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Abstract

Let X1,X2 denote positive exchangable heavy-tailed random variables with

continuous marginal distribution function F . The asymptotic behavior of the

tail of X1 + X2 is studied in a general copula framework and some bounds

and extremal properties are provided. For more specific assumptions on F

and the underlying dependence structure of X1 and X2, we survey explicit

asymptotic results available in the literature and add several new cases.

Keywords: copula, dependence, mean excess function, regular variation,

subexponential distribution, tail dependence

1 Introduction and background

A qualitative and quantitative understanding of the probability of an overshoot of
a sum of heavy-tailed risks over a large threshold is of major importance in applied
probability and its applications in risk management, such as the determination of
risk measures for given portfolios of risks, evaluation of credit risk etc. Under the
assumption of independence among the risks, the situation is well understood. In
particular, from the very definition of subexponential distributions, given identi-
cal marginal distributions, the maximum among the involved risks determines the
distribution of the sum and, on the other hand, for non-identical marginals the dis-
tribution of the sum is determined by the component with the heaviest tail (see e.g.
Asmussen [3, Ch.IX]).
However, for practical purposes the independence assumption is often too restrictive
and there is a need for an understanding of the sensitivity of the distribution of sums
of risks on the dependence structure between them.
Over the last few years, several results in this direction have been developed. The
purpose of this paper is to analyze the particular setting of two risk components with
identical marginal distribution and symmetric dependence structure, both collect-
ing relevant material from the literature under the same umbrella and adding some
additional explicit results in this direction. Some of the observations are of basic
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nature, but may help to get a clearer intuitive picture of the matter. For clarity
of exposition, we focus on the sum of two exchangeable random variables, although
some of the cited results are available in more general settings.
That is, for positive exchangable random variables X1, X2 with continuous marginal
distribution function F , we are interested in the asymptotic behavior of

P(X1 + X2 > x) (1)

for large x for given (heavy-tailed) F and given type of dependence among X1 and
X2. Particularly interesting questions are when (1) is of the same order 2 P(X1 > x)
as for the independent case, and more generally, when the asymptotics of (1) are of
the order c P(X1 > x) for some c ∈ (0,∞).

If the joint distribution function of X1 and X2 can be bounded below by some
distribution function G(x1, x2) for any x1, x2 ≥ 0, then Denuit et al. [8] gave the
following bounds:

1− inf
y≥0

(F (y) + F (x− y)−G(y, x− y)) ≤ P(X1 + X2 > x) ≤ 1− sup
y≥0

G(y, x− y).

For each x, these bounds are best possible, although neither the lower nor the
upper bound is the distribution tail of a sum of random variables with marginal
distribution F (in particular, the comonotone and counter-monotone copula do in
general not provide bounds for the tail of X1 + X2, contrary to what one might
expect at a first glance, see [8] for details). For positive quadrant dependence
(i.e. P(X1 > x, X2 > x) ≥ P(X1 > x) P(X2 > x) for all x ≥ 0) we have
G(x1, x2) = F (x1)F (x2). On the other hand, without any knowledge of the under-
lying dependence structure, G(x1, x2) has to be replaced by the counter-monotone
copula CW (F (x1), F (x2)) = max{F (x1) + F (x2) − 1, 0}, in which form the above
result is due to Makarov [18]. For an extension to best-possible bounds on the dis-
tribution of general non-decreasing functions of n dependent risks, see for instance
Cossette et al. [7] and Embrechts & Puccetti [10].
However, the above approach is not well-suited for asymptotic considerations and
does not make use of the heavy-tail assumption directly. Moreover, one can get
more explicit results by specifying classes of dependence structures.

Let S and L denote the class of subexponential and long-tailed distributions,
respectively. We will use the notation F ∈ R if F (x) = 1−F (x) is regularly varying
at infinity with some index −α < 0 (F ∈ R−α). Recall that R ⊂ S ⊂ L (see e.g.
Embrechts et al. [9]). The tail probability of weighted sums of independent ran-
dom variables with regularly varying tails, where the weights are dependent random
variables, was studied in Goovaerts et al. [12].

For fixed continuous marginals, a copula representation of (1) may be considered
as a natural tool to analyze the impact of dependence, and we will take up this ap-
proach in what follows. For background reading on copulae and their properties, we
refer to Joe [14] or Nelsen [20]. Intuitively, there is a trade-off between dependence
in the tail and heaviness of F : the heavier F is, the stronger the dependence in the
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tail has to be in order to affect the tail behavior of X1 + X2. In the paper, this
relationship is formalized to some extent.

Recall that the (upper) tail dependence coefficient is defined by

λ := lim
u→1

P(F (X2) > u|F (X1) > u).

If λ = 0, then X1 and X2 are called tail-independent. λ is a frequently used measure
of extremal dependence (for estimation procedures, see Frahm et al. [11]). For a
comparison of various tail dependence measures with a view towards financial time
series, see Malevergne and Sornette [19].
In fact, many available joint tail dependence models have been developed in the
framework of bivariate extreme value theory and are based on max-stability (for
estimation procedures in this context we refer to Abdous et al. [1]). Except for the
independent case, all bivariate extreme value distributions have a λ > 0. On the
other hand, as pointed out in Coles et al. [6], several classical estimation procedures
for λ from a data set might lead to the conclusion λ > 0 where in fact tail inde-
pendence is present (see [6] for details and suggestions to overcome this problem).
For another model of joint tail dependence in extreme value theory that allows for
asymptotic independence, see Ledford & Tawn [17]. An alternative extremal depen-
dence measure feasible for multivariate regularly varying tails is discussed in Resnick
[23]. The approach pursued in this paper is related to, but not contained in the ex-
treme value framework. We are rather interested in the question: Given F , what
types of asymptotic behavior of P(X1 + X2 > x) are possible and what assumptions
on F and the underlying dependence structure admit an explicit description of that
behavior?

Although tail dependence provides a rather restrictive description of the depen-
dence in the tail (for identical marginals, one basically looks at the dependence
behavior along the line X1 = X2 in the tail), due to the exchangability assumption,
λ already gives some crude information about the distribution of the sum. More-
over, as will be shown in Section 3.1.2, for F ∈ R tail independence is a sufficient
condition for insensitivity of tail asymptotics of the sum with respect to dependence,
whereas for lognormal marginals this is not true, as we will show by explicitly con-
structing a counter-example (cf. Section 3.2).
For certain classes of copulae among X1 and X2 (including those of Archimedean
type), Juri & Wüthrich [15, 16] established a distributional limit result of condi-
tional dependence in the tail, which in particular refines the description through the
coefficient λ. For Archimedean copulae this result could be exploited in Wüthrich
[26] and Alink et al. [2] to give sharp asymptotics of the tail of X1 +X2, see Section
3.3. Another related refinement of the coefficient λ based on so-called tail copulae
is discussed in Schmidt & Stadtmüller [25].

In Section 2, some general bounds and a copula representation of P(X1+X2 > x)
are discussed. Section 3 then gives explicit results under more specific assumptions
on F and the underlying dependence structure. This should be viewed as an outline
of several partial answers to the question raised above, setting the stage for further
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research towards a full understanding of the matter, including the extension to sums
of arbitrarily many and non-exchangeable risks.

2 Some general considerations

Let us first collect some preliminary facts:

Lemma 2.1. (a) P(max(X1, X2) > x) ∼ (2− λ)F (x)

(b) lim
x→∞

P(X1 > x|max(X1, X2) > x) = 1
2−λ

Proof. Assertion (a) follows from

P(max(X1, X2) > x) = P(X1 > x) + P(X2 > x)− P(X1 > x, X2 > x)

= 2 F (x)− F (x) P(X2 > x|X1 > x)

and (b) is a direct consequence of (a). 2

The following trivial bounds can be given:

P(max(X1, X2) > x) ≤ P(X1 + X2 > x) ≤ P(max(X1, X2) > x/2),

leading to

2− λ ≤ lim inf
x→∞

P(X1 + X2 > x)

F (x)
and lim sup

x→∞

P(X1 + X2 > x)

F (x/2)
≤ 2− λ. (2)

These bounds are determined by the dependence structure through λ. If there is no
information on λ available, one is left with the ”worst case” bounds

F (x) ≪ P(X1 + X2 > x) ≪ 2F (x/2).

At the same time, the bounds (2) cannot be improved without any further assump-
tions, since for very heavy tails with F (x/2) ∼ F (x) we have

lim
x→∞

P(X1 + X2 > x)

F (x)
= 2− λ,

so that both bounds are attained (for any value of λ). For such heavy tails, the
dependence structure obviously only affects the tail behaviour through the tail de-
pendence coefficient and the sum X1+X2 is essentially determined by the maximum
of the two random variables.
But also for distributions with lighter tails than above, the bounds (2) are sharp:
The upper bound is attained for comonotone dependence and arbitrary marginals
(note that in this case λ = 1), whereas the lower bound is attained for independence
and subexponential marginals.

4



2.1 A copula representation

Proposition 2.2. Let the random variables X1 and X2 be dependent according to
an arbitrary absolutely continuous copula function C(a, b) with partial derivative

ca(a, b) := ∂C(a,b)
∂a

. Then

P(X1 + X2 > x)

F (x)
= 1 +

∫ x

0

1− ca(F (z), F (x− z))

F (x)
F (dz). (3)

Proof. From the identity

P(X1 + X2 > x)

F (x)
= 1 +

F (x)− P(X1 + X2 ≤ x)

F (x)

= 1 +

∫ x

0

1− P(X2 ≤ x− z|X1 = z)

F (x)
F (dz),

relation (3) follows from the copula representation of the conditional distribution
function

P(X2 ≤ x2|X1 = x1) = P(F (X2) ≤ F (x2)|F (X1) = F (x1)) = ca(F (x1), F (x2)).

2

Note that due to exchangibility, we have C(a, b) = C(b, a). Formula (3) can also be
interpreted geometrically:

P(X1 + X2 > x) = P(max(X1, X2) > x) + P(X1 + X2 > x, max(X1, X2) ≤ x), (4)

where the second summand is the integral of the copula density function cab(a, b) =
∂2C(a,b)

∂a∂b
over the shaded area in Figure 1, so that one obtains

P(X1 + X2 > x)

= 1− C(F (x), C(F (x))) +

∫ F (x)

u1=0

∫ F (x)

u2=F (x−F−1(u1))

cab(u1, u2) du2 du1,

= 1−
∫ F (x)

0

ca(u1, F (x− F−1(u1))) du1,

which is equivalent to (3).
Since the first summand in (4) is given by Lemma 2.1(a), it suffices to study the
contribution of the shaded area in Figure 1 for the tail behavior of the sum. Note
also that the lower bound in (2) is sharp whenever the contribution from the shaded
area is asymptotically negligible compared to the probability mass in the two stripes
to the right and above of it. On the other hand, the upper bound in (2) is sharp
whenever the area between the two dashed lines and the lower-bounding curve of
the shaded area in Figure 1 is asymptotically negligible to the contribution of the
domain above that curve. The latter is in particular fulfilled for comonotonicity,
since then there is only probability mass along the diagional. Note that the latter
does not imply that comonotonicity provides an upper bound for the tail of the sum
among all possible dependence structures, see Section 3.1 for a counter-example.
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Figure 1: The domain of the copula density function

Proposition 2.3. Let F ∈ L be absolutely continuous and X1 and X2 be dependent
according to an arbitrary absolutely continuous copula function C(a, b). Then

lim inf
x→∞

P(X1 + X2 > x)

F (x)
≥ 1 + cb(1, 1)− cb(0, 1). (5)

Proof. From (3), Fatou’s lemma and de l’Hopital, we obtain

lim inf
x→∞

P(X1 + X2 > x)

F (x)
≥ 1 +

∫ ∞

0

lim inf
x→∞

1{z≤x} (1− ca (F (z), F (x− z)))

F (x)
F (dz)

= 1 +

∫ ∞

0

cab(F (z), 1) lim inf
x→∞

f(x− z)

f(x)
F (dz).

From the definition of a long-tailed distribution, it immediately follows for its density
f that limx→∞

f(x−z)
f(x)

= 1 for all z > 0, so that we are left with

lim inf
x→∞

P(X1 + X2 > x)

F (x)
≥ 1 +

∫ ∞

0

cab(F (z), 1) F (dz) = 1 + cb(1, 1)− cb(0, 1).

2

From the definition of the tail-dependence coefficient, we have in terms of (ab-
solutely continuous) copulae

λ = lim
u→1

1− 2u + C(u, u)

1− u
= 2− 2 cb(1, 1),

which, together with the trivial lower bound (2) and Proposition 2.3 implies:

Corollary 2.4. Under the assumptions of Proposition 2.3,

lim inf
x→∞

P(X1 + X2 > x)

F (x)
≥ cb(1, 1) + max{cb(1, 1), 1− cb(0, 1)}

= 2−min
{

λ,
λ

2
+ cb(0, 1)

}
.
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Remark 2.1. The minimum in the above expression can be attained for either term
(see for instance Section 3.3), so this lower bound represents an improvement over
the trivial bound 2 − λ. In particular, cb(0, 1) < λ/2 is a sufficient condition for
the fact that the distribution of the sum is asymptotically not determined by the
distribution of the maximum.

If interchanging limits in (3) is justified, then the r.h.s. of (5) even gives the
correct asymptotic behavior of the limit. This is in particular the case for indepen-
dence, where cb(a, b) = a yields the constant 2 on the r.h.s. of (5). The latter gives
rise to a sufficient criterion for interchanging limits in (3):

Proposition 2.5. Let F ∈ L be absolutely continuous and X1 and X2 be dependent
according to an absolutely continuous copula function C(a, b) with

cab(a, 0) > 0 ∀a ∈ [0, 1]. (6)

Then

lim
x→∞

P(X1 + X2 > x)

F (x)
= 1 + cb(1, 1)− cb(0, 1). (7)

Proof. Consider representation (3). For the independent case we obviously have

lim
x→∞

∫ ∞

0

1{z≤x}F (x− z)

F (x)
F (dz) = 1.

Since, for any copula, ca(a, b) is non-decreasing in b for all a ∈ [0, 1], condition (6)
is equivalent to the fact that

ca(a, b) ≥ k b ∀ (a, b) ∈ [0, 1]2

for some k > 0, and the latter implies ca(F (z), F (x− z)) ≥ k F (x− z) for all z ≤ x.
Hence the above integrand for the independent case serves as an upper bound for
which interchanging limits is justified. The assertion then follows by virtue of Pratt’s
Lemma (cf. [21]). 2

Remark 2.2. In situations where condition (6) does not apply, one can try to evaluate
the asymptotic behavior of (3) directly. Example 3.2 in Section 3.3 illustrates that
this program can actually be carried out in some cases.

2.2 A remark on the role of the mean excess function

As already mentioned, the tail dependence coefficient λ is a rather rough measure
of the dependence in the tail. The following result uses a somewhat finer criterion
of conditional exceedances and can be applied for any type of dependence structure
between X1 and X2. Recall the definition of the mean excess function e(x) of F
given by

e(x) = E(X − x |X > x) =

∫ ∞

x

F (u)

F (x)
du

and note that e(x) →∞ for x →∞ for every F ∈ S (see e.g. [9]).
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Proposition 2.6. If the mean-excess function e(x) is self-neglecting, i.e.

lim
x→∞

e(x + a e(x))

e(x)
= 1 ∀ a ≥ 0, (8)

and if
inf
a>0

lim inf
x→∞

P(X2 > a e(x) |X1 > x) > 0, (9)

then

lim inf
x→∞

P(X1 + X2 > x)

F (x)
= ∞.

Proof. The self-neglecting property (8) implies

lim
x→∞

F (x + a e(x))

F (x)
= e−a

(see e.g. [3, p.258]) and we have

F (x)

F (x− a e(x))
∼ F (x + a e(x))

F (x + a e(x)− a e(x + a e(x)))

∼ F (x + a e(x))

F (x)
,

also due to (8). Hence, together with (9),

P(X1 + X2 > x) ≥ P(X1 > x− a e(x), X2 > a e(x))

= P(X1 > x− a e(x)) P(X2 > a e(x) |X1 > x− a e(x))

∼ P(X1 > x− a e(x)) P(X2 > a e(x) |X1 > x)

≥ ε P(X1 > x− a e(x))

∼ ε P(X1 > x) ea

for some ε > 0 and any a > 0. Hence

lim inf
x→∞

P(X1 + X2 > x)

F (x)
≥ ε ea

and the latter is unbounded for a →∞. 2

Remark 2.3. A sufficient condition for (9) to hold is

lim inf
x→∞

P(X2 > e∗(x) |X1 > x) > 0

for any e∗(x) with e∗(x)/e(x) →∞. Condition (8) is satisfied for all standard subex-
ponential distributions with a tail lighter than regularly varying (like the lognormal
and the Weibull distribution).
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3 Some specific cases

3.1 Regularly varying marginal distribution

3.1.1 An upper bound

Proposition 3.1. Let F ∈ R−α with α > 0. Then

lim sup
x→∞

P(X1 + X2 > x)

F (x)
≤






(
λ

1

α+1 + (2− 2λ)
1

α+1

)α+1

, 0 ≤ λ ≤ 2
3

2α(2− λ), 2
3

< λ ≤ 1.
(10)

Proof. For any 0 < δ < 1/2 we have

P(X1 + X2 > x)

≤ P({X1 > (1− δ)x} ∪ {X2 > (1− δ)x} ∪ ({X1 > δx} ∩ {X2 > δx}))
≤ 2F ((1− δ)x) + P(X1 > δx, X2 > δx)− 2P(X1 > (1− δ)x, X2 > (1− δ)x)

so that

lim sup
x→∞

P(X1 + X2 > x)

F (x)

≤ lim sup
x→∞

(
(2− 2λ)

F ((1− δ)x)

F (x)
+

F (δx)

F (x)
P(X2 > δx |X1 > δx)

)

=
2− 2λ

(1− δ)α
+

λ

δα
.

Within the defined range of δ, this upper bound is minimized for

δ∗ =






1

1 +
(

2
λ
− 2

) 1

α+1

, 0 ≤ λ ≤ 2
3

1

2
, 2

3
< λ ≤ 1,

which yields (10). 2

Note that this upper bound is sharp for both independence and comonotone
dependence. In particular, together with assertion (a) of Lemma 2.1, we obtain

Corollary 3.2. If F ∈ R and λ = 0, then P(X1 + X2 > x) ∼ 2F (x).

Thus for regularly varying tails of the marginals, tail independence suffices to
guarantee that the tail of the dependent sum behaves asymptotically as if X1 and
X2 were independent. From the proof of Proposition 3.1, it becomes clear that this
also holds true for any F ∈ S with heavier tail than regularly varying. On the
other hand, for light-tailed distributions tail independence clearly does not imply
such an insensitivity (for instance, consider a bivariate normal distribution, where
the dependence is described by the (tail independent) Gaussian copula; in this case,
the variance of the sum is a function of the correlation coefficient ρ and the value of
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ρ does affect the asymptotic behavior of the sum). This gives rise to the question
of ”how heavy” the marginal tails have to be in order to dominate the ”dependence
effect” in the tail of the sum, given λ = 0. In Section 3.2 it will be shown that
lognormal marginals are not a sufficient condition to that end.

For fixed marginals, it was already pointed out by Denuit et al. [8] that, unlike
the case of stop-loss premiums, the comonotone dependence structure does not al-
ways provide an extremal case for the asymptotic behavior of the sum of the tail.
The following simple example demonstrates this fact:

Example 3.1. Let F ∈ R−α with α > 0. Then for independence between X1 and
X2, by standard subexponential theory, limx→∞ P(X1 + X2 > x)/F (x) = 2. On
the other hand, for comonotone X1 and X2 (which due to identical marginals is
equivalent to X1 = X2 a.s.), we have limx→∞ P(X1 + X2 > x)/F (x) = 2α. Thus, for
α < 1 the comonotone case does not provide an upper bound.

Intuitively, if the marginal distribution tail is heavy enough, then the two random
sources for a possibility of a large sum caused by one of the summands outweighs
the effect of summing two large components from one random source.

3.1.2 Multivariate regularly varying tails

A well-known specific way to couple regularly varying marginals is by multivariate
regular variation. In our bivariate setting it can be defined as follows: The vector
X = (X1, X2) is regularly varying with index −α < 0, if there exists a probability
measure S on S

1 (the unit sphere in R
2 with respect to the Euclidean norm | · |)

such that for all t > 0

P(|X| > tu,X/|X| ∈ ·)
P(|X| > u)

v→ t−α S(·) as u →∞,

where
v→ stands for vague convergence in S

1 (see for instance Resnick [24]). S is
often referred to as the spectral measure of X.
With positive random variables X1, X2, an equivalent formulation is that there exists
a probability measure S(·) on S

1
+ (the restriction of S

1 to the first quadrant) and a
function b(x) →∞ such that

b−1(x) P

(( |X|
x

,
X

|X|

)
∈ ·

)
v→ c να × S (11)

in the space of positive Radon measures on
(
(0,∞] × S

1
+

)
, where c > 0 and

να(t,∞] = t−α, (t > 0, α > 0) (cf. Resnick [23]).
The above implies in particular that on every ray from (0,0) into the positive quad-
rant, we have a regularly varying tail with index −α. Moreover, the tail of X1+X2 is
also regularly varying with the same index (in fact the relationship between regular
variation of X = (X1, X2) and one-dimensional regular variation of linear combina-
tions of its components is much deeper, see Basrak et al. [5]).
So for this specific dependence structure among regularly varying marginals, the
asymptotic behavior of the sum can be given explicitly. To that end, considering in
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(11) the events |X|/x > t for t = 1
cos ϕ+sinϕ

and t = 1
cos ϕ

, with ϕ ∈ [0, π/2] denoting

the angle corresponding to X/|X|, we obtain

b−1(x) P(X1 + X2 > x) → c

∫ π/2

0

(cos ϕ + sin ϕ)α S(dϕ)

(where in an obvious way we have identified S
1
+ with [0, π/2]) and

b−1(x) P(X1 > x) → c

∫ π/2

0

cosα ϕ S(dϕ),

so that

P(X1 + X2 > x) ∼ F (x)

∫ π/2

0
(cos ϕ + sin ϕ)α S(dϕ)
∫ π/2

0
cosα ϕ S(dϕ)

.

Since X1 and X2 are assumed to be exchangable, we have S(dϕ) = S(d(π/2− ϕ))
and hence

P(X1 + X2 > x) ∼ 2 F (x)

∫ π/2

0
(cos ϕ + sin ϕ)α S(dϕ)

∫ π/2

0
(cosα ϕ + sinα ϕ) S(dϕ)

.

In particular, the quotient on the right hand side is larger than 1 for α > 1, smaller
than 1 for α < 1 and equal to 1 for α = 1 (irrespective of the value of λ). The
comonotone case is retrieved when S is concentrated at ϕ = π/4 which indeed gives
P(X1 + X2 > x) ∼ 2αF (x). For asymptotic independence, S is concentrated on
the two axes, so that P(X1 + X2 > x) ∼ 2 F (x). A natural extremal dependence
measure in this setting is

ρ := 1− 1

(π/4)2

∫ π/2

0

(
ϕ− π

4

)2

S(dϕ),

see Resnick [23]. Finally, the tail dependence coefficient λ as defined in Section 1
can in this case be obtained by considering the event |X|/x > t for t = 1

min{cos ϕ,sinϕ}
in (11), yielding

λ = lim
x→∞

P(X1 > x, X2 > x)

P(X1 > x)
=

2
∫ π/4

0
sinα ϕ S(dϕ)

∫ π/4

0
(sinα ϕ + cosα ϕ) S(dϕ)

.

Under further restrictions on the shape of X, the spectral measure S may be ex-
plicitly computable (for instance, in case of elliptical distributions with regularly
varying tail, see Hult & Lindskog [13]; however, the latter class is not relevant for
the present purpose due to our restriction to positive random variables).

Remark 3.1. While in this specific setting, clearly λ is a rougher measure for depen-
dence in the tail than ρ, both measures identify the same distributions as asymp-
totically independent, i.e. ρ = λ = 0. In the latter case there are refinements for
the study of multivariate regularly varying distributions available, cf. Resnick [22].
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3.2 Lognormal marginal distribution

Asmussen & Rojas-Nandayapa [4] considered X1 + · · · + Xn where X1, . . . , Xn are
lognormal with a multivariate Gaussian copula. That is, Xi = eYi where Y1, . . . , Yn

are jointly multivariate Gaussian(µ, Σ) for some mean vector µ and some covariance
matrix Σ; exchangability is not required. Their results state that the tail of the
sum is asymptotically the same as for the independent case Σ = (σ2

i )diag. When
specialized to the present setting, this means:

Proposition 3.3. Let X1, X2 be bivariate normal with the same mean µ, the same
variance σ2 and covariance ρ ∈ [−1, 1). Then

P(X1 + X2 > x) ∼ 2 P(X1 > x) ∼
√

2/π

σ log x
exp

{
−(log x− µ)2/2σ2

}
.

A short heuristical argument (different from the rigorous, more technical proof
of [4]) supporting this result goes as follows. We take µ = 0, σ2 = 1, ρ > 0 for
simplicity. Then we can write

Y1 = U + V1 , Y2 = U + V2 ,

where U, V1, V2 are independent univariate Gaussian with mean zero and variances
a2, b2, b2, respectively, where a2 + b2 = 1, a2 = ρ. Given U = u, X1 and X2 are
independent lognormals with log-variance b2, so by subexponential limit theory

P
(
X1 + X2 > x

∣∣ U = u
)

= P(eV1 + eV2 > xe−u)

∼
√

2/π

b(log x− u)
exp

{
−(log x− u)2/2b2

}
.

We make the guess

P(X1 + X2 > x) ≈ max
u

1

a
√

2π
e−u2/2a2

P
(
X1 + X2 > x

∣∣U = u
)

(12)

and ignore everything not in the exponent and constants. Then we have to find the
u minimizing

u2

2a2
− u log x

b2
+

u2

2b2

which (using a2 + b2 = 1) is easily seen to be u = a2 log x. Substituting back in (12),
we get

P(X1 + X2 > x) ≈ exp
{
−a4 log2 x/2a2 − (1− a2)2 log2 x/2b2

}

= exp
{
− log2 x/2

}
(13)

in agreement with Proposition 3.3 (we have used ≈ to indicate aymptotics at a
rough level, that is, rougher than ∼ or even logarithmic asymptotics as used in large
deviations theory).

Note that the argument contains some information on how X1 + X2 exceeds x:
U must be approximately u = a2 log x = ρ log x and either V1 or V2 but not both

12



large. Translated back to X1, X2, this means that one is larger than x and the other
of order eu = xρ.

The above proposition provides an example of lognormal marginals and tail
independence (through the Gaussian copula), in which the tail asymptotics of the
sum are insensitive to increasing dependence. Following the discussion in Section
3.1, this raises the question whether lognormal marginals are ”heavy enough” so that
tail independence implies this insensitivity in general (as was the case for regularly
varying marginals). The following counter-example shows that this is actually not
the case and, more than that, despite tail independence the tail asymptotics of the
sum may differ substantially from the independent case:

Proposition 3.4. There exists a tail-independent exchangable random vector (X1, X2)
with lognormal marginals and

lim inf
x→∞

P(X1 + X2 > x)

F (x)
= ∞.

Lemma 3.5. There exists a tail-independent exchangable random vector (Y1, Y2)
with standard normal marginals and

∣∣Y1−Y2

∣∣ = c whenever Y1 +Y2 > y0 for a given
c > 0 and y0 > 0.

Proof. For y1 + y2 < 0 simply define the joint distribution as the restriction of the
bivariate standard normal distribution with independent marginals to {y1 + y2 < 0}.
For y1 + y2 > 0, let f(y) denote the density of Y1 +Y2. The problem is to determine
f such that ∫ ∞

0

f(y) dy =
1

2
(14)

and
ϕ(y) = 1

2
f(y − c) + 1

2
f(y + c) , (15)

where ϕ(y) denotes the density of the standard normal distribution. Let us rewrite

f(y) = ϕ(y)e−cyg1(y) (16)

for some function g1(y). Using ϕ(y + d) = ϕ(y)e−d2/2−dy, (15) then becomes

1 = 1
2
e−c2/2

[
ecye−c(y−c)g1(y − c) + e−cye−c(y+c)g1(y + c)

]
,

that is
2e−c2/2 = g1(y − c) + e−2c2 e−2cyg1(y + c) .

Trying the solution g1(y) =
∑∞

n=0 rne
−2ncy, we obtain

2e−c2/2 =

∞∑

n=0

rne−2nc(y−c) + e−2c2 e−2cy

∞∑

n=0

rne−2nc(y+c)

=

∞∑

n=0

rne2nc2e−2ncy + e−2c2
∞∑

n=1

rn−1e
−2(n−1)c2e−2ncy.

13



Identifying coefficients yields r0 = 2e−c2/2 and

rn = −e−4nc2rn−1, n ≥ 1,

leading to
rn = (−1)n2e−2c2(n+1)n−c2/2, n ≥ 0.

Hence

g1(y) = 2e−c2/2

∞∑

n=0

(−1)n e−2c2(n+1)n e−2ncy,

which is a convergent series for every y ≥ 0, since it is alternating with coeffi-
cients decreasing to zero monotonically. Moreover, limy→∞ g1(y) = 2e−c2/2, so that∫∞
0

ϕ(y)e−cyg1(y) dy < ∞ and the integrand can be normalized in such a way that
(14) holds. Finally, from (16) we see that f(y + c) = o (f(y − c)) as y → ∞ and
thus λ = limy→∞ P(Y2 > y|Y1 > y) = 0. 2

Proof of Proposition 3.4: Since the copula of a bivariate distribution stays
invariant under strictly increasing transformations of the marginals and the tail
dependence coefficient is a function of the copula only, Lemma 3.5 can be carried over
to the random vector (X1, X2) = (eY1 , eY2) with lognormal marginals. In particular,
for large x we then either have X1 = X2 ec or X2 = X1 ec. Hence

P(X1 + X2 > x) ∼ P(X1 + X2 > x, X1 = X2 ec) + P(X1 + X2 > x, X2 = X1 ec)

= 2 P (X1 > x/(1 + ec)) .

As for a lognormal random variable X1 = eY1 with Y1 ∼ N(0, 1), the tail is asymp-
totically

F (x) ∼ 1√
2π log x

e− log2 x,

the assertion follows. 2

3.3 Archimedean copulae

Archimedean copulae are of the form

C(a, b) = φ[−1](φ(a) + φ(b)), 0 ≤ a, b ≤ 1, (17)

where the generator φ(t) is a continuous, convex and strictly decreasing function
from [0,1] to [0,∞] such that φ(1) = 0 and φ[−1] denotes the pseudo-inverse of φ
defined by

φ[−1](t) =

{
φ−1(t), 0 ≤ t ≤ φ(0),
0, φ(0) ≤ t ≤ ∞.

If φ(0) = ∞, then φ is called a strict generator.

Proposition 3.6. Let F ∈ S with X1 and X2 being dependent according to an
Archimedean copula with generator φ. Then

lim inf
x→∞

P(X1 + X2 > x)

F (x)
≥ 2− λ

2
(18)
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Proof. Definition (17) implies

cb(a, b) =
φ′(b)

φ′(φ[−1](φ(a) + φ(b)))
.

From Corollary 2.4, we have the lower bound

lim inf
x→∞

P(X1 + X2 > x)

F (x)
≥ 2−min

{
λ,

λ

2
+

∣∣∣∣
φ′(1)

φ′(0)

∣∣∣∣

}

with tail dependence coefficient

λ = 2− 2 lim
u→1

φ′(u)

φ′(φ−1(2φ(u)))
. (19)

Now λ = 0 unless φ′(1) = 0, in which case the minimum is attained for the
second term. 2

Remark 3.2. The above implies that for Archimedean copulae the distribution of
the sum is not determined by the distribution of the maximum, if λ > 0.

Example 3.2. Consider the generator φ(t) = log(1 − θ log t), where θ ∈ (0, 1]
is a dependence parameter (with the limiting case θ = 0 representing indepen-
dence). The copulae in this family are usually referred to as Gumbel-Barnett cop-
ulae, see for instance Nelsen [20, p.97]. From (19) we see that λ = 0 and hence

lim inf P(X1+X2>x)

F (x)
≥ 2. Condition (6) does not apply; however, a direct evaluation

of (3), which in this case translates into

lim
P(X1 + X2 > x)

F (x)
= 1+ lim

x→∞

∫ x

0

1− F (x− z)1−θ log F (z)(1− θ log F (x− z))

F (x)
F (dz),

(20)
shows that indeed the above limit is 2 for any θ ∈ (0, 1] and any F ∈ S:
For that purpose, consider the decomposition of the above integral

∫ x

0

=

∫ c0

0

+

∫ x−c1

c0

+

∫ x

x−c1

= A1(x) + A2(x) + A3(x)

for some constants c0, c1 > 0. For z ∈ [0, c0], we have F (x− z)1−θ log F (z) ∼ 1− (1−
θ log F (z)) F (x− z) and (1− θ log F (x− z)) ∼ (1+ θF (x− z)) as x →∞. Together

with F (x−z)

F (x)
≤ F (x−c0)

F (x)
and F 2(x− z) = o(F (x− z)), this shows that the integrand

in A1(x) is upper-bounded by c2(1− θ − θ log F (z)) for c2 chosen sufficiently large.
Since the latter is integrable w.r.t. F (dz), dominated convergence applies to A1(x).
For z ∈ [c0, x− c1], one has

F (x− z)1−θ log F (z) ≥ e−(1−θ log F (z))F (x−z) ≥ 1− (1− θ log F (z))F (x− z)

and hence

A2(x) ≤ (1− θ log F (c0)) (1− θ log F (c1))

∫ x−c1

c0

F (x− z)

F (x)
F (dz).
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But the latter integral is bounded, and thus interchanging limits is justified by
Pratt’s Lemma. Finally,

A3(x) ≤
∫ x

x−c1

F (dz)

F (x)
=

F (x− c1)− F (x)

F (x)
→ 0.

Hence one can interchange limits in (20), leading to limx→∞
P(X1+X2>x)

F (x)
= 2. 2

Recall the definition of a survival copula

Ĉ(a, b) = a + b− 1 + C(1− a, 1− b), 0 ≤ a, b ≤ 1,

corresponding to the copula C(a, b) (cf. [20]). Ĉ(a, b) is itself a copula and exchanges
the role of upper and lower tails. Representation (3) can then be rewritten in the
form

P(X1 + X2 > x)

F (x)
= 1 +

∫ x

0

ĉa(F (z), F (x− z))

F (x)
F (dz). (21)

For survival copulae of certain Archimedean type, Alink et al. [2] recently derived
the following remarkable explicit result:

Proposition 3.7 (Alink et al. 2004). Let the survival copula be Archimedean with

generator φ̂ regularly varying at 0+ with index −α < 0, and let Yα denote a positive
random variable with density fα(y) = (1 + yα)−1/α−1.

(a) If F ∈ R−β with β > 0, then

P(X1 + X2 > x) ∼
(
1 + E

(
1 + Y −1/β

α

)β−1
)

F (x).

(b) If F ∈ S and for any a ∈ R the relation

lim
x→∞

F (x + a e(x))/F (x) = e−a (22)

holds, where e(x) is the mean excess function corresponding to F , then

P(X1 + X2 > x) ∼ Γ2
(
1 + 1

2α

)

Γ
(
1 + 1

α

) F
(x

2

)
. (23)

Remark 3.3. The assumptions on the generator in the above proposition enforce a
strictly positive tail dependence coefficient. More explicitly,

λ = lim
u→1

Ĉ(1− u, 1− u)

1− u
= 2 lim

u→0
ĉa(u, u) = 2 lim

u→0

φ̂′(u)

φ̂′(φ̂−1(2φ̂(u)))
= 2−1/α. (24)

Remark 3.4. Assumption (22) is equivalent to F ∈ MDA(Gumbel) (i.e. F is in the
maximum domain of attraction of the Gumbel distribution, cf. Embrechts et al. [9]
and also Section 2.2). Hence the conditions in assertion (b) are in particular fulfilled
for the lognormal and the Weibull distribution with parameter τ < 1. The constant
from (23) (which increases to 1 as α →∞) can be compared with the trivial upper
bound from (2) in view of (24), cf. Figure 2. In particular, it becomes visible that,
roughly, for large α (e.g. strong dependence among X1 and X2), the dominating
contribution for the sum to be large comes from both variables being large.
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Figure 2: F ∈ MDA(Gumbel): exact value from (23) vs. trivial upper bound

Remark 3.5. Assertion (a) above can be rewritten as

P(X1 + X2 > x) ∼ 2−β

(
1 +

∫ ∞

0

(
1 + y−1/β

)β−1
(1 + yα)−1−1/α dy

)
F

(x

2

)
,

which is monotonically decreasing in β and converges to (23) for β → ∞ (note

that limβ→∞ 2−β
(
1 + y−1/β

)β−1
= 1

2
√

y
). Figure 3 illustrates that already for values

of β around 10, the asymptotic behavior of the regularly varying case and the one
of the Gumbel case are almost indistinguishable.

0.5 1 1.5 2 2.5 3
Α

0.2

0.4

0.6

0.8

1

Figure 3: Comparison of constants: F ∈ R−α with α = 2 and α = 10 and F ∈
MDA(Gumbel) (from top to bottom)

3.4 Farlie-Gumbel-Morgenstern copula

This family of copulae is defined by

C(a, b) = a b (1 + 3ρS(1− a)(1− b)), −1/3 ≤ ρS ≤ 1/3,

where ρS denotes Spearman’s rank correlation coefficient. Here cab(a, b) = 1 +
3ρS (1− 2a) (1− 2b) and Proposition 2.5 applies for ρS < 1/3 giving P(X1 + X2 >
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x) ∼ 2F (x). In this case, a direct proof for this fact can also be given which
additionally covers the extremal case ρS = 1/3.

Proposition 3.8. Let subexponential random variables X1 and X2 be dependent
according to a Farlie-Gumbel-Morgenstern copula. Then

P(X1 + X2 > x) ∼ 2F (x).

Proof. From ca(a, b) = b + 3ρS b (1− b)(1− 2a), one obtains from Proposition 2.2

P(X1 + X2 > x)

F (x)
= 1 + B1 + B2,

with

B1 =

∫ x

0

F (x− z)

F (x)
F (dz)

and

B2 = −3ρS

∫ x

0

F (x− z) F (x− z) (1− 2F (z))

F (x)
F (dz).

Now, due to subexponentiality,

P(X1 + X2 > x, X1 ≤ A) =

∫ A

0

F (x− z)F (dz) ∼ F (x) F (A)

for any fixed A > 0, and hence

lim
A→∞

lim sup
x→∞

1

F (x)

∫ x

A

F (x− z)F (dz) = 0. (25)

Since the remaining factors in the integral are bounded, we have

B2 = −3ρS lim
A→∞

lim
x→∞

∫ A

0

F (x− z)F (x− z)(1− 2F (z)) F (dz)

F (x)

∼ −3ρS

∫ ∞

0

(1− 2F (z)) F (dz) = −3ρS

(
2

∫ ∞

0

F (z) F (dz)− 1

)
= 0.

At the same time, it also follows from (25) and dominated convergence that for
subexponential marginals we have B1 ∼ 1. 2

Remark 3.6. Note that the Farlie-Gumbel-Morgenstern copula is tail-independent,
providing another example of a dependence structure, for which the first order tail
asymptotics of the sum is insensitive to the degree of dependence irrespective of the
heaviness of the marginal tails, as long as F ∈ S.

3.5 Linear Spearman copula

Finally, we briefly mention the simple case of convex combinations of independence
and comonotone dependence, which admits an explicit solution as well. The positive
linear Spearman copula is defined by

C(a, b) = λ min(a, b) + (1− λ) a b, 0 ≤ a, b ≤ 1,
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where λ ∈ [0, 1]. It is easy to see that λ is indeed the tail dependence coefficient.
Assuming F ∈ S, we get

P(X1 + X2 > x) = λP(X1 + X2 > x|CM) + (1− λ)P(X1 + X2 > x|CI)

∼ λF (x/2) + 2(1− λ)F (x).

For F ∈ R−α with α > 0, we obtain P(X1 + X2 > x) ∼ (2 − 2λ + λ 2α)F (x).
In particular, for α = 1 the tail of the sum is asymptotically equivalent to the
independent sum for all λ ∈ [0, 1] (a comparison with Proposition 3.1 shows that in
this example the upper bound (10) is quite rough for larger values of α). On the
other hand, for distributions with F (x) = o(F (x/2)), P(X1 + X2 > x) ∼ λF (x/2)
scales with the tail dependence coefficient λ.
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