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Abstract

An extended covariogram model is proposed for estimating the precision
of circular systematic sampling. The extension is motivated by recent devel-
opments in shape analysis of featureless planar objects.

1. Introduction

Recently, the precision of systematic sampling on the circle has been discussed
in Gual-Arnau and Cruz-Orive (2000) and Cruz-Orive and Gual-Arnau (2002). In
particular, variance prediction formulae based on a global polynomial model for the
covariogram have been developed. In Hobolth and Jensen (2002), this approach
is discussed both in a design-based and a model-based setting, and an alternative
model-based method of estimating the parameter of the covariogram is described.

In this note, we summarize these developments and argue that it may be natural
to consider an extension of the polynomial covariogram model, see also the dis-
cussion in Hobolth and Jensen (2002). We explain the geometric interpretation of
the parameters of the proposed extended model and report preliminary simulation
results.

2. A global polynomial covariogram model

In a design-based setting, the parameter Q to be estimated is of the form

Q =

∫ 1

0

f(2πt)dt,

where f : [0, 2π] → R+ is of bounded variation, square integrable and piecewise
continuous. An unbiased estimate of Q, based on a systematic sample of fixed size
n, is

Q̂(f, φ, n) =
1

n

n−1
∑

j=0

f
(

2π
(

φ +
j

n

))

,

where φ is uniform random in the interval [0, 1
n
[. The covariogram of f is given by

g(t) =

∫ 1

0

f(2πh)f(2π(h + t))dh,

1This paper is a contribution to the special issue of Journal of Microscopy to be published from
the ”Thiele Workshop on Variance Estimation in Stereology”, 22 - 26 November 2004, University
of Aarhus, Denmark.
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0 ≤ t < 1, where we use a periodic extension of f . The covariogram satisfies
g(1− t) = g(t) and therefore its Fourier expansion takes the form

g(t) = d0 + 2

∞
∑

k=1

dk cos(2πkt), (1)

0 ≤ t < 1, where the Fourier coefficients are given by

dk =

∫ 1

0

g(t) cos(2πkt)dt, k = 0, 1, . . . .

Moreover, it can be shown that

Var(Q̂(f, φ, n)) = 2
∞

∑

k=1

dkn. (2)

Gual-Arnau and Cruz-Orive (2000) suggest to estimate Var(Q̂(f, φ, n)) by modelling
the covariogram g by a polynomial of order 2p, p ∈ N, of the following form

g(t) =

p
∑

j=0

β2jt
2j + β2p−1t

2p−1, (3)

where 0 ≤ t < 1, p ∈ N and βj are unknown parameters. In Gual-Arnau and Cruz-
Orive (2000) it is shown that since g(t) = g(1 − t), the polynomial in (3) depends
only on two real parameters β0 and β and is given by

g(t) = β0 + (−1)p(2π)2p(B2p − B2p(t))β, (4)

0 ≤ t < 1, where B2p(t) is a Bernoulli polynomial of order 2p and B2p = B2p(0). For
more details on Bernoulli polynomials, see Abramovitz and Stegun (1965). Equiva-
lently, the Fourier coefficients of g are on the form

d0 = β0 − 2

∞
∑

k=1

dk,

dk =
(2p)!

k2p
β, k = 1, 2, . . . . (5)

Using (2) the variance can be written as

Var(Q̂(f, φ, n))

=
1

n2p
(−1)p−1(2π)2pB2pβ, (6)

=
1

n2p

g(0)− g(t)

1− B2p(t)/B2p

, 0 ≤ t < 1.

In Gual-Arnau and Cruz-Orive (2000), the following unbiased estimate of Var(Q̂(f, φ, n))
is suggested

1

n2p

ĝ(0)− ĝ( 1
n
)

1− B2p(
1
n
)/B2p

, (7)
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where

ĝ(0) =
1

n

n−1
∑

j=0

f
(

2π
(

φ +
j

n

))2

,

ĝ
( 1

n

)

=
1

n

n−1
∑

j=0

f
(

2π
(

φ +
j

n

))

f
(

2π
(

φ +
j + 1

n

))

,

are unbiased estimators of g(0) and g( 1
n
), respectively. Note that this estimator only

uses the empirical covariogram ĝ near the origin. In Cruz-Orive and Gual-Arnau
(2002), they suggest a more general estimator

1

n2p

1

[n
2
]

[ n

2
]

∑

k=1

ĝ(0)− ĝ( k
n
)

1− B2p(
k
n
)/B2p

,

using more values of the empirical covariogram.

The global covariogram model can be formulated in a model-based framework
by assuming that the function f is a realization of a stationary, random periodic
stochastic process

F = {F (2πt) : 0 ≤ t < 1}

with mean µ and covariance function

σ(t) = λ0 + 2
∞

∑

k=1

λk cos(2πkt),

0 ≤ t < 1. The global covariogram model of Gual-Arnau and Cruz-Orive (2000), see
(1) and (5), corresponds to assuming that

λ0 = β0 − 2
∞

∑

k=1

λk,

λk =
(2p)!

k2p
β, k = 1, 2, . . . , (8)

in the model-based setup. In Hobolth and Jensen (2002), it is shown that the
prediction error of using Q̂(F, φ, n) as an estimate of

Q =

∫ 1

0

F (2πt)dt

is given by

E(Q̂(F, φ, n)−Q)2

= 2
∞

∑

k=1

λkn

=
1

n2p
(−1)p−1(2π)2pB2pβ. (9)
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Note that the prediction error is of the same form as the variance (6) in the design-
based setup. Hobolth and Jensen (2002) suggest to estimate the parameter β using
maximum likelihood estimation instead of using the empirical covariogram. It is
shown that if F is assumed to be a Gaussian process, there exists a unique unbiased
estimator of β with minimum variance. If we have n systematic observations of F ,

Fn =
(

F
(

2π(φ +
j

n

))

: j = 0, 1, . . . , n− 1)T ,

then

β̂ =
1

n− 1

n−1
∑

j=1

λ̂j

κ̃j
,

where

λ̂j = ω∗j FnF
∗

nωj, j = 0, . . . , n− 1

κ̃j =
∑

k∈Z

(2p)!

(j + nk)2p
, j = 1, . . . , n− 1

ωj,k = 1
n
e2πijk/n, j, k = 0, . . . , n− 1.

Here ω∗ = ωT denotes the complex conjugate of ω.
Using this maximum likelihood estimate of β we can estimate the prediction

error by

(−1)p−1(2π)2pB2p
1

n2p
β̂, (10)

and it can be shown that for n = 2 and n = 3 this estimator coincides with the
estimator (7) in the design-based setup.

3. An extension of the global covariogram model

The covariogram model (5) and its model-based analogue (8) can be motivated
by tractability. It turns out, however, that it is natural from a geometric point of
view to consider an extension of this model. In a model-based setting, the extended
model is known as the p−order model, cf. Hobolth et al. (2002) and Hobolth et al.
(2003). The covariance function of the extended model is determined by Fourier
coefficients of the form

λ0 ≥ 0, λ−1
k = α̃ + β̃(k)2p, k = 1, 2 . . . , (11)

where α̃ ≥ 0, β̃ > 0 and p > 1
2
. It can be shown that p determines the smoothness of

the stochastic process F . In fact, if we assume that F is a Gaussian process, F is k−1
times continuously differentiable where k is the integer satisfying p ∈]k − 1

2
, k + 1

2
].

For fixed p, α̃ and β̃ determines the global and local fluctuations of the stochastic
process F , respectively. Small values of α̃ provide large fluctuations of the process
on a global scale, while large values give smaller fluctuations. Also, the smaller β̃,
the more fluctuations of F on a local scale.
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In particular, if F = R, where R is the radial function of a planar object K,
star-shaped relative to z ∈ K,

R(2πt) = max{r : z + r(cos(2πt), sin(2πt)) ∈ K},

0 ≤ t < 1, then p determines the smoothness of the boundary of the object K and for
fixed p, α̃ and β̃ determine the global and local shape of the object, respectively. The
smaller α̃, the more deviations from a circular shape of K are expected. Typically,
in addition, the parameter λ1 is set to zero if the point z is approximately the center
of mass of the object K. For more details see Hobolth et al. (2003).

As mentioned above the model described in (8) is a special case of the p-order
model, corresponding to

p ∈ N, α̃ = 0, β̃ = ((2p)!β)−1.

Since α̃ = 0, this would provide large fluctuations of the stochastic process F on
a global scale. If the geometric quantity of interest is the area, then F ∝ R2,
and one would expect an object with large deviations from a circular shape. As
a consequence, it seems natural to include an additional parameter α̃ to allow for
more flexibility. A detailed demonstration of how to estimate the parameters in the
p-order model can be found in Hobolth et al. (2003).

In the design-based setup it seems also more natural to include an additional
parameter α in the global covariogram model. Instead of modelling the Fourier
coefficients of the covariogram by (5) we let

d0 ≥ 0, d−1
k = α̃ + β̃k2p, k = 1, 2, . . . ,

where α̃ ≥ 0, β̃ > 0 and p > 1
2
.
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Figure 1: Left: The object K. Right: A log-log plot of the true prediction error (solid curve) as
a function of n, together with the estimated prediction error (10), shown as +, and the variance
estimate (7), shown as •.

As an illustration, Figure 1, left, shows an object K with radial function R. Note
that this object has a close to circular shape, so the process F = R2 is not expected
to have large global fluctuations. In fact, this object is the result of a simulation of
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the square root of a Gaussian 2nd order model with parameters µ = 10, α̃ = 5 and
β̃ = 0.005. Figure 1, right, shows in a log-log plot the true prediction error

E(Q̂(F, φ, n)−Q)2 = 2
∞

∑

k=1

λkn

as a function of n (solid curve), the estimated prediction error (10) as a function of
n (+) under the simplified model (8) with α̃ = 0 and the variance estimate (7) as a
function of n (•). As expected, the prediction of the variance is not very good and
this holds for both small and large n. The variance estimate (7) appears still to be
of order n−2p, but the level is too low. Note also that if α̃ = 0, the solid curve would
be linear with slope 2p. Clearly this is not the case for small n.

These results call for a closer investigation of the extended model and its use in
assessment of the precision of circular systematic sampling.
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