><A1®< ) UX1A1><A0®(Oll)

0 aw® (U ® (0,1)) = 0U x laoxar ®(0 1) = OU x 1a1500 ® (0,1,1).
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On the other hand,

0o (U®(0,1)) = 0U®(0,1)
awo’ (00" (U ® (0,1))) = awa’(0U ® (0,1))

— Z (—D)POU X Lpawxan @ (0, ..., 140,40, ..., 1)
qo+q1=1
1,1).

= 90U x Taoxal ®(Q,0,1)—6U>< 1A1><A0®(07_ 1

Then

0

8Q/CLU)Q == anOGQ’.

For the second equality, we have

9a"awa’ (U ® (0,1)) = U X lyaoxan ® (0,0,1) = U x Iyarxao) @ (0,1,1)
= —U X 1aoxoar ®(0,0,1) = U X Tgarxao @ (0,1,1
~ —=U x 1p0400 ® (0,1) + U x 1p050 ® (0,0) —

U X 1poxp0 @ (1,1) +U X 1poxa0 ® (0,1)

= U X 1poxpao ® (Qvg) — U X 1poxa0 ® (l>l)

\_/

On the other hand

awo’9e”" (U ® (0,1)) = awq®(U® —(1 —0))
—awa” (U @ (1)) + awa® (U @ (0))
= —U X 1poxp0 ® (1,1) + U x 1a0x00 ® (0,0).

So
CL’UJQOaQ” = CLIUQ()aQ”.
In general,
O’ awa®(U ® (0,...,n)) = Yo (—)EOTFAGU X L pane atit @ (0, g, ey ey )
qo+-..+qp+1=n
= awa”(0U ® (0,...,n))
= anOaQ/a] ® (O, ,n))
and
" 0 _ _ 1\@+Dgo+Fapri—1 ;
9o awe®(U @ (0,...,n)) = > (=D U x 0(1paox snmwrt) @ (0, .. ig, ooy oy
qo+-.-+gpt1=n
~ Z (_1)(P+l)CI0+...+f1p+l—1U % 1A‘10><...><qu+l ® 8”(0, - iO, s n)

go+...+qpt1=n
= awa®(U®9(0,...,n))
= GWQoag//(U ® (O, e n))
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Before giving the following lemma, we need some preparation for this. We have a
homeomorphism

[ APTLxCA® x| x A%+ — APFT

which gives a map between the spaces of differential forms

I L APFR(APFEY ) AP (APHL 5 AT s AT,

By duality, this induces a map between the simplicial currents

Ly : Qp+n(Ap+l X AT X ox APtl) — Qp+n(AP+l+”),

Let U € Q,(A®),ie., U : AP(APT) - R, and UX 1aaoy xatst € Qpin(APT X A% x . x Ale+)
then l*<U X 1A‘10 ><...><qu+l) € Qp+n(Ap+l+n)a where 1A‘10 .. x A+l € Qn(AqO X X quﬂ—l)'

Lemma 14.2 :

Let S be a simplicial set. There exists a chain map,
awg' : Q(A®) @ C,(S) — Q,o(PS)

defined for S = A[n] by

aw' (U@ (0,..,n)) = Y (=)0 HH0i0] (U X Lnagy ntnt) @ (0, ...y g, g, .y ).

qo+---+qpr1=n

Proof :

We will show that
(99an1 == awglé?g.

The proof of this statement is much more complicated than the proof of the previous lemma
so let’stake p=1,n=2and [ = 0.

anI(U & (07 1’ 2)) = (U x 1A0><A2) & (Q?Q)la 2) l*(U X 1A1><A1) ® (Qa la 172) +
(U X 1a2500) ®(0,1,2,2)

+(OU X 1po4n2 +( )2U X lgaox a2 +( 1)3U X 1A0><8A2) & (Q 0,
A(OU X Tatiar + (1)U X Tgarsar + (=1)*U x Taionr) ® (0,1,
OU x 1pzyno + (—1)2U X Lgazsno + (—1)°U x 1azypn0) @ (0,1,

L(

L(
dawo' (U ® (0,1,2)) = L

L(

L(
= l*(GleonAa)@@

L(

L(

L(

L(

|l\3 |H |’—‘
o o N
~— ~— ~—

(QaQal Z) _l (aU X 1A1><A1) (07 1? 172)
(OU X 1a2,00) ®(0,1,2,2) +
(U x 1aoxar) ®(0,0,2) — L(U X 1aoxar) ® (0,0,1) —
(U X 1poxar) @ (1,1,2) + 1L(U X 1a1400) ® (0,1,1) +
(U x 1a1500) ® (1,2,2) = [,(U X 1a1x00) ® (0,2,2).
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On the other hand
awo' (O(U ® (0,1,2))

Thus

EXTENSIONS OF awy AND aw,

awq' (U ® (0,1,2) —

L(OU x 1poynaz) ® (0,

Ue(1,2)+U®(0,2) —Ue(0,1)
Q7 lu 2) - l*(aU X 1A1><A1) ® (Q7l7 lu 2) +

L(OU X 1a2500) @ (0,1,2,2) — [.(U X Taoxar) ® (1,1,2) +
L(U x 1a1xa0) ® (1,2,2) + 1.(U X 1a0xa1) ® (0,0,2) —
L(U X Tar,a0) ®(0,2,2) = 1(U X 1poxar) ®(0,0,1) +
(U x 1a1xa0) ® (0,1,1)

dawo' (U ® (0,1,2)).

dawq! = awgo.

We can however show this equality for general p,n,;

awglag(U X (0, ,n)) =

On the other hand
daawa* (U @ (0, ...,n))

awg (0 +
= awq' (0U ®

09’ aw (U ® (0, ...,n))
(_

Z 1)(p+l)qo+

qgo+...+qpt1=n

2.

qo+---+q;>+l:n

>

qo+---+gpri1=n

(— 1)(p+l)qo+

(_ 1) (p+1)go+

I"VU @ (0,...,n)))
0,....,n)+ (=1)’U ® 9(0, ...,n))

...~+(Ip+lflal*<U X 1Aq0 X...XAqLU'H) ® (Q? "'7i_07 2._0’ 7n)

] (DU X Lpaos sntort)) @ (0, ...y

et pri—1 [l*(ﬁU X 1Aqo x..x A%+l T

+1 +q0+2
(_1)}7 U x 18A‘10><...><qu+l + (_1)p O x 1A‘10><<9A‘11 .. x A%+l T+

.+

(_1>p+QO+..‘+qp+zf2+p+lU > 1Aq0><m><8qu+l>:| ® (Q, .”’Z-_07 7;_0’ -

awo' (OU @ (0, ...,n) +

n)

(—1°U  9(0, ..., n)).

Now, we can show that these two maps are homotopic via sq’.

Proposition 14.3 :

There is a homotopy sq’ between awq! and awq® defined by

and

sq’ = (awq' — awg®) o &,

so' 1 p(A%) @ Cn(S) = 241 (A%) @ Cu(S) = Qnipia (PS)
such that the formula (14.1)

Oasqa + 5q'0q = anO

— CL’LUQI.

» 20,20, -
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Proof :
We can show that sq’ is a homotopy such that (16.1) holds as follows;
(Oasq’ +50'00) (U@ 1) = Oglawg' — awg®)s'(U @ z) + (awg' — awq®)s'0q(U @ )

(awq'0g — awg’0q)s' (U @ z) + (awq* — awq®)s'0q(U & )
(awq — awg?)0qs' (U @ ) + (awq' — awg®)s'0q(U @ )

= (awq' — awg®) (s’ + 5'09)(U @ 1)
(
(

awg' — awa®)(Z' 0 & —id)(U @ )
T'oaw o0& =T oawgo &) (T o0& —id)(U ® )
= [T'(aw; — awp)E" — (awq' — awe?)| (U ® x)

where (1) follows from lemma 14.1 and lemma 14.2, (2) follows from that s’ is a chain homotopy
between 7’ o £ and id, (3) follows from the following diagram

Cp(A%) @ Cr (S| Cpn(PS)

awi

Ak

2(A%) © Co(S] 2= 0y n(PS)

(4) follows from corollary 14.4 and (5) follows from that awq L aw.
Thus awg® e awq'. O
Corollary 14.4 :

There is a lift aw, follows from corollary 12.4 in the following diagram

Q,.(PS)
w7 lfn

0L(A®) ® C, ()2~ Q, .(PS).



Chapter 15

CHARACTERISTIC CLASSES AND CHERN-SIMONS THEORY

In this chapter, we want to mention Chern-Weil Theory for a differentiable principal
G-bundle, G a Lie group. First let’s start by giving the Chern-Weil construction as in Dupont
[10] (chapter 4).

Let G be a lie group with lie algebra g and S*(g*) be the set of k-linear symmetric forms.
Suppose P : gx...x g — Ris a k-linear symmetric form. It is determined by the corresponding
homogeneous polynomial of degree k:

X — P, .., X)
g —-R

is the polynomial function. Then the adjoint representation induces an action of G on S*(g*)
for Vk:
(gP)(le ) Xk) = P(Ad(g_1>X17 ey Ad(g_l)Xk)v

VXi,..., Xy €9, g €G. Let I*(G) be the G-invariant part of S*(g*). I*(G) = @, I*(G) is a
ring with unit 1€ I°(G) = R.

For a principal G-bundle £ = (E, 7, M) with connection w, where M is a differentiable
manifold, F,* € A%*(E, g®¥) is the curvature of the connection w, P(F,*) € A%*(M). P(FF)
is horizontal (i.e., R*,P(F,*) = P(F,")) since F,* is horizontal and P(F,*) is an invariant
horizontal (i.e., [,,*(X,Y) = 0 for VX vertical) 2k-form since F,* is equivariant and P is
invariant.

Theorem 15.1 :

i) P(F,*) is basic, i.e., the pullback of a unique 2k-form is also denoted by P(F,*) € A%*(M).

ii) For a bundle map (f, f) : ' — E and w is a connection in £ = (E, 7, M), ' = f*wis a
connection in & = (E, 7, M') and P(F*) = f*P(F,").

Corollary 15.2 :

Let wg(P) € H?*(A*(M)) be the corresponding cohomology class for P € I*(G). This
defines a multiplicative homomorphism

wg : I'(G) — H(A"(M))

called the Chern-Weil homomorphism.

98
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Definition 15.3 : (Characteristic Class)

For P € I*(G), wg(P) is called the characteristic class of E corresponding to P. That is
w(P) = [P(F,")].

P(F,) is the integrand and notice that the de Rham isomorphism to singular cohomology
3 Hpr(M) — H*(M,R)
is induced by the integration map
J: A (M) — C*"(M,R)

defined by < J(a),c >= [ a, where ¢ € C,.(M) is a singular chain. That is

< J(PE)), ¢ >= / P(EY).

¢

Definition 15.4 :

Let’s consider the category of topological principal G-bundles and bundle maps for a fixed
lie group and let H*(—,R) be the real singular cohomology functor for a given coefficient ring
R. A characteristic class ¢(—) with coefficients in R associates to every topological principal
G-bundle ¢ = (E,m, X) a cohomology class ¢(§) € H*(M,R) which is natural with respect to
bundle maps, i.e.,

EF——F
o,

M —M
then ¢(&) = f*c(€).

Now if we want to give Chern-Weil theory for a differentiable principal G-bundle, G a lie
group, we will observe that BG is the realization of a simplicial manifold and if § = (E, 7, M)
is a differentiable principal G-bundle, E /G is a simplicial manifold, where E, = E x ... X E.

p+1—times

Let’s establish the de Rham theorem for a simplicial manifold M. Let A"(M) denote
the set of compatible simplicial n-forms. Since the exterior differential preserves compati-
ble forms then we have a de Rham complex A*(M) for M. The usual singular cohomology
H*(|| M ||,R) o H(C*(M,R)), where C*(M,R) = Tot(C** (M, R)),
CPi(M) = CUM,, R), where C*(M,, R) is the cochain complex based on smooth singular
simplices and the horizontal differential is & = 37 (—1)’e;*. Now A*(M) is a double complex,
ie, A(M) =@y, AV (M) with respect to the product A? x M, and we have an integration
map

3 API(M) — CPI(M)

defined by J(a)s = [y, ac(id X 0)* e, @ € Map(A9,M,). T induces an isomorphism of
cohomology rings Hpr*(M.) = H(A*(M)) = H*(|| M. ||, R).
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Example : ( The Pontrjagin Classes )

Let’s take the group of non-singular n x n matrices, G = Gl(n,R) with its lie algebra
g = gl(n,R) = Hom(R™ R™) of all matrices with lie bracket [A,B] = AB — BA. For
VA € gl(n,R) and g € G, we have Ad(g)(A) = gAg™". Let P2 be the homogeneous polynomial
of degree k € Z* which is the coefficient of A% in the polynomial in \

1 n— k:
det(A.1— —A) = ZPM A)A

where A € gl(n,R). Py, € I*(Gl(n,R)) and it is called the k/2-th Pontrjagin polynomial and
the Chern-Weil images wg(P;/2) are called the Pontrjagin classes.

Example : ( The Chern Classes )

If we take G = Gl(n,C) with its lie algebra g = gl(n,C) = Hom(C",C™) and consider the
complex valued invariant polynomials ¢, which are the coefficients to A" % in the polynomial \

det()\l——A ch AN

where A is an n X n matrix of complex numbers. The Chern-Weil image of these polynomials
wg(Cy) gives the characteristic classes with complex coefficients as called the Chern classes.
Cllgnzy Satisy FCR(A, ..., A) = Pyja(A, ..., A), A € gl(n,R). It follows that the /-th Pontrjagin
class of a Gl(n,R)-bundle is (—1)" times the 2I-th Chern class of the complexification.

Now, let M be a manifold and 7 : £ — M be a principal G-bundle. We are going to give a
definition of Chern-Simons form on the total space E.

Corollary 15.5 :

For P € I*(G), w(P) = w(P)(vy) € H*(BG,R) defines a characteristic class such that for
any G-bundle & = (F,m, M) with connection w, the class

w(P)(€) = I[P(F.Y)] € H*(M,R),

where J : Hpr*(M) — H*(M,R), is the characteristic class for £ corresponding to w(P). It is
independent of the connection and depends only on the topological G-bundle &.

It # : E — M is an ordinary differentiable G-bundle then the usual Chern-Weil
homomorphism is w : I*(G) — H*(BG,R) such that P € I*(G), w(P) is represented in
A%*(NG) by P(F,"), where F,* is the curvature form of w defined by w = t'wy + ... + t,'w,,
where ty',...,t," are the barycentric coordinates in AP. The structural equation states that
dw = F,, — t{w,w]. For P € I*(G), w(P)(.) is the corresponding characteristic class.

Definition 15.6 ( Chern-Simons Form ) :

Let 7 : E — M be a principal G-bundle and w be a g-valued 1-form on £. When G = SU(2),
the real valued 4-form p on E given by

N 1
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where F, is the curvature of w and Tr: g g — R, is the lift of a unique 4-form p on M, that
is, 7 (p) = p. , ,

TP(w) = @Tr(w/\Fw - gw/\w/\w)
is called the Chern-Simons form.

In Chern-Simons [7] the authors considered the forms TP defined in E by
1
TP(w)= k/ P(w A @i~ Hat,
0

where P € I*(G), ¢, = tF, + 3(t* — t)[w,w]. TP is a real-valued invariant (2k-1)-form on the
total space F.

Corollary 15.7 :

Let m : E — M be a principal G-bundle as given in the previous definition. The form p
represents the second Chern class of the bundle.

Proof :
It can be shown as follows:

Let’s take G = SU(2) and denote P(F,) = p which is called as “the topological charge
density” of the gauge field or the second Chern class of ¢ when dim M=4. Therefore (§,w) is
an SU(2)-valued gauge field on a manifold M of dimension > 3. It means that { = (F, M,w)
is a principal SU(2)-bundle and w is an su(2)-valued 1-form on E satisfying the connection
conditions. Define the real-valued 4-form p on E by

1
p=—=Tr(F,\F,),

82

where F|, is the curvature of w, is the lift of a unique 4-form p on M; that is, 7*(p) = p and
Tr:g@ g — R given by Tr(B, A) = TrBA. Tr is a real-valued map since TrBA = TrBA. One
can show this as follows:

TrBA = TrBA = TrB'A' = Tr(AB)" = TrBA.

Now, let’s show that the form p represents the second Chern class of &(w):

G = SU(2) C GI(2,C). Let’s take an element g from SU(2), that is, g7' = ¢' = §', since
SU(2) ={g € GI(2,C)|gg" = I}. Let su(2) denote the lie algebra of SU(2) and it is defined by

su(2) = {A e gl(2,C)|A+ A" =0 or TrA = 0}

where su(2) C 9M(2,C) = gl(2,C) and gl(2,C) is the lie algebra of Gi(2,C).
Therefore det(A.1 — 3= A) = > Ci(A, ..., A)A"F where A is defined by

@11 a2
A=
Q21 A22
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since in general; G = Gl(n, C) has the lie algebra gl(n, C) = Hom(C"™, C"). The complex valued
invariant polynomials Cj, which are the coefficients to A% in the formula (15.1)

det(\.1 — —A ZC’k AN

where A is an n X n matrix of complex numbers. The Chern-Weil image of these polynomials
give characteristic classes with complex coefficients and they are called the Chern classes given
in this chapter before. cj|gnr) satisfies

FCL(A, ., A) = PyalA, .., A) | A€ gl(n,R).

0
A= 251
(0 m)

We know that A€ su(2) so p1 + pg = 0 then
det(A\1 — —A) = det — —
et =55 4) e((o >\> 2m'(0 M2>)

_
= an(( M E )

21
N VA 2
= 27rz')( 27r2')
— )\2 . )\(Ml +N2> o M1t

271 472’

After diagonalizing A, it becomes

By using (15.1) we get

D CHONF = Co(N + CLOA + Ca(8),

and
2

Col€) = 1,C1(€) =0, Co(€) = £ since — iy = pu.

We want to show that
02(5) =p.

It can be shown as follows;

Co(§) = 5Tr(A%)
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Thus Cy(§) = p = 5 Tr(F, A F,) as required. O

Corollary 15.8 :

The term p is always (locally) exact, no matter what the bundle £ may be. In fact, a simple
calculation shows that it is the coboundary of the 3-form T'P(w) defined on E by

1 1
TP(w) = @Tr(w NF, — i AwAw).

Proof :

By Poincare’s lemma, the closed form Tr(F, A F,,) is locally exact with d : C® — C* given
by

1
(5TP(C()) :]5 = @Tr(Fw A Fw)7

since

1 1
TP(w) = ——=dIr(wAF, — —wAwAw)
8?2 3

1 2

= @d(Tr(wdw + i ),

by using F, = dw 4+ w A\ w, we get

1 2

Tr(w/\dw—l—w/\w/\w—gw/\w/\w):Tr(w/\dw—i-gw/\w/\w).

We can show that 0T P(w) = p , that is, we show that

1 2 . 1
—QdTI'(U)dW + -w ) = _Tr(Fw A Fw>7

8 3 812
as follows;
1 2 2 2 2
0TP(w) = ﬁTr[(dw) + g(dww — wdww + wdw)]
T
1 2
= WTr[(Fw —whH? + g{(Fw —wHw? —w(F, —wHw + W (F, —wH}]

T

where F, = dw + w A w = dw + w? since [w,w] = 2(w A w) and then

1 2
OTP(w) = @Tr[Ff, — W F, — Fyuw? +wt + §(Fww2 — wF,w+W*F, — w)).

We know that Trw? = 0 and TrwF,w = —Trw?F,, = —TrF,w? Therefore we get

1 2 1
STP(w) = @Tr(Fj — W F, — F W+ g(Fwwz + §(Fww2 +w’F,) + W'F,)]
1 2
= g I(E)

1
= @TI‘(F(U N Fw)

103
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g

Now we need some preparation for the next chapter. In order to compute a related for-
mula for the variation of Chern-Simons class for a given bundle F' — |S | with a connection
w, we need to find the difference Chern-Simons form as a difference of the characters. In
the following definition, we study on a certain graded ring H *(M) for a smooth manifold M.
This is the ring of differential characters on M. If A C R is a proper subgroup, a differen-
tial character (mod A) is a homomorphism f from the group of smooth singular k-cycles to
R/A, whose coboundary is the modA reduction of some ( necessarily closed ) differential form
w € A¥T1(M). One can see that f uniquely determines not only w, but a class u € H**1(M, A)
whose real image is cohomologous to the de Rham class of w.

One can give the Chern-Simons form as a differential character by using a lift of Weil
homomorphism due to Cheeger-Simons [6].

Definition 15.9 :

Let £ = (E, M,w) be a principal G-bundle, where G is a lie group. Let (G) be the category
of these objects which are triples £ with morphisms being connection-preserving bundle maps,
ie, if £ = (F,M,w) and £ = (E,M,d)) are two bundles and ¢ : {F,M} — {E,M} is a
bundle map then ¢ : &€ — ¢ is a morphism if ¢*(&) = w. Let Ay*(M) denote the set of closed
forms. The Weil homomorphism constructs a homomorphism w : I*(G) — H*(BG,R) and
a natural transformation W : I*(G) — A% (M) such that the following diagram of natural
transformation commutes,

I*(G) —“ H*(BG,R) <"— H*(BG, \)

here C), Cr are provided by the theory of characteristic classes and DR is the de Rham
homomorphism. If P € I*(G), u € H*(BG,A) and F, is the curvature form of ¢ € ¢ then
W(P) = P(F,,...., F,), and Cx(u) = u(&), is the characteristic class. Set

———

k

K*(G,A) = {(P,u) € I"(G) x H*(BG,\) | w(P) = r(u)}.

Set
RM(M,A) = {(w,u) € A* x H*(M,A) | r(u) = [w]}

and R*(M,A) = @ RF(M,A). Here r : H*(M,A) — H*(M,R) and [w] is the de Rham class
of w and Ag* is written for the closed k-forms with periods lying in A. R(M) has an obvious
ring structure (u, w).(v, @) = (uUv,w A ¢).

K*(G,A) = @K*(G,A) forms a graded ring.  The previous diagram induces
W x Cy: K*(G,A) — R*(M,A).

On the other hand we have a ring which is given by

H*(M,R/A) = {f € Hom(Z,R/A) | fod e A1},
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Weset H-'(M,A) = A. H*(M,R/\) = @ H*(M,R/A) is a graded A-module whose objects
are called differential characters. So the result can be expressed as saying that there exists
a unique natural transformation

S: K*(G,A) — H*(M,\)
such that the diagram
H*(M,R/A)
S i51,52

K*(G, A) 9L (M, A)

commutes. Sp, € H* (M, R/A) is called the Chern-Simons character.

Theorem 15.10 :

Let (P,u) € K*(G,A). For each ¢ € (@) there exists a unique Sp, € H**"'(M,R/A)
satisfying;

1)o1(Spu(w)) = P(EL)
2)02(Spu(w)) = u(§)
I € €e(G) and ¢ : € — £ is a morphism then ¢*(Spy (@) = Spu(w).

For a pair ([P],u), we construct the Chern-Simons classes for £ = (E, M,w) with F,,**' = 0.

Corollary 15.11 : (Dupont-Kamber [12])
Suppose P(F,) = 0. Then

1)Spu(w) € H*1(M,R/A) is the Chern-Simons class.
2)B(Spu(w)) = —u(&), where B : H*"1(M,R/A) — H*(M, A) is the Bockstein-homomorphism.
u(§) = ¢*(u) is the characteristic class associated to &.

Proof : Let us look at the following diagram of simplicial bundles

]

M—-E/G<"—BG

7

G,

and consider F /G is approximately BG, where ¢ : M — BG is the classifying map. Let
i € C?(E /G,7Z) be a cochain represents (n*) 'u. Then J(P(F,)) — ri = 65 (*) for some
cochain 5 € C*~1(E /G,R). The reduction mod Z of the cochain *5 € C*~1(M,R) is a
cocycle. Here ¢*5 € C?*~1(M,R/Z) is called the Chern-Simons character. In fact it
defines a cohomology class

s =yros = P (J(P(Fp)) — ru)
= J(P(F,)) —r*u
= —r¢Y*u =0 mod Z,
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since P(F,) = 0 when F,*%' = 0. Therefore 1*5 mod Z defines a cohomology class in
H?*~Y(M,R/Z) which is called the Chern-Simons class and denoted by Sp,(w). O

Proposition 15.12 : (Dupont-Kamber [12])
Spu(w) = [¥*5] € H*1(M,R/Z).
1) Spu(w) is well-defined.

2) Spu(w) is natural with respect to bundle maps preserving connections.
3) SP,u(WMC) =0.

Proof :

1) Suppose J(F;) — rii; = 6(5;) is another choice then u; — @ = 6t for t € C*~Y(E /G, 7Z)
and by using both choices, that is (*) and the one given above, we get §(5 — 51 + rt) =0, i.e.,
5—35,+7t = c, so that 5 — 5, +rt represents an element [c] € H*~ (£ /G,R) = H*~1(BG,R).
Therefore 1*5 — ¢*5; = *(5 — 5, + rt) mod Z represents *c € H*~1(M,R/Z) since

* [ — — *linear * — * — *
W E-s+rt) UET s s +ret(t)
'L oyrs—yrs
= e

[c] € H*~Y(BG,R) = 0 then ¢*5 — ¢*5, = ¢*c ~ 0.
2) follows from the previous diagram.

3) follows from 2) since wy¢ is induced from G — .

Proposition 15.13 :

We can give more geometric definition for the Chern-Simons class. Suppose M =1 — G2k
oriented and § extends to f over V. Let w be any extension of w to a connection in E. Setting
¢ = {E,W,&} and we have the morphism & — £. Thus Sp,(&)|p2e—1 = Spu(w). Moreover

< Spu(w), [M] >= /WP(FW) mod Z.

Proof :
If we replace E by E in the last diagram, we get
< Spu(w),[M] > = <45, [M] >

= <Y*s, [OW] >
= <05, [W] >
< J(P(F)),[W] >

] | P

Here P(F;) is the difference form, that is the Chern-Simons form. O
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Corollary 15.14 :

For two given connections w; and wy in a bundle F — M, we have © = (1 — t)w; + twe
in M x [0,1] = W?*. The difference of the characters must be the reduction of a form. In
other words, the difference of the evaluations of the Chern-Simon classes on a cycle is given as
a difference form (15.2),

< Spulws), [M] > — < Spa(wr), [M] >= /W P(F,) = /M TPy, w»),

where TP(wi,ws) = folid/dtP(Fg,)dt. On the other hand &= wy — w;, for fix ¢

L2 — (1 — t)dw; + tdws. So we can find the curvature Fy = % 4 1[5 &]. Then

1(M) = TP(wl,wg).

|Z2k—

1
Spu(wn) — Spulen) = / PG AR
0

P is a polynomial of the two connections wq, ws.

Example :

Suppose E = M xG and assume M = M?*~! closed oriented P € I*(G). Put W = M x[0, 1].
For any connection w in E and wy;c we write

w=1—-twyc+tw=wyc+tA

connection in £ = W x G where A = w — wyc. By the previous proposition
< Spu(w), [M] > — < Spu(wae), [M] >= / P(F)
M x[0,1]
since Spy(wae) = 0. Hence

< Spulw), [M] >= / TP(A),

M

where T'P(A) def fol iajatP(F3)dt, iq/q; is the usual interior product in the ¢-variable. TP(A) is
an algebraic expression in A, for example for k =2, TP(A) = P(ANdA + $A N [A, A)).

In the chapter 8, we started giving the background for finding a lifting in order to find
the relation with Chern-Simons theory. Although one can define the Chern-Simons form on
m*EG — || |P.S] || by pulling back the canonical one on the universal bundle, we can not define
the Chern-Simons form in the same way on the bundle defined over ||.S||. In the following chapter
we will see this with the details.
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Chapter 16

APPLICATIONS TO THE GAUGE FIELD

In this chapter, we give the variation of a Chern-Simons class for a given bundle F' — |S| with
a connection w induced by the canonical connection wa via k*. We will consider the evaluation
of a difference of Chern-Simons classes for two connections on a cycle defined on €, .(PS). In
other words, we consider the evaluation of a Chern-Simons class for a given bundle with the
connection w on the difference of two cycles on Q*V*(PS ). So do to this, we use the difference
Chern-Simons form given in the previous chapter. On the other hand the Chern-Simons class
is related in an appropriate way to the second Chern class of the bundle. When we pull down
the Chern-Simons form on the total space of a principal bundle with its connection to the base
space, they give rise to the Chern-Simons class.

We will also give a definition of a connection in a simplicial bundle due to Dupont [9] and
a corresponding Chern-Simons form. By starting with a canonical connection wa in the total
space of a universal G-bundle mpn : EG — BG, one can write the corresponding canonical
Chern-Simons form. After this by pulling back the canonical connection via m defined by
trivialization and the classifying map m : || |P.S] || — BG, one can get the Chern-Simons form
on the total space of the bundle m*EG — || |P.S| ||. Since we can not define a section in our
case, we can not use the definition for the Chern-Simons character given by global section but
instead we can use the other definition given by differential forms and cohomology class. We
have already given this definition at the end of the previous chapter and we are going to apply
this to the gauge field in this chapter.

Let S be a simplicial set and F' — |S| be a simplicial bundle. We have given the definition
of a simplicial bundle as a sequence of bundles over AP x ¢ for all p, where ¢ € S, with some
commutative diagrams (6.1), (6.2) and the compatibility conditions (6.3), (6.4) and (6.5) given
in chapter 6. Now, let’s give the definition of a connection in a simplicial bundle.

Definition 16.1 :

A connection in F' — |S| is a family of 1-forms 6 = {0, | o € S,} on F, with coefficients
in g such that ¢, is a connection in the usual sense in the bundle F,, — AP x 0, 0 € S, such
that

o,

0.0 =0y, i=0,...,p.
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Remark :

There is a similar definition of a simplicial bundle and connection over simplicial mani-
folds which includes the case of EG — BG, (cf. chapter 17) where the p-th total space is
EG(p) = AP x NG(p). In the definition of a simplicial bundle given in chapter 6, in
F, — AP x g, F, can not canonically be written in general as a product of AP with some-
thing as in the case of the universal bundle. Thus let G be a lie group and consider the
simplicial space NG(p) = G x ... x G (p + 1- times). In NG

81’(907‘ 791)) (.907' '7gi7"‘7gp) and 77i(90w 79}7) (907‘ ‘7gi7gi7”'7gp)7 12077p

By the definition

EG=| NG(p) || = | |A? x G""'/~ and BG = EG/G = || NG(p) || = | |A? x G"/~.

If we take the simplicial G-bundle v : NG — NG, we get the universal bundle
Ve : EG — BG. Let’s give the construction of a canonical connection in this bundle.

Let wp be the Maurer-Cartan connection in the bundle G — pt and ¢; : A? x NG(p) — G
be the projection onto the i-th factor in GPtt i =0,...,p, and let w; = ¢;*wy. Then w is given
over A? x NG(p) by

w = tole + t1'w1 + —f- tp'wp,

where t(/, ..., t," are the barycentric coordinates in A? such that > 7 ¢,/ = 1. Any convex com-
bination of connections is again a connection. So wy,, . - is a connection in the usual sense in
AP x NG(p) — AP x G and the universal connection wa = > 7 t;'z; 'dx; € A (AP x GPTg),
where z;~'dx; denotes the pullback of the Maurer-Cartan form by the projection onto the i-th
coordinate of GPT!,

We have a diagram

(mo i) EG F—"—>FEG
15l = || |PS| || " BG
where F' = {(t,s, f) € AP x ADFE x5 A%H x F|M+2p+1xsn+2p+1 | 7y (f) = (L,(t)(s),y)} and

teAP, s € AT x  x AW f e F, ye S, o

One can write the connection @ in F' — || |P.S| || via the connection wa in the universal
bundle as follows;

op = m*(wa) = Zt T fdxi(t, s, f))

= Z ti/xi71<t7 S, g)dl’l(t, S, g)

1=0

by setting @y(f) = g. Here f := (I(t)(s),y) € Fy, y € Sniopt1-
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The right action on FG is given by

EGxG — EG.

(0, ooy Tp, k) —  (ToT, ...y THT)

On the other hand by using ( 7.2 ) we have y(z, ..., z,) = (zox1™", ..., xp_12," ') corresponds
to (g1, ..., 9p). By setting z, = g = ¢,(f) (fixing the last trivialization), we get

1
Lp—1Tp = Gp = Tp-1 = Gpg

1 .
Lp—2Lp—1 9p—1 = Tp—2 = Gp-19pY

roryt = g1 = To = g1...9p9-

We can also write z;’s in EG in terms of ¢g’s and transition functions as

(91--9p9> 92---9pG> -+ Gp—19p9, 9) € EG.

We have defined m in the proposition 7.3 with ( 7.1 ) so

Tp = §= @y(f) .
xp—l = gpg - Uy,ﬂ(p)y(p(p)l(t)(S)_l@y(f)

cocycle condition

91999 0,10, (P (3) 7 @y (f).

Zo

Thus the required connection is (16.1)

Da = to/[(vy ey (PVUE)(8) 7 g) T d(vy sy (V1) () )] +
1[0y g1, (PP (5)) " g) " d(vy -1, (PP1(E)(5)) " )] +
L+

tpt [y s (PP L) () g) " vy, (PP L) (5)) M g)] +
t,’ g 'dg.

Since p@WI(t)(s) = prot-+a-142i-l o o pnt2 j— 1 p then
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N tO/I:Adgfl(/Uy7ﬂ(p)y(SO7tl)dy”l’l(p)y(so,tl)—l) + g_ldg] +

tp_Ql[Adgfl(/Uy’ﬁ@)y(SO, ey P72, tp_l)dy7ﬁ<2)y(so, ey 8Pt ety )T g g +
tp,l’[Adg—l(vyﬁ(p)y(so, st tp)dyyﬂ(my(so, st ty) ) 4 g dg) +
t,/g " dg.

Now, we will give the evaluation of a difference of Chern-Simons classes for two connections
on a cycle defined on || |[P.S| ||. In other words, we consider the evaluation of Chern-Simons
class for the given bundle with a connection on the difference of two cycles on || |[P.S | ||.

Let F' — |S| be given with a connection w. In the gauge theory, the aim is to start with a
connection and deform it. For, example, we can start with the connection over |S | and deform
it on A x |S | with respect to t variables. When ¢ is close to the one of the end points then
the connection in this bundle corresponds to the one comes from 4y, that is, @z, = m*(wa, ).
We evaluate this at the vertices of the triangulation. We have

A® x |PS|
=1
A x |S].

We want to find the variation of the Chern-Simons class for the bundle F© — |S| by
using prismatic subdivision. Although we have a homeomorphism [, there is no a well-defined
map || |[PS| || — BG. Therefore we had to construct || |P.S| || and define a well-defined map
m: || |PS] || = BG. So we can use || |P.S] || instead for the required variation for the Chern-
Simons class. There is a family of connections over |PS.|. For Vt € AP, the connections over
|P.S | are changed. This follows that the Chern-Simons class for F' — |S| is deformed by vary-

ing t’s, since for V¢ € AP, there are trivializations on |S| in || |P.S| ||. The aim is to vary the
Chern-Simons class for the bundle over |S| and it can be done by varying the connections de-
fined over || |[P.S| ||. In other words, the bundle over || |P.S | || enables us to find the variation

of the Chern-Simons class for the bundle over |S| by using the bundle over || |[P.S] ||.

The reason why we are studying on the simplicial currents level is that we can only increase
p up til » on the chain level but by using the simplicial currents, one can take arbitrary large
p. By making enough subdivisions, we approximate the given connection by piecewise flat
connections.
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Remark :

Now we have to find the two connections over || |[P.S| || by using the following diagram
(16.2):

1| == |PS]| | ™ BG

N

[

5]

here the big diagram commutes and the right side of it is commutative up to homotopy, since
S is a deformation retract of |P S |. There is a unique way of defining the lift for u;. On the
other hand, there is no way to pull back @y to ||S|| as connection. @y depends on the choice
of lifting, i.e., there is no any canonical way to do that. As done in proposition 11.3, we can
find g for an arbitrary lift s to s. @y and 4, are chain maps and there exists a simplicial map
which induces %;. On the other hand if we think the same thing for g, this does not give the
same conclusion. Since when p = 0, |PS| is going to be contractible and its image under f
composed with L will go to a point, then the map ||S || — |S| is supposed to take an element
to a point but the canonical map doesn’t go to a point. In other words, these two maps are
supposed to be homotopic. The canonical map is not homotopic to a point. Then there is no
a simplicial map which induces tg. Therefore there is no way to pull back a connection by .

We are going to compare the connections on the bundle m*EG — || |PS.||. The first
connection comes from by pulling back the canonical connection on the universal bundle, let’s
denote it by wa = m*(wa) in ( 16.1 ). The second one comes from by pulling back the connection
over |S | via Lo f. A connection over ||.S || induces a connection over |S | but this is not true in
general. Let’s explain this with the following remark;

Remark :

When we consider a bundle over ||S || and a connection w; in this bundle, &*w;, = w,
1=0,...,p, follows from definition 18.1. In our case one can see that

—%
n Wi, = w1

i = 0,...,p, which follows from k& : ||S|| — BG given as ( 7.3 ). So this connection induces a
connection in the bundle over |S |, that is, k*(wa) = w.

One can show that k(n't,z) ~ k(t,n;x), i =0, ...,p, where t € AP™! z € S, as follows. We
do it only for ¢ = 0 and ¢ = p:
For 7 = 0;

k't x) = (0%t Vegcpe (087, Wegnocpe (0 (B, 82))] 7, oy [ (0P P 00)] 7, [0 (0P 1°)] 1)
~ (61 ey r (0)]) 7 ey eya (B2)] 7 ooy Ve (b o b)) T s (E2y ooy £)] 7).
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On the other hand,

k(t’ 7701:) = <t? [U52 5p+mow(0>]_1 [U€3 ~€p+177096(t1)}_1= [v€4~-€p+1nom<t17 t2)]_1= )
[v€p+1nox<t1’ ey by )] [Uno:v(tlv e tp)]_l)

= (t: [Vnerepe (O] 7 [Wngescpa(E)] 7 [Unpeg.npu(trs t2)] 7 o
[noepa (t1y -y tp1)] ™ ,[vx(tg,...,tp)]fl)

= (t,[v-,. Ep:v( )™ ! [UEQ---pr(O)]_l’[UEB---Epr(tz)]_:l’"'?
[We, 0 (t2y ooy tp1)] 7 [V (t2y ooy )] )

= k(n°t,z),

since v,..,2(0) = 1.

For i = p, the same result follows from v,,,(t) = 1. So the other cases for i can be shown
similarly. The connection pulled back of the canonical connection over BG is the same as the
one pulled back along the bundle over ||S || — |S| — BG which preserves the degeneracy
operators. Therefore the connection over ||.S || is induced by the one over |S|. In other words,
admissible trivialization and the map k follow that k*(wa) = w.

The following lemma will help us to see the required connections.

Lemma 16.2 :

We have the diagram (16.2 ), let’s call Uy := @iy o pro Lo f and id) |p.s| |- So there exists a
chain homotopy B B
5:C.(PS) — C.y1(PS)

such that 95 + 50 = U; — id.

Corollary 16.3 :

Let F' — [S]| be given with a connection w € A'(F, G). By extending the lemma above to the
currents we can define two connections over | |PS]|, mnamely @&a and

U_l*(‘IJA) = (@ oproLo f) (w), where

Uy (m*EG) W EG

|

IPS]]

Now we can continue with the simplicial currents and we have already found the extensions
awq? and awaq’.
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Note :

We point out that ug is only used to extend the chain complexes to the simplicial currents
and to find the chain homotopy 7. It does not have a direct role in the evaluation of Chern-
Simons classes. We have the diagram

Q,.(PS)

|

0. (A®) @ C,(S) —= Q.. (PS).

We used the lift of awq! in order to get the lift of awg?. After getting this lift, we can give
the evaluation of the Chern-Simons classes in terms of [-subdivisions.

Lemma 16.4 :

Let 2 be a cycle on C,(S) and f € A°(AY), vy = dt; A ... Ndt; € AY(AY). Let us call a
monomorphism

U: A(AY) — Qo(AD
defined by U,,(f) = fN fui. Then (U, ® z will be a cycle on Qy(A®) ®@ C,(S).
Proof :
z is a cycle on C,(S) then 0z = 0. We need to show that (16.3)

o(llU,, ® z) = 0.

AU, @ 2) = Ny, @2+ (—1)°1U,, ® 8z
= 0.

g

Note : Let 2 be a cycle on Q, . (PS). It covers the cycle awq®(I!U,, ® ). So as an example,
we can take 7z = awy (U, ® z). Both awd (U, ® z) and awy,(I'U,, ® ) cover the cycle
z € Cp(S).

Definition 16.5 :

The variation of a Chern-Simons class S(w) for a given bundle F' — |S| with a
connection w is given by
< S(w),z>— < S(@a), Z1 >,

where @, is the connection on m*EG — || |P.S | || which is pull back of the canonical connection
on the universal bundle, z is a cycle on C,(S) and Z is a cycle on Q, .(PS).
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Theorem 16.6 :

Let F' — |S]| be given with a connection w and let z € C,(S) be a cycle, z; € Q, .(PS) be
a cycle covers the cycle z € C4(S). Then one can compute the variation of Chern-Simons class
for the bundle F' — |S| with w in the following ways;

) < SW),z>— < S(@a), 7 >=< S(U1*(@a)), 5 > — < S(@a), 7 >= [, TP(Uy"(w),0a),

i) < S(w),z > — < S(@a), 5 >=< S(@a),U1(3) — % >, where Uy :==pro Lo f .

Proof :

i) The evaluation of the difference of the Chern-Simons classes for the bundle with two
connections can be computed on a cycle which covers z as follows;

From the corollary 16.3, there are two connections in the bundle F' — || |P.S | || which are
wa and U_l*(cDA). Let o o
(@a, Ui (@a)) = (1 — t)(@a) + tU1*(@a)
be the linear combination of these two connections. 7 is a cycle on €, .(PS) then by ( 15.2)

< SO (@a)) — S@a), 51> = < S0 (wa)), 5 > — < S(@a), 5 >
— [ TP@ @).5s)

2l

where S(—) stands for the Chern-Simons class for the bundle and T'P(—) stands for the
difference form.

This formula can be written in terms of given connection w and the cycle z since
<SO@a). 5> = <S(@oproLof) (@), a >
= < Sy o Uy (wA)) Z >
= < S (@ )) (2) >
= <Sw),=z

where (pry o L, o f,)Z, = z, since Z; covers z and ﬂ_l* (Wa) = w since the connection over ||S ||
induces a connection over |S|. We substitute this in the formula above so we get by using the
definition 16.5

< S(Ww),z>— < S(@a), 5 >= / TP(U;* (w),@a).

Z]

ii) One can compute the evaluation of the Chern-Simons class for the bundle with the
canonical connection on the difference of two different cycles which cover z. For this we can
use the formula shown in i) and the variation of the Chern-Simons class for the bundle with
the canonical connection on the difference of the two cycles is given by

< (U —id)S(@a), 5 > = < 8(@a), (U, —id)3 >
= <S((I)A),Ul(§l)—§l >
= < S@a),U1(3) > — < S(@a), 5 >

- / TP} (@), wa).

2]
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Example :

As an example, one can take z; = aw)(I!U,,(f) ® z) and give the variation as in i) and ii)
in the theorem 16.6. By using the canonical lifting aiv, and choosing a lift s'q, we find a lift
awg,. The images awg (U, ® z), awy(I!U,, @ z) will give two cycles on Q, ,(PS). Finally we
can take Uy (%) = awy(1'U,, ® z) and give the variation as in i) and ii) in terms of l-subdivision.
The first formula becomes

< S(Ww),z > — < S(@a), awd (U, @ 2) > = < (Ui— id)S(@a), awd(I\U,, @ 2) >
= < S(U*(@a)) = S(@a), awd (U, @ 2) >
Sl KV GABIEN]

2l

The second formula becomes (16.4)

< SWw),z > — < S(@a),awd (WU, @ z) > = < S(@a),awy(I'U, @ 2) — awd (11U, @ 2) >
= < S(@a), (U, —id)z >
~ [ TP @)aa),

2l

Corollary 16.7 :
The variation is
< S(w),z > — < S(@a), awd(IlU, ® 2) >=< P(F3,), so(llU,, ® 2) >,
when z, = aiwg,(I'U,, ® 2).
Proof :

One can find the evaluation of the Chern form §S(wa) for the bundle with the canonical
connection on the cycle defined on 2, .(P5S).

Moreover we can replace the difference as awy, — awg) = 9s'q + 80 since awg, ~ awg,. Then

< SW)z> — < S@a), ad (WU, ®2) > "L < S@a), U1(Z) - 5 >
WD S(@n), (awh — awl)(NU,, @ 2) >
= < S(@a), (08q +5'00)(I\U,, ® 2) >
U S(@a), 050 (U,  2) >
= <5S(~A),§’Q(Z!le®z) >
= < P(F,),sq(lU, ® 2) >

is the evaluation of the Chern form §S(@a) for the bundle with the canonical connection on
the cycle defined on Q. .(PS). O
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