
06

THIELE CENTRE
for applied mathematics in natural science

THIELE CENTRE
for applied mathematics in natural science

Time change and universality in turbulence

Ole E. Barndorff-Nielsen and Jürgen Schmiegel

ISSN 1398-2699

www.thiele.au.dk

The T.N. Thiele Centre
Department of Mathematical Sciences
University of Aarhus

Ny Munkegade Building 1530
8000 Aarhus C
Denmark

Phone +45 89 42 35 15
Fax +45 86 13 17 69
Email thiele@imf.au.dk Research Report No. 15 September 2006



Time change and universality in
turbulence

This Thiele Research Report is also Research Report number 484 in
the Stochastics Series at Department of Mathematical Sciences,
University of Aarhus, Denmark.





Time change and universality in turbulence

Ole E. Barndorff-Nielsen and Jürgen Schmiegel
Thiele Centre for Applied Mathematics in Natural Sciences,

Department of Mathematical Sciences,
University of Aarhus, DK–8000 Aarhus, Denmark ∗

Abstract

We discuss a unifying description of the probability densities of turbulent

velocity increments for a large number of turbulent data sets that include data

from low temperature gaseous helium jet experiments, a wind tunnel experi-

ment, an atmospheric boundary layer experiment and a free air jet experiment.

Taylor Reynolds numbers range from Rλ = 80 for the wind tunnel experiment

up to Rλ = 17000 for the atmospheric boundary layer experiment. Empiri-

cal findings strongly support the appropriateness of normal inverse Gaussian

distributions for a parsimonious and universal description of the probability

densities of turbulent velocity increments. Furthermore, the application of a

time change in terms of the scale parameter δ of the normal inverse Gaussian

distribution results in a collapse of the densities of velocity increments onto

Reynolds number independent distributions. We discuss this kind of univer-

sality in terms of a stochastic equivalence class that reformulates and extends

the concept of Generalized Extended Self-Similarity.

PACS: 47.27.-i
Keywords: Generalized Extended Self-Similarity, hierarchical models, normal in-
verse Gaussian distribution, stochastic equivalence class, turbulence
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1 Introduction

Turbulent flows are expected to reveal universal features in the limit of large Reynolds
numbers and for scales within the inertial range [1]. The most prominent example
is universal scaling of velocity structure functions [2], expected to hold in the limit
of very large Reynolds numbers. To account for small or moderate Reynolds num-
ber flows, the concepts of Extended Self-Similarity (ESS) [3, 4] and Generalized
Extended Self-Similarity (GESS) [5, 6] have been introduced which considerably ex-
tend the scaling range when plotting structure functions of different orders against
each other. Recently it has been shown that ESS and GESS are strongly related
to hierarchical models introduced by She and Leveque [7]. In fact, it has been
shown in [8] that a generalization of the She-Leveque hierarchical structure (SLHS)
is equivalent to GESS, thus unifying these basic approaches in turbulence theory.

In this paper we discuss a new type of universality of the probability densities
(pdf) of turbulent velocity increments that is not restricted to the large Reynolds
number limit and holds equally well for all scales. In a previous study [9] it has been
shown that the normal inverse Gaussian (NIG) distribution approximates the pdf of
turbulent velocity increments to high accuracy. Moreover, using the estimated scale
parameter δ of the approximate NIG distributions as a time change, the densities
of velocity increments of different experimental situations and different Reynolds
numbers collapse onto Reynolds number independent densities.

In the present study we confirm and further support these empirical findings
for many more turbulent data sets. We also investigate the relation of the empir-
ically found inner time change to the statistical properties associated with GESS
and SLHS. In particular, we show that the collapse of the densities of turbulent ve-
locity increments onto universal densities can be expressed in terms of a stochastic
equivalence class (SEC) which, in turn, is equivalent to GESS and SLHS. In show-
ing this equivalence, we relate and extend GESS and SLHS (originally formulated
as statistical properties within one turbulent experiment) to a statistical property
relating different turbulent experiments.

Section 2 provides some background material on normal inverse Gaussian dis-
tributions that is essential for the analysis of the densities of velocity increments.
Section 3 briefly describes the type of data we use for the analysis and Section 4
discusses the analysis of turbulent data within the class of normal inverse Gaussian
distributions. Section 5 introduces the concept of an intrinsic inner clock. The
relation of the proposed time change to GESS and hierarchical scaling models are
discussed in Sections 6 and 7, respectively. Section 8 concludes.

2 The normal inverse Gaussian law

The normal inverse Gaussian law, with parameters α, β, µ and δ, is the distribution
on the real axis R having probability density function

p(x; α, β, µ, δ) = a(α, β, µ, δ)q

(

x − µ

δ

)

−1

K1

{

δαq

(

x − µ

δ

)}

eβx (1)
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where q(x) =
√

1 + x2 and

a(α, β, µ, δ) = π−1α exp
{

δ
√

α2 − β2 − βµ
}

(2)

and where K1 is the modified Bessel function of the third kind and index 1. The
domain of variation of the parameters is given by µ ∈ R, δ ∈ R+, and 0 ≤ |β| < α.
The distribution is denoted by NIG(α, β, µ, δ).

If X is a random variable with distribution NIG(α, β, µ, δ) then the cumulant
generating function of X, i.e. K(θ; α, β, µ, δ) = log E{eθX}, has the form

K(θ; α, β, µ, δ) = δ{
√

α2 − β2 −
√

α2 − (β + θ)2} + µθ. (3)

It follows immediately from this that if x1, . . . , xm are independent normal in-
verse Gaussian random variables with common parameters α and β but individ-
ual location-scale parameters µi and δi (i = 1, . . . , m) then x+ = x1 + · · · + xm

is again distributed according to a normal inverse Gaussian law, with parameters
(α, β, µ+, δ+).

Furthermore, the first four cumulants of NIG(α, β, µ, δ), obtained by differenti-
ation of (3), are found to be

κ1 = µ +
δρ

√

1 − ρ2
, κ2 =

δ

α(1 − ρ2)3/2
(4)

and

κ3 =
3δρ

α2(1 − ρ2)5/2
, κ4 =

3δ(1 + 4ρ2)

α3(1 − ρ2)7/2
, (5)

where ρ = β/α. Hence, the standardised third and fourth cumulants are

κ̄3 =
κ3

κ
3/2
2

= 3
ρ

{δα(1 − ρ2)1/2}1/2
(6)

and

κ̄4 =
κ4

κ2
2

= 3
1 + 4ρ2

δα(1 − ρ2)1/2
. (7)

We note that the NIG distribution (1) has semiheavy tails; specifically,

p(x; α, β, µ, δ) ∼ const. |x|−3/2 exp (−α |x| + βx) , x → ±∞ (8)

as follows from the asymptotic relation

Kν(x) ∼
√

2/πx−1/2e−x as x → ∞. (9)

The normal inverse Gaussian law NIG(α, β, µ, δ) has the following important
characterisation in terms of the bivariate Brownian motion with drift. Let B(t) =
{B1(t), B2(t)} be a bivariate Brownian motion starting at (µ, 0) and having drift
vector (β, γ) where β ∈ R and γ ≥ 0. Furthermore, let T denote the time when
B1 first reaches level δ > 0 and let X = B2(T ). Then X ∼ NIG(α, β, µ, δ) with
α =

√

β2 + γ2.
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A systematic study of the class of normal inverse Gaussian distributions, and of
associated stochastic processes, was begun in [10, 11, 12, 13, 14]. Further theoretical
developments and applications are discussed in [15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28]. As discussed in the papers cited and in references given there, the
class of NIG distributions and processes have been found to provide accurate mod-
elling of a great variety of empirical findings in the physical sciences and in financial
econometrics. (The wider class of generalised hyperbolic distributions, introduced in
[29], provides additional possibilities for realistic modelling of dynamical processes,
see references in the papers cited above.)

3 Description of the data

The data sets we analysed consist of one-point time records of the longitudinal (along
the mean flow) velocity component. The data are from the atmospheric boundary
layer (data set (at)) [30, 31], from a gaseous helium jet flow (data sets (h85)–(h1181))
[32], from a free air jet experiment (data set (f)) [33] and from a wake generated by
a flat plate (data set (w)) [34]. This collection of data sets comprise a wide range of
Reynolds numbers from 80 (w) up to 17000 (at). Table 1 lists the Taylor Reynolds
numbers Rλ. We refer to [30, 31, 32, 33, 34] for more information about the data
sets.

We perform the statistical analysis of the densities of velocity increments u in
terms of temporal statistics

us = v(t + s) − v(t) (10)

where v(t) denotes the longitudinal velocity component at time t. Note that we do
not invoke Taylor’s Frozen Flow Hypothesis which translates (10) into spatial scales
u(x) = u(x − l) − u(x) (reversing the sign of the usual definition of spatial velocity
increments) where l = v̄s and v̄ denotes the mean velocity. Defining velocity incre-
ments us according to (10), we expect the skewness of the distribution of velocity
increments to be positive.

We furthermore normalized each data set by its standard deviation, i.e. the
variance of each velocity time series is one.

4 Distribution of velocity increments

Figure 1 shows the densities of timewise velocity increments (10) for different data
sets and various time scales s (in units of the finest resolution). The solid lines
denote the approximation of the densities within the class of NIG distributions
using maximum likelihood estimation of the four parameters α, β, δ and µ of the
NIG distribution. The NIG distributions fit the empirical densities to high accuracy
for all amplitudes u. The same high quality of the fit holds for all scales (not shown
here). We performed the same analysis for all data sets that are listed in Table 1
and obtained similar plots for all lags s and all amplitudes u (not shown here).

For each data set the approximation within the class of NIG distributions is com-
pletely described by the four parameter sets α(s), β(s), δ(s) and µ(s) as functions
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of the time scale s. Due to the stationarity of the velocity signal we are able to ex-
press one of them, say µ(s) in terms of the other three parameter sets. Stationarity
implies zero mean for velocity increments. In terms of the parameters of the NIG
distributions we get from (4)

µ(s) = − δ(s)β(s)
√

α2(s) − β2(s)
. (11)

Thus, for each data set, we are left with three parameter sets to fully describe
the evolution of the densities of velocity increments across scales. To reduce the
scatter of the different parameters as a function of the scale s we introduce as new
parameters the set δ, α/δ and

ξ =
(

1 + δ
√

α2 − β2
)

−1/2

. (12)

The parameter ξ is called the steepness parameter of the NIG distribution and it
plays a role similar to the standardized fourth order cumulant.

Figure 2 shows the estimated scale parameters δ(s) of the approximate NIG
distributions as a function of the lag s. Note, in particular, that the scale parameter
δ is monotonically increasing with the time scale s for all data sets.

Figures 3(a) and 4(a) show the estimated parameters α(s)/δ(s) and ξ(s), re-
spectively. The functional dependence of the parameters of the approximate NIG
distributions on the scale s changes substantially with the Reynolds number and the
experimental conditions.

Figures 3(b) and 4(b) show the estimated parameters α(s)/δ(s) and ξ(s) as
a function of the estimated scale parameter δ(s), respectively. For both of the
two parameter sets there is a striking collapse onto one single curve. Note that
the various data sets cover a wide range of Reynolds numbers and widely different
experimental situations. It is the scale parameter δ(s) that describes the individual
characteristics of each data set, but in terms of δ(s) the remaining parameters show
a universal behaviour, independent of the experimental set up and independent of
the Reynolds number.

5 Time change and universality

The collapse of the parameters α(s)/δ(s) and ξ(s) of the different data sets onto
single, apparently universal curves when plotted as a function of the scale param-
eter δ(s) immediatedly implies a collapse of the corresponding densities of velocity
increments.

Figure 5 shows a collection of densities of velocity increments that correspond to
fixed values of the scale parameter δ. As expected from Figures 3(b) and 4(b) the
densities collapse onto Reynolds number independent distributions that are solely
labeled by the scale parameter δ.

In other words, the densities of velocity increments of the type of data we ana-
lyzed in this paper follow a one-parameter curve in the space of probability densities.
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Each individual data set covers a certain part of this one-parameter curve. The pa-
rameter δ of the corresponding approximation of the densities within the class of
NIG distribution is a very good approximation of this characteristic parameter.

The change from scale s to δ(s) in the labeling of the densities of velocity in-
crements corresponds to a time change such that individual characteristics of each
data set are covered by the functional dependence of δ(s) but in terms of which
the densities behave in a universal fashion. The intrinsic time change we propose
here applies equally well to all scales, providing a unified description of dissipative,
inertial and sup-inertial scales.

Of course, any statistical quantity that monotonically increases with the time
scale s is equally well suited for being a universal time change. In particular, the
variance of velocity increments increases with increasing time scale s and, as such,
may serve as a time change. However, using the scale parameter δ(s) of the approx-
imate NIG distributions seems to be more appropriate since it directly relates to the
parameters of the densities of velocity increments.

The collapse of the densities of velocity increments can be put into more math-
ematical terms by introducing a stochastic equivalence class of the form

u
(i)
s1

g(i)(s1)

d
=

u
(j)
s2

g(j)(s2)
⇔ F (i)(s1) = F (j)(s2) (13)

where
d
= denotes equality in distribution and the superscripts (i) and (j) label the

different data sets. The monotonic functions F denote the intrinsic time changes
and the deterministic functions g are introduced here to account for more general
situations (see the next Section).

In the present analysis of the data sets in Table 1 we have

g(i)(s) =
√

Var(v(i)), (14)

independent of s, i.e. the functions g reduce to a constant normalization. Here Var
denotes the variance. For the intrinsic time change F we obtain from our analysis
within the class of NIG distributions

δ(i)(s) = F (i)(s) (15)

to high accuracy.
In more general situations (i.e. anisotropic flows, see next Section), the function

g(i)(s) can, in principle, be estimated using cumulants of order two and four. For
that we choose a reference experiment (j) and arbitrarily set g(j)(s) ≡ 1. From (13)
we get

(g(i)(s1))
2 =

c2(u
(i)(s1))

c2(u(j)(s2))
(16)

and

(g(i)(s1))
4 =

c4(u
(i)(s1))

c4(u(j)(s2))
(17)

where s1 and s2 are the corresponding time scales where the densities of velocity
increments at time scale s1 of experiment (i) and time scale s2 of experiment (j)
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collapse. Here cn denotes the cumulant of order n. Combining (16) with (17) gives

c4(u
(i)(s1))

(c2(u(i)(s1)))2
= c̄4(u

(i)(s1)) = c̄4(u
(j)(s2)) (18)

where c̄4 denotes the standardized fourth order cumulant. From (18) the corre-
sponding time scales s1 and s2 can be estimated and, using (16), the function g(i) is
determined (relative to the function g(j)).

6 Time change and Generalized Extended Self-

Similarity

This Section examines the relation between the stochastic equivalence class (SEC)
proposed in (13) and the concept of Extended Self-Similarity (ESS) and its gener-
alization to Generalized Extended Self-Similarity (GESS). We will show that under
mild conditions the SEC approach is equivalent to GESS when g(s) depends on the
scale s and SEC is equivalent to ESS when g(s) does not depend on the scale s.

The concept of GESS [5, 6] can be expressed (in the time domain, invoking
Taylor’s Frozen Flow Hypothesis) as

Sn(s) = Gng1(s)
ng2(s)

ξ(n) (19)

where g1(s) and g2(s) are scale-dependent functions and ξ(n) is an exponent inde-
pendent of scale. The constants Gn are assumed to be universal. The structure
functions Sn(s) are defined as the moments of velocity increments of order n

Sn(s) = E {u(s)n}

where E{·} denotes the expectation.
A stronger statement is given by ESS [3, 4] which may be written as

Sn(s) = GnGng2(s)
ξ(n) (20)

where G is a velocity scale. ESS corresponds to GESS for g1(s) = G = constant.
ESS and GESS hold for scales s that considerably extend the inertial range.

While ESS applies to a wide range of isotropic flows, it is of limited use in anisotropic
flows. This inspired the study of GESS which equally well applied to anisotropic
flows.

For the comparison of SEC with ESS and GESS we will refer to another basic
concept in turbulence, the existence of a fully developed turbulent flow (FDT) char-
acterized as a turbulent state where scaling of structure functions of all orders n
holds within the inertial range (assumed to be very large)

Sn(s) = GnGn
( s

T

)ξ(n)

, (21)

where T is some reference time scale.
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The scaling relation (21) corresponds to GESS with

g1(s) = G (22)

and
g2(s) =

s

T
. (23)

In its original formulation, ESS and GESS refer to spatial scales. Here we restrict
ourselves to purely temporal statistics and reformulate ESS and GESS in the time
domain, using Taylor’s Frozen Flow Hypothesis. This reformulation is naturally
adapted to our data sets consisting of time series at a fixed spatial position.

It has been shown in [9] that SEC together with (14) implies ESS under the
assumption of FDT. On the other hand, if the distribution of velocity increments is
determined by all its finite moments then ESS and the assumption of FDT implies
SEC. Here we supplement these results by showing that SEC with a given function
g(s) and FDT implies GESS with universal exponents ξ(n). Moreover, if the dis-
tribution of velocity increments is determined by all its finite moments then GESS
and the assumption of FDT implies SEC.

As a first step, we prove that SEC together with FDT implies GESS. Let SEC
hold for some arbitrary flow (i) and let (j) be a fully developed turbulent flow which
obeys SEC. We denote by F̄ the inverse of F (which exists since F is assumed to
be monotonic).

It follows from (13) and (21) that

S(i)
n (s) = Gn

(

G(j)g(i)(s)

g(j)(F̄ (j)(F (i)(s)))

)n (

F̄ (j)(F (i)(s))

T (j)

)ξ(n)

. (24)

We identify

g
(i)
1 (s) =

G(j)g(i)(s)

g(j)
(

F̄ (j) (F (i)(s))
) (25)

and

g
(i)
2 (s) =

F̄ (j)
(

F (i)(s)
)

T (j)
. (26)

Inserting (25) and (26) in (24) immediatedly establishes the GESS relation (19)
for experiment (i). Therefore, SEC and FDT imply GESS with universal expo-
nents ξ(n).

To show that the definitions of the functions g1 in (25) and g2 in (26) do not
depend on the fully developed turbulent reference state (j), we apply equations (25)
and (26) to yet another fully developed turbulent state, say (k), and get, using (22)
and (23),

g
(k)
1 (s) = G(k) =

G(j)g(k)(s)

g(j)
(

F̄ (j) (F (k)(s))
) (27)

and

g
(k)
2 (s) =

s

T (k)
=

F̄ (j)
(

F (k)(s)
)

T (j)
. (28)
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Consequently, we have

g
(i)
1 (s) =

G(j)g(i)(s)

g(j)
(

F̄ (j) (F (i)(s))
) =

G(j)g(i)(s)

g(j)
(

F̄ (j)(F (k)(F̄ (k) (F (i)(s))))
)

=
G(k)g(i)(s)

g(k)
(

F̄ (k) (F (i)(s))
) (29)

and

g
(i)
2 (s) =

F̄ (j)
(

F (i)(s)
)

T (j)
=

F̄ (j)(F (k)(F̄ (k)
(

F (i)(s)
)

))

T (j)

=
F̄ (k)

(

F (i)(s)
)

T (k)
. (30)

Equations (29) and (30) are equivalent to (25) and (26) and prove that the ex-
pressions (25) and (26) do not depend on the fully developed turbulent reference
state (j).

We now prove that GESS together with FDT implies SEC. For that, let GESS
hold true for the flows (i) and (k) and let the distribution of velocity increments of
the flows (i) and (k) be completely decribed by all their finite moments. Let, again,
(j) denote a fully developed turbulent flow obeying (21), (22) and (23). It follows
from (19) and (21) that

S
(i)
n (s)

(g
(i)
1 (s))n

=
S

(j)
n (g

(i)
2 (s)T (j))

(G(j))n
(31)

and
S

(k)
n (s)

(g
(k)
1 (s))n

=
S

(j)
n (g

(k)
2 (s)T (j))

(G(j))n
. (32)

We identify
g(i)(s) = g

(i)
1 (s) (33)

g(k)(s) = g
(k)
1 (s) (34)

and
F (i)(s) = g

(i)
2 (s) (35)

F (k)(s) = g
(k)
2 (s) (36)

and get from a comparison of (31) and (32)

S
(i)
n (s1)

g(i)(s1)n
=

S
(k)
n (s2)

g(k)(s2)n
⇔ F (i)(s1) = F (k)(s2). (37)

Since the distributions of u
(i)
s and u

(k)
s are assumed to be defined by all their finite

moments, (37) is equal to equality in distribution, i.e. SEC holds for experiments
(i) and (k).

This completes the proof that GESS together with FDT and the assumption of
the distribution of velocity increments being completely described by all its finite
moments implies SEC.
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Our empirical analysis showed that g(i)(s) = constant, which corresponds to the
ESS case (see (33)). In fact, the experiments we analyzed are isotropic flows for
which ESS holds true. For anisotropic flows the normalization g(i)(s) depends on
the time scale s in correspondence with the GESS relation (19).

Originally, GESS and ESS express distributional properties of single turbulent
experiments. The innovative view of GESS and ESS in terms of SEC provides a
much broader interpretation. The scaling functions g2(s) serve as intrinsic time
changes in terms of which the normalized velocity increments, normalized by g1(s),
are universal. Thus GESS and ESS, under the assumption of FDT, turn out to
express distributional properties relating different turbulent experiments.

7 Time change and hierarchical structures

The functions g1 and g2 in (19) are not unique. However, [8] gives an interpretation
of the functions g1 and g2 within the famous model of hierarchical structure of She
and Leveque [7]. The identification

g1(r) = S(∞)(r) (38)

and

g2(r) =
S3(r)

[S(∞)(r)]3
(39)

associates to g1(r) the r dependence of the strongest fluctuations and to g2(r) the
normalized r dependence of (typical) weak fluctuations. Here, the strongest fluctu-
ations are characterized by the finite limit

S∞(r) ≡ lim
p→∞

Sp+1(r)

Sp(r)

Within the hierarchical framework, the normalization g(i) of velocity increments
in (13) is defined in terms of the strongest fluctuations (compare (38) with (33))
and the time change F is defined solely in terms of the weak fluctuations (compare
(39) with (35)). Consequently, if the strongest fluctuations do not depend on r, we
arrive at g(i)(r) = constant. Furthermore, typical weak fluctuations serve as the
intrinsic time change. All in all, SEC states that velocity increments normalized by
the strongest fluctuations obey a stochastic equivalence class with an intrisic time
change governed by typical weak fluctuations.

8 Conclusions

The proposed stochastic equivalence class constitutes a reformulation and substan-
tially new interpretation of the concept of GESS. We showed that, under a mild
moment condition on the distribution of velocity increments and the existence of
a fully developed turbulent state, GESS is equivalent to SEC. The equivalence of
GESS (and its special case ESS) and the model of hierarchical structure has already
been discussed in [8]. The interpretation of GESS in terms of SEC is not merely
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a reformulation but a strong extension since SEC combines the statistics of differ-
ent experiments and different Reynolds numbers while GESS is restricted to the
statistical description within one experimental situation. We strongly believe that
this innovative view of SEC will find various applications since it allows to directly
compare statistical properties of different flows.

The equivalence of SEC and GESS is based on the additional hypothesis of
FDT which is generally accepted in turbulence research as being the high Reynolds
number limit.

In this paper we empirically verified SEC for a class of data sets where the
function g is constant (the ESS case). The empirical study of SEC for a scale
dependent function g(s) is currently in progress and will be published elsewhere.
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data set (at) (f) (w) (h85) (h89) (h124) (h208) (h209)
Rλ 17000 190 80 85 89 124 208 209

data set (h283) (h352) (h463) (h703) (h885) (h929) (h985) (h1181)
Rλ 283 352 463 703 885 929 985 1181

Table 1: Taylor Reynolds numbers Rλ for the 16 data sets.
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Figure 1: Approximation of the probability densities p of velocity increments within
the class of NIG distributions for data sets h85, h463, h985 and lags s = 4, 20, 84,
s = 4, 132, 520 and s = 4, 112, 440 (in units of the finest resolution 1/f , where f
denotes the sampling frequency), respectively.
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Figure 2: Estimated parameter δ as a function of the lag s (in units of the finest
resolution and in double logarithmic representation) for data set (at) (◦), (f) (△),
(w) (+), (h85) (⊠), (h89) (♦), h124) (∗), (h208) (�), (h209) (⊕), (h283) (•), (h352)
(⊞), (h463) (⊗), (h703) (×), (h885) (�), (h929) (▽), (h985) (•), (h1181) (N).
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Figure 3: (a) Comparison of (α/δ)(s) as a function of the lag s (in units of the
finest resolution) with (b) (α/δ)(δ) as a function of the scale parameter δ in double
logarithmic representation. Data sets and symbols correspond to those in Figure 2.
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Figure 4: (a) Comparison of ξ(s) as a function of the lag s (in units of the finest
resolution) with (b) ξ(δ) as a function of the scale parameter δ in double logarithmic
representation. Data sets and symbols correspond to those in Figure 2.
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Figure 5: Collapse of the densities p(u) for various fixed values of the scale parameter
δ(s). The corresponding values of the lag s (in units of the finest resolution of the
corresponding data set) and the data sets are (a) (s = 116, at) (◦), (s = 4, h352)
(⊞), (b) (s = 440, at) (◦), (s = 8, f) (△), (s = 8, h929) (▽), (c) (s = 192, h885) (�),
(s = 88, h352) (⊞), (s = 10, w) (+), (d) (s = 380, h885) (�), (s = 410, h929) (▽),
(s = 350, h703) (×), (s = 340, h985) (•), (e) (s = 420, h703) (×), (s = 440, h929)
(▽), (s = 180, h352) (⊞), (s = 270, h283) (•), (s = 108, h124) (∗), (s = 56, h85) (⊠),
(f) (s = 470, h929) (▽), (s = 116, h124) (∗), (s = 60, h85) (⊠), (s = 188, h352) (⊞),
(s = 470, h1181) (N), (s = 140, h208) (�).
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