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Abstract

The concept of ambit processes is outlined. Such stochastic processes are

of interest in spatio-temporal modelling, and they play a central role in recent

studies of velocity fields in turbulence and of the growth of cancer tumours.

These studies are reviewed, and some open problems are outlined.
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1 Introduction

The concept of ambit processes discussed in this paper arose out of a current study
(Barndorff-Nielsen and Schmiegel (2005), Barndorff-Nielsen et al (2003), Barndorff-
Nielsen and Schmiegel (2004), Schmiegel et al (2004) and Schmiegel (2005a)) the
ultimate aim of which is to build a realistic stochastic process model of 3-dimensional
turbulent velocity fields, in the spirit of Kolmogorov’s phenomenological theory
(Frisch (1995)) – and beyond. Besides applications to turbulence, the concept has
also been used in modelling the growth of cancer tumours (Schmiegel (2005b)), and
it should be of interest to other fields as well.

Section 2 outlines the idea of ambit processes and lists a number of basic ques-
tions that need to be resolved in order to have a fullfledged stochastic analysis theory
for such processes. In some important special settings, relevant for the turbulence
context, the questions can be answered positively. Section 3 provides some back-
ground on the physics of turbulence while Section 4 discusses the phenomenology of
turbulence. We then, in Section 5, turn to the formulation of a stochastic modelling
framework for the velocity and intermittency fields, using the idea of ambit sets,
and we outline how it is possible within this framework to capture main features of
the phenomenological theory. Applications to cancer growth are briefly indicated in
Section 6. Section 7 concludes.
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2 Ambit processes

In this Section we consider a rather general type of spatio-temporal processes that we
shall refer to as ambit processes. We do not, at present, have a strict mathematical
specification of what should be called an ambit process, but processes of the kind
we have in mind would seem to be of interest in a variety of situations, and have
in fact been applied not only in turbulence (cf. Section 5) but also for modelling
cancer growth (see Section 6).

2.1 On spatio-temporal processes

Let t denote time and σ a point in some space S. To each point (t, σ) ∈ R×S let
there be associated a random variable Yt (σ). Let ω (w) = (t (w) , σ (w)), where -
∞ < w < ∞, be a smooth curve in space-time, such that w → t (w) is nondecreasing,
and let Xw = Yt(w) (σ (w)). We assume that X = {Xw}w∈R

is welldefined as a
stochastic process. Unless otherwise specified we let S =R.

A key question is when the quadratic variation [X] of X is well-defined in the
sense of being a stochastic process such that

[X]w = p− lim
∑

(

Xwj
−Xwj−1

)2
(1)

for any sequence of subdivisions 0 = w0 < w1 < · · · < wj = w with max(wj −
wj−1) → 0. Intimately connected to this is the question of whether it is possible to
define stochastic differentials dXw and an associated symbolic calculus under which
(dXw)2 = d [X]w.

In settings such that Xw = Yt(w) (σ (w)) is a semimartingale or a linear combi-
nation of semimartingales the existence of [X] and of such differentials is of course
ensured.

2.2 Ambit sets and Lévy bases

Turning now to a more specific setting, suppose that to each point (t, σ) is associated
a set At (σ), which we refer to as an ambit set. We take At (σ) to be of the form

At (σ) =
{

(s, ρ) : s ≤ t, σ − c−t (s; σ) ≤ ρ ≤ σ + c+
t (s; σ)

}

(2)

for some nonnegative functions c−t (s; σ) and c+
t (s; σ).

A particularly simple case is that of a homogeneous family of ambit sets where

At (σ) = {(s, ρ) : (s− t, ρ− σ) ∈ A0(0)} (3)

in which case c−t (s; σ) and c+
t (s; σ) are independent of σ and of the form

c±t (s; σ) = c±t−s. (4)

We write the cumulant function of an arbitrary random variable X as

C{ζ ‡X} = log E
{

eiζX
}

(5)
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and denote the m-th order cumulant of X by cm(X), i.e.

cm(X) = im
dmC{ζ ‡X}

dζm
. (6)

Let L be a Lévy basis, i.e. an independently scattered random measure whose
values are infinitely divisible. Then L has a Lévy-Khintchine representation

C{ζ ‡ L(B)} = iζa(B)− 1

2
ζ2b(B) +

∫

R

{eiζx − 1− iζx1[−1,1](x)}µ(dx, B) (7)

where a is a signed measure, b is a measure, and µ(dx, B) is (for fixed B) a Lévy
measure on R and a measure for fixed dx. Heuristically it is useful to express (7) in
infinitesimal form as

C{ζ ‡ L(dz)} = ia(dz) − 1

2
ζ2b(dz) +

∫

R

{

eiζx − 1− iζx1[−1,1](x)
}

µ(dx; dz). (8)

If the Lévy basis L is such that L(B) is Poisson distributed for all B then L is a
Poisson basis. In this case the generalised Lévy measure is of the form µ(dx, B) =
Leb(B)δ1(dx) where Leb denotes Lebesgue measure and δ1 is the Dirac measure
at 1.

The Lévy basis is said to be factorisable provided µ factorises as

µ(dx, dz) = ν (dx) c (dz) (9)

for some σ-finite measure c (dz) and where ν is a Lévy measure on R. If, moreover,
a, b and c are proportional to Lebesgue measure then L is called homogeneous.

The Brownian sheet is the homogeneous Lévy basis on R
2 with a(dz) = 0,

b (dz) = Leb (dz) and µ(dx; dz) = 0 in (8).

Remark 1. Integration of deterministic functions with respect to Lévy bases is dis-
cussed in detail in Rajput and Rosinski (1989). Here we shall need more general
types of integration. However, for the time being we shall argue under the presump-
tion that all the integrals and differentials, and the manipulations with these, are
rigourously justifiable, taking up the questions of rigour briefly in Section 2.5.

2.3 Ambit processes

Let {Yt (σ)}t∈R
be a spatio-temporal stochastic process of the form

Yt (σ) = µ +

∫

At(σ)

g (t− s, ρ− σ) Is (σ)L (dsdρ) +

∫

Dt(σ)

h (t− s, ρ− σ)Js (σ) dsdρ

(10)
where µ is a constant, {At(σ) : (t, σ) ∈ R

2} and {Dt(σ) : (t, σ) ∈ R
2} are families

of ambit sets, g and h are damping functions (ensuring the convergence of the
integrals), Is (σ) and Js (σ) are random fields on R

2, and L is a Lévy basis on R
2.

A related type of process {Yt (σ)}t≥0 defines

Yt (σ) = Y0 (σ) +

∫

A+
t (σ)

g (t− s, ρ− σ) Is (σ) L (dsdρ)

+

∫

D+
t (σ)

h (t− s, ρ− σ)Js (σ) dsdρ (11)
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where A+
t (σ) = {(s, ρ) ∈ At(σ) : t ≥ 0} and D+

t (σ) = {(s, ρ) ∈ Dt(σ) : t ≥ 0}. We
refer to processes of these kinds as ambit processes, and we say that such a process
is of Brownian type if L is the Brownian sheet BS and of shot noise type in case L
is a pure jump basis (i.e. a = b = 0 in (7)).

Now suppose that L is Brownian sheet and, for simplicity, that the ambit sets
are homogeneous (cf. (3)-(4)) and At(σ) = Dt(σ). Then (10) may be written

Yt (σ) = µ +

∫ t

−∞

∫ σ+c+t−s

σ−c−t−s

g (t− s, ρ− σ) Is (σ)BS (dsdρ)

+

∫ t

−∞

∫ σ+c+t−s

σ−c−t−s

h (t− s, ρ− σ) Js (σ) dsdρ. (12)

In particular, if
c±t−s = c± (t− s) (13)

for some nonnegative constants c− and c+ (a choice motivated in the turbulence
context, see Section 5.1) then

Yt (σ) = µ +

∫ t

−∞

∫ σ+c+(t−s)

σ−c−(t−s)

g (t− s, ρ− σ) Is (ρ) BS (dsdρ)

+

∫ t

−∞

∫ σ+c+(t−s)

σ−c−(t−s)

h (t− s, ρ− σ) Js (ρ) dsdρ. (14)

Note that if Is (ρ) and Js (ρ) are stationary processes in s for fixed ρ then Yt (σ) is
a stationary process in t for fixed σ.

2.4 Lagrangian dynamics

We proceed to discuss associated questions of dynamics, for processes Xw =
Yt(w)(σ(w)), as introduced in Section 2.1.

Figure 1 illustrates the dynamics of Xw along the curve (t(w), σ(w)) for arbi-
trary ambit sets At(w)(σ(w)). We assume that J = I2 (this setting is sufficient for
the applications to turbulence that will be reviewed later). Further, for notational
simplicity we let µ = 0 and we restrict consideration to the specification (14).

The process Xw may be written as

Xw =

∫ t

−∞

∫ σ+c+(t−s)

−∞

g (t− s, ρ− σ) Is (ρ) BS (dsdρ)

+

∫ t

−∞

∫ σ+c+(t−s)

−∞

h (t− s, ρ− σ)Js (ρ) dsdρ

−
∫ t

−∞

∫ σ−c−(t−s)

−∞

g (t− s, ρ− σ) Is (ρ) BS (dsdρ)

−
∫ t

−∞

∫ σ−c−(t−s)

−∞

h (t− s, ρ− σ)Js (ρ) dsdρ (15)
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with (t, σ) = (t (w) , σ (w)). Continuing to argue formally, and suppressing in the
notation the dependence of t and σ on w, we find

dXw =

∫ t

−∞

g
(

t− s, c+ (t− s)
)

Is

(

σ + c+ (t− s)
)

BS
(

dsdw

(

σ + c+ (t− s)
))

−
∫ t

−∞

g
(

t− s,−c− (t− s)
)

Is

(

σ − c− (t− s)
)

BS
(

dsdw

(

σ − c− (t− s)
))

+ dRw

where

dRw

dw
=

∫ t

−∞

∫ σ+c+(t−s)

σ−c−(t−s)

dwg (t− s, ρ− σ) Is (ρ) BS (dsdρ)

+

∫ t

−∞

∫ σ+c+(t−s)

σ−c−(t−s)

dwh (t− s, ρ− σ)Js (ρ) dsdρ

+

∫ t

−∞

h
(

t− s, σ + c+ (t− s)
)

Js

(

σ + c+ (t− s)
)

dsdw

(

σ + c+t
)

−
∫ t

−∞

h
(

t− s, σ − c− (t− s)
)

Js

(

σ − c− (t− s)
)

dsdw

(

σ − c−t
)

.

Consequently,

(dXw)2

dw
=

∣

∣σ′ + c+t′
∣

∣

∫ t

−∞

g2
(

t− s, c+ (t− s)
)

Js

(

σ + c+ (t− s)
)

ds

+
∣

∣σ′ − c−t′
∣

∣

∫ t

−∞

g2
(

t− s,−c− (t− s)
)

Js

(

σ − c− (t− s)
)

ds

=
∣

∣σ′ + c+t′
∣

∣

∫ ∞

0

g2(s, c+s)Js(σ + c+s)ds

+
∣

∣σ′ − c−t′
∣

∣

∫ ∞

0

g2(s,−c−s)Js(σ − c−s)ds. (16)

We adopt the notation ε for (dXw)2/dw.
Three special cases are of particular interest: (i) t(w) = w, σ (w) = σ constant

(ii) t (w) = t constant, σ(w) = w (iii) t (w) = w, σ (w) = σ + c−w. The triangular
specification (13) of the ambit set along the curves (i), (ii) and (iii) is illustrated in
Figures 2-4, respectively. For these the expression (16) becomes respectively

εtime (t, σ) =

∫ ∞

0

[

c−g2(s,−c−s)Jt−s

(

σ − c−s
)

+ c+g2(s, c+s)Jt−s

(

σ + c+s
)]

ds

(17)

εspace (t, σ) =

∫ ∞

0

[g2
(

s,−c−s
)

Jt−s

(

σ − c−s
)

+ g2
(

s, c+s
)

Jt−s

(

σ + c+s
)

]ds (18)

εLagr (t, σ) =
(

c− + c+
)

∫ ∞

0

g2
(

s, c+s
)

Jt−s

(

σ + c+s
)

ds. (19)

In the turbulence context εtime is identified with the temporal energy dissipation
and εspace is identified with the surrogate energy dissipation (cf. Section 3). The
case (iii) corresponds to the energy dissipation obtained by following the mean flow
in incompressible turbulence (cf. Section 5.1).
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2.5 Discussion

Let Yt (σ) be an ambit spatio-temporal process of the general form (10), let ω (w) =
(t (w) , σ (w)) be a curve in R

2 with t (w) increasing in w, and let

Xw =

∫

At(σ)

g (t− s, ρ− σ) Is (σ) L (dsdρ) +

∫

Dt(σ)

h (t− s, ρ− σ) Js (σ) dsdρ (20)

where again, in the notation, we have suppressed the dependence of t and σ on w.
The following questions are of interest and do not seem answerable in any immediate
fashion from existing results in the literature on spatio-temporal processes and on
stochastic integration with respect to multiparameter martingales. (In the present
context, key references to that literature are Cairoli and Walsh (1975), Khoshnevisan
(2002), Klein and Giné (1975), Walsh (1986a,b) and Wong and Zakai (1974).)

(i) Under what conditions, especially on the ambit sets At (σ) and Dt (σ), does
the quadratic variation [X] exist (in the sense of (1)).

(ii) Under what conditions, especially on the ambit sets At (σ) and Dt (σ), is it
possible meaningfully to define the differential dX.

(iii) Related to (ii), what meaning should be given to an expression like
BS(dsdw(σ + c+

t (s; σ))).

(iv) Supposing L = BS (the Brownian sheet), when is (dX)2 = d [X] (or, other-
wise put, when is [X]w =

∫ w

0
(dXs)

2).

(v) When is X a linear combination of semimartingales.

For the particular specification of X considered in Section 2.4, we have argued as
if these questions had been positively resolved. In fact, under mild assumptions on
g, h, I and J the manipulations in that Section can be verified by direct calculations
(details to be given elsewhere).

3 Some background on turbulence

There is no generally accepted definition of what should be called a turbulent flow.
Turbulent flows are characterized by low momentum diffusion, high momentum
convection, and rapid variation of pressure and velocity in space and time. Flow that
is not turbulent is called laminar flow. The non-dimensional Reynolds number R
characterizes whether flow conditions lead to laminar or turbulent flow. Increasing
the Reynolds number increases the turbulent character and the limit of infinite
Reynolds number is called the fully developed turbulent state.

Turbulence as part of hydrodynamics is governed by the Navier-Stokes equation
which has been known since 1823. Its non-linear and non-local character does so far
not allow to describe the wide range of turbulent phenomena from basic principles.
Consequently, a great deal of phenomenological models have emerged that are based
on and designed for certain aspects of turbulent dynamics. Most of these models
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can be classified according to the physical observable they address (see Section 4).
The most prominent observables are the velocity field and the energy dissipation
process.

In general, turbulence concerns the dynamics in a fluid flow of the three-dimen-
sional velocity vector ~u(~r, t) = (ux(~r, t), uy(~r, t), uz(~r, t)) as a function of position
~r = (x, y, z) and time t. A derived quantity is the energy dissipation, defined as

ε(~r, t) ≡ ν

2

∑

i,j=x,y,z

(∂iuj(~r, t) + ∂jui(~r, t))
2 (21)

describing the loss of kinetic energy due to friction forces characterized by the vis-
cosity ν.

A pedagogical valuable illustration of a turbulent flow can be gained from the
Kolmogorov cascade (Frisch (1995)). In this representation kinetic energy is in-
jected into the flow at large scales through large scale forcing. Non-linear effects
redistribute the kinetic energy towards smaller scales. This cascade of energy stops
at small scales where dissipation transforms kinetic energy into heat. It is tradi-
tional to call the large scale L of energy input the integral scale and the small
scale η of dissipation the dissipation scale or Kolmogorov scale. With increasing
Reynolds number the fraction L/η increases, giving space for the so called inertial
range η ≪ l ≪ L where turbulent statistics are expected to have some universal
character.

The resolution of all dynamically active scales in experiments is at present not
achievable for the full three-dimensional velocity vector. Most experiments measure
a time-series of one component u (in direction of the mean flow) of the velocity
vector at a fixed single location ~r0 (in the stochastic framework we denote the spatial
location by σ). Based on this restriction one defines the temporal energy dissipation

εtime(~r0, t) ≡
15ν

u2

(

du(~r0, t)

dt

)2

, (22)

where u denotes the mean velocity.
In going from (21) to (22) one assumes the flow to be stationary, homogeneous

and isotropic. In this case (21) may be approximated as (Elsner and Elsner (1996))

εspace(~r, t) ≡ 15ν

(

∂u(~r, t)

∂x

)2

(23)

which is believed to have similar statistical properties as the true energy dissipa-
tion at not too small scales. Discrepancies appear at small scales and are termed
surrogacy effects. In particular, the autocorrelation function of the surrogate en-
ergy dissipation (23) shows an additional increase at small time scales (Cleve et al
(2003)).

The transformation of the spatial derivative in (23) to the temporal derivative in
(22) is performed under the assumption of Taylor’s Frozen Flow Hypothesis (Taylor
(1938)) which states that spatial structures of the flow are predominantly swept
by the mean velocity ~u without relevant distortion. Under this hypothesis, widely
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used in analyzing turbulent time series, spatial increments along the direction of the
mean flow (in direction x) are expressed in terms of temporal increments

ut+s(~r)− ut(~r) = ut(~r − ~us)− ut(~r). (24)

Remark 2. The temporal energy dissipation (22) is expected to approximate the
true energy dissipation (21) for stationary, homogeneous and isotropic flows. Nev-
ertheless, the temporal energy dissipation contains for all flow conditions important
statistical information about the turbulent velocity field.

4 Turbulence phenomenology

The statistical analysis of a great variety of time series has revealed a number of uni-
versal stylized facts of homogeneous and isotropic turbulent flows. Here we restrict
the discussion to the so-called intermittency and to the statistics associated with the
Kolmogorov variable, leaving aside, among others, the important characterization of
turbulent statistics in terms of scaling relations (Meneveau and Sreenivasan (1991)
and Sreenivasan and Antonia (1997) and references therein). Scaling relations are
expected to hold for fully developed turbulent flows while being hard to detect for
small and moderate Reynolds number flows. Intermittency and universality of the
statistics associated to the Kolmogorov variable are found for a much wider range of
Reynolds numbers (Castaing et al (1990), Vincent and Meneguzzi (1991), Barndorff-
Nielsen et al (2004), Stolovitzky et al (1992), Zhu et al (1995) and Hosokawa et al
(1994)).

4.1 Intermittency

Since the pioneering work of Kolmogorov (1962) and Obukhov (1962), intermittency
of the turbulent velocity field is of major interest in turbulence research. From a
probabilistic point of view, intermittency refers, in particular, to the increase of the
non-Gaussian behaviour of the probability density function (pdf) of velocity incre-
ments with decreasing scale. A typical scenario is characterized by an approximate
Gaussian shape for the large scales, turning to exponential tails for the intermediate
scales and stretched exponential tails for dissipation scales (Castaing et al (1990)
and Vincent and Meneguzzi (1991)).

It was reported in Barndorff-Nielsen et al (2004) that the evolution of the pdf
of velocity increments for all amplitudes and all scales can be described within
one class of analytically tractable distributions, the normal inverse Gaussian (NIG)
distributions. This class of distributions equals the family of possible distributions
at time t = 1 of the NIG Lévy process, which is defined as Brownian motion with
drift subordinated by the inverse Gaussian Lévy process, i.e. the Lévy process of
first passage times to constant levels of (another) Brownian motion. The Appendix
provides a brief summary of the definition and properties of NIG laws.

The NIG laws and associated processes have found widespread application, par-
ticularly in finance, see for instance Barndorff-Nielsen (1998a,b), Barndorff-Nielsen
and Shephard (2001), Barndorff-Nielsen and Shephard (2006), Øig̊ard et al (2005),
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Corsi et al (2005), Carr et al (2003), Forsberg (2002), Lindberg (2005), Eberlein and
Prause (2002) and further references there, cf. also Shiryaev (1999) and Cont and
Tankov (2004).

Figure 5 shows, as an example, the log densities of velocity increments ∆us =
ut+s − ut measured in the atmospheric boundary layer for various time scales s.
The solid lines denote the approximation of these densities within the class of NIG
distributions. NIG distributions fit the empirical densities equally well for all time
scales s.

A subsequent analysis of the observed parameters of the NIG distributions from
many, widely different data sets with Reynolds numbers ranging from Rλ = 80 up to
Rλ = 17000 (where Rλ is the Taylor based Reynolds number, see below) led to the
formulation of a key universality law (Barndorff-Nielsen et al (2004)): The temporal
development of a turbulent velocity field has an intrinsic clock which depends on
the experimental conditions but in terms of which the one-dimensional marginal
distributions of the velocity differences become independent of the experimental
conditions. Figure 6 provides an empirical validation of this. As a consequence,
the collapse of pdf’s immediately resulted in a substantially wider and more general
reformulation of the concept of Extended Self Similarity (Benzi et al (1993)) in
terms of a stochastic equivalence class. For details we refer to Barndorff-Nielsen et
al (2004).

4.2 Kolmogorov’s refined hypotheses

In 1962, Kolmogorov published two hypotheses (usually refered to as K62) about a
quantity V that combines velocity increments, being a large scale quantity, and the
energy dissipation, being a small scale quantity. The first hypothesis states that the
pdf of the stochastic variable

Vr =
∆ut(r)

(rεr)1/3
(25)

depends, for r ≪ L, only on the local Reynolds number

Rer = r(rεr)
1/3/ν. (26)

Here,
∆ut(r) = ut(x + r, y, z)− ut(x, y, z) (27)

denotes the increment of one component of the velocity vector at scale r and rεr is
the integrated energy dissipation over a domain of linear size r

εr =
1

r

∫ x0+r/2

x0−r/2

ε(~r, t)dx. (28)

The second hypothesis states that, for Rer ≫ 1, the pdf of Vr does not depend on
Rer, either, and is therefore universal.

Note the unusual power 1/3 in (25). An immediate thinking would have expected
power 1/2.

Although, for small r, an additional r dependence of the pdf of Vr has been
observed (Stolovitzky et al (1992)), the validity of several aspects of K62 has been
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verified experimentally and by numerical simulation of turbulence (Stolovitzky et
al (1992), Zhu et al (1995), Hosokawa et al (1994) and Stolovitzky and Sreenivasan
(1994)). In particular it has been shown that the conditional densities p(Vr|rεr)
become independent of rεr for a certain range of scales r within the inertial range.
However, the universality of the distribution of V has not been verified in the lit-
erature. In this respect, it is important to note that the experimental verification
of the Kolmogorov hypotheses is, with reasonable resolution of scales, restricted to
temporal statistics and as such relies on the use of the temporal energy dissipation
(22) instead of the true energy dissipation (21).

We take up the discussion of the Kolmogorov variable V in Section 5.2.2.

5 Stochastic modelling of turbulent velocity fields

The modelling framework we propose for the velocity field specifies this as an ambit
process and incorporates the energy dissipation, also in the form of an ambit process,
as a building block. As we shall discuss, basic stylized facts of turbulent statistics
are captured by the model without specifying the degrees of freedom in all detail.

Remark 3. For the energy dissipation, discrete cascade processes are one of the
most basic and successful models (Meneveau and Sreenivasan (1991), Jouault et al
(1999), Jouault et al (2000) and Cleve and Greiner (2000)). However, these models
lack translational invariance and moreover, they introduce an artifical and discrete
hierarchy of scales. To overcome these drawbacks, ambit processes can be used as
continuous and translation invariant generalisations of discrete cascade models (cf.
Section 5.3).

5.1 A spatio-temporal modelling framework

We propose to model one component of the velocity vector in homogeneous and
stationary turbulence as in (14)

ut (σ) = µ +

∫ t

−∞

∫ σ+c+(t−s)

σ−c−(t−s)

g (t− s, ρ− σ) Is (ρ) BS (dsdρ)

+ β

∫ t

−∞

∫ σ+c+(t−s)

σ−c−(t−s)

h (t− s, ρ− σ)Js (ρ) dsdρ (29)

where µ and β are constants, c+ and c− are positive constants and we assume J = I2,
which is sufficiently general in the turbulence context.. Here we adopt the notation
u (instead of Y ) for the velocity as is customary in the physics literature. The
specific choice of a triangular ambit set corresponds to a constant maximum speed
for information to arrive at a given site (σ, t). In this simple set-up the influence of
an event sitting at ρ < σ or σ < ρ is experienced at σ with a delay of (σ − ρ)/c− or
(ρ− σ)/c+, respectively. The difference in the propagation velocities for σ > ρ and
σ < ρ is due to the presence of a mean velocity. In general, interactions in the flow
are due to pressure fluctuations traveling with the speed of sound c and interactions
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that are sweeping with the flow. Here we only deal with the simplest case where the
sweeping velocity is assumed to be the mean velocity u > 0. In this case

c+ = c− u, c− = c + u. (30)

In this definition, density fluctuations are taken into account which corresponds to
compressible flows. The ratio u/c is called the Mach number.

For incompressible flows, density fluctuations are neglected and this is encom-
passed by the model (29) in setting

c+ = 0, c− = u. (31)

The mean velocity u is a free parameter of the model related to µ by

µ = u− βc1(J)

∫ ∞

0

∫ c+s

−c−s

h(s, ρ)dsdρ. (32)

In the setting of stochastic differential equations of the Brownian semimartingale
type (29) the quantity [dut(σ)]2/dt (17) is the natural analogue of the squared first
order derivative of the velocity, which in the classical formulation is taken to express
the temporal local energy dissipation (22) (up to a constant pre-factor). In a similar
reasoning, [dut(σ)]2/dσ (18) may be identified with (23) (up to a constant pre-
factor). In both cases, the local energy dissipation is independent of the second
term in (29) which, importantly, allows to choose the function h and the constant
β in (29) independently of the energy dissipation process.

The intermittency of the model, i.e. its non-Gaussian statistics, arises from both
terms in (29). In particular the third order cumulant results in a polynomial of
third order in β. Here we do not present the results for the full cumulant function
of velocity increments. We rather specify the intermittent and turbulent character
of the model in terms of the Taylor based Reynolds number (Frisch (1995)) defined
as

Rλ =
c2(u)

ν
√

E {εspace}
. (33)

Using (29) and (18), we calculate this most prominent characteristic of turbulence
to be

Rλ =
1

ν
(G1 + G2(β)) (34)

where

G1 =
√

c1(J)

∫∞

0

∫ c+s

−c−s
g2(s, ρ)dsdρ

√

∫∞

0
(g2(s,−c−s) + g2(s, c+s)) ds

(35)

and G2(β) = β2G2 where

G2 =

∫∞

0

∫∞

0

∫ c+s

−c−s

∫ c+s′

−c−s′
h(s, ρ)h(s′, ρ′)Cov{Js(ρ), Js′(ρ

′)}dsds′dρdρ′

√

c1(J)
√

∫∞

0
(g2(s,−c−s) + g2(s, c+s)) ds

, (36)

Cov indicating covariance.
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The first term (35) is independent of the weight function βh. Therefore we are
able to increase Rλ by manipulating β and/or the function h without changing the
statistics of the energy dissipation. In other words, the level of turbulence can be
increased independently of the energy dissipation process. This type of behaviour
has been observed for flows with strong shear where the intermittency of the velocity
field (measured in terms of structure functions) shows an enhanced degree while the
energy dissipation behaves in a universal fashion (Casciola et al (2001)).

5.2 A temporal modelling framework

The spatio-temporal (1+1)-dimensional model (29) and its generalization to higher
dimensional modelling provides the general modelling framework for the turbulent
velocity field. For a preliminary verification of the proposed modelling framework
with experimental data we restrict ourselves to purely temporal statistics at a fixed
spatial position σ, which are by now the type of data that are accessible with rea-
sonable quality. For mathematical simplicity, we define a purely temporal version
of (29) as

ut = µ +

∫ t

−∞

g(t− s)IsdBs + β

∫ t

−∞

g(t− s)Jsds, (37)

where B denotes Brownian motion. This model is in fact a limiting case of (29)
with h = g, for c− = c+ = c/2 → ∞ and g(s, ρ) = c−1s−1+cg(s). The statistical
properties of (37) are reported in more detail in Barndorff-Nielsen and Schmiegel
(2005) where it was shown that a considerable part of its statistics are mediated by
the structure of the model without specifying the intermittency J and the weight
function g in all details. In the following we review the validation of the model (37)
concerning the evolution of the density of velocity increments across time scales and
the experimental verification of the statistics of the Kolmogorov variable.

In the setting of the model (37), the local energy dissipation can be identified
with [dut]

2/dt = Jt and consequently the quadratic variation [u]t is the stochastic
analogue of the integrated energy dissipation.

As for the spatio-temporal model (29), the energy dissipation process does not
depend on β. The constant β introduces a non-vanishing skewness in accordance
with Kolmogorov’s famous 4/5-the law (Kolmogorov (1941)). For the calculations
below and for simulations we set β = 0, for convenience. This restriction does not
essentially alter the results we derived by simulations.

5.2.1 Temporal model and shape dynamics

As mentioned earlier, the density of empirical velocity increments evolves from heavy
tails at small time scales s towards an approximate Gaussian shape at large scales
s, in a manner that is well described within the class of NIG-distributions.

In comparing this to properties of the model (37) the first thing to note is that
under (37) the asymptotic law of ut− u0 for t →∞ will not be Gaussian unless the
intermittency field I is deterministic. This is in accordance with experimental find-
ings, as illustrated by Figure 7 which shows the estimated (by maximum likelihood)
asymmetry and steepness parameters χ and ξ of the fitted NIG laws, plotted in the
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NIG shape triangle (see Appendix). Note that the normal law occurs as a limiting
case near (χ, ξ) = (0, 0). The data are from the atmospheric boundary layer (see
also Figure 5).

To quantify the non-Gaussian character of the density of velocity increments in
the model (37) we first focus on the standardized fourth order cumulant c4 which,
in the absence of skewness β = 0, is the first order that distinguishes between a
Gaussian shape and a heavytailed distribution. A specific result can be obtained by
setting

g(t) = e−γt (38)

and assuming J to be of Ornstein-Uhlenbeck-type, i.e.

Jt =

∫ t

−∞

e−λ(t−s)dLs (39)

where L is the inverse Gaussian Lévy process. For brevity a process J of this form
is refered to as an OU-IG process.

The parameters λ and γ control the autocorrelation functions of J and u, re-
spectively. In this case we obtain

lim
t→∞

c4(ut − u0) =
3c2(L1 − L0)

2c1(L1 − L0)2

γλ

2γ + λ
. (40)

and

lim
t→0

c4(ut − u0) =
3c2(L1 − L0)

2c1(L1 − L0)2
λ. (41)

The heaviness of the tails of the pdf of velocity increments increases with increasing
λ, i.e. with a faster decrease of correlations of the local energy dissipation. Quali-
tatively, the same behaviour is observed for turbulent flows where the heaviness of
the tails of the pdf of velocity increments increases with increasing Reynolds num-
ber and with increasing intermittency exponent µ2 (Cleve et al (2004)), defined as
E{ε0εt} ∼ t−µ2 . (Due to this power-law behaviour, the assumption of ε (=J) follow-
ing an OU-IG process, for which E{ε0εt} = c2(L1−L0)[2λ]−1e−λt + c1(L1−L0)

2λ−2,
is not a quite realistic approach for modelling the local energy dissipation. We come
back to this point in Section 5.3.)

The corresponding results for moderate time scales are only accessible through
numerical simulation. For the simulations we set β = 0 in (37) and model J as
an OU-IG-process. Figure 8 shows the evolution of the probability densities of the
simulated increments ut − u0 for various time scales t. We clearly observe heavy
tails for the small scales and an approximately Gaussian shape for the large scales.
The solid lines denote the approximation of the densities within the class of NIG-
distributions. The densities of ut − u0 qualitatively display the empirical findings
about the evolution across scales of turbulent velocity increments shown in Figure
5.

5.2.2 Temporal model and K62

As the second validation of the model (37) we briefly discuss K62 and its experi-
mental verification. The original definition of V in (25) relates to spatial statistics
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which are not accessible in experiments. Therefore, the experimental verification of
K62 has been performed in terms of temporal analysis. In the temporal model (37),
the Kolmogorov variable may be defined as

Vt =
ut − u0

{ū [u]t}
1/3

. (42)

The introduction of the mean velocity ū turns Vt into a non-dimensional stochastic
process.

The most important property of V concerns its conditional statistics. Numerous
investigations of turbulent data sets show that the conditional densities p(Vt| [u]t)
become independent of [u]t for not too small t. Within the model (37) this observa-
tion is confirmed to high accuracy by simulations done with the same parameters as
for the simulation of the densities of velocity increments in Figure 8. Figures 9-10
show the conditional densities p(Vt|[u]t) for t = 2 and t = 16 and various values of
[u]t. For small t, the conditional densities strongly depend on [u]t. With increasing
time scale t, the dependence gets smaller and for large enough t (t ≈ 16 in our
simulation), the conditional densities do not depend on [u]t. This independence also
holds for the larger time scales t > 16 (not shown here). These findings agree well
with results reported for the turbulent velocity field in Stolovitzky et al (1992), Zhu
et al (1995) and Stolovitzky and Sreenivasan (1994), and they reveal the gist of K62.

The exponent 1/3 in the definition of the Kolmogorov Variable V in (42) has
been introduced by Kolmogorov for dimensional reasons (three-dimensional space).
In order to give an impression about the peculiarity of 1/3 we define

Vα,t =
ut − u0

{ū [u]t}
α . (43)

which coincides with (42) for α = 1/3. To assess the question of how much the
independence of the conditional densities p(Vt|[u]t) on [u]t depends on the specific
choice α = 1/3 we analyse the dependence of the second-order conditional cumulants
c2(Vα,t|[u]t) on [u]t for different values of α. Figure 11 compares c2(Vα,t|[u]t) for
α = 1/2 and α = 1/3. The conditional cumulants are estimated from simulations
with the same parameters as used for the simulation of velocity increments in Figure
8. For α = 1/2 the conditional cumulants considerably decrease with increasing [u]t.
For α = 1/3 the conditional cumulants stay roughly constant. For the moment, we
have no explanation for why the model seems to be adapted to the exponent 1/3
(or at least to an exponent close to 1/3).

5.3 The energy dissipation process

The basic ingredient of the model for the turbulent velocity is the intermittency
process J . For the temporal model (37), J coincides with the temporal energy
dissipation εtime. For the more general spatio-temporal model (29), the energy
dissipation is expressed as an integral over the weighted J process (see Section 2.4).
In the following, we discuss a particular model for the energy dissipation process ε
that is along the line of ambit processes (Barndorff-Nielsen et al (2003), Barndorff-
Nielsen and Schmiegel (2004), Schmiegel et al (2004), Schmiegel (2005a)).
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We model the energy dissipation process as an ambit process of the exponential
form

εt(σ) = exp

{
∫

Ct(σ)

f(|t− s|, |σ − ρ|)L(dsdρ)

}

, (44)

where L is a homogeneous and factorisable Lévy basis and f is an integrable deter-
ministic function. Then we have the fundamental relation

E

{

exp

{
∫

C

f(c)L(dc)

}}

= exp

{
∫

C

K[f(c)]dc

}

, (45)

where K denotes the cumulant function of L(dc), defined by

lnE {exp {ξL(dc)}} = K[ξ]dc. (46)

The usefulness of (45) is obvious: it permits explicit calculation of the correlation
function of the integrated and f -weighted noise field L(dc) once the cumulant func-
tion K is known.

The generality of the model (44) is based on the possibility of choosing the
constituents of the process εt(σ) independently. The available degrees of freedom are
an arbitrary infinitely divisible law for the Lévy basis L, the deterministic function
f and the shape of the family C of ambit sets.

Despite its generality, the model is tractable enough to yield explicit expressions
for arbitrary n-point correlations E {εt1(σ1) · . . . · εtn(σn)} in closed form.

Here, we focus on two-point correlators of order (n1, n2), defined as

cn1,n2(σ1, t1; σ2, t2) ≡
E {εt1(σ1)

n1εt2(σ2)
n2}

E {εt1(σ1)n1}E {εt2(σ2)n2} . (47)

In the following we set f ≡ 1. This choice of the weight function f is motivated
by the fact that two-point correlators obtained from a variety of turbulent data sets
show the property of self-scaling (see below). Moreover, the freedom of choosing an
arbitrary shape of the ambit set C is sufficient to model a wide range of two-point
correlators of order (1, 1) which are of primary interest in the present context.

Using (45), it is straightforward to show that

cn1,n2(σ1, t1; σ2, t2) = exp

{

K[n1, n2]

∫

Ct1 (σ1)∩Ct2 (σ2)

dσdt

}

, (48)

with the abbreviation K[n1, n2] = K[n1 + n2] − K[n1] − K[n2] > 0 (as follows from
the Minkowski inequality). The important point here is the fact that the exponent
in (48) factorizes into the Euclidean volume of the overlap of the two ambit sets
times a factor depending only on the order (n1, n2). Thus we are able to rewrite
(48) as a self-scaling relation of two point correlators of orders (n1, n2) and (m1, m2)
(Schmiegel (2005a))

cn1,n2(σ1, t1; σ2, t2) = cm1,m2(σ1, t1; σ2, t2)
k[m1,m2;n1,n2] (49)

with the abbreviation

k[m1, m2; n1, n2] =
K[n1, n2]

K[m1, m2]
, (50)
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called the self-scaling exponent.
The self-scaling relation (49) implies that correlators of arbitrary order (n1, n2)

are determined by the correlator of order (1, 1) and the knowledge of the self-scaling
exponents k of all orders. Note that the self-scaling exponents k only depend on the
Lévy basis L.

For a given Lévy basis L it is possible to extract the shape of the ambit set directly
from two-point correlators of order (1, 1) which are accessible in experiments. For
that we assume the ambit set Ct(σ) to be of the form

Ct(σ) = {(ρ, s) : t− T < s < t, ρ ∈ [σ − q(s− t + T ), σ + q(s− t + T )]} (51)

where the function q(s), defined on [0, T ] is nonnegative and decreasing. The con-
stant T introduces a decorrelation time for the energy dissipation process. We
further assume q and its inverse q(−1) to be differentiable. In this case it is easy
to give necessary and sufficient conditions on spatial two-point correlators of order
(1, 1) to be modelled by the Ansatz (44). From (48) it follows that

∂

∂l
ln c1,1(σ, t; σ + l, t) = K[1, 1]

∂

∂l

(

2

∫ q(−1)(l/2)

0

(q(s)− l/2)ds

)

= −K[1, 1]q(−1)(l/2) (52)

and
∂2

∂l2
ln c1,1(σ, t; σ + l, t) = −1

2
K[1, 1]

∂

∂l
q(−1)(l/2). (53)

Thus, the Ansatz (44) together with a decreasing boundary q(t) > 0 is able to model
any twice differentiable spatial two point correlator that has the properties

∂

∂l
ln c1,1(σ, t; σ + l, t) < 0 (54)

and
∂2

∂l2
ln c1,1(σ, t; σ + l, t) > 0. (55)

Relation (52) has been applied to turbulent data in Schmiegel et al (2004) where
the shape of the ambit set has been extracted from scaling two-point correlators. As
a consequence the higher order correlators are fixed and the three-point correlators
have been successfully compared to experimental data.

In the temporal set-up (37) the intermittency process J is identified with the local
energy-disspation ε and as such directly accessible to turbulent data analysis. For
the more general spatio-temporal model (14) correlators of the energy-disspation can
be expressed as weighted integrals over the correlators of the intermittency process
J and as such can be modelled by suitably adapting the weight function g and the
statistics of J .

6 Modelling tumour growth

The potential of processes of the type (44) for modelling a certain, well defined
correlation structure may also be useful for modelling tumour dynamics (Schmiegel
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(2005b) and Jensen et al (2006)). The object of interest in that context is the star-
shaped approximation of planar tumour tissue characterized by a radius function

Rt(φ) = max{R : c0 + Reφ ∈ St} (56)

where St denotes the two-dimensional domain occupied by the tumour at time t, c0

denotes the centre of mass of the tumour at time t = 0 and eφ is the unit vector in
direction φ ∈ [0, 2π].

Tumour profiles show structures at very different scales with strongly localized
outbursts of different size. Due to the unrestricted growth of the tumour in in vitro
experiments we can expect the profiles to be statistically isotropic. A comparison
of these star-shaped profiles with the original profiles as observed in the experiment
(Brú et al (1998)) shows that (56) approximates the growing tumour to a high
accuracy. For the star-shaped approximation, we neglect details of the tumour
profiles where small regions of non-tumour tissue are surrounded by tumour cells.

For the stochastic modelling of profiles we normalize the radial function

rt(φ) ≡ Rt(φ)

E{Rt(φ)} , (57)

where E{Rt(φ)} is the mean radius at time t, assumed to be independent of φ. Thus,
E{rt(φ)} = 1 for all times t. For the estimation of expectations, we perform spatial
averaging.

Spatial correlators of star shaped tumour profiles have the form (Schmiegel
(2005b))

ln (cn1,n2(t, φ; t, φ + ∆φ)) = dn1,n2(t)ft(∆φ)1[0,φ0(t)](∆φ) + bn1,n2(t) cos(∆φ) (58)

where the critical angle φ0(t) confines the valitidity of the cosine behaviour for
∆φ > φ0. For ∆φ < φ0 deviations from the cosine behaviour occur and are denoted
by ft. The factors d and b are independent of ∆φ and depend only on the order
(n1, n2).

To account for the particular correlation structure (58) we propose an exponential
ambit process of the type

rt(φ) = exp

{

a(t)

∫ t−t0(t)

t−T (t)

∫ φ+π

φ−π

cos(φ− φ′)BS(dt′dφ′)

+ h(t)

∫ t

t−t0(t)

∫ φ+qt(t′−t+t0(t))

φ−qt(t′−t+t0(t))

BS(dt′dφ′)

}

, (59)

with cyclic definition in the angle and where BS is a Brownian sheet. The first term
on the right hand side of (59) is responsible for the validity of the cosine law (second
term in (58)) and the second term on the right hand side of (59) is associated with
the deviations from the cosine law at small angular distances. We call the first term
in the exponent on the right hand side of (59) the large scale term and the second
term the small scale term.

The ambit set associated with the large scale term is a rectangle of the form
[t−T (t), t−t0(t)]× [φ−π, φ+π]. The deterministic function T (t) can be interpreted
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as the decorrelation time of the radius process and t0(t) expresses the decorrelation
time of the small scale term.

The ambit set associated with the small scale term is assumed to be determined
by a deterministic and monotonically decreasing function qt defined on [0, t0(t)] and
satisfying qt(t0(t)) = 0. These two parts of the ambit set are weighted differently
according to the deterministic functions a(t) cos(φ− φ′) and h(t) for the large scale
term and the small scale term, respectively.

Within the modelling framework (59) the two point correlators are of the specific
form (58) where

bn1,n2(t) = n1n2a(t)2π (T (t)− t0(t)) (60)

and the small scale amplitude dn1,n2(t) has the form

dn1,n2(t) = n1n2h(t)2 (61)

and we identify ft by

ft(∆φ) = Vt(∆φ) =

∫ q
(−1)
t (∆φ/2)

0

(2qt(s)−∆φ)ds (62)

where Vt(∆φ) is the Euclidean volume of the overlap of the ambit sets of the small
scale terms separated by the angular distance ∆φ. The critical angle φ0(t) is given
by

φ0(t) = 2qt(0), (63)

and is independent of the order (n1, n2).
The modelling potential of the Ansatz (59) for the dynamics of tumour profiles

lies in the fact that the cosine behaviour at large scales can be modelled indepen-
dently of the deviations at the small scales. In particular, a suitable choice of the
bounding function qt(s) allows to model any monotonically decreasing overlap Vt(φ)
and, consequently, any monotonically decreasing deviation dn1,n2(t)ft(∆φ).

The assumption of a Brownian sheet in (59) is motivated by the implied order
dependence of the amplitudes b and d in (60) and (61), respectively, and the fact
that tumour profiles show self-scaling of spatial correlators (Schmiegel (2005b))

cn1,n2(t, ∆φ) = (cm1,m2(t, ∆φ))kt[m1,m2;n1,n2]. (64)

with self-scaling exponents kt of the form

kt[m1, m2; n1, n2] =
n1n2

m1m2

. (65)

The self-scaling property (64) holds for all angular distances ∆φ implying

dn1,n2(t)

dm1,m2(t)
=

bn1,n2(t)

bm1,m2(t)
=

n1, n2

m1, m2
(66)

in accordance with (60) and (61).
Figure 12 shows a comparison of star-shaped brain tumour profiles with simula-

tions of the model (59). For the estimation of the parameters used for the simulation
we refer to Schmiegel (2005b).
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Remark 4. The modelling framework (59) has been defined for the normalized
radius rt(φ). However, it equally applies to the modelling of the non-normalized
radius Rt(φ). The definition of correlators is invariant under rescaling with the
mean radius. Going from rt(φ) to Rt(φ) is equivalent to replacing h(t) with h(t)−
log(E{Rt(φ)})/ft(0), keeping all other parameters of the model (59) unchanged.

7 Concluding remarks

The modelling of the turbulent energy dissipation (44) and the turbulent velocity
fields (29) and (37) within the class of ambit processes, as outlined in Section 5,
poses various important questions, in addition to the purely mathematical problems
listed in Section 2.5.

Of major interest is the identification of the parameters of the model with phys-
ical observables. For the temporal model (37) the intermittency process J is iden-
tified with the local energy dissipation and as such accessible to data analysis. For
the spatio-temporal model (29), the energy dissipation is identified with a weighted
integral of the intermittency process.

Specifying suitable observables for the statistical analysis of the intermittency
process J are of great importance. The recently developed asymptotic theory of
realised quadratic variation and its extension to realised multipower variation, see
Barndorff-Nielsen et al (2005) and Barndorff-Nielsen and Shephard (2005) and ref-
erences given there, is of relevance here.

The collapse of the densities of velocity increments at time scales s as func-
tions of the parameter δ(s) of the associated approximations within the class of
NIG distributions indicates that δ(s) incorporates most of the individual character-
istics of each experimental situation. From this point of view, the determination of
the dependence of the weight function g and the intermittency field J in (29) on
the function δ(s) should allow to model the evolution of the densities of velocity
increments across scales in more detail.

Furthermore, the identification of δ(s) within the modelling framework is a first
step towards a separation of non-universal features of the model, i.e. those that
reflect the specific experimental situation, from universal features of the model that
are independent of experimental details.

Appendix: Normal inverse Gaussian distribution

The normal inverse Gaussian law, with parameters α, β, µ and δ, is the distribution
on the real axis R having probability density function

p(x; α, β, µ, δ) = a(α, β, µ, δ)q

(

x− µ

δ

)−1

K1

{

δαq

(

x− µ

δ

)}

eβx (67)

where q(x) =
√

1 + x2 and

a(α, β, µ, δ) = π−1α exp
{

δ
√

α2 − β2 − βµ
}

(68)
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and where K1 is the modified Bessel function of the third kind and index 1. The
domain of variation of the parameters is given by µ ∈ R, δ ∈ R+, and 0 ≤ |β| < α.
The distribution is denoted by NIG(α, β, µ, δ).

If X is a random variable with distribution NIG(α, β, µ, δ) then the cumulant
generating function of X, i.e. K(θ; α, β, µ, δ) = log E{eθX}, has the simple explicit
form

K(θ; α, β, µ, δ) = δ{
√

α2 − β2 −
√

α2 − (β + θ)2}+ µθ. (69)

We note that the NIG distribution (67) has semiheavy tails; specifically,

p(x; α, β, µ, δ) ∼ const. |x|−3/2 exp (−α |x|+ βx) , x → ±∞. (70)

The normal inverse Gaussian law can be characterized in terms of subordinated
Brownian motion. For that, let Bt be a Brownian motion starting at the point µ
and having constant drift β. Let Zt be the inverse Gaussian Lévy process, assumed
independent of the process Bt. The inverse Gaussian Lévy process is defined as

the Lévy process for which Z1
law
= Z and where the distribution of Z is the inverse

Gaussian law whose probability density function is given by

(2π)−1/2δeδγx−3/2 exp
{

−
(

δ2x−1 + γ2x
)

/2
}

.

This distribution is denoted IG(δ, γ). Then, the process

Xt = Bzt
+ µt

is also a Lévy process, termed the normal inverse Gaussian Lévy process, whose
distribution at time t = 1 is NIG(α, β, µ, δ) where α =

√

β2 + γ2.
NIG shape triangle. For some purposes it is useful, instead of the classi-

cal skewness and kurtosis quantities, to work with the alternative asymmetry and
steepness parameters χ and ξ defined by

χ = ρξ (71)

and
ξ = [1 + γ̄]−1/2 (72)

where γ̄ = δ
√

α2 − β2. Like c̄3 and c̄4, these parameters are invariant under location-
scale changes and the domain of variation for (χ, ξ) is the normal inverse Gaussian
shape triangle

{(χ, ξ) : −1 < χ < 1, 0 < ξ < 1}. (73)

The distributions with χ = 0 are symmetric, and the normal and Cauchy laws occur
as limiting cases for (χ, ξ) near to (0, 0) and (0, 1), respectively. Figure 13 gives an
impression of the shape of the NIG distributions for various values of (χ, ξ).
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Figure 1: Illustration of the dynamics of the process Xw (15) along the curve
(t(w), σ(w)).
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Figure 2: Illustration of the dynamics of the process Xw (15) along the curve t(w) =
w, σ(w) = σ constant.
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Figure 3: Illustration of the dynamics of the process Xw (15) along the curve t(w) = t
constant, σ(w) = w.
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Figure 4: Illustration of the dynamics of the process Xw (15) along the curve
(t(w), σ(w)) = (w, σ + c−w).
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Figure 5: Approximation of the pdf of velocity increments within the class of NIG
distributions (solid lines, fitting by maximum likelihood) for data from the atmo-
spheric boundary layer (kindly provided by K.R. Sreenivasan) with Rλ = 17000 and
time scales s = 4, 8, 20, 52, 148, 300, 600, 2000, 8000 (in units of the finest resolution).
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Figure 6: Collapse of the densities of velocity increments at time scale s for various
fixed values of the scale parameter δ(s) of the approximating NIG-distributions.
The data are from the atmospheric boundary layer (data set (at) with Rλ = 17000,
kindly provided by K.R. Sreenivasan), from a free jet experiment (data set (j) with
Rλ = 190, kindly provided by J. Peinke), from a wind tunnel experiment (data set
(w) with Rλ = 80, kindly provided by B.R. Pearson) and from a gaseous helium jet
flow (data sets (h85), (h124), (h208), (h283), (h352), (h703), (h885), (h929), (h985)
and (h1181) with Rλ = 85, 124, 208, 283, 352, 703, 885, 929, 985, 1181, respectively,
kindly provided by B. Chabaud). The corresponding values of the time scales s (in
units of the finest resolution of the corresponding data set) and the codes for the data
sets are (a) (s = 116, (at)) (◦), (s = 4, (h352)) (⊞), (b) (s = 440, (at)) (◦), (s = 8, (j))
(△), (s = 8, (h929)) (▽), (c) (s = 192, (h885)) ( ), (s = 88, (h352)) (⊞), (s = 10, (w))
(+), (d) (s = 380, (h885)) ( ), (s = 410, (h929)) (▽), (s = 350, (h703)) (×), (s =
340, (h985)) (•), (e) (s = 420, (h703)) (×), (s = 440, (h929)) (▽), (s = 180, (h352))
(⊞), (s = 270, (h283)) (•), (s = 108, (h124)) (∗), (s = 56, (h85)) (⊠), (f) (s =
470, (h929)) (▽), (s = 116, (h124)) (∗), (s = 60, (h85)) (⊠), (s = 188, (h352)) (⊞),
(s = 470, (h1181)) (N), (s = 140, (h208)) (�).
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Figure 7: Shape triangle for the evolution of the pdf of velocity increments across
time scales (time scales increase from top to bottom) for data from the atmospheric
boundary layer (kindly provided by K.R. Sreenivasan).
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Figure 8: Logarithm of the probability densities of the simulated increments ut−u0

(arbitrary units) under the model (37) with t = 1, 2, 8, 16, 32, 98 (in units of the
finest resolution). The solid lines denote the approximation within the class of NIG
distributions (fitting by maximum likelihood).
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mogorov variable Vt under the model (37) for t = 2 (in units of the finest resolution)
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Figure 10: Logarithm of the conditional density p(Vt|[u]t) of the simulated Kol-
mogorov variable Vt under the model (37) for t = 16 (in units of the finest resolu-

tion) with [u]
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1/3 (×) and α = 1/2 (◦) as a function of [u]t (in arbitrary units) with t = 32 (in
units of the finest resolution).
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Figure 12: Comparison of the simulated tumour profiles (bottom row) under the
model (59) with the star-shaped tumour profiles (top row) at times t = 21, 25, 55
(arbitrary units).
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Figure 13: The shape triangle of the NIG distributions with the log density functions
of the standardized distributions, i.e. with mean 0 and variance 1, corresponding to
the values (χ, ξ) = (±0.8,0.999), (±0.4,0.999), (0.0,0.999), (±0.6,0.75), (±0.2,0.75),
(±0.4,0.5), (0.0,0.5), (±0.2,0.25) and (0.0,0.0). The graphs of the log densities are
placed at the corresponding values of (χ, ξ).
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