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Analyticity in Time

Ole E. Barndorff-Nielsen Friedrich Hubalek

Contents

1 Introduction 2

2 Initial analysis 5
2.1 Heuristic motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 A simple, general result for R>0 . . . . . . . . . . . . . . . . . . . . . 7
2.3 Nature of limit relations . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 A note on the tail behaviour . . . . . . . . . . . . . . . . . . . . . . . 10

3 Main results 11
3.1 Pointwise convergence of the coefficient functions . . . . . . . . . . . 11
3.2 Differentiability in time . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Power series representation in time . . . . . . . . . . . . . . . . . . . 16

4 Examples 19
4.1 Compound Poisson case . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 The positive α-stable law . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 The gamma distribution . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 The inverse Gaussian distribution . . . . . . . . . . . . . . . . . . . . 23
4.5 An example on R: The Meixner distribution . . . . . . . . . . . . . . 24
4.6 A bivariate example: The Inverse Gaussian-Normal Inverse Gaussian

law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A Auxiliary results 26
A.1 Bell polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.2 Auxiliary estimates for the cumulant function . . . . . . . . . . . . . 28
A.3 Convolutions and Laplace transforms . . . . . . . . . . . . . . . . . . 32
A.4 On the derivatives of the inverse Laplace transform . . . . . . . . . . 37
A.5 On the integral modulus of continuity . . . . . . . . . . . . . . . . . . 37

1



Abstract

We investigate the relation of the semigroup probability density of an
infinite activity Lévy process to the corresponding Lévy density. For subor-
dinators we provide three methods to compute the former from the latter.
The first method is based on approximating compound Poisson distributions,
the second method uses convolution integrals of the upper tail integral of the
Lévy measure, and the third method uses the analytic continuation of the
Lévy density to a complex cone and contour integration. As a byproduct we
investigate the smoothness of the semigroup density in time. Several concrete
examples illustrate the three methods and our results.

1 Introduction

For the infinitely divisible laws there are a number of intriguing and useful relations
and points of similarity between the probability measures or probability densities of
the laws on the one hand and their associated Lévy measures or Lévy densities on
the other.

In particular, if U is the Lévy measure of an infinitely divisible law on Rd with
associated Lévy process {Xt}t≥0 and if P (dx; t) denotes the law of Xt then (see Sato
(1999, Corollary 8.9))

lim
t→0

t−1

∫
Rd
f(x)P (dx; t) =

∫
Rd
f(x)U(dx) (1)

for any function f in the space C# of bounded continuous functions on Rd vanishing
in a neighborhood of 0.

The present paper considers the converse problem, of calculating P (dx; t) from U
and, more particularly, how to determine the probability density p(x; t) of Pt from
the Lévy density u of U , when these densities exist.

As part of the problem, we discuss conditions (for d = 1) ensuring that p(x; t)
possesses a power series expansion in t:

p(x; t) =
∞∑
n=1

tn

n!
un(x). (2)

This issue is of some independent interest. In (2), necessarily, u1 = u and the
question is how the further coefficients un may be calculated from u, using possi-
bly also properties of the cumulant function of X1 (which, of course, is essentially
determined by u).

We also consider the measure version of (2), i.e.

P (dx; t) =
∞∑
n=1

tn

n!
Un(dx) (3)

where the Un(dx) are, in general signed, measures and with U1 being equal to U ,
the Lévy measure of P (dx; t).
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When both p(x; t) and u are concentrated on the positive halfline R>0 = (0,∞),
it is convenient to give (3) the form

P+(x; t) =
∞∑
n=1

U+
n (x)

tn

n!
(4)

with P+(x; t) = P ([x,+∞); t) and U+
n (x) = Un([x,+∞)) denoting the upper tail

integrals.
Except for the discussion in Section 2 and some remarks in Section 4, we only

consider the case where the process X is a subordinator with infinite Lévy measure
and without linear drift. In other words, X is an infinite activity pure jump subor-
dinator. In the case of a finite Lévy measure X is a compound Poisson process, and
validity of formulae (2) and (3), with straightforward modifications for the atom at
zero, is easily established, see Section 4.1.

We shall discuss three methods for determining the coefficients un(x): The first
involves, as the final step, a limiting operation

un(x) = lim
ε→0

unε(x), (5)

where

unε(x) =
n∑
k=1

(−1)n−k
(
n

k

)
c(ε)n−ku∗kε (x). (6)

Here uε(x) is an approximation of the Lévy density u(x), that corresponds to a
compound Poisson process with intensity c(ε), and ∗k indicates k-fold convolution.
The second method uses derivatives of convolutions, namely,

un(x) = (−1)n
dn

dxn
(
(U+)∗n

)
(x). (7)

The third method uses the complex contour integral

un(x) =
1

2πi

∫
C

κ(θ)neθxdθ, (8)

where κ(θ) is the analytic continuation of the cumulant function to a complex cone
containing <θ ≥ 0 and the contour is, roughly speaking, along the boundary of
the cone. We will see that such an analytic continuation can be derived from an
analytic continuation of the Lévy density u(x) to a complex cone containing the
positive real axis.

Formulae of the above type are of interest, in particular, in connection with
recent work on stochastic modeling that seeks to capture observed distributional
behavior by specification of Lévy densities rather than probability densities. For
some case studies see Novikov (1994), Koponen (1995), Bouchaud et al. (1997),
Carr et al. (2002), and Barndorff-Nielsen and Shephard (2001). Boyarchenko and
Levendorskĭı (2002) develop this approach considerably, including applications to
option pricing. Another area of application is to statistical inference for discretely
observed, continuous time models on, for instance, log prices of assets, see Woerner
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(2001). The idea of Lévy copulas, see Cont and Tankov (2004) and Barndorff-Nielsen
and Lindner (2006) is in the same line of reasoning.

We proceed to indicate other work related to the results of the present paper.

The comprehensive monograph by Sato (1999) contains many instances of the
interesting relations between the probability distributions and the Lévy measures
of infinitely divisible laws; cf. also Embrechts et al. (1979), Embrechts and Goldie
(1981) and Sato and Steutel (1998). Some examples are the relation between uni-
modality properties of the two types of densities, Sato (1999, Section 52), and the
behavior under exponential tilting (or Esscher transformation). See also Léandre
(1987), Ishikawa (1994) and Picard (1997) who, partly in the wider setting of pure
jump processes, study cases where the transition density exists and behaves as a
power of t for t → 0. Continuity of P+(x; t) at t = 0 is characterized in Doney
(2004). In Rüschendorf and Woerner (2002), see also Woerner (2001), the authors
have established the validity of expansions for the probability density or distribu-
tion function of Xt that are related to (2) and (4). More specifically, in the notation
of the present paper, they show that under certain technical conditions — differ-
ent from those considered here — one has, for t → 0 and x > η > 0 and letting
u[ε,∞)(x) = 1[ε,∞)(x)u(x) and U+

ε (x) = Uε([x,∞)), that

p(x; t) = e−tc(ε)
n−1∑
k=1

u∗kε (x)
tk

k!
+Oε,η(t

n) (9)

respectively

P+(x; t) =
n−1∑
k=1

U+∗k
ε (x)

tk

k!
+Oε,η(t

n) (10)

where u[ε,∞)(x) = 1[ε,∞)(x)u(x) and U+
ε (x) = Uε([x,∞)) is the tail mass of the

approximating Lévy measure, and where for simplicity we have assumed that Xt is
a subordinator. However, as these authors show, the same type of expansions hold
for Lévy processes in general.

Burnaev (2006) gives two formulas for computing the Lévy measure from the
corresponding cumulant function.

Section 2 below consists in an initial discussion of the problem of determining the
coefficients un. This casts light on the nature of these coefficients and also leads to
the idea behind the procedure for calculating the coefficients that will be established
in Section 3, which contains our main mathematical results. Illustrative examples
will be given in Section 4. Technical auxiliary material used in the proofs is in the
Appendix.

The results in the present paper build partly on our previous, unpublished pre-
liminary work Barndorff-Nielsen (2000) and Hubalek (2002).
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2 Initial analysis

In Subsection 2.1 below we present a heuristic derivation of the following represen-
tation for the probability density of the Lévy process X at time t:

p(x; t) =
∞∑
n=1

tn

n!
un(x) (11)

where

un(x) = lim
ε→0

n∑
k=1

(−1)n−k
(
n

k

)
c(ε)n−ku∗kε (x) (12)

and uε, with total mass c(ε), is a (suitable) approximation to the Lévy density of X.
A rigorous derivation of the formula is given in Section 3 for the case of one-

dimensional subordinators, under fairly strong assumptions. In subsequent work we
hope to establish proofs for Lévy processes in Rd.

Subsection 2.2 contains a general result for infinitely divisible distributions on R>0.
In Subsection 2.3 the rather subtle nature of the limiting operation in (12) is dis-
cussed. The final Subsection 2.4 indicates the role of the tail behaviour of u.

2.1 Heuristic motivation

Let p(x; t), and u(x) be, respectively, the probability density, and the Lévy density
(assumed to exist) of an infinite activity Lévy process X on Rd. Let uε(x), ε > 0
be integrable Lévy densities, that we think of as approximations to u(x) for ε→ 0,
and set

c(ε) =

∫
Rd
uε(x)dx, (13)

where we suppose c(ε) →∞ as ε→ 0, in accordance withX being of infinite activity.
In the following we give the heuristic calculation, that led us to the formula (2), with
un(x) given by (5), and

unε(x) =
n∑
k=1

(
n

k

)
(−1)n−kc(ε)n−ku∗kε (x). (14)

The function uε(x) determines a compound Poisson process with intensity c(ε) and
jumps from the distribution with density

aε(x) = c(ε)−1uε(x). (15)

Let pε(x; t) be the density of the absolutely continuous part of the associated prob-
ability distribution, and assume x ∈ Rd \ {0}. Then

pε(x; t) =
∑
n≥1

e−c(ε)t
(c(ε)t)n

n!
a∗nε (x) (16)

=

(∑
n≥0

(−1)nc(ε)n
tn

n!

)(∑
n≥1

c(ε)na∗nε (x)
tn

n!

)
. (17)
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Computing the product of the two series as Cauchy product and using (15) yields

pε(x; t) =
∑
n≥1

( n∑
k=1

(
n

k

)
a∗kε (x)(−1)n−kc(ε)n

)
tn

n!
(18)

=
∑
n≥1

( n∑
k=1

(
n

k

)
(−1)n−kc(ε)n−ku∗kε (x)

)
tn

n!
. (19)

By (14) we obtain

pε(x; t) =
∑
n≥1

unε(x)
tn

n!
. (20)

In many examples we can verify that the limit (5) exists, that limε→0 pε(x; t) =
p(x; t), and that we can interchange the limit and the summation in (20), and thus
obtain (2).

Let us emphasize that the problem is not only to give a justification of inter-
changing limits. Each summand in (14) diverges as ε → 0, yet ’magically’, by
massive cancellation, the sum converges. This behaviour is investigated in some
more detail in Section 2.3.

By a similar heuristic calculation we expect

P (dx; t) =
∑
n≥1

Un(dx)
tn

n!
(21)

to hold on Rd \ {0}, with
Un(dx) = lim

ε→0
Unε(dx), (22)

where

Unε(x) =
n∑
k=1

(
n

k

)
(−1)n−kc(ε)n−kU∗k

ε (dx). (23)

Obviously, if we can integrate (2) term by term, then

Un(dx) = un(x)dx (24)

on Rd \ {0}.

Remark 1. Suppose p(x; 0) = 0 and

lim
t→0

t−1p(x, t) = u(x) (25)

and let
uε(x) = ε−1p(x; ε), (26)

in which case c(ε) = ε−1. With uε thus defined, formula (6) takes the form

unε(x) = ε−n
n∑
k=1

(−1)n−k
(
n

k

)
p∗k(x; ε) (27)

= ε−n
n∑
k=1

(−1)n−k
(
n

k

)
p(x; kε). (28)
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Now, the right hand side is, in fact, an n-th order difference quotient of p(x; t) so
that provided p(x; t) is n times differentiable from the right at t = 0 we have

lim
ε→0

unε(x) =
∂n

∂tn
p(x; 0). (29)

Thinking of uε(x) as an approximation to ε−1p(x; ε), as well as an approximation to
u(x), this then is a further indication that in considerable generality p(x; t) may be
calculated via (6) in the manner discussed above. (Of course, in practice, choosing
uε(x) = ε−1p(x; ε) is not an option since the point is to determine p(x; t) in terms
of the Lévy density u(x).)

Remark 2. It may also be noted that subject to the other assumptions of the Theo-
rem, condition (35) is satisfied in particular if there exists an integrable function v
on R>0 such that

(x ∧ 1)uε(x) ≤ v(x) (30)

for all x ∈ R>0 and all ε. Some candidates for uε are

uε(x) = 1[ε,∞)(x)u(x) (31)

or
uε(x) = u(x)e−x/ε. (32)

2.2 A simple, general result for R>0

Let P (x; t) and u(x) be, respectively, the cumulative distribution function and the
Lévy density (assumed to exist) of an infinite activity Lévy process on R>0. Let the
uε(x) be integrable Lévy densities, that we think of as approximations to u(x). Let
us define c(ε) and unε(x) as in (13) and (14) above, and set

U0ε(x) = 1, Unε(x) = −
∫ ∞

x

unε(y)dy (n ≥ 1). (33)

Theorem 3. Suppose
lim
ε→0

c(ε) = ∞, (34)

and

lim
ε→0

∫
(1 ∧ x)|uε(x)− u(x)|dx = 0. (35)

Then

P (x; t) = lim
ε→0

∑
n≥0

Unε(x)
tn

n!
(36)

pointwise for each x ∈ R>0 and t > 0.

Proof. Let Pε(x; t) the distribution functions of the approximating compound Pois-
son processes with Lévy density uε(x). Then we can justify term by term integration
of (20) by dominated convergence and obtain

Pε(x; t) = e−c(ε)t +
∑
n≥0

Unε(x)
tn

n!
. (37)
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The assumption (35) implies that the Fourier cumulant function of Pε(·, t), converges
to the Fourier cumulant function of P (·, t), and thus the characteristic functions of
Pε(·, t) converges to the characteristic functions of P (·, t). The continuity theorem
then yields Pε(x, t) → P (x, t) when x is a continuity point. But (Sato, 1999, The-
orem 27.4) shows, that P (x; t) is continuous in x > 0. Since the first term on the
right hand side of (37) trivially tends to zero, we have (36). �

Remark 4. The approximations (31) satisfy the assumptions of Theorem 3.

2.3 Nature of limit relations

We proceed to discuss the nature of the main limit relations of the foregoing. The
first four of the functions unε of (14) are

u1ε(x) = uε(x) (38)

u2ε(x) = u∗2ε (x)− 2c(ε)uε(x) (39)

u3ε(x) = u∗3ε (x)− 3c(ε)u∗2ε (x) + 3c(ε)2uε(x) (40)

u4ε(x) = u∗4ε − 4c(ε)u∗3ε + 6c(ε)2u∗2ε (x)− 4c(ε)3uε(x) (41)

Further, it follows from the well-known inverse relations

an =
n∑
k=0

(
n

k

)
(−1)kbk ⇐⇒ bn =

n∑
k=0

(
n

k

)
(−1)kak, (42)

see, for example, (Riordan, 1968, Sec.2.1, p.43), applied to a0 = 0, b0 = 0 and

ak = (−1)k
ukε(x)

c(ε)k
, bk =

u∗kε (x)

c(ε)k
, (1 ≤ k ≤ n) (43)

that formula (14) may be reexpressed as

u∗nε (x) =
n∑
k=1

(
n

k

)
c(ε)n−kukε(x). (44)

Another useful variant of (14) and (44) is

unε(x) = u∗nε (x)−
n−1∑
k=1

(
n

k

)
c(ε)n−kusε(x). (45)

In particular, we have

u1ε(x) = uε(x) (46)

u2ε(x) = u∗2ε (x)− 2c(ε)u1ε(x) (47)

u3ε(x) = u∗3ε (x)− 3c(ε)u2ε(x)− 3c(ε)2uε(x) (48)

u4ε(x) = u∗4ε − 4c(ε)u3ε − 6c(ε)2u2ε(x)− 4c(ε)3uε(x). (49)

Section 2.3 exemplifies the convergence of unε(x) to a function un(x). Note that
such convergence implies a subtle cancellation of singularities, cf. formula (14); see
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the first few instances of that formula, listed at the beginning of this subsection and
recall that c(ε) →∞ as ε→ 0.

To gain an understanding of how this cancellation occurs, note first that for
n = 0, 1, 2, . . . we have

u∗(n+1)
ε (x) = (n+ 1)x−1

∫ x

0

ūε(x− y)u∗nε (y)dy (50)

where u∗0ε (y)dy is interpreted as δ-measure at the origin. This may be shown by
induction. In fact, for n = 0 the statement is trivial and assuming validity up till
n− 1 we find

xu∗(n+1)
ε (x) = (x− y + y)

∫ x

0

u∗nε (x− y)uε(y)dy

=

∫ x

0

(x− y)u∗nε (x− y)uε(y)dy +

∫ x

0

u∗nε (x− y)yuε(y)dy

=

∫ x

0

yu∗nε (y)uε(x− y)dy +

∫ x

0

u∗nε (x− y)ūε(y)dy

= n

∫ x

0

uε(x− y)

∫ y

0

u∗(n−1)
ε (y − z)ūε(z)dzdy +

∫ x

0

u∗nε (x− y)ūε(y)dy

= n

∫ x

0

ūε(z)

∫ x

z

uε(x− y)u∗(n−1)
ε (y − z)dydz +

∫ x

0

u∗nε (x− y)ūε(y)dy

= (n+ 1)

∫ x

0

u∗nε (x− y)ūε(y)dy

Furthermore,

un+1ε(x) = (n+ 1)x−1

{∫ x

0

unε(x− y)ūε(y)dy + (−1)nc(ε)nūε(x)

}
(51)

as follows by the calculation∫ x

0

unε(x− y)ūε(y)dy = c(ε)n
n∑
ν=1

(−1)n−ν
(
n

ν

)∫ x

0

a∗νε (x− y)ūε(y)dy

= c(ε)n+1x

n∑
ν=1

(−1)n−ν
(
n

ν

)
(ν + 1)−1a∗(ν+1)

ε (x)

=
1

n+ 1
xc(ε)n+1

n∑
ν=1

(−1)n+1−(ν+1)

(
n+ 1

ν + 1

)
a∗(ν+1)
ε (x)

=
1

n+ 1
ūn+1ε(x)− (−1)nc(ε)nūε(x)

Next we discuss the limiting behavior of unε(x) as ε → 0. Consider first the case
n = 2, and let

U+
ε (x) =

∫ ∞

x

uε(y)dy, U+(x) =

∫ ∞

x

u(y)dy. (52)
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Using (51) and noting that

c(ε) =

∫ x

0

uε(y)dy + U+
ε (x) (53)

we may rewrite u2ε(x) as

u2ε(x) = 2x−1

{∫ x

0

uε(y){ūε(x− y)− ūε(x)}dy − ūε(x)U
+
ε (x)

}
. (54)

Hence, by letting ε→ 0 and invoking condition (30), we obtain

Proposition 5. Suppose the Lévy density u is differentiable. Then

u2(x) = 2x−1

{∫ x

0

u(y){ū(x− y)− ū(x)}dy − ū(x)U+(x)

}
(55)

with the integral existing and being finite.

We note that (55) may be reexpressed as

1

2
ū2(x) =

∫ x

0

u(y){ū(x− y)− ū(x)}dy − ū(x)U+(x). (56)

Remark 6. Formula (54), first given in Barndorff-Nielsen (2000), has been gener-
alized by Woerner (2001) to

1

n+ 1
ūn+1ε(x) =

1

n

[∫ x

0

uε(y) {ūnε(x− y)− ūnε(x)} dy − ūnε(x)U
+(x)

]
. (57)

Typically though, this cannot be used to pass to the limit ε→ 0 for n > 1.

2.4 A note on the tail behaviour

Suppose r > 0 and u(x) is an infinite activity Lévy density on R>0. Then

v(x) = e−rxu(x) (58)

is also an infinite activity Lévy density on R>0. This transformation is well-known as
Esscher transform or exponential tilting. Let κ(θ) and λ(θ) be the Laplace cumulant
functions corresponding to u(x) and v(x). Then

λ(θ) = κ(θ + r)− κ(r). (59)

Let p(x, t) and q(x, t) be the probability densities corresponding to u(x) and v(x).
Then

q(x, t) = e−rx−κ(r)tp(x, t). (60)

Thus p(x, t) admits a series representation (2) if and only if q(x, t) admits a series
representation

q(x, t) =
∑
n≥1

vn(x)
tn

n!
, (61)
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where we have

vn(x) =
n∑
k=1

(
n

k

)
(−1)n−kκ(r)n−ke−rxun(x) (62)

and

un(x) =
n∑
k=1

(
n

k

)
κ(r)n−kerxvn(x). (63)

This indicates that heavy tails do not matter much in the problems studied in the
present context, as we can deal with them using the Esscher transform. Rather
it is the behaviour of small jumps that can cause difficulties, as reflected in the
assumptions of the theorems given below.

3 Main results

In this section we analyze the following issues:

• Does unε(x) converge as ε → 0? If so, can we find a more direct method to
compute the limit un(x) from u(x) and so avoid the difficult cancellations in
unε(x) as ε→ 0?

• If we have convergence, is p(x; t) in fact n-times differentiable (from the right)
at t = 0 and, if so, is un(x) the n-th derivative?

• If the answer to the previous question is yes for all n ≥ 1, do we have a
convergent Taylor expansion of p(x; t) at t = 0? Is p(x; t) in fact an entire
function in t ∈ C?

In the proofs we refer to several technical estimates that are provided in the ap-
pendix. Recall that we are assuming that the process X is an infinite activity
subordinator.

3.1 Pointwise convergence of the coefficient functions

In this subsection we investigate the limiting behavior of unε(x) as ε → 0 for the
particular choice

uε(x) = e−ε/xu(x). (64)

This approximation is simple, it is always feasible in the sense that it implies

lim
ε→0

uε(x) = u(x) ∀x > 0, (65)

lim
ε→0

∫ ∞

x

uε(y)dy =

∫ ∞

x

u(y)dy ∀x > 0, (66)

and uε(x) will be smooth if u(x) is, a property exploited below. We provide condi-
tions on u(x) that imply the convergence of unε(x) and obtain an expression for the
limit un(x), namely

un(x) = (−1)n
dn

dxn
(U+)∗n(x). (67)

In words: we can obtain un(x) as the n-th derivative of the n-th convolution power
of the upper tail integral of the Lévy density u(x).

11



Theorem 7. Suppose n ∈ N and∫ ∞

0

e−rxxk+1|u(k)(x)|dx <∞, k = 0, 1, . . . ,m. (68)

holds for some m ≥ n+ 2 and r > 0.
(i) Let

U+(x) =

∫ ∞

x

u(y)dy, x > 0. (69)

Then the n-th convolution power of U+(x) is well-defined for x > 0, and (U+)∗n(x)
is n-times continuously differentiable.

(ii) If we set for ε > 0

uε(x) = e−ε/xu(x), x > 0, (70)

and define

unε(x) =
n∑
k=1

(−1)n−k
(
n

k

)
u∗kε (x)c(ε)n−k, (71)

where

c(ε) =

∫ ∞

0

uε(x)dx, (72)

then

lim
ε→0

unε(x) = un(x), x > 0, (73)

where

un(x) = (−1)n
dn

dxn
(U+)∗n(x). (74)

Proof. In Lemma 22 we show that (U+)∗n(x) exists, in Lemma 23, that it is n-times
differentiable. Both facts are less obvious, than it seems at first sight, cf. Doetsch
(1950, Section 2.14, p.104ff) and Uludağ (1998).

Let λnε(θ) denote the Laplace transform of unε(x). It is given by

λnε(θ) = κε(θ)
n − (−1)nc(ε)n. (75)

Let
λn(θ) = κ(θ)n. (76)

Note that λn(θ) is not the Laplace transform of un(x); the Laplace transform of
un(x) does not exist. But using the estimates from Lemma 18, namely

|λ(m)
nε (θ)| ≤ Emn/|θ|m−n, |λ(m)

n (θ)| ≤ Emn/|θ|m−n (77)

for some constants Emn, we see, that both xmunε(x) and xmun(x) have integrable

Laplace transforms, namely λ
(m)
nε (θ) and λ

(m)
n (θ). According to Lemma 24 we can

write the inversion integrals

unε(x) =
1

2πixm

r+i∞∫
r−i∞

λ(m)
nε (θ)eθxdθ, un(x) =

1

2πixm

r+i∞∫
r−i∞

λ(m)
n (θ)eθxdθ, (78)

12



and obtain

|unε(x)− un(x)| ≤
erx

2πxm

+∞∫
−∞

∣∣λ(m)
nε (r + iy)− λ(m)

n (r + iy)
∣∣ dy. (79)

We have
0 ≤ uε(x) ≤ u(x), x > 0, ε > 0 (80)

and uε(x) → u(x) for ε→ 0. Thus looking at

κε(θ) =

∫ ∞

0

(e−θx − 1)uε(x)dx, κ(θ) =

∫ ∞

0

(e−θx − 1)u(x)dx, (81)

and

κ(k)
ε (θ) = (−1)k

∫ ∞

0

e−θxxkuε(x)dx, κ(k)(θ) = (−1)k
∫ ∞

0

e−θxxku(x)dx, (82)

for k = 1, . . . , n, we see by dominated (or monotone) convergence, that

lim
ε→0

κε(θ) = κ(θ), lim
ε→0

κ(k)
ε (θ) = κ(k)(θ). (83)

The functions λ
(m)
nε (θ) and λ

(m)
n (θ) are polynomials in κε(θ), κ

′
ε(θ), . . . , κ

(m)
ε (θ),

respectively in κ(θ), κ′(θ), . . . , κ(m)(θ), thus

lim
ε→0

λ(m)
nε (θ) = λ(m)

n (θ). (84)

Moreover, they are dominated by the integrable function Emn/|θ|m−n and we have
by dominated convergence in (79) the desired result. �

An interesting class of infinitely divisible distributions on R>0 is the family of
generalized gamma convolutions. This class is characterized by having absolutely
continuous Lévy measures with densities u(x), such that ū(x) = xu(x) are com-
pletely monotone functions, (Bondesson, 1992, Theorem 3.1.1).

Theorem 8. If u(x) is a Lévy density, such that ū(x) = xu(x) is completely mono-
tone, then the integrability assumptions (68) in Theorem 7 hold for all n ∈ N with
arbitrary r > 0.

Proof. By the Bernstein-Widder representation for completely monotone functions
we know ū(x) is holomorphic in <x > 0, thus the Taylor series at x > 0 has radius
of convergence x and

ū(x/2) = ū(x− x/2) =
∞∑
n=0

(−1)nū(n)(x)
xn

2nn!
. (85)

In our setting,
∫∞

0
e−θxū(x/2)dx < ∞ for θ > 0 and as (−1)nū(n)(x) ≥ 0 we can

integrate the series term by term. As ū(n)(x) = xu(n)(x) + nu(n−1)(x) for n ≥ 1 and
we know that

∫
e−rxxu(x)dx <∞ we obtain inductively the result. �
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Remark 9. An example where Theorem 7 applies, but the corresponding distribution
is not a generalized gamma convolution is given by

u(x) = x−3/2esin(x). (86)

An example where the integrability conditions (68) do not hold for n ≥ 1 and
any r > 0 is given by

u(x) = x−3/2 sin(x−3)2. (87)

We do not know, whether the conclusion of the theorem is nevertheless true in this
case.

3.2 Differentiability in time

For the proof of differentiability properties of the probability densities p(x, t) with
respect to t ≥ 0 we need slightly different integrability properties of the cumulant
function κ(θ) and its derivatives. Sufficient conditions to guarantee those from
assumptions on the Lévy density u(x) are conveniently formulated in terms of the
integral modulus of continuity.

Definition 10. If f(x) is an integrable function and δ > 0 a real number, then the
integral modulus of continuity ω(1)(δ; f) is defined by

ω(1)(δ; f) = sup
0<|h|≤δ

∫ +∞

−∞
|f(x+ h)− f(x)|dx. (88)

�

We note, that∫ +∞

−∞
|f(x+ h)− f(x)|dx =

∫ +∞

−∞
|f(x− h)− f(x)|dx (89)

and thus it is sufficient to consider 0 < h ≤ δ in (88).
We use the above definition for functions f(x), that are a priori defined for x > 0

with the understanding that f(x) = 0 if x ≤ 0. In that case, the actual (and less
elegant) expression for the integral modulus of continuity is

ω(1)(δ; f) = sup
0<h≤δ

[∫ h

0

|f(x)|dx+

∫ +∞

0

|f(x+ h)− f(x)|dx
]
. (90)

Theorem 11. Suppose m ∈ N, n ∈ N, α ∈ (0, 1), r ∈ [0,∞), and u(x) is the Lévy
density of an infinite-activity subordinator. Suppose

m >
1 + nα

1− α
, (91)

u(x) is m-times differentiable in x > 0, the functions

v`(x) = (−1)`e−rxx`+1u(`)(x) (` = 0, . . . ,m) (92)

14



are integrable, and their integral modulus of continuity satisfies

ω(1)(δ; v`) = O(δ1−α) (δ → 0). (93)

Let p(x, t) denote the probability densities corresponding to u(x). Then p(x, t) is for
all x > 0 n-times differentiable in t ≥ 0; furthermore,

uk(x) = (−1)k
∂k

∂xk
(U+)∗k(x), (k = 1, . . . , n), (94)

is well-defined, and

∂k

∂tk
p(x, 0) = uk(x), (k = 1, . . . , n). (95)

Proof. Let

λ(m)
n (θ; t) =

∂m+n

∂θm∂tn
eκ(θ)t, (96)

and, for brevity of notation,

pn(x; t) =
∂n

∂tn
p(x, t). (97)

We will show inductively for n′ = 1, . . . , n the following statement: We have for all
x > 0, that p(x, t) is n′-times differentiable in t ≥ 0, and that

pn′(x; t) =
(−1)m

2πixm

c+i∞∫
c−i∞

λ
(m)
n′ (θ; t)eθxdθ. (98)

First, with n′ = 0 we observe that (−1)mxmp(x; t) has Laplace transform λ
(m)
0 (θ; t).

In Lemma 21 below we show that the assumptions on the integral modulus of
continuity imply λ

(m)
0 (θ; t) = O

(
|θ|−m(1−α)

)
as =(θ) → ±∞. Since (91) implies

m > 1/(1− α) we have that λ
(m)
0 (θ; t) is integrable and we can apply the inversion

formula. This is all that was to be shown for n′ = 0. Suppose now we have shown
the claim for some n′ − 1 and want to show it for n′. We can write

h−1 (pn′−1(x; t+ h)− pn′−1(x; t))

=
(−1)m

2πixm

c+i∞∫
c−i∞

h−1
(
λ

(m)
n′−1(θ; t+ h)− λ

(m)
n′−1(θ; t)

)
eθxdθ.

(99)

In Lemma 21 below we show that the assumptions on the integral modulus of con-

tinuity imply h−1
(
λ

(m)
n′−1(θ; t+ h)− λ

(m)
n′−1(θ; t)

)
= O

(
|θ|α(m+n′)−m) as =(θ) → ±∞.

Now (91) implies that the integrand in (99) is dominated by an integrable function
and we can apply dominated convergence as h → 0. This shows that pn′−1(x; t) is
differentiable with respect to t and its derivative is given by (98). This finishes the
induction. To complete the proof we observe that

λn(θ) = κ(θ)n =
∂n

∂tn
[
eκ(θ)t

]
t=0

= λ(0)
n (θ; 0), (100)

and in view of (96), (98), and (78) we obtain indeed pn(x; 0) = un(x). �
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3.3 Power series representation in time

The purpose of this section is to show that, subject to some regularity conditions,
the probability densities p(x; t) are analytic functions in t, represented by a power
series

p(x; t) =
∑
n≥1

un(x)
tn

n!
. (101)

To be able to do so, we assume that the Lévy density u(x) is an analytic function
satisfying some growth condition.

Theorem 12. Suppose

a > 0, 0 < α < 1, β > −1, γ > 0, 0 < ψ <
π

2
, (102)

and the Lévy density u(z) is an analytic function, in a domain containing

W = {z ∈ C : z 6= 0, | arg(z)| ≤ ψ} . (103)

Assume moreover that

u(z) = az−1−α +O
(
|z|β
)

as z → 0 in W, (104)

and
u(z) = O

(
eγ·<z

)
as z →∞ in W. (105)

Then the cumulant function

κ(θ) =

∫ ∞

0

(e−θx − 1)u(x)dx (106)

admits an analytic continuation from {θ ∈ C : <θ > γ} to {θ ∈ C : θ 6= γ,
| arg(θ − γ)| < π

2
+ ψ}, that goes uniformly to 0 as θ → ∞ in {θ ∈ C : θ 6= γ,

| arg(θ − c)| ≤ π
2

+ ψ}, where c > γ is arbitrary, but fixed.
Furthermore p(x; t) is for all x > 0 an entire function in t ∈ C, and we have the

power series expansion

p(x; t) =
∑
n≥1

un(x)
tn

n!
(107)

where

un(x) =
1

2πi

∫
C

κ(θ)neθxdθ, (108)

with C the contour | arg(θ − c)| = ψ, with θ = 0 being passed on the left.

Proof. Let v(z) = u(z)− az−1−α and

λ(θ) =

∫ ∞

0

e−θxv(x)dx. (109)

Using ∫ ∞

0

(e−θx − 1)x−1−αdx = Γ(−α) · θα (110)
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Figure 1: Integration contour for the analytic continuation of κ(θ)

we have

κ(θ) = aΓ(−α) · θα + λ(θ)− λ(0), (111)

valid for <θ ≥ 0.

Let v−(x) = v(e−iψx)e−iψ, then we have the growth estimates v−(x) = O(|x|β)
as x→ 0, and v−(x) = O(exp((γ cosψ)x)) as x→∞. Thus the Laplace transform
λ−(θ) =

∫∞
0
e−θxv−(x)dx is absolutely convergent for <θ > γ cosψ and λ−(θ) → 0

uniformly as θ → ∞ in <θ ≥ c cosψ, see Doetsch (1950, Satz 4, p.142 and Satz 7,
p.171).

Next we show that λ(θ) = λ−(θe−iψ) for real θ > γ: Suppose n ≥ 1 and let us
integrate e−θzv(z) over the closed contour consisting of a straight line from n−1 to n,
a circular arc from n to ne−iψ, a straight line from ne−iψ to n−1e−iψ, and a circular
arc from n−1e−iψ to n−1, see Figure 1. By Cauchy’s Theorem this integral is zero.
The estimates (104) and (105) show that the contributions from the circular arcs
vanish as n→∞, and we obtain

λ(θ) =

∫ ∞

0

e−θxv(x)dx =

∫ e−iψ ·∞

0

e−θzv(z)dz (112)

=

∫ ∞

0

e−θe
−iψxv(e−iψ)e−iψdx = λ−(θe−iψ). (113)

A similar argument shows that the function v+(x) = v(eiψx)eiψ has Laplace trans-
form λ+(θ) =

∫∞
0
e−θxv+(x)dx, which is absolutely convergent for <θ > γ cosψ, and

satisfies λ+(θ) → 0 uniformly as θ → ∞ in <θ ≥ c cosψ, and λ(θ) = λ+(θeiψ) for
real θ > γ.

Looking at (111) reveals that the Laplace transform of p(x; t), namely eκ(θ)t, is
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Figure 2: The contour used to derive (115) and the final contour C

integrable on the vertical line <θ = c. Thus we can use the inversion integral

p(x; t) =
1

2πi

c+i∞∫
c−i∞

eκ(θ)t+θxdθ. (114)

Let n ≥ 1 and consider the integrand eκ(θ)t+θx on the closed contour consisting of the
vertical line connecting c− i ·n and c+ i ·n, the circular arc with center c and radius
n going from c+ i ·n to c+ ei(π/2+ψ) ·n, the straight lines connecting c+ ei(π/2+ψ) ·n,
c, and c+ e−i(π/2+ψ) ·n, and finally, the circular arc from c+ e−i(π/2+ψ) ·n to c− i ·n,
see Figure 2. By Cauchy’s theorem the integral is zero. Again, looking at (111) and
the properties of the analytical continuation λ(θ) reveals that the integrand vanishes
uniformly on the circular arcs as n→∞, and by Jordan’s Lemma we conclude

p(x; t) =
1

2πi

∫
C

eκ(θ)t+θxdθ. (115)

On C the linear term θx dominates κ(θ)t as θ → ∞. Consequently (115) makes
sense for any t ∈ C, in contrast to (114) where t > 0 is required for convergence.
We observe that taking t = 0 yields

1

2πi

∫
C

eθxdθ = 0; (116)

18



thus p(x; 0) = 0, according to our convention above. We can differentiate (115)
under the integral: Let us consider h ∈ C with |h| ≤ 1 and t ∈ C arbitrary. Using
(115) we can write the complex difference quotient

p(x; t+ h)− p(x; t)

h
=

1

2πi

∫
C

eκ(θ)h − 1

h
· eκ(θ)t+θxdθ. (117)

Invoking again the asymptotic behavior of κ(θ) as θ →∞ on C we can, by dominated
convergence, prove the existence of the complex derivative ∂p(x; t)/∂t for all t ∈ C
and the formula

∂

∂t
p(x; t) =

1

2πi

∫
C

κ(θ) · eκ(θ)t+θxdθ. (118)

It follows, that p(x; t) is an entire function in t and

∂n

∂tn
p(x; t) =

1

2πi

∫
C

κ(θ)n · eκ(θ)t+θxdθ. (119)

�

4 Examples

4.1 Compound Poisson case

In this example we deviate from the standing assumptions in the rest of the paper.
Suppose X is a compound Poisson process with intensity c > 0 and jumps from a
distribution A(dx) on Rd. Then it is well-known that

P (dx, t) =
∑
n≥0

e−ct
(ct)n

n!
A∗n(dx). (120)

In this case the Lévy measure is U(dx) = cA(dx). Using U∗n(dx) = cnA∗n(dx),
expanding the exponential at t = 0, and collecting powers of t yields

P (dx, t) =
∑
n≥0

Un(dx)
tn

n!
(121)

with

Un(dx) =
n∑
k=0

(
n

k

)
(−1)n−kcn−kU∗k(dx). (122)

Note, that in contrast to the infinite activity case studied in the rest of the paper,
these formulae involve a term for n = 0 resp. k = 0 due to the atom at zero.
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4.2 The positive α-stable law

We consider the positive α-stable distribution with Lévy density

u(x) = − x−1−α

Γ(−α)
(123)

where 0 < α < 1. Note, that we interpret Γ(s)−1 as an entire function with zeroes
at the nonpositive integers. Alternatively we could use the functional equations
Γ(s + 1) = sΓ(s) and Γ(s)Γ(1 − s) = π csc(πs) to rewrite expressions in a more
familiar form.

In general there is no closed form expression for p(x, t) in terms of elementary
functions, but it is well known, that the series representation (2) holds true with

un(x) =
(−1)n

Γ(−nα)
x−1−nα. (124)

Let us first illustrate the convergence of u2ε(x) to u2(x) for the approximation (31)
by a direct calculation. We have

c(ε) =
ε−α

Γ(1− α)
. (125)

For x > 2ε we obtain by symmetry and partial integration

u∗2ε (x) =
2

αΓ(−α)2

[
ε−α(x− ε)−1−α

−
(x

2

)−1−2α

+ (1 + α)

∫ x/2

ε

y−α(x− y)−2−αdy

]
.

(126)

As u2ε(x) = u∗2ε (x)− 2c(ε)uε(x) we obtain in the limit

u2(x) =
2

αΓ(−α)2

[
−
(x

2

)−1−2α

+ (1 + α)

∫ x/2

0

y−α(x− y)−2−αdy

]
. (127)

The integral on the right hand side can be expressed in terms of the incomplete
beta function, and, in this particular case, reduced to integrals for the complete
beta function by elementary substitutions. This yields finally agreement with (124)
for n = 2.

In principle, though less explicit and more cumbersome, the method can be used
for n > 2. Instead, let us illustrate the application of Theorem 7: Obviously u(x) is
arbitrarily often differentiable, and

u(n)(x) = − x−n−1−α

Γ(−n− α)
. (128)

Thus the assumption (68) of Theorem 7 is satisfied for all m ≥ n+ 2 and all r > 0.
The tail integral is

U+(x) =
x−α

Γ(1− α)
(129)
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and by induction, or quicker, by looking at the Laplace transforms, we see that

(U+)∗n(x) =
xn−nα

Γ(n− nα)
. (130)

Differentiating this equation n times and applying the functional equation of the
gamma function to simplify the expression we obtain (124).

Next let us illustrate Theorem 11. The elementary integral∫ h

0

x−αdx+

∫ ∞

0

(
x−α − (x+ h)−α

)
dx =

2h1−α

1− α
(131)

shows, that the auxiliary functions v`(x) satisfy the assumptions (93) with r = 0 for
all n ∈ N and all m satisfying (91). We can conclude, that p(x; t) is in fact arbitrarily
many times differentiable at t = 0, and with un(x) being the n-the derivative.

Finally let us illustrate that we can use Theorem 12 to show that the desired
power series expansion actually holds. Clearly the assumptions are satisfied with
a = −1/Γ(−α) and arbitrary other constants in (102). The Laplace cumulant
function is

κ(θ) = −θα, (132)

and we obtain

un(x) =
(−1)n

2πi

∫
C

θnαeθxdθ. (133)

To see that this gives in fact the explicit expression (124), we have to substitute
θ 7→ θ/x and recognize the resulting integral as a variant of the Hankel contour
integral for Γ(−nα)−1.

4.3 The gamma distribution

Suppose X is the gamma process, for which X1 has the law Γ(ν, α) with parameters
ν = 1 and α = 1. The Lévy density is

u(x) = x−1e−x. (134)

and the probability density is

p(x, t) =
1

Γ(t)
xt−1e−x. (135)

To illustrate our results we choose the approximation

uε(x) = xεu(x). (136)

We note, that uε(x) = Γ(ε)p(x, ε), and thus

unε(x) = Γ(1 + ε)n · ε−n
n∑
k=1

(−1)n−k
(
n

k

)
p(x; kε). (137)

So we are basically in the situation of Remark 1 and the convergence of unε(x) to
un(x) is equivalent to the convergence of the n-th order difference quotient of (135)
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at t = 0 to the n-th derivative from the right. The gamma probability density is for
any x > 0 an entire function in t and the coefficients in the series expansion (2) are
given by

un(x) = x−1e−x
n−1∑
k=0

(
n

k

)
k!ck lnn−k−1 x.

The numbers ck arise in the expansion

1

Γ(1 + z)
=
∑
n≥0

cnz
n.

They can be expressed explicitly as

cn =
1

(n− 1)!
Yn−1

(
γ,−ζ(2), 2ζ(3), . . . , (−1)n−2(n− 2)!ζ(n− 1)

)
with Yn the complete exponential Bell polynomials, see Appendix B, γ the Euler-
Masceroni constant, and ζ the Riemann Zeta function.

Let us now pretend, we did not know (135). The function xu(x) is obviously
completely monotone, and Theorem 8, and so Theorem 7 applies. Let us illustrate
the calculation of u2(x) by formula (74). The tail integral is

U+(x) = E1(x), (138)

where E1(x) denotes the exponential integral, see (Abramowitz and Stegun, 1992,
5.1.1, p.228). A direct calculation of (U+)∗2(x) is not very explicit. Let us write

U+(x) = V (x)− L(x), (139)

where
L(x) = lnx, V (x) = lnx+ E1(x). (140)

This decomposition is useful, because L(x) is simple, while V (x) and its derivatives
are integrable at zero. We have

V (0) = −γ, V ′(0) = 1. (141)

Equation (139) implies

(U+)∗2(x) = L∗2(x)− 2(L ∗ V )(x) + V ∗2(x). (142)

Next we observe

L∗2(x) =

(
ln2 x− 2 ln x+ 2− π2

6

)
x (143)

and thus [
L∗2(x)

]′′
=

2 ln x

x
. (144)

To compute the second derivatives of (L ∗ V )(x) and V ∗2(x), we can interchange
differentiation and convolution by the usual formulas, see (Doetsch, 1950, 2.14.5,
p.115ff). Namely, we use[

V ∗2(x)
]′′

= (V ′)∗2(x) + 2V (0)V ′(x) (145)
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and

[(V ∗ L)(x)]′′ = (V ′′ ∗ L)(x) + V ′(0)L(x) + V (0)L′(x). (146)

The convolution integrals on the right hand side of (145) and (146) can be computed
in terms of the exponential integral. Combining the three contributions those terms
cancel, and we obtain

u2(x) = 2x−1e−x(lnx+ γ), (147)

in agreement with (137) above.
Finally, what can we say about Theorem 12 in this case? In its present form

it does not apply, since (104) is not satisfied, though formula (108) is correct. The
cumulant function is

κ(θ) = − ln(1 + θ) (148)

and

un(x) =
(−1)n

2πi

∫
C

ln(1 + θ)neθxdθ, (149)

Agreement of this formula with (137) can be established by referring to the Hankel
contour integrals for the derivatives of Γ(z)−1 at z = 1.

4.4 The inverse Gaussian distribution

The Inverse Gaussian distribution IG(δ, γ) with δ = 1 and γ = 1 has a Lévy density
of the form

u(x) =
1√
2π
x−3/2e−x/2, (150)

and the probability density is

p(x, t) =
1√
2π
tetx−3/2e−(t2x−1+x)/2. (151)

Using the generating function for the Hermite polynomials Hn(x), namely,

e2xt−t
2

=
∑
n≥0

Hn(x)
tn

n!
, (152)

we find

un(x) =
n√
π

2−n/2x−1−n/2e−x/2Hn−1

(√
x

2

)
. (153)

Let us choose the approximation

uε(x) = exp

(
− ε2

2x

)
u(x). (154)

We recognize that this is a multiple of p(x, ε) and, again, showing the convergence of
unε(x) to un(x) reduces essentially to a study of the n-the order difference quotient
of p(x; t) at t = 0.
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Let us look at the second approach, based on the tail integral. Again, xu(x) is
completely monotone. We have

U+(x) =

√
2

πx
e−x/2 − erfc

(√
x

2

)
, (155)

where erfc(x) is the complementary error function, see (Abramowitz and Stegun,
1992, 7.1.2, p.297). Let us illustrate the computation of u3(x). By looking at
Laplace transforms we establish

(U+)∗3(x) = 2

√
2x

π
e−x/2(2 + x)− (2x2 + 6x) erfc

(√
x

2

)
, (156)

and differentiating −(U+)∗3(x) three times we obtain

u3(x) =
3√
2π
x−5/2(x− 1)e−x/2, (157)

in agreement with (153) above. Finally Theorem 12 applies, the cumulant function
is

κ(θ) = 1−
√

1 + 2θ (158)

and we get

un(x) =
(−1)n

2πi

∫
C

(1−
√

1 + 2θ)neθxdθ. (159)

Agreement of this formula with (153) can be established as follows: First we sub-
stitute θ 7→ (θ − 1)/2 and expanding the integrand by the binomial theorem we
obtain a sum of Hankel integrals of the form (133) with α = 1/2, producing a sum
of powers of x. Using the well-known explicit form of the coefficients of the Hermite
polynomials shows (153).

4.5 An example on R: The Meixner distribution

This example is not covered by the standing assumptions in this paper, as the
Meixner distribution, see Schoutens (2003, Sec.5.3.10, p.62), is an infinitely divisible
distribution on R, not on R>0.

Let us consider the Meixner distribution with parameters µ = 0, δ = 1, α = 1,
and β = 0. It has the density

p(x, t) =
1

π
22t−1 Γ(t+ ix)Γ(t− ix)

Γ(2t)
.

This expression can be expanded in a series

p(x, t) =
∑
n≥1

un(x)
tn

n!
, |t| < |x|

with
un(x) =

n

x sinh(πx)
Yn−1 (a1(x), . . . , an−1(x))
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where

a1(x) = ψ(ix) + ψ(−ix) + 2 ln 2 + 2γ

and

an(x) = ψ(n)(ix) + ψ(n)(−ix)− (−1)n2n(n− 1)!ζ(n) (n ≥ 2).

Here Y denotes again the complete exponential Bell polynomials, γ is the Euler-
Masceroni constant, ψ is the digamma function, and ζ the Riemann zeta function.
Note, however, that here p(x, t) is not an entire function in t, due to the poles of
the gamma function. Thus we have to expect qualitative differences to the cases
studied in the present paper.

4.6 A bivariate example: The Inverse Gaussian-Normal In-
verse Gaussian law

Again this example is not covered by the assumptions of the rest of this paper, as it
deals with a bivariate distribution on R>0×R. We consider the probability densities

p(x, y; t) =
t

2π
etx−2 exp

[
−1

2

(
t2 + y2

x
+ x

)]
(160)

on R>0 × R. They correspond to an Inverse Gaussian-Normal Inverse Gaussian, or
IG-NIG, Lévy process. For properties of this type of law and its origin in a first
passage time problem for a bivariate Brownian motion see (Barndorff-Nielsen and
Blæsild, 1983, Example 4.1) and (Barndorff-Nielsen and Shephard, 2001, Exam-
ple 4.3).

The associated Lévy measure is

u(x, y) =
1

2π
x−2 exp

[
−1

2

(
y2

x
+ x

)]
, (161)

and the Laplace cumulant function is

κ(θ, η) = 1−
√

1 + 2θ − η2. (162)

Looking again at the generating function for the Hermite polynomials, see (152), we
obtain from (160) the series representation

p(x, y; t) =
∑
n≥1

un(x, y)
tn

n!
(163)

with

un(x, y) = n2−
n−1

2 x−
n−1

2 u(x, y)Hn−1

(√
x

2

)
. (164)

For this example we can verify the validity of the bivariate extension of our Method 1
along the lines of Remark 1: A convenient approximation to the Lévy density is

uε(x, y) = ε−1p(x, y; ε) (165)
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and we obtain

un(x, y) = lim
ε→0

n∑
k=1

(
n

k

)
(−1)n−kεn−ku∗kε (x, y), (166)

since the sum on the right hand side can be written as n-th order difference quotient
of p(x, y; t) at t = 0, and p(x, y, t) is n-times differentiable at t = 0. Obviously the
caveat of Remark 1 applies here as well.
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A Auxiliary results

This section provides technical estimates used in the proofs of Theorem 7 and The-
orem 11. We use Faa di Bruno’s formula for derivatives for composite functions,
expressed in terms of partial Bell polynomials Bnk. Our main reference is Comtet
(1970, Section 3, p.144ff), but for the reader’s convenience we have collected defini-
tion and properties used in this paper here.

A.1 Bell polynomials

The partial Bell polynomials, see Comtet (1970, Section 3, p.144ff), are defined as

Bnk(x1, . . . , xn−k+1) =
∑
a∈nk

bnk(a)x
a1
1 . . . x

an−k+1

n−k+1 (167)

with

Ank =
{
a ∈ Rn−k+1

≥0 :
n−k+1∑
`=1

`a` = n,

n−k+1∑
`=1

a` = k
}

(168)

and

bnk(a) =
n!∏n−k+1

`=1 a`!`!a`
. (169)

They satisfy the recurrence relation

Bn0 = δn0, Bnk =
1

k

n−1∑
`=k−1

(
n

`

)
xn−`B`,k−1. (170)

The first few polynomials are given by

B11 = x1 (171)

B21 = x2, B22 = x2
1 (172)

B31 = x3, B32 = 3x1x2, B33 = x3
1 (173)

B41 = x4, B42 = 4x1x3 + 3x2
2, B43 = 6x2

1x2, B44 = x4
1. (174)
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We will need also that

Bn1 = xn, Bn2 =
1

2

n−1∑
`=1

(
n

`

)
x`xn−`, (175)

and

Bn,n−1 =
n(n− 1)

2
xn−2

1 x2, Bnn = xn1 . (176)

Furthermore we have the useful property

Bnk(ax1, ab
2x2, . . . , ab

n−k+1xn−k+1) = akbnBnk(x1, x2, . . . , xn−k+1). (177)

Theorem 13 (Faa di Bruno’s formula). Suppose f(x) and g(x) are n-times differ-
entiable functions. Then

h(x) = f(g(x)) (178)

is n-times differentiable and

h(n)(x) =
n∑
k=1

f (k)(g(x))Bnk(g
′(x), . . . , g(n−k+1)(x)). (179)

The complete Bell polynomials are defined as

Yn(x1, . . . , xn) =
n∑
k=1

Bnk(x1, . . . , xn−k+1). (180)

The first few are

Y1 = x1 (181)

Y2 = x2
1 + x2 (182)

Y3 = x3
1 + 3x1x2 + x3 (183)

Y4 = x4
1 + 6x2

1x2 + 3x2
2 + 4x1x3 + x4 (184)

For brevity it is convenient to introduce the following quantities, defined in terms
of the partial Bell polynomials and the cumulant function κ(θ):

βnk(θ) = Bnk(κ
′(θ), . . . , κ(n−k+1)(θ)) (185)

and

β∗nk(θ) = Bnk(|κ′(θ)|, . . . , |κ(n−k+1)(θ)|). (186)

We recall, that the functions λnε(θ) and λn(θ), which are crucial to the proof of
Theorem 7, are given by (75) resp. (76).

27



A.2 Auxiliary estimates for the cumulant function

The structure of this subsection is as follows: In Lemma 15 we show that the
integrability assumptions (68) of Theorem 7 imply a certain asymptotic behavior
of the derivatives of u(x) as x → 0 and as x → ∞. This is used in Lemma 16
to derive estimates of the derivatives of the cumulant function κ(θ) as θ → ∞, by
partial integration. Those estimates are plugged into the Bell polynomials βnk(θ)
in Lemma 17. Using the latter we obtain estimates for the derivatives of λn(θ) as
θ → ∞ in Lemma 18. Next, Lemma 19 shows that uε(x) satisfies the assumptions
(68) uniformly for 0 < ε ≤ 1, and thus, applying Lemma 15–18 to uε(x), gives
uniform estimates for the derivatives of λnε(θ) as θ → ∞. Finally, Lemma 20
provides a refined estimate for βnk(θ) from the slightly stronger assumptions of
Theorem 11.

We are considering distributions on R>0, thus we have

|eκ(θ)| ≤ 1 ∀<(θ) ≥ 0. (187)

Moreover κ(θ) is analytic for <(θ) > 0 and

κ(n)(θ) = (−1)n
∫ ∞

0

e−θxxnu(x)dx, <(θ) > 0, n ≥ 1. (188)

Definition 14. Suppose n ∈ N and c > 0. Then we say that assumption An(c)
holds for u(x) if u(x) is n-times continuously differentiable and∫ ∞

0

e−cxxk+1|u(k)(x)|dx <∞, k = 0, 1, . . . , n. (189)

A simple consequence of assumption An(c) is, that the Laplace transform∫ ∞

0

e−θxxmu(n)(x)dx (190)

exists for any m ≥ n+ 1 and <(θ) > c.

Lemma 15. Suppose n ≥ 2 and c > 0. If assumption An(c) holds then

lim
x→0

e−θxxnu(n−2)(x) = 0 (191)

and
lim
x→∞

e−θxxnu(n−2)(x) = 0 (192)

for <(θ) > c.

Proof. Let 0 < a < b. Partial integration gives∫ b

a

e−θx(xnu(n−2)(x))′dx = e−θxxnu(n−2)(x)
∣∣∣b
a
+ θ

∫ b

a

e−θxxnu(n−2)(x)dx. (193)

We have
(xnu(n−2)(x))′ = nxn−1u(n−2)(x) + xnu(n−1)(x) (194)
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and see from the integrability assumptions An(c) and <(θ) > c that both integrals
in (193) converge to a finite value as a→ 0 and b→∞ separately. Thus

lim
x→0

e−θxxnu(n−2)(x) = α, lim
x→∞

e−θxxnu(n−2)(x) = ω (195)

exist with finite α and ω. But α 6= 0 or ω 6= 0 would imply

e−θxxn−1u(n−2)(x) ∼ α

x
, x→ 0 (196)

respectively

e−θxxn−1u(n−2)(x) ∼ ω

x
, x→∞. (197)

Both properties would contradict the integrability of e−θxxn−1u(n−2)(x), that follows,
again, from assumption An(c). Thus we must have α = 0 and ω = 0. �

The following lemma is essentially a reformulation of the well-known fact that a
function f(x), that is n-times differentiable with f (k)(x) integrable for 0 ≤ k ≤ n,
has a Fourier transform f̂(y), that satisfies f̂(y) = O(|y|−n) as |y| → ∞. As we will
need uniform growth estimates later, we provide a more detailed statement with
explicit bounds.

Lemma 16. Suppose n ≥ 0 and c > 0. If assumption An(c) holds and

Lk(c) =

∫ ∞

0

e−cxxk+1|u(k)(x)|dx, k = 0, 1, . . . , n, (198)

then

|κ(n)(θ)| ≤ Mn(c)

|θ|n−1
, <(θ) > c, (199)

where

M0(c) = L0(c), Mn(c) =
n−1∑
k=0

(
n− 1

k

)
(n)n−1−kLk(c), (n ≥ 1). (200)

Proof. For n = 1 we have

κ′(θ) = −
∫ ∞

0

e−θxxu(x)dx (201)

and the assertion of the lemma is obvious, namely, |κ′(θ)| ≤ L0. For n = 0 we can
write

κ(θ) =

∫ θ

0

κ′(ζ)dζ (202)

and the assertion follows, namely |κ(θ)| ≤ L0|θ|. For n ≥ 2 we recall

κ(n)(θ) = (−1)n
∫ ∞

0

e−θxxnu(x)dx. (203)
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Let 0 < a < b. Repeated partial integration gives∫ b

a

e−θxxnu(x)dx

= −
n−1∑
k=1

1

θk
e−θx(xnu(x))(k−1)

∣∣∣b
a
+

1

θn−1

∫ b

a

e−θx(xnu(x))(n−1)dx,

(204)

and by Leibniz’ rule we obtain

(xnu(x))(k−1) =
k−1∑
`=0

(
k − 1

`

)
(n)k−1−`x

n−1−kx`+2u(`)(x). (205)

From assumption An(c) and Lemma 15 we conclude, letting a→ 0 and b→∞, that

κ(n)(θ) =
(−1)n

θn−1

∫ ∞

0

e−θx (xnu(x))(n−1) dx. (206)

Using (205), this time with k = n, we get

(xnu(x))(n−1) =
n−1∑
`=0

(
n− 1

`

)
(n)n−1−`x

`+1u(`)(x). (207)

This shows that the integral in (206) is bounded by Mn(c). �

Lemma 17. Suppose n ≥ 0 and c > 0. If assumption An(c) holds then

β∗nk(θ) ≤
Mnk

|θ|n−k
, k = 1, . . . , n, (208)

where
Mnk = Bnk(M1, . . . ,Mn−k+1) (209)

and the constants M1, . . . ,Mn are as in Lemma 16 above.

Proof. The Bell polynomials Bnk have nonnegative coefficients, and are therefore
increasing functions of each argument. Using the bounds from Lemma 16 we have

β∗nk(θ) = Bnk(|κ′(θ)|, . . . , |κ(n−k+1)|) ≤ Bnk

(
M1,

M2

|θ|
, . . . ,

Mn−k+1

|θ|n−k

)
. (210)

Using (177) with a = |θ| and b = |θ−1| we obtain the desired result. �

Lemma 18. Suppose m ≥ 1, n ≥ 1, and that assumption An(c) holds for u(x) with
some c > 0, and let

λn(θ) = κ(θ)n. (211)

Then

|λ(m)
n (θ)| ≤ Emn

|θ|m−n
(212)

where

Emn =
m∧n∑
j=1

(n)jL
n−j
0 Mmj. (213)
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Proof. From Faa di Bruno’s formula we get

λ(m)
n (θ) =

m∧n∑
j=1

(n)jκ(θ)
n−jβmj(θ). (214)

Using the estimates from Lemma 17 we obtain the result. �

Lemma 19. Suppose n ≥ 0, assumption An(c) holds for u(x) with some c > 0 and

Lk(c) =

∫ ∞

0

e−cxxk+1|u(k)(x)|dx, k = 0, 1, . . . , n. (215)

If we set for ε > 0
uε(x) = e−ε/xu(x), x > 0, (216)

then assumption An(c) holds for uε(x) and we have for any ε > 0 the uniform bound∫ ∞

0

e−cxxn+1|u(n)
ε (x)|dx ≤ L̄n(c), (217)

where

L̄n(c) =
n∑
k=0

k∑
`=1

(
n

k

)(
k − 1

`− 1

)
k!

`!
``e−`Ln−k(c) (218)

Proof. This follows from

[
e−ε/x

](k)
=

k∑
`=1

(−1)`+k
(
k − 1

`− 1

)
k!

`!
x−k

( ε
x

)`
e−ε/x (219)

and
0 ≤ x`e−x ≤ ``e−`, x ≥ 0. (220)

�

Lemma 20. Suppose m ∈ N, α ∈ (0, 1), c ∈ (0,∞), and u(x) is the Lévy density
of an infinite activity subordinator, that is m-times differentiable and such that the
functions

v`(x) = e−cxx`+1u(`)(x) (` = 0, . . . ,m) (221)

are integrable, and their integral modulus of continuity satisfies

ω(1)(δ; v`) = O(δ1−α) (δ → 0). (222)

Then we have for n = 0, . . . ,m

κ(n)(θ) = O(|θ|α−n), (=(θ) → ±∞) (223)

and for ` = 1, . . . ,m

βm`(θ) = O(|θ|`α−m), (=(θ) → ±∞). (224)
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Proof. From the proof of Lemma 16 above we know that

κ(n)(θ) =
(−1)n

θn−1

n−1∑
`=0

(
n− 1

`

)
(n)n−1−` ·

∫ ∞

0

e−θxx`+1u(`)(x)dx (225)

for n = 1, . . . ,m. Using the assumptions (222) in Lemma 26 yields (223) for n =
1, . . . ,m. The case n = 0 follows immediately by using the estimate for κ′(θ) in

κ(θ) =

∫ θ

0

κ′(ζ)dζ. (226)

Plugging these estimates into (185) and looking at the explicit formula for the Bell
polynomials in Subsection A.1 shows

βm`(θ) = O
(∑

|θ|a1(α−1)+...+am(α−m)
)

= O
(
|θ|`α−m

)
. (227)

�

Lemma 21. Suppose the assumptions for Lemma 20 hold, and

λ(m)
n (θ; t) =

∂m+n

∂θm∂tn
eκ(θ)t. (228)

Then

λ(m)
n (θ; t) = O(|θ|(m+n)α−m), (=(θ) → ±∞). (229)

Proof. First we have

λ(0)
n (θ; t) = κ(θ)neκ(θ)t. (230)

Using (188) and (223) with n = 0, shows the claim for m = 0. Next, by differenti-
ating (230) m ≥ 1 times according to Faa di Bruno’s formula, we get

λ(m)
n (θ; t) =

m∑
`=1

∑̀
j=0

(
`

j

)
(n)jκ(θ)

n−jt`−jeκ(θ)tβm`(θ)κ(θ)
neκ(θ)t. (231)

Using (188), (223) with n = 0, and (224) we obtain (229). �

A.3 Convolutions and Laplace transforms

In this subsection we provide further auxiliary results for the proof of Theorem 7.
For notational convenience let us define

V (x) = U+(x), Vn(x) = V ∗n(x). (232)

First it is shown in Lemma 22, that the convolution powers V ∗n(x) exist. Then, using
Lemma 23 as intermediate step, we show that the V ∗n(x) are n-times differentiable
and we provide an integral representation in Lemma 24. In this subsection we use
estimates from the previous subsection.
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Lemma 22. Let

V (x) =

∫ ∞

x

u(y)dy. (233)

Then

Vn(x) = V ∗n(x), x > 0, (234)

is well-defined for n ≥ 1 and we have the Laplace transforms

∫ ∞

0

e−θxVn(x)dx = (−1)n
κ(θ)n

θn
, <(θ) > 0. (235)

Proof. We think it is instructive to give two proofs here. (a) The first proof uses
the well-known theorem for the existence of convolutions of integrable functions. It
will show existence only for almost all x > 0: Let r > 0 arbitrary. Then by the
Fubini-Tonelli Theorem we have∫ ∞

0

e−rxV (x)dx =

∫ ∞

0

∫ ∞

x

e−rxu(y)dydx (236)

=

∫ ∞

0

∫ y

0

e−rxu(y)dxdy (237)

=
1

r

∫ ∞

0

(1− e−ry)u(y)dy (238)

= −κ(r)
r

<∞. (239)

This shows that Ṽ (x) = e−rxV (x) is integrable. Thus the convolution powers Ṽ ∗n(x)
exist for almost all x > 0 and are integrable on R>0. We have

erxṼ ∗2(x) = erx
∫ x

0

Ṽ (y)Ṽ (x− y)dy (240)

= erx
∫ x

0

e−ryV (y) · e−r(x−y)V (x− y)dy (241)

= erx
∫ x

0

e−rxV (y)V (x− y)dy (242)

=

∫ x

0

V (y)V (x− y)dy. (243)

Since all integrands are nonnegative this calculation shows that V (y)V (x − y) is
integrable on (0, x) and V ∗2(x) exists for almost all x > 0. Repeating the argument
shows that the higher convolution powers exist for almost all x > 0.

(b) The second proof is essentially using the theory of convolutions of functions of
the class J0, as they are called in Doetsch (1950). We do not go into that, but rather
focus on the present situation: The function V (x) is nonnegative and decreasing.
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We have again by Fubini-Tonelli∫ x

0

V (y)dy =

∫ x

0

∫ ∞

y

u(z)dzdy (244)

=

∫ x

0

∫ z

0

u(z)dydz +

∫ ∞

x

∫ x

0

u(z)dydz (245)

=

∫ x

0

zu(z)dz +

∫ ∞

x

xu(z)dydz (246)

=

∫ x

0

zu(z)dz + xV (x) <∞. (247)

We set

W (x) =

∫ x

0

V (y)dy, Wn(x) =

∫ x

0

Vn(y)dy. (248)

Those functions are increasing. We will show by induction, that

Vn(x) ≤ nV
( x

2n−1

)
W
(x

2

)n−1

, Wn(x) ≤ W (x)n. (249)

For n = 1 nothing is to be shown. Suppose now the assertion is shown for n and
we want to prove it for n + 1. Using the monotonicity of V (x) and W (x) and the
induction hypothesis we get first

Vn+1(x) =

∫ x

0

Vn(y)V (x− y)dy (250)

=

∫ x/2

0

Vn(y)V (x− y)dy +

∫ x/2

0

V (y)Vn(x− y)dy (251)

≤ V
(x

2

)∫ x/2

0

Vn(y) +

∫ x/2

0

V (y)nV

(
x− y

2n−1

)
W

(
x− y

2

)n−1

dy (252)

≤ V
( x

2n

)
W
(x

2

)n
+ nV

(
x− y

2n

)
W
(x

2

)n−1

W
(x

2

)
(253)

= (n+ 1)V
( x

2n

)
W
(x

2

)n
, (254)

and then

Wn(x) =

∫ x

0

Vn(y)dy (255)

=

∫ x

0

∫ y

z=0

Vn−1(z)V (y − z)dzdy (256)

=

∫ x

0

∫ x−z

0

Vn−1(z)V (y)dydz (257)

≤
∫ x

0

∫ x

0

Vn−1(z)V (y)dydz (258)

≤ Wn(x)W (x) ≤ W (x)n. (259)

This shows that the convolution powers Vn(x) = V ∗n(x) exist for all x > 0. �
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Lemma 23. Suppose n ∈ N and assumption Am(c) holds for some m ≥ n+ 2 and
c > 0. Then Vn(x) is n-times differentiable and

(xmVn(x))
(k) =

1

2πi

c+i∞∫
c−i∞

(−1)m+n

(
κ(θ)n

θn

)(m)

θkeθxdθ,

x > 0, k = 0, 1, . . . , n.

(260)

Proof. We have the Laplace transform

L [θ ‡ xmVn(x)] = (−1)m+n

(
κ(θ)n

θn

)(m)

. (261)

Now by Leibniz’s rule and Faa di Bruno’s formula(
κ(θ)n

θn

)(m)

=
m∑
j=0

(
m

j

)
(κ(θ)n)(j) (θ−n)m−j (262)

=
m∑
j=0

j∧n∑
k=0

(
m

j

)
(n)k(−n)m−j

κ(θ)n−kβjk(θ)

θn+m−j . (263)

Using the estimates from Lemma 16 for n = 0 and Lemma 17 we obtain∣∣∣∣∣θk
(
κ(θ)n

θn

)(m)
∣∣∣∣∣ ≤ Dmn

|θ|m−k
, (264)

where

Dmn =
m∑
j=0

j∧n∑
k=0

(
m

j

)
(n)k(−n)m−jL

n−k
0 Mjk. (265)

Hence we can apply Lemma 25 to conclude that (−1)m+nxmVn(x), and thus also
Vn(x), is n-times continuously differentiable in x > 0. �

Lemma 24. Suppose n ∈ N and assumption Am(c) holds for some m ≥ n+ 2 and
c > 0. Then

V (k)
n (x) =

(−1)m+n

2πixm

c+i∞∫
c−i∞

(
κ(θ)n

θn−k

)(m)

eθxdθ, x > 0, k = 0, 1, . . . , n. (266)

Proof. We do induction on k. Starting with k = 0 we have (−1)m+1xmV ′
1(x) =

(−1)mxmu(x), which has the integrable Laplace transform κ(m)(θ) and thus the
assertion holds. Suppose now we have shown the assertion for n− 1 and we want to
prove it for n. Repeated application of Leibniz’s’ rule gives

xmV (k)
n (x) = (xmVn(x))

(k)

+
k−1∑
j=0

j∑
`=0

(
k

j

)(
j

`

)
(−m)k−j(m)j−`x

m−k−2 · x`+2V (`)
n (x).

(267)

35



For the first term on the right hand side we can apply Lemma 23, for the terms in
the sum the induction hypothesis. To finish the proof we have to show

(−1)n+m

(
κ(θ)n

θn−k

)(m)

(268)

= (−1)m+nθk
(
κ(θ)n

θn

)(m)

+
k−1∑
j=0

j∑
`=0

(
k

j

)(
j

`

)
(−m)k−j(m)j−`(−1)m−k+`+n

(
κ(θ)n

θn−`

)(m−k+`)

.

Setting ϕ(θ) = κ(θ)n/θn and multiplying the equation with (−1)n+m yields

(
ϕ(θ)θk

)(m)
= θkϕ(m)(θ)

+
k−1∑
j=0

j∑
`=0

(
k

j

)(
j

`

)
(−m)k−j(m)j−`(−1)k−`

(
ϕ(θ)θ`

)(m−k+`)
.

(269)

By interchanging the summation order and observing

k−1∑
j=`

(
k

j

)(
j

`

)
(−m)k−j(m)j−` = −

(
k

`

)
(m)k−` (270)

we obtain

θkϕ(m)(θ) =
k∑
`=0

(
k

`

)
(m)`(−1)`

(
ϕ(θ)θk−`

)(m−`)
. (271)

Using Leibniz’s’ rule on the right hand side gives

θkϕ(m)(θ) =
k∑
`=0

(
k

`

)
(m)`(−1)`

m−∑̀
j=0

(
m− `

j

)
ϕ(j)(θ)(k − `)m−`−jθ

k+j−m. (272)

Changing the order of summation again gives

θkϕ(m)(θ) =
m∑
j=0

[m−j∑
`=0

(
k

`

)
(m)`(−1)`

(
m− `

j

)
(k − `)m−`−j

]
θk+j−mϕ(j)(θ), (273)

and this finally is true due to

m−j∑
`=0

(
k

`

)
(m)`(−1)`

(
m− `

j

)
(k − `)m−`−j = δmj. (274)

�
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A.4 On the derivatives of the inverse Laplace transform

Lemma 25. Suppose n ∈ N, and φ(θ) is a function such that (1 + |θ|n)|φ(θ)| is
integrable on c+ iR for some c ∈ R. Then

f(x) =
1

2πi

c+i∞∫
c−i∞

φ(θ)eθxdθ, x ∈ R, (275)

defines a function that is n-times continuously differentiable, with bounded deriva-
tives that are given by

f (k)(x) =
1

2πi

c+i∞∫
c−i∞

θkφ(θ)eθxdθ, x ∈ R, k = 0, 1, . . . , n. (276)

Proof. For n = 0 dominated convergence and a crude estimate show that f(x) is
continuous and bounded. Let us prove the statement for n = 1. Using (275) yields

f(x+ h)− f(x)

h
=

1

2πi

c+i∞∫
c−i∞

φ(θ)

(
eθh − 1

h

)
eθxdθ. (277)

We can find K > 0, such that ∣∣∣∣eθh − 1

h

∣∣∣∣ ≤ K|θ| (278)

for <(θ) = c and 0 < |h| ≤ 1. The integrand in (277) is dominated by the integrable
function Kecx|θ||φ(θ)|. We can let h→ 0 and obtain (276) for n = 1.

For n > 1 we note, that the integrability of (1+ |θ|n)|φ(θ)| implies that (1+ |θ|n) ·
|φ(θ)| is integrable for k = 1, . . . , n. So we can iterate the previous argument n
times. �

A.5 On the integral modulus of continuity

Lemma 26. Suppose α ∈ (0, 1), c > 0, <(θ) = c, and

f(x) = e−cxg(x)I(x>0) (279)

is integrable and satisfies

ω(1)(f ; δ) = O
(
δ1−α) , (δ → 0). (280)

Then ∫ ∞

0

e−θxg(x)dx = O
(
|θ|α−1

)
, (=(θ) → ±∞). (281)
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Proof. We have∫ ∞

0

e−θxg(x)dx (282)

=

∫ +∞

−∞
e−ixyf(x)dx (283)

=

∫ +∞

−∞
e−i(x+π/y)yf(x+ π/y)dx (284)

=
1

2

∫ +∞

−∞

(
e−ixyf(x) + e−i(x+π/y)yf(x+ π/y)

)
dx (285)

=
1

2

∫ +∞

−∞
e−ixy (f(x)− f(x+ π/y)) dx. (286)

Thus ∣∣∣∣∫ ∞

0

e−θxg(x)dx

∣∣∣∣ ≤ 1

2

∫ +∞

−∞
|f(x)− f(x+ π/y)| dx (287)

≤ ω(1)

(
π

|y|
, f

)
= O

(∣∣∣∣πy
∣∣∣∣1−α

)
= O

(
|θ|α−1

)
. (288)

�
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