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Preface

This thesis represents the outcome of my research during my four years as a
PhD student at the Department of Operations Research, University of Aarhus,
Denmark. My main field of interest has been multicriteria discrete optimization,
which constitutes the backbone of this thesis. Other areas such as logical inference,
constraint programming, telecommunications network design and job scheduling
have also gained some interest during the last four years, but only the latter is
included in this thesis. By inclusion of the practical scheduling project in the
last chapter, this thesis covers all main areas within operations research – theory,
algorithmic developments, implementational work and practical applications.

In the late spring of 2003, I established a contact to Morten Bech Kristensen
(Sonofon), Lars Jørgensen (Sonofon) and Lars Grynderup (DM-Data) together
with my supervisor Prof. Kim Allan Andersen (Department of Business Studies,
Aarhus School of Business, Denmark) and a fellow PhD student at my depart-
ment, Rasmus Vinther Rasmussen. This initiated a cooperation on a practical
job scheduling problem. Rasmus Vinther Rasmussen, Kim Allan Andersen and I
developed a tabu search heuristic capable of solving the practical problem and pro-
viding a significantly improved solution. The results are to appear in Computers
and Operations Research [128], and the work is reproduced in Chapter 10.

In August 2003, during the ISMP conference in Lyngby, my supervisor and I
had an informal discussion with Prof. Kaj Holmberg (Division of Optimization,
Linköping Institute of Technology, Sweden) regarding applications of the well-
known Chinese postman problem. Later, the idea of working with a bicriterion
version of the Chinese postman problem was born. Since then, the goal of develop-
ing an exact solution procedure for different bicriterion Chinese postman instances
has been pursued by Kim Allan Andersen, myself and also by PhD Lars Relund
Nielsen (Department of Genetics and Biotechnology, Research Centre Foulum,
Denmark), who joined the project in the early summer of 2005. The project
resulted in the subproblem on the bicriterion multi modal assignment problem
presented in the working paper [126] submitted to an international journal on Op-
erations Research. Also, the other subproblem of ranking assignments resulted in
the working paper [127] to be submitted in revised form to an international jour-
nal on Operations Research. These two topics constitute the basis for Chapters 4

i



ii

and 6 of this thesis. Also, the ongoing research presented in Chapter 5 on ranking
solutions for the minimum cost integer flow problem and for the transportation
problem, and Section 9.1 on extensions of the bicriterion multi modal assignment
problem are biproducts of this original problem.

In the winter 2004/2005, I visited Prof. Dr. Horst W. Hamacher at the AG
Optimization, University of Kaiserslautern, Germany, for three months. During
this period, I worked together with Horst W. Hamacher and Stefan Ruzika (AG
Optimization, University of Kaiserslautern, Germany), on the multicriteria min-
imum cost flow problem. Since new ideas are often facilitated by a complete
knowledge on the existing literature, we decided to write a review paper on this
problem class which resulted in the paper [69] to appear in European Journal of
Operational Research. This is presented in Chapter 7 of this thesis. At the same
time, we were engaged in developing a new solution method for the multicriteria
minimum cost integer flow problem, which resulted in the yet unpublished ideas
presented in Section 9.2.

During the review process for the multicriteria minimum cost integer flow prob-
lem, we learned that an instance can, in general, have exponentially many non-
dominated points in the size of an input. As a logical consequence of this fact,
Horst W. Hamacher, Stefan Ruzika and I started, during the spring of 2005, to
develop a structured way of generating a representative system for the nondomi-
nated set of general bicriterion discrete optimization problems. The results are to
appear in Operations Research Letters [70] and are reproduced in Chapter 8.
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Chapter 1

Introduction

In this thesis the main focus is on multicriteria discrete optimization problems. Of
particular interest are multicriteria combinatorial optimization problems, and even
more specifically I consider problem classes which can be described using a network
formulation. However, work on general multicriteria discrete problems is also
presented. In coherence with other multicriteria literature, I shall mainly address
bicriterion optimization problems, but instances with more than two objectives
will also be discussed. Related to bicriterion optimization problems, I also present
new results on ranking solutions to single criterion combinatorial optimization
problems. I conclude the thesis with another single criterion optimization problem
in Chapter 10, where I discuss a practical scheduling problem provided by the
Danish telecommunications net operator Sonofon.

The remaining part of this thesis is presented in four major parts including
a total of nine chapters. To facilitate an easy reference of the figures and tables
used, I have included a list of each of these in the back of the thesis together with
the references, an author index and the subject index. Also, in an attempt to
unify the notation used in the thesis, I have included a list of notation starting at
page 173.

To make this thesis self-contained, I familiarize in the first part – comprised of
Chapters 2 and 3 – my reader with basic knowledge on combinatorial optimiza-
tion problems and on multicriteria optimization. Real-world decision making is
generally imposed with more than one objective to be simultaneously optimized.
This holds true for combinatorial optimization problems arising from many dif-
ferent fields of operations such as transportation planning, vehicle routing, mail
distribution, etc. Observing the multicriteria nature of such problems, interest
in multicriteria combinatorial optimization has prospered mainly during the last
twenty years and has provided many specialized solution methods. Such solution
methods for multicriteria problems, and in particular for bicriterion combinatorial
optimization problems, rely heavily on efficient solution methods for their single
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2 Introduction

criterion counterparts.
In Chapter 2, I present various well-known concepts on combinatorial optimiza-

tion. I introduce terminology and notation to be used throughout this thesis and
present a number of relevant problem classes on which the thesis elaborates. The
special problem class of ranking the K best solutions to a specific optimization
problem is introduced in Section 2.2 along with a brief description of two general
ranking algorithms.

In Chapter 3, I introduce terminology and notation for later developments on
multicriteria optimization problems. General theoretical multicriteria results are
presented. This leads to a discussion of multicriteria solution methods, includ-
ing a thorough introduction to the well-known two-phase method for bicriterion
optimization problems in Section 3.2.1.

In the second part of this thesis – composed of Chapters 4 and 5 – I present
new results on ranking the K best solutions to a given combinatorial optimization
problem. Obtaining near-optimal solutions to a single criterion problem by ranking
is interesting on its own, however, we shall also see that such developments are
useful for bicriterion problems – to be considered in the third part of the thesis.

In Chapter 4, which is an extension of Pedersen, Nielsen, and Andersen [127],
I consider the problem of ranking solutions for the classical linear assignment
problem. A new algorithm partitioning the set of feasible assignments is presented
where, for each partition, the optimal assignment is calculated utilizing an efficient
reoptimization technique. Computational results are included in Section 4.3 to
validate the efficiency of the new ranking algorithm.

In Chapter 5, I extend the results from Chapter 4 by discussing how to rank
solutions for the minimum cost integer flow problem and for the transportation
problem. This chapter presents the preliminary results of an ongoing cooperation
with Kim Allan Andersen and Lars Relund Nielsen and cannot, in its present form,
be considered complete.

The third part – being Chapters 6 to 9 – constitutes the backbone of this
thesis. Here, I present both theoretical results as well as several new algorithmic
developments for multicriteria discrete optimization problems. The third part
concludes with Chapter 9 proposing various ideas for further lines of research on
this topic.

In Chapter 6, which is based on Pedersen, Nielsen, and Andersen [126], I
consider the bicriterion multi modal assignment problem, which is a new general-
ization of the classical linear assignment problem. I propose a two-phase solution
procedure exploiting the ranking assignments scheme presented in Chapter 4. Re-
ports on extensive tests are given, including results on the special class of the
bicriterion assignment problem.

Based on Hamacher, Pedersen, and Ruzika [69], Chapter 7 presents a review of
theory and algorithms to solve the multicriteria minimum cost flow problem. For
both the continuous and the integer version, exact and approximation algorithms
are presented. In addition, a section on compromise solutions presents correspond-
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ing results. Facilitating a direct comparison of all the solution procedures for the
multicriteria minimum cost flow problem, Table 7.3 on page 109 summarizes the
classification of all the reviewed papers.

For bicriterion discrete optimization problems, the number of nondominated
points can, in general, be exponential in the size of an input. Therefore, in Chap-
ter 8, based on Hamacher, Pedersen, and Ruzika [70], I propose two algorithms to
compute a finite representative system for the nondominated set of a bicriterion
discrete optimization problem. The theoretical performance of both algorithms
are investigated, and the algorithms are evaluated with respect to a number of
quality measures. A few comments on a recent computational study of the box
algorithms are provided in Section 8.4.1.

Building on the results of Chapters 6 and 7, I present, in Chapter 9, ideas for
further lines of research on a number of multicriteria network problems. Section 9.1
is the temporary results of my joint work with Kim Allan Andersen and Lars
Relund Nielsen. It shows the bicriterion multi modal assignment problem to be a
subproblem of the bicriterion directed Chinese postman problem which constitutes
a larger and more complex problem class. Related extensions and algorithmic ideas
are presented. The ideas presented in Section 9.2, were obtained together with
Horst W. Hamacher and Stefan Ruzika. Here, I outline a rough idea for a new
exact solution procedure for the multicriteria minimum cost integer flow problem
exploiting the knowledge gained by the review process behind Chapter 7. Also,
trying to extend the results for single criterion flow problems into a multicriteria
set-up, one of the core directions for further research on this topic is highlighted.

The fourth and final part of this thesis consists of the job scheduling prob-
lem presented in Chapter 10. Job scheduling problems constitute a fundamental
modelling tool within the operations research community, and have been studied
intensively for more than 50 years. The concern is to allocate scarce resources
to a set of tasks in the pursuit of optimizing one or more objects. Tasks may be
executions of computer programs, transmissions of data packets on the internet
and assembling of parts for watches, and the corresponding resources may then be
servers (or CPUs), broadband connections and assembly-machinery. Even though
scheduling problems can often be described using 0-1 variables they, generally,
share no common particular structure. For an excellent survey of scheduling ap-
plications and theoretical developments, I refer the reader to the comprehensive
book edited by Leung [100]. Since many scheduling problems are known to be
NP-hard, heuristic methods are often applied. Within these, tabu search due
to Glover [60] and Glover and Laguna [61], in particular, have shown promising
results for large-scale scheduling problems.

In Chapter 10, based on Pedersen, Rasmussen, and Andersen [128], I present
a practical large-scale scheduling problem with elastic jobs faced by the Danish
telecommunications net operator Sonofon. The jobs are processed on three servers
and restricted by precedence constraints, time windows and capacity limitations.
A tabu search procedure, including a specialized heuristic method to identify an
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initial feasible solution, is presented, and extensive computational results are given.
For the specific practical problem, the new solution method leads to a significant
decrease in the makespan which can prevent Sonofon from purchasing additional
unnecessary hardware.

The contributions of this thesis are given in the last three parts. In particular,
Chapters 4 and 5 contribute to the field of ranking solutions for combinatorial op-
timization problems, Chapters 6, 7, 8, and 9 contribute to the field of multicriteria
discrete optimization, and Chapter 10 contributes to the field of job scheduling.
Chapters 5 and 9 present ongoing work and future lines of research, and cannot
be considered complete.



I
Preliminaries





Chapter 2

Combinatorial optimization

problems

Even though little consensus exists, in literature, for the term combinatorial op-
timization, it is generally accepted that combinatorial optimization problems deal
with discrete decision making in a system with a finite or countable infinite num-
ber of alternatives, [1, 96, 110, 144]. Due to its rich field of real-life applications,
combinatorial optimization problems have been in the interest of operations re-
searchers consecutively for more than 40 years. Results are numerous and run from
model formulations over increased knowledge of polyhedral structure to an exces-
sive algorithmic development. Over the past four decades a variety of text books
has contributed greatly to the field of combinatorial optimization. Among these,
the works by Ahuja, Magnanti, and Orlin [2], Dell’Amico, Maffioli, and Martello
[31], Grötschel, Lovász, and Schrijver [63], Lawler [96], Nemhauser and Wolsey
[110], Papadimitriou and Steiglitz [121], and Schrijver [144] should be mentioned.

To a combinatorial optimization problem we often associate a finite set of
decision variables x1, . . . , xm, where, normally, non-negativity of xj is assumed.
Hence xj ∈ {lj, . . . , uj} for some integral lower and upper bounds lj ≥ 0 and
uj ≤ ∞. Let X denote the finite or countable infinite feasible set of alternatives.
A vector x ∈ X is referred to as the decision vector . Then a generic description
of a combinatorial minimization problem is

min
{
y(x) ∈ R1 : x ∈ X

}
, (2.1)

where one searches an optimal solution to the decision problem. Here, optimality
relates to some cost criterion with which a quantitative measure of the quality for
each of the feasible solutions can be given. In a context where the cost correspond-
ing to a decision variable is linearly proportional to the value of the variable, we
introduce the m-dimensional cost vector c := (c1, . . . , cm). In such a set-up, the
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8 Combinatorial optimization problems

most common cost criterion is the sum objective

y(x) :=

m∑

j=1

cjxj = cx , (2.2)

to which I shall direct my main attention in this thesis. Another widely used cost
criterion is the bottleneck objective

y(x) := max
1≤j≤m

cjxj , (2.3)

which bears a resemblance to the makespan criterion used in Chapter 10.
It should be mentioned that, in some applications on combinatorial optimiza-

tion, the decision variables are restricted to be binary variables (also referred to
as 0-1 variables). Hence xj ∈ {0, 1}, ∀j, and therefore X ⊆ Bm, where Bm is the
set of m-dimensional binary vectors.

Throughout this thesis I shall focus mainly on combinatorial problems pos-
sessing a certain structure of the feasible set, and in the next section I formally
introduce these problem classes.

2.1 Graph problems

Some of the most prominent combinatorial problems are the graph problems . As
the name suggest, graph problems can be graphically displayed using a graph (or
a network), and hence they share the property of being easy understandable even
for non-operations research practitioners. Graph problems constitute a strong
modelling equipment for a large variety of practical problems and also serve as
important subproblems in more complex models. In the following, I introduce the
notation associated with the graph problems discussed in this thesis. In doing
so, I shall adopt the terminology from the main textbooks on network flows and
graph theory, Ahuja et al. [2] and Bondy and Murty [12].

A directed graph G = (N, A), is generally defined by a set N of nodes and
a set of directed arcs A, with n := |N | and m := |A|. For the arc (i, j) ∈ A,
the nodes i and j are referred to as the from-node (or the tail) and the to-node
(or the head), respectively. An arc (i, j) is incident to nodes i and j, and is said
to be an outgoing arc of i and an incoming arc to j. For a node i ∈ N , the
indegree (outdegree) corresponds to the number of incoming (outgoing) arcs. In
accordance with other literature on graphs, I shall denote by d−(i) and d+(i) the
indegree and the outdegree of node i, respectively. The degree of a node, is the
sum of the indegree and the outdegree of that node.

In a directed graph, a walk is a collection of nodes and arcs, i1 − a1− i2− a2−
· · ·−ir−1−ar−1−ir, satisfying that, for all 1 ≤ p ≤ r−1, either ap = (ip, ip+1) ∈ A
or ap = (ip+1, ip) ∈ A. Sometimes, I suppress the explicit statement of the nodes
(or the arcs) in a walk. A directed walk is a walk in which for any two consecutive
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nodes ip and ip+1 on the walk, ap = (ip, ip+1) ∈ A. Adding the arc (ir, i1) or
(i1, ir) to the walk between i1 and ir yields a closed walk .

A (directed) trail is a (directed) walk with no repetition of arcs. A trail from
i1 to ir together with the arc (ir, i1) or (i1, ir) yields a closed trail , whereas a
directed trail from i1 to ir together with the arc (ir, i1) is a closed directed trail .

A (directed) path is a (directed) trail if all nodes are distinct. A directed path
from i1 to ir together with the arc (ir, i1) is a directed cycle. Both for trails,
paths and cycles, we say that (i, j) is a forward arc if i is visited prior to j in the
trail/path/cycle. Otherwise, (i, j) is a backward arc.

The nodes i and j are said to be connected , if the graph contains at least one
path from i to j. If all pairs of nodes in a directed graph are connected, the graph
is connected . Furthermore, a graph is said to be strongly connected if it has at least
one directed path between every ordered pair of nodes. In a strongly connected
directed graph G = (N, A), a directed Euler tour is a closed directed trail that
contains all arcs of G. Hence, every arc in G is in an Euler tour exactly once. If
a graph contains an Euler tour it is called an Eulerian graph.

Each arc (i, j) ∈ A is associated with a non-negative lower and a positive upper
bound capacity referred to as lij and uij , respectively. I also associate to each arc
(i, j) ∈ A the non-negative cost cij ≥ 0 that denotes the cost per unit flow on that
arc. In this thesis, I focus entirely on situations where the flow cost varies linearly
with the amount of flow. However, many problems of practical interest address
the so-called fixed charge problems, in which a fixed cost is paid to open an arc as
well as a variable cost component linearly dependent on the amount of flow (see
Hirsch and Dantzig [74]).

Let b ∈ Zn be a vector of demand (if bi < 0, i ∈ N) and supply (if bi > 0,
i ∈ N) satisfying

∑
i∈N bi = 0. If bi = 0 for some i ∈ N , node i is a transshipment

node. I assume integrality of all parameters (l, u, c and b). The decision variables
xij in a graph problem represent the flow on each arc (i, j) ∈ A.

An undirected graph is defined in the same manner as a directed graph, except
that edges are unordered pairs of distinct nodes. Hence, the undirected graph
G = (N, E) is constituted by a set of nodes N and a set of undirected edges E.
Also, a mixed graph G = (N, E, A), includes both a set of directed arcs A, and
a set of undirected edges E. Every concept for directed graphs transfers more or
less without exception to undirected and mixed graphs.

A special case of directed or undirected graphs are the bipartite graphs (also
called bipartite networks), in which the node set N can be partitioned into the
two sets W and V such that for every (i, j) ∈ A either i ∈ W and j ∈ V or vice
versa.

In the subsequent sections, I introduce the notions of a number of classical
graph problems that will be discussed in this thesis.
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2.1.1 The minimum cost flow problem

The minimum cost flow problem (MCF) is a fundamental network flow problem
with a rich history of theoretical as well as algorithmic developments. The work
by Hitchcock [75], Kantorovich [87], and Koopmans [90] on the transportation
problem (see Section 2.1.4), which is a special instance of MCF, even predates
the development of linear programming and the simplex method, usually cred-
ited to Dantzig [27, 28]. The minimum cost flow problem has a large library of
applications, such as distributing a product from manufacturing plants to ware-
houses, distributing a product from warehouses to retailers, routing telephone calls
through communication systems, transporting passengers and/or vehicles through
a transportation system, etc, Ahuja et al. [2].

A function x : A → R is called a (network) flow if it satisfies the flow conser-
vation constraints

∑

j : (i,j)∈A

xij −
∑

j : (j,i)∈A

xji = bi ∀ i ∈ N (2.4)

and the capacity constraints

lij ≤ xij ≤ uij ∀ (i, j) ∈ A . (2.5)

The set of all flows satisfying the flow and the capacity constraints is the flow
polyhedron, denoted Pflow.

Pflow = {x : x satisfies (2.4) and (2.5)}

The minimum cost flow problem can be concisely stated as the following math-
ematical program:

min{cx : x ∈ Pflow} , (2.6)

where c ∈ Nm
0 is the non-negative integer cost vector. MCF is in general a con-

tinuous problem, i.e. the flows xij may take on fractional values. If we want to
enforce integrality of the obtained solution, we solve the minimum cost integer
flow problem (MCIF)

min{cx : x ∈ Xflow} , (2.7)

where Xflow := Pflow ∩ Zm is the flow integer lattice.
To a minimum cost flow solution x corresponds the residual network (or incre-

mental graph), G(x) = (N, Af ∪ Ab) defined as follows.

Af = {(i, j) : (i, j) ∈ A ∧ lij ≤ xij < uij}

Ab = {(j, i) : (i, j) ∈ A ∧ lij < xij ≤ uij}
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I assume that for no pair of nodes, i and j, the network G contains both the
arcs (i, j) and (j, i), since this could yield parallel arcs in G(x) and thereby con-
stitute an unnecessary complication. This assumption does not impose any loss
of generality, since by proper node additions and divisions of costs, one can al-
ways transform any general network to an equivalent network with this property.
With this assumption, for any (i, j) ∈ A, either (i, j) ∈ Af , or (j, i) ∈ Ab, or
lij = xij = uij and hence the variable xij is fixed.

Forward arc (i, j) ∈ Af has cost cij and residual capacity rij = uij − xij .
Backward arc (j, i) ∈ Ab has cost cji = −cij and residual capacity rji = xij − lij .
All lower bound capacities in G(x) are 0. A flow ξ in G(x) is referred to as a
residual flow (or incremental flow).

By defining the set of node potentials π = (π(1), . . . , π(n)) as the dual node
variables, one can consider the reduced cost residual network Gπ(x) with reduced
costs on arcs (i, j) ∈ A, cπ

ij = cij − π(i) + π(j) and −cπ
ij instead of cij and cji,

respectively. The following well-known result connects the costs of directed paths
and cycles in G(x) and Gπ(x), (see e.g. [2]).

Lemma 2.1

(a) For any directed cycle O and for any set of node potentials π,

cπ(O) :=
∑

(i,j)∈O cπ
ij =

∑
(i,j)∈O cij := c(O) .

(b) For any directed path P from node s to node t and for any set of node potentials
π,

cπ(P ) :=
∑

(i,j)∈P cπ
ij =

∑
(i,j)∈P cij − π(s) + π(t) := c(P ) − π(s) + π(t) .

To ease notation in later developments, I introduce the two operators ⊕ and
⊖ for addition and subtraction of two flows, respectively.

Definition 2.2

⊕: Addition of a feasible flow x and a feasible incremental flow ξ in G(x) yields
the feasible flow x̂ := x ⊕ ξ with the following arc flows.

∀ (i, j) ∈ A : x̂ij :=





xij + ξij if (i, j) ∈ Af ∧ ξij > 0

xij − ξji if (j, i) ∈ Ab ∧ ξji > 0

xij otherwise

⊖: Subtracting the feasible flow x from the feasible flow x̂ yields the feasible
incremental flow ξ := x̂ ⊖ x in G(x) with the following arc flows.

∀ (i, j) ∈ A :





ξij := x̂ij − xij ∧ ξji := 0 if x̂ij > xij

ξji := xij − x̂ij ∧ ξij := 0 if x̂ij < xij

ξij = ξji := 0 otherwise
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Figure 2.1: The graph of a minimum cost flow problem.
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Figure 2.2: Optimal solution to the MCF in Figure 2.1.

In Definition 2.2 it is implicitly used that for the incremental flow ξ in G(x),
ξijξji = 0 can, without loss of generality, be assumed for all (i, j) ∈ A.

Example 2.3 An instance of the minimum cost flow problem having n = 6 nodes
and m = 10 arcs is drawn in Figure 2.1. Supplies and demands are depicted next
to the node numbers, and for each arc (i, j) is displayed the lower and upper
capacity bounds as well as costs, ([lij , uij ], cij). The optimal solution x, for the
MCF of Figure 2.1 is displayed in Figure 2.2 showing only non-zero arc flows. The
optimal value is y(x) = 73.

The minimum cost flow problem was proven to be polynomial time solvable
by Edmonds and Karp [37] and Dinic [34], independently. In 1985, Tardos [156]
developed the first strongly polynomial time algorithm for MCF. Also, the well-
known out-of-kilter method discovered independently by Minty [104] and Fulkerson
[51], remains popular due to its easiness of understanding.
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2.1.2 The shortest path problem

The shortest path problem (SP) is among the most important combinatorial op-
timization problems. Not only can many practical applications be formulated
in terms of an SP. Shortest path algorithms also occur as subroutines in more
complex problems (e.g. the Chinese postman problem that will be discussed in
Section 2.1.5). Applications stem from many different areas of operations and
include the task of finding a least cost traversal in a graph, an optimal replace-
ment strategy in a production environment and a solution for the classical binary
knapsack problem, etc., Ahuja et al. [2], Bellman [10], Dijkstra [33], Fulkerson [52],
and Lawler [96].

The definition of the shortest path problem with non-negative costs can be
formalized looking at a directed uncapacitated network, G = (N, A). Here, SP is
to find a least cost directed path between two distinguished nodes, s and t, where
the nodes s and t are referred to as the source node and the sink node, respectively.
Letting bs = 1, bt = −1, and bi = 0 for all other nodes i in the graph, SP is seen
to be a special instance of the minimum cost flow problem, where lij = 0, and
uij = ∞. If we let Ppath denote the path polyhedron,

Ppath =

{
x :

∑

j : (i,j)∈A

xij −
∑

j : (j,i)∈A

xji =






1 if i = s

0 if i 6= s, t

−1 if i = t

,

xij ≥ 0, ∀ (i, j) ∈ A

}
(2.8)

the following mathematical formulation of SP can be given.

min{cx : x ∈ Ppath} (2.9)

Due to total unimodularity of the constraint matrix, Ppath is an integer polyhe-
dron. Therefore, a simplex based solution method will yield an integral optimum
for SP.

The most well-known shortest path algorithm for directed graphs is Dijkstra’s
method [33], showing with time complexity O(n2) that SP is strongly polynomially
solvable. Many later algorithms are improvements to Dijkstra’s method based on
various heap structures, (see e.g. [144]).

2.1.3 The assignment problem

The linear assignment problem (AP) is another well-known graph problem and
may be considered as the problem of assigning n workers to n jobs. Each worker
must be assigned to exactly one job. Assigning worker i to job j is associated with
the cost cij ≥ 0, and the objective is to minimize total cost. Practical applications
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of the assignment problem are numerous and include assigning teachers to school
classes, tenants to apartments, jobs to machines, etc, and AP also arises as a
subproblem in more complex decision systems, Ahuja et al. [2], Egerváry [38], and
Kuhn [92, 93].

Formally, the graph corresponding to an AP is bipartite having two equally
sized node sets W and V (i.e. n := |W | = |V | and n2 = m := |A|). The graph
may be assumed to be undirected G = (W ∪ V, E), with i ∈ W and j ∈ V for all
(i, j) ∈ E, or directed G = (W ∪ V, A), with i ∈ W and j ∈ V for all (i, j) ∈ A.
Adapting the latter notation yields the assignment polyhedron,

PAP =

{
x :

∑

j : (i,j)∈A

xij = 1, ∀ i ∈ W,
∑

i : (i,j)∈A

xij = 1, ∀ j ∈ V,

xij ≥ 0, ∀ (i, j) ∈ A

}
. (2.10)

Letting cij be the cost of the arc (i, j) ∈ A, AP is stated below.

min{cx : x ∈ PAP } (2.11)

Again, PAP is an integer polyhedron. However, enforcing integrality, we get

XAP := PAP ∩ Zm . (2.12)

Obviously, the assignment problem is a special instance of the minimum cost flow
problem in a network G = (W ∪ V, A), with bi = 1, ∀i ∈ W , bj = −1, ∀j ∈ V ,
lij = 0 and uij = 1, ∀ (i, j) ∈ A.

The Hungarian mathematician Egerváry [38] was the first to (implicitly) state
an algorithm for the assignment problem and this inspired Kuhn [92, 93] to develop
the Hungarian method of time complexity O(n4). Later, with the introduction of
successive shortest path procedures the complexity was reduced to O(n3) (see e.g.
Tomizawa [158]).

2.1.4 The transportation problem

The transportation problem (TP) is a generalization of AP. First considered by
Hitchcock [75], Kantorovich [87], and Koopmans [90], independently, TP addresses
the problem of transporting goods from a set of supply nodes to a number of
demand nodes. Multiple practical applications of TP arise in various fields of
operations, like distribution of goods from warehouses to retailers, distribution of
goods from manufacturing plants to warehouses, shipping of empty cargo ships,
etc, Ahuja et al. [2] and Koopmans [90].

As for AP, a transportation problem can be described using a directed bipartite
graph G = (W ∪ V, A), with arc costs cij ≥ 0, ∀ (i, j) ∈ A. Nodes in W are the
supply nodes each with supply si, and nodes in V are the demand nodes each with
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demand dj . We let n1 := |W |, n2 := |V | and as before n1 · n2 = m := |A|. Hence,
the transportation problem can be stated as

min{cx : x ∈ PTP } , (2.13)

using the transportation polyhedron,

PTP =

{
x :

∑

j : (i,j)∈A

xij = si, ∀ i ∈ W,
∑

i : (i,j)∈A

xij = dj , ∀ j ∈ V,

xij ≥ 0, ∀ (i, j) ∈ A

}
. (2.14)

Without loss of generality it can be assumed, that the transportation problem is
balanced, hence

∑
i∈W si =

∑
j∈V dj . Enforcing integrality in PTP , we get the

transportation integer lattice

XTP := PTP ∩ Zm . (2.15)

The transportation problem is a special instance of the minimum cost flow
problem in a network G = (W ∪ V, A), with bi = si, ∀i ∈ W , bj = −dj, ∀j ∈ V , and
lij = 0 and uij = min {si, dj} , ∀ (i, j) ∈ A. Notice that by setting |W | = |V | = n,
si = 1, ∀i ∈ W and dj = 1, ∀j ∈ V , TP reduces to an instance of the assignment
problem.

Tardos [156] and Galil and Tardos [53] gave the first strongly polynomial-time
algorithm for the transportation problem. Later improvements are due to Orlin
[119] among others.

2.1.5 The Chinese postman problem

The Chinese postman problem (CPP) is a graph problem that dates back to the
Chinese mathematician Meigu Guan (or Kwan Mei-Ko) [64]. A postman is allo-
cated to a segment of roads which he has to traverse while delivering mail. Apart
from the obvious application of CPP within mail delivery, several other real-life
applications can be given, such as school bus routing, snow plowing, gritting roads
in winter, street cleaning, garbage collection, etc, Dror [35], Edmonds and Johnson
[36], and Eiselt, Gendreau, and Laporte [45].

The three most classical instances of CPP are the directed Chinese postman
problem (DCPP) considering a directed graph G = (N, A), the undirected Chinese
postman problem (UCPP) on an undirected graph G = (N, E), and the mixed
Chinese postman problem (MCPP) on a mixed graph G = (N, E, A). DCPP is of
primal interest to me. To each arc (i, j) a non-negative length cij is associated,
and the objective is to identify a closed directed walk of minimum length that
visits each arc at least once.
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Letting xij denote the number of times arc (i, j) is traversed in a directed walk,
DCPP can be formulated as the mathematical programme

min{cx : x ∈ PDCPP } (2.16)

using the directed Chinese postman polyhedron,

PDCPP =

{
x :

∑

j : (i,j)∈A

xij −
∑

j : (j,i)∈A

xji = 0, ∀i ∈ N,

xij ≥ 1, ∀ (i, j) ∈ A

}
. (2.17)

Obviously, DCPP is an instance of the minimum cost flow problem with bi = 0
for all nodes and lij = 1 and uij = ∞ for all arcs.

The Chinese postman problem can be solved by a two-phase method. First, a
question of how to minimally expand a particular graph for it to contain an Euler
tour must be addressed. This problem introduced by Guan [64] is referred to as
the augmentation problem and has become a core problem of arc routing. The
augmentation problem for DCPP further divides into an all-pairs shortest path
computation in a directed graph and into a classical transportation problem. For
UCPP, the augmentation problem splits into an all-pairs shortest path computa-
tion (in an undirected graph) and into a perfect (non-bipartite) matching problem.
All these problems are strongly polynomial-time solvable, [35, 36, 45]. Second, the
actual Euler tour must be identified. This can be performed in linear time both in
a directed and in an undirected graph, [73, 162]. Therefore, it can be concluded,
that both DCPP and UCPP are strongly polynomial-time solvable, opposed to
MCPP which is known to be NP-hard by transformation from 3SAT, [120].

2.1.6 Overview of graph problems

In Figure 2.3, I give a schematic representation of the connection between the
various problem classes discussed in this section. A particular problem class can
be interpreted as a subproblem of its ancestors in the tree of Figure 2.3. The “B ”
in the box for TP and AP points out that these problems are defined on bipartite
graphs.

2.2 Identifying the K best solutions

In the task of reflecting real-life practical applications with mathematical mod-
els, as the ones described in Section 2.1, the analyst is often forced to make a
number of simplifying assumptions. Such simplifications occur in instances where
certain qualitative features are not displayable in a model. Therefore, it seems
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Figure 2.3: Overview of graph problems.

natural to widen the focus and provide the decision maker with a larger variety of
alternatives, instead of only one optimal solution. Finding the K best solutions
to a mathematical problem may provide essential knowledge in this instance. If
for instance the objective values of the k best solutions are relatively close, but
the (k + 1)st solution has a decisively worse objective value, it is of the utmost
importance for the decision maker to ensure implementation of one of the first k
solutions.

Simplifications may also arise from the need to keep the mathematical model
suitably simple, in order to be able to compute an optimal solution for it. There-
fore, leaving out displayable but complicating constraints may occur. Here, an
optimal solution to the original problem, including the complicating set of con-
straints, can be found by enumerating suboptimal solutions for the simplified
mathematical model until a solution satisfying the complicating constraints is
found.

The idea of ranking alternatives for mathematical models dates back to Hoff-
man and Pavley [76] and Bock, Kantner, and Haynes [11] identifying the K short-
est paths and K shortest loopless paths in a network, respectively. The latter
work was improved by Yen [168] finding the K shortest loopless paths in directed
networks using a decomposition procedure. Also the work by Murty [106], iden-
tifying the K best assignments, stands as a milestone in ranking literature. In
1972, Lawler [95] generalized the work of Murty [106] and Yen [168] deriving a
procedure for finding the K best solutions to general combinatorial problems with
binary variables.

Despite their differences, any ranking algorithm can be classified using two
identifiers: A specific branching technique is used to partition the set of feasi-
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Figure 2.4: Branching technique due to Lawler [95].

ble solutions into smaller subsets, and a solution method needed for ranking the
solutions is used to find a solution in each subset.

In the general algorithm by Lawler [95] for combinatorial problems with m
binary variables, the feasible set of solutions is partitioned into at most m − 1
non-empty disjoint subsets for each additional ranking made. The solutions al-
ready identified are excluded from all these subsets. When the k−1 best solutions
have been identified, the kth best solution is obtained using a solution method to
find the optimal solution in each subset of the current partition. The branching
procedure of Lawler can be visualized in terms of the rooted tree in Figure 2.4.
Each node in the tree corresponds to a subset of feasible solutions, and with xk

it is denoted that the kth best solution is found in the given subset. Whenever a
subset contains the next current best solution, the corresponding subset is further
partitioned into subsets, as displayed by the directed arcs of Figure 2.4. In Chap-
ters 4 and 5, I present two implementations of the general ranking algorithm by
Lawler for the assignment problem and the minimum cost integer flow problem,
respectively.

Opposed to the ranking algorithm by Lawler stands another general method
for combinatorial problems with m binary variables by Hamacher and Queyranne
[68] referred to as the binary search tree algorithm. Here, each set of feasible
solutions is at any point of the algorithm partitioned into exactly two disjoint
subsets by considering the best solution x∗, and the second best solution x̃ for the
current set. In one subset, x̃ is excluded and x∗ remains optimal. In the other
subset, x∗ is excluded and x̃ becomes optimal. When the k − 1 best solutions
have been identified, the kth best solution is obtained by using a solution method
to identify the second best solution in each subset in the current partition. The
branching procedure of Hamacher and Queyranne is visualized in Figure 2.5 with
the same notation as in Figure 2.4. For readers requiring more information on
ranking using binary search, I refer the reader to the original paper by Hamacher
and Queyranne [68] and on its utilizations in Chegireddy and Hamacher [19] and
Hamacher [66].
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Figure 2.5: Branching technique due to Hamacher and Queyranne [68].

The K best solutions have been determined for various combinatorial opti-
mization problems in literature. I have no intention of providing the reader with
a complete list of references on ranking algorithms in this thesis. Therefore, I
shall mention only a few references related to the problem classes described in
Section 2.1.

K best network flows: To the best of my knowledge, this problem has only
been considered by Hamacher [66] and Hamacher and Hüsselman [67] who utilize a
version of the binary search tree algorithm. In Chapter 5, I present a new algorithm
for ranking integer flows by modifying the branching technique by Lawler.

K shortest paths: First addressed by Hoffman and Pavley [76].

K shortest loopless paths: First addressed by Bock et al. [11] and improved
by Yen [168].

K best assignments: Early work by Murty [106]. Improved by Chegireddy and
Hamacher [19] and Pascoal, Captivo, and Clímaco [123]. The latest developments
including further improvements by Pedersen et al. [127] can be found in Chapter 4.

K best extreme points of PTP : First applied by Murty [107] as a subroutine
for the fixed charge transportation problem.

K best solutions of XTP : I am not aware of any other developments for ranking
transportation solutions (including non-extreme solutions) than what is presented
in Section 5.3 of this thesis.

K best undirected Chinese postman solutions: Sole work by Saruwatari
and Matsui [141].





Chapter 3

Multicriteria optimization

A description of real-world applications as single criterion optimization problems
is seldom realistic, since real-life decision making is often, by nature, imposed
with more objectives to be simultaneously optimized. Modelling with multiple
objectives (or criteria) serves its right in many different fields of operations such
as production planning, transportation, network planning, scheduling, etc. For a
larger range of applications, refer to the extensive survey by White [166] citing
more than 500 papers on multicriteria optimization. Due to this large applicability,
interest in multicriteria optimization has prospered, resulting in a large literature
on the subject. The textbooks by Steuer [152] and Ehrgott [39] offer a solid
introduction to multicriteria theory, algorithms and applications.

Since both combinatorial and multicriteria optimization serve as important
modelling tools, it is somewhat surprising, that focus on combining these subjects
arose only twenty years ago. Since then, growing interest in multicriteria combi-
natorial optimization problems has provided us with many more or less specialized
solution algorithms, enabling us to address increasingly complex problems. Most
of the combinatorial problems introduced in Chapter 2 exist in a multicriteria (or
bicriterion) version in literature. For general multicriteria combinatorial problems
an early review is provided by Ulungu and Teghem [160] and recent developments
are surveyed in Ehrgott and Gandibleux [42]. For multicriteria network problems
early reviews are offered by Current and Marsh [24] and Current and Min [25], and
recent knowledge on theory and algorithms for the special case of the multicriteria
minimum cost flow problem is presented in Hamacher et al. [69] and reproduced
in Chapter 7. Also, a forthcoming special issue in Annals of Operations Research
shows an ongoing profound interest in the topic, [44].

Remember that by X and P I denote a discrete feasible set and a polyhedral
feasible set, respectively. Let me by S refer to a general feasible set of solutions
in Rm. A multicriteria optimization problem can then be stated

min {y(x) := (y1(x), . . . , yQ(x)) : x ∈ S} , (3.1)

21
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where Q objectives must be simultaneously minimized. S is the decision space,
and Y := {y := y(x) ∈ RQ : x ∈ S} denotes the corresponding criterion
space. Elements of S are referred to as solutions, whereas elements of Y are
called (criterion) points or objective vectors. When the feasible set S is that of
a combinatorial problem, (3.1) is referred to as a multicriteria (or multiobjective)
combinatorial optimization problem (MOCO).

My main interest is on problems with sum objectives (see (2.2)). Therefore,
yj(x) := cjx, ∀ j = 1, . . . , Q. If we consider a polyhedral set of feasible solutions

P := {x ∈ Rm : Ax = b, x ≥ 0} ,

with constraint matrix A and right-hand side vector b ∈ Rn, the general multicri-
teria (or multiobjective) linear program (MOLP)

min {Cx : x ∈ P} (3.2)

is obtained, where C = (c1, . . . , cQ)T with rows c1, . . . , cQ denotes a Q × m linear
objective matrix.

Enforcing integrality of all decision variables in (3.2) yields the feasible set
X := P ∩ Zm, and the multicriteria (or multiobjective) linear integer program
(MOLIP)

min {Cx : x ∈ X} . (3.3)

In general, the various objectives, for a particular problem, are conflicting in
the sense that no solution simultaneously optimizes all objectives. Therefore, one is
interested in finding solutions which have the property that none of the objectives
can be improved without worsening one of the other objectives. Finding all or
a suitable subset of these Pareto or efficient solutions is the goal of multicriteria
optimization. I formalize these concepts below.

3.1 Multicriteria terminology

For single criterion optimization, the concept of optimality is well-defined. How-
ever, minimizing a vector-valued objective function requires some more explana-
tion since there is no complete order defined in RQ for Q ≥ 2. Respecting common
practice in the field of multicriteria optimization, I shall deploy the Pareto con-
cept of optimality based on the following binary relations defined for any pair
y1, y2 ∈ RQ.

y1 ≦ y2 ⇔ y1
j ≤ y2

j j = 1, . . . , Q

y1 ≤ y2 ⇔ y1
j ≤ y2

j j = 1, . . . , Q ∧ y1 6= y2

y1 < y2 ⇔ y1
j < y2

j j = 1, . . . , Q
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A (criterion) point y2 ∈ Y is dominated by y1 ∈ Y if y1 ≤ y2. If no point
y1 ∈ Y dominates y2 ∈ Y it is nondominated . To each nondominated point y ∈ Y
exists at least one x with y = y(x), which is then an efficient solution. Therefore,
according to the Pareto concept of optimality, the efficient or Pareto set , SE , and
the weakly efficient or weakly Pareto set, SwE , are defined as

SE := {x ∈ S : ∄x̄ ∈ S with y(x̄) ≤ y(x)}

SwE := {x ∈ S : ∄x̄ ∈ S with y(x̄) < y(x)} .

Obviously, for a discrete feasible set X , the corresponding notation is XE and
XwE , respectively. The images

YN := y(SE) and YwN := y(SwE)

of these sets under the vector-valued mapping y are called the nondominated set
and the weakly nondominated set , respectively. In Figure 3.1, examples of non-
dominated and dominated criterion points are indicated by dots and crosses, re-
spectively.

Let me define the Pareto cone by RQ

≧
:= {y ∈ RQ : y ≧ 0}. Following the

terminology of Steuer [152], I use the denotation

Y≥ := conv(YN ) ⊕ RQ

≧

(the shaded grey area of Figure 3.1) where ⊕ denotes the usual direct sum and
“conv” is the convex hull operator. For MOLP and MOLIP, the efficient frontier
is defined as the set {y ∈ conv(YN ) : conv(YN ) ∩ (y ⊕ (−RQ

≧
)) = y}, which in

the two-dimensional case of Figure 3.1 is equivalent to the boundary of Y≥. For
MOLP, the efficient frontier is identical with the set YN . In the case of Q = 2
objectives, the efficient frontier of MOLP is known to be piecewise linear and
convex. Its breakpoints are the extreme nondominated points which are images
of extreme efficient solutions in the decision space. If the coefficient matrix is
totally unimodular for MOLIP, the efficient frontier is the nondominated set of its
continuous relaxation.

If a nondominated criterion point is on the efficient frontier, it is called a
supported nondominated criterion point. Otherwise it is an unsupported nondom-
inated criterion point. The corresponding solutions in decision space are denoted
supported efficient solutions and unsupported efficient solutions, respectively. It
is important to notice that, for MOLP, only supported efficient solutions exist,
whereas, for MOLIP, unsupported efficient solutions may exist even if the con-
straint matrix for the considered MOLIP instance is totally unimodular.

Two different notions of connectivity based on topology and graph theory,
respectively, are used in the context of multicriteria programming.

A set S is called topologically connected if there does not exist non-empty
open sets S1 and S2 such that S ⊆ S1 ∪ S2 and S1 ∩ S2 = ∅. For MOLP the
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y1

y2

Y≥

Figure 3.1: The set Y≥ for a bicriterion linear integer program with nondominated
(dots) and dominated (crosses) criterion points. Unsupported nondominated cri-
terion points are located in the interior of Y≥.

efficient set XE and the efficient frontier YN are topologically connected as shown
by Naccache [109] and Warburton [164]. In contrast, neither XE nor YN are
topologically connected for MOLIP.

Let G = (N , E) denote the adjacency graph of MOLP where N is the set of
efficient basic feasible solutions. An edge between two nodes of N is included
in E if and only if the corresponding efficient basic feasible solutions can be ob-
tained from each other by a single pivot operation. Isermann [83] showed that
the adjacency graph G of MOLP is connected. This graph theoretical connected-
ness of the set of all basic solutions in XE makes it possible to find the entire
efficient and nondominated sets by simple pivot exchange arguments for MOLPs
(see Figure 3.2).

The same figure illustrates that the adjacency graph is, in general, not con-
nected for the integer version, MOLIP. Here, N is the set of efficient basic feasible
solutions to the continuous relaxation of (3.3). Consequently, it is not possible for
MOLIPs to generate the entire efficient set by “travelling” across the adjacency
graph in a simplex based manner only. This result was shown for the bicriterion
shortest path problem and for the bicriterion spanning tree problem by Ehrgott
and Klamroth [43]. Obviously, it depends on the definition of the adjacency graph
in the integer case. Other definitions of the node and edge set may salvage con-
nectivity.
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XE

XE

XE
PE

XP

G

Figure 3.2: Illustration of adjacency graph: connectedness for MOLP (left) and
disconnectedness for MOLIP (right).

3.2 Multicriteria solution methods

The manner in which the preferences of the decision maker are revealed plays a
crucial role in the determination of the correct solution method for a multicriteria
optimization problem. If such preferences are revealed prior to the decision making
process, explicit or implicit usage of these are facilitated in the search for an overall
desired (optimal) solution. If the preferences become known during the decision
making process, interactive methods involving a ranging degree of dialogue with
the decision maker are preferred, [42, 152]. In this thesis, no assumptions regarding
the preferences of a decision maker are made prior to or during the optimization
process. Therefore, the focus is entirely on non-interactive methods.

If the preferences of the decision maker are not known until after the optimiza-
tion process, the solution methods must compute either all efficient solutions, all
nondominated points or a suitable approximation of either of these. Obviously, the
number of efficient solutions is no less than the number of nondominated points
and efficient solutions corresponding to the same nondominated point may be
interpreted as alternative solutions. Therefore, the predominant thought within
multicriteria optimization is to identify all nondominated points with one effi-
cient solution corresponding to each nondominated point. This is equivalent to
identifying a minimal complete set of efficient solutions [55, 72].

Imposing even simple combinatorial optimization problems with more than
one sum objective, normally means raising the complexity of the problem to NP-
completeness. Also for many MOCOs, the nondominated set may have an expo-
nential number of elements, making such instances intractable.

Definition 3.1 A multicriteria combinatorial optimization problem is called in-
tractable, if the size of YN can be exponential in the size of an instance.

Respecting both these features, a growing interest to find approximations of the
nondominated sets has developed within the last twenty years. Several distinct
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approaches to determine approximations of the nondominated set are utilized.
One main idea is to apply a multicriteria version of a (meta)heuristic. Research in
multicriteria metaheuristics covers, among others, work in tabu search, ant colony
systems, simulated annealing, genetic algorithms and evolutionary algorithms, (see
e.g. Ehrgott and Gandibleux [42]). Forthcoming issues on multicriteria meta-
heuristics proves the ongoing relevance of this topic, [3, 32].

Despite the importance of multicriteria heuristical methods, I have chosen
not to consider them in this thesis. Instead, focus is on exact solution methods
(identifying YN ), and on methods computing approximations in a non-heuristical
manner. One well-known approximation concept for the nondominated set is the
ε-approximation due to Warburton [165]. Any nondominated point is kept within
a prespecified range from the nearest point in the approximation. In Definitions
6.1 and 6.2 on page 67 the concepts of ε-dominance and ε-approximation are
formally introduced.

A desire to control the quality of an approximation has led to the developments
of representative systems possessing provable quality features. Recent work is
presented in Hamacher et al. [70] and reproduced in Chapter 8 to which I also
postpone the formal discussion of the different quality measures. In Chapter 8,
two new methods for deriving representative systems of the nondominated points
are presented.

The main focus within multicriteria combinatorial optimization is on instances
with Q = 2 objectives – and this will also be of main interest in this thesis. The
bicriterion instance distinguishes itself from general Q > 2 objective problems
because of its possibility for generating solution algorithms that benefit richly from
geometrical features of the criterion space (in R2). Among these algorithms, is the
well-known two-phase method originally proposed for the bicriterion assignment
problem by Ulungu and Teghem [161].

In the two-phase method, no cuts are added to the original feasible set during
execution. This stands opposed to other popular bicriterion optimization proce-
dures, like for instance the ε-constraint method (see Chankong and Haimes [18]). It
is evident, that the preservation of the original constraint structure, allows the two-
phase method to apply iteratively the specialized solution algorithms for the single
criterion instances. During the last decade, the two-phase method has proved to
be successful for solving even very difficult MOCOs, (see e.g. [105, 114, 161, 163]).

Also, a choice between a pure simplex-based bicriterion optimization proce-
dure and a two-phase method can in some way be guided by the graph theoretical
adjacency results stated in Section 3.1. Since the adjacency graph of MOCOs are,
in general, unconnected, simplex-based solution procedures would fail in gener-
ating all nondominated points. Deploying the two-phase method correctly does
not suffer from this flaw. Due to its high applicability, I have chosen to present
the two-phase method in general terms in the next section. It is exploited in
Chapter 6, addressing the bicriterion multi modal assignment problem.
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Figure 3.3: The criterion space and its corresponding parametric space.

3.2.1 The two-phase method

The two-phase method is a general approach for solving bicriterion combinatorial
optimization problems. As the name suggests, the two-phase method divides the
search for nondominated points into two phases.

In phase one, the supported extreme nondominated points are found. These
extreme points define a number of triangles in which unsupported nondominated
points may be found. Phase two proceeds to search the triangles one at a time.
Both phases make use of a parametric minimization problem defined as follows.

min fλ(x) = (λc1 + c2)x
s.t. x ∈ X

(3.4)

with λ ≥ 0.
The method is best illustrated using an example. Suppose that the points

in the right hand side of Figure 3.3 represent the criterion space of a bicriterion
discrete minimization problem. Points yUL, y3, y4, y5 and yLR are supported non-
dominated points of which y4 is the only nonextreme. The point y8 is the only
unsupported nondominated point. The remaining points are dominated.

Consider the parametric minimization problem (3.4). For a fixed criterion point
y = (c1x, c2x), fλ(x) define a line with slope y1 = c1x and intersection y2 = c2x in
the parametric space as illustrated on the left hand side of Figure 3.3. The lower
envelope of the lines in the parametric space defines a non-decreasing piecewise
linear function f(λ) with break points λi. Note that each line on f(λ) corresponds
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1 procedure PhaseOne()

2 yUL := (c1xUL, c2xUL), where xUL is optimal for lex min(c1x, c2x);
3 yLR := (c1xLR, c2xLR), where xLR is optimal for lex min(c2x, c1x);
4 if (yUL = yLR) then stop (only one nondominated point);

5 YN :=
˘
yUL, yLR

¯
;

6 y+ := yUL; y− := yLR;

7 while (y+ 6= yLR) do
8 λ := (y+

2 − y−
2 )/(y−

1 − y+
1 );

9 solve (3.4) with optimal solution x⋆ and cost y⋆ = (c1x⋆, c2x⋆);
10 if (fλ(x⋆) < y+

1 λ + y+
2 ) then add y⋆ between y+ and y− in YN;

11 else y+ := y−;

12 y− := Next(YN , y+);

13 end while
14 end procedure

Figure 3.4: Phase one – Finding supported extreme nondominated points.

to an extreme nondominated point. As a result, each extreme nondominated point
can be found by identifying the point with minimal parametric weight for fixed
λ values, i.e. solving (3.4). This is done in phase one, which uses a NISE1 like
algorithm (see [23]) as shown in Figure 3.4. This idea was first applied to the
bicriterion transportation problem by Aneja and Nair [4].

The procedure first finds the upper left and the lower right point (yUL and yLR

in Figure 3.3). Given two extreme nondominated points y+ and y−, we calculate
the search direction λ defined by the slope of the line between the points and solve
(3.4). That is, we find the value of λ where the two lines corresponding to y+ and
y− meet in the parametric space. If the optimal solution x⋆ of (3.4) corresponds
to a new extreme nondominated point, then the parametric weight fλ(x⋆) must
be below the parametric weight of y+ and y− (line 10 of Figure 3.4). The points
y+, y⋆ and y− then define two new search directions and the while step is repeated
on the points y+ and y⋆. Otherwise no new extreme nondominated point has
been found and we proceed with the two next points in YN , i.e. we call the Next

function that returns the point following y in YN . The procedure stops when no
additional extreme nondominated points can be found.

Phase one in its present description, is actually an implementaion of the weighted
sum method known to be capable of producing each supported efficient solution
both for MOLPs and MOLIPs with any number Q, of objectives, Geoffrion [59]
and Isermann [82].

Since there may exist unsupported nondominated criterion points, it is not,
in general, possible to find all nondominated points during the first phase. This
can be seen in Figure 3.3 where unsupported nondominated points inside the

1 Non-inferior set estimation.
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ranking direction

y1

y2

y+

y−

UB0

UB1

Figure 3.5: A triangle, △(y+, y−), defined by the supported extreme nondomi-
nated points y+ and y−.

triangles, such as y8, correspond to a dashed line lying above f(λ). These points
are found in phase two which searches each triangle defined by the set of extreme
nondominated points found in phase one. Distinct techniques for searching the
triangles are presented in the literature. However, I shall only describe a generic
method applying a ranking procedure, (see Section 2.2).

Consider the triangle △(y+, y−) defined by the extreme nondominated points
y+ and y− (see Figure 3.5). The second phase searches each triangle using a K best
procedure to rank the parametric weight fλ(x) in the ranking direction defined by
the slope between the two points defining the triangle. The search stops when
the parametric value fλ(x) reaches an upper bound. Initially, the upper bound is
UB0 = y−

1 λ + y+
2 . When a new unsupported nondominated point is found inside

the triangle, the upper bound is updated to UB1 as can be seen in Figure 3.5.
A pseudo code for phase two is given in Figure 3.6 where initialization is done

on lines 2-4. In the main loop the parametric weight fλ(x) is ranked until the
upper bound is reached. Procedure KBest returns the cost vector yk of the k’th
best solution. If it is nondominated, we add yk to the nondominated set and
update the upper bound using UpdateUB. Finally, we update the lower bound LB ,
to the current parametric weight and repeat the loop.

A detailed description of procedure KBest relies on the specific problem class
under consideration. An implementation for the multi modal assignment problem
is discussed in Chapter 6. Furthermore, note that in general UpdateUB finds the
upper bound by using the points in the nondominated set. However, special
properties such as integrality of the nondominated points may be used to improve
the bound, as we will also see in Chapter 6.
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1 procedure PhaseTwo(△(y+, y−))
2 λ := (y+

2 − y−
2 )/(y−

1 − y+
1 );

3 YN :=
˘
y+, y−

¯
;

4 k := 1; LB := λy+
1 + y+

2 ; UB := UpdateUB(YN );

5 while (LB ≤ UB) do
6 yk := KBest(k, λ);
7 if (NonDom(yk)) then
8 YN := YN ∪ {yk};
9 UB := UpdateUB(YN );

10 end if
11 LB := λyk

1 + yk
2; k := k + 1;

12 end while
13 end procedure

Figure 3.6: Phase two – Finding unsupported nondominated points.
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Chapter 4

Ranking assignments using

reoptimization

The linear assignment problem (AP) is a well-known problem and may be con-
sidered as the problem of assigning n workers to n jobs. Each worker must be
assigned to exactly one job. The objective is to minimize total cost.

In an annotated bibliography authored by Dell’Amico and Martello [29], more
than 100 papers on the problem are mentioned. Kuhn [92, 93] suggested the
first polynomial method for the solution of AP, called the Hungarian method
with O(n4) complexity. Since 1955 several other algorithms for AP have been
developed. Some of the most efficient algorithms are the class of successive shortest
path procedures2 with an O(n3) complexity, (see e.g. Tomizawa [158] and Jonker
and Volgenant [86]). An excellent survey is given by Dell’Amico and Toth [30]
including comparative tests of several implementations of different AP algorithms.

The assignment problem can be generalized to ranking the first K assignments
in nondecreasing order of cost. Applications of ranking assignments are numerous
and include the ones presented in the general overview of ranking methods in
Section 2.2. Also, ranking assignments appear as a subproblem within algorithms
for solving the bicriterion assignment problem and related extensions, as we will
see in Chapter 6.

Several algorithms for ranking assignments have been suggested. Recall that
any ranking algorithm is classified by two identifiers: The branching technique
and the solution method.

Murty [106] suggested a branching technique where the set of possible assign-
ments is partitioned into at most n−1 disjoint subsets for each additional ranking
made. The Hungarian algorithm was used to find the best assignment for each
subset resulting in an O(Kn5) complexity. However, applying e.g. a successive
shortest path procedure may improve the overall complexity to O(Kn4).

2 Also known as shortest augmenting paths algorithms.

33
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The general framework by Hamacher and Queyranne [68] for ranking solutions
of combinatorial problems, (presented in Section 2.2), was specialized for bipartite
matchings by Chegireddy and Hamacher [19]. The branching technique partitions
the set of feasible assignments into at most two subsets for each additional ranking
and, for each subset, the second best assignment has to be calculated. Different
solution methods are suggested. One consists of identifying the second best as-
signment by a shortest cycle determination in an auxiliary network. The shortest
cycle can be found by solving at most n shortest paths problems resulting in an
overall O(Kn3) time complexity.

Recently, Pascoal et al. [123] presented a ranking algorithm with the same
branching technique as in [106]. However, by considering the subsets in reverse
order when applying their solution method, they are able to reoptimize the solution
from the previous subset considered and find the best assignment by solving a
single shortest path problem yielding the same time complexity as in [19].

The solution methods in all the above ranking algorithms use shortest path
methods to find the best assignment for each subset. Methods based on shortest
paths are dual algorithms . Dual feasibility exists and primal feasibility has to be
reached. Tomizawa [158] noted that the original costs in the assignment may be
replaced with the reduced costs when using successive shortest path procedures.
Since the reduced costs are non-negative, the shortest path may be found using
the algorithm of Dijkstra [33].

In spite of the connection between the dual variables and successive shortest
path procedures, no one has considered updating the dual variables of the previous
solution before the shortest path procedure is applied to a subset. We shall see
that such an update offers an improvement to the overall algorithm for ranking
assignments. The new algorithm presented in this chapter uses the branching tech-
nique of Murty [106]. For each subset, a solution method is used where only one
single shortest path problem has to be solved. Hence, the overall time complexity
of the proposed method is O(Kn3).

After a short overview over the dual properties in AP and over the successive
shortest path procedures in Section 4.1, the new ranking algorithm is presented in
Section 4.2. In Section 4.3, computational results are given. They include compar-
ative tests against any other known and available implementation of algorithms,
with time complexity O(Kn3), for ranking assignments.

4.1 Preliminaries

As in Section 2.1.3, the assignment problem (AP) is defined on the bipartite di-
rected graph G = (W ∪ V, A), with n nodes in each of the subsets W = {1, . . . , n}
and V = {n+1, . . . , 2n} and m = n2 arcs in A. Note that non-existing arcs can be
represented as arcs having infinite cost. For sake of easy reference, the assignment



4.1. Preliminaries 35

polyhedron

PAP =

{
x :

∑

j : (i,j)∈A

xij = 1, ∀ i ∈ W,
∑

i : (i,j)∈A

xij = 1, ∀ j ∈ V,

xij ≥ 0, ∀ (i, j) ∈ A

}
, (4.1)

and the related mathematical formulation of AP

min{cx : x ∈ PAP } (4.2)

are restated here.
In an optimal solution to (4.2), xij = 1 if node i is assigned node j, and

zero otherwise. A feasible solution x to (4.2) is called an assignment . Using
the network formulation, an assignment may alternatively be written as a =
{(1, j1), . . . , (n, jn)} where (i, j) ∈ a if and only if xij = 1. A partial primal
solution is a solution in which less than n variables is assigned value one and the
constraints in PAP are satisfied with a ≤ sign instead of equality. Note that a par-
tial primal solution corresponds to a partial assignment a = {(i1, ji1), . . . , (iq, jiq

)}.
By associating dual variables π(i) and π(j) with the constraints above (see

Section 2.1.1), the corresponding dual problem is

max
∑

i∈W

π(i) −
∑

j∈V

π(j)

s.t. π(i) − π(j) ≤ cij , ∀ (i, j) ∈ A .

(4.3)

Given the reduced costs cπ
ij = cij −π(i)+π(j), ∀ (i, j) ∈ A, the complementary

slackness optimality conditions become

xijc
π
ij = 0, ∀ (i, j) ∈ A . (4.4)

4.1.1 The successive shortest path procedure

Successive shortest path procedures for AP are dual methods. Dual feasibility ex-
ists and the optimal solution is built step-by-step by iteratively adding assignments
to a current partial primal solution.

A successive shortest path procedure consists of two phases. In phase one, the
cost matrix [cij ] is preprocessed and a partial primal solution (or partial assign-
ment) and a dual feasible solution satisfying the complementary slackness opti-
mality conditions (4.4) are determined. In phase two, the partial primal solution
is augmented by adding one row/column assignment at a time, until the solution
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1 procedure SuccSP()

2 (a, π) := Preprocess([cij ]);
3 while (|a| < n) do
4 Gπ(a) := BuildResNetwork(a, π);
5 P := FindAugmentPath(Gπ (a));
6 a := AugmentSolution(P);

7 π := AdjustDualSolution(P);

8 end while
9 end procedure

Figure 4.1: The successive shortest path procedure.

becomes feasible. At each step in phase two, the dual solution is updated so that
complementary slackness still holds. Hence, at the end of the second phase, the
current primal and dual solutions are optimal.

A pseudo-code for the successive shortest path procedure is given in Figure 4.1.
Phase one is executed by function Preprocess which returns a partial assignment
a and a dual feasible solution π satisfying (4.4). Phase two is executed on lines
3–8.

If |a| < n then all nodes in W have not been assigned to a node in V and
function BuildResNetwork builds the residual network Gπ(a) = (W ∪ V, Af ∪ Ab)
constructed from G and the current partial solution a. In accordance with the
introduction of the residual network in Section 2.1.1, let

Af = {(i, j) : (i, j) ∈ A ∧ (i, j) /∈ a} and

Ab = {(j, i) : (i, j) ∈ A ∧ (i, j) ∈ a} .

Each forward arc (i, j) in Af is assigned reduced cost cπ
ij and each backward arc

(j, i) in Ab is assigned cost −cπ
ij = 0 due to (4.4).

It is easy to see that any directed path in Gπ(a) contains an arc in Af and an
arc in Ab, alternatingly. Such paths are called alternating paths . If the directed
path P starts in an unassigned node in W and terminates with an unassigned
node in V , it is called an augmenting path.

It is well-known that, by removing assignments in a corresponding to the back-
ward arcs in P and adding the forward arcs in P to a, the number of assignments
in the (partial) assignment ā increases by one. Furthermore, since AP is a special
instance of MCF, the following result can be derived from the general optimality
results presented in Section 5.1.

Corollary 4.1 Let a be a partial assignment and π the corresponding dual vari-
ables fulfilling the complementary slackness optimality conditions. Let P in Gπ(a)
be a shortest augmenting path and set

ā = a ⊕ P . (4.5)

Then ā is a minimum cost (partial) assignment with |a| + 1 assignments.
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Hence, finding the shortest augmenting path in Gπ(a) is equivalent to finding a
minimum cost (partial) assignment ā with |a|+1 assignments. As a result, AP can
be solved by identifying at most n successive shortest augmenting paths. Since the
reduced costs are non-negative, each path can be determined through Dijkstra’s
method running in O(n2) time. Therefore the overall computational complexity
of a successive shortest path procedure is O(n3).

In procedure SuccSP the shortest augmenting path P is found using function
FindAugmentPath and next the (partial) assignment a is updated as in (4.5) using
function AugmentSolution. Finally, the dual variables are updated using function
AdjustDualSolution such that (4.4) holds.

For an efficient implementation of procedure SuccSP see for instance Jonker and
Volgenant [86]. Here extensive preprocessing is used in Preprocess and network
Gπ(a) is maintained implicitly in the data structures. Function FindAugmentPath

calculates the augmented path using a specialized version of Dijkstra’s method
and the new solution is found in AugmentSolution by traversing the path. Finally,
the dual solution is adjusted by traversing the path. For further details see [86].

4.2 Ranking assignments

Consider the problem of ranking the first K assignments in nondecreasing order
of cost, i.e. finding the K best assignments a1, . . . , aK satisfying

1. y
(
ai

)
≤ y

(
ai+1

)
, i = 1, . . . , K − 1

2. y
(
aK

)
≤ y (a) , ∀a ∈ aXAP \

{
a1, . . . , aK

}

where y(a) denotes the cost (or the objective function value) of assignment a.
Above aXAP denotes the set of all feasible integral solutions to (4.2) using the
network formulation for an assignment, i.e. a ∈ aXAP if and only if the corre-
sponding x ∈ XAP = PAP ∩ Zm.

The branching technique described in [106] is used where the set aXAP is
partitioned into smaller subsets as follows. Given the optimal assignment a1 =
{(1, j1), . . . , (n, jn)}, the set aXAP \ {a1} is partitioned into n− 1 disjoint subsets
X i, i = 1, . . . , n − 1, where

X i = {a ∈ aXAP : {(1, j1) , . . . , (i − 1, ji−1)} ∈ a, (i, ji) /∈ a} , i = 1, . . . , n − 1 .

We say that {(1, j1), . . . , (i−1, ji−1)} is forced to be in all assignments belonging
to X i. Clearly, the second best assignment a2 can be found by using a solution
method to find the optimal assignment in the sets X i, i = 1, . . . , n− 1. Moreover,
the branching technique can be applied recursively to subsets X i ⊂ aXAP .

The pseudo code for the ranking algorithm, named K-AP, is shown in Figure 4.2.
The algorithm implicitly maintains a candidate set Φ of pairs (ā, X̄ ), where ā is
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1 procedure K-AP()

2 a := SuccSP();

3 Φ := {(a, aXAP )};
4 for (k := 1 to K) do
5 (â, bX ) := arg min{y(ā) : (ā, X̄ ) ∈ Φ};

6 if ((â, bX ) = null) then stop; else output ak := â;

7 Φ := Φ \ {(â, bX )};
8 for (i := 1 to n − 1) do
9 â∗ := FindOptimal( bX i);

10 if (y(â∗) < ∞) then Φ := Φ ∪ {(â∗, bX i)};
11 end for
12 end for
13 end procedure

Figure 4.2: The ranking assignments algorithm.

the optimal assignment in (sub)set X̄ . Assuming that the first k − 1 assignments
a1, . . . , ak−1 have been found, the current candidate set represents the partition
of aXAP \ {a1, . . . , ak−1}. Assignment ak is then found by selecting and removing
the pair (â, X̂ ) containing the assignment with minimum cost in the candidate set
(lines 5–7). Next, the branching technique is used to partition X̂ , possibly ob-
taining new pairs that are added to the candidate set (lines 8–11). Note that, in
practice, it is not necessary to consider all subsets in the partitioning of X̂ . Con-
sider the case where (i, ji) was forced to be contained in any assignment belonging
to X̂ in some previous partition. Therefore X̂ i = ∅, since (i, ji) is not allowed in
any assignment of X̂ i. In this case, it may be assumed that X̂ i is not generated
by the algorithm.

Function FindOptimal represents the solution method applied to find the op-
timal assignment in a given subset. Consider that partition X̂ has optimal as-
signment â = {(1, j1), . . . , (n, jn)} and assume that all assignments in X̂ can-
not contain (l1, t1), . . . , (lq, tq) due to previous partitions. Recall that (1, j1), . . . ,

(i − 1, ji−1) are forced to be in all assignments belonging to subset X̂ i (⊆ X̂ ).
Therefore, assuming X̂ i is non-empty, the optimal assignment can be found solv-
ing an AP of size n − (i − 1) where

1. Rows {1, . . . , i− 1} and columns {j1, . . . , ji−1} have been removed from the
reduced cost matrix

[
cπ
ij

]
, i.e. these indices are not considered in (4.2) and

(4.3).

2. The reduced cost in cells (i, ji) and (l1, t1), . . . , (lq, tq) is set to infinity.

Given a non-empty subset X̂ i, let AP (X̂ i) denote the AP defined as above by
subset X̂ i. If the successive shortest path procedure, SuccSP, is used as the solution



4.2. Ranking assignments 39

method to find the optimal assignment to AP (X̂ i), i = 1, . . . , n − 1, the overall
complexity of K-AP is O(Kn4). However, the optimal assignment to AP (X̂ i) can
be found using reoptimization – thereby reducing the complexity of the algorithm.

Let â denote the optimal assignment in subset X̂ found by solving AP (X̂ ),
let π̂ denote the corresponding dual values and let the partial assignment a(i) be
defined by removing from â the single assignment {(i, ji)}, hence

a(i) := â \ {(i, ji)} . (4.6)

The following lemma is well-known.

Lemma 4.2 a(i) is a partial assignment of size n−1, and π̂ remains dual feasible
to AP (X̂ i) and satisfies the complementary slackness optimality conditions (4.4).

However, by updating the dual variables according to the following scheme

π(i) = π̂(i) + minj∈V \{j1,...,ji} {cij − π̂(i) + π̂(j)}

π(r) = π̂(r), r ∈ {i + 1, . . . , n}

π(ji) = π̂(ji) − minr∈{i+1,...,n} {crji
− π̂(r) + π̂(ji)}

π(j) = π̂(j), j ∈ V \ {j1, . . . , ji}

(4.7)

the following revised version of Lemma 4.2 can be derived. As we will see in
Section 4.3.3, this provides a speed up of the overall algorithm due to the present
implementation of the method to find a shortest augmenting path.

Lemma 4.3 a(i) is a partial assignment of size n− 1 and π defined in (4.7) is a
dual feasible solution to AP (X̂ i), satisfying the complementary slackness optimal-
ity conditions (4.4).

Proof. The reduced cost matrix to AP (X̂ i) using π from (4.7) can be seen in
Figure 4.3, where it is utilized that π(r) = π̂(r), r ∈ {i + 1, . . . , n}, and π(j) =
π̂(j), j ∈ V \ {j1, . . . , ji}.

Only the reduced costs in column ji and row i have changed. Due to (4.7), the
reduced costs in row i satisfy

cij−π(i)+π(j) ≥ cij−(π̂(i) + (cij − π̂(i) + π̂(j)))+π̂(j) = 0, ∀j ∈ V \{j1, . . . , ji} .

Similar results hold for the reduced costs in column ji. Hence π is a dual fea-
sible solution to AP (X̂ i). Moreover, since the reduced costs corresponding to
the elements in assignment a(i) have not changed, the complementary slackness
optimality conditions (4.4) still hold. �

A pseudo-code for the reoptimization algorithm is given in Figure 4.4. Here,
first the partial assignment a(i) and the dual values π are calculated due to (4.6)
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ji ji+1 · · · jn







i ∞ ciji+1 − π(i) + π̂(ji+1) · · · cijn
− π(i) + π̂(jn)

i + 1 ci+1ji
− π̂(i + 1) + π(ji) cπ̂

i+1ji+1
· · · cπ̂

i+1jn

...
...

...
. . .

...

n cnji
− π̂(n) + π(ji) cπ̂

nji+1
· · · cπ̂

njn

Figure 4.3: The reduced cost matrix to AP (X̂ i).

1 procedure FindOptimal(X̂ i)

2 a(i) := CreatePartial(â);
3 π := ModifyDual(π̂);
4 Gπ(a(i)) := BuildResNetwork(a(i), π);
5 P := FindAugmentPath(Gπ (a(i)));
6 a := AugmentSolution(P);

7 end procedure

Figure 4.4: Finding the optimal solution for a subset.

and (4.7), respectively. As an alternative to updating the dual variables, one
could substitute in line 3 of Figure 4.4 the dual variables by π̂. Next, the residual
network corresponding to a(i) and the dual solution is built. Finally, the shortest
augmenting path and the corresponding solution are found. Due to Corollary 4.1
and the fact that the length of the partial assignment a(i) is n − 1, the following
result holds true.

Theorem 4.4 Using partial assignment a(i) and dual values π (or π̂), the optimal
assignment in subset X̂ i can be found by solving a single shortest path problem.

Using Dijkstra’s method to find the shortest path, function FindOptimal runs in
O(n2). Therefore, the following time complexity of K-AP is obtained, which is equal
to the best known time complexity for ranking the K best assignments.

Theorem 4.5 The K best assignments using procedure K-AP can be found in
O(Kn3) time.
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4.3 Computational results

In this section, computational results for the algorithms presented in this chapter
are given. In order to validate the effectiveness of the new algoritms, comparative
tests against other ranking algorithms from the literature are performed. The
algorithms are executed in their original implementation, i.e. the test results must
be interpreted with caution. To the best of my knowledge all algorithms with time
complexity O(Kn3) for ranking assignments – available to me – are included. All
tests were performed on an Intel Xeon 2.67 GHz computer with 6 GB RAM using
a Red Hat Enterprise Linux version 4.0 operating system.

4.3.1 Implementational details

Three new versions of the ranking assignment algorithm K-AP were implemented.
The first algorithm, K-AP_SuccSP, is a straightforward implementation where

the successive shortest path procedure, SuccSP, is used as function FindOptimal

(line 9 of Figure 4.2) to find the optimal assignment to each subproblem AP (X̂ i).
The successive shortest path procedure implementation of Jonker and Volgenant
[86] is applied in a slightly modified version allowing problems of varying size to
be solved. K-AP_SuccSP has time complexity O(Kn4).

The second algorithm, K-AP_Reopt, and the third algorithm, K-AP_NoDualUp,
both have time complexity O(Kn3). They use the reoptimization solution method
given in Figure 4.4, where FindAugmentPath finds the shortest augmenting path
using the modified implementation of Jonker and Volgenant [86]. In K-AP_Reopt

the dual variables are updated according to (4.7), whereas, in K-AP_NoDualUp, the
set of previously optimal dual variables π̂ is reused.

In all three algorithms, the candidate set Φ of pairs (ā, X̄ ) is maintained im-
plicitly using a binary tree as described in Nielsen [112, p137], and a 4-heap is
used to sort the costs in nondecreasing order, see Tarjan [157]. In each node of the
branching tree, no information on the solution is stored apart from the solution
value. Therefore, a given solution must be recalculated before branching on this
solution can be performed. On the downside, this results in an increased running
time of the algorithm. However, on the positive side, the memory requirements are
smaller. The algorithms were implemented in C++ and compiled with the GNU
C++ compiler version 3.4.5 using optimize option -O3.

In literature, few other algorithms exist for ranking assignments. The three
methods included below is, to the best of my knowledge, the only available imple-
mentations with time complexity O(Kn3).

An executable version of the algorithm K-AP_VMA_1 from Pascoal et al. [123]
was provided to me by the authors (in [123] the algorithm is referred to as VMA).
In K-AP_VMA_1, for solving the occuring shortest path problems, a label correcting
algorithm is utilized. An internal upper bound on the allowable number of assign-
ment nodes to be stored imposes an implicit limit on the instance size that can
be solved by the current implementation of this algorithm. K-AP_VMA_1 has been
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implemented in C and compiled using the GNU C++ compiler version 3.3.5 with
optimize option -O4.

Ranking assignments occur as a subproblem for the bicriterion assignment
problem (see also Chapter 6) in the paper by Przybylski, Gandibleux, and Ehrgott
[131]. The algorithm K-AP_CH originally suggested by Chegireddy and Hamacher
[19] is employed for this purpose. Using a binary search tree branching technique
([68]), the solution method solves shortest path problems on bipartite graphs as
a subprocedure. K-AP_CH, provided to me by the authors Przybylski et al. [131],
is implemented in C and has been compiled with the GNU C++ compiler version
3.4.5 using optimize option -O3.

The last implementation of an algorithm ranking the K best assignments in
O(Kn3) was recently drawn to my attention. It consist of a new implementation,
due to Przybylski [130], of the algorithm K-AP_VMA_1 from [123]. This algorithm is
referred to as K-AP_VMA_2. It is implemented in C and has been compiled with the
GNU C++ compiler version 3.4.5 using optimize option -O3.

4.3.2 Test instances

To yield consistency in literature, the algorithms were tested on the instances used
in Pascoal et al. [123] plus a few larger instances not reported upon in that paper.
Two separate groups of instances are considered, where, only for the first group,
repetitions are made for a given problem size. Therefore the main part of the
results presented in this section are on the first group of test instances.

The first group of test instances consists of assignment problems on complete
bipartite networks of size n ∈ {50, 100, . . . , 300}. Costs are drawn randomly in
{0, . . . , 99}, which is a much smaller cost range than previously stated in [123].3

For each problem size, ten instances generated with different seeds are available.
For a given instance, the K = 100 best assignments are ranked.

Denote by δ1,k the relative percentage increase in cost from the optimal solution
x1 to the kth best solution xk, hence

δ1,k =
y(xk) − y(x1)

y(x1)
· 100 .

Also, let xmax ∈ XAP be the worst assignment in terms of costs, hence xmax :=
arg max{cx : x ∈ XAP }. Notice that, xmax can be found running algorithm K-AP

with K = 1 on a modified AP in which all cost entries, cij , are substituted by
c̃ij = maxCost − cij , where maxCost is the maximal cost entry for the original
AP.

In Table 4.1 is provided some statistics for the first group of test instances. For
each problem size, I display the average of the optimal solution values, the average
of the relative percentage increase in cost for k = 50 and k = 100, and the average
worst solution value. The relative percentage increase in cost tends to decrease

3 The correction is due to Pascoal [122].
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size ave. y(x1) ave. δ1,50 ave. δ1,100 ave. y(xmax)

50 125.2 2.40 3.05 4811
100 112.7 0.81 1.00 9787.5
150 87.5 0.47 0.47 14759.2
200 72 0 0 19726.3
250 52.8 0.19 0.19 24697.8
300 37.4 0 0 29661.7

Table 4.1: Statistics for the test instances from Pascoal et al. [123].

with the dimension, so an increasing number of the n! feasible solutions becomes
alternative optima. Since the cost of the worst assignment is much higher than
the optimal solution value, the importance of choosing an optimal or near-optimal
solution, by ranking, is justified.

For the second group of test instances, the focus in on ranking the K = 100
best assignments for somewhat larger complete bipartite networks of size n ∈
{100, 200, . . . , 800} and cost randomly drawn in {1, . . . , 100}. These instances were
taken from the OR-library4 and were first used in Beasley [8]. Only one instance
of each problem size is solved. Analysing the second group of test instances, again
show the number of alternative optima to be high. In fact, only for the instance
of size 100, y(x1) 6= y(x100).

4.3.3 Test results

Table 4.2 displays, for each possible problem size of the first group of test instances,
the average CPU times (in seconds) for ranking the 100 best assignments with the
algorithms K-AP_SuccSP and K-AP_Reopt. Also displayed is the ratio between these
CPU times. Because of the higher time complexity for K-AP_SuccSP, it is not
surprising that this ratio is increasing with dimension.

The effect of updating the dual variables due to (4.7) is displayed numerically
in Table 4.3 giving results for the algorithms K-AP_NoDualUp and K-AP_Reopt. It is
evident that updating the dual variables improves the algorithm. This is a result
of the present implementation of the function FindAugmentPath using the special-
ized Dijkstra’s method in [86]. Updating the dual variables means decreasing the
reduced costs corresponding to the unassigned column ji. Therefore this column
enters the list of indices to scan next faster than if the reduced costs corresponding
to column ji had not been decreased. Since all reduced costs are non-negative,
this leads to a faster termination of the function FindAugmentPath.

In Figure 4.5 on page 45, for all five algorithms of time complexity O(Kn3),
I display the CPU time against K for the largest problem size (n = 250) from
the first group of test instances on which all algorithms was capable of ranking

4 http://people.brunel.ac.uk/~mastjjb/jeb/info.html (see also [9]).
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ave. CPU
size K-AP_SuccSP K-AP_Reopt ratio

50 0.24 0.06 4.09
100 5.34 0.67 7.96
150 22.62 2.30 9.85
200 61.97 5.61 11.04
250 126.01 10.46 12.04
300 175.09 13.92 12.58

Table 4.2: Average CPU times against size for Pascoal et al. [123] instances with
K = 100 using algorithms K-AP_SuccSP and K-AP_Reopt.

ave. CPU
size K-AP_NoDualUp K-AP_Reopt ratio

50 0.06 0.06 0.97
100 0.71 0.67 1.06
150 2.52 2.30 1.10
200 6.21 5.61 1.11
250 11.71 10.46 1.12
300 15.45 13.92 1.11

Table 4.3: Average CPU times against size for Pascoal et al. [123] instances with
K = 100 using algorithms K-AP_NoDualUp and K-AP_Reopt.

the 100 best assignments. The algorithm K-AP_VMA_1 was unable to rank the 100
best assignments for any of the size n = 300 instances, because the upper bound
limit of number of assignment nodes was reached. The problem sizes not displayed
indicates similar results as shown in Figure 4.5.

The two algorithms K-AP_CH and K-AP_VMA_1 are significantly slower than the
remaining three algorithms. Obviously, comparing running times of algorithms
implemented by different researchers must be performed with caution. The algo-
rithms K-AP_CH and K-AP_VMA_2 were both implemented by Przybylski [130] using
for K-AP_VMA_2 a better data structure than for K-AP_CH. However, the results still
indicate that using a revised version of the branching technique due to Murty [106]
outperforms the binary search tree algorithms due to Hamacher and Queyranne
[68], Przybylski [130]. This result is substantiated by numerical tests in Pascoal
et al. [123].

Since the two algorithms K-AP_VMA_2 and K-AP_Reopt were indicated jointly by
Table 4.3 and Figure 4.5 to be the two best algorithms, the remaining test results
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Figure 4.5: CPU time against K for Pascoal et al. [123] instances of size n = 250.

cover these two algorithms solely.
In Figures 4.6 and 4.7 is shown the CPU time against K for the individual prob-

lem sizes for the first and the second group of instances, respectively. The CPU
time of both algorithms seems to increase linearly with the number of solutions
to rank. According to these two figures, none of these two algorithms are, in their
present implementaion, capable of outperforming the other. Remember though, in
K-AP_Reopt the times to recalculate the optimal solution for a given subset taken
out of the candidate set Φ is included. This is not the case for K-AP_VMA_2. The to-
tal running time for finding the 100 best solutions for all test instances are 709.50
seconds for K-AP_VMA_2 and 589.22 seconds for K-AP_Reopt, respectively. Therefore,
on average, the algorithm K-AP_Reopt performs approximately 20 per cent faster
than K-AP_VMA_2.

For the first group of test instances, the CPU times for ranking K = 50 and
K = 100 assignments with K_AP_Reopt are displayed against problem size in Fig-
ure 4.8(a) on page 48. The algorithm shows more than a linear growth in CPU
time with increasing K. However, it is less than exponential growth, as can be
seen in Figure 4.8(b) displaying logarithm of CPU times.
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Figure 4.6: CPU time against K for Pascoal et al. [123] instances.
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Figure 4.7: CPU time against K for Beasley [8] instances.
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(a) CPU time (b) Logarithm of CPU time

Figure 4.8: Average running time against size for Pascoal et al. [123] instances
with K = 50 and K = 100.



Chapter 5

Ranking integer flows

The minimum cost integer flow problem (MCIF) is a relevant and well-studied
generalization of the assignment problem. Let me for brevity merely refer to
Section 2.1.1 and to the textbook by Ahuja et al. [2] for applications of network
flow models. Finding the K best solutions of MCIF may provide a decision maker
with vital information on a given problem and can even be interpreted as an
important subroutine for other more complex problem classes.

Despite its importance, the problem on ranking integer (network) flows has,
to the best of my knowledge, only been studied by Hamacher [66] and Hamacher
and Hüsselman [67]. They developed an algorithm using the binary search tree
branching technique (presented in Section 2.2) originally intended for combi-
natorial optimization problems on binary variables, Hamacher and Queyranne
[68]. Utilizing an improved version of Dijkstra’s shortest path method with time
complexity O(m + n log(n)), the total running time of the suggested method is
O(K(mn log(n) + m2)).

In Chapter 4, it was indicated, through numerical tests, that a variant of the
branching technique due to Murty [106] outperforms the binary search tree algo-
rithm when ranking assignments. It seems natural to investigate if this observation
holds true when these branching techniques are applied to find the K best solu-
tions for the minimum cost integer flow problem. Therefore, I propose, in this
chapter, a new algorithm for ranking integer flows in nondecreasing order of cost,
relying on a modified version of the branching technique due to Lawler [95] which
is a generalization of the branching technique by Murty [106]. Because of time
limitations, I have not been able to implement the presented ideas, and hence the
work in this chapter should not be considered complete. Obviously, implementa-
tion of the algorithm, generation of test instances and a thorough testing of the
algorithm constitute the next phase of this project. Comparative runs against the
algorithm in [67] should be performed.

The transportation problem (TP) is an important special instance of MCIF.

49



50 Ranking integer flows

Again, ranking solutions of a TP may provide useful information to a decision
maker and may also be helpful as subroutine for other problem classes, including
multicriteria extensions of TP, as we shall see in Section 9.1.

Ranking algorithms for the transportation problem are, as far as I know, exclu-
sively concentrated on generating the K best vertex solutions in the continuous
relaxation of XTP (denoted PTP ). Such vertex solutions provide the necessary
information when searching for an optimal solution to the fixed charge transporta-
tion problem, McKeown [103], Murty [107], and Sadagopan and Ravindran [140].
However, when searching for the K best transportation solutions, non-extreme
integral solutions from PTP has the same importance as vertex solutions. There-
fore, it is required to extend the vertex ranking algorithms to include non-extreme
integral solutions. I serve this goal by strengthening the algorithm for ranking
integer flows presented in this chapter.

The remaining parts of this chapter are organized as follows. In Section 5.1, I
give some preliminaries facilitating the description of the ranking algorithm and
the theoretical results stated in Section 5.2. In Section 5.3, additional features to
be included in the algorithm ranking solutions for the transportation problem are
discussed and the suggested algorithm is illustrated by an example in Section 5.3.1.

5.1 Preliminaries

Recall from Section 2.1.1 that MCIF on a directed graph G = (N, A) with N :=
{1, . . . , n} and m := |A|, is to minimize a single criterion cx over the feasible set
Xflow, where

Xflow =

{
x :

∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji = bi ∀ i ∈ N,

[lij ≤ xij ≤ uij ∧ xij ∈ Z], ∀ (i, j) ∈ A

}
. (5.1)

Denote by a pseudoflow a function x : A → R satisfying only the capacity
constraints, and not neccesarily the flow conservation constraints from (5.1). The
definitions of node potentials π and reduced arc costs cπ

ij , and the following equiv-
alent optimality results for MCIF prove useful in the development of the algorithm
for ranking integer flows, see e.g. Ahuja et al. [2].

Theorem 5.1 For a minimum cost flow problem, a feasible primal solution x
and a set of node potentials π are optimal if and only if the following reduced cost
optimality conditions are fulfilled.

cπ
ij ≥ 0 for every arc (i, j) in Gπ(x) (5.2)
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Theorem 5.2 For a minimum cost flow problem, a feasible primal solution x and
a set of node potentials π are optimal if and only if the reduced costs cπ and the
flow satisfy the following complementary slackness optimality conditions for every
arc (i, j) ∈ A. 





cπ
ij > 0 ⇒ xij = lij

lij < xij < uij ⇒ cπ
ij = 0

cπ
ij < 0 ⇒ xij = uij

(5.3)

The following two lemmas regarding pseudoflows are also well-known, [2].

Lemma 5.3 Suppose that a pseudoflow x and a set of node potentials π satisfy
the reduced cost optimality conditions of equation (5.2). Consider the residual
network Gπ(x). Let d denote the vector of shortest path distances from some node
s to all other nodes in Gπ(x). Then the pseudoflow x also satisfies the reduced
cost optimality conditions with respect to node potentials π′ = π − d.

Lemma 5.4 Suppose that a pseudoflow x satisfies the reduced cost optimality con-
ditions and suppose that x′ is obtained from x by sending flow along a shortest
path P between two specified nodes in Gπ(x), hence x′ = x ⊕ P . Then x′ also
satisfies the reduced cost optimality conditions.

5.2 Ranking integer flows

Consider the problem of ranking the first K integer flows in nondecreasing order
of cost, i.e. finding the K best solutions x1, . . . , xK satisfying

1. y
(
xi

)
≤ y

(
xi+1

)
, i = 1, . . . , K − 1

2. y
(
xK

)
≤ y (x) , ∀x ∈ Xflow \

{
x1, . . . , xK

}

where y(x) is the cost (or the objective function value) of a flow x.
As in the ranking algorithm for AP a specific branching technique and a spe-

cific solution method are needed. These concepts are discussed separately in the
subsequent sections.

5.2.1 Branching technique

Assume that the capacity constraints of Xflow are maintained updated during the
algorithm. A branching technique inspired by the one in the previous chapter is
utilized. Given the optimal solution x1, the set Xflow \ {x1} is partitioned into
smaller subsets in lexicographical increasing index-order.
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Definition 5.5 The arc (i, j) is lexicographically smaller than the arc (p, q) if the
following holds.

(i, j) <lex (p, q) ⇔ (i < p) ∨ (i = p ∧ j < q) .

For a given arc (p, q) ∈ A, let

I(p,q) :=
{
(i, j) : (i, j) <lex (p, q)

}

be all variables lexicographically smaller than (p, q). The set Xflow \ {x1} is
partitioned into the disjoint subsets X pq , for all arcs (p, q) ∈ A, where

X pq :=
{
x ∈ Xflow : xij := x1

ij , ∀ (i, j) ∈ I(p,q) ∧ xpq 6= x1
pq

}
. (5.4)

In X pq, the variable xpq is prevented from having the same value as in x1 and any
lexicographically smaller variable from x1 is fixed to the same value in all flows in
X pq . Variable xij is fixed by setting lij = uij = xij . The set X pq is subdivided
into the following two disjoint subsets, representing a downward and an upward
branch.

X pq = dX
pq ∪ uX

pq

:=
{
x ∈ X pq : xpq ≤ x1

pq − 1
}
∪

{
x ∈ X pq : xpq ≥ x1

pq + 1
} (5.5)

In the downward branch dX
pq, the upper bound upq is set to x1

pq − 1, and in
the upward branch uX

pq, the lower bound lpq is set to x1
pq + 1. Notice that the

information gained by the additional constraint on variable xpq may be propagated
to other variables by adjusting their bounds, which may again initiate further
bound propagation. It must be investigated, through numerical tests, to which
extent such propagation could be utilized.

Let MCIF (X ) denote the reduced MCIF defined by subset X . Clearly, the
second best solution x2 can be found by using a solution method to find the
optimal solution to all the reduced problems. Moreover, the branching technique
can be applied recursively to subsets dX

pq ⊂ Xflow and uX
pq ⊂ Xflow.

The pseudo code for the ranking algorithm, named K-MCIF, is shown in Fig-
ure 5.1. The algorithm implicitly maintains a candidate set Φ of pairs (x̃, X̃ ),
where x̃ is the optimal flow in (sub)set X̃ . Assuming that the first k− 1 solutions
x1, . . . , xk−1 have been found, solution xk is found by selecting and removing the
pair (x̂, X̂ ) containing the flow with minimum cost in the candidate set (lines 5–
7). Next, the branching technique is used to partition X̂ , possibly obtaining new
pairs that are added to the candidate set (lines 8–13). The function FindOptimal,
returning the optimal solution in a given subset, is discussed in Section 5.2.2. The
validity of the ranking algorithm is established with the following theorem.
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1 procedure K-MCIF()

2 x1 := MCIF();

3 Φ := {(x1,Xflow)};
4 for (k := 1 to K) do
5 (x̂, bX ) := arg min{y(x̃) : (x̃, eX ) ∈ Φ};

6 if ((x̂, bX ) = null) then stop; else output xk := x̂;

7 Φ := Φ \ {(x̂, bX )};
8 for ((p, q) ∈ A) do
9 dx̂∗ := FindOptimal(d

bX pq);

10 if (y(dx̂∗) < ∞) then Φ := Φ ∪ {(dx̂∗, d
bX pq)};

11 ux̂∗ := FindOptimal(u
bX pq);

12 if (y(ux̂∗) < ∞) then Φ := Φ ∪ {(ux̂∗, u
bX pq)};

13 end for
14 end for
15 end procedure

Figure 5.1: The algorithm for ranking integer flows.

Theorem 5.6 The algorithm K-MCIF in Figure 5.1, finds the K best solutions to
the minimum cost integer flow problem.

Proof. At any iteration of the algorithm, the integer flow with minimum cost in
the candidate set Φ is chosen. Therefore, all I need to show is that, when the
k − 1 best integer flows x1, . . . , xk−1 have been found, the union of the subsets of
feasible solutions in Φ is exactly the feasible solutions in Xflow \ {x1, . . . , xk−1}.

Consider X̂ with optimal integer flow x̂. By definition, the sets X̂ pq are disjoint
and X̂ pq ⊆ X̂ . Furthermore, x̂ is excluded from all these subsets, so

⋃

(p,q)∈A

X̂ pq ⊆ X̂ \ {x̂} . (5.6)

Choose an arbitrary x̃ ∈ X̂ \ {x̂}. In particular lij ≤ x̃ij ≤ uij . Let (p, q) be the
lexicographically smallest index having x̃pq 6= x̂pq. Two cases are possible:

(i): lpq ≤ x̃pq < x̂pq ≤ upq. Then x̃ ∈ dX̂
pq.

(ii): lpq ≤ x̂pq < x̃pq ≤ upq. Then x̃ ∈ uX̂
pq.

In either case, x̃ ∈
⋃

(p,q)∈A X̂ pq, so

⋃

(p,q)∈A

X̂ pq ⊇ X̂ \ {x̂} . (5.7)

Combining (5.6) and (5.7), the result follows, since, in iteration k, the branching
technique is shown to exclude xk and only xk from further consideration. �
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Notice that, in practice, it is not always necessary to consider all subsets in the
partitioning of X̂ . The few rules presented in the following proposition are easily
established.

Proposition 5.7 In X̂ ,

(a) if x̂pq = lpq, the downward branch dX̂
pq = ∅.

(b) if x̂pq = upq, the upward branch uX̂
pq = ∅.

(c) branching on a variable, that would update the lower and upper arc bounds
{lij}ij

and {uij}ij
to fulfil either one of the following relations, is infeasible.

∃i ∈ N :
∑

{j:(i,j)∈A}

uij −
∑

{j:(j,i)∈A}

lji < bi

∃i ∈ N :
∑

{j:(i,j)∈A}

lij −
∑

{j:(j,i)∈A}

uji > bi

5.2.2 Solution method

This section discusses the solution method for a given subset of feasible integer
flows. I distinguish between the downward branch and the upward branch and
start by discussing the downward branch.

Assume that partition X̂ has optimal primal solution x̂ and corresponding
optimal node potentials π̂. Furthermore, suppose that all variables in Ifix( bX ) :=
{xi1,j1 , . . . , xie,je

} have been fixed to a specific value in previous partitions, i.e.
all feasible flows of X̂ must contain these values. Therefore, assuming dX̂

pq is
non-empty, MCIF (dX̂

pq) corresponds to a reduced MCIF with n nodes and no
more than m − e arcs with the following attributes.

1. The fixed units are subtracted from the original amount of supply and de-
mand at all corresponding nodes, hence

b̂i = bi −
∑

{j : (j,i)∈A∩(I(p,q)∪Ifix( cX))}

x̂ji +
∑

{j : (i,j)∈A∩(I(p,q)∪Ifix( cX))}

x̂ij

2. Arcs (i, j) ∈ A ∩ (I(p,q) ∪ Ifix( bX )) are deleted.

3. In the lower and upper bounds of X̂ , lij and uij , are included any other arc
constraints obtained by previous branchings on xij .

4. A constraint of xpq ≤ x̂pq − 1 is present. This constraint says that at least
one unit allocated from node p to node q in x̂ must be taken away.
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Define the temporary partial primal solution dx(p, q) from x̂ by subtracting
one unit from the (p, q) allocation, hence

dx(p, q)ij := x̂ij , ∀ (i, j) 6= (p, q) , dx(p, q)pq := x̂pq − 1 . (5.8)

Consider the residual network to dx(p, q), Gπ(dx(p, q)) = (N, Af ∪ Ab).

Af = {(i, j) : (i, j) ∈ A ∧ lij ≤ dx(p, q)ij < uij},

Ab = {(j, i) : (i, j) ∈ A ∧ lij < dx(p, q)ij ≤ uij}

Notice that no arc (i, j) ∈ I(p,q)∪Ifix( bX ) is present in either Af or Ab since, for such
an arc, lij = dx(p, q)ij = uij . Each forward arc (i, j) in Af is assigned reduced
cost cπ

ij and each backward arc (j, i) in Ab is assigned cost cπ
ji = −cπ

ij . Since x̂ is

optimal to MCIF (X̂ ), all costs in this residual network are positive due to the
complementary slackness optimality conditions of (5.3).

The optimal solution x̂ to MCIF (X̂ ) remains feasible for MCIF (dX̂
pq) except

that the variable xpq breaks its new upper bound limit by exactly one unit. Hence,
all variables are in-kilter except xpq , which is out-of-kilter with a kilter status of
one unit. Exploiting the same techniques as the out-of-kilter method , the optimal
solution for MCIF (dX̂

pq) can be found by sending along a single shortest path
from p to q in Gπ(dx(p, q)) one unit of flow. Below is a more detailed description
of the updating procedure.

Because of the constraint xpq ≤ x̂pq − 1, there cannot be send any more flow
from p to q in dX̂

pq. Furthermore, it can never be optimal to take back more
than one unit along xpq , since the reduced cost of the shortest path from p to q in
Gπ(dx(p, q)) plus cπ

pq is non-negative due to optimality of x̂ in X̂ . Recall that, in
Section 2.1.1, it was assumed that, between each pair of nodes i and j, the arcs
(i, j) and (j, i) are not allowed to be in A simultaneously, ensuring that no parallel
arcs exist in the residual graph. Therefore, in Gπ(dx(p, q)), arc (p, q) /∈ Af , and
arc (q, p) can be disregarded from Ab when considering dX̂

pq.
Let d denote the shortest path distances from node p to all other nodes in

Gπ(dx(p, q)). If a shortest path to some node t does not exist, the corresponding
shortest path distance is set to a large positive number M . Notice, that this cor-
responds to adding artificial arcs with cost M to the original network. Obviously,
such artificial arcs will never be part of any optimal solution. Also, let P denote
a shortest directed path from node p to node q sending one unit of flow. If no
such path P with cost less than M exists, the subproblem of the current branch
is infeasible.

The vector of dual node potentials π is updated according to the scheme in
Lemma 5.3,

dπ̂
∗ := π̂ − d , (5.9)
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1 procedure FindOptimal( c
dX

pq
)

2 dx(p, q) := ObtainTemporary(x̂);
3 Gπ(dx(p, q)) := BuildResNetwork(dx(p, q), π);
4 d := FindShortestPathDistances(Gπ (dx(p, q)));
5 P := FindAugmentPath(Gπ (dx(p, q)));
6 dx̂∗ := AugmentSolution(dx(p, q), P);

7 dπ̂∗ := ModifyDual(π̂, d);
8 end procedure

Figure 5.2: Finding the optimal solution for a downward branch.

and the primal (partial) solution is updated according to Lemma 5.4.

dx̂
∗ := dx(p, q) ⊕ P

m

dx̂
∗
ij :=





dx(p, q)ij + 1 if (i, j) ∈ P ∩ Af

dx(p, q)ij − 1 if (j, i) ∈ P ∩ Ab

dx(p, q)ij otherwise

(5.10)

Exploiting the general theory presented in Section 2.1.1 and in Section 5.1, the
following result is obtained.

Theorem 5.8 dx̂
∗ is the optimal primal solution to MCIF (dX̂ ) and dπ̂

∗ is the
optimal dual variables. The optimal cost value is y(dx̂

∗) := y(x̂) + c(P ) − cpq =
y(x̂) + cπ(P ) − cπ

pq.

A pseudo-code for the reoptimization algorithm to the downward branch is
given in Figure 5.2. First, the temporary partial flow dx(p, q) is obtained from
the previous solution x̂. Second, the residual network is built in which a shortest
path tree and a shortest augmenting path from p to q are found. Finally, the
corresponding primal and dual optimal solutions are updated.

Next, the upward branch is briefly discussed. Most of the results and develop-
ments from the downward branch applies without changes. In the upward branch,

uX̂
pq, the optimal solution x̂ to MCIF (X̂ ) remains feasible for MCIF (uX̂

pq),
except that the variable xpq breaks its new lower bound limit by exactly one unit,
since a new constraint xpq ≥ x̂pq + 1 is present. This constraint says that one
more unit allocation between node p and node q must be added to x̂. Therefore,
all variables except xpq are in-kilter, and xpq is out-of-kilter with a kilter status
of one unit. Again this is exploited by addition of one unit along a shortest path
from node q to node p in the residual graph Gπ(ux(p, q)) to the temporary flow

ux(p, q) defined from x̂ by the following relations.

ux(p, q)ij := x̂ij , ∀ (i, j) 6= (p, q) , ux(p, q)pq := x̂pq + 1 . (5.11)
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In the residual network Gπ(ux(p, q)), let d denote the shortest path distances
from node q to all other nodes. Also, let P denote a shortest directed path from
node q to node p sending one unit of flow. The dual and primal solutions are
updated as in (5.9) and (5.10), yielding uπ̂∗ := π̂ − d and ux̂∗ := ux(p, q) ⊕ P ,
respectively. Similar to Theorem 5.8, the next result follows.

Theorem 5.9 ux̂∗ is the optimal primal solution to MCIF (uX̂ ) and uπ̂∗ is the
optimal dual variables. The optimal cost value is y(ux̂∗) := y(x̂) + c(P ) + cpq =
y(x̂) + cπ(P ) + cπ

pq.

A procedure similar to FindOptimal in Figure 5.2 applies for the upward branch.
Using an improved Dijkstra’s method to build the shortest path tree, function
FindOptimal runs in O(m+n log(n)), see e.g. [144]. Since the function FindOptimal

is employed to no more than 2m branches in each iteration, the following time com-
plexity of K-MCIF is obtained, which equals the current best complexity obtained
in [66].

Theorem 5.10 The algorithm for ranking integer flows, K-MCIF in Figure 5.1,
has time complexity O(K(mn log(n) + m2)).

5.3 Ranking transportation solutions

Recall that the transportation problem (TP) is a special instance of the minimum
cost integer flow problem, and that TP can be displayed by the bipartite directed
graph G = (W ∪ V, A). Refer to a feasible solution x to a TP as a transportation
solution. Obviously, the algorithm for ranking integer flows, K-MCIF, and the results
presented in the previous section also apply for ranking transportation solutions.
However, utilizing specialized properties for TP, additional rules can be used to
improve the performance of the algorithm for ranking transportation solutions.

Let TP (X ) denote the reduced TP defined by subset X and let x̂ be the
optimal solution to TP (X̂ ). Due to the bipartite structure of TP, the branching
technique from Section 5.2.1 can be strengthened by branching only on arcs (p, q)
with x̂pq > lpq. Therefore, in this section, I(p,q) is redefined accordingly to be all
variables strictly larger than their lower bound and lexicographically smaller than
(p, q).

Ĩ(p,q) :=
{
(i, j) : x̂ij > lij ∧ (i, j) <lex (p, q)

}

The set X̂ \ {x̂} is split into the disjoint subsets X̂ pq for (p, q) with x̂pq > lpq using
Ĩ(p,q) instead of I(p,q) in (5.4). Also, X̂ pq is again split into the sets dX̂

pq and uX̂
pq,

like in (5.5). Let K-TP denote the branching algorithm for ranking transportation
solutions which is similar to K-MCIF, except that the condition in the for statement
in line 8 of Figure 5.1 is substituted with (p, q) ∈ A : x̂pq > lpq. The validity
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of the strengthened branching technique used in K-TP is obtained by the following
proposition.

Proposition 5.11 Consider X̂ with optimal transportation solution x̂. Then the
following holds true. ⋃

(p,q) : x̂pq>lpq

X̂ pq = X̂ \ {x̂} .

Proof. By definition, the sets X̂ pq are disjoint and X̂ pq ⊆ X̂ . Furthermore, x̂ is
excluded from all these subsets, so

⋃

(p,q) : x̂pq>lpq

X̂ pq ⊆ X̂ \ {x̂} .

Choose an arbitrary x̃ ∈ X̂ \ {x̂}. In particular lij ≤ x̃ij ≤ uij . Let (p, q) be the
lexicographically smallest index having x̃pq 6= x̂pq . Three cases are now possible:

(i): lpq ≤ x̃pq < x̂pq ≤ upq. Then x̃ ∈ dX̂
pq .

(ii): lpq < x̂pq < x̃pq ≤ upq. Then x̃ ∈ uX̂
pq.

(iii): lpq = x̂pq < x̃pq ≤ upq. No branching is performed on xpq.

In case (iii), let (i, j) be the lexicographically second smallest index having x̃ij 6=
x̂ij . The same three cases as above apply, and in cases (i) and (ii) x̃ belongs
to dX̂

ij and uX̂
ij , respectively. In case (iii), the search for an index fulfilling

either (i) or (ii) continues. Ultimately, instance (i) must be found, proving that
x̃ ∈

⋃
(p,q) : x̂pq>lpq

X̂ pq , so

⋃

(p,q) : x̂pq>lpq

X̂ pq ⊇ X̂ \ {x̂} ,

which yields the desired result. �

Notice that the above result holds, in particular, because of the bipartite nature
of TP. If x̂ is optimal in X̂ , and x̂ij = lij , ∀ (i, j) ∈ A, then X̂ = {x̂}. This is
not necessarily true for the minimum cost integer flow problem as can be seen in
the following example. Therefore, branching is performed on a larger set of arcs
in Section 5.2.1.

Example 5.12 Consider the MCIF of Figure 5.3 with optimal solution x1 :=
{xij = 1, ∀ (i, j) ∈ A}. Clearly, xij = lij , ∀ (i, j) ∈ A, but Xflow = {x1, x2} with
x2 := {xij = 2, ∀ (i, j) ∈ A}.

A few more rules speed up the performance of the algorithm K-TP.
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1

2

3b1=0

b2=0

b3=0

([1, 2], 3) ([1, 2], 7)

([l31, u31], c31) = ([1, 2], 0)

Figure 5.3: The graph of a minimum cost flow problem.

Proposition 5.13 Let x̂ be the optimal solution to TP (X̂ ). Then the following
holds.

(a): ∀p ∈ W , for q = max {j ∈ V : x̂pj > lpj} the upward branch uX̂
pq = ∅.

(b): ∀q ∈ V , for p = max {i ∈ W : x̂iq > liq} the upward branch uX̂
pq = ∅.

Proof. (a): Assume that upward branching on xpq is feasible, so xpq > x̂pq. For
this to be true, there must exist a j 6= q ∈ V , so that

(p, j) /∈ Ĩ(p,q) ∪ Ifix( bX ) ∧ xpj < x̂pj .

However, this is impossible, since for j < q, x̂pj = lpj because (p, j) /∈ Ĩ(p,q), and
for j > q, x̂pj = lpj , because q = max{j ∈ V : x̂pj > lpj}. (b): Can be proved
similarly. �

Proposition 5.14 Let x̂ be the optimal solution to TP (X̂ ). Then, for xpq =

lexmax{(i, j) : x̂ij > lij} the branch X̂ pq = uX̂
pq ∪ dX̂

pq = ∅.

Proof. Upward branching on (p, q) is infeasible due to Proposition 5.13, so I need
only to prove that downward branching is also infeasible. Assume that downward
branching on xpq is feasible, so xpq < x̂pq. Therefore,

∃j 6= q ∈ V : (p, j) /∈ Ĩ(p,q) ∪ Ifix( bX ) ∧ xpj > x̂pj

⇓

∃k 6= p ∈ W : (k, j) /∈ Ĩ(p,q) ∪ Ifix( bX ) ∧ xkj < x̂kj

This is again impossible, since for (k, j) <lex (p, q), x̂kj = lkj , because (k, j) /∈

Ĩ(p,q), and for (p, q) <lex (k, j), x̂kj = lkj , because (p, q) = lexmax{(i, j) :
x̂ij > lij}. �

5.3.1 An example of ranking transportation solutions

Example 5.15 Consider the problem of ranking all solutions in the TP having
the cost matrix of Table 5.1. The strengthened branching technique for ranking
transportation solutions is applied.
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i\j 4 5

1 1 1 b1 = 2

2 1 5 b2 = 2

3 3 1 b3 = 2

b4 = −3 b5 = −3

Table 5.1: The cost matrix of TP with supplies and demands stated.

The optimal primal solution to the initial TP is x1 = {x14 = x15 = 1,
x24 = x35 = 2}, and a dual optimum is π = (π(1), π(2), π(3), π(4), π(5)) =
(0, 0, 0,−1,−1) with y(x1) = 6.

Following propositions 5.7, 5.13, and 5.14, the first solution yields three branches
all of which are feasible. Notice that the upward branches uX

15 and uX
24 are

empty due to Proposition 5.13 (a) and (b), respectively. Downward branching on
x15 would yield u14 + u15 = 1 + 0 < 2 = b1 and is therefore infeasible (Proposi-
tion 5.7 (c)). Finally, any branching on x35 is prohibited by Proposition 5.14.

dX
14 = {x ∈ XTP : x14 ≤ 0}

uX
14 = {x ∈ XTP : x14 ≥ 2}

dX
24 = {x ∈ XTP : x14 = 1, x15 = 1, x24 ≤ 1}

Consider the residual graph Gπ(x1) in Figure 5.4. Disregarding for dX
14 the

arcs (1, 4) and (4, 1), the shortest 1-4-path is P : 1 − 5 − 3 − 4 with cπ(P ) = 2
and d = (0, 2, 0, 2, 0). Following the rules of Section 5.2.2, the primal solution

dx
∗ = {x15 = x24 = 2, x34 = x35 = 1} is obtained, with dual solution updated

to dπ
∗ = (0,−2, 0,−3,−1) and with total cost y(dx

∗) = y(x1) + cπ(P ) − cπ
14 =

6 + 2 − 0 = 8.
For the upper branch uX

14 the arcs (1, 4) and (4, 1) are again disregarded. The
shortest 4-1-path is P : 4 − 2 − 5 − 1 with cπ(P ) = 4 and d = (4, 0, 4, 0, 4). The
primal solution is updated to ux∗ = {x14 = 2, x24 = x25 = 1, x35 = 2}, with dual
solution uπ∗ = (−4, 0,−4,−1,−5) and with total cost y(ux∗) = y(x1) + cπ(P ) +
cπ
14 = 6 + 4 + 0 = 10.

Similarly, the shortest path computation for dX
24 yields P : 2− 5− 3− 4 with

cπ(P ) = 6 and d = (M, 0, 4, 6, 4). So the updated solutions are dx
∗ = {x14 =
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Figure 5.4: Residual graph Gπ(x1).

x15 = x24 = x25 = x34 = x35 = 1} and dπ
∗ = (−M, 0,−4,−7,−5) with total cost

y(dx
∗) = y(x1) + cπ(P ) − cπ

24 = 6 + 6 − 0 = 12.
Therefore the best transportation solution in XTP \ {x1} is found in dX

14 and
hence x2 = {x15 = x24 = 2, x34 = x35 = 1} with y(x2) = 8. Branching continues
on this solution.

With K = 7, further branching would in fact rank all solutions for this small
TP in nondecreasing order of cost. The corresponding branching tree can be seen
in Figure 5.5 showing only non-empty subsets. Lower and upper bound constraints
on arcs are assumed to be inhereted implicitly downwards in the branching tree.
Notice that x4 corresponds to a non-extreme solution of the original TP.
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XTP y(x1) = 6

y(x2) = 8 y(x3) = 10 y(x4) = 12

y(x5) = 14 y(x6) = 16 y(x7) = 18

dX
14

dX
24

dX
24

dX
24

dX
24

uX
14

x14 ≤ 0
x14 ≥ 2

x14 = 1, x15 = 1, x24 ≤ 1

x15 = 2, x24 ≤ 1 x24 ≤ 0 x24 ≤ 0

x24 = x35 = 2

x15 = x24 = 2, x14 = 2, x24 = 1,
x25 = 1, x35 = 2

x14 = x15 = x24 = 1,
x25 = x34 = x35 = 1

x15 = 2, x24 = 1,
x25 = 1, x34 = 2

x14 = x25 = 2,
x34 = x35 = 1

x34 = x35 = 1

x14 = x15 = 1,

x14 = x15 = 1,

x25 = x34 = 2

Figure 5.5: Branching tree for Example 5.15.
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Chapter 6

The bicriterion multi modal

assignment problem

In general, a description of real world applications as single criterion optimization
problems is seldom realistic, since they are often, by nature, imposed with more
objectives to be simultaneously optimized. Assigning workers to jobs with mini-
mal cost and time yields the bicriterion assignment problem (BiAP), which is an
important generalization of the classical linear assignment problem (discussed in
Section 2.1.3 and Chapter 4). Within the last ten years focus on BiAP has risen.
Ulungu and Teghem [161] presented the first exact solution method for BiAP,
proposing a two-phase method identifying in phase one all supported efficient so-
lutions and in phase two all unsupported efficient solutions, (see Section 3.2.1).
In that paper, a scheme resembling total enumeration in all nonbasic variables is
employed. The method in [161] was implemented by Tuyttens, Teghem, Fortemps,
and Van Nieuwenhuyze [159], showing – with large CPU times – the limitations of
this algorithm. Recently, an improvement of this algorithm was given in Przybylski
et al. [131], proposing also a two-phase method applying ranking for BiAP.

The main focus on BiAP in literature, however, seems to be on heuristical
methods. Tuyttens et al. [159] use a version of the MOSA method which is an
extension of simulated annealing to deal with multiple objectives. Gandibleux,
Morita, and Katoh [54] use genetic information for BiAP, and population based
heuristics using path relinking are described in Gandibleux et al. [55] and Przy-
bylski et al. [131].

In this chapter, I deal with another highly relevant extension of the assignment
problem, which has, to the best of my knowledge, not yet been discussed in liter-
ature. Imagine a large global company with n specialists spread across the world
and suppose that exactly n jobs have to be performed by these n specialists, such
that each worker is assigned to exactly one job. Moreover, a specialist i has Lij

different mode choices of transportation to reach the destination of job j, among

65
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i\j n + 1 · · · 2n
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Figure 6.1: The cost matrix of BiMMAP.

which exactly one must be chosen. For this problem, it seems relevant to consider
two weight criteria to be minimized simultaneously, namely travel time and travel
or assignment cost. For worker i, job j and mode choice l, let c1

ijl and c2
ijl denote

travel or assignment cost and travel time, respectively.
Since a specialist i has multiple modes of transportation and routes to choose

from in order to reach the destination of job j, several two-dimensional cost vectors
exist for each i and j. Therefore, the bicriterion multi modal assignment problem
(BiMMAP) is an extension of BiAP containing, in each assignment cell (i, j) in the
assignment cost matrix , several two-dimensional cost vectors/points as illustrated
in Figure 6.1. The objective is to identify all nondominated criterion points for
the problem.

Obviously, BiMMAP can be displayed by the directed bipartite graph G =
(W ∪ V, A), with node sets W := {1, . . . , n} and V := {n + 1, . . . , 2n} and A :=
{(i, j, l)}ijl the set of three-indexed arcs. Letting xijl be a binary variable with
value 1, if i is assigned to j using mode choice l, and 0 otherwise the following
mathematical formulation of this bicriterion problem is obtained.

min
∑

(i,j,l)∈A

c1
ijlxijl

min
∑

(i,j,l)∈A

c2
ijlxijl

s.t. x ∈ XMMAP

(6.1)

in which

XMMAP =

{
x :

∑

j∈V

Lij∑

l=1

xijl = 1, ∀i ∈ W,
∑

i∈W

Lij∑

l=1

xijl = 1, ∀j ∈ V,

xijl ∈ {0, 1} , ∀ (i, j, l) ∈ A

}
(6.2)
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is the multi modal assignment integer lattice. Assume that for each cell (i, j) the
costs satisfy

0 ≤ c1
ij1 < c1

ij2 < · · · < c1
ijLij

and c2
ij1 > c2

ij2 > · · · > c2
ijLij

≥ 0 (6.3)

Moreover, c1
ijl and c2

ijl are integer for all (i, j, l) ∈ A.
A feasible solution x to (6.1) is called a multi modal assignment or short an

assignment. For x ∈ XMMAP , y = (y1, y2) = (c1x, c2x) is the corresponding crite-
rion point. In coherence with previous notation, I let the multi modal assignment
polyhedron, PMMAP be the continuous relaxation of XMMAP . Note that if Lij = 1
for all i, j, PMMAP reduces to the assignment polyhedron, PAP .

It is well-known that unsupported nondominated points may exist for BiAP
[39], and hence also for BiMMAP. Also, since BiMMAP is a generalization of BiAP,
it holds true that BiMMAP is intractable and NP-complete ([39, 148]). Moreover,
because of (6.3), we have that all cost vectors for a cell are nondominated. This
is no restriction, since a dominated cost vector in a given cell will never be used
in an efficient assignment.

Recall from Section 3.1 the definition of the adjacency graph. Along the same
lines as in Przybylski, Gandibleux, and Ehrgott [132], it can be shown that the
adjacency graph for (6.1) may not be connected. In particular, this means that it
may not be possible to find the full set of nondominated points by simple pivot
operations. Therefore, to find such a full set of nondominated points, I utilize
the two-phase method presented in Section 3.2.1 which is not based upon simplex
operations. Special features for the current problem class are included in the
procedure.

Acknowledging that ranking procedures have been applied with great success
for other bicriterion optimization problems (see e.g. Nielsen et al. [114]), ranking
of multi modal assignments is employed as a subroutine. The subroutine is an
efficient extension of the algorithm to find the K best assignments in a classical
AP presented in Chapter 4.

For practical reasons it may be enough to find an approximation of the non-
dominated set and it may for some large problem sizes be too time-consuming
to find all the nondominated criterion points. In such a case the concepts of ε-
domination and ε-approximation introduced by Warburton [165] can be used to
control the quality of the set of criterion points reported.

Definition 6.1 A point y = (y1, y2) ε-dominates point ŷ = (ŷ1, ŷ2), if (1 − ε)y
dominates ŷ, i.e. if (1 − ε)y ≤ ŷ.

Definition 6.2 A set Ỹ is an ε-approximation of a nondominated set YN , if, for
each point ŷ ∈ YN , there exists y ∈ Ỹ that ε-dominates it.

Using a large library of test instances for BiMMAP, numerical results indi-
cating the effectiveness of the implemented method are given. The concept of
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approximating the nondominated points is shown to have a large effect on the
computational performance and it is shown that the approximative algorithm is a
serious rival to heuristical methods. Since BiMMAP is a generalization of BiAP,
I also report computational results for some BiAP instances previously solved in
literature showing that the new algorithm outperforms all known exact solution
methods.

The remaining part of this chapter is organized as follows. In Section 6.1
and Section 6.2, I describe the specialized version of the two-phase method for the
exact solution method and for the approximation method, respectively. Section 6.3
provides a description on how to rank multi modal assignments, and computational
results for BiMMAP and BiAP are given in Section 6.4.

6.1 Finding YN with the two-phase method

To solve BiMMAP using the two-phase method presented in general terms in
Section 3.2.1, the following parametric minimization problem must be solved iter-
atively.

min fλ(x) =
(
λc1 + c2

)
x =

∑

(i,j,l)∈A

(λc1
ijl + c2

ijl)xijl

s.t. x ∈ XMMAP

(6.4)

For a given value of λ ≥ 0 and a given cell (i, j), define

l⋆ij(λ) = arg min1≤l≤Lij
{λc1

ijl + c2
ijl} . (6.5)

That is, for a specific value of λ, the minimal parametric cost entry l⋆ij(λ), in the
assignment cell (i, j), is chosen. It is straightforward to see that (6.4) reduces to
the following problem:

min fλ(x) =
(
λc1 + c2

)
x =

∑

i∈W

∑

j∈V

cijl⋆
ij

(λ)xijl⋆
ij

(λ)

s.t. x ∈ XAP

(6.6)

which is a single criterion assignment problem. This is summarized in Proposi-
tion 6.3.

Proposition 6.3 The parametric problem min{fλ(x) : x ∈ XMMAP } reduces to
the classical AP min{

∑
ij cijl⋆

ij
(λ)xijl⋆

ij
(λ) : x ∈ XAP }.

Therefore, the minimal cost assignment for BiMMAP, given a fixed value of λ,
can be found in procedure PhaseOne of Figure 3.4 on page 28 by solving a single
criterion AP. Moreover, since each criterion point in BiMMAP is integer, the
following obvious proposition may be used to reduce the computational effort in
phase one.
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Proposition 6.4 Consider two supported extreme nondominated points y+ and
y−. Then no further supported extreme nondominated points can be found below
the line connecting y+ and y− in phase one, if any of the following conditions are
fulfilled

y−
1 − y+

1 = 1 or y+
2 − y−

2 = 1 . (6.7)

That is, we simply skip the search between y+ and y− if (6.7) holds in phase one.
Condition (6.7) may also be used in phase two to skip searching some triangles.
If any of the conditions in (6.7) are fulfilled, we do not have to apply procedure
PhaseTwo of Figure 3.6 on page 30 to triangle △(y+, y−) since no unsupported
nondominated point can exist in this triangle. Observe that this also holds true
even if the points y+ and y− are supported nonextreme nondominated points.
Hence, storing such nonextreme points in phase one (by using a ≤ sign instead of
a < sign on line 10 in Figure 3.4) may reduce the computational effort in phase
two.

Furthermore, since all nondominated points have integer coordinates, the upper
bound used in phase two may be improved.

Proposition 6.5 Given the triangle △(y+, y−) with previously found nondom-
inated points {y+ = y1, . . . , yq = y−} ordered in increasing order of the first
objective and a search direction given by λ, define

UB
IP := max

r=1,...,q−1
{λ

(
yr+1
1 − 1

)
+

(
yr
2 − 1

)
} . (6.8)

Then all unsupported nondominated criterion points in △(y+, y−) have parametric
weight below or equal to UB

IP .

Proof. Consider a non-found nondominated point (y1, y2) located in △(y+, y−).
Due to integrality of y1 and y2 we have

∃r ∈ {1, . . . , q − 1} : y1 ≤ yr+1
1 − 1 ∧ y2 ≤ yr

2 − 1
⇓

λy1 + y2 ≤ λ
(
yr+1
1 − 1

)
+

(
yr
2 − 1

)

Since nondominated points can be located between any two consecutive points yr

and yr+1, we obtain expression (6.8) for the upper bound. �

As a result, the upper bound of (6.8) can be used in function UpdateUB of procedure
PhaseTwo. Furthermore, note that upper bound (6.8) is valid for all bicriterion
problems with integer criterion points and is an improvement to the upper bound
previously reported in literature [159, 161].
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y2
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y−

yt

⌊
(1 − ε) y+

⌋

⌊
(1 − ε) y−

⌋

(⌊
(1 − ε) y−

1

⌋
,
⌊
(1 − ε) y+

2

⌋)

Figure 6.2: Using ε-dominance in the first phase.

6.2 Finding an ε-approximation with the two-phase

method

In some cases it may be sufficient to find an approximation of the nondominated
set. In this section, I consider the problem of finding an ε-approximation (ε > 0)
of the nondominated set using the two-phase method. Only slightly modified
versions of phase one and two are needed.

First, consider phase one and a set of extreme nondominated points found dur-
ing phase one as illustrated in Figure 6.2. Note that any new supported extreme
nondominated point between y+ and y− must belong to the shaded area in Fig-
ure 6.2. As a result we can skip searching for such points between y+ and y− if
the following proposition is satisfied.

Proposition 6.6 Given supported extreme nondominated points {yUL, . . . , ys, y+,
y−, yt, . . . , yLR} found during phase one, each supported extreme nondominated
point between y+ and y−, i.e. inside the shaded area of Figure 6.2, is ε-dominated
by either y+ or y− if

λ1

⌊
(1 − ε) y−

1

⌋
+

⌊
(1 − ε) y+

2

⌋
≤ λ1y

+
1 + y+

2

or λ2

⌊
(1 − ε) y−

1

⌋
+

⌊
(1 − ε) y+

2

⌋
≤ λ2y

−
1 + y−

2 ,
(6.9)
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where λ1 is defined by the slope of the line between ys and y+ and λ2 is defined by
the slope of the line between y− and yt.

Proof. I only show the result if the first condition in (6.9) is satisfied. The second
case is shown with similar arguments. Therefore, assume that λ1

⌊
(1 − ε) y−

1

⌋
+⌊

(1 − ε) y+
2

⌋
≤ λ1y

+
1 + y+

2 . Furthermore, suppose that there exists a supported
extreme nondominated point (y1, y2) in the shaded area between y+ and y− (see
Figure 6.2), which is not ε-dominated by neither y+ nor y−. It follows that
(1 − ε) y−

1 > y1 and (1 − ε) y+
2 > y2. Due to integrality of y1 and y2, this means:

λ1y1 + y2 ≤ λ1

⌊
(1 − ε) y−

1

⌋
+

⌊
(1 − ε) y+

2

⌋
(6.10)

The nondominated point (y1, y2) is necessarily strictly above the line through
ys and y+ (otherwise y+ is not a supported extreme nondominated point found
before (y1, y2)). Therefore, λ1y1 + y2 > λ1y

+
1 + y+

2 . This implies that

λ1

⌊
(1 − ε) y−

1

⌋
+

⌊
(1 − ε) y+

2

⌋
≤ λ1y

+
1 + y+

2 < λ1y1 + y2 (6.11)

Combining equations (6.10) and (6.11) leads to a contradiction. �

Observe that Proposition 6.6 also holds true for the case where no points are
identified to the left (or to the right) of the points y+ and y− by an appropriate
choice of λi, i = 1, 2.

Corollary 6.7 If y+ = yUL (y− = yLR) Proposition 6.6 holds true by choosing
λ1 = ∞ (λ2 = 0).

Proposition 6.6 and Corollary 6.7 can be used in procedure PhaseOne to skip
the search between two points y+ and y−.

In phase two, the upper bound (6.8) can be further strengthened if an ε-
approximation is wanted.

Proposition 6.8 Given the triangle △(y+, y−) with previously found nondom-
inated points {y+ = y1, . . . , yq = y−} ordered in increasing order of the first
objective and a search direction given by λ, define

UB
IP (ε) := max

r=1,...,q−1
{λ⌊(1 − ε)yr+1

1 ⌋ + ⌊(1 − ε)yr
2⌋} . (6.12)

Then all criterion points in △(y+, y−) with parametric weight above UB
IP (ε) are

ε-dominated by the current ε-approximation of the triangle.

Proof. Let y = (y1, y2) be a nondominated point in △(y+, y−). Therefore, there
exists an r ∈ {1, . . . , q− 1} such that y is located between yr and yr+1. If y is not
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ε-dominated then

y1 < (1 − ε) yr+1
1 ∧ y2 < (1 − ε) yr

2

⇓ (since y is integral)

y1 ≤
⌊
(1 − ε) yr+1

1

⌋
∧ y2 ≤

⌊
(1 − ε) yr

2

⌋

⇓
λy1 + y2 ≤ λ⌊(1 − ε) yr+1

1 ⌋ + ⌊(1 − ε) yr
2⌋

Since nondominated points can be located between any two consecutive points yr

and yr+1, expression (6.12) is obtained for the upper bound. �

It follows that for ε > 0, the upper bound in function UpdateUB of procedure
PhaseTwo can be updated using (6.12). Also, note that if we consider the shaded
area between y+ and y− (see Figure 6.2) not searched in phase one (i.e. satisfying
(6.9)), then UB

IP (ε) for △(y+, y−) will be less than the parametric weight of y+.
Therefore, △(y+, y−) is not searched in procedure PhaseTwo either. Furthermore,
there can be some possible gains in storing supported nonextreme points in phase
one as well. The more supported nondominated points that are identified in the
first phase, the more likely are UB

IP (ε) to be below the parametric weight of y+

and hence △(y+, y−) is not searched.
Note that, the approximation found in phase one is a subset of the supported

nondominated points, since the optimal solution of (6.4) corresponds to a sup-
ported nondominated point. Moreover, because a ranking procedure is applied in
the second phase, a dominated point cannot be found before a point dominating
it. These comments yield the following result.

Proposition 6.9 The approximation of the nondominated set for an ε > 0 is a
subset of YN .

6.3 The K best multi modal assignments

In this section, I describe the method to rank multi modal assignments in non-
decreasing order of cost, used in phase two when searching a triangle. That is,
ranking assignments using the single criterion parametric costs defined for a given
parameter λ.

As in Chapter 4, an assignment x may alternatively be denoted by its network
formulation as a = {(1, j1, l1), . . . , (n, jn, ln)} where (i, j, l) ∈ a if and only if
xijl = 1. Denote by aXMMAP the corresponding set of all feasible solutions to
(6.1).

Without loss of generality, assume that each cell (i, j) contains entries cij1 ≤
· · · ≤ cijLij

. The objective is to determine the K best assignments a1, . . . , aK , in
a single criterion multi modal assignment problem, such that

• c(ai) ≤ c(ai+1), i = 1, . . . , K − 1
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• c(aK) ≤ c(a), ∀a ∈ aXMMAP \ {a1, . . . , aK}

where c(a) denotes the cost of assignment a.
Given the optimal assignment a1 = {(1, j1, l1), (2, j2, l2), . . . , (n, jn, ln)} of

aXMMAP , the set aXMMAP \ {a1} is partitioned into n − 1 disjoint subsets X i,
i = 1, . . . , n − 1, where

X i = {a ∈ aXMMAP : (1, j1, l1), . . . , (i − 1, ji−1, li−1) ∈ a, (i, ji, li) /∈ a}

Similarly to the original method by Murty [106] it follows that

n−1⋃

i=1

X i = aXMMAP \ {a1} .

Clearly, the second best assignment a2 can be identified using a solution method
to find the minimal cost assignment in the sets X i, i = 1, . . . , n−1. Moreover, the
branching technique above can be applied recursively to subsets X i ⊂ aXMMAP .

In general, the algorithm maintains a candidate set Φ of pairs (ā, X̄ ), where
ā is the minimum cost assignment in (sub)set X̄ . Suppose we have found the
k − 1 best assignments a1, . . . , ak−1, then the current candidate set Φ represents
a disjoint partition of aXMMAP \ {a1, . . . , ak−1}. The kth best assignment is then
found as the pair (â, X̂ ) ∈ Φ which contains the assignment â with minimum cost
c(â) among all assignments in the candidate set Φ.

Consider the solution method, i.e. how to determine the minimum cost assign-
ments in X̂ i when applying the branching technique to some subset X̂ ⊂ aXMMAP .
Without loss of generality, assume that the minimum cost assignment in subset X̂
is given by

â = {(1, j1, l1), (2, j2, l2), . . . , (n, jn, ln)} . (6.13)

Furthermore, assume that, according to previous partitions, no assignments in X̂
can contain (m1, p1, h1), . . . , (mq, pq, hq). Recall that any assignment belonging to
X̂ i must contain (1, j1, l1), . . . , (i − 1, ji−1, li−1). Assuming that X̂ i contains an
assignment, it can be found as follows:

1. Delete rows {1, 2, . . . , (i − 1)} and columns {j1, j2, . . . , ji−1} from the cost
matrix.

2. The cost of entries (i, ji, li) and (m1, p1, h1), . . . , (mq, pq, hq) in the cost ma-
trix is set to infinity.

Given a non-empty subset X̂ i, let MMAP(X̂ i) denote the multi modal assign-
ment problem defined by the two steps above. The following result follows from
Proposition 6.3.

Corollary 6.10 The minimal cost multi modal assignment in MMAP(X̂ i) can be
found by solving a classical assignment problem using the minimal cost of each cell
in MMAP(X̂ i).
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Due to Corollary 6.10, the algorithm for ranking classic linear assignments
from Chapter 4 can be used with the slightly more general branching technique
described above. Since the general branching technique described above does not
create more subsets than the classical branching technique, the overall complexity
for ranking the K best multi modal assignments is the same.

Theorem 6.11 The complexity for finding the K best multi modal assignments
is O(Kn3).

Actually, in some cases the minimal cost assignment for subset X̂ i can be found
without solving an AP. Given subset X̂ , assume without loss of generality that
each cell (i, j) in MMAP(X̂ ) contains Lij entries cij1 ≤ · · · ≤ cijLij

(not set to
infinity). Moreover, let π̂ denote the dual variables of the optimal assignment
(6.13) found by solving AP(X̂ ). Hence the corresponding reduced cost for each
cell (i, j) becomes cπ̂

ij = cij1− π̂(i)+ π̂(j). By disregarding cell (i, j), the minimum
reduced costs in row i and column j are

cπ̂
i· = min

t
{cπ̂

it | t 6= j} and cπ̂
·j = min

s
{cπ̂

sj | s 6= i} ,

respectively. Note that cπ̂
i·, c

π̂
·j ≥ 0, ∀i, j, due to optimality of π̂. Now, consider

subset X̂ i. In MMAP(X̂ i) ciji1 is set to infinity. If Liji
> 1, ciji1 is replaced by

ciji2 in AP(X̂ i). That is, AP(X̂ i) uses the same costs as AP(X̂ ) except in cell
(i, ji) where ciji2 is used. Hence we have the following proposition to enhance the
performance of the procedure.

Proposition 6.12 Assume Liji
> 1 and cπ̂

i· + cπ̂
·ji

≥ ciji2 − ciji1. Then a minimal

cost assignment for subset X̂ i is

a(i) = (â \ {(i, ji, 1)}) ∪ {(i, ji, 2)} .

Proof. Define
∆iji

= ciji2 − ciji1 ≥ 0 .

The optimal assignment â of AP(X̂ ) is primal feasible and satisfies the comple-
mentary slackness conditions x̂ij1c

π̂
ij = 0, ∀ (i, j). Consider AP(X̂ i) with dual

variables π̄. If ∆iji
≤ cπ̂

i·, set π̄(i) = π̂(i) + ∆iji
and keep the remaining dual

values unchanged. Then cπ̄
it ≥ 0, ∀t 6= ji and

cπ̄
iji

= ciji2 − (π̂(i) + ∆iji
) + π̂(ji) = cπ̂

iji
= 0 .

Hence the assignment a(i) of AP(X̂ i) is primal feasible and satisfies, together with
π̂, the complementary slackness conditions, i.e. a(i) is an optimal solution.
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If ∆iji
> cπ̂

i·, we set π̄(i) = π̂(i)+ cπ̂
i· and π̄(ji) = π̂(ji)−∆iji

+ cπ̂
i· and keep the

remaining dual values unchanged. Hence cπ̄
it ≥ 0, ∀t 6= ji, cπ̄

sji
≥ 0, ∀s 6= i, and

cπ̄
iji

= ciji2 −
(
π̂(i) + cπ̂

i·

)
+

(
π̂(ji) − ∆iji

+ cπ̂
i·

)
= cπ̂

iji
= 0

Again, assignment a(i) is optimal. �

Using Proposition 6.12, we do not have to solve AP(X̂ i) if cπ̂
i·+cπ̂

·ji
≥ ciji2−ciji1.

The minimal cost assignment a(i) is simply obtained by assigning the rows to the
same columns as in assignment â and, in cell (i, ji), by using entry 2 instead of
entry 1.

6.4 Computational results

In this section, I report the computational experience on BiMMAP test instances.
Moreover, since BiMMAP is an extension of BiAP, I also report some results
on test instances for BiAP. All tests were performed on an Intel Xeon 2.67 GHz
computer with 6 GB RAM using a Red Hat Enterprise Linux version 4.0 operating
system.

6.4.1 Implementational details

The algorithms have been implemented in C++ and compiled with the GNU C++
compiler version 3.4.5 using optimize option -O.

The cost matrix of BiMMAP (see Figure 6.1 on page 66) is stored using a
two-dimensional array of Cell objects. Each Cell object contains an array holding
the cost entries and an ordered array holding the parametric costs of the entries
for a specific λ.

In phase one, for a given search direction specified by λ, the parametric costs
are updated and ordered in nondecreasing order. Due to Proposition 6.3, I consider
the smallest entry in each cell and solve the resulting AP using the implementation
given by Jonker and Volgenant [86]. Furthermore, the algorithm takes advantage
of Proposition 6.4 or Proposition 6.6 (if ε > 0) whenever possible.

In phase two, the parametric costs are again updated and ordered in nonde-
creasing order for a given ranking direction specified by λ. Next, the K best multi
modal assignment procedure described in Section 6.3 is utilized for searching a
triangle, using the upper bounds given in Proposition 6.5 or Proposition 6.8 (if
ε > 0).

The K best multi modal assignment procedure was implemented using the
reoptimization algorithm from Chapter 4 for ranking assignments for the classical
AP, with the slightly more general branching technique given in Section 6.3. In
particular, note that, when considering a subset where an entry in the ordered
array of parametric costs is removed, the new entry with minimal cost is the next
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cost in the array. That is, the new minimal cost is found by increasing a local
pointer by one.

All nondominated points found by the ranking procedure are stored in a single
linked list available in both phase one and two.

6.4.2 BiMMAP test instances

The bicriterion multi modal assignment problem has, to the best of my knowledge,
not previously been studied in literature, and hence no available test instances
exist for this problem. To facilitate a comprehensive computational study of the
BiMMAP algorithm, a problem generator, APGen5, was build for this problem
class. As a side-effect this generator can be used to generate a variety of BiAP
instances. In the following I give a brief description of the generator, and refer
readers requiring more information on this topic, to the full documentation paper
[113]. A BiMMAP instance is generated specifying a number of parameters:

n – the size of the problem.

maxEnt – the maximal number of entries in each assignment cell.

minEnt – the minimal number of entries in each assignment cell (default 1).

maxCost – the maximal cost value (minimum cost value is 0).

method – a choice between three different ways of generating cell entries.

shape – for a given method, the shape parameter describes the shape of the entries
in a given cell.

Obviously, for a given cell, no entries are allowed to be dominated by other entries
in that cell, since this would correspond to a dominated solution. The number of
entries in a cell is chosen randomly in the entry range {minEnt, . . . , maxEnt}. To
describe best the six different versions of method and shape used for generating
BiMMAP instances, all two-dimensional cost vectors for a given cell having 20
entries are displayed in Figures 6.3 to 6.5.

As can be seen in Figure 6.3, with method 1 the shape parameter describes
the curve of the function along which the entries are generated. A negative shape
corresponds to generating the entries along a concave-like function, using shape
0 generates entries fluctuating along a straight line, and finally, a positive shape
means generating entries along a convex-like function. Therefore, using a nega-
tive (positive) shape parameter tends to generate many unsupported (supported)
entries in the given cell. We shall see, that this has a strong influence on the
difficulty of the considered problem and hence the computational performance of
the algorithm.

5 The problem generator and the test instances used in this chapter are downloadable from the
following webpage http://www.research.relund.dk/.
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Figure 6.3: Cell entries for method 1.
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(a) shape 3
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Figure 6.4: Cell entries for method 2.

For method 2, the entries in a given cell are generated in a number of groups
corresponding to the shape parameter (see Figure 6.4). The groups are equally
distributed in the cost-space and the entries are all generated fluctuating along
the straight line between (0, maxCost) and (maxCost, 0). Note, to use method 2,
the parameter minEnt must be chosen sufficiently large, since at least 2 points
are required in each group.

Finally, for method 3, the shape parameter has the same meaning as for
method 1. However, here the cost space is divided into four regions by halving both
criterion axes, and the entries are generated either in the upper left cost region or
in the lower right cost region in consecutive cells. This can be seen in Figure 6.5,
where the entries in the four consecutive assignment cells (1, n + 1), . . . , (1, n + 4)
are shown.
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(a) cell (1, n + 1)
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Figure 6.5: Cell entries for cells (1, n + 1) to (1, n + 4) for method 3 and shape 0.

To provide a broad class of test instances and facilitate statistical analysis, 100
instances of each of the following 80 possible configurations were generated.

• n ∈ {4, 6, 8, 10}.

• Cost ranges : {0, . . . , 500} and {0, . . . , 10000}.

• Entry ranges : {2, . . . , 8} (not for method 2) and {10, . . . , 30}.

• (method, shape) ∈ {(1,−60), (1, 0), (1, 60), (2, 3), (2, 4), (3, 0)}.

The two different ranges of number of entries are chosen to reflect a situa-
tion close to BiAP (few entries) and a situation very far away from BiAP (many
entries), respectively. Note that the number of possible assignments increases ex-
ponentially with the number of entries in each cell. For a problem with n = 10
and entry range {10, . . . , 30}, the total number of assignments ranges between
10! · 1010 ≈ 3.6 · 1016 in the best case and 10! · 1030 ≈ 3.6 · 1036 in the worst case.
In comparison, the BiAP with size 10 has 10! ≈ 3.6 · 106 feasible assignments.
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Figure 6.6: Logarithm of average CPU time against n (cost range {0, . . . , 10000}
and entry range {10, . . . , 30}).

6.4.3 BiMMAP test results

Giving the results of the extensive amount of tests, I first display the logarithm
of the CPU time (in seconds) averaged over the 100 instances against problem
size n for the highest possible cost range and the highest possible entry range
(Figure 6.6). It can be seen, that, for none of the six different classes, the running
time is increasing exponentially with problem size. Also notice that the most
difficult class is by far using method 1 with shape −60, whereas the easiest class
is method 1 and shape 60.

To yield a possible explanation of the difference in difficulty of these two prob-
lem classes, it is important to note that phase two is the major time consumer
in this algorithm. More specifically, comparing the running times for all the 8000
exactly solved instances, phase two uses an average of 98 per cent of the total
CPU time. Consider Figure 6.7 where the nondominated points in the criterion
space have been plotted for two test instances using method 1, shape −60 and
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Figure 6.7: Nondominated points (method 1, n = 10, entry range {10, . . . , 30} and
cost range {0, . . . , 10000}).

method 1, shape 60, respectively. Triangles are drawn between consecutive sup-
ported extreme nondominated points.

For the test instance with shape −60, only a limited number of supported ex-
treme nondominated criterion points exist. Notice that these extreme points are
far from each other resulting in large triangles to search in the second phase. More
important, all the supported extreme nondominated points are located almost on
a straight line. Therefore, the ranking directions for the triangles are more or less
the same. As a result, the ranking procedure of the time demanding phase two
initiated in the first large triangle has to generate many points before reaching
the upper bound of the triangle making this single triangle search extremely time
consuming. Remember though, that nondominated points generated which are
outside the triangle currently searched, are stored. This may enable the algo-
rithm to finish searching other triangles faster and hence enhance computational
performance.

In contrast, the test instance with shape 60 has a higher number of extreme
nondominated points in the criterion space, resulting in small triangles to search.
Moreover, the ranking directions are more diverse and hence fewer points have to
be ranked when searching a triangle.

Considering other instances the above relationships proved to have general
validity. The larger a triangle is, the longer the search in this triangle continues
in phase two. Therefore, with many extreme points at termination of phase one,
only small triangles need to be searched, resulting in a lower overall running time
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Figure 6.8: Logarithm of average CPU time against n (method 1 and shape −60).

compared to an instance with a few extreme points and larger triangles. Moreover,
test instances where the ranking directions for the triangles are more or less the
same are harder to solve.

Since method 1 shape −60 has established itself as the most difficult problem
class, I focus entirely on such instances from here on.

In Figure 6.8, the logarithm of average CPU time against the problem size is
shown for the four different configurations of entry range and cost range. It can
be seen, that the most difficult case is the one with the most entries and highest
cost range. The most significant factor is the entry range, obviously resulting from
the increased number of feasible solutions. Also, for a given number of entries,
the most difficult case arises with the highest possible cost range. In this respect,
the BiMMAP follows the classical single criterion assignment problem since this
problem is known to be easiest solvable with relatively small costs [86].

From here on, focus is entirely on test instances using method 1, shape −60
cost range {0, . . . , 10000} and entry range {10, . . . , 30}. In Table 6.1, I give the nu-
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size ave CPU max CPU ave |YsN | ave |YusN | ave |YN |

4 0.10 0.27 7 206 213
6 4.07 37.36 10 445 455
8 57.61 427.93 13 744 757

10 272.45 3693.79 16 1135 1151

Table 6.1: Exact results (method 1, shape −60, entry range {10, ..., 30} and cost
range {0, ..., 10000}).

merical results for the exact solution of these instances. In the first three columns
are depicted the size of the problem, average CPU time (seconds) and maximal
CPU time, respectively. In the remaining three columns I report average num-
ber of supported nondominated points (YsN ), average number of unsupported
nondominated points (YusN ), and average of the total number of nondominated
points (YN ), respectively.6 Obviously, all columns are increasing in size. However,
it is interesting to note the relatively high number of unsupported nondominated
criterion points making these instances very difficult.

Now I describe the results for finding an approximation of the nondominated
set. Two small values 0.01 and 0.05 of ε are chosen to ensure that a sufficiently
accurate approximation is found. I also include the results for the exactly solved
instances (ε = 0). In Figure 6.9 is displayed the logarithm of average CPU time
against size for all three ε values for instances with method 1, shape −60 cost
range {0, . . . , 10000} and entry range {10, . . . , 30}.

Finding an approximation can be seen to have a strong influence on the running
time of the algorithm. Even for these small ε values (and hence good approxima-
tions) there are significant savings in computation time. I note (not displayed)
that the number of identified nondominated points decreases with increasing ε, as
some supported extreme nondominated points may not be considered in the first
phase, and in the second phase, fewer alternatives for each triangle are ranked.

In Figure 6.10 on page 84, I display the empirical cumulative distribution
functions of CPU time for the 100 test instances of the above configuration for
problem size 10. This clearly shows that the majority of problems are solved fast,
whereas only a few difficult instances are solved relatively slowly. The numerical
results are summarized in Table 6.2, giving for each ε the average CPU time
(seconds), the 90 per cent fractile of CPU time and the maximum CPU time.

6 The average number of nondominated points is rounded to the nearest integer.
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Figure 6.9: Logarithm of average CPU time against n (method 1, shape −60,
entry range {10, ..., 30} and cost range {0, ..., 10000}).

ε = 0 ε = 0.01 ε = 0.05
size ave. 90% max ave. 90% max ave. 90% max

4 0.10 0.20 0.27 0.06 0.11 0.18 0.02 0.05 0.09
6 4.07 8.46 37.36 1.38 3.05 16.37 0.21 0.40 2.28
8 57.61 154.05 427.93 12.93 41.59 95.36 0.41 1.13 2.43

10 272.45 643.31 3693.79 40.15 91.74 513.58 0.32 0.76 4.43

Table 6.2: CPU times for ε ∈ {0, 0.01, 0.05} (method 1, shape −60, entry range
{10, ..., 30} and cost range {0, ..., 10000}).
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Figure 6.10: Empirical cumulative distribution function of CPU time for different
ε values.

6.4.4 Results for BiAP

Since BiMMAP is an extension of BiAP, it is natural to test the performance of the
current implementation on this problem class. To yield consistency in literature, I
obtained the test instances used in Tuyttens et al. [159] which are BiAP instances
of size {5, 10, . . . , 50}. Also previously used in literature are BiAP instances of size
{60, 70, . . . , 100} found in Gandibleux et al. [54].7 These instances have recently
been solved by an exact method in [131] and by a heuristic in [55] acknowledging
the current interest in this field. For all the problem classes only one instance is
solved, and hence limited statistics can be performed for those data sets. For all
instances, costs are chosen randomly in the rather narrow interval {0, . . . , 19}.

To provide statistics based on a broader class of instances, 100 instances were
generated, using APGen, for each of the following sizes {5, 10, . . . , 100} with costs

7 http://www.univ-valenciennes.fr/ROAD/MCDM/ListMOAP.html
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Figure 6.11: Cost generation for BiAP test instances.

randomly chosen in {0, . . . , 1000}. This wide interval leaves room for identifying
a large number of large triangles to search in phase two, and hence increase the
difficulty of the problem. Also, to investigate the effect of negatively correlated
costs, I generated 100 instances of each of the sizes {5, 10, . . . , 100}, again with
costs in the interval {0, . . . , 1000}. The difference in costs generated randomly
and negatively correlated is shown in Figure 6.11. We shall see that negatively
correlated cost vectors have a strong influence on the difficulty of the considered
problem, and hence the running time of the algorithm. In general bicriterion
problems with negatively correlated costs are harder to solve, see e.g. [26].

In Figure 6.12, the time against size for the instances previously found in
literature is shown. I note that the number of nondominated points found here
corresponds exactly to the number of efficient solutions found by CPLEX in [54],
making this set a minimal complete set of efficient solutions. In [54], the results
were already concluded to be questioning the validity of the results from [159], and
this is substantiated by my results. A comparison of the new CPU time with the
CPU time of the exact algorithms reported upon in [54, 131, 159] must necessarily
include a discussion on the efficiency of the different computers used. Applying
Linpack Benchmark-Peaks from Netlib [111] to reflect the relative performance
of the computers, we can see that the new algorithm developed in this chapter
outperforms the exact methods previously proposed in literature. Furthermore,
the running time of the exact method is even competitive to the CPU time for the
heuristics proposed in [54, 55].

Figure 6.13 on page 87 shows average CPU time against size for the nega-
tively correlated and random BiAP test instances. For the negatively correlated
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Figure 6.12: CPU time against n for the BiAP instances from [54] and [159].

instances, the algorithm was only capable of solving instances of problem size up
to 40 within a reasonable amount of time. This shows the complex nature of
such instances, as is also previously seen for other bicriterion problems. The in-
creased difficulty follows mainly because we have more (see Table 6.3) and larger
triangles (not shown). Moreover, note that the number of nondominated points
is much higher. For the size 40 problem reported upon in [159], a total of 127
nondominated points was found, 73 of which were unsupported. In Table 6.3, we
see that the average number of nondominated points and the average number of
unsupported nondominated points for the size 40 negatively correlated instances
(random instances) are 2402 (333) and 2346 (297), respectively.

Having CPU times no larger than 182 seconds for the random instances and
2635 seconds for the negatively correlated instances, the new algorithm proves
capable of solving BiAP problems rather efficiently.
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negatively corr. data random data
size ave |YsN | ave |YusN | ave |YN | ave |YsN | ave |YusN | ave |YN |

5 6 15 20 4 2 6
10 13 115 129 8 17 24
15 20 295 315 12 41 53
20 28 539 567 18 72 90
25 35 878 913 23 119 141
30 42 1299 1341 27 167 195
35 49 1773 1822 33 231 263
40 56 2346 2402 37 297 333

Table 6.3: Exact results for the new BiAP instances.
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6.4.5 Comments on the usefulness of the IP upper bound

I conclude this section by commenting on the usefulness of the IP strengthening
of the upper bound from (6.8) of Proposition 6.5, when searching a triangle. To
collect outputs for making such statistics, I intentionally neglected to focus on
CPU time by actually disabling this IP strengthening.

Calculating the number of times the IP upper bound would succeed in termi-
nating the search of a triangle when the bound without IP strengthening would
fail and dividing this by the total number of iterations, the average ratio for the
negatively correlated BiAP instances is 5.80 per cent. This corresponds to saying
that, in more than one out of 20 iterations the search in a given triangle would be
terminated when using the integer based upper bound, whereas the upper bound
without integrality would still be higher than the lower bound. For the random in-
stances this ratio is 7.67 per cent and finally, for the random BiAP instances found
in literature, the ratio is 79.55 per cent. Obviously, since only a limited amount of
instances have previously been reported upon in literature, this last number must
be interpreted with caution. However, it seems that the IP strengthening is more
valuable for instances having a narrow cost range. This yields another explanation
for the new instances being significantly harder than the instances previously seen
in literature. The same ratio for all the 8000 exactly solved BiMMAP instances is
11.48 per cent.



Chapter 7

The multicriteria minimum cost

flow problem

Network flow problems are inherently multicriteria problems in nature and have
as such received an increasing amount of interest within the multicriteria litera-
ture during the past 30 years. Applications within transportation planning faces
conflicting criteria like minimization of cost for selected routes, minimization of
arrival times at the destination points, minimization of deterioration of goods,
maximization of safety, etc. Since these applications typically require flow values
to be integer, one also has prominent examples showing the need to deal with mul-
ticriteria discrete optimization problems. Network flow problems are obviously a
very good starting point for this research, since the network flow feasibility polyhe-
dron is known to have the integrality property. I refer to Section 2.1.1 for a short
introduction to the single criterion minimum cost flow problem and to Chapter 3
for general multicriteria optimization. For a more thorough introduction on these
topics, appropriate references are Ahuja et al. [2], Ehrgott [39], and Steuer [152].

In this chapter a review of theoretical results and solution algorithms for the
class of multicriteria minimum cost flow problems is provided. I have chosen not
to consider any of the various special cases of the minimum cost network flow
problem (shortest path, assignment, transportation problem, etc.). All of these
subclasses have received considerable attention in the operations research or –
more specifically – in the network design and routing literature and deserve their
own reviews, since there exist various algorithms exploiting the special structure
of those problems. For excellent existing reviews I refer the interested reader to
for instance Current and Marsh [24], Current and Min [25], Skriver [149], and
Ulungu and Teghem [160]. Although some of these survey papers include sections
on the general multicriteria minimum cost flow problem, I consider it necessary to
deal with this subject by itself to be able to elaborate more extensively on some
details which could be of interest to the reader. I tried my best to include all

89
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relevant literature which is available as publication in a journal or as a report on
the internet. To any author whose paper I left out unintendedly, I apologize in
advance.

This chapter is organized as follows. The mathematical formulation of the mul-
ticriteria minimum cost flow problem is introduced in Section 7.1. In Section 7.2
and Section 7.3, I review the exact and approximate methods for the multicriteria
minimum cost flow problem with continuous flows and integral flows, respectively.
In Section 7.4 the results on compromise solutions are discussed and Section 7.5
summarizes all results in tabular form.

7.1 Problem formulation

The multicriteria minimum cost flow problem (MMCF) can be concisely stated as
the following mathematical programme:

min{(c1, . . . , cQ)T x : x ∈ Pflow} , (7.1)

where c1, . . . , cQ ∈ Nm
0 are non-negative integer cost vectors. Note that the ob-

jective function Cx = (c1, . . . , cQ)T x is composed of Q linear functions, whereas
the decision space remains the same as for the classical minimum cost flow prob-
lem, previously denoted MCF. Obviously, MCF is a special case of MMCF (with
Q = 1) and MMCF is a special case of MOLP. Another special case which is
addressed in most papers on MMCF is the bicriterion minimum cost flow problem
(BiMCF). MMCF is in general a continuous problem, i.e. the flows xij may take
on fractional values. If we want to enforce integrality, the multicriteria minimum
cost integer flow problem (MMCIF)

min{(c1, . . . , cQ)T x : x ∈ Xflow}

is solved.
Both MMCF and MMCIF become easy if the componentwise ordering is re-

placed by the lexicographical ordering. In the latter case, two vectors are compared
by looking at the first component in which they differ. The order of this component
then defines the lexicographical order of the vectors. Virtually all algorithms for
the classic minimum cost flow problem can be carried over to the lexicographical
minimum cost flow problem (see for instance, in a more general context, Hamacher
[65] or Calvete and Mateo [16]).

For the bicriterion minimum cost flow problem Ruhe [134] uses a pathological
graph, introduced by Zadeh [169], to show that there can be an exponential number
of supported extreme nondominated criterion points making even the continuous
case intractable, in general. Furthermore, BiMCF is known to be a generalization
of the bicriterion shortest path problem (BiSP) which is NP-hard and has a #P-
complete decision problem. These results obviously carry over to MMCF. More
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on general complexity results for multicriteria optimization problems can be found
in the book by Ehrgott [39].

7.2 The continuous multicriteria minimum cost flow

problem

Similar to the situation in linear programming, there are many more papers on the
continuous multicriteria minimum cost flow problem MMCF than on its integer
counterpart. An obvious reason is that some of the techniques of MOLP can just
be specialized to MMCF. First, I consider papers which aim at computing all
efficient solutions. Then methods to find a representative system for the efficient
set are discussed.

7.2.1 Exact methods

The papers reviewed in this section present algorithms for finding the entire set
of efficient solutions of BiMCF – either in decision space or in objective space
([98, 101, 133, 145, 147]). I found no papers on an exact solution method for
MMCF with more than two objectives. All but one paper ([147]) exploit jointly the
topological and the graph theoretical connectivity of the set of efficient solutions,
(see Section 3.1).

Basic feasible solutions of MMCF (subsequently called basic flows) correspond
to spanning trees ([2]) and a pivot operation corresponds to the insertion of a
non-tree edge into the tree and the deletion of an edge in the tree. Hence, two
basic feasible flows are adjacent if their tree representations have n − 2 arcs in
common. Due to the graph theoretical connectivity property for MMCF, one can
start with an arbitrary efficient basic feasible flow and obtain the entire efficient
frontier by iteratively performing network pivot operations, i.e. by exchanging one
arc in trees at a time.

Entering a nonbasic arc (s, t) in the tree representation of an efficient basic
flow x yields a unique cycle O along which δst units of flow can be sent before a
new basic feasible flow x̂ is obtained. Note δst = min{rij : (i, j) ∈ O} equals the
minimal capacity of the arcs in O in the incremental graph G(x). The only flow
change between x and x̂ is on the arcs of this unique cycle. Only the introduction
of nonbasic arcs that have out-of-kilter status with respect to at least one of the
criteria can lead to other efficient flows, [41]. If two adjacent basic feasible flows
x and x̂ are both efficient, then so are all of their convex combinations. Any such
convex combination can be found for δst > 0 by sending a suitable amount of flow
0 ≤ δ < δst through the cycle. In terms of polyhedral structure of MMCF this
corresponds to moving along the efficient edge connecting x and x̂ in Pflow, [98].

Malhotra and Puri [101] provide a generalization of the out-of-kilter method
to solve BiMCF with a uniform capacity for all arcs, i.e. uij = η for all arcs
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(i, j) ∈ A. As the authors state, this idea can be modified to address general
BiMCF. The efficient frontier is built in a left-to-right fashion, starting with the
lexicographical minimum for the first objective. Due to the definition of a lexico-
graphical minimal flow, all arcs are in-kilter with respect to the first objective. If
BiMCF does not have an ideal point minimizing both objectives simultaneously,
some arcs are out-of-kilter for the second objective. The algorithm strives for an
efficient flow with all arcs being in-kilter for the second objective, i.e. a lexico-
graphical minimal flow for the second objective. Therefore, for a given flow, the
arcs being out-of-kilter for the second objective (and in-kilter for the first objec-
tive) are said to be eligible arcs. For each eligible arc, Pareto cycles including
this arc are found in the incremental graph of the current flow and added to the
current flow. The obtained flows are argued to be efficient points on the frontier
of BiMCF. This argumentation can easily be seen to be wrong (see Section 9.2),
and in fact not only the generation of dominated objective vectors but also pos-
sible oversights of extreme points on the efficient frontier might occur. Even for
the small network given by Malhotra and Puri themselves, it can be seen that an
extreme nondominated criterion point exists, which is not found by the proposed
algorithm. The incorrect output of the algorithm is partly due to the fact that
only one set of dual node variables (node potentials) is introduced.

This mistake is corrected by – among others – Lee and Pulat [98], Pulat et al.
[133], and Sedeño-Noda and González-Martín [145] who use one set of dual vari-
ables for each objective. These papers are based on the idea of Gass and Saaty [57]
and its generalization by Geoffrion [58] that was also utilized in Chapter 6. Corre-
sponding to (3.4), BiMCF is formulated as the parametric minimization problem

min fλ(x) =
(
λc1 + c2

)
x

s.t. x ∈ Pflow ,
(7.2)

where 0 ≤ λ ≤ ∞ (or δ ≤ λ ≤ φ where δ and φ are suitably chosen lower and
upper bounds). It is well known that all optimal solutions for (7.2) are efficient
solutions of BiMCF, and that conversely all efficient solutions of BiMCF can be
found as optimal solutions of some (7.2) problem, [58].

Similar to [101], the algorithm by Lee and Pulat [98] implements a re-
vised version of the out-of-kilter method. Initially uniform weights are placed
on both objectives and the resulting single criterion minimum cost flow problem,
min{(c1 + c2)x : x ∈ Pflow} is solved by the out-of-kilter method after which the
flow is adjusted to be basic by a rerouting procedure or node price adjustment
procedure. Then, from this compromise solution, the frontier is searched to the
left by considering arcs that are out-of-kilter with respect to the first objective
and to the right by considering arcs that are out-of-kilter for the second objective.
To perform the move from one basic flow to another, the labeling procedure from
the single criterion out-of-kilter method is modified and a procedure for ensur-
ing the attainment of a basic feasible flow is applied. The arc entering the basis
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is chosen upon a determination of the smallest ratio between reduced costs for
the two criteria. This corresponds to choosing an arc that results in the steepest
slope of the line between two consecutive points on the efficient frontier. Since it
is mistakenly believed that efficient basic feasible flows necessarily yield extreme
nondominated criterion points, the authors neglect to focus on the case of multiple
nonbasic arcs having the same minimal value of the ratio of the two reduced costs.
Consequently, possible nonextreme nondominated points are generated.

The algorithm by Pulat, Huarng, and Lee [133] is conceptually the same as
the one by Malhotra and Puri, since it again utilizes adjacency results for searching
the frontier in a left-to-right fashion. Apart from the addition of a second set of
node prices, another distinction is that Pulat et al. use the network simplex
method to solve BiMCF in its parametric programming formulation (7.2). Pulat
et al. realize that some efficient basic feasible flows may not correspond to extreme
nondominated criterion points. However, since the authors aim at a complete
description of all efficient basic feasible flows, in case of several arcs yielding a
minimal ratio of the reduced costs, all of them are introduced in the current basic
feasible flow. As noted above, all nonbasic efficient flows can be found by sending
flow in the unique cycle between any two adjacent efficient basic feasible flows.
Hence, a complete description of all efficient basic feasible flows is required to find
an explicit expression for the entire efficient set.

Sedeño-Noda and González-Martín [145] build on the ideas of the three
preceding papers. The parametric problem in (7.2) is solved in a left-to-right
fashion using the network simplex method for the single criterion optimizations.
The desired output of the algorithm is the set of extreme nondominated criterion
points. In each iteration from a list Γ of arcs yielding the minimal ratio of the
reduced costs, one arc is chosen to enter the basic tree of the current efficient basic
feasible flow x. This will result in a new efficient basic feasible flow x̂ which corre-
sponds either to an extreme nondominated point or a nonextreme nondominated
point. The former case is identified if all other arcs in Γ fulfill the optimality
condition of the second objective, and in this case the obtained point is stored.
In the latter case, arcs violating the optimality condition for the second objective
still exist in Γ, and one of these is introduced into the basic tree of x̂ yielding a
new efficient basic feasible flow. If the list Γ is empty, an extreme nondominated
point has been identified and a new list of arcs is built. The algorithm stops if no
more arcs are out-of-kilter with respect to the second objective.

The papers reviewed above all exploit the graph theoretical connectivity of the
efficient set. In contrast, Sedeño-Noda and González-Martín [147] modify a
method proposed by Aneja and Nair [4] which iteratively applies the weighted sum
problem. The method was originally designed for the bicriterion transportation
problem. The method by Sedeño-Noda and González-Martín starts by finding
the two lexicographical minima. For each two identified consecutive points on
the frontier, a search for additional extreme nondominated criterion points in the
triangle between these points and the corresponding local ideal point (y∗

1 , y∗
2), is
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performed using Lagrangian theory and the network simplex method. The algo-
rithm finds the extreme point closest to the line between the ideal point and some
appropriately chosen aspiration level vector e with ej > y∗

j , j = 1, 2. Whenever
a new point is identified, two new areas are introduced for future search. The
output of the procedure is the set of all extreme nondominated criterion points.

Four of the five described algorithms have been implemented, all using NET-
GEN [89] as problem generator. In fact, three of the algorithms have been im-
plemented by Sedeño-Noda and González-Martín on the same sample sets making
a direct comparison possible [98, 145, 147]. In total, 180 networks (five replica-
tions of 36 set-ups) with the number of nodes ranging between 25 and 40, the
number of arcs ranging from 100 to 400 and the cardinality of maximum capac-
ity on the arcs ranging from 10 to 100000 were considered. For these examples,
the method by Sedeño-Noda and González-Martín [145] proved superior in all in-
stances. The method by Sedeño-Noda and González-Martín [147] performs better
than the method by Lee and Pulat [98] for sparse networks. Pulat et al. [133] test
their algorithm on 90 networks grouped in three different set-ups with the number
of nodes ranging from 10 to 100 and the number of arcs ranging from 30 to 500.

7.2.2 Approximation methods

As mentioned in Section 7.1, Ruhe [134] shows that the exact computation of the
efficient frontier is, in general, intractable, since there may exist an exponential
number of extreme nondominated criterion points. Therefore several approaches
are proposed to find representative subsets of the efficient frontier. All these
approaches aim at the development of computationally appealing algorithms. The
literature following this thought can be divided into two groups: The first group
argues for the computation of a limited number of points leading to a final preferred
solution in reasonable computation time. I have chosen to present this group in
Section 7.4 along with the algorithms finding compromise solutions for MMCIF.
The second group approximates the frontier as a whole with provable good quality.
All approaches in the second group are applicable to BiMCF only and utilize
sets L and U which “sandwich” the efficient frontier (see Figure 7.1), i.e. YN ⊆(
(L ⊕ R2

≧
) ∩ (U ⊕ (−R2

≧
))

)
.

All articles using the sandwich idea for BiMCF follow the algorithm of
Burkard, Hamacher, and Rote [14] for approximating univariate convex func-
tions g : R → [a, b]. Therefore this idea is presented in its general framework.

It is assumed that, for any z ∈ [a, b], the left and right derivatives g−(z) and
g+(z) are obtainable. Let a = z1 < z2 · · · < zn = b be a finite partition of the
interval [a, b]. The points zi, i = 1, . . . , n, are referred to as breakpoints. Two
piecewise linear functions u(z) and l(z) approximate g(z) from above and from
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Figure 7.1: Illustration of sandwich idea.

below, where

u(z) := g(zi) +
g(zi+1) − g(zi)

zi+1 − zi

(z − zi) (7.3)

l(z) := max{g(zi) + g+(zi)(z − zi), g(zi+1) + g−(zi+1)(z − zi+1)} (7.4)

for zi ≤ z ≤ zi+1, i = 1, 2, . . . , n− 1. At any stage of the algorithm, l(z) and u(z)
satisfy l(z) ≤ g(z) ≤ u(z) for all z ∈ [a, b].

The error of the current approximation is measured in [14] by max{u(z)−l(z) :
z ∈ [a, b]}. Let zl and zr be two consecutive breakpoints in the current partition
satisfying z∗ ∈ [zl, zr] where z∗ = arg max{u(z) − l(z) : z ∈ [a, b]}. Thus [zl, zr] is
an interval with the largest error. A new breakpoint znew := (zr − zl)/2 is added
to the current finite partition of the interval [a, b], and the value g(znew) is found.
This choice of the new breakpoint is referred to as the interval bisection rule.
The approximating functions u(z) and l(z) are updated due to equations (7.3)
and (7.4). This scheme is iteratively repeated until the error of the approximation
falls below a prescribed value. It is shown that the approximating functions l(z)
and u(z) converge uniformly to g(z). Furthermore, the error of the approximation
decreases quadratically with the number of breakpoints and, given an accuracy
level, an upper bound on the number of breakpoints needed for satisfying this
accuracy level can be obtained.

When transferring the interval bisection rule to BiMCF, one objective function
is treated as the independent variable z. The other objective function plays the
role of g(z). In other words, one objective function is considered a convex function
of the other objective function. Note that evaluating g(znew) for some given znew
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corresponds to minimizing one objective function subject to a fixed value of the
other objective function (which is known as the ε-constraint method). In terms of
BiMCF this means solving MCFs with one additional side constraint.

Ruhe [135] (see also the monography of Ruhe [136]) introduces the Hausdorff
distance between the lower and upper approximation to measure the error of the
approximation. For L := {(z, l(z)) : z ∈ [a, b]} and U := {(z, u(z)) : z ∈ [a, b]}
the Hausdorff distance between L and U is

d(L,U) := max
{

sup
y∈L

inf
ŷ∈U

||ŷ − y||2, sup
ŷ∈U

inf
y∈L

||ŷ − y||2
}

. (7.5)

In contrast to the error measure in [14], the Hausdorff distance is invariant under
rotation and does not favour one objective function over the other.

In Ruhe [135], new breakpoints are generated by applying the so-called chord
rule, which was originally introduced by Aneja and Nair [4] in the context of
computing the efficient extreme points of a bicriterion transportation problem.
Given an interval [zl, zr] with the maximal error, the new breakpoint is computed
by

znew := arg min{g(z)− α · z : z ∈ (zl, zr)} (7.6)

where α is the slope of the upper approximating function u(z), z ∈ [zl, zr].
Using the chord rule for the approximation of YN for BiMCF, a weighted sum

problem (which corresponds to solving MCF) has to be solved in each iteration
which is in general easier than solving an ε-constraint problem.

Fruhwirth, Burkard, and Rote [50] introduce two new rules, the angle
bisection and the slope bisection rule for generating breakpoints. As in the chord
rule, the new breakpoint is computed by (7.6), but the rules vary in the choice of
the parameter α. For the angle bisection rule, α equals the slope of the bisector
of the outer angle of the triangle formed by the graphs (z, u(z)) and (z, l(z)),
z ∈ [zl, zr] in the cutting point z̃ between the two linear functions that determine
l(z) in [zl, zr]. In case of the slope bisection rule, α is the mean of the slopes of
the two linear functions that determine l(z) in [zl, zr].

For chord, angle bisection and slope bisection rule, the error decreases quadrat-
ically with the number of breakpoints. Consequently, an upper bound on the
number of MCF evaluations can be derived to obtain a given accuracy level when
applying any of the three rules (see [50, 135]).

Burkard, Rote, Ruhe, and Sieber [13], Fruhwirth et al. [50], and Ruhe [136]
report on numerical studies comparing different partition rules. The chord rule
and the angle bisection rule are compared with a special implementation of the
angle bisection rule which exploits the bound on the number of MCFs that have
to be solved to construct an approximation with a desired accuracy level. A
primal network simplex algorithm is employed to solve the occuring MCFs. Nine
network instances were generated with n = 100, 400, 800 and m = 10n. Capacities
and costs for the arcs were taken independently at random from the intervals
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{10, . . . , 500} and {1, . . . , 500}, respectively. The special implementation of the
angle bisection rule outperforms the angle bisection as well as the chord rule in
terms of memory and time consumption.

A derivative-free modification of the sandwich approximation approach was
proposed by Yang and Goh [167]. For each interval [zi, zi+1], the upper ap-
proximating function is computed as in (7.3). The lower approximating function
consists of a piecewise linear function that is parallel to the upper approximation.
New breakpoints are computed with the chord rule. The algorithm is applied to
bicriterion quadratic minimum cost flow problems.

In Ruhe and Fruhwirth [137], the sandwich algorithm is used in order to
compute an ε-optimal approximation for BiMCF. Here, a subset T ⊂ Pflow is
called ε-optimal if for all x ∈ Pflow there is a solution x̂ ∈ T such that cix̂ ≤
(1+ε)cix for i = 1, 2. Notice the equivalence to the concept of an ε-approximation
from Definition 6.2 on page 67. In their pseudo-polynomial time algorithm, Ruhe
and Fruhwirth modify the rule for determining additional breakpoints. Instead
of solving only one MCF as in all previous sandwich algorithms, two MCFs are
solved in each iteration. Two general questions are addressed: Given a value
ε, an ε-optimal set of small cardinality is determined and, given the cardinality
of T , an ε-optimal set having a high level of accuracy is computed. Ruhe and
Fruhwirth compare two realizations of their algorithm numerically. Networks are
generated with n = 600 and m = 6000, 9000, 12000 and n = 900 and m =
9000, 18000, respectively. The results are averaged over twenty instances for each
of the five network sizes. Capacities and costs are chosen randomly distributed in
{500, . . . , 5000} and {1, . . . , 1500}, respectively. The numerical study shows that
already for relatively small sized approximating sets, the accuracy level is quite
high.

7.3 The multicriteria minimum cost integer flow problem

All approaches for finding all integer efficient solutions of MMCIF address prob-
lems with two objective functions only – the bicriterion minimum cost integer
flow problem (BiMCIF). The algorithms are comprised of two phases, resembling
the two-phase method for bicriterion discrete optimization problems described in
Section 3.2.1.

Phase 1: Find all supported integer efficient flows.

Phase 2: Find all unsupported integer efficient flows.

Some of the papers concentrate on Phase 1 only. These approaches can be consid-
ered as approximations of the integer nondominated set. Analogously to the struc-
ture in Section 7.2, these approximation approaches are discussed in Section 7.3.2,
while the exact approaches are discusssed in Section 7.3.1. When presenting the
latter group of papers, I therefore focus on Phase 2 only assuming that Phase 1
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has already been solved. Several general ideas are employed to implement Phase 2.
Firstly, structural results are used such as the fact that each efficient flow is an
extreme efficient solution of BiMCIF with modified capacities. Secondly, it is ex-
ploited that consecutive supported nondominated points on the efficient frontier
define triangles with remaining nondominated points restricting the search area
for undiscovered nondominated points. Thirdly, well-known concepts from differ-
ent research areas like the ε-constraint method and the branch-and-bound method
are combined and applied in the bicriterion flow context.

Three approaches for finding all efficient/nondominated points for BiMCIF
are presented subsequently. Although literature shows that two of them lack in
argumentation, they contain a thorough analysis of some structural properties of
BiMCIF and I have therefore chosen to present their main ideas. Below, I discuss
some general results for BiMCIF which will be needed in the descriptions of the
algorithms in Sections 7.3.1 and 7.3.2.

Lee and Pulat [99] elaborate on the cycle relationship among basic feasible
flows and investigate the structure of solutions of BiMCIF. Let xr and xr+1 be
two efficient basic solutions of BiMCF with criterion points yr and yr+1 which
are graph theoretically adjacent in YN . Due to the total unimodularity of the
constraint matrix, xr and xr+1 are integral. Consider the basic tree T of xr and
let (s, t) be the nonbasic arc whose inclusion in T yields xr+1. It is well-known
that the union of T and (s, t) contains a unique cycle. Let δst ∈ N0 denote
the maximum amount of flow that can be sent along this cycle. The number of
supported integer nonextreme nondominated points on the line connecting yr and
yr+1 is δst − 1. Furthermore, such integer points are equidistant from each other,
[99, 133]. Figure 7.2 illustrates this result. Here, δst = 3. Augmenting the cycle
induced by (s, t) by 1 and 2 units results in the points y′ and y′′, respectively.

Let (i, j) 6= (s, t) be a nonbasic arc in the bases of xr and xr+1 whose arc flow
xij is equal to its lower bound lij . Assume it is feasible to introduce arc (i, j) into
the bases of xr and xr+1. Let xr′

and xr+1′

be the resulting flows when sending
one unit of flow along the cycles originating from adding arc (i, j) to the basic trees
of xr and xr+1, respectively. Then, xr′

and xr+1′

are efficient flows for a modified
BiMCF with respect to an increased lower bound l′ij := lij +1. Note that the bases
of xr and xr′

(xr+1 and xr+1′

) are the same. Hence, it is possible to introduce the
nonbasic arc (s, t) in the basis of xr′

to obtain xr+1′

, (see Figure 7.2).
Let yp := Cxp for p = r, r′, r + 1, and r + 1′. It is shown in Lee and Pulat [99]

that the slopes of the two lines joining yr and yr+1 and yr′

and yr+1′

, respectively,
are identical. Furthermore, the number of integer flows lying on each of these
lines differ by at most one. The distances between these integer points lying
on the parallel lines are the same. In Figure 7.2, the number of points on the
line connecting yr′

and yr+1′

is one less than the number of points on the line
connecting yr and yr+1. The distances between points on these lines are identical,
e.g. ||yr′

− y′′′||2 = ||yr − y′||2.
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Figure 7.2: Illustration of the structure of Y.

Note that these results can be generalized when increasing the lower bound lij
of nonbasic arc (i, j) by more than one unit assuming feasibility is maintained.
These generalizations are indicated by the dashed lines in Figure 7.2. Obviously,
analogous arguments can be used if xij = uij instead of xij = lij . Based on
this idea, Lee and Pulat [99] prove that any efficient integer flow x ∈ XE can be
obtained as a supported efficient solution with respect to modified lower and upper
capacities on some arcs. Ehrgott [41] generalizes this result to MMCIFs with more
than two objectives.

7.3.1 Exact methods

Lee and Pulat [99] assume that all supported extreme nondominated points and
all other supported nondominated points are explicitly known. The general results
above are used to compute candidate points located inside the triangles defined
by consecutive supported nondominated points. Instead of explicitly testing all
combinations of modified lower and upper capacities, an implicit search for efficient
flows is performed.

For each supported integer efficient extreme point xr, it is checked whether
a nonbasic arc (i, j) 6= (s, t) can enter the basic tree of xr possibly leading to
an unsupported efficient solution xr′

. Integer points on the line that connects
yr′

and yr+1′

are generated as well. Rules are established that exclude nonbasic
arcs from consideration which yield candidates that are dominated by previously
found candidates. For example, it is observed that if yr′

∈ {yr} ⊕ R2
≧

and the
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Figure 7.3: Illustration of a rule eliminating dominated points.

number of integer points on the line connecting yr′

and yr+1′

is less than or
equal to the number of integer points on the line connecting yr and yr+1, then all
points resulting from introducing (i, j) to the basic tree of xr are dominated (see
Figure 7.3).

Thus, not all feasible flows are generated – i.e. the search is, indeed, implicit.
After all candidates have been generated by checking all supported efficient ex-
treme points and all possible nonbasic arcs, a filtering process deletes dominated
points from the candidate set. It is claimed that the remaining points are non-
dominated and all nondominated points have been found. The algorithm was
implemented and tested on six different problem set-ups. The number of nodes
and arcs vary between 10 to 20 and 20 to 50, respectively. Five different instances
have been randomly generated and solved for each set-up. For more details, see
the PhD thesis by Lee [97].

Huarng, Pulat, and Ravindran [79] extend the algorithm by Lee and Pulat
focusing on degeneracy phenomena.

Sedeño-Noda and González-Martín [146] claim that the algorithm stated
in [99] – and thus also in [79] – is incorrect. They argue that Lee and Pulat
might miss some efficient flows since their algorithm introduces only two nonbasic
arcs (i, j) and (s, t) at a time whereas more than two arcs are needed in general.
Sedeño-Noda and González-Martín use a left-to-right approach starting with the
efficient solution that is optimal with respect to objective function c1 to find
unsupported efficient integer flows. Each efficient flow found by the algorithm is
associated with a set of nonbasic candidate arcs, the introduction of which might
possibly yield an unsupported efficient flow. Filtering rules similar to those in [99]
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Figure 7.4: Illustration of the algorithm by Sedeño-Noda and González-Martín
[146].

are utilized to reduce the number of nonbasic arcs in these candidate sets that
are stored for further investigation. In each iteration, a new integer efficient flow
xnew is obtained by adding a nonbasic arc (i, j) to the basic tree of a previously
found efficient flow xold. The left-to-right approach requires that Cxnew has the
smallest c1-value among all undiscovered nondominated criterion points. This is
implemented by checking all known efficient flows with non-empty candidate sets.
Among all combinations of known efficient flows and nonbasic candidate arcs,
the one yielding the nondominated point with smallest c1-value is chosen. The
candidate set of xold is assigned to xnew , while the arc (i, j) is deleted from the
candidate set of xold. Doing this ensures that combinations of nonbasic variables
are taken into account when searching for unsupported nondominated points. The
procedure stops when all candidate sets are empty.

Figure 7.4 illustrates the algorithm: Suppose that points y1, y4, and y9 are
the points obtained after Phase 1. The candidate nonbasic arcs associated with
point y1 yield points y2, y3, and y7. In the first iteration, point y2 is generated
since it has smallest c1-value among all undiscovered nondominated points. The
candidate set of y2 is the same as the one of y1 as indicated by the dashed arrows.
[146] do not investigate the points y5, y6, and y8 any further, since these points
are dominated.

In their numerical tests, 180 random samples are generated with 10 to 25
nodes and 20 to 100 arcs. Sedeño-Noda and González-Martín observe that the
number of unsupported nondominated criterion points increases with the size of
the networks. In their study, some 90% of all efficient flows are unsupported.

Przybylski, Gandibleux, and Ehrgott [132] show the incorrectness of the
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approach suggested by Sedeño-Noda and González-Martín, since the latter au-
thors implicitly assume that the adjacency graph is connected. But [132] gives a
counterexample proving that the graph theoretical connectivity property does not
hold for BiMCIF. They conclude that it is not possible to find all nondominated
objective vectors for BiMCIF with a straightforward application of the network
simplex algorithm. The result of [132] indicates that a different definition of an
adjacency graph is needed to establish the graph theoretical connectivity result
for MMCIF. One way to do this is based on Theorem 9.3 presented in Section 9.2.
There it is proved that any efficient flow x can be obtained from another efficient
flow x′ by addition of an efficient incremental circulation from the incremental
graph of x′. Furthermore, it is shown that no such addition of an efficient flow
and an efficient circulation can return a non-efficient flow. Hence the modified
adjacency graph containing all integer efficient flows is complete and thus trivially
connected.

Figueira [47] proposes a branch-and-bound approach to find all nondominated
criterion points for BiMCIF. Each pair of supported extreme nondominated points
defines a triangle in the objective space where unsupported nondominated points
may be located. Each of these triangles are searched for unsupported nondomi-
nated points in a left-to-right approach. The efficient flows found by the algorithm
are stored in a list Φ with decreasing c2-values. The ε-constraint problem (7.7) is
solved using a branch-and-bound method to decide whether there are unsupported
nondominated points having c2-values less than the first element x̂ and larger than
the second element in the list Φ.

min c1x

s.t. c2x ≤ c2x̂ − 0.5

x ∈ Xflow

(7.7)

All subproblems occuring in the branch-and-bound procedure are stored in a list
Ψ. Problem (7.7) is the current problem and its continuous relaxation is solved.
Let xrel denote the optimal value of the relaxed problem. If xrel is integer, the op-
timal solution of (7.7) is found and xrel is known to be efficient. If not, branching
is performed to find an integer solution as described in the following. Note that
yrel = Cxrel is a vector located on the efficient frontier and can thus be determined
by sending a fractional value along the cycle that connects the two nondominated
extreme points in the triangle of interest. Let (s, t) denote the arc that defines
this cycle. Two new problems are set up by introducing to (7.7) the constraints
lst ≤ xst ≤ ⌊xrel

st ⌋ and ⌊xrel
st ⌋ + 1 ≤ xst ≤ ust, respectively. The costs of the con-

tinuous relaxations of these subproblems are computed using the network simplex
algorithm. Both problems are added to the list Ψ and branching is now performed
on these two problems. Three rules are set up for fathoming: A subproblem is
discarded from consideration when it has no feasible solution or when its cost is
greater than the cost of the current best solution. If a subproblem has an integer
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solution x̃, with a cost lower than the cost of the current best solution, then all
subproblems having a cost greater than c1x̃ are removed from Ψ and x̃ becomes
the current best solution. The algorithm iterates until an optimal integer solution
to problem (7.7) is found. Whenever an optimal solution of (7.7) is found, the
first element of Φ is deleted. If the solution of (7.7) is a new efficient solution, it
is inserted in the front of Φ and the algorithm proceeds.

7.3.2 Approximation methods

Two lines of thoughts are dividing the authors providing a representation set for
the solutions of MMCIF. Some interpret this problem as the calculation of all
integer efficient points on the efficient frontier [98, 117]. Others compute only a
limited amount of compromise solutions [17, 41, 66, 108, 115, 116]. The latter
group of papers will be reviewed in Section 7.4.

Compared with algorithms looking for all efficient solutions of BiMCIF, papers
dealing with the determination of the integer flows on the efficient frontier of
BiMCF face a conceptually easier task. In fact, all integer flows on the efficient
frontier can be found by methods designed for solving the continuous BiMCF
only involving considerations of network cycles already discussed in Section 7.2,
in particular using the ideas of [98, 133].

Lee and Pulat [98] extend their algorithm for determining all efficient extreme
points in decision space for the continuous BiMCF to find all integer efficient points
on the efficient frontier. While moving from one efficient extreme solution, xr with
objective value yr to the graph theoretically adjacent efficient extreme solution
xr+1 with objective value yr+1, an integer value δst is sent along the nonbasic
arcs (s, t). All intermediate integer points on the frontier line piece [yr, yr+1] are
determined as

yr + q ·
yr+1 − yr

δst

, where q = 1, . . . , δst − 1 .

Nikolova [117] develops an algorithm finding all supported integer efficient
solutions of BiMCF with a designated source node s and sink node t. A flow of
ρ units are to be shipped from s to t. The following definition introduces some
terminology also to be used in Section 9.2.

Definition 7.1 In a network with a designated source node s and sink node t, a
feasible flow x sending ρ units from s to t has (flow) value v(x) = ρ.

Nikolova proves that each supported efficient solution of BiMCIF, with flow value
ρ, can be obtained as a sum of a basic feasible solution x′ with flow value v(x) = ρ
and an efficient circulation flow of value 0 in the incremental graph G(x′). Actually,
a stronger result is presented in Theorem 9.3 in Section 9.2, from which the result
by Nikolova can be derived easily.
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7.4 Finding compromise solutions

A group of authors refer to the theoretical complexity of generating all efficient
solutions of MMCF and MMCIF proven by Ruhe [134]. The difficulty faced by a
decision maker to choose from a large set of offered efficient flows is also discussed.
Based on this insight, several methods for generating only a limited amount of
compromise solutions are proposed.

Obviously, it is easy to compute just a single efficient solution, since lexico-
graphical minimum cost flows are known to be efficient. Although an arbitrary
lexicographical solution is in general not a good compromise, Calvete and Mateo
([16, 17]) elaborate on this idea.

Calvete and Mateo [16] deduct complementary slackness optimality conditions
for the lexicographical ordering and specify two algorithms for finding a lexico-
graphical minimum cost flow: lexicographical generalizations of the out-of-kilter
method and of the primal-dual method, (see [2]). Numerical comparisons (using
test networks with Q = 2, 3, 5, and 15 objective functions and n and m varying
between 27 and 102 and 250 and 1000, respectively) between these algorithms
indicate that the out-of-kilter algorithm outperforms the primal-dual method. An
application in water resource planning is discussed.

A sequential approach for solving the lexicographical MMCF problem is intro-
duced in [17]. First, the network flow problem regarding the objective function
with the highest priority is solved by using some MCF algorithm. The flow on
arcs having non-zero reduced costs is fixed to the current value. This ensures that
the current flow remains optimal for the objective function currently under con-
sideration throughout the algorithm. The flow structure is still preserved when
fixing variables. The reduced network flow problem is then solved regarding the
objective function with the second highest priority, and so on. This iterative pro-
cedure terminates when all objective functions have been considered or when the
flow is fixed to some value on every arc. Two different strategies for fixing flow
on arcs are specified and numerically compared using the same instances as in
Calvete and Mateo [16]. The solution obtained with either of the algorithms by
Calvete and Mateo is a supported integer efficient flow.

Nikolova [115, 116] develops two interactive algorithms for finding an integer
compromise solution of MMCF with side constraints. In [115] the side constraints
are imposed initially by a decision maker but may be altered during the algorithm
to obtain feasibility. In [116] the side constraints are imposed during the algorithm.

Nikolova [116] initially finds a solution of the weighted sum method with equal
weights. In each iteration of the algorithm the decision maker is asked to classify
which criteria should be improved, which criteria can be worsened and which
criteria should be kept at the same value. Exploiting the same ideas of fixing flow
on arcs and reducing the considered network as Calvete and Mateo [17], smaller
MMCFs and BiMCFs are solved using the weighted sum method and a left-to-right
approach resembling the one found in Pulat et al. [133], respectively.



7.4. Finding compromise solutions 105

Nikolova [115] solves in each iteration of the interactive algorithm a BiMCF by
a left-to-right approach. The two objectives to be considered are a weighted sum
of already considered objectives and an objective for which the decision maker’s
constraints have not been fulfilled, respectively. If infeasibility is revealed during
the algorithm, the decision maker is asked to change the requirements. The so-
lution obtained with either of the algorithms by Nikolova is a supported integer
efficient flow.

Hamacher [66] develops a polynomial time algorithm for solving the K best
integer MCF, (see also Chapter 5). This algorithm is extended to a solution
procedure for the max ordering (MO) flow problem that minimizes the worst of
the single objective functions. Considering as before Q objectives to be minimized
simultaneously, the MO flow problem can formally be stated as

min
x∈Xflow

max
q=1,...,Q

cqx .

It is noted that there exists at least one flow which is both a MO flow and efficient.
The crucial part of the developed ranking algorithm is to obtain the second best
solution x2 for a MCF, given the best solution, x1. This is achieved utilizing the
network structure by determination of a proper minimal cycle O in the incremental
graph of x1, G(x1). This cycle is added to x1 yielding x2. The tree structure of
the algorithm is built by consecutive changes of lower and upper arc bounds,
ensuring intactness of the network structure. By applying the ranking method for
a weighted sum of the Q objectives, a lower bound for the MO flow problem is
improved iteratively until an integer MO solution has been identified.

Ehrgott [41] extends the ideas of Hamacher [66] in the search for a solution
to the integer lexicographical max ordering network flow problem. A lexicograph-
ical max ordering solution is known to be a max ordering flow as well as an
efficient flow. This is based on the fact that if x1, . . . , xK are the K best flows
with respect to the first objective, i.e. c1x1 ≤ c1x2 ≤ · · · ≤ c1xK ≤ c1x, ∀x ∈
Xflow\{x1, . . . , xK}, then c1xK > minx∈Xflow

maxq=1,...,Q cqx implies that all max
ordering solutions are contained in {x1, . . . , xK}. Therefore, Ehrgott proposes to
identify the lexicographical max ordering solution by applying the ranking method
for MCF of [66] followed by a suitable sorting and selection of the obtained solu-
tions.

Mustafa and Goh [108] find an integer efficient compromise solution to BiM-
CIF and to the tricriterion minimum cost integer flow problem (TMCIF), respec-
tively. The software package DINAS [118], originally designed for solving trans-
shipment problems involving facility location, is used to find a non-integral efficient
compromise solution. An integral solution of BiMCIF is obtained by rounding all
non-integral flow values on arcs to their nearest integer value. This is justified
by the fact that non-integrality in an efficient solution for the bicriterion case can
only occur on a unique cycle between two adjacent efficient extreme points with
criterion points on the efficient frontier. Only in the case where the deviation from
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the nearest integer value is 1/2, the cycle needs to be traced to get the correct
flow direction on the arcs. The rounding process corresponds to sliding to the
nearest integer point on the efficient frontier, and hence the identified solution is a
supported integer efficient flow. The result is generalized to TMCIF obtaining also
a supported efficient solution. The proposed algorithm is applied to the practical
problem of assigning courses to faculty members.

Figueira, M’Silti, and Tolla [48] provide an interactive method for finding
a robust solution of MMCIF. An initial solution is found applying the augmented
weighted Tchebycheff method [152, 153]. When using the augmented weighted
Tchebycheff method as a scalarization technique, a single criterion MCF with side
constraints has to be solved. The obtained solution is presented to the decision
maker who builds an indifference area using thresholds around the obtained non-
dominated point in the objective space. Further points located in the indifference
area are identified by a heuristic method based on Lagrangian duality and subgra-
dient techniques. The authors claim to be able to perform a test of the quality of
the obtained solutions from the decision maker’s point of view without explicitly
knowing the decision maker’s utility function. The outcome of the algorithm is
the most robust solution of the ones in the indifference area. This solution need
not be an efficient flow for MMCF. The algorithm was implemented and tested
on bicriterion transportation problems with 200 nodes and the number of arcs
ranging between 1308 and 2900.

The method by Sedeño-Noda and González-Martín [147] that finds all
efficient extreme points for BiMCF (described in Section 7.2.1), consists of multiple
applications of a subroutine performing guided search. As pointed out in [147],
this subroutine, on its own, serves as a solution method for generating an efficient
extreme point located in a desired region of the objective space.

Sun [155] investigates computational efficient algorithms for generating not
only one but a finite number of nondominated solutions with the augmented
weighted Tchebycheff method. The network simplex method with side constraints
proposed by Chen and Saigal [21] is capable of solving the occuring MCFs with
side constraints. Three strategies are proposed to produce good starting solutions
for this specialized network simplex algorithm.

1. The weighted sum method.

2. The Tchebycheff method.

3. A sequential combination of the weighted sum method and the Tchebycheff
method, i.e. a solution obtained with the weighted sum method is used as a
starting solution for the Tchebycheff method.

The optimal solution of the three strategies is transformed into an initial basic fea-
sible flow for the augmented weighted Tchebycheff problem. The network simplex
method with side constraints uses the starting solution and solves the augmented
weighted Tchebycheff problem to optimality.



7.5. Schematic résumé of reviewed MMCF and MMCIF papers 107

The three strategies are numerically compared with the alternative of applying
the network simplex method with side constraints directly. For testing, networks
with Q = 3, 5, and 7 criteria and n = 100, 200, 300, 400, 500 and m = 20n are
generated. Costs are taken randomly from the interval {1, . . . , 10}, while all lower
capacities are set to be zero and the upper capacities are randomly chosen from
the interval {100, . . . , 500}. For each of the 15 parameter set-ups, 10 instances are
solved. Strategy 3 outperforms the other algorithms with respect to CPU times
in almost all test problems, which is due to a reduced number of iterations needed
by the specialized simplex method for network problems with side constraints.

7.5 Schematic résumé of reviewed MMCF and MMCIF

papers

To make a direct comparison of the solution procedures for the multicriteria mini-
mum cost flow problem possible, the main features of the reviewed papers are con-
cisely listed in Table 7.3 on page 109. For this purpose, I adapt the classification
scheme of Ehrgott and Gandibleux [42]. The articles are grouped analogously as
in Sections 7.2 to 7.4 and listed in alphabetical order within each group. Table 7.3
has six columns. In the first column, I refer to the article under consideration.
The number of objective functions in this article is listed in the second column.
Here, I distinguish between approaches designed for bicriterion (denoted by 2) and
general multicriteria problems (denoted by Q). Note that all articles consider sum
objectives. The third and fourth column provide information about the type of
the problem and the applied solution methods, respectively. Tables 7.1 and 7.2
explain the abbreviations used in these columns. In the last two columns, a “+”
indicates that examples are included in the paper, and that the algorithm has
been implemented by the authors, respectively.
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Entry Explanation

E Finding the efficient set

e Finding a subset of the efficient set
SE Finding the supported efficient solutions

Ê Finding an approximation of the efficient set
lex Solving the lexicographical problem

MO Solving the max ordering problem
lexMO Solving the lexicographical max ordering problem

C Finding a compromise solution

Table 7.1: Entries for Problem Type.

Entry Explanation

SP Exact algorithm specifically designed for the problem

BB Algorithm based on branch and bound

εC Algorithm based on the ε-constraint method
IA Interactive method

A Approximate algorithm with worst case performance bound
LP Method based on linear programming

Table 7.2: Entries for Solution Method.
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Paper Number of Problem Solution Example Imple-
objectives Type Method mented

MMCF

Burkard et al. [13] 2 Ê A − +

Fruhwirth et al. [50] 2 Ê A − +

Lee and Pulat [98] 2 E SP + −

Malhotra and Puri
[101]

2 E SP + −

Pulat et al. [133] 2 E LP + +

Ruhe [136] 2 Ê A + +

Ruhe [136] 2 E SP + +

Ruhe and Fruhwirth
[137]

2 Ê A − +

Sedeño-Noda and
González-Martín [145]

2 E LP + +

Sedeño-Noda and
González-Martín [147]

2 E SP + +

MMCIF

Figueira [47] 2 E SP/BB/εC + −

Huarng et al. [79] 2 E SP + +

Lee and Pulat [98] 2 SE SP − −

Lee and Pulat [99] 2 E SP + +

Nikolova [117] 2 SE SP − −

Sedeño-Noda and
González-Martín [146]

2 E SP + +

Compromise solutions

Calvete and Mateo [16] Q lex SP + +

Calvete and Mateo [17] Q lex SP + +

Ehrgott [41] Q lexMO SP + −

Figueira et al. [48] Q C IA + +

Hamacher [66] Q MO SP − −

Mustafa and Goh [108] 2(3) C SP + −

Nikolova [115] Q C SP/IA − −

Nikolova [116] Q C SP/IA − −

Sedeño-Noda and
González-Martín [147]

2 C SP + −

Sun [155] 2 e SP − +

Table 7.3: Classification of the reviewed papers.





Chapter 8

Representative system for

bicriterion discrete optimization

problems

The bicriterion discrete optimization problem (BiDOP) can be stated as

min {y(x) := (y1(x), y2(x)) : x ∈ X}

where X is the discrete feasible set and y : X → Z2 is a vector-valued objective or
criterion function. Y := y(X ) denotes the set of attainable criterion points. Recall
that XE and YN denotes the efficient solutions and the corresponding nondomi-
nated points, respectively.

Since the problem of finding YN is, in general, intractable for discrete as well as
for continuous bicriterion optimization problems (see Ehrgott [40] and Ruhe [136]),
the idea of computing a representation of YN arose. The term “representation”
is not used consistently in literature. Here, a representation (or a representative
system), Rep, is a set of points in Y that is computed instead of the nondominated
set YN . Since, in general, Rep 6= YN , the question about the “quality” of such
a representation naturally occurs. Although quality measures of a representation
of the nondominated set were implicitly used in some algorithms (for example as
stopping criteria), the article by Sayin [142] seems to be the first which explicitly
deals with the question of how to measure the quality of a representation. On
the case of discrete problems on which I focus in this chapter, the algorithms are
evaluated based on the following quality attributes of a representative system.

1. Cardinality

2. Accuracy

3. Representation error

4. Cluster density

111
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Here, cardinality refers to the fact that the representative system should be
“reasonably” small, since the computation of every representing point requires a
certain effort, usually related to the solution of a (single criterion) optimization
problem. Furthermore, if too many points exist in a representative system, de-
cision makers may find it impossible to consider all alternatives. An accurate
representation should mirror the complete set of nondominated solutions satis-
fying some quality measure. Informally, this excludes a situation where large
parts of YN are not represented by any point in the representative system. With
representation error the maximal distance, maxz∈Rep miny∈YN

||z − y||, between
the representing points and nondominated points is measured. If all representing
points are contained in YN , there is no representation error. The cluster density
is closely related to the cardinality issue. It should be avoided that Rep contains
large clusters of points, since all points in a cluster would be representatives for
the same subset of nondominated points.

The reader should be aware that these quality issues are conflicting by nature.
For example, the smaller the cardinality of a representation, the larger the “gaps”,
i.e. the more inaccurate the representation.

For continuous bicriterion optimization problems, the sandwich algorithm (see
Section 7.2.2, Burkard et al. [13, 14], and Fruhwirth et al. [50]) and the gauge
algorithm (see Klamroth, Tind, and Wiecek [88]) are among the most sophisticated
methods for generating representations of YN . Both algorithms iteratively refine
a piecewise linear structure by generating new approximating points until this
structure is close enough to YN . For a more complete overview of methods for
generating representations and for a discussion about which of the above quality
attributes the sandwich and the gauge algorithm address, the reader is referred to
the survey paper by Ruzika and Wiecek [139].

For bicriterion discrete optimization problems, the literature on exact ap-
proaches for computing representations is scarce. Among the few exact meth-
ods is the gauge algorithm, [88]. Although this algorithm is originally intended
for continuous problems, it is also applicable to discrete problems. The papers
by Kouvelis and Sayin [91] and Sayin and Kouvelis [143] address the same issue.
To ensure that only (strongly) nondominated points are presented, they propose
a two-stage subproblem approach to find a representation with provable quality
features. The subproblems require solution of min-max problems resembling the
approach for max-ordering problems.

On the other hand, there exists a large variety of heuristic methods for gen-
erating representations, (see e.g. the overview in Ehrgott and Gandibleux [42]).
Note that these heuristic approaches often do not address the quality attributes
mentioned above, in particular in regard to the error of the representation. How-
ever, Hansen and Jaszkiewicz [71] present a general framework using non-cardinal
measures to compare two approximations of a given set of nondominated points.

Based on the preceding list of quality measures in this chapter, a generic
method for computing representations of bicriterion discrete optimization prob-
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lems is developed. This approach is referred to as the box method. The represen-
tation consists of a collection of nondominated points, i.e. Rep ⊆ YN . By design,
the algorithms will therefore satisfy the representation error quality criterion with
a zero error.

Each point is associated with a rectangle (or box ) and represents all nondomi-
nated points within this box. The geometrical features of the rectangles can thus
be used to measure the preceding quality attributes.

At any stage of the algorithm, the collection of boxes contains all the non-
dominated set. Hence, the rectangles bound the nondominated set, and thus also
show regions containing no nondominated points. Representing points are gener-
ated with a modification of the ε-constraint method. This method is capable of
generating any nondominated point with appropriate choices of parameters. Fur-
thermore, optimal solutions to the modified ε-constraint problem are known to be
nondominated.

Rectangles have been used previously in the context of bicriterion optimiza-
tion problems. An interactive method by Payne and Polak [125] constructs a
nested family of rectangles based on a decision makers choice of most preferred
rectangle during the algorithm. Payne [124] develops a chain of rectangles con-
taining all nondominated points, ensuring a certain quality aspect to be fulfilled
at termination of the algorithm. Both papers solve iteratively nonlinear programs.
Barichard and Hao [7] consider the union of rectangles containing the nondomi-
nated set. During the execution of their evolutionary algorithm, these rectangles
are updated. For the Q-dimensional (Q > 2) discrete optimization problem, Lau-
manns, Thiele, and Zitzler [94] solve a sequence of constrained single-objective
problems to generate all nondominated points. This is done by adaptively updat-
ing a sequence of Q-dimensional boxes. Instead of focussing on the criterion space,
one can also consider the decision space. The Big Square – Small Square (BSSS)
method by Hansen [72] has been applied among others by Skriver and Andersen
[150] to eliminate rectangles containing only non-Pareto locations for a bicriterion
semi-obnoxious location problem.

The remainder of this chapter is organized as follows. In Section 8.1, a variant
of the well-known ε-constraint method is introduced which will be employed for
generating representing points. Two versions of the box algorithm for computing a
discrete representation with provable quality features are proposed in Section 8.2.
The algorithms are discussed and their quality properties are linked to existing
literature in Section 8.3. In Section 8.4, possible future research directions are
outlined for this topic and a few comments on a recent computational study of
the box algorithms are given.
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8.1 The lexicographical ε-constraint method

The scalarization that will be used intensively in the remainder of this paper
is a lexicographical variant of the well-known ε-constraint scalarization (see e.g.
Chankong and Haimes [18]). The following mathematical programme is referred
to as the lexicographical ε-constraint problem.

lex min (y2(x), y1(x))

s.t. y1(x) ≤ ε

x ∈ X .

(8.1)

In (8.1), the vector (y2(x), y1(x)) is lexicographically minimized, and its feasible
set is the feasible set of the bicriterion optimization problem X with an additional
constraint bounding the y1-values from above.

The lexicographical ε-constraint problem has several desirable properties which
are very useful in constructing a representation of the nondominated set. In par-
ticular, the next result shows that the lexicographical objective function yields
(strongly) efficient solutions – opposed to weakly efficient ones in the classical
ε-constraint approach.

Theorem 8.1 Let x̂ ∈ X be an optimal solution of (8.1). Then x̂ ∈ XE.

Proof. Assume that x′ ∈ X with y(x′) ≤ y(x̂). Therefore, yj(x
′) ≤ yj(x̂), j = 1, 2

with at least one strict inequality. In particular, y1(x
′) ≤ y1(x̂) ≤ ε, such that x′

is feasible for (8.1). Therefore, x′ contradicts the optimality of x̂ in (8.1). �

Conversely, any efficient solution can be obtained with the lexicographical ε-
constraint scalarization with an adequate choice of ε.

Theorem 8.2 Let x̂ ∈ XE. Then ε := y1(x̂), yields x̂ as an optimal solution
for (8.1).

Proof. The proof follows directly from the same result of the classical ε-constraint
scalarization, see e.g. [18]. �

In particular, the one-to-one correspondence between solutions of (8.1) and
XE implies that we get supported as well as unsupported efficient solutions. This
is not achievable by the weighted sum method (see page 28) which is by far the
most utilized scalarization technique in literature.

An additional advantage of using the lexicographical ε-constraint method is
that the original objective functions are maintained. This is an appealing fea-
ture, especially if the original objective functions possess structural properties like
linearity or convexity. To the best of my knowledge, all scalarization techniques
which preserve linearity of the objective functions and which are capable of gener-
ating all nondominated points for discrete problems, modify the constraint set by
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at least one constraint. Therefore, the additional constraint induced by the lexico-
graphical ε-constraint method can be viewed as a smallest possible modification.
For a list of the most common scalarization techniques refer to Chapter 17 in [49].

8.2 Two versions of the box algorithm

In this section, two versions of the box algorithm for computing a representation
(in Y) of YN of a bicriterion discrete optimization problem are proposed. Both
versions allow controlling the quality attributes of a representation as proposed in
the introduction of this chapter.

8.2.1 Initialization and update

Before explaining the details, the major ideas of the box algorithm are outlined.
Initially, the two lexicographical optimal solutions are computed. These points
determine a rectangle (the starting box ) containing the complete nondominated
set. In the following, rectangular pieces of the starting box are discarded based
on additional information obtained by iteratively solving (8.1) with adequately
chosen values for ε. This yields a collection of rectangles or boxes containing the
nondominated set in each stage of the algorithm. Furthermore, for each box, a
nondominated point representing the set of nondominated points inside the box
is known. The box algorithm stops based on a predetermined accuracy, which is
measured by the largest area of the remaining boxes.

More detailed, the box algorithm works as follows. Initially, both lexicograph-
ical minima of the bicriterion optimization problem

yUL := lex min
x∈X

(y1(x), y2(x)) and yLR := lexmin
x∈X

(y2(x), y1(x))

are determined. Obviously, YN is a subset of R(yUL, yLR), the rectangle with
upper left and lower right vertex yUL and yLR, respectively. This is the starting
box of the algorithms. In general, R(y1, y2) denotes the rectangle having y1 =
(y1

1 , y
1
2) ∈ Z2 as upper left and y2 = (y2

1 , y
2
2) ∈ Z2 as lower right vertex. Moreover,

let a(R(y1, y2)) := (y2
1 − y1

1) · (y
1
2 − y2

2) denote the area of the rectangle R(y1, y2).
Initially, the starting box R(yUL, yLR) contains the complete nondominated

set YN . Whenever additional nondominated points become known during the
execution of the algorithm, one of the boxes will be split up into several smaller
rectangles – while maintaining the inclusion property of YN . The algorithm stops,
when the area of the largest of these boxes is smaller than some given accuracy
∆ > 0. Such a collection of boxes is referred to as a ∆-representation of YN . The
lower right corner point of each of the rectangles is a representing point and will
be added to the representing system.

In the following, we consider a box with a(R(y1, y2)) > ∆, such that the
representation has to be locally updated in R(y1, y2). Consider (8.1) with ε :=
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Figure 8.1: Updating of a rectangle R(y1, y2).

⌊ y1
1+y2

1

2 ⌋. Let x∗ ∈ X be optimal for (8.1) and let y∗ := y(x∗). Due to Theorem 8.1,
y∗ is nondominated. Using the point y∗ and ε, R(y1, y2) is divided into five
rectangles

R1 := R(y1, y∗), R2 := R(p1, p4), R3 := R(p2, p6),

R4 := R(p3, p7), and R5 := R(p5, y2)

(see Figure 8.1), where

p1 :=
(
y∗
1 , y

1
2

)
, p2 :=

(
ε + 1, y1

2

)
, p3 :=

(
y1
1 , y

∗
2

)
, p4 := (ε, y∗

2) ,

p5 := (ε + 1, y∗
2 − 1) , p6 :=

(
y2
1 , y

∗
2

)
, and p7 :=

(
ε, y2

2

)
.

Note that the points p2 and p5 have first coordinate one unit to the right of the
ε-constraint. Furthermore, the point p5 has second coordinate one smaller than
the second objective value of y∗. This is due to the fact that no feasible criterion
point can have non-integral coordinates. In general, pi /∈ Y, i = 1, . . . , 7, i.e. the
points {pi} are not necessarily feasible criterion points. The rectangles R1, R2,
and R4 can degenerate to a line, in which case they are considered to have zero
area.

Proposition 8.3 R2, R3, and R4 can be eliminated, since

(a) (R2 ∪ R3) ∩ YN ⊆ {y∗}, and

(b) R4 ∩ YN ⊆ {y∗}.
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Proof. (a) y∗ is dominating any feasible point in R2 ∪R3. (b) Any feasible point
in R4 contradicts the optimality of x∗ for (8.1). �

Due to the previous result, there does not exist nondominated points in R2, R3, R4,
other than y∗. Consequently, the following corollary holds.

Corollary 8.4

YN ∩ R(y1, y2) ⊆ R1 ∪ R5

It is easy to derive the following result, comparing the size of rectangles R1

and R5 to the size of rectangle R(y1, y2).

Proposition 8.5

a(R1) + a(R5) ≤
1
2a(R(y1, y2))

After having obtained y∗ as a new nondominated point, the representation is
updated associating y∗ with R1 and y2 with R5. By Proposition 8.5, we see that
computing y∗ has locally improved the representation by a factor of 2.

Corollary 8.6 After computing y∗ and adding it to the representation, the rep-
resentation’s accuracy improved in R(y1, y2) by a factor of 2.

8.2.2 The a posteriori algorithm

In this section the updating procedure from Section 8.2.1 is applied iteratively to
place ε-constraints in a rectangle having area bigger than ∆. Assume that ∆ is
given as input in the algorithm. Since ∆ is the measure of the size of the boxes, its
determination may also be left to the decision maker or be computed as a given
percentage of the starting box.

Since the value of the ε-constraint is chosen after the given rectangle is identi-
fied, this method is called an a posteriori algorithm. A pseudo code description is
given in Figure 8.2. Notice that the point y∗ found by the procedure SolveLexMin

is nondominated according to Theorem 8.1.
Note that the a posteriori algorithm is flexible in the sense that it always

chooses the rectangle with the largest area, and the representation is hence only
refined where it is needed. The following theorem establishes finiteness and the
complexity of the a posteriori algorithm.

Theorem 8.7 In finitely many steps, the a posteriori algorithm yields a ∆-repre-
sentation of YN in which all representing points are nondominated. More specifi-

cally, the algorithm performs at most O(a(R(yUL,yLR))
∆ ) iterations.
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1 algorithm APosteriori()

2 Input: A bicriterion discrete optimization problem, ∆ > 0.
3 Output: A representation Rep ⊆ YN with accuracy ∆.

4 yUL := FirstLexMin();

5 yLR := SecondLexMin();

6 Rep := {yUL, yLR}, Ω := {R(yUL, yLR)};
7 while (Ω 6= ∅) do
8 R(y1, y2) := ChooseLargestRectangle(Ω);
9 Ω := Ω \ {R(y1, y2)};

10 ε :=
¨ y1

1+y2
1

2

˝
;

11 y∗ := SolveLexMin(ε); (solves (8.1))
12 Rep := Rep ∪ {y∗};
13 if (a(R(y1, y∗)) > ∆) then Ω := Ω ∪ {R(y1, y∗)};
14 if (a(R(p5, y2)) > ∆) then Ω := Ω ∪ {R(p5, y2)};
15 end while
16 end algorithm

Figure 8.2: The a posteriori algorithm.

Proof. As long as the representation is not a ∆-representation, the algorithm
processes in each iteration the largest rectangle that does not meet the accuracy
of ∆. Due to Corollary 8.6, the resulting rectangle(s) have, after the update, an
area which is at most half the size of the original area. The algorithm is therefore
finite. Due to Theorem 8.1, all representing points are nondominated.

More specifically, the algorithm produces after 2i−1 iterations no more than 2i

rectangles, each of which have an area of at most a(R(yUL,yLR))
2i . Since i∗ =

⌈log2(
a(R(yUL,yLR))

∆ )⌉ is the smallest integer satisfying a(R(yUL,yLR))

2i∗ ≤ ∆, an up-
per bound on the number of iterations to obtain a ∆-representation is 2i∗ − 1 =

2⌈log2( a(R(yUL,yLR))
∆ )⌉ − 1, which is O(a(R(yUL,yLR))

∆ ). �

The following result is a direct consequence of Theorem 8.7.

Corollary 8.8 The a posteriori algorithm runs in O(T1+ a(R(yUL,yLR))
∆ T2) where

T1 and T2 is the time needed to compute a lexicographical minimum and to evalu-
ate (8.1), respectively.

Observe that T1 and T2 depend on the specific problem under consideration.

8.2.3 The a priori algorithm

Rather than deciding on the value of ε for the next ε-constraint problem after each
iteration, in the next algorithm a number of equidistant values for ε are computed



8.2. Two versions of the box algorithm 119
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Figure 8.3: The representation after having solved (8.1) with ε = εq, εq−1, . . . , ε1.

a priori based on the value of ∆. The solution of the corresponding ε-constraint
problems yields a ∆-accurate representation for any given ∆. Consider

εj := yUL
1 +

⌊
j

q + 1
(yLR

1 − yUL
1 )

⌋
, j = 1, . . . , q .

Let ŷj denote the image of the optimal solution to (8.1) with ε := εj. Note that
the points ŷj , j = 1, . . . , q, are not necessarily distinct. For j = q−1, . . . , 1, define

pj :=

{
(εj + 1, ŷj

2 − 1) if ŷj 6= ŷj+1

ŷj otherwise
.

Set pq := (εq + 1, ŷq
2 − 1). The points {pj} are used to define rectangles, but they

are not necessarily feasible in Y. Figure 8.3 illustrates these definitions.
The same reasoning concerning dominance and feasibility as in Proposition 8.3

and Corollary 8.4 applies here as well. Therefore,

YN ⊆ R(yUL, ŷ1) ∪
q−1⋃

j=1

R(pj , ŷj+1) ∪ R(pq, yLR) ,

and hence YN is contained in a collection of at most q + 1 rectangles. For each
rectangle, its lower right corner point is nondominated.

The following proposition evaluates the reduction rate of the unknown area of
interest.
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Proposition 8.9 Suppose the algorithm solves q ε-constraint problems with equi-
distant ε-constraints. Then the sum of the areas of the resulting rectangles is at
most 1

q+1a(R(yUL, yLR)).

Proof.

a(R(yUL, ŷ1)) +

q−1∑

j=1

a(R(pj , ŷj+1)) + a(R(pq, yLR))

= (yUL
2 − ŷ1

2)(ŷ
1
1 − yUL

1 ) +

q−1∑

j=1

(pj
2 − ŷj+1

2 )(ŷj+1
1 − pj

1) + (pq
2 − yLR

2 )(yLR
1 − pq

1)

≤
1

q + 1
(yLR

1 − yUL
1 )

(
yUL
2 − ŷ1

2 +

q−1∑

j=1

(pj
2 − ŷj+1

2 ) + pq
2 − yLR

2

)

≤
1

q + 1
(yLR

1 − yUL
1 )

(
yUL
2 − ŷ1

2 +

q−1∑

j=1

(ŷj
2 − ŷj+1

2 ) + ŷq
2 − yLR

2

)

=
1

q + 1
a(R(yUL, yLR)) �

It should be emphasized that the total area of the rectangles is at most
1

q+1a(R(yUL, yLR)). Hence the biggest rectangle in the representation has area
of at most 1

q+1a(R(yUL, yLR)). We thus get the next result.

Theorem 8.10 To achieve an accuracy of ∆ in the a priori algorithm, q ≤⌈
a(R(yUL,yLR))

∆

⌉
− 1 solutions of (8.1) have to be computed.

The algorithm is explicitly stated in Figure 8.4 and illustrated in Figure 8.3.
Note that the lexicographical ε-constraint problems are solved from right to left
(see line 8 in Figure 8.4). This is in practice faster than going from left to right,
since the solution of the lexicographical ε-constraint problem for ε = εj may
be optimal for εj−1, . . . εj−i, i ≥ 1. Therefore, the solution of (8.1) with ε =
εj−1, . . . , εj−i can be skipped.

8.3 Quality of the box representation

In this section, the quality issues stated in the introduction of this chapter are
addressed for both algorithms.

Cardinality Due to Theorems 8.7 and 8.10, the number of representing points

is at most 2⌈log2(
a(R(yUL,yLR))

∆ )⌉ + 1 and ⌈a(R(yUL,yLR)
∆ ⌉ + 1 for the a posteriori

algorithm and the a priori algorithm, respectively. However, in both cases, a
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1 algorithm APriori()

2 Input: A bicriterion discrete optimization problem, ∆ > 0.
3 Output: A representation Rep ⊆ YN with accuracy ∆.

4 yUL := FirstLexMin();

5 yLR := SecondLexMin();

6 Rep := {yUL, yLR};

7 q :=
˚

a(R(yUL,yLR))
∆

ˇ
− 1;

8 for (j := q to 1) do
9 εj := yUL

1 +
j

j

q+1
(yLR

1 − yUL
1 )

k
;

10 ŷj := SolveLexMin(εj); (solves (8.1))
11 Rep := Rep ∪ {ŷj}.
12 end for
13 end algorithm

Figure 8.4: The a priori algorithm.

worst-case analysis is used to obtain these bounds. It can be expected, that the
number of generated points is much smaller in practice, since solutions can be
optimal for several ε-constraint problems.

Alternatively, the two algorithms can also be formulated in such a way that
the cardinality Υ of the representative system is part of the input data instead of
∆. Then the accuracy ∆ is a function of Υ, i.e. the representation is ∆-accurate
with ∆ = a(R(yUL,yLR)

Υ−1 and ∆ = a(R(yUL,yLR)
Υ−2 for the a posteriori algorithm and

the a priori algorithm, respectively.

Accuracy Both algorithms have as termination criterion a measure for the accu-
racy and therefore this issue has already been discussed in Sections 8.2.2 and 8.2.3.

Using the different accuracy measure of [142] (Sayin calls it “coverage error”)
it is easy to show that Rep is also a d∆-representation in the sense of [142] when
using l∞ to measure distances.

The ε-approximation , introduced in Definition 6.2 on page 67, is a further con-
cept of accuracy from the literature, which measures the percentage distance ε,
between any nondominated point and the nearest representing point in both co-
ordinates. Even though both the concept of an ε-approximation and that of a
representative system serve the same goal of providing the decision maker with
a sufficiently good approximation of the nondominated points, these measures
are not directly comparable to each other. However, the rectangle representation
attained by any of the two algorithms in this paper yields an ǫ-approximation of

ε = max
y∈Rep,y∈R(z,y)

{
y1 − z1

y1

}
,

where y is a representing point in the rectangle R(z, y).
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Finally, it is obvious that both algorithms are exact if ∆ is sufficiently small,
e.g. ∆ = 1.

Representation error Extending ideas from [142], we can define the represen-
tation error formally as

errorRep = max
z∈Rep

min
y∈YN

||z − y||p ,

where ||.||p denotes the lp norm. In both algorithms, only nondominated points
are generated and therefore the representation error is always zero for any p. Note
that max{accuracy, errorRep} is the Hausdorff distance (see (7.5) on page 96)
which is used in a variety of algorithms for computing a representation of YN (for
continuous problems), (see e.g. Section 7.2.2 and [50, 167]).

Cluster density Depending on the application, one can apply filtering proce-
dures (see e.g. [154]) at the termination of either of the two algorithms to reduce
the number of representing points in any rectangle of size ∆ to a desirable amount
of points. This filtering obviously reduces the cardinality of the representation
while maintaining the ∆-accuracy.

8.4 Future research and computational results

Several variations and extentions of the box approach are possible. The first
addresses the way accuracy is measured. Instead of using the area a(R(y1, y2)) of
the boxes, other means, such as the maximal diagonal or the maximal side among
the boxes, may prove useful in certain applications. This can be achieved with the
same general idea as presented in Section 8.2. If the maximal length is attained
in the second component, the ε-constraint is introduced for function y2 instead
of y1. The corresponding analysis of the number of iterations is formally more
complicated but rather straightforward.

An appealing extension is the generalization of the algorithms to discrete prob-
lems with more than two objective functions. If we assume that Q > 2 many
objective functions are given, we can iteratively apply the bicriterion approach to
pairs of objectives and in this get way a representative system. Another approach
is to use Q-dimensional boxes instead of 2-dimensional in the bicriterion case. The
quality of this approach depends on the choice of a good starting box which is easy
for Q = 2 but, in general, very difficult for Q > 2.

The complexity of both versions of the box algorithm depends on the complex-
ity of solving the ε-constraint problems which occur as subproblems. Interesting
research questions concern the usage of the solution of one of these problems in
solving another one with modified ε, and ways on how to measure the effect of an
approximation of the ε-constraint problems inside the box algorithm.
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8.4.1 Computational results

A recent computational study by Ruzika [138] compares the performance of the a
posteriori algorithm presented in this chapter with the algorithm robust proposed
by Sayin and Kouvelis [91, 143].

12 different set-ups of bicriterion knapsack problems were generated using ei-
ther 500 or 1000 knapsack items. The weights of the knapsack items and the
bicriterion cost vectors, all having a maximal value of 5000, were generated by six
different methods. For each set-up, 100 instances were solved.

Both algorithms were implemented in C++ using CPLEX 9.1 [81] to solve
the associated single criterion subproblems. The algorithms produced the same
number of representative points for a given test instance.

On average, the a posteriori algorithm performed 2-3 times faster than algo-
rithm robust. Both algorithms determine nondominated points and have therefore
no representation error. By providing a more dispersed set of representing points
the a posteriori algorithm outperformed algorithm robust on the other quality
issues addressed in this chapter.





Chapter 9

Further developments on

multicriteria network problems

In this chapter, I present some extensions of the ideas from Chapters 6 and 7.
Due to time issues, these extensions have not yet been implemented and cannot
be considered complete.

In Section 9.1, the bicriterion multi modal assignment problem is generalized
to a bicriterion multi modal transportation problem and both problem classes
are derived as subproblems of the bicriterion directed Chinese postman problem.
In Section 9.2, ideas concerning an exact solution procedure for the multicriteria
minimum cost integer flow problem are discussed and one of the core directions
for further research on MMCIF is pointed out.

9.1 Extensions of BiMMAP

The transportation problem is an extension of the assignment problem. Here,
a similar relevant extension of the bicriterion multi modal assignment problem
which has, to the best of my knowledge, not yet been considered in literature is
introduced.

Consider a company supplying a set W of n1 retailers from a set V of n2

production plants. Let si and dj denote the units of goods supplied by plant i and
demanded by retailer j, respectively. Assume that the plants are distributed across
a wide area, and hence multiple routes and multiple modes of transportation can
be chosen when shipping goods from a plant i to a retailer j. Let Lij denote the
number of distinct mode choices. To each mode choice l = 1, . . . , Lij , corresponds
a travel cost c1

ijl and a travel time c2
ijl. In resemblance with BiMMAP, we have

in the transportation cost matrix several two-dimensional cost vectors in each
transportation cell (i, j). Obviously, the company wants to minimize the total cost
of shipping goods from plants to retailers. However, also the total transportation
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time needs to be minimized, so that the persons transporting the goods can be
utilized for other normal daytime routines in idle periods. Hence, the objective
in the bicriterion multi modal transportation problem (BiMMTP) is to identify all
nondominated criterion points for the problem. Let xijl be an integer variable
equal to the number of units of goods transported from plant i to retailer j using
mode choice l. The mathematical formulation of BiMMTP is stated in (9.1), using
again the three-indexed arc set A := {(i, j, l)}ijl.

min
∑

(i,j,l)∈A

c1
ijlxijl

min
∑

(i,j,l)∈A

c2
ijlxijl

s.t. x ∈ XMMTP

(9.1)

in which

XMMTP =

{
x :

n2∑

j=1

Lij∑

l=1

xijl = si, ∀i ∈ W,

n1∑

i=1

Lij∑

l=1

xijl = dj , ∀j ∈ V,

xijl ∈ N0, ∀i, j, l

}
. (9.2)

Following the same ideas as in the solution method for BiMMAP, an exact
two-phase procedure for BiMMTP could be employed. In phase one, a weighted
sum scalarization technique, similar to the one presented in Section 6.1 utilizing a
single criterion TP optimizer, finds all supported extreme nondominated points.
Then, in the second phase, it suffices to use a ranking approach in each of the
relevant triangles in the criterion space, to obtain the remaining nondominated
points. This task could be performed extending the developments on ranking or-
dinary transportation solutions, presented in Section 5.3, to handle multi modal
transportation solutions. Obviously, the effectiveness of this exact two-phase pro-
cedure depends heavily on the nature of reoptimization in ranking transportation
solutions, and would have to be validated through extensive numerical testing.

Actually, both BiMMAP and BiMMTP developed as subproblems of a more
complex problem class. Consider an instance of the Chinese postman problem (see
Section 2.1.5), in which the optimization process involves both a time criterion and
a cost criterion. Hence, the bicriterion Chinese postman problem (BiCPP) arises.
Bicriterion versions of the three most classical CPPs, (the directed, undirected
and mixed CPP), are, with obvious notation, denoted by BiDCPP, BiUCPP and
BiMCPP . BiDCPP and BiUCPP can be interpreted as generalizations of the
bicriterion assignment problem making them intractable and NP-complete, even
though their single criterion counterparts are polynomially-time solvable, [39, 148].
Obviously, BiMCPP is NP-complete as its single criterion counterpart, and is also
intractable.
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1 procedure BiDCPP_1()

2 Input: A directed strongly connected non-Eulerian graph.

3 Output: YN for BiDCPP.

4 W :=
˘
i ∈ N : si := d−(i) − d+(i) > 0

¯
;

5 V :=
˘
j ∈ N : dj := d+(j) − d−(j) > 0

¯
;

6 for all ((i, j) ∈ W × V ) do
7 {(c1

ij1, c
2
ij1), . . . , (c

1
ijLij

, c2
ijLij

)} := BiSP(i, j);
8 end for all
9 C := {(c1

ij1, c
2
ij1), . . . , (c

1
ijLij

, c2
ijLij

)}ij;

10 YN := BiMMTP(W, V, C);
11 end procedure

Figure 9.1: An algorithm for the bicriterion directed Chinese postman problem.

Let me focus entirely on the bicriterion directed Chinese postman problem.
Consider a strongly connected directed graph G = (N, A), and let W := {i ∈ N :
si := d−(i)−d+(i) > 0} and V := {j ∈ N : dj := d+(j)−d−(j) > 0}. Therefore,
W and V are the sets of nodes from G with an excess of incoming and outgoing
arcs, respectively. BiDCPP is to find all nondominated augmentations of G to
make it Eulerian, which a directed graph is known to be if every node has in-
degree equal to out-degree. Given an Eulerian graph, the actual traversal of the
graph can be completed by the same algorithms applied for the single criterion
case. As for the single criterion DCPP, the bicriterion augmentation problem can
be solved with a two-phase method. In phase one, all efficient paths from any
node in W to any node in V must be identified, after which phase two must
determine all nondominated ways of matching these paths in order to cancel any
node-deviations in the original graph.

Let Lij denote the number of efficient paths in G from a node i ∈ W to a node
j ∈ V each with two-dimensional cost vector (c1

ijl, c
2
ijl), l = 1, . . . , Lij . Let xijl

denote the number of times the arcs in path l between nodes i ∈ W and j ∈ U
are added to the original graph G. An instance of the bicriterion multi modal
transportation problem exactly solves the problem of finding all nondominated
augmentations of G to make it Eulerian. The Lij two-dimensional cost vectors in
each transportation cell (i, j) correspond to the nondominated costs of the paths
between nodes i and j in G. Also, the supply si corresponds to the excess amount
of incoming arcs to node i, and dj the excess amount of outgoing arcs from node j.

A complete description of the suggested solution procedure BiDCPP_1 is given
in Figure 9.1 in which BiSP(i, j) returns all nondominated cost vectors for the
bicriterion shortest path problem between i and j in G, and BiMMTP is the exact
two-phase solution procedure for BiMMTP.

In Figure 9.2, an alternative exact two-phase method, BiDCPP_2, for the bi-
criterion directed Chinese postman problem is suggested. Here, the parametric
minimization problem of (3.4) with X := XDCPP := PDCPP ∩ Zm is solved it-
eratively in phase one. Recall, that the directed Chinese postman problem is a
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1 procedure BiDCPP_2()

2 Input: A directed strongly connected non-Eulerian graph.

3 Output: YN for BiDCPP.

4 PhaseOne(); (see page 28) (solves iteratively (3.4)).
5 for all (△(y+, y−)) do
6 PhaseTwo(△(y+, y−)); (see page 30) (use function K-MCIF).

7 end for all
8 end procedure

Figure 9.2: An alternative BiDCPP algorithm.

special instance of the minimum cost integer flow problem. Therefore, in the sec-
ond phase, one can search each triangle △(y+, y−) by utilizing the algorithm for
ranking integer flows K-MCIF, presented in Chapter 5, as subroutine.

I allocated the initial implementational work to BiMMAP, since it is a spe-
cial instance of BiMMTP. Actually, BiMMAP corresponds to an augmentation
problem for a BiDCPP with node differences restricted to be no larger than one
(referred to as BiDCCPR in Figure 9.3). Considering real-life road networks, the
in- and out-degree of any node (corresponding to a crossing of roads) are practi-
cally always restricted by a small upper bound – as is then the node differences.
However, in terms of real-life applications, it seems even more interesting to con-
sider a mixed network yielding the more difficult problem BiMCPP.

In Figure 9.3, I present a graphical overview of the relation between the prob-
lems classes discussed in this section. A directed arrow indicates that a particular
problem class is a subproblem of its ancestor. Figure 9.3 also offers insight in how
the different ideas evolved and it gives a strategy plan for future research on this
topic. For each problem class, the current status for that particular subproject is
given. Notice that, for all-pairs BiSP, the status is stated as “yet to be investi-
gated”. Actually, one way to solve this problem is to apply a normal bicriterion
shortest path algorithm a number of times, see e.g. [151].

9.2 The multicriteria minimum cost integer flow problem

In this section, a few novel and yet unpublished thoughts on the multicriteria
minimum cost integer flow problem are presented. They constitute a natural
extension of the ideas previously published on MMCIF, (reviewed in Chapter 7).

Consider the directed network G = (N, A) and recall the definition of the flow
integer lattice, Xflow. To ease the disposition, assume that the network G has only
one supply node and only one demand node. In general, any directed network can
be transformed into such a network by addition of a super-source s, a super-sink
t, an arc (s, i) of capacity bi to every original supply node i, and an arc (i, t) of
capacity −bi to every original demand node j. The entire supply and demand are
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Figure 9.3: Connection between bicriterion network problems.

aggregated at s and t, respectively. Remember, from Definition 7.1 on page 103,
that a feasible flow x sending ρ units from s to t has (flow) value v(x) = ρ.

The shortest augmenting path procedure for the single criterion minimum cost
flow problem is based on a number of general concepts for network flows. Remem-
ber the definition of the flow addition ⊕ and the flow subtraction ⊖ operators
from Definition 2.2 on page 11.

Proposition 9.1 ([2, 15, 85, 96])

(i) Any feasible flow decomposes into directed cycles and directed paths from G.

(ii) If a feasible flow with value ρ + q exists, any such flow x̂ can be found as
x̂ = x ⊕ ξ, where ξ in G(x) is an incremental flow of value q and x is a
feasible flow of value ρ.

(iii) The difference of any two feasible flows x̂ and x both of value ρ, can be
decomposed into a sum of r ≤ m directed cycles,

ξ := x̂ ⊖ x =

r∑

k=1

Ok, where Ok is a directed cycle in G(x).

Such a flow ξ of value 0 is referred to as a circulation.

(iv) Adding to a feasible flow x of value ρ an optimal circulation from G(x) yields
an optimal flow of value ρ.
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(v) Augmenting an optimal flow x of value ρ with q units along a shortest aug-
menting path ξ from G(x) yields an optimal flow x̂ of value ρ + q.

The first three observations of Proposition 9.1 only utilize the network struc-
ture, and so they also hold true for a general MMCIF with any number of criteria.
The following example shows that the fifth property of Proposition 9.1 cannot
be extended to multicriteria instances, since adding q units along an efficient aug-
menting path to an efficient flow of value ρ does not necessarily generate an efficient
flow of value ρ + q. Therefore, the example destroys the hope to develop a mul-
ticriteria version of the shortest augmenting path procedure along the same lines
as in the single criterion case.

Example 9.2 Consider the graph in Figure 9.4(a) in which all arc bounds are
equal to [0, 1]. This graph constitutes, with two objectives, an example of the
class BiMCIF. Two efficient ways of sending ρ = 1 unit from s to t exist. Namely
the two efficient paths P1 : s − 1 − 2 − 4 − t with cost vector c(P1) = (2, 1), and
P2 : s−1−4−t with c(P2) = (1, 2). Consider the solution x := P1 with incremental
graph G(x) as shown in Figure 9.4(b). In G(x) two efficient augmenting s-t paths
exist, namely P3 : s − 3 − t and P4 : s − t. Notice that, this is also true, even if
non-simple augmenting paths are allowed. Adding the efficient augmenting path,
ξ := P3 to x the solution x̂ = x ⊕ ξ (depicted in Figure 9.4(c)) is obtained with
y(x̂) = (5, 6) and of flow value v(x̂) = 2. However, x̂ turns out to be dominated
by the solution x̃ of flow value 2, shown in Figure 9.4(d) with y(x̃) = (5, 4).

Setting q = 0 in the following theorem yields as an easy corollary a multicriteria
version of the fourth property in Proposition 9.1.

Theorem 9.3 Consider MMCIF with a designated source and a designated sink
node. The following holds true.

(i) Let x be a feasible flow of value v(x) = ρ and let ξ be an efficient incremental
flow in G(x) of value v(ξ) = q ≥ 0. Then x̂ := x ⊕ ξ is an efficient flow of
value v(x̂) = ρ + q.

(ii) Let x̂ be an efficient flow of value v(x̂) = ρ+q, q ≥ 0. Then for every feasible
flow x with value v(x) = ρ, there exists an efficient incremental flow ξ in
G(x) of value v(ξ) = q such that x̂ = x ⊕ ξ.

Proof. (i): Obviously, v(x̂) = ρ + q. Suppose x̂ is not an efficient flow. Then
there exists a feasible flow x∗ with value v(x∗) = ρ + q such that y(x∗) ≤ y(x̂).
Consider φ := x∗ ⊖ x. Then φ is an incremental flow in G(x) with value v(φ) = q.
Furthermore, letting cG(x)φ denote the cost vector associated with φ in G(x),

y(x) + cG(x)φ = y(x∗) ≤ y(x̂) = y(x) + cG(x)ξ

is obtained, which implies cG(x)φ ≤ cG(x)ξ – a contradiction, since ξ is efficient.
(ii): Let x be a feasible flow with value v(x) = ρ. Then ξ := x̂⊖x is an incremental
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Figure 9.4: Bicriterion minimum cost integer flow example.

flow in G(x) with value v(ξ) = q. Suppose ξ is not efficient. Then there exists an
incremental flow β in G(x) such that v(β) = q which dominates ξ, i.e. cG(x)β ≤
cG(x)ξ. Let x̃ := x ⊕ β. Then

y(x̃) = y(x) + cG(x)β ≤ y(x) + cG(x)ξ = y(x̂)

is obtained, which is a contradiction, since x̂ is efficient. �

Example 9.2 (continued) Demonstrating the result in Theorem 9.3, the efficient
flow x̃ of Figure 9.4(d) could only have been found from x by addition of the
efficient incremental flow of value 1 composed of P4 ∪ O, where O is the cycle
O : 1 − 4 − 2 − 1.

Corollary 9.4 Let x be a feasible flow of value ρ. All efficient flows of value ρ
can be found by identifying all efficient incremental flows of value 0 in G(x).
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1 procedure MMCIF()

2 Input: A multicriteria minimum cost integer flow problem.

3 Output: XE for the problem.

4 x := FeasibleSolution();

5 Ξ := EfficientCirculations(G(x));
6 XE := x ⊕ Ξ;
7 end procedure

Figure 9.5: A multicriteria minimum cost integer flow algorithm.
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Figure 9.6: Bicriterion minimum cost integer flow example.

Following Corollary 9.4, the exact solution procedure for MMCIF of Figure 9.5
comes into mind. First, a feasible flow x of value v(x) equal to the aggregated
supply is identified in FeasibleSolution. Then, EfficientCirculations identifies
the set Ξ of all efficient circulations in G(x). Adding these to x yields all efficient
solutions to the original problem.

An implementation of the essential subprocedure EfficientCirculations should
exploit any kind of structural properties of efficient circulations. We know from
the third property of Proposition 9.1, that circulations are decomposed of cycles in
G(x). Is it also true, that all such cycles must be efficient for the entire circulation
to be efficient? The following example answers this questions in the negative.

Example 9.5 Consider the graph of Figure 9.6(a), where one unit of flow must
be sent from s to t. All arc bounds are assumed to be [0, 1]. Four paths from s to
t exist, of which the paths P1 : s− 1− 2− 3− t, P2 : s− 1− 2− t and P3 : s− 2− t
are efficient. In the incremental graph of x := P1 (depicted in Figure 9.6(b)), two
cycles O1 and O2 and three circulations ξ1 = O1, ξ2 = O2, and ξ3 = O1∪O2 exist.
The efficient circulation ξ3 is seen to include the dominated cycle O1.

With the negative result of the previous example, one core issue of multicriteria
minimum cost integer flow optimization is still to characterize circulations in an
efficient way. Obviously, finding a complete description of all efficient circulations
may also provide vital information on the characterization of a minimal set of
incremental flows which is sufficient to maintain connectivity of the adjacency
graph (see Section 3.1).
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Job scheduling: A practical application





Chapter 10

Scheduling using tabu search

This chapter focuses on a specific practical problem faced by the Danish telecom-
munications net operator, Sonofon. By the end of each day a rather large number
of jobs (End-of-Day jobs) have to be processed on three available servers. Each
job is preassigned to one of the three servers and the objective is to schedule the
jobs on the machines in order to minimize makespan. This task is complicated by
the fact that a large number of precedence constraints among the jobs must be
fulfilled, that time windows must be obeyed and that capacity limitations must
be respected. In addition, the jobs are elastic which means that the duration of
a particular job depends on the capacity assigned to the job. Elasticity of jobs
complicates the problem considerably and has to the best of my knowledge not
yet been considered in large-scale scheduling.

The applications of scheduling problems are wide-spread, and hence a consider-
able amount of promising research has been devoted to such problems both within
the operations research literature and the computer science literature. Especially
during the past decade, algorithms merging operations research techniques and
constraint programming have proved efficient as exact solution methods for solv-
ing scheduling problems. Among a number of interesting constraint programming
contributions to small- or medium-scaled scheduling problems, the work by Bap-
tiste and Le Pape [5], Baptiste, Le Pape, and Nuijten [6], Hooker [77], Hooker and
Ottosson [78], and Jain and Grossmann [84] should be mentioned. For large-scale
problems, in particular metaheuristics have shown promising results.

One classical metaheuristic that has been successfully applied to scheduling
problems is tabu search, due to Glover [60] and Glover and Laguna [61]. The pa-
pers on tabu search are numerous, but let me for brevity only mention a few which
all appeared recently and consider scheduling problems. Grabowski and Wodecki
[62] consider large-scale flow shop problems with makespan criterion and develop a
very fast tabu search heuristic focusing on a lower bound for the makespan instead
of the exact makespan value. Ferland, Ichoua, Lavoie, and Gagné [46] consider
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a practical problem of scheduling internships for physician students and propose
several variants of tabu search procedures. The last three papers all consider the
problem of scheduling a number of jobs to a set of heterogeneous machines under
precedence constraints, with the objective of minimizing makespan. In Porto, Ki-
tajima, and Ribeiro [129] a parallel tabu search heuristic is developed and proved
superior to a widely used greedy heuristic for the problem. In Chekuri and Bender
[20] a new approximation algorithm is presented, but unfortunately, no compu-
tational results are reported. Finally, in Mansini, Speranza, and Tuza [102] jobs
with up to three predecessors each are considered among groups of jobs requir-
ing the same set of machines. The problem is formulated as a graph theoretical
problem. In the paper a number of approximation results are provided, but no
computational experience is reported.

Clearly, the vast solution space and the complexity of the present problem
called for a heuristic procedure. Due to the high flexibility of tabu search and its
promising results with scheduling problems, that method was chosen.

The remaining part of this chapter is organized as follows. In Section 10.1, I
present the practical problem offered by Sonofon and derive a new approximate
method for scheduling elastic jobs. The scheduling problem is then formulated
using a hybrid integer programming and constraint programming model. In Sec-
tion 10.2, I give a thorough introduction to the developed tabu search heuristic,
and computational results are provided in Section 10.3.

10.1 Problem formulation

The Danish telecommunications net operator, Sonofon, faces a three-machine
scheduling problem, with 346 End-of-Day jobs (EOD). Each job is dedicated to
a particular server in advance and it has to be processed on that server without
preemption8. This means that the allocation of jobs to machines is not part of the
problem.

The scheduling time horizon runs from 7.00 pm to 8.00 am, and each job
receives a time window in which it should be processed. The time windows are
wide, leaving numerous feasible starting times for each job. Since most scheduling
tools applying constraint programming rely heavily on propagation techniques,
the wide time windows have a negative influence on the performance of such
scheduling packages. The time windows will be explored further in Section 10.2.1.
Since the servers immediately after completing the EOD-jobs are assigned to other
operations, the objective is to minimize makespan.

Because of interrelations between jobs, a number of precedence constraints
must be fulfilled. It might occur that a job needs information from a database to
which another job (a predecessor) has written earlier.

8 Preemption means that jobs can be interrupted during processing.
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Figure 10.1: Relation between duration and capacity consumption of jobs.

In a real-world application, each job can be processed with varying capacity
consumption during its runtime, as illustrated by job 1 in Figure 10.1(b). However,
due to limitations of server exploitation, we can assume that each job has an upper
bound of capacity consumption. In Figure 10.1(a) is illustrated a situation in which
three jobs are placed at a machine to start processing at time 0. Each of the three
jobs is assumed to have a maximal capacity consumption of 15 units, and the
machine has capacity 30. Since all the jobs are scheduled to start at time 0, they
must share the available capacity, as shown in Figure 10.1(b). Observe that, in
Figures 10.1(a) and 10.1(b), the two corresponding boxes for a job have the same
area. This would be an incorrect representation of a real-world application, since
in general the product of duration and capacity consumption of a job increases
with decreasing capacity due to lost server efficiency from swapping9. This fact is
represented by the inclusion of the shaded area in Figure 10.1(c).

In this set-up it is assumed that the capacity consumption for a job remains
constant during its runtime. Opposed to other literature on large-scale scheduling,
time and capacity consumption are not restricted to be given beforehand. Instead,
jobs are elastic, and hence the time and capacity consumption are allowed to be
found during the optimization process. I deal with the non-linear functionality
between time and capacity consumption by a rough approximation representing
each job as a choice between three boxes, (see Figure 10.2).

The dimensions of the boxes for a given job j are explained in Figure 10.3,
where capj (timej) corresponds to the capacity (duration) for the job box having
the least capacity consumption (and hence the longest duration)10. The second
and third column gives the capacity and time consumption for a given box, and
the last column gives the product of capacity consumption and duration. Notice

9 Swapping or trashing means time being spent for reading jobs into and out of the temporary
memory, not processing any job.

10 Time constitutes an average longest runtime provided by Sonofon from historical data.
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Figure 10.2: Three representations of a job.

b capjb timejb (capjb · timejb)

1 4 · capj 25/121 · timej 100/121 · capj · timej

2 2 · capj 5/11 · timej 10/11 · capj · timej

3 capj timej capj · timej

Figure 10.3: Dimensions of boxes representing job j.

that, by a 50% decrease in capacity, this product increases by 10%. This trade-off
between capacity assigned to a particular job and its duration was determined in
correspondence with Sonofon and reflects the specific problem rather closely.

Since the representation of scheduling problems is greatly simplified using the
terminology from constraint programming, I too, shall adapt such a notation.
Hence, for this scheduling problem, a hybrid integer programming and constraint
programming model is derived, which is to be solved by a heuristic procedure, more
specifically by a tabu search algorithm. The following notation is introduced.

M := {1, 2, 3} – Machines

J := {1, . . . , |J |} – Jobs

I := {(j, k) : job j shall precede job k} – Precedence constraints

Hm := {j : job j shall be processed on machine m} – Job-machine constraints

B := {1, 2, 3} – Boxes for each job

Notice that, ∪m∈MHm = J since all jobs are allocated to a particular server in
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advance. For each job j, we introduce the four variables:

j.start – Starting time of job j

j.time – Duration of job j

j.end – Completion time of job j

j.cap – Capacity consumption of job j

connected by the implicit constraint j.start+j.time = j.end. In addition, we have
the parameters:

Rm – Capacity available on machine m, ∀m ∈ M

[lj , uj ] – Time window for job j, ∀j ∈ J

timejb – Duration of the b’th box for job j, ∀j ∈ J , ∀ b ∈ B

capjb – Capacity consumption of the b’th box for job j, ∀j ∈ J , ∀ b ∈ B

Let xjb denote a binary variable which is 1 if box b is chosen for job j and 0
otherwise. Introducing the artificial job makespan with zero duration, the model
can be stated as follows:

min makespan.end

s.t.
∑

b∈B

xjb = 1 ∀j ∈ J (10.1a)

j.time =
∑

b∈B

(xjb · timejb) ∀j ∈ J (10.1b)

j.cap =
∑

b∈B

(xjb · capjb) ∀j ∈ J (10.1c)

lj ≤ j.start ∀j ∈ J (10.1d)

j.end ≤ uj ∀j ∈ J (10.1e)

j precedes makespan ∀j ∈ J (10.1f)

j precedes k ∀ (j, k) ∈ I (10.1g)

cumulative




{j.start}j∈Hm

{j.time}j∈Hm

{j.cap}j∈Hm

Rm


 ∀m ∈ M (10.1h)

xjb ∈ {0, 1} ∀j ∈ J , ∀b ∈ B (10.1i)

where cumulative is a global constraint in constraint programming stating that,
at all times, the total capacity is not exceeded by the capacity consumption of
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Figure 10.4: Sequence and box choices for example with 9 jobs.

running jobs. The constraint can be rewritten as

cumulative ((t1, . . . , tq) , (d1, . . . , dq) , (r1, . . . , rq) , R)

m
∑

j : tj≤t≤tj+dj

rj ≤ R, ∀t

where the vector (t1, . . . , tq) represents starting times of jobs 1, . . . , q, with dura-
tion (d1, . . . , dq) and capacity consumption (r1, . . . , rq). Available capacity is R.

The above constraints (10.1a) choose a box for each job, yielding a specific
duration and capacity consumption in cooperation with (10.1b) and (10.1c). Con-
straints (10.1d) and (10.1e) consider time windows. Constraints (10.1f) together
with the objective function minimize the completion time of the last job. Con-
straints (10.1g) handle precedence constraints (j precedes k means j.end ≤ k.start),
whereas constraints (10.1h) handle resource consumption for each machine.

10.2 Tabu search

To obtain a solution to the given problem, the starting time and the box size
for each job are needed since then the completion times, the durations and the
capacity consumptions are implicitly determined. However, due to wide time
windows, numerous possible starting times exist for each job, which prevent me
from using the starting times explicitly in the solutions. Instead, a solution is
composed of a list Θ of box choices (one for each job) and a sequence Π specifying
the order of the starting times. Given a sequence, jτ denotes the number of the
job at position τ in the following. The sequence specifies that since job j1 is before
job j2 in the sequence, j2 must start no earlier than j1. A solution to a problem
with 9 jobs is shown in Figure 10.4, where the sequence Π is defined by j1 . . . j9
and the box choices by the box numbers bjτ

stated below.
The tabu search procedure moves from one solution to the next either by chang-

ing the sequence or changing one of the box sizes. The neighbourhood structure
is outlined in Section 10.2.4. Given a solution (Θ, Π) i.e. a box size for each
job and a job sequence, the corresponding optimal starting times can be found
or infeasibility can be proved. This means that the size of the solution space has
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been dramatically decreased without excluding optimal solutions by considering a
sequence instead of starting times. How to complete the solution to find the exact
starting times for each job is discussed in Section 10.2.3.

A solution (Θ, Π) is feasible, if it is possible to schedule all jobs according
to the sequence and to the box sizes and still satisfy all time windows, capacity
constraints and precedence constraints. It turns out that the problem of finding
an initial solution is very hard, but a heuristic method for solving this problem is
presented in Section 10.2.2.

Elements and features of the tabu search such as the neighbourhood structure,
tabu lists, intensification strategies and diversification strategies are discussed in
Sections 10.2.4, 10.2.5, 10.2.6 and 10.2.7, respectively. Part of the notation is
inhereted from Chiang and Russell [22].

10.2.1 Preprocessing

In order to detect infeasible solutions quickly, the time windows are tightened by
considering precedence constraints. If a job j, has a time window [0, u], but at the
same time is a successor of another job ĵ, then the time window can be adjusted
to start at the earliest completion time for job ĵ. To do this, a precedence graph
GI is constructed where all jobs are represented by a node, and all precedence
constraints by a directed arc between the two nodes involved, pointing away from
the predecessor.

For all connected components in the precedence graph, the following procedure
adjusts the left end points of the time windows. Let C ⊆ GI be a connected
component, and let j ∈ C be a job in C. Then lj denotes the earliest starting time,
and timej1 denotes the minimal duration for job j. Let Ij denote all predecessors
of job j and note that Ij ⊂ C. The earliest starting times for the jobs in C are
now adjusted by setting lj = max{lj , li + timei1, ∀i ∈ Ij} for all j ∈ C, but in an
order such that all predecessors of j have been adjusted before j. Such an order
exists, since otherwise a directed cycle would exist in C, and the jobs would be
impossible to schedule. The latest completion times can be adjusted in a similar
manner by starting with the jobs in C having no successors.

10.2.2 Initial solution

Garey and Johnson [56] have shown that, for a similar set-up, the decision problem
on determining the existence of a feasible schedule with a makespan less than a
given deadline (in the present application 8.00 am) is NP-complete. A heuristic
procedure to generate an initial feasible solution for this particular instance is
outlined in Figure 10.5. The procedure is divided into three parts, where the
first part (lines 2–4) uses the precedence graph to generate a sequence Π. The
second part (line 5) chooses a list of box sizes Θ, after which feasibility of (Θ, Π) is
checked in the third part (lines 6–8). This check is performed during the process of
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1 procedure InitialSolution()

2 Πf := GenerateForwardSequence(GI , {[lj , uj ], timej1}j∈J );

3 Πb := GenerateBackwardSequence(GI , {[lj , uj ], timej1}j∈J );

4 Π := GenerateSequence(Πf , Πb);

5 Θ := ChooseBoxes({Rm}m∈M, {capj3}j∈J );

6 if ((Θ,Π) is infeasible) then
7 (Θ,Π) := FindInitialSequenceUsingTabuSearch((Θ, Π));
8 end if
9 end procedure

Figure 10.5: Finding an initial feasible solution for the scheduling problem.

completing the solution as described in Section 10.2.3. If (Θ, Π) is infeasible, the
tabu search procedure is used to find a feasible solution from (Θ, Π). Subsequently,
I describe the procedures of Figure 10.5.

GenerateForwardSequence Notice, to obtain a feasible solution, three groups of
constraints must be fulfilled simultaneously, namely precedence constraints, time
window constraints and capacity constraints. To ensure fulfilment of the prece-
dence constraints, the precedence graph GI described in Section 10.2.1 is used
to divide the jobs into layers . The successor of a job will always be in a higher
layer than the job itself, and the jobs in one layer cannot start before all jobs in
preceding layers have started.

Figure 10.6(a) illustrates an example with seven jobs which must be divided
into layers. In the figure the jobs are placed at their earliest starting time indicated
by dotted lines and precedence constraints between jobs are indicated by arrows.
In this situation, job 4 must be in a higher layer than job 1 since it is a successor of
job 1. However, if jobs are only divided according to the precedence constraints,
the process faces the risk of assigning jobs with late time windows to an early
processing layer. This could happen if an entire component of the precedence
graph has to be processed after a certain time, but the first job is assigned to
layer 1. Jobs from other components, which could be processed early, would then
be stalled if they were in layer 2, and the entire schedule would be delayed. This
corresponds to assigning job 5 from Figure 10.6(a) to layer 1. If that happens,
job 4 must be scheduled after time t3 since it would be allocated to a higher layer
than job 5. Hence in the derivation of layers, a variable start is introduced and
initialized to 0. Then jobs that have no predecessors and are able to start before
or at time start are assigned. In Figure 10.6(a), job 1, job 2 and job 3 would
hence be assigned to layer 1 as seen in Figure 10.6(b). All their successors, having
no other predecessors and being able to start before or at time start, are then
scheduled in the next layer etc. When no more jobs can be assigned due to either
time window constraints or precedence constraints, the variable start is increased
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(b) Layers

Figure 10.6: Illustration of how jobs are divided into layers.

by one time unit, and a new level of layers can be derived with jobs being able to
start before the new limit.

The jobs are numbered consecutively, starting with the jobs on the lowest
layer. The difference between the width of the time window and the duration
of the smallest box expresses a degree of freedom for a given job. The higher
this difference is, the higher degree of freedom the job possesses. Within each
layer the jobs are numbered in an increasing order of this degree of freedom.
This continues in an iterative fashion, until all jobs are numbered and we have a
sequence containing all jobs. After the first three jobs from Figure 10.6(a) have
been assigned to layer 1, the variable start is increased until it is equal to t2 at
which point job 4 can be assigned to layer 2. As the algorithm continues, the
remaining jobs will be assigned as shown in Figure 10.6(b).

GenerateBackwardSequence This function is similar to GenerateForwardSequence,
except the layers are generated backwards. This means that the layer containing
the last jobs are generated first, and then the preceding layers are generated one
by one. Again the successor of a job will always be in a higher layer than the job
itself, and the job in one layer cannot start before all jobs in the preceding layer
have started.

GenerateSequence The forward sequence Πf has the disadvantage that all jobs
without precedence constraints and time windows are scheduled in the first layer,
e.g. job 2 and job 3 in Figure 10.6(a). This means that jobs which could have
been scheduled later might delay some of the large components of the precedence
graph. The backward sequence Πb has the opposite problem since, in this case,
the jobs with few constraints are scheduled in the last layer and might cause jobs
to break their time windows. Hence, with GenerateSequence, a new sequence Π is
obtained by taking a convex combination of the two sequences Πf and Πb. This is



144 Scheduling using tabu search

done by calculating the convex combination of the positions in the two sequences
for each job and then generating a sequence according to these numbers. Ties
are broken arbitrarily. Notice that the new sequence still satisfies all precedence
constraints.

ChooseBoxes A list of box sizes Θ is chosen considering each job j on machine m
according to the following scheme.

xj1 = 1 if 0 < capj3 ≤
Rm

10

xj2 = 1 if
Rm

10
< capj3 ≤

Rm

4

xj3 = 1 if
Rm

4
< capj3

(10.2)

These choices have proved efficient in the particular problem.

FindInitialSequenceUsingTabuSearch If the solution from (Θ, Π) is infeasible, the
tabu search procedure is used to find a feasible solution. The problem is relaxed
by setting uj = ∞ for all j, i.e. the time windows have no upper limit. Notice
that this problem always has a feasible solution when the capacity requirement for
each job is less than the capacity on the corresponding machine. The objective
in this part of the tabu search procedure is to minimize the number of jobs which
violate their original time windows, and the search stops when a solution with
value 0 has been found.

The implemented idea corresponds to running a tabu search procedure in two
phases – one phase ensuring feasibility and another phase minimizing makespan.
These phases could alternatively be merged by using weights to yield an objective
function composed of the makespan criterion and a penalty for the broken time
windows, see Chiang and Russell [22]. However, since an implementation of this
idea showed poor performance compared to the two-phase tabu search procedure,
focus is on the two-phase approach.

10.2.3 Completing a solution

As mentioned, the solutions used in the tabu search procedure consist only of a
list of box choices Θ and a job sequence Π which determines the order of the
starting times. This solution must be completed to include the exact starting
and completion times for each job, since fulfilment of time windows and capacity
constraints must be checked in order to prove feasibility of the solution. Since
this check is done for all considered moves in each iteration, the efficiency of
this subroutine has great influence on the overall performance of the tabu search
procedure.
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Figure 10.7: Scheduling the job jτ .

Before the procedure is outlined, let me mention that the sequences given to
the procedure always satisfy the precedence constraints, i.e. if j must be completed
before ĵ can start, then j will always precede ĵ in the sequence.

The procedure exploits that an optimal schedule with respect to the given
sequence and box choices can be generated by scheduling one job at a time in the
order of the sequence without backtracking. Since jτ is the job at position τ in the
sequence, we know that when jτ is about to be scheduled, all jobs jτ̄ with τ̄ < τ
have been scheduled and jτ−1.start ≤ jτ .start due to the sequence. Furthermore,
all the jobs that have been scheduled so far start before or at jτ−1.start and
therefore the capacity consumption on each machine must be decreasing in time
after jτ−1.start. The optimal starting time for jτ will hence be the first time
after max{ljτ

, jτ−1.start} and after max{jτ̄ .end : (jτ̄ , jτ ) ∈ I} for which the
capacity consumption on the machine m used to process jτ is less than or equal
to Rm − jτ .cap. This means that a job is started the first time the four conditions
shown in Figure 10.7 are fulfilled.

When the starting time of jτ has been determined, the procedure checks if
jτ .end ≤ ujτ

to see if the time window constraint is satisfied. If so, jτ+1 is
scheduled and otherwise the solution is infeasible and the procedure stops. If all
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Figure 10.8: Illustration of moves in the tabu search procedure.

jobs are scheduled, we have a feasible solution since all constraints are satisfied
and the makespan is equal to max{j.end|j ∈ J }.

10.2.4 Neighbourhood

To characterize the neighbourhood of a given solution (Θ, Π), two kinds of moves
are defined. A position move moves a job to a new position while the box sizes in Θ
are kept constant, whereas a box move maintains the job sequence Π but changes
the box choice for a single job. Figure 10.8 illustrates both kinds of moves. Notice
in Figure 10.8(a) that, when job 9 at position 5 in the job sequence is moved to
position 2, not only does job 9 get a new position, but the jobs at position 2, 3
and 4 are moved to the subsequent position.

The position move described above has been chosen instead of alternatives,
such as exchanging two jobs, since the precedence constraints do not limit the
flexibility of this move. Consider the move from Figure 10.8(a) and imagine that
job 2 must precede job 6 and job 6 must precede job 5. In that case three “ex-
changes” of jobs are needed to perform the single position move shown in the
figure.

The neighbourhood for solution (Θ, Π) can be characterized as the union of
solutions obtained by a single box move and solutions obtained by a single position
move which fulfils the precedence constraints. The cardinality of the neighbour-
hood is O(|J |2) due to the large number of position moves, and in the present
implementation we must consider approximately 120,000 moves (some are ignored
due to violation of the precedence constraints) for each solution. The ability to
select only part of the neighbourhood for examination is therefore crucial. I use
two methods for limiting the number of possible moves.

Restricting position moves

By introducing a limit moveLimit on how far a job can move, the number of
considered position moves are reduced. This leads to faster iterations but might
restrict the search from choosing some very good solutions. To avoid the search
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from stalling due to this restriction, the entire neighbourhood is examined every
time the algorithm has performed non-improving moves for a predefined number
of iterations. This makes the search capable of performing a single time consuming
move and then a number of fast iterations to exploit the new conditions.

Candidate lists

The Elite candidate list approach (see [61]), is used to limit the number of position
moves by only evaluating moves belonging to candidate lists. In this set-up two
lists Cand1 and Cand2 are used, and they are constructed by evaluating the
neighbourhood of the initial solution. All moves which lead to an improving
makespan are stored in Cand1, and all moves leading to the same makespan are
stored in Cand2. In the following iterations only moves from the two candidate
lists are considered. First the moves in Cand1 are evaluated and, if one of these
moves leads to an improving makespan, the best move is chosen. If Cand1 does
not contain an improving move, the moves in Cand2 are evaluated and the best
move considering both Cand1 and Cand2 is chosen.

When a move has been chosen from one of the candidate lists, both lists are
updated by deleting all moves conflicting with the chosen one. This means that, if a
position move for job j is chosen, then all other position moves for job j are deleted
from the candidate lists and correspondingly for box moves. The candidate lists
are used until no improving move has been found in the lists. When this happens,
both lists are deleted and two new lists are generated by examining the possible
moves of the current solution. Notice that this might not be an evaluation of all
possible moves, since the position moves might be restricted as explained above.
The underlying assumption of the strategy is that a move which performs well
in the current solution will probably also lead to improvements in the following
iterations.

10.2.5 Tabu list

The corner stone in tabu search is the use of short-term memory by generating
a tabu list Tabu. The tabu list stores the move from an iteration and keeps it
for timeTabu iterations. This is done by keeping the iteration number î from the
iteration in which the move is made tabu and deleting the move from Tabu when
the iteration number exceeds î + timeTabu. The tabu list differentiates between
the two kinds of moves, but the number of the job involved is always stored. If a
box move is performed for job j, the tabu list restricts job j from performing a new
box move in the following timeTabu iterations, unless the aspiration criterion is
satisfied. If a position move is moving job j from position τ , the tabu list restricts
the search from performing a new position move taking job j to a position τ̄ where
|τ− τ̄ | ≤ tabuPosLimit in the following timeTabu iterations, unless the aspiration
criterion is satisfied.
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The aspiration criterion checks if an improved makespan can be obtained by
performing a forbidden move. If this is the case, the tabu restriction is suspended
and the search is allowed to perform the move.

The tabu search implemented here has the ability to dynamically adjust the
variable timeTabu which determines the number of iterations for which a move
is tabu. Variable timeTabu is decreased by the parameter z↓ = 0.9 every time
the search is trapped in a solution without a non-tabu or feasible neighbour and
increased by z↑ = 1.1 when the same makespan has been found in many successive
iterations.

In addition a variable steps is counting the number of moves without a change
in timeTabu, and timeTabu is decreased by z↓ if steps exceeds a fixed threshold
movingAverage. This adjustment helps the search to avoid a lot of bad moves
which could be the result of a long tabu list.

10.2.6 Intensification strategy

A list IntenArray holds moves which have led to improvements of the makespan.
The moves are kept for intensize iterations and corresponding moves for the same
job are not allowed while the move is in the IntenArray. For example, if a
position move is performed for job j in iteration î, a new position move cannot be
performed for j before iteration î + intensize. However, the intensification status
is not considered if a job satisfies the aspiration criterion. In this case the job can
be chosen even though the move is in the intensification array.

10.2.7 Diversification strategies

The algorithm contains two kinds of diversification strategies. The first strategy
is active throughout the search and helps the algorithm to perform a thorough
search in the current region of the solution space, while the other strategy forces
the search to change the region.

Penalized move value

The quality of a move is measured by moveV alue, which gives the difference
between the current makespan and the makespan obtained by performing the
move, moveV alue = newT ime − curT ime. This moveV alue could be used to
guide the search but, in order to implement the first diversification strategy, a
penalized move value pmv is introduced. The pmv takes into account how many
times the job has been moved before:

pmv =

{
moveV alue + α · Move[j] if moveV alue ≥ 0

moveV alue if moveV alue < 0
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where Move[j] counts the number of moves performed by job j and α is a non-
negative parameter to adjust the penalty. By choosing moves according to lowest
pmv, the algorithm automatically follows the diversification strategy.

Escape procedure

In order to move the search from one region of the solution space to another, an
escape procedure is invoked when too many successive iterations have resulted in
the same makespan. The procedure makes a number of random moves which lead
the algorithm away from the current region. During the escape procedure, only
feasible moves are allowed, since a feasible solution must be available when all the
moves are performed.

The general tabu search procedure adjusted according to the strategies above
can be seen in Figure 10.9. Notice that the functions FindImprovingMove and
FindBestMove include the procedure to complete a solution, and they also check
if the moves are allowed due to both the tabu list Tabu and the intensification
strategy controlled by IntenArray.

10.3 Computational results

In this section, I present the computational results of the tabu search procedure.
In addition to solving the problem faced by Sonofon, extensive testings on random
large-scale scheduling instances are performed. The results for the practical appli-
cation show that significant improvements can be gained within a short amount
of time, while the additional tests show the robustness and speed of the algorithm
to instances with varying structure.

The results obtained by the tabu search procedure are compared to a lower
bound which is found by disregarding the precedence constraints. Therefore the
three machines can be scheduled independently. Then for each job total capacity
consumption is assumed to be the product of capacity consumption and duration
for the smallest possible box (box 1). Now, for a particular machine a sequence
is constructed by ordering the jobs according to the starting time of their time
windows, with ties broken arbitrarily. When the jobs are scheduled according to
this sequence and treated as totally elastic without variation of the total capacity
consumption, a lower bound on the makespan is obtained.

The algorithm was implemented in C++ and compiled with the GNU C++
compiler using optimize option -O. Moreover, all computations were performed on
an Intel Xeon 2.67 GHz computer with 4 GB RAM using operating system Red
Hat Linux version 9.0.
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1 procedure TabuSearch()

2 time := 0;
3 {[lj , uj ]}j∈J := AdjustTimeWindows(); [10.2.1]

4 (Θ, Π) := InitialSolution(); [10.2.2]

5 iteration := 0;
6 while ((iteration < maxIteration) & (time < timeLimit)) do
7 curMove := ∅;
8 Tabu := UpdateTabuList();

9 IntenArray := UpdateIntenArray();

10 if (Cand1 ∪ Cand2 = ∅) then
11 (Cand1, Cand2) := CandLists((Θ, Π)); [10.2.4]

12 end if
13 curMove := FindImprovingMove(Cand1,(Θ,Π));
14 if (curMove = ∅) then
15 curMove := FindBestMove(Cand1,Cand2,(Θ, Π));
16 end if
17 if (curMove = ∅) then
18 timeTabu := z↓ · timeTabu, steps := 0; [10.2.5]

19 end if
20 else
21 (Θ, Π) := UpdateCurrentSol((Θ, Π),curMove);
22 Tabu := AddMove(curMove); [10.2.5]

23 IntenArray := AddImprovingMove(curMove); [10.2.6]

24 end else
25 (Cand1, Cand2) := UpdateCandLists((Θ, Π)); [10.2.4]

26 if (sameMakespanIterations = escapeRepetion) then
27 (Θ, Π) := EscapeProcedure((Θ, Π)); [10.2.7]

28 end if
29 iteration++
30 end while
31 end procedure

Figure 10.9: Pseudo code for the tabu search procedure. Numbers in the square
brackets refer to sections in which the corresponding explanations are given.
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10.3.1 The practical application

The problem faced by Sonofon consists of 346 jobs and 587 precedence constraints.
The average makespan reported by Sonofon11 is 821 minutes, hence today the
average completion time exceeds the deadline by 41 minutes. This means that
with the existing scheduling strategy, new hardware needs to be purchased in
order to keep satisfying the given requirements.

The algorithm presented in this chapter yields a makespan of 615 minutes,
which is only 4.06 percent above the lower bound computed to 591 minutes. The
makespan obtained by Sonofon is 38.92 percent above the lower bound. By a
direct comparison of the two makespans, it can be seen that the new schedule
saves 25.09 percent of scheduling time compared to the strategy implemented by
Sonofon. It is important that this pratical project has shown that the existing
hardware is, in fact, sufficient to complete the jobs in time and, indeed, spare
capacity is available when a good schedule is chosen.

The best solution was found in 56 min 31 sec, and hence the algorithm can
be used on a daily basis to schedule the jobs which have to be processed during
the night. Furthermore, Figure 10.10 shows that the significant improvements are
obtained in a rather short amount of computation time, and afterwards only small
improvements are made. This means that the algorithm is still applicable even
though the job specifications are unknown until just prior to the actual scheduling
process. The jumps for the current solution reported in Figure 10.10 are due to
the escape procedure used in the diversification strategy.

In addition, the solution of the algorithm can be used to examine how the
available capacity is used. Figure 10.11 shows a very uneven server exploitation
during the night, and in particular if jobs were moved from machines 1 and 3 to
machine 2, the makespan could be reduced.

For additional testing the problem was implemented in OPL Studio 3.7 (by
ILOG [80]) where it was provided with the search strategy to start with box
choices according to the scheme in (10.2) on page 144. OPL Studio with default
setting was unable to solve the problem in 24 hours. In fact, within 24 hours,
OPL Studio was unable even to find a feasible solution to the problem, whereas
the algorithm presented in this chapter provided a feasible solution in 1 min 1
sec. The efficiency of the tabu search procedure is in particular due to the speed
of the procedure explained in Section 10.2.3 which schedules the jobs when a job
sequence and a list of box sizes are given. The order of magnitude for the average
time used to run this procedure is 10−4 seconds.

I have also tested the benefits of scheduling all jobs on one large server instead
of three separate ones. Within 3 hours of computation time the algorithm yields
a makespan of 526 minutes and therefore supports such an implementation. This

11 The average makespan was found using the historical data that constituted the specifications
for the jobs.
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Figure 10.10: Makespan obtained by the tabu search procedure for every 50 iter-
ations.
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Figure 10.11: Capacity consumption on the three servers.

scenario has been considered by Sonofon but is not implementable with their
current hardware.

10.3.2 General large-scale scheduling instances

In order to test the robustness of the tabu search procedure, numerous random
instances were generated. The first half of these instances has a structure resem-
bling the structure seen in the data from Sonofon, while the structure in the rest
of the instances are random.

The tabu search procedure was tested on instances with |J | = 150, 300, and
400 jobs. For each number of jobs, the number of precedence constraints is either
1
2 · |J |, |J | or 2 · |J |. Furthermore, since the jobs are randomly generated, 10
instances have been solved for each specific number of jobs and number of prece-
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CPU (avg.) Makespan Deviation (%)

|J | |I| Initial Best min max min avg. max

150 75 0.00 68.26 335 355 0.00 0.06 0.30

150 150 0.00 17.64 334 433 0.00 0.11 0.82

150 300 0.00 3.04 480 630 0.00 0.16 0.80

300 150 0.00 1170.54 342 386 0.00 1.27 3.40

300 300 0.00 599.25 369 486 0.00 0.60 2.41

300 600 0.50 86.99 623 767 0.00 0.20 1.14

400 200 0.00 1419.62 382 430 0.23 5.60 9.42

400 400 0.00 1250.09 399 458 0.00 2.20 5.00

400 800 51.51 482.98 618 777 0.00 0.15 1.07

Table 10.1: Computational results for instances resembling Sonofon data.

dence constraints to give a general idea of the performance of the tabu search
procedure. The algorithm was allowed to run for 30 minutes on each instance.
The CPU time used to find an initial feasible solution and the time used to find
the best solution within the 30 minutes time limit are reported in seconds. To give
an idea of the size of the makespan, I give the minimum and maximum makespan
for the 10 instances and, finally, report both minimum, average and maximum
deviation from the lower bound in per cent.

The servers at Sonofon face two peaks during the night. One at the beginning
of the process where a large number of jobs are allowed to start, and one at 24:00
where a second group of jobs are allowed to start due to the change of date. The
instances resembling data from Sonofon adopt this structure in the sense that
one quarter of the jobs must be finished before 24:00, one quarter of the jobs
must start after 24:00 and the rest of the jobs are not restricted by time windows.
Furthermore, three quarters of the jobs are small with duration randomly chosen
between 1 and 5 minutes, while the rest are large jobs with duration randomly
chosen between 5 and 40 minutes. The capacity consumption is random and so
are the precedence constraints.

The results for the instances resembling data from Sonofon are presented in
Table 10.1. We see that the average time for finding the best solution increases with
the number of jobs while it decreases with the number of precedence constraints.
The latter observation shows that the precedence constraints actually constrain
the problem in a way that makes it easier to solve. The tabu search procedure
was able to find a feasible solution in all instances within the time limit and we
see that the best solution is very close to the lower bound in almost all instances.
In the worse case the best obtained solution only exceeds the lower bound with
9.42 per cent.
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CPU (avg.) Makespan Deviation (%)

|J | |I| Initial Best min max min avg. max

150 75 0.00 107.48 514 547 0.00 0.30 0.96

150 150 0.00 43.76 521 568 0.00 0.19 0.75

150 300 0.00 3.80 568 668 0.00 0.10 0.32

300 150 0.00 1296.62 520 542 0.00 1.47 4.13

300 300 3.84 574.26 538 617 0.00 0.76 4.00

300 600 8.16 75.94 610 705 0.00 0.13 0.33

400 200 1.80 1607.16 536 563 1.90 5.21 8.35

400 400 135.35 1357.75 549 630 0.32 2.01 5.82

400 800∗ 212.85 553.53 609 690 0.00 0.26 1.00
∗In only 8 out of the 10 instances a feasible solution was found.

Table 10.2: Computational results for random instances.

For the instances with random data structure, precedence constraints are ran-
dom and all jobs have a random time window, a random capacity consumption
and a random duration. The results for these instances are reported in Table 10.2,
and again we see that the computation time to obtain the best solution increases
with the number of jobs and decreases with the number of precedence constraints.
On the other hand, this table shows that additional precedence constraints make it
harder to find a feasible solution and, in the case with 400 jobs and 800 precedence
constraints, the tabu search procedure was unable to find a feasible solution for 2
of the 10 instances within the time limit.
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