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Abstract

Almost all multi-echelon inventory models assume that demand not satis�ed im-

mediately can be backordered. In some situations this assumption is not realistic. For

example, it may be more representative to model stockouts as lost sales when the re-

tailers are in a competitive market and customers can easily turn to another �rm when

purchasing the good. Assuming lost sales at the retailers, we consider a one warehouse

several retailers inventory system. Using the well-known METRIC-approximation as

a framework, we present a heuristic for �nding cost e�ective base-stock policies. In a

numerical study we �nd that the cost of the policies suggested by the heuristic is on

average 0.40% above the cost of the (S � 1; S)-optimal policy.

Keywords : Inventory, Multi-echelon, Lost sales, METRIC

1 Introduction

Consider a two-echelon inventory system with one central warehouse and an arbitrary

number of retailers. See Figure 1. The retailers face customer demand and replenish their

stocks from the central warehouse. The warehouse, in turn, replenishes its stock from

an outside supplier. Evaluation and optimization of control policies for such inventory

systems have attracted massive interest in the literature. See, for example, Axs�ater [3]

for an overview. In the existing literature dealing with multi-echelon inventory control

the prevalent assumption is that complete backlogging of orders is allowed in case of

stockouts. For example, Axs�ater [4] shows how to exactly evaluate the performance for

di�erent (R; nQ)-polices when the retailers face compound Poisson demand and inventories
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Retailers

Warehouse

Figure 1: Multi-echelon inventory system

are continuously reviewed. Cachon [5] gives an exact method for the periodic review case

with identical retailers.

In some situations the assumption of complete backlogging may not be so realistic.

For example, it may be more representative to model stockouts as lost sales when the

retailers are in a competitive market and customers can easily turn to another �rm when

purchasing the good. For some reason the research dealing with multi-echelon inventory

models has focused mainly on the backorder case and the number of models dealing with

lost sales is rather limited. Anupindi and Bassok [1] consider a periodic review two-

echelon inventory system where a part of the unsatis�ed sales at the retailers are lost.

Since the transportation time between the manufacturer and the retailers is zero, the

optimal order policy at each retailer is a base-stock policy. The manufacturer carries

linear production cost and no holding cost. The retailers can agree to centralize their

stocks and the problem considered is whether or not this will lead to an increase in total

expected sales at the manufacturer. Nahmias and Smith [8] also consider lost sales in a

multi-echelon environment in a paper more closely related to this paper. However, their

model di�ers from ours in several important aspects. First, they consider periodic review

batch order policies. The model is more general since they deal with partial lost sales.

This means that, with probability u, demand not satis�ed immediately, is lost, and with

probability 1 � u, it is satis�ed later by a special order. Moreover, for the model to be

tractable they assume instantaneous deliveries from the warehouse to the retailers.

For single-echelon inventory models the lost sales assumption is more common. The

exact cost for a single level inventory system facing Poisson demand and �xed leadtimes

was �rst given by Hadley and Whitin [6]. Smith [11] demonstrates how to evaluate and

�nd optimal (S� 1; S)-policies for an inventory system with zero replenishment costs and

generally distributed stochastic leadtimes. Recently Hill [7] showed that for the lost sales

case the (S � 1; S)-policy is not necessarily optimal.
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In this paper we analyze a model for a one warehouse, multiple retailer inventory

system. Demand occurs only at the retailers and follows independent Poisson processes.

All leadtimes are assumed to be constant. All installations use (S � 1; S)-policies with

continuous review. It is assumed that backlogging of customer demand is not allowed.

The analysis departs in one of the most widely known multi-echelon inventory models, the

METRIC-model developed by Sherbrooke [10]. In its original setting, it is assumed that

stockouts at the retailers are completely backlogged. We demonstrate how the METRIC-

model can be modi�ed to handle the lost sales case. Our approach gives an approximate

model which is quite simple and e�cient from a computational point of view. Simulation

experiments indicate that the performance is very good.

The outline of this paper is as follows: In Section 2 we give a detailed problem formu-

lation and pose all assumptions. Section 3 gives the solution procedure. The numerical

results are given in Section 4, and in Section 5 we give some conclusions and point out

some possible directions for future research.

2 Problem Formulation

The inventory system under consideration consists of one central warehouse and an arbi-

trary number of retailers. The retailers face Poisson customer demand. No backlogging is

allowed at the retailers. Consequently, the customers that arrive to a retailer that is out

of stock will become lost sales for the retailer. When stockouts occur at the warehouse,

all demands from the retailers are fully backlogged and the backorders are �lled according

to a FIFO-policy. The transportation time between the warehouse and a given retailer is

assumed to be constant as well as the transportation time from the external supplier to the

warehouse. The cost of a replenishment is assumed to be zero or negligible compared to

the holding and stockout costs. The external supplier is assumed to have in�nite capacity,

which means that the replenishment leadtime for the central warehouse is constant. All

installations use (S � 1; S)-policies with continuous review. Units held in stock both at

the warehouse and at the retailers incur holding costs per unit and time unit. Moreover,

a �xed penalty cost per lost customer is incurred at the retailers. In this paper we present

a model for the considered inventory system, which can be used to evaluate the long-run

average cost for di�erent policies within the class of (S � 1; S)-policies. The objective is

to �nd the policy that minimizes the long-run average cost for the inventory system. Let

us introduce the following notation:

N = the number of retailers,

�i = demand intensity at retailer i, i = 1; 2; : : : ; N ,

Li = transportation time for the deliveries from the warehouse to retailer i, i = 1; 2; : : : ; N ,

L0 =transportation time for the deliveries from the external supplier to the warehouse,
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S0 = order-up-to level at the warehouse,

Si = order-up-to level at retailer i, i = 1; 2; : : : ; N ,

h0 = holding cost rate at the warehouse,

hi = holding cost rate at retailer i, i = 1; 2; : : : ; N ,

�i = penalty cost for a lost sale at retailer i, i = 1; 2; : : : ; N .

We want to determine the total cost for the inventory system in steady state. De�ne

TC = total cost for the inventory system per time unit in steady state,

C0 = cost per time unit for the warehouse in steady state,

Ci = cost per time unit for retailer i in steady state, i = 1; 2; : : : ; N .

Obviously,

TC = C0 +
NX
i=1

Ci: (1)

Our objective is to determine a control policy, S0; S1; ::; SN that minimizes the total cost,

TC.

3 Solution Procedure

In this section we �rst demonstrate how the total cost for di�erent control policies can

be evaluated. For the backorder case the exact cost of the system can be derived by

observing that any unit ordered by retailer i is used to ful�ll the Sith demand. The cost

can then be derived by conditioning on the arrival time of the Sith demand (which is

Erlang distributed) and the arrival of the ordered unit (see Axs�ater [3]). In a lost sales

environment the corresponding observation is that any unit ordered by retailer i is used

to ful�ll the Si + Xith demand, where Xi is a random variable denoting the number of

lost sales incurred at the retailer during the replenishment lead time. Xi is obviously very

hard to characterize and we have therefore chosen to focus on a heuristic rather than on

the exact solution.

The analysis has many similarities with the analysis in Sherbrooke [10]. However, our

assumption of lost sales at the retailers destroys some of the nice properties valid for the

backorder model. The analysis of the warehouse, e.g., becomes more complex for the lost

sales case. In the backorder case, all customers arriving at the retailers generate demands

at the warehouse immediately at the arrival epoch, since all retailers use continuous review

(S � 1; S)-policies. Consequently, the warehouse faces a Poisson process with intensity

�0 = �1 + �2 + � � �+ �N . For the lost sales case this is not true. When backordering is

not allowed, customer demands can be lost due to stockouts at the retailers. Therefore

the demand at the warehouse is not Poisson process anymore.
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Another important di�erence compared with the backorder case is that the order-up-

to level Si at retailer i, a�ects the costs at all retailers and at the warehouse. In the

backorder case Si only a�ects the local cost at retailer i, since the warehouse demand

process is una�ected by the order-up-to levels at the retailers. For the lost sales case the

order-up-to level a�ects the number of lost sales and consequently, the demand process at

the warehouse is not independent of the policies at the retailers. Therefore the order-up-to

level at a certain retailer a�ects the costs at all installations in the inventory system.

We will �rst show how to evaluate the costs at the retailers given a certain replenish-

ment leadtime provided by the warehouse. We then show how to calculate the cost at the

warehouse given the demand intensity from the retailers. Finally we introduce an iterative

procedure from which we obtain the total cost for the inventory system.

3.1 Approximate retailer cost

As Sherbrooke [10] we use a queueing system analogy when evaluating the costs for the

retailers. For a retailer where backlogging is allowed, the number of outstanding orders

towards the central warehouse is the same as the occupancy level in an M=G=1 queue.

Recall that the customer demand is Poisson and the replenishment leadtimes are stochas-

tic, since orders can be delayed due to stockouts at the central warehouse. For this type

of queue a famous theorem by Palm [9] states that the steady state occupancy level is

Poisson distributed with mean �L, where � is the arrival rate and L is the mean service

time. Palm's theorem holds for i.i.d. service times. The stochastic leadtimes in our case

are evidently not independent, but if we disregard this correlation we can approximate

the number of outstanding orders with a Poisson distribution. This is the idea behind the

METRIC-approximation.

When demand is lost, the queueing system of interest is an M=G=S=S queue, with

S servers, each with generally distributed service times and no queueing allowed. If the

service times are independent random variables with mean �L, Erlang's loss formula states

the steady-state distribution for the occupancy level as

qS(j) =
(��L)j=j!PS
n=0(�

�L)n=n!
for 0 � j � S

where qS(j) = the probability that j servers (out of S) are occupied in steady state. Fol-

lowing METRIC we approximate the number of outstanding orders with this distribution.

Suppose that the mean leadtime for retailer i is �Li and let qSi

i (j) be the steady state

probability of j outstanding orders given a desired base-stock level Si. The expected

number of lost sales per time unit is clearly �iq
Si

i (Si) and the expected number of units
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in stock is

SiX
j=0

(Si � j)qSi

i (j) = Si � [1� qSi

i (Si)]�i �Li: (2)

The total relevant cost for retailer i is therefore

Ci(Si; �Li) = �i�iq
Si

i (Si) + hi

�
Si � [1� qSi

i (Si)]�i �Li

�
and the rate of demand from retailer i which is not lost is (1� qSi

i (Si))�i.

The derivation of the exact cost of a (S� 1; S) lost sales single stage inventory system

with generally distributed leadtimes was �rst presented by Smith [11]. He also proves that

Ci(Si; �Li) is convex in Si for �xed �Li, which means that the optimal value can be found

by a local search routine.

3.2 Approximate warehouse cost

In the backorder case the demand process at the warehouse is a Poisson process. In the

lost sales case this is not the case. If, for example, the base-stock level at a retailer is one,

the smallest interval between two successive demands from that retailer will be the retailer

leadtime. We will ignore this and approximate the demand process at the warehouse with

a Poisson process with mean �. � depends on how much demand is lost at the retailers

and is determined as

� =
NX
i=1

�i(1� qSi

i (Si)) (3)

Since we have a �xed deterministic leadtime L0, we can �nd the average holding cost

incurred at the warehouse as a function of � and S0.

C0(S0;�) = h0

S0X
j=0

(S0 � j)
(�L0)

j

j!
exp(��L0)

We can also derive the mean delay due to stockouts at the warehouse by �rst calculating

B0, the average number of backorders at the warehouse.

B0 =
1X

j=S0+1

(j � S0)
(�L0)

j

j!
exp(��L0); (4)

We then apply Little's formula to obtain the average delivery delay, B0=�. The mean

leadtime for retailer i is then

�Li = Li + B0=� (5)

Finally, we obtain the total cost from (1).
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3.3 Overall solution procedure

We can now establish the solution procedure. The procedure enumerates over S0. It can

be shown that for a cost minimizing solution, S0 can not be negative. See, for example,

Axs�ater [2]. Consequently our procedure starts with S0=0. Moreover, S0 is bounded from

above by an abortion criteria. We need the following new notation:

Cmin
i = minSi

Ci(Si; Li) = minimum cost per time unit for retailer i in steady state

when the leadtime, �Li, is equal to the transportation time, Li, i = 1; 2; : : : ; N .

Si(k) = order-up-to level at retailer i in iteration k.

TC�(S0) = minimum value of TC given a �xed value of S0.

Let us �rst consider two simple lemmas. The proofs can be found in the Appendix.

The �rst lemma gives a lower bound for the retailer costs, and the second establishes two

important properties for the warehouse cost.

Lemma 1. Cmin
i is a lower bound for the retailer cost, Ci(Si; �Li) for all Si and any

�Li > Li.

Lemma 2. C0(S0; �0) � C0(S0;�), for all S0 and all � � �0. Moreover, C0(S0; �0) is

convex in S0.

To construct an abortion criteria for the procedure, consider the cost function

TClb(S0) = C0(S0; �0) +
NX
i=0

Cmin
i :

By Lemma 1 and Lemma 2, TClb(S0) is a lower bound for the cost function, TC�(S0).

Moreover, since the cost function TClb(S0) is convex in S0 the search over S0 can be

aborted when S0 satis�es

min
x�S0

TC�(x) � TClb(S0):

The abortion criteria is illustrated in Figure 2.
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TC�(S0)

TClb(S0)

minx�S0 TC
�(x)

S0Smax
0

Figure 2: Illustration of the abortion criteria. The search for the optimal S0 is aborted at

Smax
0 .

The solution procedure can now be established as:

STEP 0: Set S0 = 0 and TCmin =1.

STEP 1: Set k = 0 and � = �0.

STEP 2: For each i = 1; 2; : : : ; N calculate �Li by (4) and (5)

Let z� = minS Ci(S; �Li) and set

Si(k) = minfSjCi(S; �Li) = z�g

STEP 3: If k > 0 and Si(k) = Si(k � 1) for all i = 1; 2; : : : ; N then goto STEP 4,

else calculate � by (3), set k := k + 1 and goto STEP 2.

STEP 4: Set TC�(S0) = C0(S0;�)+
Pn

i=1Ci(Si(k); �Li).

If TC�(S0) < TCmin then set TCmin = TC�(S0)

and let Sopt
0 = S0 and Sopt

i = Si(k) for i = 1; 2; : : : ; N .

If TCmin < TClb(S0) then STOP, else set S0 = S0 + 1 and goto STEP 1.

4 Numerical Results

In order to examine the e�ectiveness of the presented methodology we have performed a

small numerical study. In total we consider 36 di�erent test problems with �ve identical

retailers. For each test problem we �nd the best order-up-to levels according to our

method. We also obtain the approximate total holding and stock out costs for the inventory

system. The accuracy of these results are then evaluated by simulation. Each simulation

consists of 10 runs, each with a run length of 100 000 time units. The result is a con�dence

interval for the exact cost. We express the con�dence limits on a 95% signi�cance level.

A comparison between the total cost given by our method and the total cost for the

simulation gives an indication of how accurate our method is when estimating the total

cost for the inventory system.

We also use simulation to determine the optimal policy for the system. The cost for

this policy can then be compared with the cost for the policy determined by our technique,
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to obtain an estimate for the performance of the method when optimizing the ordering

policies. The policy that we report as the optimal policy is the policy with the lowest

average cost. However, this policy does not necessarily dominate all the other policies

when taking con�dence intervals into consideration. Moreover, we only search within

policies where the order-up-to levels are identical for the retailers.

The problem data and results can be found in Table 1. We only report the optimal

policy when it is di�erent from the one obtained from our algorithm. From Table 1 we can

see that our method performs rather well for all the considered problems. It seems that we

mostly tend to underestimate the total cost, especially in the problems with high stockout

costs at the retailers. This is due to the METRIC-approximation, where the stochastic

leadtimes are replaced by their averages when evaluating the costs for the retailers. On

average the method underestimates the costs with 1.1 %.

In 13 problems we can observe (on a signi�cance level of 95%) that the method fails

to �nd the optimal policy. In 9 more problems the policy suggested by our method does

not have the lowest average cost according to the simulation runs. However, in these cases

the deviations are not signi�cant on a 95% con�dence level. In comparison to the optimal

policies obtained by simulation, the increase in costs by using the policies obtained by our

method is only 0.40 %, on average. In 16 of the 22 problems where we fail to �nd the true

optimal policy, the method merely underestimates the order-up-to level at the warehouse

by a single unit. In one problem the warehouse order-up-to level is underestimated by two

units. In the other 5 problems where the optimal policy is not found, the method tends to

allocate more stock to the retailers and less stock to the warehouse than what is optimal

from a cost perspective.

Finally it seems that our methodology performs better if the warehouse leadtime is

small compared to the transportation time from the warehouse to the retailers. In the 12

problem instances with Li = 1:5 the average cost increase, SC/CC is only 0.07%, whereas

in the problems with Li = 0:5, the corresponding �gure is considerable higher, 0.67%.

This behavior is due to the METRIC-approximation, where the stochastic replenishment

leadtime facing a retailer is replaced by its mean value. If the constant transportation

time to the retailers is large compared to the warehouse leadtime, the stochastic delivery

delays tend to have less relative variation and consequently the impact of the METRIC-

approximation will be smaller.

5 Conclusions and directions for future research

This paper presents a heuristic method for evaluation and optimization of (S�1; S)-policies

for a one warehouse, multiple retailers inventory system. The evaluation technique uses

the well-known METRIC-approximation as a framework. From a computational point of

9



view the presented technique is very e�cient and simple. Numerical results also indicate

that the performance is quite good.

Up to our knowledge, no paper is yet published, which deals with lost sales in a contin-

uous review multi-echelon inventory setting. Moreover, the original backorder METRIC-

model [10] is one of the most widely used multi-echelon inventory models. Our lost sales

generalization makes the policy evaluation a bit more complex, since we have to use an

iterative procedure to obtain the cost. Still, the model is rather simple and easy to im-

plement. Moreover, in many practical situations lost sales is a reasonable way to model

stockouts. Therefore our technique is also relevant for practitioners.

In a research perspective our model can form a framework in which di�erent gener-

alizations can be considered as options for future research. For example, batch ordering

policies and more general demand processes may be analyzed, still using the ideas pre-

sented in this paper. Generalizations to periodic review policies is also important. The

derivation of an exact evaluation of costs seems to be a very di�cult problem to solve.

This is a real challenge for future research.

Appendix

Proof for Lemma 1

We need to show that

min
Si

Ci(Si; Li) � min
Si

Ci(Si; �Li) for Li � �Li: (6)

Let li be an arbitrarily chosen leadtime, where Li � li � �Li. Consider the cost Ci(Si; li),

where Si is set to its optimal value for each li. Obviously, Ci(Si; li) � Ci(Si � 1; li) for

each li such that Li � li � �Li. Start with li = �Li and let li be continuously lowered

until we reach li=Li, while Si is set to its optimal value for each li. Since Ci(Si; li) is

a continuous function of li for �xed Si, it also is a continuous function of li when Si is

optimally chosen. Moreover, the fact that Si minimizes the cost Ci(Si; li), implies that

Ci(Si; li) � Ci(Si � 1; li). Consequently, (6) follows if

Ci(Si; li) � Ci(Si � 1; li))
@Ci(Si; li)

@li
� 0 for Li � li � �Li: (7)

For notational reasons we omit the index i from all variables. It can be shown that

@C(S; l)

@l
= �h�(1� qS(S)) + �(h�l+ ��)(qS(S � 1)� qS(S) + qS(S)2): (8)

Moreover, C(S; l)� C(S � 1; l) implies that

h

h�l+ ��
� qS�1(S � 1)� qS(S) (9)
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Let

A =
1

�(h�l+ ��)

@Ci(S; l)

@l
: (10)

From (8) we have that

A =
h

h�l + ��

�
qS(S)� 1

�
+ qS(S � 1)� qS(S) + qS(S)2): (11)

(9) and (11) now give

A � (qS�1(S � 1)� qS(S))(qS(S)� 1) + qS(S � 1)� qS(S) +
�
qS(S)

�2
= qS�1(S � 1)qS(S)� qS�1(S � 1) + qS(S � 1)

= qS�1(S � 1)qS(S)� (qS�1(S � 1)qS(S))

= 0:

Note that qS(S) � 1. Consequently, A � 0 and therefore (7) holds and the proof is

complete.

Proof for Lemma 2

Since � � �0, we only need to show that @C0(S0;�)
@� � 0. The convexity of C0(S0; �0) in S0

follows, for example, from Axs�ater [3].

@C0(S0;�)

@�
= �h0L0 exp(��L0)

0
@S0 + S0X

j=1

(S0 � j) �

 
(�L0)j

j!
�
(�L0)(j�1)

(j � 1)!

!1A

= �h0L0 exp(��L0)

S0�1X
j=0

(�L0)
j

j!

� 0:
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�i �i Li S Calc cost Sim cost Spread Opt pol Cost Spread Cost dev

1 1 5 0.5 4,2 10.82 10.74 0.01

2 1 5 1.0 2,3 11.99 12.03 0.02

3 1 5 1.5 3,3 12.51 12.46 0.01

4 1 25 0.5 5,3 15.86 16.15 0.03

5 1 25 1.0 4,4 18.18 18.43 0.04 5,4 18.41 0.03 0.1%

6 1 25 1.5 3,5 19.94 20.16 0.06 4,5 20.12 0.04 0.2%

7 1 125 0.5 5,4 20.27 21.27 0.05 6,4 20.90 0.06 1.7%

8 1 125 1.0 5,5 23.64 24.16 0.06 6,5 24.09 0.06 0.3%

9 1 125 1.5 5,6 26.15 26.45 0.08

10 2 5 0.5 8,3 15.43 15.41 0.02 9,3 15.33 0.02 0.5%

11 2 5 1.0 6,5 17.11 17.27 0.02 8,4 17.16 0.02 0.6%

12 2 5 1.5 5,6 18.23 18.34 0.02 7,5 18.29 0.03 0.3%

13 2 25 0.5 8,5 21.56 22.52 0.04 9,5 22.30 0.04 1.0%

14 2 25 1.0 9,6 24.96 25.35 0.06 10,6 25.33 0.05 0.1%

15 2 25 1.5 7,8 27.49 27.92 0.08 8,9 27.90 0.04 0.1%

16 2 125 0.5 9,6 26.82 28.56 0.12 10,6 28.15 0.07 1.5%

17 2 125 1.0 9,8 31.84 32.75 0.08

18 2 125 1.5 10,9 35.49 36.07 0.11

19 1 5 0.5 4,1 16.96 16.41 0.02

20 1 5 1.0 2,2 17.55 17.51 0.02

21 1 5 1.5 2,2 18.14 18.04 0.03

22 1 25 0.5 4,3 27.50 27.99 0.03 5,3 27.96 0.02 0.1%

23 1 25 1.0 5,3 30.81 30.72 0.06 6,3 30.65 0.05 0.2%

24 1 25 1.5 4,4 33.07 33.11 0.05

25 1 125 0.5 7,3 36.86 37.21 0.12 8,3 36.92 0.08 0.8%

26 1 125 1.0 4,5 42.75 43.64 0.14 7,4 43.19 0.17 1.1%

27 1 125 1.5 6,5 46.83 46.92 0.10

28 2 5 0.5 6,3 24.21 24.42 0.02 8,2 24.14 0.03 1.2%

29 2 5 1.0 5,4 26.48 26.60 0.02 7,3 26.18 0.03 1.6%

30 2 5 1.5 6,4 27.61 27.43 0.02

31 2 25 0.5 10,4 36.44 37.10 0.06 11,4 36.95 0.05 0.4%

32 2 25 1.0 10,5 42.85 42.91 0.12 11,5 42.85 0.07 0.1%

33 2 25 1.5 8,7 46.74 47.11 0.08

34 2 125 0.5 11,5 47.24 48.92 0.08 13,5 48.21 0.12 1.5%

35 2 125 1.0 10,7 56.53 57.73 0.16 11,7 57.37 0.11 0.6%

36 2 125 1.5 11,8 63.77 64.19 0.19 12.8 64.05 0.10 0.2%

Table 1: Numerical results. The optimal policy is only reported when it is di�erent than

the policy suggested by our algorithm. 13


