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Some aspects of Lévy copulas

Ole E. Barndorff-Nielsen∗ Alexander M. Lindner†

Abstract

Lévy processes and infinitely divisible distributions are increasingly de-
fined in terms of their Lévy measure. In order to describe the dependence
structure of a multivariate Lévy measure, Tankov (2003) introduced positive
Lévy copulas. Together with the marginal Lévy measures they completely
describe multivariate Lévy measures on Rm

+ . In this paper, we show that any
such Lévy copula defines itself a Lévy measure with 1-stable margins, in a
canonical way. A limit theorem is obtained, characterising convergence of
Lévy measures with the aid of Lévy copulas. Homogeneous Lévy copulas are
considered in detail. They correspond to Lévy processes which have a time-
constant Lévy copula. Furthermore, we show how the Lévy copula concept
can be used to construct multivariate distributions in the Bondesson class
with prescribed margins in the Bondesson class. The construction depends
on a mapping Υ, recently introduced by Barndorff-Nielsen and Thorbjørnsen
(2004a,b) and Barndorff-Nielsen, Maejima and Sato (2004). Similar results
are obtained for self-decomposable distributions and for distributions in the
Thorin class.

1 Introduction

The concept of copulas for multivariate probability distributions has an analogue for
multivariate Lévy measures, called Lévy copulas. The latter concept was introduced
in a paper by Tankov [17] for Lévy measures on Rm

+ , and extended to Lévy measures
on Rm by Kallsen and Tankov [10], see also the book by Cont and Tankov [8].
Similar to probabilistic copulas, a Lévy copula describes the dependence structure
of a multivariate Lévy measure. The Lévy measure is then completely characterised
by knowledge of the Lévy copula and the margins. Here and henceforth, by the
margins of an m-dimensional Lévy measure ν (or distribution µ) we will always
mean the m one-dimensional margins, which are obtained as projections of ν (or µ)
onto the coordinate axes.

An advantage of modelling dependence via Lévy copulas is that the resulting
probability law is automatically infinitely divisible. From the applied point of view,
the usefulness of Lévy copulas hinges to a considerable extent on how feasible it is
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to obtain insight into relevant properties of the corresponding probability distribu-
tions. Much theoretical information in this regard can be gleaned from the book
by Sato [14], while numerically there are now powerful methods that in many cases
allow rather easy simulation of a probability law from its Lévy measure. In this
latter respect, see Cont and Tankov [8] and references given there.

The present paper discusses some aspects of the Lévy copula concept. For sim-
plicity, we consider only Lévy measures and Lévy copulas living on Rm

+ , where
R+ := [0,∞). In the next section, we recall Tankov’s definition of Lévy copulas and
fix some notation used throughout the paper. Furthermore, we show that any (pos-
itive) Lévy copula defines itself a Lévy measure with 1-stable margins, when trans-
formed under the mapping Qm : [0,∞]m → [0,∞]m, (x1, . . . , xm) 7→ (x−1

1 , . . . , x−1
m ).

The latter transformation plays a natural role in the concept of Lévy copulas, and
has also many relations to a mapping Υ0 of Lévy measures recently introduced and
studied by Barndorff-Nielsen and Thorbjørnsen [5, 6] and, in a multivariate version,
by Barndorff-Nielsen, Maejima and Sato [2]. This will be discussed in Section 5.

Section 3 is concerned with a limit result for sequences of Lévy measures and
Lévy copulas: we show that a sequence of Lévy measures converges vaguely to
another Lévy measure if and only if the marginal Lévy measures converge vaguely,
and the Lévy copulas converge pointwise on a suitable subset of [0,∞]m.

Section 4 discusses the special class of homogeneous Lévy copulas in more detail.
They arise naturally as Lévy copulas which are constant in time for Lévy processes:
if (L(t))t≥0 is a Lévy process with Lévy measure ν(t) at time t and if the Lévy
copula C(1) of ν(1) is homogeneous, then C(1) is also a Lévy copula for ν(t) for
any t > 0. Furthermore, homogeneous Lévy copulas constitute the class of possible
limits of Lévy copulas of Lévy processes as time approaches 0 or ∞. We additionally
characterise homogeneous Lévy copulas as those for which the Lévy measure they
define (via Qm) is 1-stable.

In Section 5 we introduce the mapping Υ of Barndorff-Nielsen and Thorbjørnsen
[5, 6] and Barndorff-Nielsen, Maejima and Sato [2], which will play a crucial role
in Section 6 for the construction of Lévy measures with special properties. The
mapping Υ maps the class of infinitely divisible distributions bijectively onto the
Bondesson class. We discuss how Lévy copulas transform if the mapping Υ is ap-
plied, with particular emphasis on homogeneous Lévy copulas.

Section 6 is concerned with the construction of Lévy measures and distributions
with special structures and prescribed margins. Suppose that µ1, . . . , µm are one-
dimensional infinitely divisible distributions, all of which are in the Bondesson class
or Thorin class or are self-decomposable, respectively. Then using any Lévy copula
gives an infinitely divisible distribution µ with margins µ1, . . . , µm. However, µ
itself does not necessarily belong to the Bondesson class or to the Thorin class
or to the class of self-decomposable laws, i.e. not every Lévy copula gives rise to
such distributions. Here, we shall show how all distributions in the Bondesson
class, Thorin class or the class of self-decomposable laws, with prescribed margins,
can be obtained. For the Bondesson class, this is achieved in Section 6.1 with
the help of the mapping Υ. Several examples are given, including stable, gamma
and inverse Gaussian margins. In Section 6.2 a similar procedure is developed for
self-decomposable distributions. Here, the role of the mapping Υ is replaced by a
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mapping Φ. The latter was shown by Sato and Yamazato [15] to map the class
of all infinitely divisible distributions integrating max(1, log |x|) bijectively onto the
class of self-decomposable distributions. Finally, combining the mappings Φ and Υ,
in Section 6.3 it is shown how to construct multivariate distributions in the Thorin
class with prescribed margins in the Thorin class.

2 Lévy copulas and the derived Lévy measure

Recall that a Lévy measure is a measure ν on Rm which has no atom at zero and
satisfies

∫
Rm(|x|2 ∧ 1)ν(dx) <∞, where |x|2 = x2

1 + · · ·+ x2
m denotes the Euclidean

norm of x = (x1, . . . , xm). We call a Lévy measure positive if its support is contained
in Rm

+ = [0,∞)m. For simplicity we shall restrict attention to the class Lm
+ of positive

Lévy measures.
Define the bijection

Q := Qm : [0,∞]m → [0,∞]m, (x1, . . . , xm) 7→ (x−1
1 , . . . , x−1

m ),

where 1/0 has to be interpreted as ∞, and 1/∞ as 0. Then for ν ∈ Lm
+ , define the

measure χ as the image measure of ν under the mapping Q, i.e.

χ(B) := (Qν)(B) = ν(Q−1(B))

for any Borel set B in [0,∞]m. Note that χ then does not have positive measure on
hyperplanes of the form {(x1, . . . , xm) ∈ [0,∞]m : xk = 0} for fixed k, but can have
positive measure on lines like (0,∞]×{∞}× · · ·×{∞}. However, since ν is a Lévy
measure, χ is finite on any closed rectangle in [0,∞]m not containing (∞, . . . ,∞).
Then define the volume function F = Fν : [0,∞]m → [0,∞] of ν as

F (x1, . . . , xm) :=

{
χ([0, x1]× · · · × [0, xm]), (x1, . . . , xm) 6= {∞, . . . ,∞}
∞, (x1, . . . , xm) = (∞, . . . ,∞).

Note that F (∞, . . . ,∞) = χ([0,∞]m) if and only if ν is infinite. It is convenient
when working with Lévy copulas to define F (∞, . . . ,∞) := ∞ even for finite Lévy
measures as above. This does not alter anything, since ν is completely described by
knowledge of F on [0,∞]m \ {∞, . . . ,∞}.

For ν ∈ Lm
+ , denote the (one-dimensional) margins of ν by ν1, . . . , νm. These

margins are one-dimensional Lévy measures. In fact, ν1, . . . , νm are the Lévy mea-
sures of the one-dimensional margins of the probability measure corresponding to ν.
To each of them we can associate the measure χk := Q1νk and thus define the volume
function Fk of νk. Then Fk(xk) = F (∞, . . . ,∞, xk,∞, . . . ,∞) for any xk ∈ [0,∞]
and we refer to Fk (k = 1, . . . ,m) as the marginal volume functions of ν.

In analogy to probabilistic copulas, Tankov [17] defines a (positive) Lévy copula
to be a function C : [0,∞]m → [0,∞] such that C(x1, . . . , xm) = 0 if at least one of
the xi is zero (groundedness) and

C(∞, . . . ,∞, xk,∞, . . . ,∞) = xk ∀ xk ∈ [0,∞], k = 1, . . . ,m, (2.1)
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and such that C is an m-increasing function, i.e. C(x1, . . . , xm) 6= ∞ if x1, . . . , xm

are not all ∞, and for any set B of the form B = (a1, b1] × · · · × (am, bm] with
0 ≤ ak < bk ≤ ∞ it holds that

∑
sgn(c)C(c) ≥ 0, where the sum is taken over all

vertices c = (c1, . . . , cm) of B, and sgn (c) is defined as

sgn (c) =

{
1, if ck = ak for an even number of vertices,

−1, if ck = ak for an odd number of vertices.

The most important feature of Lévy copulas is that they allow to separate the
margins and the dependence structure of Lévy measures. This is made manifest in
the following version of Sklar’s theorem, proved by Tankov [17].

Theorem 2.1. Let ν ∈ Lm
+ with volume function F and marginal volume functions

F1, . . . , Fm. Then there exists a (positive) Lévy copula C such that

F (x1, . . . , xm) = C(F1(x1), . . . , Fm(xm)) ∀ x1, . . . , xm ∈ [0,∞]. (2.2)

The Lévy copula C is uniquely determined on Ran F1×· · ·×Ran Fm. Conversely, if
C is a positive Lévy copula and F1, . . . , Fm are volume functions of one-dimensional
positive Lévy measures ν1, . . . , νm, then (2.2) defines a Lévy measure ν ∈ Lm

+ with
volume function F and marginal Lévy measures ν1, . . . , νk.

We shall refer to any Lévy copula C satisfying (2.2) as a Lévy copula associated
with ν ∈ Lm

+ .
We proceed to show that Lévy copulas can be regarded as transformations of

special Lévy measures: let C : [0,∞]m → [0,∞] be a Lévy copula. That C is m-
increasing means that C defines a measure χC on (0,∞]m \ {(∞, . . . ,∞)} such that
χC((a1, b1] × · · · × (am, bm]) =

∑
sgn (c)C(c) for 0 ≤ ak < bk ≤ ∞, k = 1, . . . ,m,

where the sum is taken over all vertices c as above. We extend this measure to
[0,∞]m by setting

χC({(∞, . . . ,∞)}) = χC([0,∞]k−1 × {0} × [0,∞]m−k) = 0, 1 ≤ k ≤ m. (2.3)

Then using the fact that C is grounded, we obtain

χC([0, b1]× · · · × [0, bm]) = χC((0, b1]× · · · × (0, b1]) = C(b1, . . . , bm), (2.4)

for 0 ≤ b1, . . . , bm ≤ ∞. Condition (2.1) means that χC has uniform margins, i.e.

χC([0,∞]k−1 × [0, xk]× [0,∞]m−k) = xk, k = 1, . . . ,m. (2.5)

Furthermore, it is easy to see that for any positive measure χ on [0,∞]m satisfying
(2.3) and having uniform margins, (2.4) defines a unique Lévy copula C such that
χC = χ. Applying the map Q−1

m = Qm to χC gives another measure νC . We
summarize this in the following

Definition 2.2. For any (positive) Lévy copula C, the measure χC is defined to be
the unique measure on [0,∞]m satisfying (2.3) – (2.5). The measure νC is defined
as

νC := Q−1
m χC . (2.6)
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The following Theorem then shows that νC is a Lévy measure with 1-stable
margins (i.e. there are constants δk ≥ 0, k = 1, . . . ,m, such that the marginal
volume functions of νC are equal to [0,∞] → [0,∞], xk 7→ δkxk).

Theorem 2.3. If C is an m-dimensional Lévy copula, then the measure νC is a Lévy
measure with 1-stable margins. More precisely, the marginal volume functions of νC

are equal to [0,∞] → [0,∞], xk 7→ xk, and C is the volume function of νC. The
Lévy measure νC is not of finite variation, i.e.

∫
|x|<1

|x|νC(dx) = ∞. Conversely,

if ν ∈ Lm
+ is any Lévy measure with marginal volume functions [0,∞] → [0,∞],

xk 7→ xk, then there exists a unique Lévy copula C such that νC = ν.

Proof . Let C be a Lévy copula. Since χC is finite outside neighbourhoods of
(∞, . . . ,∞), νC is finite outside neighbourhoods of the origin. Denote by (χC)k the
k-th marginal measure of χC . Then∫

[0,1]m

m∑
k=1

x2
k dνC(x1, . . . , xm)

=
m∑

k=1

∫
[1,∞]m

1

y2
k

dχC(y1, . . . , ym)

≤
m∑

k=1

∫
[0,∞]k−1×[1,∞]×[0,∞]m−k

1

y2
k

dχC(y1, . . . , ym)

=
m∑

k=1

∫ ∞

1

1

y2
k

d(χC)k(yk)

=
m∑

k=1

∫ ∞

1

1

y2
k

dyk <∞.

Hence, νC is a Lévy measure. Furthermore,∫
[0,1]m

m∑
k=1

xk dνC(x1, . . . , xm) ≥
∫

[1,∞]m

1

y1

dχC(y1, . . . , ym)

=

∫
[1,∞]×[0,∞]m−1

1

y1

dχC(y1, . . . , ym)

−
∫

[1,∞]×([0,∞]m−1\[1,∞]m−1)

1

yi

dχC(y1, . . . , ym).

But the first integral is equal to
∫∞

1
1
y1
dy1 = ∞, while the second integral is finite

since χC([1,∞]× ([0,∞]m−1 \ [1,∞]m−1)) <∞. Thus, νC is not of finite variation.
The remaining assertions are clear from the preceding discussion.

3 Lévy copulas and convergence of Lévy measures

In this section we obtain a limit result for Lévy measures, characterising convergence
of a sequence of Lévy measures by convergence of the margins and of the Lévy
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copulas. Let µ be an infinitely divisible distribution on Rm with characteristic
triplet (A, ν, γ). Recall that ν is completely characterised by (A, ν, γ), and that the
characteristic function µ̂ of µ satisfies

µ̂(z) = exp
{
−1

2
〈z, Az〉+ i〈γ, z〉+

∫
Rm

(ei〈z,x〉 − 1− i〈z, x〉1|x|≤1) dν(x)
}
, z ∈ Rm.

Here, A is a symmetric nonnegative-definite m ×m-matrix, ν is the Lévy measure
of µ, and γ ∈ Rm is a constant. 〈·, ·〉 denotes the Euclidean inner product on Rm.

Denote by C# the class of bounded continuous functions from Rm to R vanishing
in a neighbourhood of the origin. Let (µ(n))n∈N be a sequence of infinitely divisible
distributions on Rm with characteristic triplets (A(n), ν(n), γ(n)). For any ε > 0
define symmetric nonnegative-definite matrices A(n),ε by

〈z, A(n),εz〉 = 〈z, A(n)z〉+

∫
|x|≤ε

〈z, x〉2 dν(n)(x), z ∈ Rm.

The following Theorem can be found in Sato [14], Theorem 8.7:

Theorem 3.1. With the notations above, µ(n) converges weakly to the infinitely
divisible distribution µ as n→∞ if and only if

lim
n→∞

∫
Rm

f(x) dν(n)(x) =

∫
Rm

f(x) dν(x) ∀ f ∈ C#, (3.1)

lim
ε→0

lim sup
n→∞

|〈z, A(n),εz〉 − 〈z, Az〉| = 0 ∀ z ∈ Rm, (3.2)

lim
n→∞

β(n) = β, (3.3)

where

β := γ −
∫
|x|≤1

x|x|2 dν(x)

and β(n) is defined similarly.

We see that the appropriate convergence concept for Lévy measures is described

by relation (3.1). We shall write ν(n) #→ ν for this type of convergence of Lévy
measures. In order to prove our main result of this section, we need to show the
following lemma:

Lemma 3.2. Let (ν(n))n∈N ⊂ Lm
+ , ν ∈ Lm

+ , with volume functions F (n) and F ,
respectively. For any i ∈ {1, . . . ,m}, set

Ai := {xi ∈ [0,∞) : Fi continuous in xi} ∪ {∞},

where the Fi denote the marginal volume functions of ν. Then ν(n) #→ ν as n→∞
if and only if F (n)(x) converges pointwise to F (x) at any x ∈ A1 × · · · × Am.
Moreover, this is equivalent to vague convergence of ν(n) to ν on the set E :=
[0,∞]m \ {0, . . . , 0}.
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Proof . For i = 1, . . . ,m, set Bi := Q1Ai, and B̃i := Bi \ {0,∞}. Then

F

(
1

y1

, . . . ,
1

ym

)
= ν([y1,∞]× · · · × [ym,∞]).

Let χ = Qmν and E := [0,∞]m \ {(0, . . . , 0)}.
It is clear that ν(n) #→ ν as n → ∞ implies vague convergence of ν(n) to ν.

So suppose that ν(n) converges vaguely on E to ν. Let k ∈ {1, . . . ,m} and let

y = (y1, . . . , ym) such that yi ∈ B̃i for 0 ≤ i ≤ k, and yi = 0 for i > k. We have
to show that ν(n)([y1,∞]× · · · × [ym,∞]) converges to ν([y1,∞]× · · · × [ym,∞]) as
n → ∞. Let g := 1[y1,∞]×···×[ym,∞]. For any integer t > (min{y1, . . . , yk})−1 and
1 ≤ i ≤ k set

y′i := yi −
1

t
, y′′i := yi +

1

t
.

Furthermore, define

K1 := [y1,∞]× · · · × [ym,∞],

U1,t := (y′1,∞]× · · · × (y′k,∞]× [0,∞]m−k,

K2,t := [y′′1 ,∞]× · · · × [y′′k ,∞]× [0,∞]m−k,

U2 := (y1,∞]× · · · × (yk,∞]× [0,∞]m−k.

Then K1 and K2,t are compact in E and have (in the topology of E) open neigh-
bourhoods U1,t and U2, respectively. Urysohn’s Lemma (e.g. Simmons [16], page
135) now implies the existence of continuous functions ht and ft on E such that
0 ≤ ft ≤ g ≤ ht ≤ 1 and ht = 1 on K1, ft = 1 on K2,t, and the supports of ht and
ft are contained in U1,t and U2, respectively. Since ν(n) converges vaguely to ν as
n→∞, we conclude∫

E

ft dν ≤ lim inf
n→∞

∫
E

g dν(n) ≤ lim sup
n→∞

∫
E

g dν(n) ≤
∫

E

ht dν.

Setting

Dt :=
k⋃

i=1

[
0,∞]i−1 × [y′i, y

′′
i ]× [0,∞]m−i

)
,

we have {ht 6= ft} ⊂ Dt. Since yi ∈ B̃i for i = 1, . . . , k, ν(Dt) → 0 as t → ∞. But
this implies

lim inf
n→∞

∫
E

g dν(n) = lim sup
n→∞

∫
E

g dν(n) =

∫
E

g dν.

This shows that F (n)(x) converges pointwise to F (x) at any x ∈ A1 × · · · × Am.
Now suppose that F (n) converges pointwise to F on A1 × · · · × Am. To show

vague convergence of ν(n) to ν on E, let f be a continuous function on E with
compact support in E. Choose yi ∈ B̃i (i = 1, . . . ,m) such that the support of f
is contained in the compact space E ′ := E \ ([0, y1)× · · · × [0, ym)). Denote by R
the class of all rectangles of the form R = R1 × · · · × Rm, where Ri = [ai, bi) or
Ri = [ai,∞] with ai ∈ Bi \ {∞}, bi ∈ Bi, ai < bi and not all ai = 0. Note that if
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Ri = [ai,∞] for some i, then the Lévy measure of R is the same as if Ri is replaced
by [ai,∞). Then for each R, we have

ν(R) = χ

((
1

b1
,

1

a1

]
× · · · ×

(
1

bm
,

1

am

])
=
∑

sgn (c)F (c),

where the sum is taken over all vertices c of ( 1
b1
, 1

a1
]×· · ·× ( 1

bm
, 1

am
]. By assumption,

this then implies that ν(n)(R) converges to ν(R) as n → ∞ for any R ∈ R. It
then follows that ν(n)(S) converges to ν(S) for any S which is a finite union of
elements of R. In particular, limn→∞ ν(n)(E ′) = ν(E ′). Since Bi is dense in [0,∞]
and 0,∞ ∈ Bi, every (in the topology of E ′) open set G in E ′ is a countable union
of elements of R. Then if G ⊂ E ′ is open in E ′ and if S ⊂ G is a finite union of
elements of R, it follows that

ν(S) = lim
n→∞

ν(n)(S) ≤ lim inf
n→∞

ν(n)(G),

and hence ν(G) ≤ lim infn→∞ ν(n)(G). If K ⊂ E ′ is compact, then

lim sup
n→∞

ν(n)(K) = lim
n→∞

ν(n)(E ′)− lim inf
n→∞

ν(n)(E ′ \K)

≤ ν(E ′)− ν(E ′ \K) = ν(K).

But this means that ν
(n)
|E′ converges vaguely to ν|E′ in E ′ (e.g. Resnick [12], Proposi-

tion 3.12). In particular,
∫

E
f dν(n) →

∫
E
f dν, since the support of f is contained

in E ′. Since f was arbitrary, this implies vague convergence of ν(n) to ν on E.
Now let f be a continuous function on [0,∞)m, bounded by a constant M and

vanishing in a neighbourhood of the origin. Let ε > 0 and choose yi ∈ B̃i such
that ν([0,∞)m \ ([0, y1) × · · · × [0, ym))) < ε

2M
. Let gε be a continuous function

with compact support in E such that f = gε on [0, y1] × · · · × [0, ym] and gε is

bounded by M . Since yi ∈ B̃i, for sufficiently large n follows, by assumption, that
ν(n)([0,∞)m \ ([0, y1)× · · · × [0, ym))) < ε

M
. This implies∣∣∣∣∫

E

gε dν
(n) −

∫
E

f dν(n)

∣∣∣∣ ≤ ε,

∣∣∣∣∫
E

gε dν −
∫

E

f dν

∣∣∣∣ ≤ ε.

Since limn→∞
∫

E
gε dν

(n) =
∫

E
gε dν by vague convergence, as already shown, it fol-

lows that limn→∞
∫

E
f dν(n) =

∫
E
f dν, i.e. ν(n) #→ ν as n→∞.

We can now show that a sequence of Lévy measures converges to a Lévy measure
if and only if the margins converge and the Lévy copulas converge pointwise on a
suitable subset. This is an analogue of a result of Lindner and Szimayer [11] for
probabilistic copulas.

Theorem 3.3. Let (ν(n))n∈N ⊂ Lm
+ , ν ∈ Lm

+ , with margins ν
(n)
i and νi (i =

1, . . . ,m), and associated Lévy copulas C(n) and C, respectively. Then ν(n) #→ ν

as n → ∞ if and only if ν(n)
i

#→ νi as n → ∞ for i = 1, . . . ,m, and C(n) con-
verges pointwise to C on RanF1 × · · · × RanFm as n → ∞, where the Fi denote
the marginal volume functions of ν. In that case, the convergence of C(n) to C is
uniform on any set of the form (RanF1 × · · · × RanFm) ∩ (K1 × · · · ×Km), where
Ki is a compact subset of [0,∞), or Ki = {∞}.
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Proof . Since the proof is similar to the proof of Theorem 2.1 in Lindner and Szi-
mayer [11], we only give a sketch of it. The main difference to the proof in [11] is
that the Lipschitz continuity property has to be modified in the following sense: if
D is any Lévy copula, if 1 ≤ k ≤ m and if u1, . . . , uk, v1, . . . , vk ∈ [0,∞), then

|D(u1, . . . , uk,∞, . . . ,∞)−D(v1, . . . , vk,∞, . . . ,∞)| ≤
k∑

i=1

|ui − vi|. (3.4)

This follows readily from the fact that any Lévy copula defines a measure with
uniform margins. Let Mi := {Fi(xu,i) : xu,i ∈ Ai \ {∞}}, where Fi and Ai are as
in Lemma 3.2.

Suppose that ν(n) #→ ν as n→∞. Then ν
(n)
i

#→ νi by Lemma 3.2. Furthermore,
for any (u1 . . . , uk) ∈ M1 × · · · ×Mk such that ui = Fi(xu,i), xu,i ∈ Ai, we obtain
using (3.4), similarly to the proof in [11],

|C(n)(u1, . . . , uk,∞, . . . ,∞)− C(u1, . . . , uk,∞, . . . ,∞)|

≤
k∑

i=1

|Fi(xu,i)− F
(n)
i (xu,i)|

+ |F (n)(xu,1, . . . , xu,k,∞, . . . ,∞)− F (xu,1, . . . , xu,k,∞, . . . ,∞)|.

Lemma 3.2 then implies convergence of C(n) to C at (u1, . . . , uk,∞, . . . ,∞). Con-
vergence on RanF1 × · · · × RanFm and the assertion on the uniform convergence
follows as in [11].

For the converse, suppose that ν
(n)
i

#→ νi as n → ∞, and that C(n) converges
pointwise on M1×· · ·×Mk×{∞}×· · ·×{∞}. Then for x = (x1, . . . , xk,∞, . . . ,∞)
with xi ∈ Ai \ {∞}, it follows as in [11] that

|F (n)(x)− F (x)|

≤
k∑

i=1

|F (n)
i (xi)− Fi(xi)|

+ |C(n)(F1(x1), . . . , Fk(xk),∞, . . . ,∞)− C(F1(x1), . . . , Fk(xk),∞, . . . ,∞)|.

Lemma 3.2 then gives the claim.

Since any Lévy copula C defines itself a measure νC via Definition 2.2, it is
natural to ask whether the pointwise convergence condition of C(n) can be replaced
by vague convergence of νC(n) . Since the limit copula C is not necessarily unique
if RanFi 6= [0,∞] for some i, vague convergence is not to be expected in general.
However, if RanFi = [0,∞] for all i = 1, . . . ,m, then the statement on the pointwise
convergence of C(n) in Theorem 3.3 can be replaced by vague convergence of νC(n) .
This follows from the following corollary to Lemma 3.2.

Corollary 3.4. Let (C(n))n∈N and C be Lévy copulas. Then C(n) converges pointwise

on [0,∞]m to C if and only if νC(n)

#→ νC as n→∞.
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Recalling that weak convergence of infinitely divisible distributions can be de-
scribed by convergence of the characteristic triplets as in Theorem 3.1, we obtain
the following corollary to Theorem 3.3:

Corollary 3.5. Let (µ(n))n∈N and µ be infinitely divisible distributions with charac-
teristic triplets (A(n), ν(n), γ(n)) and (A, ν, γ), such that ν and ν(n) are in Lm

+ . Let

µ(n) = (µ
(n)
1 , . . . , µ

(n)
m ) and µ = (µ1, . . . , µm). Suppose that A(n) converges pointwise

to A as n → ∞. Then µ(n) converges weakly to µ as n → ∞ if and only if all the
margins µ

(n)
i converge weakly to µi as n→∞, i = 1, . . . ,m, and the Lévy copula of

νn converges pointwise to the Lévy copula of ν on RanF1×· · ·×RanFm as n→∞,
where the Fi denote the marginal volume functions of ν.

It should be noted that the assumption limn→∞A(n) = A is somehow restrictive.
It implies that in the limit the Lévy measures do not contribute to an extra Gaussian
part. This then makes an easy description by the Lévy copula convergence feasible.

Proof . The “only-if”-direction is clear from Theorems 3.1 and 3.3, so we only have
to show the converse. This is done by checking the conditions in Theorem 3.1. Here,
(3.1) holds by Theorem 3.3. The characteristic triplet of µi is (Aii, νi, γ̃i), where Aii

denotes the i’th diagonal element of A, γ̃i = γi +
∫

Rm
+
xi(1|xi|≤1 − 1|x|≤1) dν(x), and

γi denotes the i’th coordinate of γ, see Sato [14], Proposition 11.10. Let β̃i :=
γ̃i −

∫
|xi|≤1

xi|xi|2 dνi(xi). To show (3.2) and (3.3), note that convergence of A(n) to

A implies convergence of A
(n)
ii to Aii. Since µ

(n)
i converges weakly to µi, Theorem 3.1

implies that

lim
ε→0

lim sup
n→∞

∣∣∣∣∫
|xi|≤ε

x2
i dν

(n)
i (xi)

∣∣∣∣ = 0, (3.5)

and that β̃
(n)
i converges to β̃i as n → ∞. Again, by convergence of An to A and

(3.5) it then follows, for any z ∈ Rm, that

lim sup
ε→0

lim sup
n→∞

|〈z, A(n),εz〉 − 〈z, Az〉|

≤ |z|2 lim sup
ε→0

lim sup
n→∞

∣∣∣∣∫
|x|≤ε

|x|2 dν(n)(x)

∣∣∣∣
≤ |z|2 lim sup

ε→0
lim sup

n→∞

m∑
i=1

∣∣∣∣∫
|xi|≤ε

x2
i dν

(n)
i (xi)

∣∣∣∣ = 0. (3.6)

This shows (3.2). For (3.3), note that

βi − β̃i =

∫
|xi|≤1

x3
i dνi(xi)−

∫
|x|≤1

xi|x|2 dν(x)−
∫

Rm
+

xi(1|xi|≤1 − 1|x|≤1) dν(x),

where βi denotes the i’th coordinate of β (as appearing in Theorem 3.1). From

ν(n) #→ ν, (3.5) and (3.6) one can show that β
(n)
i − β̃

(n)
i converges to βi − β̃i as

n→∞. Since β̃
(n)
i converges to β̃i, this proves that β

(n)
i converges to βi as n→∞,

verifying (3.3). This finishes the proof.
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4 Homogeneous Lévy copulas

In this section we discuss the special class of homogeneous Lévy copulas. A Lévy
copula C is called homogeneous (of order 1), if

C(u1, . . . , um) = t C(u1/t, . . . , um/t) ∀ u1, . . . , um ∈ [0,∞] ∀ t > 0.

These Lévy copulas appear naturally, because they correspond to Lévy processes
with time constant Lévy copulas. We study this in subsection 4.1. In 4.2 we investi-
gate further properties of homogeneous Lévy copulas, which are not in the dynamical
context of Lévy processes.

Examples of homogeneous Lévy copulas are the Lévy copula of complete depen-
dence

C(u1, . . . , um) = min{u1, . . . , um},
the copula of independence

C(u1, . . . , um) =
m∑

i=1

ui 1u1=···=ui−1=ui+1=···=um=∞,

and the family of Clayton Lévy copulas, defined for θ > 0 by

C(u1, . . . , um) =

(
m∑

i=1

u−θ
i

)−1/θ

,

u1, . . . , um ∈ [0,∞], see Cont and Tankov [8], Chapter 5. An example of a non-
homogeneous Lévy copula is given in Example 4.2.

Euler showed that a continuously differentiably function f : (0,∞)k → R is
homogeneous (of order 1) if and only if Euler’s formula

k∑
i=1

ui
∂f(u1, . . . , uk)

∂ui

= f(u1, . . . , uk) (4.1)

holds on (0,∞)k. We will not use this characterisation in the sequel. However, note
that for Lévy copulas (4.1) not only has to be checked for C on (0,∞)m, but also on
hyperplanes where one or more of the ui are ∞. For example, on {um−1 = um = ∞},
(4.1) has to be checked for the function

(0,∞)m−2 → R, (u1, . . . , um−2) 7→ C(u1, . . . , um−2,∞,∞)

(provided it is continuously differentiable).

4.1 Time-wise properties of Lévy copulas of Lévy processes

Let (L(t))t≥0 be a Lévy process in Rm. Then at any time t, L(t) has an infinitely
divisible distribution. If ν(t) denotes the Lévy measure of L(t) then ν(t) = tν(1). Now
suppose that ν(1) ∈ Lm

+ with associated Lévy copula C(1). Then it follows readily
that

C(t)(u1, . . . , um) := t C(1)(u1/t, . . . , um/t), ∀ u1, . . . , um ∈ [0,∞], (4.2)

11



gives a Lévy copula associated with ν(t). In particular, if C(1) is homogeneous, then
the Lévy process is described by the same Lévy copula C(1) at any time t. On the
other hand, if C is a Lévy copula and (L(t))t≥0 is a Lévy process such that C is

associated with ν(t) for every t, and if there is some ε > 0 such that RanF
(1)
i ⊃ [0, ε]

for all i = 1, . . . ,m (where F
(1)
i denote the marginal volume functions of ν(1)), then

C must be homogeneous. This follows from the fact that the Lévy copula of ν(t)

is unique on t(RanF
(1)
1 × · · · × RanF

(1)
m ) for any t > 0 by Theorem 2.1, hence on

[0,∞]m. Thus, the Lévy copulas at times t and 1 satisfy (4.2), showing that C is
homogeneous.

We now turn to convergence of Lévy copulas of Lévy processes as time goes
to infinity and to zero. Again, the homogeneous Lévy copulas appear naturally as
possible limit copulas.

Theorem 4.1. Let (L(t))t≥0 be a Lévy process with positive Lévy measure and with
Lévy copula C(t) at time t given by (4.2). Then:

(a) C(t) converges pointwise to a finite function D on [0,∞]m \ {(∞, . . . ,∞)} as
t → ∞ if and only if all for all directions (u1, . . . , um) ∈ Rm

+ the directional
derivative of C(1) exists at the origin. In that case, the function D is a homo-
geneous Lèvy copula. The convergence is uniform on [0,∞]m if and only if C(1)

is homogeneous.

(b) If C(t) converges pointwise to a finite function D on [0,∞]m \ {(∞, . . . ,∞)}
as t → 0, then the function D is a homogeneous Lévy copula. C(t) converges
uniformly on [0,∞]m to D as t → 0 if and only if ‖C(1) − D‖∞ < ∞, where
‖ · ‖∞ denotes the supremum norm on [0,∞]m \ {∞, . . . ,∞}.

Proof . From (4.2) follows readily that if C(t) converges pointwise to a finite function
D on [0,∞]m \ {∞, . . . ,∞} as t → ∞ or t → 0, then D must be a homogeneous
Lévy copula. Further, noting that for u = (u1, . . . , um) and t > 0 we have

t C(1)(u/t) =
C(1)(u/t)− C(1)(0)

1/t
,

it follows that limt→∞C(t)(u) exists if and only if if the directional derivative of C(1)

in direction u exists at the origin. If C(1) is homogeneous, then uniform convergence
of C(t) as t → ∞ is clear. For the converse, suppose uniform convergence, but
that C(1) is not homogeneous. Then there is u ∈ [0,∞]m and t0 > 0 such that
|C(1)(t0u)− t0C(1)(u)| =: ε > 0. From the uniform convergence follows the existence
of t1 > 0 such that |t C(1)(v/t) −D(v)| ≤ ε for any v ∈ [0,∞]m \ {∞, . . . ,∞} and
any t > t1. Using the homogeneity of D we conclude for t > t1

|tt0C(1)(u)− tt0D(u)| =
∣∣t0tC(1)(tu/t)− t0D(tu)

∣∣ ≤ t0ε,

|tC(1)(t0u)− tt0D(u)| =
∣∣tC(1)(tt0u/t)−D(tt0u)

∣∣ ≤ ε.

This implies

tε = t|t0C(1)(u)− C(1)(t0u)| ≤ (1 + t0)ε ∀ t ≥ t1,

12



which clearly is a contradiction. This proves (a).

For the proof of (b), note that, by homogeneity of D, C(t) converges uniformly
to D as t→ 0 if and only if t|C(1)(v/t)−D(v/t)| converges uniformly in v to 0. But
this is equivalent to ‖C(1) −D‖∞ <∞.

We give a few examples which are concerned with the convergence of Lévy cop-
ulas of Lévy processes.

Example 4.2. Consider a Lévy process such that the Lévy copula at time 1 is given
by

C(1)(u1, . . . , um) := log

((
m∑

i=1

e−ui

1− e−ui

)−1

+ 1

)
.

This Lévy copula was introduced in Tankov [17], see Cont and Tankov [8], page 150.
Let D∞(u1, . . . , um) := (

∑m
i=1(1/ui))

−1
and D0(u1, . . . , um) := min{u1, . . . , um}.

Then easy calculations show that C(t) converges pointwise to D∞ as t → ∞. The
convergence is not uniform, since C(1) is not homogeneous. On the other hand, it
is easy to show that ‖C(1) −D0‖∞ <∞, so that C(t) converges uniformly to D0 as
t→ 0.

Example 4.3. Let the probabilistic copulas H1 and H2 on [0, 1]2 be given by
H1(u, v) := uv andH2(u, v) := min{u, v}. For any integer n ∈ Z and u, v ∈ [2n, 2n+1]
let

C(1)(u, v) := 2n + 2nHi

(
u− 2n

2n
,
v − 2n

2n

)
,

where i = 1 if n is odd and i = 2 if n is even. If u ∈ [2n, 2n+1] for some n and
v > 2n+1, set C(1)(u, v) := C(1)(u, 2n+1), and if u > v set C(1)(u, v) = C(1)(v, u). It
can be easily checked that C(1) defines a Lévy copula. Let un := 2n + 2n−1. Then
C(1)(un, un) = un if n is even, and C(1)(un, un) = 2n +2n−2 if n is odd. In particular,

C(1)(un, un)

un

=

{
5/6, n odd,

1, n even.

This shows that for a Lévy process with Lévy copula C(t) at time t > 0, C(t)(1, 1)
does neither converge as t→ 0 nor as t→∞.

There remains the question whether there are Lévy processes such that the Lévy
copula C(t) converges pointwise but not uniformly as t → 0. By now we have not
been able to decide this question.

4.2 Further properties of homogeneous Lévy copulas

In this subsection we investigate further properties of homogeneous Lévy copulas.
The following proposition shows that they are rarely associated with finite Lévy
measures:

13



Proposition 4.4. Let ν be a finite Lévy measure, concentrated on (0,∞)m, and
suppose that the Lévy copula C associated with ν is homogeneous. Then C must be
the Lévy copula of complete dependence, i.e.

C(u1, . . . , um) = min{u1, . . . , um} ∀ u1, . . . , um ∈ [0,∞].

Proof . Denote by M the total mass of ν and its (marginal) volume functions by Fi

and F . Then limxi→∞ Fi(xi) = M for i ∈ {1, . . . ,m}, and limx→∞ F (x, . . . , x) = M .
Therefore C(F1(x), . . . , Fm(x)) converges to M as x → ∞, by (2.2). From the
continuity property (3.4) then follows C(M, . . . ,M) = M . Since C was assumed to
be homogeneous, we conclude C(u, . . . , u) = u for any u > 0. Now let u1, . . . , um ∈
[0,∞] and suppose w.l.o.g. that their minimum is at u1. Then

u1 = C(u1, . . . , u1) ≤ C(u1, u2, . . . , um) ≤ C(u1,∞, . . . ,∞) = u1,

showing the claim.

The following theorem provides a stepping stone to Corollary 4.6 below, which
characterises homogeneous Lévy copulas C in terms of the Lévy measure νC they
define. We say that a Lévy measure is stable or self-decomposable, if it is the Lévy
measure of a stable or self-decomposable infinitely divisible distribution, respec-
tively. For the definitions and properties of such distributions, we refer to Sato [14],
Chapters 13–15.

Theorem 4.5. Let α ∈ (0, 2) and ν be a Lévy measure with non-degenerate α-stable
margins and associated Lévy copula C. Then

(a) ν is stable if and only if νC is 1-stable.

(b) ν is selfdecomposable if and only if νC is selfdecomposable.

Proof . We first prove part (b). Let Fi(xi) = kix
α
i (ki > 0, i = 1, . . . ,m) be the

marginal volume functions of ν. By Sato [14], Theorem 15.8, ν is selfdecomposable
if and only if ν(t−1B) ≥ ν(B) for all Borel sets B in [0,∞)m and all t ≥ 1, or what
is the same if

χ(t−1B) ≤ χ(B) (4.3)

for all Borel sets B in (0,∞]m and all t ≥ 1; here χ = Qν. It is enough to check
(4.3) for all Borel sets of the form B := (a1, b1]× · · · × (am, bm]. With the aid of the
volume function of ν we can write

χ(B) =
∑

sgn (c)F (c)

=
∑

sgn (c)C(F1(c1), . . . , Fm(cm))

=
∑

sgn (c)C(k1 x
α
1 , . . . , km x

α
m),

where the sum is taken over all vertices c = (c1, . . . , cm) of B. Thus, ν is selfdecom-
posable if and only if∑

sgn (c)C(t−αk1c
α
1 , . . . , t

−αkmc
α
m) ≤

∑
sgn (c)C(k1c

α
1 , . . . , kmc

α
m)
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for all t ≥ 1 and all sets (a1, b1]× · · · × (am, bm]. Substituting ui = kia
α
i , vi = kib

α
i ,

this is the same as ∑
sgn (d)C(t−αd) ≤

∑
sgn (d)C(d),

where the sum ranges over all vertices d of (u1, v1], . . . , (um, vm]. The latter is the
condition for the Lévy measure with volume function C, i.e. νC , to be selfdecom-
posable.

The proof of (a) is similar, using Sato [14], Theorem 14.3.

Tankov [17] showed that if α ∈ (0, 2) and if a positive Lévy measure ν has non-
degenerate α-stable margins, then ν is α-stable if and only if the associated Lévy
copula is homogeneous. Now we immediately obtain:

Corollary 4.6. A Lévy copula C is homogeneous if and only if νC is a 1-stable Lévy
measure.

5 The mapping Υ and Lévy copulas

In this section we shall recall the definition of the mapping Υ(m) and investigate its
action on copulas. This mapping will play a crucial role in the next section, when we
construct arbitrary Lévy measures in the Bondesson or Thorin class with prescribed
margins. For self-decomposable distributions a similar construction, using another
mapping Φ, will be given.

The mapping Υ(m) was introduced by Barndorff-Nielsen and Thorbjørnsen [5, 6]
for the one-dimensional case m = 1 and extended by Barndorff-Nielsen, Maejima
and Sato [2] to the multivariate setting. It maps infinitely divisible distributions
to infinitely divisible distributions. More precisely, if µ is an infinitely divisible
distribution on Rm with characteristic triplet (A, ν, γ), then µ̃ := Υ(µ) := Υ(m)(µ)

is the infinitely divisible distribution with characteristic triplet (Ã, ν̃, γ̃), where

Ã := 2A,

ν̃(B) :=

∫ ∞

0

e−s ν(s−1B) ds ∀ B Borel set in Rm,

γ̃ = γ +

∫ ∞

0

e−s s

∫
Rm

x

(
1

1 + |x|2s2
− 1

1 + |x|2

)
ν(dx) ds.

It can be shown that this is well defined, in particular ν̃ is a Lévy measure. Fur-
thermore, extending results for dimension 1 due to Barndorff-Nielsen and Thor-
bjørnsen [5], Barndorff-Nielsen, Maejima and Sato [2] prove that Υ(µ) is the law

of the stochastic integral
∫ 1

0
(− log t) dX

(t)
µ , where (X

(t)
µ )t≥0 is a Lévy process with

distribution µ at time 1. They show moreover that Υ is a bijection from the class
of infinitely divisible distributions on Rm to the Bondesson class B(Rm). We shall
give the definition of B(Rm) in Section 6.1. For the moment, we mention only that
B(Rm) contains all the stable distributions and is a proper subclass of the class of
infinitely divisible distributions on Rm. Furthermore, any element in B(R1) has a
Lévy density.
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The transformation of ν to ν̃ when applying Υ(m) is the most interesting part.
We can restrict Υ to a mapping of Lévy measures, sending ν to ν̃; this mapping
will be denoted by Υ

(m)
0 . If the dimension m is clear from the context, we will

occasionally skip m from the notation. So we have for any Borel set B ⊂ Rm,

Υ0(ν)(B) := Υ
(m)
0 (ν)(B) := ν̃(B) =

∫ ∞

0

e−s ν(s−1B) ds. (5.1)

In particular, Υ
(m)
0 is a bijection from Lm

+ to the class of Lévy measures in Lm
+ which

correspond to infinitely divisible distributions in the Bondesson class. Furthermore,
Υ

(1)
0 can be viewed as a regularizer, since Υ

(1)
0 (ν) will have a Lévy density.

One important feature of Υ0, which will be used in Section 6.1, is that it com-
mutes with projection onto the axes. More precisely, if ν ∈ Lm

+ and Πi : Rm
+ → R+

denotes the projection onto the i’th axis (i = 1, . . . ,m), then

ν̃i := Πi(Υ
(m)
0 (ν)) = Υ

(1)
0 (Πiν). (5.2)

This can be seen easily from the definition of Υ0. Next, we show how the copulas
transform when Υ0 is applied to positive Lévy measures.

Lemma 5.1. Let ν ∈ Lm
+ with marginal volume functions F1, . . . , Fm and Lévy

copula C. Let Mi := limxi→∞ Fi(xi), the total mass of the marginal Lévy measure

νi. Let ν̃ := Υm
0 (ν) with marginal volume functions F̃i, i = 1, . . . ,m and Lévy copula

C̃. Then, for any x1, . . . , xm ∈ [0,∞],

C̃(F̃1(x1), . . . , F̃m(xm)) =

∫ ∞

0

e−sC (F1(sx1), . . . , Fm(sxm)) ds. (5.3)

The Lévy copula C̃ is uniquely determined on ([0,M1]∪{∞})×· · ·×([0,Mm]∪{∞}).
If the marginal Lévy measures νi are non-degenerate κi-stable with κi ∈ (0, 2), then
Mi = ∞, and for any u1, . . . , um ∈ [0,∞],

C̃(u1, . . . , um) =

∫ ∞

0

e−sC

(
sκ1

u1

Γ(κ1 + 1)
, . . . , sκm

um

Γ(κm + 1)

)
ds. (5.4)

Proof . Denote by F̃ the volume function of ν̃. Let x1, . . . , xm ∈ [0,∞]. Taking

B := [1/x1,∞)× · · · × [1/xm,∞) in (5.1) gives for the volume functions F and F̃ ,

F̃ (x1, . . . , xm) =

∫ ∞

0

e−s F (sx1, . . . , sxm) ds, (5.5)

which is equivalent to (5.3) by Theorem 2.1. Furthermore, taking Bi := [0,∞)i−1 ×
(0,∞)× [0,∞)m−i, (5.1) and (5.2) imply ν̃i((0,∞)) = νi((0,∞)) = Mi. Since ν̃i has

a Lévy density, Ran F̃i ⊃ [0,Mi) ∪ {∞}, and the uniqueness-assertion follows from
Theorem 2.1 and the continuity property (3.4).

If the margins νi are non-degenerate κi-stable, then Fi(xi) = bi x
κi
i for some

bi > 0, and an easy calculation shows F̃i(xi) = biΓ(κi +1)xκi
i . Inserting this in (5.3)

gives (5.4).
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In the following Theorem we consider the effect of the mapping Υ0 to measures
with homogeneous Lévy copulas:

Theorem 5.2. Let ν ∈ Lm
+ have stable non-degenerate margins with indices κ1, . . . ,

κm ∈ (0, 2). Then the Lévy copula associated with ν is homogeneous if and only if
the Lévy copula associated with Υ0(ν) is homogeneous.

Proof . Let νi, i = 1, . . . ,m, be the non-degenerate κi stable margins of ν. From
(5.4) we see immediately that if C is homogeneous then so is C̃. For the converse,

suppose that C̃ is homogeneous. It then follows from (5.4) that for any t > 0,

t−1C̃(t−κ1u1, . . . , t
−κmum) =

∫ ∞

0

e−rtC

(
rκ1u1

Γ(κ1 + 1)
, . . . ,

rκmum

Γ(κm + 1)

)
dr.

For fixed u = (u1, . . . , um) ∈ [0,∞]m \ {∞, . . . ,∞}, define

fu : (0,∞) → R, r 7→ C

(
rκ1

u1

Γ(κ1 + 1)
, . . . , rκm

um

Γ(κm + 1)

)
,

gu : (0,∞) → R, t 7→ t−1C̃
(
t−κ1u1, . . . , t

−κmum

)
.

Then gu is the Laplace transform of fu, gu = Lap(fu). Further, for fixed s > 0,
1
s
gsu = Lap(1

s
fsu). Now if C̃ is homogeneous, then gu = 1

s
gsu. From the uniqueness

theorem for Laplace transforms then follows that 1
s
fsu(r) = fu(r) almost everywhere

in r, and even everywhere in r since both functions are continuous by (3.4). In
particular, 1

s
fsu(1) = fu(1), showing that C is homogeneous.

One might wonder if both ν and Υ
(m)
0 (ν) having homogeneous Lévy copulas

implies stability of the margins. This, however, is not the case:

Example 5.3. Let ν ∈ Lm
+ with marginal volume functions F1(x) ≤ F2(x) ≤ · · · ≤

Fm(x) ∀ x ∈ [0,∞] and associated Lévy copula C(u1, . . . , um) = min{u1, . . . , um}.
Then (5.3) shows that C̃ = C is associated with Υ

(m)
0 (ν). In particular, C and C̃

are both homogeneous, although the margins of ν are not necessarily stable.

The following example shows that without assumptions on the margins, homo-
geneity of C does not imply homogeneity of C̃.

Example 5.4. Let ν ∈ L2
+ with marginal volume functions

F1(x1) =

{
2x1, x1 ≤ 2,

3 + x1/2, x1 > 2,

F2(x2) = x2 and the homogeneous Lévy copula C(u1, u2) = min{u1, u2}. Then,
evaluating the integrals in (5.5), it follows that the (marginal) volume functions of

ν̃ satisfy F̃1(x1) = 2x1 − 3
2
x1 exp(−2/x1), F̃2(x2) = x2, and

F̃ (x, F̃1(x)) = F̃1(x)−
(
F̃1(x)−

x

2

)
exp

(
− 3

F̃1(x)− x/2

)
∀ x > 0.

From this it can be easily seen that F̃ (x, F̃1(x))/F̃1(x) is not constant in x > 0, from
which it follows that the copula associated with ν̃ cannot be homogeneous.
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Barndorff-Nielsen, Maejima and Sato [2] have shown that Υ(m) maps the class
of stable random variables bijectively onto itself. For the subclass of stable random
variables with Lévy measure in Lm

+ , another proof of this now follows easily by
combining Theorem 5.2 and Tankov’s characterisation of homogeneous Lévy copulas.

Finally, in this section we define a new mapping Υcop
0 , acting directly on Lévy

copulas. Recall from Definition 2.2 that any Lévy copula C defines a Lévy measure
νC with marginal volume functions Fi : xi 7→ xi. Then F̃i(xi) = xi, so by (2.2)
the volume function of Υ0(νC) is identical to its Lévy copula. Thus, we can define
Υcop

0 (C) to be the unique Lévy copula C ′ such that νC′ = Υ0(νC). By (5.4), this is
equivalent to the following

Definition 5.5. For any Lévy copula C, the transformed Lévy copula Υcop
0 (C) is

defined by

Υcop
0 (C)(u1, . . . , um) =

∫ ∞

0

e−sC(su1, . . . , sum) ds ∀ u1, . . . , um ∈ [0,∞].

Note that Υcop
0 (C) can be defined for any Lévy copula C, while C̃ as appearing

in Lemma 5.1 depends on the margins of a Lévy measure, as shown in Example 5.4.
Furthermore, if C is homogeneous, then Υcop

0 (C) = C.

6 Constructing special Lévy measures with pre-

scribed margins

Let ν1, . . . , νm be prescribed one-dimensional positive Lévy measures which are in
the Bondesson class. Then an easy description of the Lévy copulas which give rise
to multivariate Lévy measures ν in the Bondesson class with these margins does not
seem to be available. However, in Section 6.1 we shall show how Lévy measures ν
in the m-dimensional Bondesson class with margins ν1, . . . , νm can be constructed,
using the mapping Υ. Then, in Sections 6.2 and 6.3 we shall obtain similar results
for self-decomposable Lévy measures and for Lévy measures in the Thorin class.
Again, easy descriptions of the relevant Lévy copulas do not seem to be at hand.

6.1 Lévy measures in the Bondesson class

Bondesson [7] considered the smallest class of probability distributions on [0,∞)
which is closed under weak convergence and convolution and contains all mixtures
of exponential distributions. This class was extended to distributions on the real line,
and we shall refer to that as the Bondesson class B(R). Barndorff-Nielsen, Maejima
and Sato [2] generalised this further to distributions on Rm: by definition, the
multivariate Bondesson class B(Rm) consists of all infinitely divisible distributions
µ whose Lévy measure ν can be expressed as

ν(B) =

∫
S

λ(dξ)

∫ ∞

0

1B(rξ) lξ(r) dr ∀ B Borel set in Rm \ {0}. (6.1)

Here, λ is a positive measure on S = {ξ ∈ Rm : |ξ| = 1} and (lξ)ξ∈S is a family
of functions on (0,∞) such that lξ(r) is completely monotone in r for λ-a.e. ξ, and
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lξ(r) is measurable in ξ for each r > 0. A characterisation of B(Rm) as the smallest
class closed under weak convergence and convolution and containing all “elementary
mixtures” of signed exponential random variables in Rm was also obtained in [2];
we shall not make use of this characterisation in the sequel.

We shall be interested in the subclass B(Rm
+ ), consisting of all elements of B(Rm)

whose Lévy measure is concentrated on Rm
+ . For notational convenience, since for any

infinitely divisible distribution µ the property of belonging to B(Rm
+ ) is completely

determined by its Lévy measure ν, we shall also say that ν belongs to B(Rm
+ ).

In one dimension, B(R+) consists of all infinitely divisible distributions whose
Lévy measure is concentrated on (0,∞) and has a completely monotone Lévy density
there. Recall that a function on (0,∞) is completely monotone if it is C∞ and if
(−1)n(dn/dxn)f(x) ≥ 0 on (0,∞) for all n ∈ N0. By Bernstein’s theorem a function
f on (0,∞) is completely monotone if and only if it is the Laplace transform

f(x) =

∫
(0,∞)

e−xy dψ(y), x > 0

of some positive measure ψ for which the integral is finite. Such an f is a Lévy
density if and only if∫

(0,∞)

(
y−3

∫ y

0

r2e−r dr + y−1e−y

)
dψ(y) <∞,

see [2].

Barndorff-Nielsen, Maejima and Sato [2] showed that the mapping Υ(m) maps the
class of infinitely divisible distributions one-to-one onto B(Rm). From this follows
easily that the class of infinitely divisible distributions whose Lévy measure is con-
centrated on Rm

+ is mapped bijectively onto B(Rm
+ ). This will be the key property

for us when constructing multivariate distributions in the Bondesson class.

The following example shows that not every Lévy measure whose one-dimensional
margins are in B(R+) belongs to B(Rm

+ ).

Example 6.1. Let ν1 and ν2 be one-dimensional Lévy measures with volume func-
tions F1(x1) = xα

1 and F2(x2) = xβ
2 , where 0 < α, β < 2 and α 6= β. Define the

bivariate Lévy measure ν using the Lévy copula C(x1, x2) = min(x1, x2). Then the
volume function of ν is given by F (x1, x2) = min(xα

1 , x
β
2 ). But this implies that the

Lévy measure ν is concentrated on the curve x2 = x
α/β
1 . In particular, its radial

component cannot have a Lebesgue density, so ν 6∈ B(R2
+). However, the marginals

ν1 and ν2 of ν are α- and β-stable, respectively, and hence in B(R+).

So we have seen that not every Lévy copula can be used on margins in the
Bondesson class to obtain a Lévy measure in B(Rm

+ ). The following Theorem gives
a complete description of all possibilities to construct such measures:

Theorem 6.2. Let ν̃1, . . . , ν̃m ∈ B(R+) be prescribed marginal Lévy measures. Set

νi := (Υ
(1)
0 )−1ν̃i, i = 1, . . . ,m. (6.2)
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Let C be any m-dimensional Lévy copula and define the Lévy measure ν with margins
ν1, . . . , νm by (2.2). Then

ν̃ := Υ
(m)
0 (ν)

defines a Lévy measure in the Bondesson class B(Rm
+ ) with margins ν̃1, . . . , ν̃m.

Furthermore, all Lévy measures in B(Rm
+ ) with these margins are obtained in this

way.

Proof . It is clear that ν is a Lévy measure with margins ν1, . . . , νm, and from (5.2)
then follows that ν̃ has margins ν̃1, . . . , ν̃m. Since the range of Υ(m) is the Bondesson
class, ν̃ ∈ B(Rm

+ ) follows. The fact that all such measures are obtained this way

follows since Υ
(m)
0 is a bijection and from Theorem 2.1.

In the following we give some examples applying Theorem 6.2.

Example 6.3. Let 0 < α < β < 2. Let ν̃1 and ν̃2 have α- and β-stable margins,
respectively. In Example 6.1 we have seen that we cannot use any Lévy copula
together with ν̃1, ν̃2 to insure that the resulting bivariate Lévy measure is in the
Bondesson class. Now let νi := (Υ

(1)
0 )−1(ν̃i), i = 1, 2, and define ν with margins ν1

and ν2 using the Lévy copula C(u1, u2) = min(u1, u2). It then follows from (5.4)
that

C̃(u1, u2) =

∫ ∞

0

e−s min

(
sα u1

Γ(α+ 1)
, sβ u2

Γ(β + 1)

)
ds

is the Lévy copula of ν̃ = Υ
(2)
0 (ν). Setting z = z(u1, u2) :=

(
u1

u2

Γ(β+1)
Γ(α+1)

) 1
β−α

, it follows

that

C̃(u1, u2) =

∫ z

0

e−s sβ u2

Γ(β + 1)
ds+

∫ ∞

z

e−s sα u1

Γ(α+ 1)
ds

= u2 P (β + 1, z(u1, u2)) + u1 (1− P (α+ 1, z(u1, u2))) , (6.3)

where

P (a, x) :=
1

Γ(a)

∫ x

0

e−s sa−1 ds, a > 0, x > 0,

denotes the incomplete Γ-function (see e.g. Abramowitz and Stegun [1], formula
6.5.1). So, using the (homogeneous) copula (6.3) on the margins ν̃1 and ν̃2, we
obtain ν̃ ∈ B(R2

+) with α- and β-stable margins. Tables of P (a, x) can be found in
[1], and many software packages have routines implemented to compute it.

Example 6.4. Let ci, αi > 0 (i = 1, . . . ,m) be parameters. Let ν̃1, . . . , ν̃m be Lévy

measures of Γci,αi
distributions. Then ν̃i has Lévy density f̃i(x) = ci x

−1 e−αix 1(0,∞)(x).
We aim to construct a Lévy measure ν̃ in the Bondesson class with margins ν̃1, . . . , ν̃m.
Setting

hi(s) :=
ci
s

1(αi,∞)(s),

we recognize f̃i as the Laplace transform of s 7→ s hi(s). From Barndorff-Nielsen
and Thorbjørnsen [5] then follows that hi is the Lebesgue density of the measure
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χi := Q−1
1 (νi), where νi = (Υ

(1)
0 )−1(ν̃i). In order to construct a Lévy measure ν with

margins νi using Lévy copulas, we need the marginal volume functions

Fi(x) =

∫ x

0

hi(s) ds =

{
0, x ≤ αi,

ci log x
αi
, x > αi.

Then if C is any Lévy copula, (2.2) defines a Lévy measure ν, and ν̃ = Υm
0 (ν) is

then a Lévy measure in the Bondesson class with gamma margins ν̃1, . . . , ν̃m.

Example 6.5. In Example 6.4, specialise to m = 2 and c1 = c2 =: c. Let the copula
C be given by

C(u1, u2) := log

((
2∑

i=1

e−ui

1− e−ui

)−1

+ 1

)
as in Example 4.2. Inserting the marginal volume functions into C we obtain a Lévy
measure ν with volume function F such that F (x1, x2) = 0 if xi ≤ αi for some i,
and else

F (x1, x2) = log(xc
1x

c
2 − αc

1α
c
2)− log(αc

2x
c
1 + αc

1x
c
2 − 2αc

1α
c
2).

From (5.5) then follows that

F̃ (x1, x2)

=

∞∫
max(

α1
x1

,
α2
x2

)

e−s
{
log(s2cxc

1x
c
2 − αc

1α
c
2)− log(sc(αc

2x
c
1 + αc

1x
c
2)− 2αc

1α
c
2)
}
ds.

To simplify further, we suppose that c = 1 and α1 = α2 = 1, so that ν̃i is the Lévy
measure of an exponential distribution with parameter 1. Then, substituting and
using partial integration, it can be shown that

F̃ (x1, x2) = e1/
√

x1x2 E1

(
1

x1

+
1

√
x1x2

)
+ e−1/

√
x1x2 E1

(
1

x1

− 1
√
x1x2

)
− e−2/(x1+x2) E1

(
x2

x1(x1 + x2)
− 1

x1 + x2

)
for x1 < x2. For x1 > x2 we have F̃ (x1, x2) = F̃ (x2, x1), and for x1 = x2 it holds

that F̃ (x1, x1) = e1/x1 E1(2/x1). Here

E1(x) :=

∫ ∞

x

s−1 e−s ds, x > 0

denotes the exponential integral (see e.g. Abramowitz and Stegun [1], formula 5.1.1).

Example 6.6. Now we aim to construct bivariate distributions in the Bondesson
class with tempered stable margins. For this, it is necessary to get the inverse under
Υ

(1)
0 of these distributions. Let ν̃1, . . . , ν̃m be Lévy measures of tempered stable
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distributions TS(κi, δi, γi), where κi ∈ (0, 1) and δi, γi > 0, i = 1, . . . ,m. Denote by

f̃i the Lévy density of ν̃i, which is given by

f̃i(x) = δi2
κi

κi

Γ(1− κi)
x−1−κi exp

{
−1

2
γ

1/κi

i x
}

1(0,∞)(x),

see Barndorff-Nielsen and Shephard [3]. Let νi := (Υ
(1)
0 )−1(ν̃i) and set χi := Q−1

1 (νi).
Define hi(s) by

s hi(s) := δi2
κi

κi

Γ(1− κi)

(s− γ
1/κi

i /2)κi

Γ(1 + κi)
1

[γ
1/κi
i /2,∞)

(s).

Then f̃i is the Laplace transform of s 7→ s hi(s), see e.g. [1], formula 29.3.63. Again,
from [5] follows that hi is the Lebesgue density of the measure χi. Simple calculations
using the properties of the Γ-function show that

hi(s) = δi 2
κi

sin(πκi)

π

(s− γ
1/κi

i /2)κi

s
1

[γ
1/κi
i /2,∞)

(s).

In order to construct a Lévy measure ν with margins νi using Lévy copulas, we need
the marginal volume functions Fi(x) =

∫ x

0
hi(s) ds. To calculate these in an explicit

form, we specialise to κi = 1/2, the case where ν̃i is the Lévy measure of an inverse
Gaussian law. Then Fi(x) = 0 for x ≤ γ2

i /2, and for x ≥ γ2
i /2 we obtain

Fi(x) =
δi
√

2

π

∫ x

γ2
i /2

(s− γ2
i /2)1/2

s
ds =

δi
√

2

π

∫ x−γ2
i /2

0

s1/2

s+ γ2
i /2

ds.

The last integral can be calculated explicitly, see e.g. Dwight [9], formula 185.11.,
and we obtain

Fi(x) =

{
0, x ≤ γ2

i /2,
δi

√
2

π

{
2(x− γ2

i /2)1/2 −
√

2γi arctan
√

2(x−γ2
i /2)1/2

γi

}
, x ≥ γ2

i /2.

Then if C is any Lévy copula, (2.2) defines a Lévy measure ν, and ν̃ = Υm
0 (ν) is

then a Lévy measure in B(Rm
+ ) with inverse Gaussian margins.

6.2 Self-decomposable Lévy measures

The Lévy measure constructed in Example 6.1 not only is not in the Bondesson
class, but also is not self-decomposable, although it has self-decomposable margins.
In the following we shall show how to construct all self-decomposable distributions
with given margins. Much the same way as we constructed Lévy measures in the
Bondesson class using the mapping Υ0, we can construct self-decomposable Lévy
measures using the mapping Φ0 defined below. Recall that an infinitely divisible
distribution µ is self-decomposable if and only if its Lévy measure ν has represen-
tation (6.1), where lξ does not need to be completely monotone, but r 7→ rlξ(r) has
to be decreasing on (0,∞), see Sato [14], Theorem 15.10. By abuse of language, we
shall also say that the Lévy measure ν is self-decomposable.
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Denote by L(Rm
+ ) the class of self-decomposable distributions with Lévy measure

in Lm
+ , and by IDlog(Rm

+ ) the class of infinitely divisible distributions µ with Lévy
measure in Lm

+ and which satisfy∫
|x|>1

log |x| dµ(x) <∞.

If µ is infinitely divisible with Lévy measure ν ∈ Lm
+ , then µ ∈ IDlog(Rm

+ ) if and only
if ∫

|x|>1

log |x| dν(x) <∞,

see Sato [14], Theorem 25.3; we shall also write ν ∈ L(Rm
+ ).

Let µ ∈ IDlog(Rm
+ ) and (X

(t)
µ )t≥0 be a Lévy process with distribution µ at time 1.

Then Φ(m)(µ) := Φ(µ) :
d
=
∫∞

0
e−t dX

(t)
µ exists. Sato and Yamazato [15], Section 4,

have shown that Φ defines a bijection from IDlog(Rm
+ ) onto L(Rm

+ ). (Similar results
hold without the restriction that the Lévy measure be concentrated on Rm

+ .) The ac-
tion of Φ on µ can also be defined in terms of the characteristic triplets, cf. Sato [14],
Theorem 17.5. In particular, if ν is the Lévy measure of µ and ν̆ denotes the Lévy
measure of µ̆ := Φ(µ), then

Φ
(m)
0 (ν)(B) := Φ0(ν)(B) := ν̆(B) =

∫ ∞

0

ν(esB) ds ∀ B Borel set in R+
m.

Again, Φ0 defines a bijection between the class of Lévy measures in IDlog(Rm
+ ) and

the Lévy measures in L(Rm
+ ). From the definition of the bijection Φ(m) we see in

particular that if ν̆ is the Lévy measure of a self-decomposable distribution µ̆, then µ̆
can be represented as

∫∞
0
e−t dX

(t)
µ , where (X

(t)
µ )t≥0 is the background driving Lévy

process with distribution µ and Lévy measure ν = (Φ
(m)
0 )−1(ν̆) at time 1.

Let ν be a Lévy measure in IDlog(Rm
+ ), and let F , Fi, C and F̆ , F̆i and C̆ be

the (marginal) volume functions and copulas of ν and ν̆, respectively. Then for any
x = (x1, . . . , xm) ∈ [0,∞]m,

F̆ (x) =

∫ ∞

0

F (e−sx) ds,

C̆(F̆1(x1), . . . , F̆m(xm)) =

∫ ∞

0

C(F1(e
−sx1), . . . , Fm(e−sxm)) ds. (6.4)

Before we can use the mapping Φ0 to construct self-decomposable Lévy measures,
we need the following lemma:

Lemma 6.7. Let ν ∈ Lm
+ with margins ν1, . . . , νm. Then ν ∈ IDlog(Rm

+ ) if and only
if νi ∈ IDlog(R+) for all i = 1, . . . ,m.

Proof . If ν ∈ IDlog(Rm
+ ), then for any i ∈ {1, . . . ,m}, writing x = (x1, . . . , xm),∫

|xi|>1

log x2
i dνi(xi) ≤

∫
|xi|>1

log |x|2 dν(x) ≤
∫
|x|>1

log |x|2 dν(x) <∞.
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On the other hand, if νi ∈ IDlog(R+) for i = 1, . . . ,m, then∫
|x1|>1

. . .

∫
|xm|>1

log |x|2 dν(x)

≤
∫
|x1|>1

. . .

∫
|xm|>1

(
logm+

m∑
i=1

log |xi|2
)
dν(x) <∞.

Hence, we can combine any marginal Lévy measures ν1, . . . , νm in IDlog(R+) with
any Lévy copula, and obtain a Lévy measure ν in IDlog(Rm

+ ). From the definition
of Φ0 follows readily that it commutes with the projection Πi on the i-th axis, more
precisely:

ν̆i := Πi(Φ
(m)
0 )(ν)) = Φ

(1)
0 (Πiν).

In analogy to Theorem 6.2, with the same line of proof, we now obtain:

Theorem 6.8. Let ν̆1, . . . , ν̆m be prescribed marginal Lévy measures in L(Rm
+ ). Set

νi := (Φ
(1)
0 )−1ν̆i, i = 1, . . . ,m.

Let C be any m-dimensional Lévy copula and define the Lévy measure ν with margins
ν1, . . . , νm using (2.2). Then

ν̆ := Φ
(m)
0 (ν)

defines a selfdecomposable Lévy measure on Rm
+ with margins ν̆1, . . . , ν̆m. Further-

more, all Lévy measures in L(Rm
+ ) with these margins are obtained in this way.

It is quite easy to obtain (Φ
(1)
0 )−1ν̆i, i.e. the Lévy measure of the background

driving Lévy process, from the Lévy density of ν̆i: if this Lévy density is denoted
by f̆i, then the marginal volume function Fi of (Φ

(1)
0 )−1ν̆i satisfies

Fi(xi) = x−1
i f̆i(x

−1
i ),

see Barndorff-Nielsen and Shephard [4], Equation (4.17). For example, if ν̆i is a
tempered stable distribution TS(κi, δi, γi), i.e. if

f̆i(xi) = δi2
κi

κi

Γ(1− κi)
x−1−κi

i exp{−1

2
γ

1/κi

i xi} 1(0,∞)(xi),

then

Fi(x) = δi2
κi

κi

Γ(1− κi)
xκi

i exp{γ1/κi

i x−1
i /2}.

Then using any Lévy copula C in (6.4) leads to a multivariate selfdecomposable Lévy
measure ν̆ with tempered stable margins ν̆1, . . . , ν̆m. In particular, when κi = 1/2
the f̆i correspond to the Lévy densities of inverse Gaussian distributions.
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6.3 Lévy measures in the Thorin class

In Barndorff-Nielsen, Maejima and Sato [2], the m-dimensional Thorin class T (Rm)
is defined to be the class of all infinitely divisible distributions µ whose Lévy measure
ν has representation (6.1), where r 7→ rlξ(r) has to be completely monotone on
(0,∞). This is a generalisation of the one-dimensional Thorin class T (R) introduced
by Thorin [18]. It can be shown that T (Rm) is a proper subclass of B(Rm)∩L(Rm).
A probabilistic interpretation as for the Bondesson class is given in [2]. There, it
is also shown that T (Rm) is the image of L(Rm) under Υ(m) (for m = 1 this was
proved in [5]), and also the image of B(Rm) ∩ IDlog(Rm) under Φ(m). Furthermore,
Φ(m) and Υ(m) commute, i.e. Φ(m)Υ(m)(µ) = Υ(m)Φ(m)(µ) for µ ∈ IDlog(Rm). Denote
by T (Rm

+ ) the class of all infinitely divisible distributions in the Thorin class whose
Lévy measure is in Lm

+ . Then the results of Sections 6.1 and 6.2 can be used to
construct all distributions in T (Rm

+ ) with any prescribed marginal Lévy measures

ν̃i in T (R+): take the inverses νi of the marginal Lévy measures ν̃i under Υ
(1)
0 ,

construct a Lévy measure ν ∈ L(Rm
+ ) with margins νi as in Section 6.2, and set

ν̃ := Φ
(m)
0 (ν). Alternatively, one can set ν̌i := (Φ

(1)
0 )−1(ν̃i) ∈ B(R+) ∩ IDlog(R+),

construct ν̌ ∈ B(Rm
+ ) ∩ IDlog(Rm

+ ) as in Section 6.1, and set ν̃ := Φ(ν̌).
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25



[5] Barndorff-Nielsen, O.E. and Thorbjørnsen, S. (2004a): A connection between
free and classical infinite divisibility. Inf. Dim. Anal. Quantum Prob. 7, 573-590.

[6] Barndorff-Nielsen, O.E. and Thorbjørnsen, S. (2004b): Regularising mappings
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sional Lévy processes. Submitted. (Available at: www.cmap.polytechnique.

fr/∼tankov/.)

[18] Thorin, O. (1978): An extension of the notion of a generalized Γ-convolution.
Scand. Acturarial J. 1978, 141–149.

26


