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Bayesian image restoration, using configurations

T.L. Thorarinsdottir
∗,†

Abstract

In this paper, we develop a Bayesian procedure for removing noise from images that
can be viewed as noisy realisations of random sets in the plane. The procedure
utilises recent advances in configuration theory for noise free random sets, where
the probabilities of observing the different boundary configurations are expressed
in terms of the mean normal measure of the random set. These probabilities are
used as prior probabilities in a Bayesian image restoration approach. Estimation of
the remaining parameters in the model is outlined for salt and pepper noise. The
inference in the model is discussed in detail for 3 × 3 and 5 × 5 configurations and
examples of the performance of the procedure are given.

1 Introduction

The comparison of neighbouring grid points in a discrete realisation of a random closed
set Z in R

2 has been used for decades to make inference on various characteristics of the
random set. A classical result, cf. Serra (1982), states that the information obtained by
comparing pairs of neighbouring grid points can be used to estimate the mean length of
the total projection of the boundary of the random set in directions associated with the
digitisation. This, in turn, yields certain information about the directional properties of
the boundary. Larger configurations, such as grid squares of size 2× 2 or 3× 3, were used
in Ohser et al. (1998) and Ohser and Mücklich (2000) to estimate the area density, length
density, and density of the Euler number of Z.

In Jensen and Kiderlen (2003) and Kiderlen and Jensen (2003), the authors use grid
squares of size n × n, n ≥ 2, to estimate the mean normal measure of the random set Z.
The knowledge of this can then be used to quantify the anisotropy of Z. Events of type
tB ⊂ Z, tW ⊂ R

2 \ Z are observed, where tB and tW are finite subsets of the scaled
standard grid tZ2. The probability of such events,

P(tB ⊂ Z, tW ⊂ R
2 \ Z),

can effectively be estimated by filtering the discrete image. In digitised images, B usually
stands for “black” points and W for “white” points. Here, we use the notion point for the
mid-point of a pixel in the digitised image. We will not distinguish between a pixel and
its mid-point and we use both notions in the following.

Another interesting aspect in the analysis of discrete planar random sets is the restora-
tion of the random set from a noisy image. If the mean normal measure of the random set
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Z is known, the method in Kiderlen and Jensen (2003) and Jensen and Kiderlen (2003)
can be reversed to obtain the prior probabilities for a Bayesian restoration procedure. The
fundaments for Bayesian image analysis were developed by Ulf Grenander, see Grenander
(1981), while the method itself was developed and popularised mainly by Geman and
Geman (1984). For further readings on the subject, see e.g. Winkler (1995).

Hartvig and Jensen (2000a) introduce a spatial mixture modelling approach to the
Bayesian image restoration. They consider n × n neighbourhoods around each pixel in
the image, where n ≥ 3 is an odd number. The prior probability of a certain constellation
or pattern to be observed in the neighbourhood then depends on the number of black
points in the given constellation. In other words, every two constellations with equal
number of black points have the same prior probability. If, however, the restored image
represents a random closed set Z that fulfils some regularity conditions and the resolution
of the image is “good enough”, the following constellations should not have equal prior
probabilities:

We use the theory from Jensen and Kiderlen (2003) and Kiderlen and Jensen (2003)
to specify new prior probabilities for the spatial mixture model of Hartvig and Jensen
(2000a). Here, a black and white constellation has a positive prior probability if and only
if there exists a line going through the centre of at least two pixels that separates the
black and the white points and hits only points of one colour.

The paper is organised as follows. Preliminaries concerning convex geometry, random
sets, and image analysis are given in Section 2. The prior probabilities based on configura-
tion theory are presented in Section 3. In Section 4, we specify the posterior probabilities
for noisy images and discuss parameter estimation under the model. Three examples are
given in Section 5. Finally, there are some concluding remarks in Section 6.

2 Preliminaries

A compact convex subset of R
2 is called a convex body and we denote by K the family

of convex bodies in R
2. The convex ring, R, is the family of finite unions of convex

bodies while the extended convex ring is the family of all closed subsets F ∈ R
2 such that

F ∩ K ∈ R for all K ∈ K. Further, we denote by L(K, ·) the normal measure of K ∈ R
on the unit circle S1. For a Borel set A ∈ B(S1), L(K,A) is the length of the part of the
boundary of K with outer normal in A. L is thus a Borel measure on S1 and the total
mass L(K,S1) is just the boundary length L(K) of K. The normal measure is sometimes
called the first surface area measure and then denoted by S1(K, ·), cf. Schneider (1993,
p. 214-218).

Now, let Z be a stationary random set in R
2 with values in the extended convex ring.

We assume in the following that Z satisfies the integrability condition

E2N(Z∩K) < +∞ (1)

for all K ∈ K. Here, N(U) is the minimal k ∈ N such that U = ∪k
i=1Ki with Ki ∈ K

if U 6= ∅ and N(∅) = 0. This condition is stricter than most standard integrability
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conditions, but it guarantees that the realisations of Z do not become too complex in
structure. The mean normal measure of Z is defined by

L̄(Z, ·) = lim
r→+∞

EL(Z ∩ rK, ·)
ν2(rK)

,

where ν2 is the Lebesgue measure on R
2.

A digitisation (or discretisation) of Z is the intersection of Z with a scaled lattice. For
a fixed scaling factor t > 0, we consider Z ∩ tL, where

L := Z
2 = {(i, j) : i, j ∈ Z}

is the usual lattice of points with integer coordinates. The lattice square

Ln :=
{

(i, j) : i, j = −n − 1

2
, . . . ,

n − 1

2

}

consists of n2 points (n ≥ 3, n odd). Here, we follow the notation in Hartvig and Jensen
(2000a) and place the lattice square around a centre pixel. As we only consider lattice
squares with odd number of points, this should not cause any conflicts in the notation. A
line passing through at least two points of Ln will be called an n-lattice line.

Let X ⊂ tZ2 be a finite set and t > 0. A binary image on X is a function f : X →
{0, 1}. Here, f is given by f(x) = 1{x ∈ Z} so that f is a random function due to the
randomness of the set Z. We call a certain pattern of the values of f on a n × n grid a
configuration. We denote it by Cn

t , where t > 0 is the resolution of the grid, as in the
definition of a lattice above. The elements of the configuration are numbered to match
the numbering of the elements in the lattice square Ln. For n = 3 this gives

C3
t =





c−1,1 c0,1 c1,1

c−1,0 c0,0 c1,0

c−1,−1 c0,−1 c1,−1





t

,

and similarly for other allowed values of n. If the size of the configuration is clear from
the context, we will omit the index n. Examples of 3 × 3 configurations are

[

• ◦ ◦
• ◦ ◦
• • ◦

]

t

[

• ◦ ◦
• ◦ •
• • ◦

]

t

[

◦ • •
• ◦ •
• • ◦

]

t

where • means that f(x) = 1 or equivalently z ∩ x 6= ∅, while ◦ means that f(x) = 0 or
equivalently z ∩ x = ∅. Here, z is the realisation of the random set Z observed in the
image f .

3 Configuration probabilities

Let f : X → {0, 1} be an image as before and let Z be a stationary random set that fulfils
(1). In Kiderlen and Jensen (2003), the authors show that for n > 0, a given x ∈ X, and
a given configuration Ct,

lim
t→0+

1

t
P
(

Z ∩ t(Ln + x) = Ct

)

=

∫

S1

h(−v)L̄(Z, dv). (2)

The function h is given by

h(·) =
[

min
x∈B

〈x, ·〉 − max
x∈W

〈x, ·〉
]+

,
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where (tB, tW ) = Ct is the partitioning of the configuration Ct in “black” and “white”
points, that is, tB ⊂ Z and tW ⊂ R

2 \ Z. Here, g+ := max{g, 0} denotes the positive
part of the function g and 〈x, y〉 denotes the usual inner product of the vectors x and y.
A configuration Ct with non-identically zero h is called an informative configuration. Ct

is informative if and only if there exists a n-lattice line separating tB and tW not hitting
both of them. More precisely, Ct = (tB, tW ) is informative if and only if there exists an
n-lattice line g such that tB is on one side of g, tW is on the other side of g and all the
lattice points on g are either all black or all white.

Furthermore, it is shown in Jensen and Kiderlen (2003) that for a given informative
configuration Ct, there exist vectors a, b ∈ R

2 such that

h(−v) = min{〈a, v〉+, 〈b, v〉+}

for all v ∈ S1. These results are then used to obtain estimators for the mean normal
measure L̄(Z, ·) based on observed frequencies of the different types of configurations. If
we, on the other hand, assume we have a discrete noisy image in R

2, where the underlying
image is a realisation of a stationary random closed set Z with a known mean normal
measure L(Z, ·), (2) provides prior probabilities in a Bayesian restoration procedure.

As an example, let us assume that Z is isotropic. Then, the mean normal measure
L̄(Z, ·) is, up to a positive constant of proportionality, the Lebesgue measure on [0, 2π).
Equation (2) thus becomes

lim
t→0+

1

t
P
(

Z ∩ t(Ln + x) = Ct

)

= k

∫ 2π

0

min
{

〈a, (cos θ, sin θ)〉+ , 〈b, (cos θ, sin θ)〉+
}

dθ, (3)

where k > 0 is a constant. For t > 0 small enough, such that only informative, all black,
and all white configurations have positive probability, this gives the marginal probability
of each informative configurations up to a constant of proportionality.

For n = 3, the vectors a and b are given in Jensen and Kiderlen (2003). We can thus
insert those values without further effort into the right hand side of (3). For x ∈ X, this
gives

P
(

Z ∩ (tL3 + x) = Ct

)

=











































































p0, Ct =
[

◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

]

t

p1, Ct =
[

• • •
• • •
• • •

]

t

p2, Ct ∈ R
([

• ◦ ◦
• ◦ ◦
• ◦ ◦

]

t
,
[

• • ◦
• • ◦
• • ◦

]

t

)

p3, Ct ∈ R
([

◦ ◦ ◦
• ◦ ◦
• • ◦

]

t
,
[

• ◦ ◦
• • ◦
• • •

]

t

)

p4, Ct ∈ R
([

• • ◦
• • •
• • •

]

t
,
[

◦ ◦ ◦
◦ ◦ ◦
• ◦ ◦

]

t

)

p5, Ct ∈ R
([

• ◦ ◦
• ◦ ◦
• • ◦

]

t
,
[

• ◦ ◦
• • ◦
• • ◦

]

t
,
[

• • ◦
• • ◦
• • •

]

t
,
[

◦ ◦ ◦
• ◦ ◦
• ◦ ◦

]

t

)

0, otherwise,

where R(·) is the set of all possible rotations and reflections. The probabilities p2, . . . , p5
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are determined from (3) up to a multiplicative constant c. They are given by

p2 = c
[

5 sin(atan(2)) − 4
]

,

p3 = c
[

5 sin(atan(2)) − 3
√

2
]

,

p4 = c
[

2 −
√

2
]

,

p5 = c
[

1 +
√

2 − 5

2
sin(atan(2))

]

.

As the total probability is 1, we can express c in terms of the other unknown probabilities,

c =
1 − p0 − p1

16
.

For n = 5, we have used the methods described in Jensen and Kiderlen (2003) to
determine the informative 5 × 5 configurations and the vectors a and b for each configu-
ration. We have then calculated the prior probabilities in the same manner as described
above for 3 × 3 configurations. The results from this can be found in Appendix A.

Knowledge of the mean normal measure of Z will not give us information about the
probability of observing all white and all black configurations, as the mean normal measure
is a property of the boundary of the set. The remaining parameters, p0 and p1 must thus
be estimated from the data. This problem is treated in the next section.

4 Restoration of a noisy image

Let F : X → {0, 1} be a binary image on a finite set X ⊂ tZ2 for t > 0 and such that F

can be viewed as a realisation of an isotropic stationary random set Z with noise. Note
that the randomness in the image F is two-folded. First, the noise free image is random
due to the randomness of the set Z. Second, a random noise is added to the image. By
Bayes rule we have, for x ∈ X and a given configuration Ct,

P
(

Z ∩ (tLn + x) = Ct|F (tLn + x)
)

∝ P
(

Z ∩ (tLn + x) = Ct

)

p
(

F (tLn + x)|Z ∩ (tLn + x) = Ct

)

.

We assume that F (xi) and F (xj) are conditionally independent given Z for all xi, xj ∈ X,
and that the conditional distribution of F (x) given Z only depends on Z∩x for all x ∈ X.
Under these conditions, we get

p
(

F (tLn + x)|Z ∩ (tLn + x) = Ct

)

=
n2

∏

k=1

p
(

F (yk)|Z ∩ yk = ck

)

,

where {yk} = tLn + x and {ck} = Ct.
By summing over the neighbouring states, we obtain the probability of Z hitting a

single point x ∈ X,

P
(

Z ∩ x 6= ∅|F (tLn + x)
)

∝
∑

{Ct:c00=•}

P
(

Z ∩ (tLn + x) = Ct

)

n2

∏

k=1

p
(

F (yk)|Z ∩ yk = ck

)

(4)

=: S1(x).
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The probability of Z not hitting a single point x ∈ X is obtained in a similar way. It is
given by

P
(

Z ∩ x = ∅|F (tLn + x)
)

∝
∑

{Ct:c00=◦}

P
(

Z ∩ (tLn + x) = Ct

)

n2

∏

k=1

p
(

F (yk)|Z ∩ yk = ck

)

(5)

=: S2(x).

As the probabilities in (4) and (5) sum to one, we only need to compare S1(x) and S2(x)
for determining the restored value of the image for a pixel x. The restored value is 1 if
S1(x) > S2(x) and 0 otherwise.

To compare S1(x) and S2(x), we need to determine the densities p
(

F (x)|Z ∩x
)

which
depend on the distribution of the noise. As an example, we consider salt and pepper
noise. That is, a black point is replaced by a white point with probability q, and vice
versa. More precisely,

p
(

F (x)|Z ∩ x
)

= qF (x)(1 − q)1−F (x)
1
{

Z ∩ x = ∅
}

+ (1 − q)F (x)q1−F (x)
1
{

Z ∩ x 6= ∅
}

,

for some 0 ≤ q ≤ 1. This noise model has one unknown parameter, q, which must be
estimated from the data.

Further, we need to determine the marginal probability P
(

Z ∩ (tLn + x) = Ct

)

of ob-
serving a given configuration, Ct. A method to obtain the prior probabilities of observing
the different types of boundary configurations, that is configurations that contain both
black and white points, is given in the previous section. We still lack information about
the prior probabilities of observing configurations that are all black or all white, that is

p0 = P

(

Z ∩ (tL3 + x) =
[

◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

]

t

)

and
p1 = P

(

Z ∩ (tL3 + x) =
[

• • •
• • •
• • •

]

t

)

if n = 3 and similarly for larger n.
We use the parameter estimation approach introduced in Hartvig and Jensen (2000a)

which is related to maximum likelihood estimation. Within the model, we can calculate
the marginal density of an n × n neighbourhood. It is given by

p
(

F (tLn + x); p0, p1, q
)

=
∑

Ct

p
(

F (tLn + x)|Z ∩ (tLn + x) = Ct; q
)

P
(

Z ∩ (tLn + x) = Ct; p0, p1

)

= p0q
P

F (yk)(1 − q)n2−
P

F (yk) + p1q
n2−

P

F (yk)(1 − q)
P

F (yk)

+
1 − p0 − p1

A(n)

∑

Ct inform.

B(Ct)
n2

∏

k=1

[

qF (yk)(1 − q)1−F (yk)
1{Z ∩ yk = ∅}

+ q1−F (yk)(1 − q)F (yk)
1{Z ∩ yk 6= ∅}

]

,
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where the constant B(Ct) is given by the integral on the right hand side of (3) and
A(n) =

∑

Ct inform.
B(Ct). We have A(3) = 16 and A(5) = 32.

A possibility for estimating the parameters p0, p1, and q is to maximise the contrast
function

γ(p0, p1, q) =
∑

x∈X

log p
(

F (tLn + x); p0, p1, q
)

. (6)

This is, however, computationally a very demanding task. We have therefore used a
simplified version of the approach. The probability that a single point x ∈ X is in the set
Z is

P
(

Z ∩ x 6= ∅
)

=
∑

{Ct:c00=•}

P
(

Z ∩ (tLn + x) = Ct

)

=
1 − p0 − p1

2
+ p1

=
1 − p0 + p1

2
,

as exactly half of the boundary configurations have a black mid-point. The marginal
density of a single point is thus given by

p
(

F (x); p0, p1, q
)

= P
(

Z ∩ x 6= ∅; p0, p1

)

p
(

F (x)|Z ∩ x 6= ∅; q
)

+ P
(

Z ∩ x = ∅; p0, p1

)

p
(

F (x)|Z ∩ x = ∅; q
)

=
1

2

[

(1 − p0 + p1)q
1−F (x)(1 − q)F (x) + (1 + p0 − p1)q

F (x)(1 − q)1−F (x)
]

.

The corresponding contrast function

γm(p0, p1, q) =
∑

x∈X

log p
(

F (x); p0, p1, q
)

,

can easily be differentiated with repect to the parameters p0, p1, and q. The differentiation
yields that the maximum of γm is obtained when

p1 = p0 +
2
∑

F (x) − |X|
|X|(1 − 2q)

,

where |X| denotes the number of points in X. In the examples in Section 5, we have
inserted this into (6) and maximised γ on a grid with q ∈ [0.05, 0.1, . . . , 0.45, 0.49] and
p0 ∈ [0.05, 0.1, . . . , 0.9] under the constraints

2p0 +
2
∑

F (x) − |X|
|X|(1 − 2q)

< 1, p0 +
2
∑

F (x) − |X|
|X|(1 − 2q)

≥ 0.

5 Examples

We illustrate the method by applying it to two synthetic datasets and one real data
set. We use the salt and pepper noise model and isotropic priors for the configuration
probabilities in all three examples. The method can not be used directly to restore the
values on the edge of an image. In the examples below, we have therefore a one-pixel-wide
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edge of white (background) pixels in each restored image for n = 3 and a two-pixel-wide
edge of white pixels in each restored image for n = 5. Another possibility here would be
to add either a one-pixel-wide boundary of white pixels for n = 3, or a two-pixel-wide
boundary of white pixels for n = 5, around the noisy image before restoration. This will,
however, lead to a slight underestimate of black pixels on the edge. We will quantify the
results by the classification error. The classification error is estimated as the percentage of
misclassified pixels (either type I or type II errors). The results given for the classification
error are based on those pixels from the interior of each image where there are no edge
effects.

Example 1 (Boolean model with isotropic grains). The first example is based on digitisa-
tion of a simulated Boolean model. Boolean models are widely used as simple geometric
models for random sets. The simulation of a Boolean model is a two-step procedure.
First, independent uniform points are simulated in a sampling window. Second, a ran-
dom grain is attached to each point. The grains are independent from one another and
from the points. In order to avoid edge effects, the sampling window must be larger than
the target window. Here, the target window is the unit square and the grains are circular
discs with random radii. The radius of each grain is a uniform number from the interval
[0.0375, 0.15]. Figure 1 (left) shows a realisation of this model. We have then digitised
the image with t = 0.01 which gives a resolution of 100 × 100. The digitised image is
shown in Figure 1 (right).

Figure 1: Boolean model with circular grains. Left: a realisation of the
model on the unit square. Right: a digitised image of the realisation
with resolution 100 × 100.

The digitised realisation of the Boolean model from Figure 1 (right) is now our original
image. We have added salt and pepper noise to it for three different values of the noise
parameter q. The noisy images are shown in Figure 2 (top row). In the leftmost image
we have q = 0.25, in the middle image q = 0.33, and in the rightmost image q = 0.4. We
have restored the original image from the noisy images using both 3 × 3 configurations
and 5 × 5 configurations as described in the previous section. The resulting images for
3× 3 configurations are shown in the middle row of Figure 2 and the resulting images for
5 × 5 configurations are shown in the bottom row of Figure 2. The parameter estimates
and the classification errors for the restoration is shown in Table 1.

Example 2 (Boolean model with non-isotropic grains). The grains in the Boolean model
are here the right half of circular discs with random radii. The radius of each grain is a
uniform number from the interval [0.0375, 0.15] and the target window is again the unit
square. A realisation of this model is shown in Figure 3 (left). As before, we have digitised
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Figure 2: Restoration of the digitised realisation of the Boolean model with isotropic grains. Top
row: the original image disturbed with salt and pepper noise for q equal to 0.25, 0.33, and 0.4.
Middle row: estimates of the true image using 3 × 3 configurations. Bottom row: estimates of
the true image using 5 × 5 configurations.

Table 1: Parameter estimates, true parameter values, and classification errors for the restoration
of a Boolean model with isotropic grains. The parameter estimates are based on five independent
simulations of the degraded image. The standard errors of the estimates are given in parentheses.
The classification errors are given in percentage.

n × n q q̂ p0 p̂0 p1 p̂1 Class. error

3 × 3 0.25 0.25 (0) 0.30 0.31 (0.02) 0.45 0.45 (0.01) 8.98 (0.55)
5 × 5 0.25 0.25 (0) 0.20 0.21 (0.02) 0.35 0.35 (0.01) 5.11 (0.39)
3 × 3 0.33 0.32 (0.03) 0.30 0.33 (0.08) 0.45 0.48 (0.10) 17.79 (0.01)
5 × 5 0.33 0.33 (0.03) 0.20 0.22 (0.07) 0.35 0.37 (0.09) 10.61 (0.32)
3 × 3 0.40 0.40 (0) 0.30 0.31 (0.08) 0.45 0.45 (0.06) 29.19 (0.77)
5 × 5 0.40 0.40 (0) 0.20 0.22 (0.06) 0.35 0.36 (0.05) 21.20 (1.02)

the image with t = 0.01 which gives a resolution of 100 × 100. The digitised image is
shown in Figure 3 (right).

We have proceeded exactly as in the previous example. The noisy images are shown in
Figure 4 (top row). In the leftmost image we have q = 0.25, in the middle image q = 0.33,
and in rightmost image q = 0.4. The restored images for 3 × 3 configurations are shown

9



Figure 3: Boolean model with non-isotropic grains. Left: a realisation of
the model on the unit square. Right: a digitised image of the realisation
with resolution 100 × 100.

in the middle row of Figure 4 and the restored images for 5× 5 configurations are shown
in the bottom row of Figure 4. Further, Table 2 shows the parameter estimates and the
classification errors for the restoration.

Figure 4: Restoration of the digitised realisation of the non-isotropic Boolean model. Top row:
the original image disturbed with salt and pepper noise for q equal to 0.25, 0.33, and 0.4. Middle
row: estimates of the true image using 3 × 3 configurations. Bottom row: estimates of the true
image using 5 × 5 configurations.

Example 3 (Image from steel data). Our last example is an image showing the micro-
structure of steel. The image is from Ohser and Mücklich (2000), where it has been
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Table 2: Parameter estimates, the true parameter values, and classification errors for the restora-
tion of the non-isotropic Boolean model. The parameter estimates are based on five independent
simulations of the degraded image. The standard errors of the estimates are given in parentheses.
The classification errors are given in percentage.

n × n q q̂ p0 p̂0 p1 p̂1 Class. error

3 × 3 0.25 0.25 (0) 0.48 0.47 (0.03) 0.31 0.30 (0.03) 9.03 (0.15)
5 × 5 0.25 0.25 (0) 0.39 0.39 (0.02) 0.22 0.22 (0.01) 5.05 (0.29)
3 × 3 0.33 0.35 (0) 0.48 0.55 (0) 0.31 0.36 (0.02) 18.27 (0.88)
5 × 5 0.33 0.35 (0) 0.39 0.44 (0.02) 0.22 0.25 (0.03) 10.72 (0.60)
3 × 3 0.40 0.40 (0) 0.48 0.48 (0.03) 0.31 0.35 (0.04) 29.06 (0.52)
5 × 5 0.40 0.40 (0) 0.39 0.36 (0.04) 0.22 0.23 (0.04) 20.62 (0.74)

analysed to estimate the mean normal measure, see also Jensen and Kiderlen (2003). The
thresholded, binary image of the data is shown in Figure 3. We have used Otsu’s method
for the thresholding. This method minimises the intraclass variance of the black and the
white pixels, see Otsu (1979). The resolution of the image is 896 × 1280 pixels.

Figure 5: Binary image of rolled stainless steel in a longitudinal section.
The light phase is ferrite, the black phase is austenite. From Osher and
Mücklich (2000).

We have added salt and pepper noise to the binary image for q = 0.25 and q = 0.33.
The noisy images can be seen in Figure 6 (top row). We have used the method described
in the previous section for the restoration of the noisy images, using isotropic priors for
the informative configurations. The resulting images can be seen in Figure 6 (middle row)
for 3×3 configurations and in Figure 6 (bottom row) for 5×5 configurations. Further, the
parameter estimates and the classification errors for the estimates are shown in Table 3.

6 Discussion

In the two first examples we have images of a similar type, the only difference is the mean
normal measure of the boundary of the objects. In Example 1, the grains have isotropic
boundaries which means that the model is using the correct prior probabilities for the
configurations. In Example 2, on the other hand, there are some configurations that have
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Figure 6: Restoration of the steel data image. Top row: the original binary image disturbed
with salt and pepper noise for q = 0.25 (left) and q = 0.33 (right). Middle row: estimates of
the true image using 3 × 3 configurations. Bottom row: estimates of the true image using 5 × 5

configurations.

Table 3: Parameter estimates, the true parameter values, and classification errors for the restora-
tion of the steel data image. The parameter estimates are based on five independent simulations
of the degraded image. The standard errors of the estimates are given in parentheses. The
classification errors are given in percentage.

n × n q q̂ p0 p̂0 p1 p̂1 Class. error

3 × 3 0.25 0.25 (0) 0.34 0.35 (0) 0.45 0.46 (0.002) 8.92 (0.03)
5 × 5 0.25 0.25 (0) 0.25 0.25 (0) 0.35 0.36 (0.002) 4.90 (0.03)
3 × 3 0.33 0.35 (0) 0.34 0.40 (0) 0.45 0.53 (0.003) 17.74 (0.03)
5 × 5 0.33 0.35 (0) 0.25 0.30 (0) 0.35 0.43 (0.003) 10.71 (0.05)
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much higher probability than suggested in the prior. The configurations
[

◦ • •
◦ • •
◦ • •

]

t
and

[

◦ ◦ •
◦ ◦ •
◦ ◦ •

]

t

are, for instance, more likely to occur in the image than the configurations
[

◦ ◦ ◦
• • •
• • •

]

t
and

[

◦ ◦ ◦
◦ ◦ ◦
• • •

]

t
.

According to the isotropic prior, however, these configurations are all equaly likely to
occur. If we compare the results in Table 1 and Table 2, we see that the classification
error in Example 2 is very similar to the classification error in Example 1 for the same
amount of noise and the same type of model. This suggests that it is not necessary to
know the mean normal measure of the boundary of the object precisely for our model to
perform in a close to optimal way.

It is also clear from the results in the previous section that the model using 5 × 5
configurations is superior to the model using 3 × 3 configurations. This is not surprising
since the true images are quite regular with large patches of either black or white pixels.
One might suspect that the model using 3 × 3 configurations would be more appropriate
for images where the object Z consists of relatively small, disconnected components.
Another consideration here is whether it is of interest to consider larger configurations
than 5 × 5 configurations. As one can see from Appendix A, the model is already quite
complicated if we use 5×5 configurations. We think, therefore, that it is computationally
not feasible to consider larger configurations. Further, and maybe more importantly, very
large configurations will tend to remove any finer details in the original image.

The model presented in this paper is very local in nature. The estimated restored
value in a given pixel only depends on the image values in a small neighbourhood around
that pixel. For this reason, there is no obvious way how to derive the joint posterior
distribution over the entire image from the posterior distribution of the marginals in
the small neighbourhoods and it is the former that is needed for estimating the unknown
global parameters in the model. We have chosen to use the contrast function from Hartvig
and Jensen (2000b), as this seems a sensible choice with a close relation to maximum
likelihood estimation. As noted in Woolrich et al. (2005), the difference between the
parameter estimates using this contrast function and those that could be obtained if the
joint posterior were available is not known. Our method seems, however, not very sensitive
towards small changes in the parameter estimates. We can also see from Table 1 - 3 that
we get fairly good parameter estimates by maximising the contrast function if the noise
in the image is moderate, especially for the larger image in Example 3. For higher levels
of noise, the accuracy in the parameter estimates seems to depend on the accuracy of
the prior for the informative configurations. Further, note that the noise parameter, q, is
estimated very accurately if the correct value of the parameter is available on the grid.
The accuracy of the remaining estimates of the prior probabilities of all black and all
white configurations, p0 and p1, depends on how well the noise parameter is estimated.
It might therefore be of interest to use a finer grid for the estimation of q.
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A Informative 5 × 5 configurations

Using the methods described in Jensen and Kiderlen (2003), we have constructed all
informative 5 × 5 configurations and calculated the vectors a and b which are needed for
the calculation of the prior probabilities of the configurations, see Section 3. The results
are given in Table 4. We have omitted both the index for the resolution of the grid and
the index for the size of the configuration to save space in the table.

In the examples in Section 5, we have used an isotropic prior for the boundary config-
urations. For x ∈ X, the prior probabilities for 5× 5 configurations are in this case given
by

P
(

Z ∩ (tL5 + x) = Ct

)

=



































































































































































p0, Ct =

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]

t

p1, Ct =

[ • • • • •
• • • • •
• • • • •
• • • • •
• • • • •

]

t

p2, Ct in group nr. 1, . . . , 4

p3, Ct in group nr. 5, . . . , 8

p4, Ct in group nr. 9, . . . , 12

p5, Ct in group nr. 13, . . . , 20

p6, Ct in group nr. 21, . . . , 24

p7, Ct in group nr. 25, . . . , 32

p8, Ct in group nr. 33, . . . , 36

p9, Ct in group nr. 37, . . . , 44

p10, Ct in group nr. 45, . . . , 52

p11, Ct in group nr. 53, . . . , 60

p12, Ct in group nr. 61, . . . , 68

p13, Ct in group nr. 69, . . . , 76

p14, Ct in group nr. 77, . . . , 84

p15, Ct in group nr. 85, . . . , 92

0, otherwise.

The prior probabilities for the informative configurations are ordered in a decreasing order.
They can be calculated up to a multiplicative constant c by inserting the vectors a and b

in Table 4 into the right hand side of (3). The unknown constant c can be expressed in
terms of p0 and p1 by

c =
1 − p0 − p1

32
.

Table 4: The 92 groups of informative 5 × 5 configurations.

No. Config. Twin Config. Twin Config. Twin a b

1

[ • • • • ◦
• • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] (

1
0

) (

0
−1

)

2

[ ◦ • • • •
• • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •

] (

0
−1

) (

−1
0

)
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Table 4: The 92 groups of informative 5 × 5 configurations (continued).

No. Config. Twin Config. Twin Config. Twin a b

3

[ • • • • •
• • • • •
• • • • •
• • • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

0
1

) (

−1
0

)

4

[ • • • • •
• • • • •
• • • • •
• • • • •
• • • • ◦

] [ • ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

1
0

) (

0
1

)

5

[ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • • ◦
• • • • ◦
• • • • ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] (

1
4

) (

1
−4

)

6

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • • •
• • • • •
• • • • •

] (

4
−1

) (

−4
−1

)

7

[ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ • • • •
◦ • • • •
◦ • • • •
◦ • • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •

] (

−1
4

) (

−1
−4

)

8

[ • • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

4
1

) (

−4
1

)

9

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • • ◦
• • • • •
• • • • •
• • • • •

] (

2
1

) (

−1
−2

)

10

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ • • • •
• • • • •
• • • • •
• • • • •

] (

1
−2

) (

−2
1

)

11

[ ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ • • • •
◦ ◦ • • •

] (

1
2

) (

−2
−1

)

12

[ • • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • ◦
• • • ◦ ◦

] (

2
−1

) (

−1
2

)

13

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • • •
• • • • •
• • • • •

] (

1
1

) (

0
−1

)

14

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • • •
• • • • •
• • • • •
• • • • •

] (

1
0

) (

−1
−1

)

15

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
• • • • •
• • • • •
• • • • •
• • • • •

] (

1
−1

) (

−1
0

)

16

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [ ◦ ◦ • • •
• • • • •
• • • • •
• • • • •
• • • • •

] (

0
−1

) (

−1
1

)

17

[ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ • • • •
◦ • • • •

] (

0
1

) (

−1
−1

)

18

[ ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • •
◦ ◦ • • •

] (

1
1

) (

−1
0

)

19

[ • • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • •
• • • ◦ ◦

] (

1
0

) (

−1
1

)

20

[ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • ◦
• • • • ◦

] (

1
−1

) (

0
1

)

15



Table 4: The 92 groups of informative 5 × 5 configurations (continued).

No. Config. Twin Config. Twin Config. Twin a b

21

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •
• • • • •

] (

3
2

) (

−2
−3

)

22

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
• • • • •
• • • • •

] (

2
−3

) (

−3
2

)

23

[ ◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] (

2
3

) (

−3
−2

)

24

[ • • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦

] (

3
−2

) (

−2
3

)

25

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • • ◦
• • • • ◦
• • • • •
• • • • •

] (

1
1

) (

−1
−3

)

26

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •
• • • • •

] (

3
1

) (

−1
−1

)

27

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ • • • •
• • • • •
• • • • •
• • • • •

] (

1
−1

) (

−3
1

)

28

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ • • • •
◦ • • • •
• • • • •
• • • • •

] (

1
−3

) (

−1
1

)

29

[ ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ • • • •
◦ • • • •
◦ ◦ • • •

] (

1
3

) (

−1
−1

)

30

[ ◦ ◦ • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ • •

] (

1
1

) (

−3
−1

)

31

[ • • • ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • ◦
• • ◦ ◦ ◦

] (

3
−1

) (

−1
1

)

32

[ • • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • ◦
• • • • ◦
• • • ◦ ◦

] (

1
−1

) (

−1
3

)

33

[ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •

] (

4
3

) (

−3
−4

)

34

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
• • • • •

] (

3
−4

) (

−4
3

)

35

[ ◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] (

3
4

) (

−4
−3

)

36

[ • • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] (

4
−3

) (

−3
4

)

37

[ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦
• • • • ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] (

1
2

) (

0
−1

)

[ • • • • ◦
• • • • ◦
• • • • ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

]
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Table 4: The 92 groups of informative 5 × 5 configurations (continued).

No. Config. Twin Config. Twin Config. Twin a b

38

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •

] (

1
0

) (

−2
−1

)

[ • • ◦ ◦ ◦
• • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • ◦ ◦

]

39

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ • • •
• • • • •

] (

2
−1

) (

−1
0

)

[ ◦ ◦ ◦ • •
• • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ • • •

]

40

[ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ • • • •
◦ • • • •
◦ • • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] (

0
−1

) (

−1
2

)

[ ◦ • • • •
◦ • • • •
◦ • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

]

41

[ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] (

0
1

) (

−1
−2

)

[ • • • • •
• • • • •
◦ • • • •
◦ • • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]

42

[ • • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

2
1

) (

−1
0

)

[ • • • • •
• • • • •
• • • • •
• • • • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]

43

[ • • • • •
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

1
0

) (

−2
1

)

[ • • • • •
• • • • •
• • • • •
• • • • •
• • ◦ ◦ ◦

] [ • • • ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]

44

[ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • • ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] (

1
−2

) (

0
1

)

[ • • • • •
• • • • •
• • • • ◦
• • • • ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]

45

[ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦
• • • • •

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] (

2
3

) (

−1
−3

)

46

[ • • • • •
◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ ◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] (

1
3

) (

−2
−3

)

47

[ • ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • ◦

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •

] (

3
1

) (

−3
−2

)

48

[ • • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
◦ • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

3
2

) (

−3
−1

)
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Table 4: The 92 groups of informative 5 × 5 configurations (continued).

No. Config. Twin Config. Twin Config. Twin a b

49

[ ◦ ◦ ◦ ◦ •
◦ ◦ • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ • • • •
• • • • •
• • • • •

] (

3
−2

) (

−3
1

)

50

[ • • • • •
• • • ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

3
−1

) (

−3
2

)

51

[ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • • ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] (

2
−3

) (

−1
3

)

52

[ ◦ ◦ • • •
◦ ◦ • • •
◦ • • • •
◦ • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •

] (

1
−3

) (

−2
3

)

53

[ • • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ ◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] (

1
2

) (

−1
−1

)

[ ◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •

]

54

[ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •
• • • • •

] (

2
1

) (

−1
−1

)

[ • • ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

]

55

[ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦
• • • • •

] [ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] (

1
1

) (

−1
−2

)

[ • • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

]

56

[ ◦ ◦ ◦ • •
◦ ◦ • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ ◦ • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ • • •
◦ • • • •
• • • • •

] (

1
−1

) (

−2
1

)

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ • • •
◦ • • • •
• • • • •
• • • • •

]

57

[ • • • • ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • ◦
• • • ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

2
−1

) (

−1
1

)

[ • • • • •
• • • • •
• • • • •
• • • ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]

58

[ • • • • •
• • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ ◦ • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ •

] [ • • • • •
◦ • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] (

1
1

) (

−2
−1

)

[ • • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]

59

[ ◦ ◦ • • •
◦ ◦ • • •
◦ • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •

] (

1
−2

) (

−1
1

)

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
◦ • • • •
• • • • •

]
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Table 4: The 92 groups of informative 5 × 5 configurations (continued).

No. Config. Twin Config. Twin Config. Twin a b

60

[ • • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦

] [ • • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

1
−1

) (

−1
2

)

[ • • • • •
• • • • •
• • • • ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]

61

[ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • • ◦
• • • • ◦
• • • • ◦
• • • • ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] (

1
3

) (

0
−1

)

[ • • • • ◦
• • • • ◦
• • • • ◦
• • • • ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

]

62

[ • • • • •
◦ • • • •
◦ • • • •
◦ • • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ ◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] [ ◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] (

0
1

) (

−1
−3

)

[ ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ • • • •
◦ • • • •
◦ • • • •
◦ ◦ • • •

]

63

[ • ◦ ◦ ◦ ◦
• • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • • ◦

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • • ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •

] (

1
0

) (

−3
−1

)

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •
• • • • •

]

64

[ • • • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
◦ • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

3
1

) (

−1
0

)

[ • • • • •
• • • • •
• • • • •
• • • • •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]

65

[ ◦ ◦ ◦ ◦ •
• • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ • • • •
• • • • •
• • • • •

] (

3
−1

) (

−1
0

)

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ • • • •
• • • • •
• • • • •
• • • • •

]

66

[ • • • • •
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

1
0

) (

−3
1

)

[ • • • • •
• • • • •
• • • • •
• • • • •
• ◦ ◦ ◦ ◦

] [ • • • • ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]

67

[ ◦ • • • •
◦ • • • •
◦ • • • •
◦ • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •

] (

0
−1

) (

−1
3

)

[ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ • • • •
◦ • • • •
◦ • • • •
◦ • • • •

]

68

[ • • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • • ◦
• • • • ◦
• • • ◦ ◦

] [ • • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦

] [ • • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] (

1
−3

) (

0
1

)

[ • • • • •
• • • • ◦
• • • • ◦
• • • • ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

]
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Table 4: The 92 groups of informative 5 × 5 configurations (continued).

No. Config. Twin Config. Twin Config. Twin a b

69

[ • • • • •
◦ • • • •
◦ • • • •
◦ • • • •
◦ ◦ • • •

] [ ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ ◦ • • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] (

1
4

) (

−1
−2

)

70

[ • ◦ ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • • ◦

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • • ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • • • ◦
• • • • •

] (

4
1

) (

−2
−1

)

71

[ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • • ◦
• • • • ◦
• • • • ◦
• • • • •

] [ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • • • ◦

] (

1
2

) (

−1
−4

)

72

[ • • • • ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
• • • • ◦
• ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

4
−1

) (

−2
1

)

73

[ • • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • • ◦
• • • • ◦
• • • ◦ ◦

] [ • • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • ◦ ◦
• • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦

] (

1
−2

) (

−1
4

)

74

[ ◦ ◦ • • •
◦ • • • •
◦ • • • •
◦ • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •

] [ ◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •
◦ ◦ • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •

] (

1
−4

) (

−1
2

)

75

[ ◦ • • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ ◦ •

] [ • • • • •
◦ • • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ • • • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] (

2
1

) (

−4
−1

)

76

[ ◦ ◦ ◦ ◦ •
◦ • • • •
• • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ • • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ • • • •
• • • • •

] (

2
−1

) (

−4
1

)

77

[ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦

] (

3
4

) (

−1
−2

)

78

[ • • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦

] (

4
3

) (

−2
−1

)

79

[ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ ◦ • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ ◦ • • •
• • • • •

] (

4
−3

) (

−2
1

)

80

[ • • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] (

3
−4

) (

−1
2

)

81

[ ◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] (

1
2

) (

−3
−4

)

82

[ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • •

] (

2
1

) (

−4
−3

)

83

[ • • • • •
• • • ◦ ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • ◦ ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

2
−1

) (

−4
3

)

84

[ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •

] (

1
−2

) (

−3
4

)

85

[ • ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦

] [ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • ◦

] [ • • ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • ◦ ◦

] (

1
1

) (

−2
−3

)

86

[ • • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ • •

] [ ◦ ◦ • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ ◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] (

2
3

) (

−1
−1

)

20



Table 4: The 92 groups of informative 5 × 5 configurations (continued).

No. Config. Twin Config. Twin Config. Twin a b

87

[ • ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦

] [ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦
• • • ◦ ◦
• • • • ◦
• • • • •

] (

3
2

) (

−1
−1

)

88

[ • • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ •

] [ ◦ • • • •
◦ ◦ • • •
◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

1
1

) (

−3
−2

)

89

[ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
• • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
• • • • •

] (

1
−1

) (

−3
2

)

90

[ • • • • •
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] [ • • • • •
• • • • •
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

3
−2

) (

−1
1

)

91

[ ◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
• • • • •

] [ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ ◦ • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •

] [ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • •
◦ ◦ • • •
◦ • • • •
◦ • • • •

] (

2
−3

) (

−1
1

)

92

[ • • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • ◦
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦

] [ • • • • •
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• • ◦ ◦ ◦

] [ • • • ◦ ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

] (

1
−1

) (

−2
3

)

21
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