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Connections and path connections in groupoids

Anders Kock

Abstract We describe two gauge theoretic notions of connection in a (differentiable)
groupoid. The two notions are related via the notion of holonomy. Holonomy formation
(integration) is shown to be inverse of a certain differentiation process.

Introduction

The present note is an attempt to clarify (for myself, at least) some of the basic
structures underlying gauge theory, in particular the holonomy construction. A more
particular purpose of this attempt is to prepare the way for a synthetic rendering of
“higher gauge theory”, a subject intensively studied presently (cf. e.g. [1] and the
references therein).

Gauge theory (i.e. 1-dimensional gauge theory) has traditionally as its basic
structure that of a connection in a principal fibre bundle. Now there is a close
relationship between principal fibre bundles, on the one hand, and groupoids on
the other. The first choice made in the present note is to put the emphasis on the
groupoid viewpoint, which seems to me more clean, and avoiding principal bundles
altogether. (A functorial comparison between connection theory in groupoids and
in principal bundles may be found in [13].) So we study connections in groupoids.
This is not a novelty; it actually goes back to Ehresmann in the 1950s, and has also
been an active viewpoint in modern gauge theory.

The second choice made is to utilize a certain “combinatorial” method from
synthetic differential geometry (SDG), as expounded in e.g. [6], [7], [9], and in the
work of Breen and Messing [2], [3]. As far as I understand, the latter work utilizes the
synthetic method as one of the tools to lift 1-dimensional gauge theory (in principal
bundles) one dimension up, replacing principal bundles by gerbes.

In the present work, we do not (yet) go into the next dimension, i.e. into dimen-
sion 2, where the notion of groupoid lifts to a variety of mutually related notions
(crossed module, 2-groupoid, double groupoid,. . . .)

I would like to acknowledge an extensive e-mail exchange with Urs Schreiber in
the winter 2005–2006. He called my attention to some of the problems in higher
gauge theory, and in particular, to the problem of relating differential and integral
formulations. See also [1], and [4] for various formulations of the problems (mainly
in principal-bundle terms).

I assume that the reader is familiar with the basic technique in SDG, namely that
one talks about the geometric objects (“spaces”) (say, smooth manifolds, as in [6], or
schemes, as in [2]) as if they were sets. Hence also “map” means “smooth map” or
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“scheme morphism”. Some of the notions considered are purely algebraic, and make
sense also for discrete sets. Some others, notably the crucial “first neighbourhood of
the diagonal” make sense for (finite dimensional) manifolds, respectively schemes,
only. – Some particular, less well known, aspects of SDG, are commented on in the
Appendix.

Convention. Generally, concrete maps compose from right to left, and this
composition is denoted by ◦ : (f ◦ g)(x) = f(g(x)), whereas composition in abstract
groupoids is denoted by a lower dot, and composed from left to right.

1 Groupoids

We consider groupoids Φ = (Φ ⇒ M), the two displayed maps being domain-
formation d0 and codomain-formation d1. So M is the set (“space”) of objects of
the groupoid Φ, and Φ the space of arrows of the Φ. Often we identify Φ and Φ
notationally.

When two groupoids Φ and Ψ have the same set of objects M , we often tacitly
assume that the functors F : Φ → Ψ that we consider preserve the objects, i.e.
F (x) = x for all x ∈ M (unless the contrary is explicitly stated).

Example 1. To any M , we have the codiscrete groupoid M ×M ⇒ M (also called
chaotic or banal groupoid on M). More generally, to any group G, we have the
“constant” groupoid M ×G×M ⇒ M (with (x, g, y).(y, g′, z) := (x, g · g′, z).

Example 2. Let E → M be any map. We get a groupoid Φ ⇒ M , where the
arrows m1 → m2 are the bijections Em1 → Em2 (Em denoting the fibre of E → M
over m ∈ M). In the context of SDG, where “everything is smooth”, the word
“diffeomorphism” is more adequate than “bijection”, although they are synonymous
in the SDG context.

2 Graphs

We shall here consider graphs, in particular reflexive symmetric graphs. Every
manifold gives, in the context of SDG, rise to such, and so does every groupoid,
see below. Let us be explicit about the category of reflexive symmetric graphs.
Its objects are pairs of sets (X1, X0), together with four maps: d0 : X1 → X0,
d1 : X1 → X0, i : X0 → X1 and t : X1 → X1. The elements of X0 are the vertices
of the graph, the elements of X1 the edges; for u ∈ X1, d0(u) (resp. d1(u)) is the
source (resp. the target) vertex of u. The symmetry is a structure, namely a map
t : X1 → X1; it is assumed to be an involution (t ◦ t = id), and to interchange
source and target, i.e. d0 ◦ t = d1 and d1 ◦ t = d0. Also, reflexivity of the graph is a
structure, given by the map i : X0 → X1. We assume d0 ◦ i = d1 ◦ i = id and t◦ i = i.
The morphisms ξ : X → X ′ in the category of reflexive symmetric graphs are pairs
of maps ξ0 : X0 → X ′

0, ξ1 : X1 → X ′
1 which commute with the four structural maps

in an evident sense.
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When two graphs have the same set X0 of vertices, we often tacitly assume
that the graph morphisms ξ = (ξ1, ξ0) that we consider preserve the vertices, i.e.
ξ0(x) = x for all x ∈ X0.

We will often denote a graph X, as above, with the hieroglyph X1 ⇒ X0.

The following example works in the context of SDG:

Example 1. If M is a manifold, we get a reflexive symmetric graph M(1) ⇒ M ,
whose vertices are the elements of M and whose edges are (ordered) pairs (x, y)
of neighbour points x ∼ y, d0((x, y)) = x, d1((x, y)) = y. Since the 1-neighbour
relation is symmetric, we have an involution t given by t(x, y) = (y, x), and i is
given by i(x) = (x, x). – This graph is often called the first neighbourhood of the
diagonal of M .

For a graph arising as the first neighbourhood of the diagonal of a manifold
M , the map (d0, d1) : M1 → M0 × M0 is jointly mono; and the existence of the
involution t is therefore a property rather than an added structure. For the graph
arising from a groupoid to be described now, neither of these simplifications obtain.

Example 2. The reflexive symmetric graph arising from a groupoid has the objects
of the groupoid as its vertices, the arrows for its edges, t is inversion in the groupoid
t(u) = u−1, and i(x) is the identity arrow idx at the object x. We also call the graph
thus obtained the underlying graph of the groupoid.

The functor from manifolds to graphs thus described is full and faithful; the
functor from groupoids to graphs is faithful, but not full. In particular, a map of
reflexive symmetric graphs between the underlying graphs of groupoids preserves
identities and inversion, but does not necessarily preserve composition. This is
related to the notion of curvature or flatness.

Example 3. For any manifold M , we have the set P (M) of (smooth) Moore paths
γ : [a, b] → M where [a, b] is a closed interval on the number line R (a ≤ b). Then
P (M) carries a structure of graph with M as set of vertices, namely with γ(a) and
γ(b) declared to be the domain and codomain of γ. This graph carries also a reflexive
symmetric structure: for x ∈ M , ix is taken to be the constant path [0, 0] → M
with value x; and with γ as above, t(γ) is taken to be γ ◦ s where s : [a, b] → [a, b]
is reflection in the midpoint (a + b)/2.

We refer the reader to the Appendix for some subtleties of the notion of “closed
interval” in the synthetic context.

Remark. Note that we do not attempt to define a composition of paths; this would
lead to paths which are only piecewise smooth. (In the context of SDG, a piecewise
smooth path is not really a path, but a suitable finite sequence of paths.) One could
define composition of paths which are stationary in neigbourhoods of the endpoints;
but that would exclude from consideration paths whose interval [a, b] of definition
are infinitesimal (say, with a ∼ b), and such infinitesimal paths are of fundamental
importance in the present study.

Example 4. For any manifold M , we have a canonical morphism of reflexive
symmetric graphs,

M(1) → P (M);
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it takes the pair (x, y) ∈ M(1) into the path [[x, y]] : [0, 1] → M given by t 7→
(1− t)x+ ty. Such affine combination of mutual neighbour points make sense in any
manifold, cf. [10], or the Appendix below; we return to aspects of this construction
in §10.

3 Base change (Full Image)

For groupoids as well as for graphs, one has the notion of full image: if Φ = (Φ ⇒ M)
is a groupoid, and f : N → M is a map, there is a groupoid f ∗(Φ) = (f ∗(Φ) ⇒ N),
where an arrow in f ∗(Φ) from u to v (u, v ∈ N) is by definition an arrow in Φ from
f(u) to f(v); and similarly for graphs (using the terms “vertex” and “edge”, rather
than “object” and “arrow”). For the groupoid case, there is an evident composition
of arrows in f ∗(Φ), making it into a groupoid; this is the full image of Φ under
f . (Thus, groupoids in fact form a fibered category over the category of manifolds
M, N, . . .)

A functor ξ : (Ψ ⇒ N) → (Φ ⇒ M) given by ξ0 : N → M and ξ1 : Ψ → Φ may
be identified with a functor (Ψ ⇒ N) → ξ∗0(Φ ⇒ M).

Example. Let G be a group and M a set or manifold. Let 1 denote the one-element
set. G may be viewed as a groupoid G ⇒ 1. The full image of this groupoid along
the unique map M → 1 equals the constant groupoid M × G × M ⇒ M (cf. §1
Example 1).

4 Trivializations

Recall from §1 that for any set M , we have the “codiscrete” groupoid M×M ⇒ M .
Let Φ = (Φ ⇒ M) be a groupoid. A functor ∇ from M×M ⇒ M to Φ is called

a (total) trivialization of Φ.
So for x and y in M , ∇(x, y) is an arrow x → y in Φ; ∇(x, x) is idx, and ∇(x, y) is

inverse of ∇(y, x), (we shall meet equations similar to these two again when defining
the notion of connection); but furthermore, the fact that ∇ is assumed to commute
with composition (being a functor) reads

∇(x, y).∇(y, z) = ∇(x, z) (1)

for all x, y, z in M .
Sometimes, we call such trivialization a total trivialization, because there is a

more general notion, partial trivialization of a groupoid Φ = (Φ ⇒ M) along a map
f : N → M ; this is by definition a total trivialization ∇ of the groupoid f ∗(Φ), thus
for n1 and n2 in N , ∇(n1, n2) is an arrow f(n1) → f(n2) in Φ, and ∇(n, n) = idf(n),
for all n ∈ N , and similarly for the other equations: ∇(n2, n1) = ∇(n1, n2)

−1 and
∇(n1, n2).∇(n2, n3) = ∇(n1, n3).

Trivializations pull back in an evident sense. If Φ ⇒ M is a groupoid, and
if f : N → M is an arbitrary map, a total trivialization ∇ of Φ gives rise to a
total trivialization f ∗(∇) of f ∗(Φ), i.e. a to a partial trivialization of Φ along f ,
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f ∗(∇)(n1, n2) = ∇(f(n1), f(n2)) for n1, n2 ∈ N . More generally, if ∇ is a partial
trivialization of Φ ⇒ M along f : N → M , and g : P → N is any map, we get an
induced partial trivialization of Φ along f ◦ g : P → M , in an evident way.

Example. Recall from §1 Example 1 the groupoid M × G × M ⇒ M given by
a set M and a group G. This groupoid carries a total trivialization ∇ given by
∇(x, y) := (x, e, y) where e ∈ G is the neutral element. But conversely:

Proposition 1 Given a groupoid Φ ⇒ M and a total trivialization ∇ of it. Then
for each z ∈ M , there is a canonical isomorphism between the groupoids Φ and
M ×G×M ⇒ M , where G is the group Φ(z, z).

Proof/Construction. Let φ : m1 → m2 be an arrow in Φ ⇒ M . Then (m1,
∇(z, m1).φ.∇(m2, z), m2) is an arrow m1 → m2 in M×G×M ⇒ M . Conversely, to
an arrow (m1, g, m2) in M×G×M ⇒ M , we associate the arrow∇(m1, z).g.∇(z, m2)
in Φ ⇒ M .

(Let us remark that under the correspondence between groupoids and principal
bundles, constant groupoids correspond to trivial fibre bundles; (total) trivializations
of groupoid correspond to (global) sections of principal bundles.)

5 Connections in groupoids

We can now describe the crucial notion of connection in a groupoid, as it may be ren-
dered in the language of SDG, cf. [5] (Remark 6.4), and [8]. (There are several other
synthetic renderings of connections in groupoids, see e.g. the references in Part I,
Note 12 in the 2006 edition of [6].) More precisely, we are discussing the notion
of “infinitesimal connection” or even more pedantically, “first-order infinitesimal
connection”.

We consider a groupoid Φ ⇒ M whose space of objects is a manifold. Recall
from Section 2 the graph M(1) ⇒ M of a manifold M (“first neighbourhood of the
diagonal”).

Definition 1 A connection ∇ in a groupoid Φ ⇒ M is a morphism of reflexive
symmetric graphs from M(1) to (the underlying graph of) Φ.

In other words, if (x, y) ∈ M(1) (i.e. if x ∼ y), ∇(x, y) is an arrow x → y in Φ;
and the following laws hold:

∇(x, x) = idx (2)

for all x ∈ M , and, for all x ∼ y,

∇(y, x) = (∇(x, y))−1. (3)

(In the context of SDG, it often happens that (3) is a consequence of (2).)
An important property which a connection may or may not have, is the following:

A connection ∇ in Φ ⇒ M is called flat or curvature free if

∇(x, y).∇(y, z) = ∇(x, z) (4)
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whenever x ∼ y, y ∼ z, and x ∼ z.

(We have elsewhere [11] used the terminology “infinitesimal 2-simplex” for such
a triple x, y, z of points in a manifold. Note that the neighbour relation ∼ is not
transitive, so that x ∼ z does not follow from x ∼ y, y ∼ z.)

If ∇ is a connection in Φ ⇒ M , and γ : N → M is a map between manifolds,
we get an induced connection γ∗(∇) in γ∗(Φ): if (u, v) ∈ N(1), (γ(u), γ(v)) ∈ M(1),
and ∇(γ(u), γ(v)) : γ(u) → γ(v) represents a arrow u → v in γ∗(Φ).

If γ : N → M is a map between manifolds, and Φ ⇒ M a groupoid, a connection
in the groupoid γ∗(Φ) is called a connection in Φ along γ, or a partial connection
in Φ, if γ is understood from the context. This situation occurs often enough to
be made explicit in more elementary terms: let (Φ ⇒ M) be a groupoid. Then a
connection in Φ along γ : N → M consists in giving, for each x ∼ y in N an arrow
in Φ, ∇(x, y) : γ(x) → γ(y); and this data is required to satisfy the laws

∇(x, x) = idγ(x) (5)

for all x ∈ N , and

∇(y, x) = (∇(x, y))−1 (6)

for all x ∼ y ∈ N .

Given γ : N → M and a connection ∇ in Φ ⇒ M , the induced connection on
γ∗(Φ) ⇒ N may happen to be flat, even though ∇ itself may not be so. In this case,
we say that ∇ is flat along γ. Under assumptions to be made later, any connection
will be flat along any path γ : [a, b] → M .

5.1 Integrals

A trivialization ∇ of a groupoid Φ = (Φ ⇒ M) where M is a manifold gives rise to a
connection ∇ in Φ by restricting ∇ : M ×M → Φ to the subset M(1) ⊆ M ×M , i.e.
∇(x, y) = ∇(x, y) for x ∼ y in M . Then (1) for ∇ implies that the connection ∇,
obtained by restriction in this way, is flat in the sense of (4). An complete integral for
a connection ∇ on a groupoid Φ ⇒ M is a trivialization ∇ of Φ which extends the
given ∇, ∇(x, y) = ∇(x, y) whenever (x, y) ∈ M(1). Clearly a necessary condition
for ∇ to admit a complete integral is that it is flat.1

Complete integrals in this sense are rare. More common are “partial integrals
along maps”: a partial integral of the connection ∇ in Φ along f : N → M is a
complete integral of f ∗(∇). (This is analogous to partial trivializations of a groupoid
Φ ⇒ M along f : N → M , considered above in §4.)

If g : N ′ → N is a map, and Ψ ⇒ N a groupoid, then if H : N × N → Ψ is a
trivialization of Ψ, then H◦(g×g) is a trivialization of g∗(Ψ). And if H is a complete
integral of a connection ∇ on Ψ, then H ◦ (g × g) is a complete integral of g∗(∇).
We express these properties by saying that complete integrals, and trivializations,
pull back.

1In fact, even the reflexivity law and symmetry law assumed for connections in groupoids,
∇(x, x) = idx and ∇(y, x) = (∇(x, y))−1 follow from existence of complete integrals.
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6 Path connections

Recall the reflexive symmetric graph P (M) ⇒ M of paths in M of §2. – Let there
be given a groupoid Φ = (Φ ⇒ M).

Definition 2 A path connection on a groupoid Φ ⇒ M is a morphism σ of re-
flexive symmetric graphs P (M) → Φ, which satisfies a reparametrization law and a
subdivision law (as spelled out below).

Reparametrization: Let f : [a, b] → M be a path, and let g : [a′, b′] → [a, b] be a
map with g(a′) = a, g(b′) = b (a ≤ b and a′ ≤ b′). Then the reparametrization law
says

σ(f ◦ g) = σ(f) (7)

(note that both sides of this equation denote arrows f(a) → f(b) in Φ).

Subdivision: Let γ : [a, b] → M be a path, and let c be given with a ≤ c ≤ b. Let
γ1 and γ2 denote the restriction of γ to the subintervals [a, c] and [c, b], respectively.
Then the subdivision law says

σ(γ) = σ(γ1).σ(γ2), (8)

(composing from left to right in Φ, compostion denoted by a lower dot).

Note that the assumption that σ preserves symmetry amounts to saying that for
any path γ : [a, b] → M

σ(γ ◦ τ) = (σ(γ))−1 (9)

where τ : [a, b] → [a, b] is “reflection in the midpoint”, cf. §2.
This notion of path connection is essentially the one of Virsik ([15], Appendix);

more precisely, Virsik axiomatizes this notion along the lines of the properties of
Hol of the Remark 2 in §7 below.

We note that if g : N → M is a map, and σ is a path connection on a groupoid
Φ ⇒ M , then we get a path connection g∗(σ) on the groupoid g∗(Φ) ⇒ N by putting

g∗(σ)(γ) := σ(g ◦ γ)

for any path γ : [a, b] → N .

7 Holonomy (Integrating connections along

paths)

Let M be a manifold. Many groupoids with connection (Φ ⇒ M,∇) have the
property that unique partial integrals exist along any map (path) [a, b] → M , where
[a, b] is a closed interval on the line; in this case, we say that the pair (Φ ⇒ M,∇)
admits path integration. If a groupoid Φ ⇒ M has the property that (Φ ⇒ M,∇)
admits path integration for any connection ∇ on it, we say that the groupoid admits
path integration.
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If (Φ ⇒ M,∇) admits path integration, we have thus for each path γ : [a, b] → M
a unique complete integral for the induced connection γ∗(∇) on [a, b]; we denote it∫

γ
∇. So its value on the (s, t) ∈ [a, b]× [a, b] is an arrow in Φ

γ(s)
(
R

γ ∇)(s,t)
−−−−−−→ γ(t)

In particular, if s = a and t = b (the endpoints), (
∫

γ
∇)(a, b) is termed the holonomy

of ∇ along γ and is denoted hol∇(γ) or
∫

γ
∇ (the information of a and b being part

of γ). Note that hol∇(γ) is an arrow γ(a) → γ(b).

For a ≤ s ≤ t ≤ b, (
∫

γ
∇)(s, t) equals

∫
γ(s,t)

∇, where γ(s, t) denotes the retsric-

tion of γ to the subinterval [s, t] ⊆ [a, b]. (But note that (
∫

γ
∇)(s, t), unlike γ(s, t), is

defined whether or not s ≤ t.) This follows because the restriction of the complete
integral for a connection on a manifold, say [a, b], restricts to a complete integral on
any submanifold, say [s, t].

Note that if (Φ ⇒ M,∇) admits path integration, ∇ is “flat along any path”,
i.e. for any path γ in M , γ∗(∇) is flat (= curvature free), i.e. satisfies (4).

We have for s ∼ t in [a, b] that

(∫
γ

∇
)
(s, t) = ∇(γ(s), γ(t)); (10)

this equation expresses that the complete integral of γ∗(∇) agrees with γ∗(∇) on
pairs og neighbour points.

Remark 1. There is a condition related to (10), but stronger, namely that this
equation holds not just under the assumption that s ∼ t, but under the weaker
assumption that γ(s) ∼ γ(t). However, this would not be realistic for paths with
self-intersection, say.

If (Φ ⇒ M,∇) admits path integration, we have defined the holonomy hol∇(γ)
of∇ along a path γ : [a, b] → M , namely it is the arrow (

∫
γ∇)(a, b) in Φ, with domain

γ(a) and codomain γ(b). From the assumed uniqueness of complete integrals, it
follows that holonomy is invariant under reparametrization (we shall be more explicit
below). We thus have a map a map

hol∇ : P (M) → Φ

where P (M) is the space of (smooth Moore-) paths in M , (P (M) as in §2, Exam-
ple 3.)

Remark 2. More generally, given a path γ : [a, b] → M , we have a path Hol∇(γ) :
[a, b] → Φ in Φ, whose endpoint (value at b) is hol∇(γ). It is defined by Hol∇(γ)(t) :=
(
∫

γ
∇)(a, t). We note that the the domain of the arrow Hol∇(γ)(t) (i.e. the arrow∫ t

a
γ∗(∇)) is γ(a), the codomain is γ(t). – Note that Hol∇(γ) is a path in Φ, whereas

hol∇(γ) is just an element (arrow) in Φ.
Let us record the book-keeping conditions which Hol∇ : P (M) → P (Φ) satisfies.

Recall that P is a functor: if d : N → M is a map, we get a map P (d) : P (N) →
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P (M), by putting P (d)(γ) = d ◦ γ for any path γ in N . In particular, the maps
di : Φ → M (i = 0, 1) give rise to maps P (d0) and P (d1) from P (Φ) to P (M). Let
us for any N use αN and βN to denote the end points of a path in N , thus e.g.
α(γ) = γ(a) ∈ N if γ : [a, b] → N is a path; also, for γ : [a, b] → M , we let κ(γ)
denote the constant path [a, b] → M given by t 7→ γ(a) for all t ∈ [a, b]. Then as
maps P (M) → P (M),

P (d0) ◦ Hol∇ = κ; (11)

P (d1) ◦ Hol∇ = identity map of P (M); (12)

and, as maps P (M) → Φ,
αΦ ◦ Hol∇ = i ◦ αM (13)

(where i : M → Φ is the map picking out identity arrows), – and

βΦ ◦ Hol∇ = hol∇ . (14)

(These four book-keeping properties, together with reparametriation and subdivi-
sion, is a more precise rendering of Virsik’s original path-connection notion.)

8 Connections in constant groupoids

We recall some standard notions of SDG, cf. [7], or [6] §I.18. Let M be a manifold
and G a group (multiplicatively written, with neutral element e). A (differential)
1-form with values in G is a map ω : M(1) → G with ω(x, x) = e for all x, and with
ω(y, x) = ω(x, y)−1 for all x ∼ y; in the context of SDG, the second condition is a
consequence of the first, for many groups G. (For Lie groups, the data of such ω
is by [7] equivalent to the classical notion of differential form with values in the Lie
algebra L(G) of G, see [7].)

Alternatively, a G-valued 1-form on M may be seen as a connection in G ⇒ 1
along the unique map M → 1.

Consider again a connection ∇ in a constant groupoid M×G×M ⇒ M , and the
corresponding G-valued 1-form ω on M . To say that ∇ is flat is equivalent to saying
that ω is closed in the sense ω(x, y).ω(y, z) = ω(x, z) for any infinitesimal 2-simplex
x, y, z.(Such closed G-valued 1-forms correspond classically to 1-forms with values
in L(G) which satisfy the Maurer-Cartan equation, see [7].)

Among the closed G-valued 1-forms are the exact ones: a G-valued 1-form ω is
called exact if it admits a (left) primitive; this means a function f : M → G such
that ω(x, y) = f(x)−1.f(y) for all x ∼ y in M .

It is clear that there is a bijective correspondence between G-valued 1-forms
on M , on the one side, and connections in the constant groupoid M ×G×M ⇒ M
on the other: to ω corresponds the connection ∇ given by ∇(x, y) := (x, ω(x, y), y).

The theory of connections in constant groupoids is therefore identical to the
theory of group-valued 1-forms. In this sense, the theory of connections in non-
constant groupoids is a generalization of the theory of group-valued 1-forms.

(There is also a bijective correspondence between path connections σ : P (M) →
(M × G × M) in a constant groupoid, and maps of symmetric reflexive graphs
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s : P (M) → G, satisfying a reparametrization and a subdivision law. (Note that
a group G may be seen as a groupoid G ⇒ 1 with only one object, and that it
therefore has an underlying reflexive symmetric graph.) We leave the details to the
reader.)

Proposition 2 Given a constant groupoid M×G×M ⇒ M . Let ∇ be a connection
in it, and ω the corresponding G-valued 1-form. Then ∇ is flat if and only if ω is
closed. And ∇ admits a complete integral if and only if ω is exact, i.e. admits a
primitive. In fact, if ∇ is a complete integral for ∇, then for any m0 ∈ M , the
function f : M → G given by letting f(m) be the “middle coordinate” in ∇(m0, m),

∇(m0, m) = (m0, f(m), m)

is a primitive of ω; and conversely, given a primitive f : M → G of ω, a complete
integral ∇ for ∇ is given by

∇(x, y) = (x, f(x)−1.f(y), y).

Complete integrals for connections are unique if and only if primitives are unique
modulo left translation by a constant.

Proof. This is safely left to the reader. Let us as a sample prove that uniqueness
of complete integrals for ∇ implies uniqueness modulo left translation of primitives
for ω. Given two primitives for ω, f1 and f2. Then by the middle part of the
Proposition

∇(x, y) := (x, f1(x)−1.f1(y), y)

is a complete integral of ∇, and similarly with f2 instead of f1; by assumption these
two complete integrals agree, and so we conclude by comparison that for all x, y ∈ M

f1(x)−1.f1(y) = f2(x)−1.f2(y).

Now fix x, and multiply this equation on the left by f2(x). Then we have for all y
that

[f2(x).f1(x)−1].f1(y) = f2(y),

proving that f1 and f2 differ by left translation by the constant appearing in the
square bracket.

Not all groupoids admit integration; groupoids of the form described in Exam-
ple 2 in §1 usually don’t, see the argument in §11, Example 3. However, by an
essentially classical result one has what in our formulations amount to

Theorem 1 Any constant groupoid M × G × M ⇒ M , where G is a Lie group,
admits path integration.

Also any groupoid Φ ⇒ M which in a suitable sense is locally constant, and whose
vertex groups are Lie groups, admits path integration; this fact can be reduced to
Theorem 1. See [8].

The theory of such groupoids is closely related to (locally constant) principal
fibre bundles over Lie groups, as pointed out by Ehresmann in the 1950s; see [13]
for a description of this relationship.
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9 Holonomy is a path connection

We consider a groupoid Φ ⇒ M , where M is a manifold; let ∇ be a connection in
Φ, ∇ : M(1) → Φ.

Proposition 3 If (Φ ⇒ M,∇) admits path integration, then

hol∇ : P (M) → Φ

is a path connection.

Proof. We first have to argue that hol∇ is in fact a morphism of (reflexive sym-
metric) graphs. First, it is a map of graphs, since the domain (resp. codomain) of
hol∇(γ) is γ(a), resp. γ(b) (where γ : [a, b] → M). The “reflexivity structure” is
preserved, since for a constant path γ : [0, 0] → M (with value x ∈ M , say), the
function (s, t) 7→ idx is a complete integral of γ∗(∇). (Note that in the context of
SDG, paths [0, 0] → M need not be constant.) Finally, for preservation of symme-
try: this amounts to proving that the arrows hol∇(γ) and hol∇(γ̃) are inverse of each
other in the groupoid Φ ⇒ M , where γ̃ : [a, b] → M is γ ◦τ , τ being reflection in the
midpoint of [a, b]. For simplicity of notation, we shall assume that [a, b] = [−1, 1]
so that τ(t) = −t. Let γ : [−1, 1] → M be a path, so γ̃(t) = γ(−t). Let ∇ be the
complete integral of γ∗(∇). We claim that the complete integral of γ̃∗(∇) is given by

∇̃(s, t) = ∇(−s,−t). The book-keeping is respected, since ∇̃(s, t) = ∇(−s,−t) is
an arrow from γ(−s) to γ(−t), hence from γ̃(s) to γ̃(t). Also, it is clearly a functor,

∇̃(s, t).∇̃(t, u) = ∇̃(s, u), since ∇ is a functor. Finally, ∇̃(s, t) extends γ̃∗(∇); for,
let s ∼ t in [0, 1]. Then

γ̃∗(∇)(s, t) = ∇(γ(−s), γ(−t)) = ∇(−s,−t) = ∇̃(s, t).

(Note that we did not explicitly use that ∇(y, x) = ∇(x, y)−1; this property is built
into the assumption of existence of a complete integral.)

Both the fact that (7) holds, and the invariance under reparametrizations is
an immediate consequence of the fact that connections, as well as their possible
complete integrals, pull back (together with uniqueness of complete integrals for
connections on intervals). Thus we have a well defined graph map P (M) → Φ. It
remains to prove the subdivision law. So we should prove that if f : [a, b] → M is a
path, and a ≤ c ≤ b

h(f) = h(f1).h(f2), (15)

where, as above, f1 and f2 are the restrictions of f to [a, c] and to [c, b], respectively.

Let H : [a, b] × [a, b] → f ∗(Φ) be the complete integral of f ∗(∇). Then the
restriction H1 of H to [a, c] × [a, c] is the complete integral of f ∗1 (∇) (identifying
f ∗1 (Φ) with a full subgroupoid of f ∗(Φ)); similarly for H2, the restriction of H to
[c, b]× [c, b]. The left hand side of (15) is by definition H(a, b), the right hand side
is similarly H1(a, c).H2(c, b) = H(a, c).H(c, b). But since H is a functor, H(a, b) =
H(a, c).H(c, b). This proves (15) and thus the Proposition.
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10 Differentiating a Path Connection

Recall from the Appendix that one may form arbitrary affine combinations of mutual
neighbour points in a manifold M .

We consider a groupoid Φ ⇒ M , and a path connection σ : P (M) → Φ. We want
to differentiate σ into a (first order, infinitesimal) connection σ′. Let (x, y) ∈ M(1).
Since M is a manifold and x and y are neighbours, there is therefore a well defined
smooth path [[x, y]] : [0, 1] → M given by

[[x, y]](t) := (1− t) · x + t · y; (16)

we put
σ′(x, y) := σ([[x, y]]). (17)

If x = y, the path [[x, y]] is constant, and therefore σ returns an identity arrow.
This proves that σ′(x, x) = idx. The fact that σ′(x, y) and σ′(y, x) are inverses
follows easily from the “symmetry” assumption (9) on σ.

We now have the two processes: “integration” of a connection ∇ into a path
connection hol∇ (provided the groupoid in question admits path integration), and
the process of differentiating a path connection into a connection. We shall prove
that these processes are mutually inverse, see Theorems 2 and 3 below. We first
note that both these processes are “stable under base change”. Consider a groupoid
Φ ⇒ M and a map g : N → M (where N and M are manifolds). Then we also have
a groupoid g∗(Φ) ⇒ N , and to a connection ∇ on Φ ⇒ M , we get a connection
g∗(∇) on g∗(Φ) ⇒ N ; and to a path connection σ on Φ ⇒ M , we get a path
connection g∗(σ) on g∗(Φ) ⇒ N . Observe that if Φ ⇒ M admits path integration,
then so does g∗(Φ) ⇒ N . In this case, we have for any connection ∇ on Φ ⇒ M
that

holg∗(∇) = g∗(hol∇). (18)

Also, for any path connection σ on Φ ⇒ M , we have

(g∗(σ))′ = g∗(σ′). (19)

This last fact depends on g ◦ [[x, y]] = [[g(x), g(y)]] for x ∼ y ∈ N . This follows from
the fact that any map between manifolds not only preserves the neighbour relation
but also preserves affine combinations of mutual neighbours (this fact is commented
on in the Appendix).

We consider a connection∇ in a groupoid Φ ⇒ M which admits path integration.
So hol∇ is defined, and is a path connection on Φ ⇒ M . To prove that (hol∇)′ = ∇,
we need a further natural property of connections∇ on Φ ⇒ M , namely that the flat-
ness equation ∇(x, y).∇(y, z) = ∇(x, z) holds for any “1-dimensional” infinitesimal
2-simplex x, y, z. Recall that to say that x, y, z ∈ M form an infinitesimal 2-simplex
in M is to say that x ∼ y, y ∼ z, and x ∼ z. The notion of 1-dimensionality for
such simplices that we shall consider is the following. For any a ∼ b in M , we have
the set of affine combinations (1 − t)a + tb; the set of points in M arising in this
way for some t ∈ R, we denote span(a, b) (“affine span”). It is a property of affine
combinations that all points in span(a, b) are mutual neighbours. An infinitesimal
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2-simplex x, y, z is called 1-dimensional if there exists a ∼ b such that x, y, and z
all belong to span(a, b).

Remark. If a ∼ b, any connection ∇ is flat along the path [[a, b]] : [0, 1] → M ,
provided the groupoid in question admits path integration. But from this does not
follow that ∇ is flat on the image of this map (cf. §7 Remark 1). This is why we
have to introduce the assumption concerning the “1-dimensionality” property.

So we assume that the flatness equation ∇(x, y).∇(y, z) = ∇(x, z) holds for any
1-dimensional infinitesimal 2-simplex x, y, z in M . Under these assumptions, we
have that ∇ can be reconstructed from its holonomy:

Theorem 2 Under these assumptions, we have

(hol∇)′ = ∇.

Proof. Let a ∼ b in M . We have the path [[a, b]] : [0, 1] → M , and by definition we
have

(hol∇)′(a, b) = hol∇([[a, b]]) = Γ(0, 1), (20)

where Γ : [0, 1] × [0, 1] → Φ is the trivialization of [[a, b]]∗(∇). We are going to
describe Γ explicitly. We claim that

Γ(s, t) = ∇([[a, b]](s), [[a, b]](t))

will do the job, for s, t ∈ [0, 1]. (Note that even though s and t may not be neighbours
in [0, 1], [[a, b]](s) and [[a, b]](t) are neighbours in M , so that it makes sense to
apply ∇.) First, the Γ thus described is a functor ([0, 1] × [0, 1]) → Φ, since ∇ is
flat on span(a, b), by the assumption of flatness on 1-dimensional simplices. And
clearly for s ∼ t, it returns the value of [[a, b]]∗(∇) on s, t. These two properties
characterize the trivialization of [[a, b]]∗(∇), so this proves the claim. Substituting
s = 0 and t = 1, we see

Γ(0, 1) = ∇([[a, b]](0), [[a, b](1)) = ∇(a, b),

and combining this with (20) proves the desired equality of (hol∇)′(a, b) and ∇(a, b),
and thus the Theorem.

We next consider a path connection σ in a groupoid Φ ⇒ M which admits path
integration.

Theorem 3 We have holσ′ = σ.

Proof. In view of naturality of differentiation and holonomy formation, it suffices
to prove that for any path connection σ on Ψ ⇒ [a, b] (a ≤ b), we have

holσ′(id) = σ(id),

where id denotes the identity map [a, b] → [a, b]. For x ≤ y in [a, b], we have a
path [x, y] → [a, b] given by the inclusion map of the subset |[x, y]| into the set
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|[a, b]|, together with the information of the end points x and y; denote this path
[x, y] ↪→ [a, b]. We construct a complete trivialization h of Ψ ⇒ [a, b] by applying
dichotomy: if x ≤ y

h(x, y) = σ([x, y] ↪→ [a, b]), (21)

and if y ≤ x,

h(x, y) = (σ([y, x] ↪→ [a, b]))−1. (22)

Note that if x ≤ y and also y ≤ x, |[x, y]| and |[y, x]| agree as subsets of |[a, b]|,
so the inclusion maps of [x, y] = [y, x] agree; but as paths, the information of the
endpoints x and y is retained in [x, y]). In the case of x ≤ y and y ≤ x, the value
of the two expressions (21) and (22) agree, due to the symmetry law for σ (recall
that σ is a morphism of reflexive symmetric graphs). To see that this is indeed a
functor, h(x, y).h(y, z) = h(x, z), we have to consider six cases, by hexachotomy,
one for each of the six possible orderings of x, y, z. For the case of x ≤ y ≤ z, this
follows from he subdivision law for σ, applied to the inclusion [x, z] ↪→ [a, b], which
is a path whose domain may be subdivided by y into the inclusions [x, y] ↪→ [a, b]
and [y, z] ↪→ [a, b]. The other five cases are similar, using furthermore the symmetry
law for σ.

The trivialization of Ψ ⇒ [a, b] thus constructed extends σ′; for, if x ∼ y, we
have x ≤ y (and also, by the way, y ≤ x),

h(x, y) = σ([x, y] ↪→ [a, b]) = σ([[x, y]]),

the last equality by the reparametrization property of σ. But σ([[x, y]]) = σ′(x, y),
by definition of differentiation of path connections.

Thus h furnishes the complete integral for σ′, and holσ′(id) is therefore h(a, b),
which is σ(id). This proves the Theorem.

11 Interpretations in Calculus

We illustrate the meaning of some of the notions presented, by seeing their mean-
ing in “Calculus”, meaning the standard “Calculus and Analytic Geometry”-course
widely taught.

Example 1. We first discuss the Fundamental Theorem of Calculus. It has two
parts: First Part: ∫ b

a

f(x) dx = F (b)− F (a)

where F is an antiderivative of f , i.e. F ′ = f ; and Second Part:

d

dt

∫ t

a

f(x) dx = f(t).

In the context of SDG, the first part is a definition (since there is in SDG no
“integral defined in terms of Riemann sums”, say, available). The proof of the
Second Part is a 3-line proof (see [14]).
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We want to demonstrate how Theorem 2 specializes to this “Second Part”; and
also, to analyze to what Theorem 3 specializes.

We are going to specialize the groupoid concepts considered here by considering
the “groupoid of 1-variable calculus”, i.e. the constant groupoid [a, b] × R × [a, b],
where [a, b] (a ≤ b) is an interval and R = (R, +) is the (additive group of) the
number line.

By the results in §8, a connection ∇ in this groupoid is equivalent to an R-valued
1-form ω on [a, b]. Now such an ω may be given in terms of a function f : [a, b] → R
as f(x) dx. This f(x) dx is by definition the 1-form given by

(f(x) dx)(s, t) = (t− s)f(s)

for s ∼ t ∈ [a, b] Also, it is easy to see that a primitive of f(x) dx in the sense of
group valued 1-forms is the same as an anti-derivative F of f , in the sense of the
Calculus Books, i.e. a function F : [a, b] → R with F ′ = f . So also the complete
integral ∇ of ∇ can be expressed in terms of such antiderivative F of f : for any
s, t ∈ [a, b],

∇(s, t) = (s, F (t)− F (s), t),

or, omitting the “external” coordinates s and t, as we shall henceforth do, ∇(s, t) =
F (t)− F (s). Therefore, for γ : [a1, b1] → [a, b] a path,

hol∇(γ) = F (γ(b1))− F (γ(a1)).

in particular, for s ∼ t ∈ [a, b],

(hol∇)′(s, t) = hol∇([[s, t]]) = F ([[s, t]](1))− F ([[s, t]](0))

= F (t)− F (s) =

∫ t

s

f(x) dx

(the last equality by the First Part of the Fundamental Theorem of Calculus). On
the other hand, for s ∼ t,

∇(s, t) = (f(x) dx)(s, t) = (t− s)f(s).

By Theorem 2, the two left hand sides here are equal, whence for all t ∼ s,∫ t

s

f(x) dx = (t− s)f(s).

Writing t = s+d with d2 = 0 (which is the algebraic way of describing the neighbour
relation on the line R), this may be written∫ s+d

s

f(x) dx = d · f(s),

or ∫ s+d

a

f(x) dx−
∫ s

a

f(x) dx = d · f(s),
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which is the assertion of the Second Part of the Fundamental Theorem of Calculus
(in view of the way, derivatives are defined in SDG).

Example 2. To analyze what Theorem 3 says in terms of Calculus is not so
immediate, since the input of the Theorem is a path connection σ , which is such a
non-elementary thing as a functional (a function whose input are functions, namely
paths). However, for the “groupoid of 1-variable calculus”, each path in γ : [a1, b1] →
[a, b] may be reparametrized to an “inclusion” path [γ(a1), γ(b1)] ↪→ [a, b], at least
if γ(a1) ≤ γ(b1). So because of the reparametrization law for σ, the information
contained in σ may be encoded in (or at least gives rise to) an R-valued function
Σ defined on the set of pairs x ≤ y in [a, b], Σ(x, y) := σ([x, y] ↪→ [a, b]). This Σ
satisfies Σ(x, y) + Σ(y, z) = Σ(x, z), for x ≤ y ≤ z, by the subdivision law for σ.
The Theorem 3 then asserts that there exists a function f : [a, b] → R such that

Σ(x, y) =

∫ y

x

f(t) dt

(namely the function f such that the 1-form f(t) dt corresponds to the connec-
tion σ′).

Example 3. We discuss first order ordinary differential equations y′ = F (x, y),
where F is a function [a, b] × R → R. Such equation represents a connection in
the groupoid of the type considered in §1, Example 2: Consider the projection
[a, b] × R → [a, b]. The groupoid Φ ⇒ [a, b] arising from it by the process of the
quoted example has as arrows from s to t (s, t ∈ [a, b]) bijections from one copy of
the y-axis (the fibre over s) to another copy of the y-axis (the fibre over t) (so it is
(isomorphic to) the constant groupoid [a, b]×Diff(R)× [a, b] ⇒ [a, b], where Diff(R)
is the group of bijections (=diffeormorphisms) R → R). The equation y′ = F (x, y)
gives rise to a connection ∇ in this groupoid, namely, for s ∼ t, ∇(s, t) = (s, φ, t)
where φ is the diffeomorphism

y 7→ y + F (s, y)(t− s).

(The fact that ∇(s, t) and ∇(t, s) are inverse of each other follows from F (s, y)(t−
s) = F (t, y)(t − s), which in turn is a consequence of (t − s)2 = 0, and of Taylor
expansion of F in the first variable). (Conversely, any connection in this groupoid
represents such differential equation y′ = F (x, y).) Finding a complete integral ∇
for ∇ is tantamount to finding a complete solution for the differential equation.
Namely, ∇(s, t) is the map, which associates to y0 ∈ R the number g(t) ∈ R, where
g is the unique solution of the differential equation y′ = F (x, y) with initial value
g(s) = y0. (Such g may not exists, e.g. for F (x, y) = y2).) For F (x, y) an affine
function of y, the ∇(s, t) belong to the Lie group Aff(R) ⊆ Diff(R) of affine maps
R → R, and hence complete integrals do exist for ∇ in this case, by Theorem 1.
(This is the standard fact from Calculus: “Linear” (i.e. affine) differential equations
admit unique complete solutions.)

16



12 Appendix

12.1 The neighbour relation

Recall that D(n) ⊆ Rn consists of n-dimensional vectors (d1, . . . , dn) with di · dj =
0 for all i, j = 1, . . . , n, in particular d2

i = 0 for all i. If x = (x1, . . . , xn) and
y = (y1, . . . , yn) are two vectors, we say x ∼ y if x − y ∈ D(n). This defines the
(first order) neighbour relation ∼ on Rn. For a general n-dimensional manifold
M , the neighbour relation is defined via coordinate charts from Rn. The subset
M(1) ⊆ M × M consisting of pairs of mutual neighbour points in M is called the
first neighbourhood of the diagonal of M . See [6] §I.17. Also more general objects
than manifolds can sometimes be endowed with a good neighbour relation ∼, see
[2], or [12].

12.2 Affine combinations in manifolds

In [10] Theorem 2.2, we proved that the idea that a manifold M is locally like
an affine space has the algebraic consequence that affine combinations of mutual
neighbour points x0, . . . , xn in M , defined via affine combinations in an arbitrary
coordinate chart, do not depend on the chart chosen; and also, the set of points
in M thus obtained (and which may be denoted span(x0, . . . , xn)) has the property
that all its points are mutual neighbours.

The “Theorem 2.2” quoted may be supplemented with a “Theorem 2.2+”: Any
map f : M → N preserves affine combinations of mutual neighbours.

This is proved along the same lines as Theorem 2.2 itself; the detailed proof will
be included in a (hopefully) forthcoming sequel to [6].

In the present note, we consider the case span(x0, x1) (where x0 ∼ x1), which,
as an affine span of two points, should be thought of as “(at most) 1-dimensional”
(we do not need, or attempt, though, to make the dimension notion more precise).

12.3 The ordering of the number line and the notion of
interval

In many models of SDG, the basic object (“the line”) R carries a pre-order relation
≤, compatible with the ring structure on R in the standard way. It is not a partial
order; the anti-symmetry law does not hold. So we cannot from x ≤ y and y ≤ x
conclude that x = y; on the contrary, for all nilpotent elements d in the ring R,
0 ≤ d ≤ 0, but this does not imply d = 0 (which would destroy much of the
synthetic theory, e.g. the neighbour relation). In particular, if a ≤ b in R, we have a
set {x ∈ R | a ≤ x ≤ b} ⊆ R; but a and b cannot be reconstructed from the set. This
set, we denote |[a, b]|; the set |[a, b]| together with the information of the endpoints a
and b, we denote [a, b]. A “path” in an object M is a map [a, b] → M , meaning
precisely: a map |[a, b]| → M , together with the information of the endpoints a and b.

We would like the preorder ≤ on R to be in a suitable sense a total preorder:
for each x, y ∈ R, at least one of the two alternatives x ≤ y or y ≤ x hold. This we
might call the strong dichotomy law for R,≤.
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The strong dichotomy law implies a strong “hexachotomy law”: for any x, y, z ∈
R, at least one of the following six alternatives holds:

x ≤ y ≤ z, x ≤ z ≤ y, y ≤ x ≤ z, . . . , z ≤ y ≤ x.

The strong dichotomy law is consistent with SDG; for instance, one may on R put
the ‘chaotic’ preorder ≤ given by: x ≤ y for all x, y ∈ R.

I don’t know at present whether it is consistent to have less chaotic preorders
on R satisfying strong dichotomy. But for the purposes here, it is sufficient that
certain objects N perceive the dicotomy and hexachotomy laws to hold, or that the
weak dichotomy law holds for N , in the following sense:

We say that the weak dichotomy law holds for N if the following is the case: Let
J = |[a, b]| be (the underlying set of) an interval. If two maps fi : J×J → N satisfy
f1(s, t) = f2(s, t) whenever s ≤ t and whenever t ≤ s, then f1 = f2 (s, t ∈ J).

(Typically N is Φ, the set of arrows of a groupoid under consideration).
Similarly, there is a weak hexachotomy law for N . We leave the exact formulation

to the reader. (I have not been able to prove the weak hexachotomy law for N from
the weak dichotomy law for N , which is why the word “hexachotomy” had to be
invented; possibly, it is a linguistic misconstruction.) – For simplicity of exposition,
we assume the strong laws to hold, having in mind that they may be replaced by
weak ones, if needed.
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Top. et Géométrie Diff. 21 (1980), 227–246.

[6] A. Kock, Synthetic Differential Geometry, Cambridge University Press 1981
(Second Edition Cambridge University Press 2006).

[7] A. Kock, Differential forms with values in groups, Bull. Austral. Math. Soc. 25
(1982), 357–386.

[8] A. Kock, On the integration theorem for Lie groupoids, Czechoslovak Math.
Journ. 39 (1989), 423–431.

[9] A. Kock, Combinatorics of curvature, and the Bianchi identity, Theory and
Applications of Categories Vol. 2 No. 7 (1996), 69–89.

18



[10] A. Kock, Geometric construction of the Levi-Civita parallelism, Theory and
Applications of Categories Vol. 4 No. 9 (1998), 195–207.

[11] A. Kock, Differential forms as infinitesimal cochains, Journ. Pure Appl. Alg.
154 (2000), 257–264.

[12] A. Kock, First neighbourhood of the diagonal, and geometric distributions,
Univ. Iagellonicae Acta Math. 41 (2003), 307–318.

[13] A. Kock, Principal bundles, groupoids and connections, Banach Center Publi-
cations (to appear).

[14] A. Kock and G.E. Reyes, Models for synthetic integration theory, Math. Scand.
48 (1981), 145–152.

[15] J. Virsik, On the holonomity of higher order connections, Cahiers de Top. et
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