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1 Introduction

Tail probabilities P(Sn > x) of a sum Sn = X1 + · · · + Xn of heavy-tailed risks
X1, . . . , Xn is of major importance in applied probability and its applications in risk
management, such as the determination of risk measures like the value-at-risk (VaR)
for given portfolios of risks, evaluation of credit risk, aggregate claims distributions
in insurance, operational risk ([13], [18] etc. Under the assumption of independence
among the risks, the situation is well understood. In particular, from the very
definition of subexponential distributions, given identical marginal distributions, the
maximum among the involved risks determines the distribution of the sum and, on
the other hand, for non-identical marginals the distribution of the sum is determined
by the component with the heaviest tail (see e.g. Asmussen [4, Ch.IX]).

Over the last few years, several results in this direction have been developed. A
survey and some new results are given in Albrecher & Asmussen [2]. For regularly
varying marginals and n = 2, [2] gives bounds in terms of the tail dependence
coefficient

λ = lim
u→1

P
(

F2(X2) > u
∣

∣F1(X1) > u
)

and it is noted that the asymptotics of P(Sn > x) is the same as in the independent
case when λ = 0. For general discussion of bounds, see further Denuit et al. [14],
Cossette et al. [12] and Embrechts & Puccetti [16]. Finally Wüthrich [23] and Alink
et al. [3] gave sharp asymptotics of the tail of Sn in the case of an Archimedean
copula.

The overall picture is that, except for some special cases, the situation seems
best understood with regularly varying marginals. This paper deals with the basic
case of lognormal marginals with a multivariate Gaussian copula, which appears
particularly important for applications to insurance and finance. That is, we can
write Xk = eYk where the random vector (Y1, . . . , Yn) has a multivariate Gaussian
distribution with E Yk = µk, Var Yk = σ2

k and Cov(Yk, Yℓ) = σkℓ (here σkk = σ2
k).

The marginal density of Xk is

1

x
√

2πσk

exp
{

− (log x− µk)
2

2σ2
k

}

Our investigations go in two directions, asymptotics of P(Sn > x) as x → ∞,
and how to develop simulation algorithms which are efficient for large x. We next
state and discuss our results in these two directions. Numerical illustrations are
then given in Section 4, together with a discussion of the main findings, and the
proofs of the theoretical results can be found in Sections 5–6.

2 Asymptotic Results

The asymptotics of P(Sn > x) is a problem with a well-known solution when the Xk

are independent. More precisely, let

σ2 = max
k=1,...,n

σ2
k , µ = max

k:σ2

k
=σ2

µk , mn = #
{

k : σ2
k = σ2, µk = µ

}

. (1)
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Since the tail behaviour is well-known to be

P(Xk > x) ∼ σk√
2π log(x− µk)

exp
{

− (log x− µk)
2

2σ2
k

}

it follows that the lognormal distribution F µ,σ(x) with parameters µ, σ given by (1)
is the heaviest among the marginal distributions of the Xk. Therefore by standard
subexponential theory

P(Sn > x) ∼ mF µ,σ(x) ∼ σmn√
2π(log x− µ)

exp
{

− (log x− µ)2

2σ2

}

where F µ,σ(x) is the heaviest tail and mn the number of summands with this tail.

Our main asymptotic result on P(Sn > x) states that this remains true in the
dependent setting under consideration:

Theorem 2.1. Let Xk = eYk where the Yk’s have multivariate normal distribution
with µk = E[Yk] and σ2

k = Var [Yk]. Let Sn = X1 + · · · + Xn and let σ2, µ, mn be
defined by (1). Then

P(Sn > x) ∼ mnF µ,σ(x) (2)

Remark 2.1. As will be seen, our proof that mnF µ,σ(x) is an asymptotic lower
bound for P(Sn > x) essentially just uses the well-known tail independence of Gaus-
sian copulas. It seems therefore reasonable to ask whether Theorem 2.1 remains valid
when considering the same marginals but a different copula with tail independence.
An example in Albrecher & Asmussen [2] shows that this is not the case.

Remark 2.2. Our numerical results show that the approximation in Theorem 2.1
is rather accurate but tends to underestimate. This could be explained by some
r.v. Xi with tails being only slightly lighter than the heaviest one. This suggests
considering the adjusted approximation

P(Sn > x) ∼
n

∑

i=1

P(Xi > x) (3)

which obviously has the same asymptotics.

3 Simulation Algorithms

We next consider simulation of P(Sn > x). By an estimator, we understand a r.v.
Z(x) that can be generated by simulation and is unbiased, i.e. E Z(x) = P(Sn > x).
The standard efficiency concepts in rare event simulation are bounded relative error,
meaning

lim sup
x→∞

Var Z(x)

P(Sn > x)2
< ∞

and the slightly weaker concept of logarithmic efficiency, where one only requires

lim sup
x→∞

Var Z(x)

P(Sn > x)2−ǫ
= 0
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for all ǫ > 0, or, equivalently, that

lim sup
x→∞

| log Var Z(x)|
2| log P(Sn > x)| ≥ 1

For background, see Asmussen & Rubinstein [10], Heidelberger [21] and Asmussen
& Glynn [8].

For the i.i.d. case, the first logarithmically efficient algorithm with heavy tails
was given by Asmussen & Binswanger [6] in the regularly varying case. It simulates
X1, . . . , Xn, forms the order statistics X(1) < · · · < X(n), discards the largest and
returns the conditional Monte Carlo estimator

Z1(x) = P
(

Sn > n
∣

∣ X(1), . . . , X(n−1)

)

=
F ((x− S(n−1)) ∨X(n−1))

F (X(n−1))

where S(n−1) = X(1)+· · ·+X(n−1). For the i.i.d. lognormal case, logarithmic efficiency
was established in Binswanger [11]. The algorithm generalizes immediately to the
dependent setting, with the modification that the conditional expectation comes out
in a different way. For each k, let F c

k denote the conditional distribution of Xk given
the Xℓ with ℓ 6= k. Well-known formulas for conditioning in the normal distribution
show that F c

k is a lognormal distribution with parameters µc
k, σ

2
k
c

where

µc
1 = µ1 +

(

σ12 . . . σ1n

)

Σ−1
1

(

log X2 − µ2 . . . log Xn − µn

)t

σ2
1
c
= σ2

1 −
(

σ12 . . . σ1n

)

Σ−1
1







σ12
...

σ1n






where Σ1 =







σ22 · · · σ2n
...

. . .
...

σn2 · · · σnn







and similar formulas hold for k > 1. Let K be the k with Xk = X(n).

Theorem 3.1. Let X1, . . . , Xn be lognormal random variables with Gaussian copula,
X(1), . . . , X(n) the corresponding order statistics, S(n−1) = X(1) + · · ·+ X(n−1), then

Z2(x) =
F

c

K((x− S(n−1)) ∨X(n−1))

F
c

K(X(n−1))
(4)

is an unbiased estimator of P(Sn > x) and

lim sup
x→∞

Var Z(x)

P(Sn > x)2−ǫ
= 0

for all ǫ > 2ρ/(1 + ρ) where ρ = max{Corr(Xi, Xj) : i 6= j}.

An inspection of the proof in Section 6 shows that the lower bound on ǫ cannot
be improved. That is, the algorithm provides variance reduction but less and less
so as ρ increases. Of course, the case ρ = 0 covers logarithmic efficiency in the
independent case shown in [11].

A somewhat different conditional Monte Carlo idea was suggested by Asmussen
& Kroese [9], who used a (trivial) symmetry argument to note that the following es-
timator is unbiased in the i.i.d. case. It simulates X1, . . . , Xn−1, takes the maximum
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Mn−1 and returns the estimator nF (Mn−1 ∨ (x − Sn−1)). The next modification
provides a first approach to the exchangeable case:

Z3(x) = nF
c
(Mn−1 ∨ (x− Sn−1)) (5)

where F c = F c
1 = · · · = F c

n. The algorithm is shown to have bounded relative error
in the i.i.d. case with regularly varying marginals in [9]. That the same conclusion
is true with lognormal marginals is a special case of the following result and was
also shown independently by Kortschak [22] (but note that only independence is
considered there). In fact:

Theorem 3.2. The estimator Z3(x) has bounded relative error in the exchangeable
lognormal case.

We next consider the extension for the general non-exchangeable dependent case.
For each i, simulate independently the set {Xj,i : j 6= i} with the same distribution
as {Xj : j 6= i}, let Mn,i = max{Xj,i : j 6= i}, Sn,i =

∑

j 6=i

Xj,i and return

Z4(x) =

n
∑

i=1

F
c

i(Mn,i ∨ (x− Sn,i)) (6)

A faster and simpler version of this algorithm is obtained when simulating just the
set {X1, . . . , Xn} and considering Mn,i = max{Xj : j 6= i} and Sn,i =

∑

j 6=i Xj. In
practice, the first version showed smaller variances.

Theorem 3.3. Both versions of the estimator Z4(x) are unbiased and have bounded
relative error.
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4 Numerical Examples

Example 1. We considered 10 lognormal r.v. with multivariate Gaussian copula
and parameters µ = i−10, σ2

i = i and σij = 0.4σiσj (The value 0.4 of the correlations
is often claimed to be typical for financial data).

The first graph in figure 1 contains the approximations in Proposition 2.1 and
Remark 2.2 and the simulated values for the tail probability P(S10 > x) with the
associated 95% confidence interval corresponding to R = 5000 replications using the
first version of the estimator Z4(x).

The second graph shows the relative difference (difference among the two approx-
imations divided by the largest one) goes to 0. The graph is compatible with the
(obvious) fact that the relative diffence goes to 0, but shows that the convergence is
slow in the present case, as must be expected from the fact that the second largest
variance 9 is quite close to the largest one 10.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
−3

Point estimate Z
4
(x)

Confidence interval
Approximation Theorem 2.1
Approximation Remark 2.1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.14

0.16

0.18

0.2

0.22

0.24
Relative Difference

Figure 1: Tail probability P(S10 > x).
Comparison of approximations and simulations.
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Example 2. We use the same n = 10 and the same parameters as in Example 1.
Figure 2 shows the comparison of the estimator Z2(x) and the two versions of

the estimator Z4(x) using R = 5000 replications (no importance sampling technique
used). A general algorithm by Glasserman, Heidelberger & Shahabuddin [20] was
used for comparison purposes using R = 50.000 replications. The particular interest
in this comparison is that [20] appears to be more or less the only attempt to
perform efficient rare event simulation in a depending setting incorporating the
present problem of evaluating P(Sn > x). The idea behind the algorithm is a delta-
gamma approximation which leads to an importance sampling scheme requiring a
rootfinding. We refer to [20] for the details for the general case; the implementation
for our dependent sum setting is straightforward and we omit the details.

The four panels of Figure 2 give the point estimates, the estimates of the variance
Var Zi(x) and the similar quantity for the GHS estimator, the observed execution
times and finally the observed execution times multiplied by the variance estimates.
The interpretation of this last quantity is a variance per unit computer time, so that
the comparisons of the different algorithms give a measure of how efficiently they
use computer time.

We note in particular in the third panel that all of our Zi(x) algorithms have an
execution time which is negligible compared to the GHS algorithm (the difference
can by far be explained by the different values of R). Variances and times elapsed
are similar for our Zi(x). However, the implementation of the second version of
Z4(x) requires less effort.
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Figure 2: Tail probability P(S10 > x).
Comparison of estimators Z2(x), Z4(x) and GHS.

Example 3. In the third example we consider 100 lognormal r.v. with multivariate
gaussian copula. Let Fi ∼ N(i − 9, i + 1) with i = 0, . . . , 9. In the example, we
replicated each Fi 10 times by letting X10i+1, . . . , X10(i+1) have common distribution
Fi. All correlations were again set to 0.4.

Figure 3 provides a comparison of the estimators Z2(x) and the two versions of
Z4(x) using R = 10.000 replications. Although the estimator Z2(x) has a bigger
variance, it provides a considerable faster algorithm than any version of Z4(x), and
for this example it is the most efficient in terms of time-variance comparisons.
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Example 4. Consider two lognormal r.v. X1 = eY1 , X2 = eY2 , with multivariate
Gaussian copula and parameters µ1 = µ2 = 0, σ2

1 = σ2
2 = 1 and σ12 = 0.7. We ap-

proximate the tail probability P(S2 > x) using the estimator Z3(x) plus importance
sampling for X2. The new measure employed for sampling was a lognormal r.v.
with parameters µ = σ12x and σ2 = 1. This is motivated by the general principle of
choosing the importance distribution so close to the conditional distribution given
the are event as possible and the fact that Y2 given S2 > x is of order = σ12x, as
shown by a heuristical calculation in [2].

Results with R = 5.000 replications are shown in Figure 4. For this particular
example, the comparison is favorable: lower variance and shorter simulation times
are observed in the new algorithm.

The overall picture of the simulation experiments is that the algorithms proposed
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Figure 4: Tail probability P(S2 > x)

in Section 3 all perform better in terms of the variance per time criterion than the
GHS algorithm. To this it should be added that our algorithms also are much simpler
to program. Once this is said, one should of course note that the GHS algorithm
applies to settings much more general than the present one of dependent sums.

Our estimators Z2(x), Z3(x) and Z4(x) (in both versions) performed in the ex-
amples in a rather similar way, even if our theoretical results show that Z2(x) has
to be inferior in the limit x → ∞. As shown for a simple case in Example 4, there
is also potential to combine with other variance reduction methods.
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5 Proof of Asymptotic Results

Proof of Theorem 2.1. W.l.o.g. consider that X1, . . . , Xn are ordered such that X1 ∼
Fµ,σ and µ = 0 (otherwise replace Xi and x by Xie

−µ and xe−µ). We use induction.
The case n = 1 is straightforward. Assume the theorem is true for n− 1. We need
the following lemmas:

Lemma 5.1. Let 0 < β < 1. Then

P(Sn−1 > x− xβ) ∼ P(Sn−1 > x)

as x →∞.

Proof. By the hypothesis of the induction, we have

P(Sn−1 > x− xβ) ∼ σ1mn−1√
2π log(x− xβ)

exp{− log2(x− xβ)

2σ2
1

}

Now, just note that

log(x− xβ) = log x + log(1− 1/x1−β) ∼ log x

log2(x− xβ) = log2 x + log2(1− 1/x1−β) + 2 log x log(1− 1/x1−β)

= log2 x + o(1)− 2 log x

x1−β
= log2 x + o(1) .

Lemma 5.2. There exists 0 < β < 1 such that

P(Sn−1 > xβ , Xn > xβ)

is asymptotically dominated by P(X1 > x) as x →∞.

Proof. If σ1 > σn choose σn

σ1

< β < 1. Then P(Sn > xβ, Xn > xβ) ≤ P(Xn > xβ),
and this has lighter tail than P(X1 > x) since β > σn

σ1

.

If σ1 = σn choose β such that β2 > max{1/2, γ} and (β − γ
β
)2 + β2 > 1 where

γ = max{σkn

σ2
n
} (observe that this is possible since γ ∈ (−1, 1)). Let α = 1/β and

consider

P(Sn−1 > xβ , Xn > xβ) = P(Sn−1 > xβ , xα > Xn > xβ)

+ P(Sn−1 > xβ , Xn > xα)

≤ P(Sn−1 > xβ , xα > Xn > xβ) + P(Xn > xα)

It follows that P(Xn > xα) is asymptotic dominated by P(X1 > x) since α > 1 and
σ1 = σn. Denote Y

c
(y) = (Y1, . . . , Yn−1|Yn = y) and the corresponding definitions

for Xc(y) and Sc
n−1(y) and consider

P(Sn−1 > xβ, xα > Xn > xβ) =

α log x
∫

β log x

P(Sc
n−1(y) > xβ)fYn

(y)dy
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Using the standard fact that Y c(y) ∼ N({µi +
σin

σ2
n
(y−µn)}i, {σij − bij}ij), where

bij =
σinσjn

σ2
n

, we can bound the last by

α log x
∫

β log x

P(Sc
n−1(0)eγy > xβ)fYn

(y)dy (7)

Let K be the index of the Y c
k (y) with the heaviest tail. If γ < 0, then last expression

is bounded by P(Sc
n−1(0) > xβ) P(Xn > xβ) which is asymptotically bounded by

mc P(Xc
K(0) > xβ) P(Xn > xβ) (hypothesis of induction), and this is asymptotically

bounded by mc P
2(X1 > xβ) (because Xc

K and Xn do not have heavier tails than
X1). It follows that

mc
P

2(X1 > xβ) ∼ σ1m
c

log2 xβ
exp

{

−2β2 log2 x

2σ2
1

}

is asymptotically dominated by P(X1 > x) since 2β2 > 1.
Now, consider the case γ > 0, then the expression (7) is bounded by:

P(Sc
n−1(0)eγ log xα

> xβ) P(Xn > xβ) = P(Sc
n−1(0) > xβ−γα) P(Xn > xβ)

By the hypothesis of induction last expression is asymptotically equivalent to

mc
P(Xc

K(0) > xβ−γα) P(Xn > xβ)

which is asymptotically bounded above by

mc
P(X1 > xβ−γα) P(X1 > xβ)

Observe that β − γα = β − γ
β

> 0 since we choose β2 > γ. It follows that

mc
P(Xn > xβ−γα) P(Xn > xβ) ∼ σ2

1m
c

2π log xβ−γα log xβ
exp

{

− [(β − γα)2 + β2] log2 x

2σ2
1

}

is asymptotically dominated by P(X1 > x) since (β − γ/β)2 + β2 > 1.

For an asymptotic lower bound of P(Sn > x), consider

P(Sn > x) ≥
∑

i

P(Xi > x, Xj < x; j 6= i)

=
∑

i

P(Xi > x)− P(
⋃

j 6=i

{Xi > x, Xj > x})

≥
∑

i

P(Xi > x)−
∑

j 6=i

P(Xi > x, Xj > x)

=
∑

i

P(Xi > x)−
∑

j 6=i

P(Xj > x|Xi > x) P(Xi > x)

=
∑

i

P(Xi > x)−
∑

j 6=i

o(1) P(Xi > x) ∼ mn P(X1 > x)

12



where we use the fact that in the multivariate case Xi and Xj are tail independent.
For an asymptotic upper bound, choose β as in the hypotesis of Lemma 5.2 and

consider

P(Sn > x) ≤ P(Sn > x, Sn−1 < xβ) + P(Sn > x, Sn−1 > xβ, Xn < xβ)

+ P(Sn > x, Sn−1 > xβ , Xn > xβ)

≤ P(Xn > x− xβ) + P(Sn−1 > x− xβ) + P(Sn−1 > xβ , Xn > xβ)

We use succesively Lemma 5.1 twice, the hypotesis of induction and Lemma 5.2 to
get the asymptotic upper bound

P(Xn > x) + P(Sn−1 > x) + P(Sn−1 > xβ , Xn > xβ)

∼ P(Xn > x) + mn−1 P(X1 > x) + P(Sn−1 > xβ , Xn > xβ)

∼ P(Xn > x) + mn−1 P(X1 > x) ∼ mn P(X1 > x)

completing the proof.

6 Proofs of Efficiency of the Simulation Algorithms

Proof of Theorem 3.1. Let Fµ,σ be the distribution of the lognormal random variable
with the heaviest tail. W.l.o.g. consider that µ = 0 (otherwise replace Xi and x
by Xie

−µ and xe−µ). We start by proving that estimator Z2(x) is unbiased. Let
F(n−1) = σ(K, Xi : i 6= K), hence

P(Sn > x) = E[P(Sn > x|F(n−1))]

= E[P(X(n) + S(n−1) > x|F(n−1))]

= E[P(XK > x− S(n)|F(n−1))]

= E

[

F
c

K((x− S(n−1)) ∨X(n−1))

F
c

K(X(n−1))

]

To prove the claimed efficiency properties of Z2(x), we need the following lemmas:

Lemma 6.1. Let F1 and F2 lognormal distributions such that F2 has a heavier tail
than F1. Then, there exists c ∈ R such that

F 1(x)

F 1(y)
≤ c

F 2(x)

F 2(y)

for all y ≤ x.

Proof. Let λ1(x), λ2(x) the corresponding failure rate functions and consider the
next function

[λ1(t)− λ2(t)]
+ = λ1(t)− λ2(t) + [λ2(t)− λ1(t)] I{t:λ1(t)<λ2(t)}(t)

≤ λ1(t)− λ2(t) + λ2(t) I{t:λ1(t)<λ2(t)}(t)

13



We claim that {t : λ1(t) < λ2(t)} ⊆ [0, y0] for some y0 ∈ R+. Consider the case
where σ1 < σ2. We use the tail asymptotics of λ(x) to obtain

lim
x→∞

λ1(x)

λ2(x)
= lim

x→∞

log x
xσ2

1

log x
xσ2

2

=
σ2

2

σ2
1

> 1

proving our claim. Let’s turn to the case σ1 = σ2 and µ1 < µ2. It will be enough to
check that λ2(x) ≤ λ1(x) or equivalently that λ(x, µ) is a decreasing of µ:

λ′(x, µ) =

log x−µ
σ2 f(x, µ)F (x, µ)− f(x, µ)

∞
∫

x

log t−µ
σ2 f(t, µ)dt

F
2
(t, µ)

=

log xf(x, µ)F (x, µ)− f(x, µ)
∞
∫

x

log tf(t, µ)dt

σ2F
2
(t, µ)

The last expression is negative since

∞
∫

x

log tf(t, µ)dt > log x

∞
∫

x

f(t, µ)dt = log xF (x)

Now, λ2(t) is real-valued on the closed interval [0, y0] and hence bounded by conti-
nuity. So, we get the next inequality

−λ1(t) ≤ −λ2(t) + c1I[0,y0](t)

Then

F 1(x)

F 1(y)
= exp

{

−
x

∫

y

λ1(t)dt

}

≤ exp

{

−
x

∫

y

λ2(t)dt +

x
∫

y

c1I[0,y0](t)dt

}

≤ exp

{

−
x

∫

y

λ2(t)dt +

y0
∫

0

c1dt

}

= exp

{

log
F 2(x)

F 2(y)
+ c2

}

= c
F 2(x)

F 2(y)

Recall that F µ,σ is the distribution of the random variable with the heaviest tail.

Lemma 6.2. Let ρ = max{Corr(Xi, Xj) : i 6= j}. Then, Var Z2(x) is asymptoti-
cally bounded by

h(x)F µ,σ(x/n)
[

c3| log F µ,σ(x/n)|+ c4

]

where

h(x) =

√

(1 + ρ)

2π(1− ρ)

σ

x
exp

{

− log2 x

2σ2

(1− ρ

1 + ρ

)}

and c3, c4 are positive constants.

14



Proof. Consider:

E

[

F
c

K

2
((x− Sn−1) ∨X(n−1))

F
c

K

2
(X(n−1))

]

= E

[

F
c

K

2
((x− S(n−1)) ∨X(n−1))

F
c

K

2
(X(n−1))

; X(n−1) <
x

n

]

+ E

[

F
c

K

2
((x− S(n−1)) ∨X(n−1))

F
c

K

2
(X(n−1))

; X(n−1) >
x

n

]

If X(n−1) < x/n then F
c

K(x − S(n−1)) < F
c

K(x/n), so the last expression can be
bounded by

E

[

F
c

K

2
(x/n)

F
c

K

2
(X(n−1))

; X(n−1) <
x

n

]

+ E

[

1; X(n−1) >
x

n

]

By Lemma 6.1 this can be bounded by

c1E

[

F
2

µ,σ(x/n)

F
2

µ,σ(X(n−1))
; X(n−1) <

x

n

]

+ E

[

1; X(n−1) >
x

n

]

= c1F
2

µ,σ(x/n)

x/n
∫

0

f(n−1)(y)

F
2

µ,σ(y)
dy + F (n−1)(x/n)

Using partial integration we can write this as

c1F
2

µ,σ(x/n)

[

− F (n−1)(y)

F
2

µ,σ(y)

∣

∣

∣

∣

x/n

0

+ 2

x/n
∫

0

F (n−1)(y)f(y)

F
3

µ,σ(y)
dy

]

+ F (n−1)(x/n)

≤ c1F
2

µ,σ(x/n)

[

1 + 2

x/n
∫

0

F (n−1)(y)f(y)

F
3

µ,σ(y)
dy

]

+ F (n−1)(x/n) (8)

Let Y1, Y2 be lognormal random variables with common distribution Fµ,σ and
Corr(Y1, Y2) = ρ (as defined in the hypothesis of the Lemma). Observe that the
following inequalities hold asymptotically

F (n−1)(x) ≤
∑

i>j

P(Xi > x, Xj > x) ≤
∑

i>j

P(Y1 > x, Y2 > x)

=
∑

i>j

P(Y2 > x|Y1 > x) P(Y1 > x) =
∑

i>j

P(Y2 > x|Y1 > x)F µ,σ(x)

≤ n(n− 1) P(Y2 > x|Y1 > x)F µ,σ(x) ∼ c2h(x)F µ,σ(x)

The last is true since µ = 0 and therefore

P(Y2 > x|Y1 > x) ∼ 2 P(Y2 > x|Y1 = x) ∼
√

2(1 + ρ)

π(1− ρ)

σ

x
exp

{

− log2 x

2σ2

(1− ρ

1 + ρ

)}

15



Hence, equation (8) is asymptotically bounded by

c1F
2

µ,σ(x/n)

[

1 + 2c2

x/n
∫

0

h(x)

F
2

µ,σ(y)
fµ,σ(y)dy

]

+ c2h(x/n)F µ,σ(x/n)

Observe that h(x)/F µ,σ(x) → ∞ (since h(x) has heavier tail). So, we obtain the
following asymptotic upper bounds

c1F
2

µ,σ(x/n)

[

1 + 2c2
h(x/n)

F µ,σ(x/n)

x/n
∫

0

fµ,σ(y)

F µ,σ(y)
dy

]

+ c2h(x/n)F µ,σ(x/n)

which is asymptotically bounded by

h(x/n)F µ,σ(x/n)
[

c3| log F µ,σ(x/n)|+ c4

]

By Lemma 6.2:

lim inf
x→∞

| log Var Z2(x)|
| log P

(2−ǫ)(Sn > x)|
≥ lim inf

x→∞

| log(h(x/n)F µ,σ(x/n)
[

c2| log F µ,σ(x/n)|+ c3

]

)

log(F
(2−ǫ)

µ,σ (x))

= lim inf
x→∞

log(h(x/n)F µ,σ(x/n))

(2− ǫ) log(F µ,σ(x))
(9)

since

lim inf
x→∞

log(
[

c2| log F µ,σ(x/n)|+ c3

]

)

(2− ǫ) log(F µ,σ(x))
= 0

Using L’Hopital rule on expression (9) we obtain:

lim inf
x→∞

log(h(x/n)) + log(F µ,σ(x/n))

(2− ǫ) log(F µ,σ(x))
= lim inf

x→∞

λh(x/n) + λµ,σ(x/n)

(2− ǫ)nλµ,σ(x)
(10)

where λh(x) is the failure rate of a lognormal random variable and is well known to
be asymptotically equivalent to

log x

σ2x

(1− ρ)

1 + ρ

So the limit in (10) is equal to

lim inf
x→∞

log(x/n)
σ2x/n

(1−ρ)
1+ρ

+ log(x/n)
σ2x/n

(2− ǫ)n log x
σ2x

= lim inf
x→∞

2

(2− ǫ)(1 + ρ)

log(x/n)

log x

=
2

(2− ǫ)(1 + ρ)
≥ 1

where we used the hypothesis ǫ ≥ 2ρ
1+ρ

.

16



Proof of Theorem 3.2.

lim sup
x→∞

Var Z3(x)

P
2(Sn > x)

≤ lim sup
x→∞

E(Z2
3 (x))

P
2(X1 > x)

≤ lim sup
x→∞

(n + 1)2E(F
2
(Mn ∨ (x− Sn)))

F
2
(x)

(11)

If Mn < x/2n, then Mn < x/2 < x− nMn < x− Sn, so

E[F
2
(Mn ∨ (x− Sn))]

F
2
(x)

=
E[F

2
(Mn ∨ (x− Sn)); Mn < x/2n] + E[F

2
(Mn ∨ (x− Sn)); Mn > x/2n]

F
2
(x)

≤ E

[F
2
(x− nMn)

F
2
(x)

; Mn < x/2n
]

+ E

[F
2
(Mn)

F
2
(x)

; Mn > x/2n
]

(12)

We consider these two terms separately.

First Integral: The first term in (12) is equivalent to

x/2
∫

0

F
2
(x− y)

F
2
(x)

fMn
(y/n)dy

= −nF
2
(x− y)FMn

(y/n)

F
2
(x)









x/2

0

+ 2n

x/2
∫

0

F (x− y)f(x− y)

F
2
(x)

F Mn
(y/n)dy

<
nF

2
(x)− nF

2
(x/2)FMn

(x/2n)

F
2
(x)

+ 2n2

x/2
∫

0

F (x− y)f(x− y)

F
2
(x)

F (y/n)dy

< n + 2n2

x/2
∫

0

F
2
(x− y)

F
2
(x)

f(x− y)

F (x− y)

F (y/n)

f(y/n)
f(y/n)dy

where we used F Mn
(x) < nF (x). For large x the last expression is bounded by

n + 2n2c
log(x/2)

x/2

x/2n

log(x/2n)

x/2
∫

0

F
2
(x− y)

F
2
(x)

f(y/n)dy

= n + 2nc
log(x/2)

log(x/2n)

x/2
∫

0

F
2
(x− y)

F
2
(x)

f(y/n)dy

This expression remains bounded due to the following Lemma.
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Lemma 6.3.

lim
x→∞

x/2
∫

0

F
2
(x− y)

F
2
(x)

f(y/n)dy < ∞

Proof. Consider

F (x) = exp
{

−
x

∫

0

λ(t)dt
}

where λ(t) is the failure rate of the lognormal distribution and by standard subexpo-

nential theory we know that λ(t) is asymptotically equivalent to log(x)
σ2x

. By choosing

c > 1
σ

2
we obtain that c log t

t
is an asymptotic upper bound for λ(t), then

F (x− y)

F (x)
= exp

{

x
∫

x−y

λ(t)dt
}

< exp
{

c log x

x
∫

x−y

1

t
dt

}

= exp
{

c log x(log x− log(x− y))
}

Using a first order Taylor expansion of log around (x − y) and the fact that it is
a concave function we have that log x < log(x − y) + y

x−y
, so the last expression is

bounded by exp{c log x y
x−y

}.
Consider x > 1. We claim that {y| log(2y) > log x y

x−y
} = [y(x), x/2] with

1/2 < y(x) < x/2. This is true since both functions are increasing and equal when
y = x/2, but log(2y) is concave and log x y

y−x
is convex. It is also observed that

y0 = sup{y(x)} < ∞ since y(x) → 1/2 as x →∞. So, we have proved that

F (x− y)

F (x)
< c1 exp{c log y}

when y ∈ [y0, x/2]. Using this result and considering x > 2y0 we get

x/2
∫

y0

F
2
(x− y)

F
2
(x)

f(y/n)dy <

∞
∫

y0

c3√
2π

exp{c4 log y − log2 y

2
}dy < ∞

For y ∈ (0, y0) we simply use the bound:

y0
∫

0

F
2
(x− y)

F
2
(x)

f(y/n)dy <
F

2
(x− y0)

F
2
(x)

→ 1

18



Second Integral: The second term in (12) is equivalent to:

∞
∫

x/2

F
2
(y)

F
2
(x)

fMn
(y/n)dy = −nF

2
(y)FMn

(y/n)

F
2
(x)









∞

x/2

− 2n

∞
∫

x/2

F (y)f(y)

F
2
(x)

F Mn
(y/n)dy

<
nF

2
(x/2)FMn

(x/2n)

F
2
(x)

<
n2F

2
(x/2)F (x/2n)

F
2
(x)

which goes 0 as x →∞.

Proof of Theorem 3.2 (Version 1). First, we prove that the estimator Z4(x) is un-
biased. Let E−i the expectation taken over the set of r.v.’s {Xj,i : j 6= i}, then

P(Sn+1 > x) =
∑

i

P(Sn > x, Xi = Mn) =
∑

i

P[Xi > (Mn,i ∨ (x− Sn,i))]

=
∑

i

E−i[F
c

i(Mn,i ∨ (x− Sn,i))] (13)

Next, we will prove that it has bounded relative error.

lim sup
x→∞

Var Z4(x)

P
2(Sn > x)

= lim sup
x→∞

Var (
n
∑

i=1

F
c

i(Mn,i ∨ (x− Sn,i)))

P
2(Sn > x)

= lim sup
x→∞

n
∑

i=1

Var (F
c

i(Mn,i ∨ (x− Sn,i)))

P
2(Sn > x)

< lim sup
x→∞

n
∑

i=1

E(F
c

i

2
(Mn,i ∨ (x− Sn,i)))

P
2(Sn > x)

< lim sup
x→∞

c
n
∑

i=1

E(F
2

µ,σ(Mn,i ∨ (x− Sn,i)))

F
2

µ,σ(x)

where we used that the sets {X i
j : j 6= i} where simulated independently. Last

expression has the same form than expression (11). Proof is completed in the same
way but checking that FMn,i

(x) < nF µ,σ(x).

Proof of Theorem 3.3 (Version 2). Consider E−i the expectation taken over the set
of r. v. {Xj : j 6= i}.

P(Sn > x) =
∑

i

P(Sn > x, Xi = Mn) =
∑

i

P[Xi > (Mn,i ∨ (x− Sn,i))]

=
∑

i

E−i[F
c

i(Mn,i ∨ (x− Sn,i))] =
∑

i

E[F
c

i(Mn,i ∨ (x− Sn,i))]

= E

[

∑

i

F
c

i(Mn,i ∨ (x− Sn,i))
]
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proving that it is an unbiased estimator of P(Sn > x). Now, for the bounded relative
error:

lim sup
x→∞

Var Z4(x)

P
2(Sn > x)

= lim sup
x→∞

Var (
n
∑

i=1

F
c

i(Mn,i ∨ (x− Sn,i)))

P
2(Sn > x)

≤ lim sup
x→∞

E

[( n
∑

i=1

F
c

i(Mn,i ∨ (x− Sn,i))
)2]

P
2(Sn > x)

≤ lim sup
x→∞

1

P
2(Sn > x)

E

[ n
∑

i=1

F
c

i

2
(Mn,i ∨ (x− Sn,i))

+
∑

j,k

F
c

j(Mn,j ∨ (x− Sn,j))F
c

k(Mn,k ∨ (x− Sn,k))

]

we use the Cauchy-Schwarz inequality:

≤ lim sup
x→∞

1

P(Sn > x)

[ n
∑

i=1

EF
c

i

2
(Mn,i ∨ (x− Sn,i))

+
∑

j,k

[

EF
c

j

2
(Mn,j ∨ (x− Sn,j))EF

c

k

2
(Mn,k ∨ (x− Sn,k))

]
1

2

]

≤ lim sup
x→∞

c
n
∑

i=1

E(F
c

i

2
(Mn,i ∨ (x− Sn,i)))

P(Sn > x)

≤ lim sup
x→∞

c
n
∑

i=1

E(F
2

µ,σ(Mn,i ∨ (x− Sn,i)))

F
2

µ,σ(x)

The last expression has the same form as the expression in (11). The proof follows
in the same way but checking that F Mn,i

(x) < nF µ,σ(x).
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