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Scheduling a triple round robin tournament

for the best Danish soccer league

Rasmus V. Rasmussen

Department of Operations Research, University of Aarhus, Ny Munkegade,
Building 1530, 8000 Aarhus C, Denmark

Abstract In this paper we present a solution method for the highly constrained problem
of finding a seasonal schedule for the best Danish soccer league. The league differs from
most sports leagues, since it plays a triple round robin tournament which leads to an
uneven distribution of home and away games. The solution method presented here uses a
logic-based Benders decomposition in which the master problem finds home-away pattern
sets while the subproblem finds timetables. Furthermore, column generation techniques
are used to enhance the speed of the master problem. The computational results show
that the solution method is capable of solving the problem within reasonable time and
the Danish Football Association has decided to use it for scheduling the 2006/2007 season.

Keywords: Timetabling; Sports scheduling; Logic-based Benders decomposition.

1 Introduction

Seasonal schedules for sports leagues are subject to a wide range of often conflicting
interests coming from teams, television networks, spectators and the association
arranging the tournament. This makes the problem of designing solution methods
which are capable of handling these constraints - an interesting and challenging task
seen from an operations research perspective. Furthermore, effective methods are
very attractive, since the turnover coming from TV rights and spectators may be
highly dependent on the number of requirements being satisfied.

This has lead to a significant amount of research dealing with practical applica-
tions. Bartsch, Drexl and Kröger [2] have scheduled the Austrian and German soccer
league, Croce and Oliveri [4] have scheduled the Italian soccer league and Schreuder
[16] has scheduled the Dutch soccer league. Furthermore, de Werra, Jacot-Decombes
and Masson [5], Easton [6], Henz [9] and Nemhauser and Trick [13] have scheduled
basketball tournaments, Russel and Leung [15] have scheduled a baseball tourna-
ment, Ferland and Fleurent [7, 8] and Costa [3] have scheduled the National Hockey
League and Armstrong and Willis [1] have scheduled the cricket world cup.

This paper presents an algorithm for finding a seasonal schedule for the best
Danish soccer league SAS Ligaen. SAS Ligaen differs from leagues considered in
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previous work since teams meet three times instead of one or two times. This differ-
ence results in a number of additional constraints which must be satisfied in order
to get a fair tournament. Furthermore, this work is the first applying the techniques
of the pattern generating Benders approach (PGBA) presented by Rasmussen and
Trick [14] to a practical application.

In the original version of the PGBA, place constraints were considered but not
all the constraints which are present in a real tournament can be included as easily.
In this work we present an algorithm which uses the strengths of the PGBA but at
the same time allows all the constraints which are considered in SAS Ligaen.

The paper is organized as follows. In Section 2 we present the constraints for
SAS Ligaen and give a short introduction to sports scheduling terminology. An
outline of the solution method is given in Section 3 and Section 4 describes the
algorithm in details. Computational results are reported in Section 5 and we finish
with concluding remarks in Section 6.

2 Problem formulation

We face the problem of designing a seasonal schedule for the best Danish soccer
league SAS Ligaen. The league consists of 12 teams and has a somewhat unusual
structure compared to most sports leagues, since the teams meet three times instead
of two. This difference leads to a number of unique constraints in addition to the
usual constraints applicable to any sports schedule. Before we explain the constraints
in details we will give a brief introduction to the sports scheduling terminology used
in the rest of the paper.

2.1 Sports scheduling terminology

A round robin tournament is a tournament in which all teams meet a fixed number of
times and the tournament considered in this paper is a triple round robin tournament
meaning that all teams meet three times. The tournament is partitioned into time
slots and all teams play exactly one game in each slot. Each game takes place at
one of the opponents’ venues and the team which plays home is said to play a home
game while the visiting team plays an away game. If a team plays two consecutive
home games or two consecutive away games, it is said to have a break in the last of
the two slots.

The sequence of home and away games for a particular team is called a home-
away pattern (pattern) and a set containing a pattern for each team is called a
pattern set. A timetable is a table which shows the opponent of each team in each
slot. Figure 2.1 shows a pattern set and a timetable for a tournament with 6 teams
and breaks are underlined in the pattern set. We say that a pattern set is feasible
if a timetable exists which can be used together with the pattern set. In this case
the combination of the pattern set and the timetable gives a schedule.
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Slot 1 2 3 4 5 6 7 8 9 10

p1 0 1 0 1 0 1 0 1 0 1

p2 0 1 1 0 1 1 0 0 1 0

p3 1 0 1 1 0 0 1 0 0 1

p4 0 1 0 0 1 1 0 1 1 0

p5 1 0 1 0 1 0 1 0 1 0

p6 1 0 0 1 0 0 1 1 0 1

Slot 1 2 3 4 5 6 7 8 9 10

team 1 6 3 5 2 4 6 3 5 2 4

team 2 5 6 4 1 3 5 6 4 1 3

team 3 4 1 6 5 2 4 1 6 5 2

team 4 3 5 2 6 1 3 5 2 6 1

team 5 2 4 1 3 6 2 4 1 3 6

team 6 1 2 3 4 5 1 2 3 4 5

(a) (b)

Figure 2.1: (a) Pattern set, (b) Timetable.

2.2 Constraints for SAS Ligaen

The major challenge when creating the schedule for a sports league is to satisfy
the constraints arising from teams, spectators, TV stations, other tournaments, etc.
The constraints are often conflicting and call for a solution method which is able to
rank schedules with respect to the number of broken constraints instead of methods
searching for schedules which satisfy all constraints.

The constraints are partitioned into hard constraints which must be satisfied and
soft constraints which incur a penalty in case they are violated. Below is an outline
of the constraints for SAS Ligaen.

The structure of SAS Ligaen gives rise to a triple round robin tournament with
33 slots and 6 games in each slot. Furthermore, the tournament consists of three
single round robin tournaments such that the slots from 1 to 11, the slots from 12 to
22 and the slots from 23 to 33 all form a single round robin tournament. In the rest
of the paper the single round robin tournament in the slots 1 - 11 will be referred
to as Part 1 and the double round robin tournament in slots 12 - 33 will be referred
to as Part 2. In Part 2 all teams must meet all other teams once at home and once
at the opponent’s venue.

Consecutive constraints limit the number of consecutive home games and
consecutive away games to be less than or equal to 2. This is a hard constraint.

Separation constraints give a lower limit k on the number of slots between
two games with the same opponents. If k = 0 it means that repeater games are
allowed. But when k = 1 there must be at least one slot between slots where the
two teams meet. This is a hard constraint.

Best half constraints are hard constraints stating that the 6 teams which
finished in the best half of the tournament the preceding year get an extra home
game in Part 1. This means that these teams play 6 home games in Part 1, while
the other teams play 5 home games.

Ending constraints are hard constraints saying that teams cannot have a break
at the last slot.

Place constraints are constraints saying that a specific team wants to play
home in a certain slot or away in a certain slot. These constraints are hard or soft
depending on the reason. If for instance a stadium is unavailable due to recon-
struction or a concert it would be a hard constraint but in case the requirement is
imposed due to nearby arrangements it would be a soft constraint.

Game constraints state that at least one game between a specific pair of teams
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(i1, i2) must be played in a certain set of slots. The game constraints are soft
constraints and the set of constraints are denoted CGa. For a game constraint l, the
set TGa

l denotes the pair of teams (i1, i2) and SGa
l denotes the set of slots in which

a game between i1 and i2 must be played.
Top team constraints make sure that all non-top teams play at least one

home game against one of the top teams in Part 1. In SAS Ligaen two teams are
categorized as top teams. This is partly due to good results but also due to a large
number of fans which means that revenue from spectators increase when a top team
is visiting. Since the revenue goes to the home team, all teams want to play top
teams home in Part 1. This is only a concern in Part 1 since all teams meet all
other teams once home and once away in Part 2. The top team constraints are soft
constraints and the set of non-top teams is denoted T To.

Home constraints are used when a team i1 has played many away games
against another team i2 in Part 1 in the preceding years. In this case a soft constraint
can be added to make sure that team i1 plays home against i2 in Part 1. The set of
home constraints are denoted CHo and for each l ∈ CHo we use THo

l to denote the
set of teams (i1, i2) where i1 must play home.

Beginning constraints are soft constraints which state that all teams must
have a home game and an away game in the first two slots.

Geographic constraints require that at least one team from a certain area
plays home in each slot or at least one team plays away in each slot. These con-
straints are used to avoid slots where some areas experience a large number of games
while others are without games. We let CGe

H and CGe
A denote the set of constraints

where at least one team must play home and the set of constraints where at least
one team must play away while CGe = CGe

H ∪CGe
A denotes the total set of geographic

constraints. For each l ∈ CGe the set TGe
l denotes the set of teams from the given

area.
Break constraints say that the teams must alternate between home and away

games. These are soft constraints and they are broken each time a team has a break.
The objective is to minimize the total penalty imposed by the violated con-

straints. For each of the soft constraints a coefficient represents the penalty which
is added to the objective value if the constraint is violated. The coefficients can be
seen in Table 2.1, which gives an overview of the constraints. For each constraint
it shows whether the constraint is hard, soft, has influence on Part 1, Part 2, the
pattern set or the timetable.

3 Methodology

Due to the complexity of the problem we use a logic-based Benders decomposition
strategy [10]. The master problem consists of finding a pattern set and allocate teams
to patterns while the subproblem finds a timetable if any exists. If a timetable is
found, an optimality cut is added to the master problem and, otherwise, a feasibility
cut is added.

In traditional Benders decomposition, the subproblem is a linear programming
problem which makes it possible to generate a Benders cut from the dual variables.
In our case, the subproblem is an IP problem and therefore we have to use logic-based
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Table 2.1: Constraints for SAS Ligaen

Constraint Hard soft Part 1 Part 2 Patt. Set TT. Coef. Con. Set

Structure × × × × × — —
Consecutive × × × × — —
Separation × × × × — —
Best Half × × × × — —
Ending × × × — —
Place × × × × × cPl CPl

Game × × × × cGa CGa

Top Team × × × cTo T To

Home × × × cHo CHo

Beginning × × × cBe —
Geographic × × × × cGe CGe

Break × × × × cBr —

Benders cuts instead of traditional Benders cuts. Furthermore, in order to limit the
number of feasible solutions to the master problem, we use a column generation
strategy to solve the master problem.

This leads to a solution method which decomposes the problem into four steps.
In Step 1, we generate patterns, in Step 2, we find a pattern set and allocate teams
to patterns, in Step 3, we check feasibility of the pattern set found in Step 2 and
finally, in Step 4, we find a timetable. The four steps are visited iteratively during
the process.

The algorithm uses a set containing all patterns which have been generated.
Initially this set is empty but each time the algorithm goes to Step 1, additional
patterns are added unless all feasible patterns have been generated already. In that
case, the algorithm stops. The first time Step 1 is used, it generates all patterns
with 0 breaks and each time the algorithm returns to Step 1, the number of breaks
is increased by one. In this way the best patterns, with respect to the number of
breaks, are considered first.

When patterns have been generated in Step 1, we solve an IP problem in Step
2 to find a pattern set and allocate the teams to the patterns. This IP problem
is referred to as the master problem, since it resembles the master problem from
Benders decomposition. In case the master problem is infeasible, we return to Step
1 where additional patterns are generated and otherwise we go to Step 3.

Step 3 is used to detect infeasible pattern sets and generate logic-based Benders
cuts which can be added to the master problem. The strength of a logic-based
Benders cut depends on the number of infeasible pattern sets it is able to cut off,
and in order to find strong cuts, we need to know why the pattern sets are infeasible.
If we have an infeasible pattern set but no knowledge of why it is infeasible we can
only prevent the master problem from finding the same solution again. On the other
hand, if we know that a pattern set is infeasible because it contains two patterns
which cannot be in the same pattern set, we can add a cut which prevents the
master problem from finding any pattern set containing both of these two patterns.
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Step 1:

Generating

patterns

Step 2:

Finding a

pattern set

Step 3:

Checking

feasibility

Step 4:

Finding a
timetable

Stop

Patterns found Set found Set not proven
infeasible

Set not found Set infeasible

No additional
patterns found

Figure 3.1: Flowchart for the algorithm.

Therefore, Step 3 contains a number of feasibility checks which are used to determine
why a pattern set if infeasible. If infeasibility is detected, we return to Step 2 and
otherwise, we proceed to Step 4. However, the feasibility checks in Step 3 are not
exhaustive meaning that the pattern set might be infeasible anyway.

The problem of finding an optimal timetable for the pattern set found in Step 2
is formulated as an IP model and is referred to as the subproblem. In case the
problem is infeasible, it means that the pattern set is infeasible and a logic-based
Benders cut is added to the master problem. Otherwise we have found a feasible
schedule and an optimality cut can be added to the master problem. In both cases
we return to Step 2 after the cut has been added.

The algorithm keeps iterating until the master problem eventually becomes in-
feasible and all feasible patterns have been generated. When this happens we have
either found an optimal solution or proved that the problem is infeasible. Figure 3.1
displays a flowchart showing how the algorithm iterates between the four steps.

4 The algorithm

In this section we give a more detailed description of the four steps discussed in
Section 3 but before we do that we need some notation. In the rest of the paper
we let n denote the number of teams while T denotes the set of teams. The set
P = {1, 2} represents the two parts discussed in Section 2 and S, S1 and S2 denote
the set of all slots, the set of slots in Part 1 and the set of slots in Part 2, respectively.

4.1 Generating patterns

The partitioning of the tournament into Part 1 and Part 2 is used to reduce the
total number of patterns which must be generated. Instead of generating patterns
covering all slots, we generate patterns for Part 1 and Part 2 separately.

In addition to reducing the number of patterns, the partitioning also makes the
algorithm more flexible. If one part is infeasible, we can generate additional patterns
for this part alone without generating extra patterns for the other part. We let P 1

and P 2 denote the sets of patterns which have been generated for Part 1 and Part 2
respectively while B1 and B2 denote the current upper bounds on the number of
breaks. When additional patterns are generated for Part p, the associated bound Bp
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is increased by one and all feasible patterns for Part p with exactly Bp breaks are
generated. In order to limit the number of breaks per team, B1 and B2 cannot
exceed 3 but still this allows up to seven breaks per team.

The generation of patterns has been implemented in OPL Script but the feasible
patterns for Part 1 with B1 breaks correspond to the feasible solutions of the fol-
lowing CP model where the variable hs is 1 if the pattern has a home game in slot
s and 0 if it has an away game.

n−1
∑

s=1

hs ≤ n/2 (4.1)

n−1
∑

s=1

hs ≥ n/2 − 1 (4.2)

ŝ+2
∑

s=ŝ

hs ≤ 2 ∀ŝ ∈ {1, . . . , n − 3} (4.3)

ŝ+2
∑

s=ŝ

hs ≥ 1 ∀ŝ ∈ {1, . . . , n − 3} (4.4)

n−2
∑

s=1

(hs = hs+1) = B1 (4.5)

hs ∈ {0, 1} ∀s ∈ {1, . . . , n − 1} (4.6)

The constraints (4.1) and (4.2) make sure that the pattern has at most n/2 home
games and at most n/2 away games. Constraints (4.3) and (4.4) limit the number
of consecutive home and consecutive away games to be less than or equal to 2, and
constraint (4.5) makes sure that the number of breaks equals B1.

Similarly, the feasible patterns for Part 2 with B2 breaks correspond to the
feasible solutions of the CP model below.

sequence(1, 2, 3, [hn, . . . , h3n−3], [0, 1], [n − 1, n − 1]) (4.7)
3n−4
∑

s=n

(hs = hs+1) = B2 (4.8)

h3n−4 6= h3n−3 (4.9)

hs ∈ {0, 1} ∀s ∈ {n, . . . , 3n − 3} (4.10)

Here constraint (4.7) makes sure that the pattern has n − 1 home games, n − 1
away games and no more than two consecutive home games or two consecutive
away games. Constraint (4.8) determines the number of breaks, and constraint
(4.9) avoids a break in the last slot.

In addition to the two sets P 1 and P 2, we let P p
i denote the set of patterns which

satisfy the hard place constraints of team i for each part p and each team i ∈ T .
We also need some coefficients to evaluate the patterns in the master problem. For
each pattern j ∈ P p, p ∈ {1, 2}, the coefficient cBr

j denotes the break penalty and is
equal to the number of breaks Bp times the break coefficient cBr. The coefficient cPl

ij
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denotes the place penalty incurred if team i uses pattern j and is equal to the sum of
place coefficients cPl associated with the violated place constraints. Furthermore, for
each pattern j ∈ P 1 the coefficient cBe

j denotes the beginning penalty which is equal
to the beginning coefficient cBe, if j has a break in the second slot and 0 otherwise.
By letting c1

ij = cBr
j + cPl

ij + cBe
j for each i ∈ T and j ∈ P 1 and c2

ij = cBr
j + cPl

ij for
each i ∈ T and j ∈ P 2, we can let cp

ij denote the coefficient of assigning team i
to pattern j in Part p. These coefficients are used in the objective function of the
master problem.

4.2 Pattern set

When patterns have been generated for both parts we use an IP model to find a
pattern set and assign teams to patterns. In the model, the parameters hjs for all
j ∈ P p, s ∈ Sp and p ∈ P represent the patterns and hjs is 1 if pattern j has a home
game in slot s and 0 if it has an away game. We use a binary variable xp

ij for each
team i ∈ T , each pattern j ∈ P p and each part p ∈ P to assign teams to patterns.
The variable xp

ij is 1 if team i uses pattern j in Part p, and it is 0 otherwise.

In addition to the assignment variables we use two kinds of penalty variables πBr
i

and πGe
ls . The first variable πBr

i is 1 if team i has a break in the first slot in Part 2,
and it is 0 otherwise. The second variable πGe

ls is 1 if the geographic constraint l is
violated in slot s, and 0 otherwise.

Finally, we need a variable v which is used for optimality cuts to be explained
in Section 4.4. This gives the following IP model.

min
∑

p∈P

∑

i∈T

∑

j∈P
p
i

cp
ijx

p
ij +

∑

i∈T

cBrπBr
i +

∑

l∈CGe

∑

s∈S

cGeπGe
ls + v (4.11)

s.t.
∑

p∈P

∑

i∈T

∑

j∈P
p
i

cp
ijx

p
ij +

∑

i∈T

cBrπBr
i +

∑

l∈CGe

∑

s∈S

cGeπGe
ls + v ≥ LB (4.12)

∑

p∈P

∑

i∈T

∑

j∈P
p
i

cp
ijx

p
ij +

∑

i∈T

cBrπBr
i +

∑

l∈CGe

∑

s∈S

cGeπGe
ls + v ≤ UB (4.13)

∑

j∈P
p
i

xp
ij = 1 ∀i ∈ T, ∀p ∈ P (4.14)

∑

i∈T

xp
ij ≤ 1 ∀j ∈ P p, ∀p ∈ P (4.15)

∑

i∈T

∑

j∈P
p
i

hjsx
p
ij = n/2 ∀s ∈ Sp, ∀p ∈ P (4.16)

∑

i∈T Ge
l

∑

j∈P
p
i

hjsx
p
ij + πGe

ls ≥ 1 ∀l ∈ CGe
H , ∀s ∈ Sp, ∀p ∈ P (4.17)

∑

i∈T Ge
l

∑

j∈P
p
i

(1 − hjs)x
p
ij + πGe

ls ≥ 1 ∀l ∈ CGe
A , ∀s ∈ Sp, ∀p ∈ P (4.18)

∑

j∈P 1

i

hjn−1x
1
ij +

∑

j∈P 2

i

hjnx
2
ij + πBr

i ≥ 1 ∀i ∈ T (4.19)
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∑

j∈P 1

i

(1 − hjn−1)x
1
ij +

∑

j∈P 2

i

(1 − hjn)x2
ij + πBr

i ≥ 1 ∀i ∈ T (4.20)

∑

j∈P 1

i

(hjn−2 + hjn−1)x
1
ij +

∑

j∈P 2

i

hjnx
2
ij ≤ 2 ∀i ∈ T (4.21)

∑

j∈P 1

i

(hjn−2 + hjn−1)x
1
ij +

∑

j∈P 2

i

hjnx
2
ij ≥ 1 ∀i ∈ T (4.22)

∑

j∈P 1

i

hjn−1x
1
ij +

∑

j∈P 2

i

(hjn + hjn+1)x
2
ij ≤ 2 ∀i ∈ T (4.23)

∑

j∈P 1

i

hjn−1x
1
ij +

∑

j∈P 2

i

(hjn + hjn+1)x
2
ij ≥ 1 ∀i ∈ T (4.24)

xp
ij ∈ {0, 1} ∀i ∈ T, ∀j ∈ P p, ∀p ∈ P (4.25)

πBr
i ∈ {0, 1} ∀i ∈ T (4.26)

πGe
ls ∈ {0, 1} ∀l ∈ CGe, ∀s ∈ S (4.27)

v ∈ R+ (4.28)

The objective function (4.11) includes break penalties, beginning penalties, place
penalties, geographic penalties and the coefficient used for optimality cuts. Con-
straints (4.12) and (4.13) give upper and lower bounds on the objective value. Con-
straints (4.14) make sure that all teams are assigned to a pattern in each part, and
constraints (4.15) say that a pattern cannot be assigned to more than one team.
Constraints (4.16) require that exactly half the teams play home in each slot and
constraints (4.17) and (4.18) state the geographic constraints. Constraints (4.19)
and (4.20) make sure that πBr

i is 1 if team i has a break in slot n, and the con-
straints (4.21) – (4.24) are used to avoid more than 2 consecutive home games or
more than 2 consecutive away games in the transition between Part 1 and Part 2.

In case the problem is infeasible, we return to Step 1 and generate additional
patterns. Otherwise, we let (x̄, π̄Br, π̄Ge) denote an optimal solution to the problem,
we let P̄ p denote the set of patterns used in Part p, and in case LB < v̄, we update
LB to be equal to v̄. Finally, we let the parameters h̄1

is for each s ∈ S1 represent
the pattern team i uses in Part 1 and h̄2

is for each s ∈ S2 represent the pattern team
i uses in Part 2.

4.3 Feasibility checks

After having found a pattern set, we need to check feasibility. We start by checking
feasibility of Part 1 and Part 2 separately. In case one or both of these are infeasible,
cuts are added to the master problem and we return to Step 2. Otherwise we continue
with examining feasibility of the combined pattern set for both parts.

4.3.1 Feasibility of Part 1

Miyashiro, Iwasaki and Matsui[12] give a necessary condition for feasibility of a
pattern set which can be used to check feasibility of Part 1. The necessary condition
gives a lower bound on the number of mutual games which must be scheduled
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between a subset of patterns. A subset P̂ 1 ⊆ P̄ 1 with cardinality Z must allow
Z(Z−1)

2
mutual games, since all the teams associated with patterns from P̂ must

meet. In each slot the number of mutual games cannot exceed the minimum of
home games and away games played by teams associated with P̂ 1 and this leads to
the condition

∑

s∈S1

(

min

{

∑

j∈P̂ 1

hjs,
∑

j∈P̂ 1

(1 − hjs)

}

)

≥
Z(Z − 1)

2

for all subsets P̂ 1 ⊆ P̄ 1.
Rasmussen and Trick[14] presented a MILP model to check if the condition is

satisfied for all subsets of cardinality Z. The model finds the subset of patterns with
fewest possible mutual games. The binary variable αj is 1 if pattern j is included in
the subset, and 0 otherwise. The binary variable δs is 1 if home games are counted
in slot s, and 0 if away games are counted. Finally, the variable βs counts the
number of home or away games in slot s. The model is known as (UBM) and looks
as follows:

min
∑

s∈S1

βs (4.29)

s.t.
∑

j∈P̄ 1

αj = Z (4.30)

βs −
∑

j∈P̄ 1

hjsαj + Z(1 − δs) ≥ 0 s ∈ S1 (4.31)

βs −
∑

j∈P̄ 1

(1 − hjs)αj + Zδs ≥ 0 s ∈ S1 (4.32)

αj, δs ∈ {0, 1} j ∈ P̄ 1, s ∈ S1 (4.33)

βs ∈ R+ s ∈ S1 (4.34)

The objective function (4.29) minimizes the number of possible mutual games. The
constraint (4.30) makes sure that Z teams are included in the subset and constraints
(4.31) and (4.32) require that βs is equal to the number of home games if δs = 1
and equal to the number of away games if δs = 0.

We can now use the pattern diversity condition[14] to perform the first feasibility
check.

The pattern diversity condition: Given a pattern set P̄ 1 and a subset
size Z, then the pattern set is feasible only if the optimal solution of
(UBM) is no less than Z(Z−1)

2
.

Notice that the condition was originally stated for a double round robin problem
but we have changed the threshold value Z(Z − 1) to Z(Z−1)

2
. If the condition is

violated, we add the following logic-based Benders cut to the master problem:
∑

i∈T

∑

j∈P̂ 1

x1
ij ≤ Z − 1 (4.35)

where P̂ 1 = {j ∈ P̄ 1|αj = 1}.
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4.3.2 Feasibility of Part 2

To check feasibility of Part 2, we use both the pattern diversity condition and the
multiple pattern separation condition known from [14]. However, both feasibility
checks can be strengthened compared to the original presentation due to the addi-
tional constraints considered in this application.

Since all teams must meet once in both halves of Part 2 we can apply the pattern
diversity condition on both halves of Part 2 in the same way we applied it on Part 1.
This would lead to cuts similar to (4.35). However, we can apply a much stronger
cut when we use the fact that multiple patterns in Part 2 can have identical first
halves or identical second halves.

Assume that a set of patterns P̂ 2 cannot meet in the first half of Part 2. This
gives us the cut

∑

i∈T

∑

j∈P̂ 2

x2
ij ≤ Z − 1 (4.36)

but instead we add the cut
∑

i∈T

∑

j∈P̂ 2

E

x2
ij ≤ Z − 1 (4.37)

where P̂ 2
E is the extended set of patterns consisting of all patterns which have a first

half identical to one of the patterns in P̂ 2. A cut for the last half can be strengthened
similarly.

The multiple pattern separation condition checks if the mutual games between
the teams using a subset of patterns P̂ 2 ⊆ P̄ 2 can be assigned to slots. The following
CP model is used to find a feasible assignment of games to slots if any exists, and
otherwise we know that P̂ 2 is an infeasible subset. The model uses the variable σj1j2

and sets it equal to the slot where the team using pattern j1 plays home against the
team using pattern j2.

(hj1s = 0) ∨ (hj2s = 1) ⇒ (σj1j2 6= s) ∀j1, j2 ∈ P̂ , j1 6= j2, ∀s ∈ S2 (4.38)

alldifferent
(

all(j2 ∈ P̂ 2 \ j1)σj1j2 , all(j2 ∈ P̂ 2 \ j1)σj2j1

)

∀j1 ∈ P̂ 2 (4.39)

(σj1j2 − σj2j1 < −k) ∨ (σj1j2 − σj2j1 > k) ∀j1, j2 ∈ P̂ 2, j1 < j2 (4.40)

(σj1j2 ≤ 2n − 2) ⇔ (σj2j1 ≥ 2n − 1) ∀j1, j2 ∈ P̂ 2, j1 < j2 (4.41)

σj1j2 ∈ S2 ∀j1, j2 ∈ P̂ 2, j1 6= j2 (4.42)

The constraints (4.38) make sure that the team using pattern j1 has a home game
and the team using pattern j2 has an away game when the latter team visits the first.
Constraints (4.39) require that all games involving the same pattern are scheduled in
different slots and constraints (4.40) state the separation constraints between games
with the same two opponents. Finally, the constraints (4.41) state that all pairs of
teams must play a game in both halves of Part 2.

The multiple pattern separation condition: Given a pattern set
P̄ 2 and a subset of patterns P̂ 2 from this set, then the pattern set is
feasible only if the above CP model has a feasible solution.
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If a subset of patterns P̂ 2 with cardinality Z makes the CP model infeasible, we add
the logic Benders cut

∑

i∈T

∑

j∈P̂ 2

x2
ij ≤ Z − 1 (4.43)

to the master problem.
In [14] all subsets of patterns with cardinality less than a lower bound were

checked in order to find infeasible subsets. Instead, we use a heuristic approach for
finding candidate subsets since it is faster and it allows us to check subsets with
larger cardinality. The price we pay is the risk of missing an infeasible subset with
small cardinality.

The idea is to find the subset of teams which are most likely to make the CP
model infeasible. We do that by finding a subset of patterns P̂ 2 which can only play
a small number of mutual games and where the games must be played close to the
middle of Part 2 since this will conflict with the separation constraints.

For a given cardinality Z, we let P̂ 2 be equal to the subset of P̄ 2 which has
cardinality Z and minimizes

∑

j1∈P̂ 2

∑

j2∈P̂ 2

vj1j2

where

vj1j2 =
2n−2−k
∑

s=n

|ĥ2
j1s − ĥ2

j2s| +
2n−2+k
∑

s=2n−1−k

1

2
|ĥ2

j1s − ĥ2
j2s| +

3(n−1)
∑

s=2n−1+k

|ĥ2
j1s − ĥ2

j2s|

The parameter vj1j2 increases with the number of slots in which j1 and j2 can
meet, and games close to the middle of Part 2 contribute less than games in the
beginning or in the end of Part 2.

The multiple pattern separation condition is used for increasing cardinalities
until we find an infeasible subset or until we have checked all cardinalities.

4.3.3 Feasibility of the combined pattern set

We use two kinds of feasibility checks for the combined pattern set. First all pairs
of patterns are checked to see if the required number of games can be scheduled
without violating the separation constraints. If this is not the case, we add a cut
for each pair of teams which violates the constraints.

Assume that we have two patterns which violate the separation constraints and
the first pattern consists of patterns j1

1 and j2
1 while the second pattern consists of

patterns j1
2 and j2

2 . If the first pattern is assigned to team i1 and the second to team
i2, we add the following logic-based Benders cut to the master problem.

x1
i1j1

1

+ x2
i1j2

1

+ x1
i2j1

2

+ x2
i2j2

2

≤ 3.

If all pairs of patterns satisfy the separation constraints, we use the multiple
pattern separation condition on the combined pattern set. Again we need a CP
model to check feasibility but this time we consider a subset of teams T̂ , and for

12



each team i, we let j1
i and j2

i be the patterns assigned to team i in Part 1 and Part 2,
respectively. In order to ease notation let h̄is = h̄1

j1

i s
for all s ∈ S1 and h̄is = h̄2

j2

i s

for all s ∈ S2 in the following CP model. We can then formulate the CP model by
letting the variable σ1

i1i2
denote the slot where the teams i1 and i2 meet in Part 1

and by letting σ2
i1i2

denote the slot where team i2 visits team i1 in Part 2.

(h̄i1s = h̄i2s) ⇒ (σ1
i1i2

6= s) ∀i1, i2 ∈ T̂ , i1 < i2, ∀s ∈ S1 (4.44)

σ1
i1i2

= σ1
i2i1

∀i1, i2 ∈ T̂ , i1 < i2 (4.45)

alldifferent
(

all(i2 ∈ T̂ \ i1)σ
1
i1i2

)

∀i1 ∈ T̂ (4.46)

σ1
i1i2

< σ2
i1i2

− k ∀i1, i2 ∈ T̂ , i1 6= i2 (4.47)

(h̄i1s = 0) ∨ (h̄i2s = 1) ⇒ (σ2
i1i2

6= s) ∀i1, i2 ∈ T̂ , i1 6= i2, ∀s ∈ S2 (4.48)

alldifferent
(

all(i2 ∈ T̂ \ i1) σ2
i1i2

, all(i2 ∈ T̂ \ i1)σ
2
i2i1

)

∀i1 ∈ T̂ (4.49)

(σ2
i1i2

< σ2
i2i1

− k) ∨ (σ2
i2i1

< σ2
i1i2

− k) ∀i1, i2 ∈ T̂ , i1 < i2 (4.50)

(σ2
i1i2

≤ 2n − 2) ⇔ (σ2
i2i1

≥ 2n − 1) ∀i1, i2 ∈ T̂ , i1 < i2 (4.51)

σ1
i1i2

∈ S1 ∀i1, i2 ∈ T̂ , i1 6= i2 (4.52)

σ2
i1i2

∈ S2 ∀i1, i2 ∈ T̂ , i1 6= i2 (4.53)

In this model constraints (4.44) make sure that, in Part 1, two teams can only meet
in a slot where one of the teams plays home and the other plays away. Constraints
(4.45) say that the model does not distinguish between home and away games in
Part 1 and constraints (4.46) require that a team does not play more than one game
in the same slot in Part 1. Constraints (4.47) make sure that the required separation
between games with the same opponents is satisfied between games from Part 1 and
Part 2. The constraints (4.48) - (4.51) are similar to the constraints (4.38) - (4.41).

In case a subset of teams T̂ makes this CP model infeasible, we add the following
logic-based Benders cut to the master problem.

∑

i∈T̂

(x1
ij1

i
+ x2

ij2

i
) ≤ 2|P̂ | − 1 (4.54)

We check subsets of teams with cardinality less than or equal to 4 and return to
Step 2 when we find an infeasible subset.

4.4 Timetable

If no cuts have been generated in Step 3, we use an IP model to find an optimal
timetable for the given pattern set or to prove that the pattern set is infeasible. In
this model we use a binary variable yi1i2s for all i1, i2 ∈ T and for all s ∈ S. For a
slot s in Part 1 the variable yi1i2s is 1, if the teams i1 and i2 meet in slot s, and for
slots in Part 2 it is 1, if team i1 plays home against team i2 in slot s.

In the model we consider the game, home and top team constraints and for each
of these constraints we associate a penalty variable which becomes 1 if the constraint
is violated. The penalty variables are denoted πGa, πHo and πTo, respectively.
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Before we state the model, recall that TGa
l is the pair of teams involved in game

constraint l and SGa
l is the set of slots at which the game must be played. THo

l

is the pair of teams (i1, i2) involved in home constraint l and the team i1 must
play home to satisfy the constraint. To ease notation we use a parameter h̄is for
all s ∈ S to represent the pattern assigned to team i, we let S1

i1i2
denote the slots

in Part 1 where teams i1 and i2 can meet and we let S2
i1i2

denote the set of slots
where team i2 can visit team i1. Furthermore, we let Sp

k denote the set of slots
{p(n− 1) + 1− k, . . . , p(n− 1)} for all p ∈ P, since this set is used in the separation
constraints.

min
∑

i∈T To

cToπTo
i +

∑

l∈CGa

cGaπGa
l +

∑

l∈CHo

cHoπHo
l (4.55)

s.t. yi1i2s = 0 ∀i1, i2 ∈ T, i1 > i2 s ∈ S1 (4.56)
∑

i2∈T\i1

(yi1i2s + yi2i1s) = 1 ∀i1 ∈ T, ∀s ∈ Sp, p ∈ P (4.57)

∑

s∈S1

i1i2

yi1i2s = 1 ∀i1, i2 ∈ T, i1 < i2 (4.58)

∑

s∈S2

i1i2

yi1i2s = 1 ∀i1, i2 ∈ T, i1 6= i2 (4.59)

(l+1)(n−1)
∑

s=l(n−1)+1

(yi1i2s + yi2i1s) = 1 ∀i1, i2 ∈ T, i1 < i2, ∀l ∈ {1, 2} (4.60)

s̄+k
∑

s=s̄

(yi1i2s + yi2i1s) ≤ 1 ∀i1, i2 ∈ T, i1 < i2, ∀s̄ ∈ Sp
k , ∀p ∈ P (4.61)

∑

s∈SGa
l

(yi1i2s + yi2i1s) + πGa
l ≥ 1 (i1, i2) = TGa

l , ∀l ∈ CGa (4.62)

∑

s∈S1

h̄i1s(yi1i2s + yi2i1s) + πHo
l ≥ 1 (i1, i2) = THo

l , ∀l ∈ CHo (4.63)

∑

i2∈T\CTo
i1

∑

s∈S1

h̄i1s(yi1i2s + yi2i1s) + πTo
i1

≥ 1 ∀i1 ∈ T To (4.64)

yi1i2s ∈ {0, 1} ∀i1, i2 ∈ T, s ∈ S (4.65)

πTo
i ∈ {0, 1} ∀i ∈ T To (4.66)

πGa
l ∈ {0, 1} ∀l ∈ CGa (4.67)

πHo
l ∈ {0, 1} ∀l ∈ CHo (4.68)

The objective function (4.55) minimizes the penalties associated with the timetable.
The constraints (4.56) require that yi1i2s is zero if i1 > i2 for all s ∈ S1, and
constraints (4.57) make sure that all teams play exactly one game in each slot. Con-
straints (4.58) and (4.59) make sure that all pairs of teams meet once in Part 1 and
both teams play a home game against the other team in Part 2. Constraints (4.60)
make sure that both halves of Part 2 constitute a single round robin tournament,
since they require that all pairs of teams meet in both halves. The separation con-
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straints are satisfied due to constraints (4.61) which require that only one game with
the same opponents can be played within k + 1 consecutive slots. The constraints
(4.62), (4.63) and (4.64) require that the penalty variables for the game, home and
top constraints are 1 if the corresponding constraints are violated.

In case the model is infeasible, we add the following logic-based Benders cut to
the master problem.

∑

i∈T

(x1
ij1

i
+ x2

ij2

i
) < 2n − 1.

Otherwise, the optimal solution of the model gives an optimal timetable for
the pattern set found in the master problem. This means that we have a feasible
schedule and the value of the schedule is the value of the pattern set plus the value
of the timetable.

After a feasible schedule has been found, we start searching for a better schedule
by setting UB equal to the value of the current best schedule and by adding the
following optimality cut to the master problem.

v ≥ vTT

(

∑

i∈T

(x1
ij1

i
+ x2

ij2

i
) − 2n

)

where vTT is the value of the timetable which has just been found.

5 Computational results

The performance of the algorithm and the quality of the schedules it obtains have
been tested by comparing with the real schedule for the 2005/2006 season and by
solving a number of randomly generated instances. The algorithm has been imple-
mented as an OPL Script in Ilog OPL Studio [11] which uses Ilog CPLEX to solve
IP problems and Ilog SOLVER to solve CP problems. All the computational tests
presented in this section have been performed on a 2.53 GHz Pentium 4 processor
with 512 MB RAM and we have used a time limit of 1800 seconds.

The Danish Football Association prefers a k value (separation) of at least 3 but
in the schedule for the 2005/2006 season they had to let k equal 0 in order to satisfy
team requirements. We have solved the problem with k ranging from 0 to 4 and
the algorithm is able to satisfy more team requirements than the real schedule in
all instances. We have also tested a complementary constraint, since this constraint
may be able to help the algorithm in some cases. Two patterns j1 and j2 are said
to be complementary if hj1s 6= hj2s for all slots s. The constraint requires that the
pattern set consists of pairs of complement patterns only.

The results for the instances with k ranging from 0 to 4 (k0 − k4) with and
without the complementary constraint (Comp/nComp) are reported in Table 5.1.
It states whether a feasible solution has been obtained, whether optimality has been
proven, the time used to find the best feasible solution, the time used to prove
optimality and the value of the best schedule when all penalty coefficients equal 1.

Although the algorithm has problems with proving optimality we see that it
generates very good solutions within a short amount of time and, in practical ap-
plications, optimal solutions may not even be the goal. In fact a number of good
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Table 5.1: Results for SAS Ligaen.

Instance Feasible sol. Optimality Time to find Time to prove Best
found proven best solution optimality value

k0-nComp yes no 707.94 — 41
k0-Comp yes no 188.11 — 42
k1-nComp yes no 544.09 — 41
k1-Comp yes yes 604.67 634.32 41
k2-nComp yes no 419.05 — 41
k2-Comp yes no 361.34 — 42
k3-nComp yes no 458.20 — 42
k3-Comp yes no 167.55 — 42
k4-nComp yes no 882.48 — 42
k4-Comp yes no 1310.81 — 42

Table 5.2: Number of violated constraints.

Instance Place Game Top Home Beg. Geo. Break Total
(29) (1) (10) (1) (10) (3) (372) (426)

Real schedule 3 0 2 0 2 8 46 61
k0-nComp 0 0 1 1 2 1 36 41
k0-Comp 0 1 1 0 2 0 38 42
k1-nComp 0 0 1 1 2 1 36 41
k1-Comp 0 0 1 0 2 0 38 41
k2-nComp 0 1 1 0 2 1 36 41
k2-Comp 0 0 1 1 2 0 38 42
k3-nComp 0 0 1 0 2 1 38 42
k3-Comp 0 0 1 1 2 0 38 42
k4-nComp 0 0 1 0 2 1 38 42
k4-Comp 0 1 1 0 2 0 38 42

feasible schedules may be just as good or even better than one optimal schedule
since it can be very hard to determine the right values for the penalty coefficients.

The exact constraints for the 2005/2006 season are confidential but in Table 5.2
we show the number of constraints, the number of violated constraints for the real
schedule and the number of violated constraints for each of the 10 instances we have
solved.

In all instances we are able to reduce the number of violated constraints with
more than 30 percent and at the same time we can increase the separation from 0
to 4. Both top teams have only 5 home games in Part 1 and this means we will
always violate at least 1 top team constraint. We also violate 2 beginning constraints
in each instance but this is because one of the teams wants to begin with 2 away
games. When k is less than 3, the price of using the complementary constraint is 2
additional breaks but, for greater k, there is no difference in the solution values.

In addition to the tests for the 2005/2006 season, we have tested the solution
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method on 10 randomly generated instances which resembles the real problem. Each
of the instances have 30 randomly distributed place constraints, they have 2 top
teams, 1 geographic home constraint with three teams, beginning constraints and
best half constraints besides the break minimization constraint. Again we have
tested the instances with k ranging from 0 to 4, with and without the complementary
constraint.

The computational results are displayed in Table 5.3 and show the number of
instances in which a feasible schedule has been found, the number of instances in
which optimality has been proven, the average time to find the best schedule, the
average time to prove optimality and the average value of the best schedule obtained.

Table 5.3: Results for randomly generated instances.

Instance Feasible Proven Avg. time to find Avg. time to prove Avg.
solution optimal best solution optimality value

k0-nComp 10 10 119.41 185.26 33.50
k0-Comp 10 10 62.56 115.34 33.70
k1-nComp 10 10 136.13 196.47 33.50
k1-Comp 10 10 74.19 139.03 33.70
k2-nComp 10 10 147.70 215.17 33.50
k2-Comp 10 10 98.42 172.70 33.70
k3-nComp 5 3 637.03 859.08 34.20
k3-Comp 10 10 264.37 400.21 33.70
k4-nComp 2 2 995.43 1141.81 33.00
k4-Comp 9 8 561.05 672.84 33.77

The algorithm is very efficient at solving the problems with k less than three but,
with k equal to three and four, the problems are getting harder and without the
complementary constraint we are only able to solve 5 of the instances with k equal to
3 and 2 of the instances with k equal to 2 within the time limit. On the other hand
when the complementary constraint is used, we can solve all instances but 1 and
the objective value does not increase significantly. This makes the complementary
constraint a good option when hard instances are considered.

6 Conclusion

In this paper we have outlined the problem of finding a seasonal schedule for the
Danish soccer league, SAS Ligaen, and presented a solution method to solve the
problem. As most sports scheduling applications this is a hard problem, since a
large number of constraints are present and these constraints are often conflicting.
Many types of constraints have already been considered in the sports scheduling
literature but, since this is the first application for a triple round robin tournament,
we introduce a number of new constraints.

The solution method uses a logic-based Benders decomposition which decom-
poses the problem into finding a pattern set and finding a timetable. The compu-
tational tests show that good solutions can be obtained in a short amount of time
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and this makes it possible to generate a number of feasible schedules from which a
final schedule can be chosen.

The work has been done in cooperation with the Danish Football Association and
after having seen the computational results they have decided to use the algorithm
for scheduling the 2006/2007 season.

Although the algorithm works for practical applications, it has problems with
proving optimality in most of the instances for the 2005/2006 season. Finding a
more efficient way of proving optimality and improving the cuts in general could be
a direction for future work in this research area.
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