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Chapter 1

Introduction

This thesis is concerned with the construction of secondary invariants for families of
bundles. By a family of bundles we mean an oriented �bre bundle Y → Z together
with a principal G-bundle E → Y . That is Z is the space parametrising the family
of principal G-bundles E|Yz

→ Yz. In [7], which was the main inspiration when we
started this work, Dupont-Kamber study families of bundles carrying a �brewise
connection, that is each bundle E|Yz

→ Yz is equipped with a connection Az which
varies smoothly in z. They extend the �brewise connection to a full connection
in the bundle E → Y and are in this way getting secondary invariants living in
smooth Deligne cohomology H∗

D(Y,Z) of the total space Y . By integrating these
over the �bre, they get secondary invariants living in smooth Deligne cohomology
H∗−n
D (Z,Z) of the parameter space Z � here n is the dimension of the �bre.

These classes are in some cases, e.g. if the �brewise connection Az is �at, actually
independent of the extension to a full connection.

It turns out that it is not that straight forward to construct such an integration
map H∗+n

D (Y,Z) → H∗
D(Z,Z) which satis�es all the properties that one might

ask for. In [11], Freed constructs an integration map directly on the cohomology
groups. This is, as Freed notes, not entirely satisfactory for many applications,
where one would like a map on the cochain level. This is the case in [11] (see
also example 7.2.4), where one is not looking for a Deligne 2-class but rather
the underlying 2-cocycle, since the former corresponds to an isomorphism class of
circle bundles with connection whereas the later corresponds to a speci�c circle
bundle.

The �rst construction of a cochain model for smooth Deligne cohomology in-
cluding an integration map appeared in Hopkins-Singer [16]. Their cochain model
is quite close to the formulation of smooth Deligne cohomology in terms of Cheeger-
Simons di�erential characters and thus have a global nature. It is probably the
most intuitive construction, but it is not possible to see what happens locally and
the product in the Hopkins-Singer model depends on a choice of chain homotopy
between the wedge product of forms and the cup product of singular cochains.
This last problem makes it hard to prove relations between the product and the
integration map.

We presents an approach using simplicial forms which is more local in nature

1



2 Chapter 1. Introduction

and which is compatible with the product in this model.
We show that these two approaches gives the same map in smooth Deligne

cohomology, by showing that there is both a unique integration map and a unique
product structure which satis�es some natural axioms.

In [7] the invariants for families of bundles are primarily applied to families
of foliated bundles, since such a family gives rise to a family of normal bundles
with adapted connections. Another direct application is given in the above cited
paper by Freed [11], where it is used to give a construction of the determinant line
bundle. There is also a less direct application to symplectic �brations, which we
will explain below.

A symplectic �bration is a �bre bundle Y → Z with �bre (M,ω) a symplectic
manifold and with the symplectomorphism group as structure group. Since the
structure group preserves the symplectic form, such �brations carry a �brewise
symplectic form. If the structure group can be reduced to the group of hamilto-
nian di�eomorphisms then there is a canonical extension of this �brewise form
to a cohomology class c ∈ H2(Y,R) on the total space. This class gives rise to
characteristic classes

χk =
∫

Y/Z

cn+k ∈ H2k(Z,R).

In [19] K�edra-Mcdu� showed that these classes, up to scaling, was equal to a
set of characteristic classes which was constructed earlier by Reznikov in [28] using
Chern-Weil theory.

We investigate in which cases the χk's are actually integral classes and when
these classes can be lifted to secondary invariants depending on a choice of con-
nection.

When the symplectic form ω has integral periods, it is possible to �nd a circle
bundle with connection overM with curvature ω. Given such a circle bundle there
is a central extension of the hamiltonian group

0→ R/Z→ H̃am→ Ham→ 1,

which was �rst introduced by Kostant in [20]. We will see that in the universal
case this extension splits if and only if we can choose the canonical extension c to
have integral periods. If this is the case, the χk's are actually integral classes.

If the structure group of our hamiltonian �bration lifts to this central exten-
sion, we get an associated family of circle bundles, which gives rise to secondary
invariants of the hamiltonian �bration.

In the case where M carries a hamiltonian action of a compact Lie group, it is
sometimes possible to show that these classes are non-trivial. We will see that in
the case M = CPn with its canonical circle bundle. The classes extend the usual
Cheeger-Chern-Simons classes on SU(n+ 1).

There are other ways of constructing characteristic classes for symplectic �-
brations. In [21], Kotschick-Morita use the spectral sequence associated with the
short exact sequence

1→ Ham(Σg)→ Symp0(Σg)→ H1(Σg,R)→ 0
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to show the existence of characteristic classes for �at symplectic �brations in the
case where M = Σg is a closed oriented surface of genus g ≥ 2. We transfer this
to the Lie algebra level, and by calculating a di�erential in the corresponding Lie
algebra spectral sequence, we will give an explicit construction of some of these
classes. A similar calculation by Vizman, done in another context, suggests that
these classes are non-zero also for more general symplectic manifolds than Σg.

Summary

The thesis is naturally divided into two parts. The �rst part consists of chapter
2 to 7 and centres on the construction of an integration map for smooth Deligne
cohomology and some direct applications. Much of the material in the �rst part is
taken from the paper Dupont-Ljungmann [8]. The second part, consisting of the
last three chapters 8 to 10, is concerned with the construction of characteristic
classes for symplectic �brations, both using the theory developed in the �rst part
and using other more classical methods. Below is a more detailed account of the
content of each chapter.

Chapter 2

The second chapter introduces smooth Deligne cohomology and thus contains no
new material. The di�erent chain models for smooth Deligne cohomology is de-
scribed with emphasis on a description in terms of simplicial forms �rst introduced
in Dupont-Kamber [7] which is used in the subsequent chapters.

Chapter 3

In chapter three, we introduce the concept of a prism complex, which is a general-
isation of simplicial sets well-suited for handling simplicial constructions involving
�brations.

Chapter 4

Chapter 4 contains the main constructions of the �rst part of the thesis. We prove

Theorem. Given a �bre bundle π : Y → Z with compact, oriented n-dimensional
�bres and suitable coverings V and U , then there is an integration map for simpli-
cial forms ∫

[Y/Z]

: Ω∗+n(|NV|)→ Ω∗(|NU|),

compatible with the usual �bre integration map
∫

Y/Z
: Ω∗+n(Y ) → Ω∗(Z). It sat-

is�es a Stokes' formula and, if ∂Y = ∅, induces a map

π! : H∗+n
D (Y,Z)→ H∗

D(Z,Z)

in smooth Deligne cohomology independent of all choices.
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In the course of the proof of this theorem, we make a second construction of
the integration map de�ned in a more combinatorial model where the cohomology
classes are represented by simplicial forms living in the triangulated nerve |NK|
associated to a triangulation |K| → |L| of the bundle. This allows us to prove the
following theorem in the case where the �bre has boundary:

Theorem. Assume that ∂Y 6= ∅, then for a form ω ∈ Ω∗+n(|NV|) representing
an element in smooth Deligne cohomology, the form∫

K/L

ω ∈ Ω∗(|NL|)/dΩ∗−1(|NL|)

depends only on the triangulation of ∂Y → Z.

Chapter 5

There are other constructions of integration maps in the literature. These con-
structions are brie�y reviewed in chapter 5. We show that all these constructions
lead to the same induced integration map in cohomology. This is done by assuming
some natural axioms, and then showing that there is a unique integration map in
smooth Deligne cohomology satisfying all of these.

Chapter 6

In chapter 6, we review the di�erent ways of giving the smooth Deligne cohomology
groups a graded ring structure. We also introduce a new product on simplicial
forms, which induces a product on smooth Deligne cohomology. This construction
is slightly more complicated than the existing ones, but it �ts well together with
the integration map constructed in chapter 4. This allows us to prove

Proposition. Given a �bre bundle p : Y → Z and classes a ∈ Hn
D(Y,Z) and

b ∈ Hk(Z,Z), then we have

∫
[Y/Z]

(a∧̃p∗b) =

(∫
[Y/Z]

a

)
∧̃b.

We end the chapter by showing that, if we insist that the product satis�es some
natural axioms, then there is a unique product in smooth Deligne cohomology.

Chapter 7

In chapter 7, we apply the constructions from the previous chapters in order to
construct invariants for families of bundles with connections. The chapter contains
no new results, but is included as motivation for the construction of the integration
map. The material mainly builds on [7].
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Chapter 8

Here we change focus a bit. Chapter 8 contains a short introduction to symplectic
topology with emphasis on symplectic �brations. It contains some preliminary
results which is used in chapter 9.

Chapter 9

In chapter 9, we construct secondary classes for certain hamiltonian �brations
using the integration map constructed in chapter 4.

By analysing in which cases the characteristic classes reviewed in chapter 8 can
be expected to be integral, we arrive at Kostant's central extension H̃am(M) of
the group of hamiltonian di�eomorphisms Ham(M). It turns out that we cannot
construct our secondary classes for all hamiltonian �bration, but only for those
where the structure group lifts to this central extension. In this case, we get a
family of circle bundles with a �brewise connection associated with the hamiltonian
�bration. There is a nice interpretation of extensions of this �brewise connection
in terms of connections in the hamiltonian �brations, which enables us to prove

Theorem. Given a symplectic manifold (M,ω) with a prequantum line bundle
(L,α) we have well-de�ned classes

χ̂k(α) ∈ H2k−1(BH̃am
δ
(M),R/Z), for k ≥ 1.

If α and α′ are gauge equivalent connections in L then χ̂k(α) = χ̂k(α′).

Chapter 10

This last chapter is centred around the work of Kotschick-Morita [21], the chapter
is more open ended than the preceding ones, but still contains some new material.
Most importantly we are able to give an explicit description of some characteris-
tic classes in H2(BHamδ(Σg),R)H1(Σg,R). This answers a question raised in [21],
where the existence of these classes was proven.





Chapter 2

Smooth Deligne cohomology

In this section, we describe the di�erent ways of looking at smooth Deligne co-
homology. We start by explaining the sheaf theoretic approach and what a class
looks like in the corresponding �ech complex. Then we reformulate this in terms
of simplicial forms, and �nally we take a look at the Cheeger-Simons di�erential
characters.

2.1 Sheaf cohomology and the �ech-de Rham model

The main reference for this section is chapter 1 in Brylinski's book [1]. Let Z be
a smooth manifold, then we have the following complex of sheaves

Zp,∞ : R/Z d→ Ω1 d→ · · · d→ Ωp−1 (2.1)

where R/Z denotes the sheaf of smooth R/Z-valued functions on Z, and Ωl is the
sheaf of real-valued di�erential l-forms on Z.

Ordinarily, to calculate the cohomology of some manifold Z with value in a
sheaf S, you pick an injective resolution I∗ of S and then take the cohomology of
the corresponding chain complex of global sections

Γ(I1)→ Γ(I2)→ · · · .

Given a complex of sheaves

S∗ : S1 → S2 → · · · → Sp,

as above, one can do something similar. We can �nd injective resolutions Ii∗ of
each Si, which are suitably compatible (see [1, ch. 1] for details).

The hyper cohomology of Z with values in the complex of sheaves S∗ is then

7



8 Chapter 2. Smooth Deligne cohomology

the cohomology of the total complex of the double complex of global sections

...
...

...

Γ(I12)

OO

// Γ(I22)

OO

// · · · // Γ(Ip2)

OO

Γ(I11)

OO

// Γ(I21)

OO

// · · · // Γ(Ip1)

OO

We denote it by H∗(Z,S). Given a short exact sequence of complexes of sheaves

R∗ → S∗ → T∗

we get, as in ordinary sheaf cohomology, a long exact sequence of hyper cohomology
groups

→ Hp−1(Z, T∗)→ Hp(Z,R∗)→ Hp(Z,S∗)→ Hp(Z, T∗)→ Hp+1(Z,R∗)→

De�nition 2.1.1. The p'th smooth Deligne cohomology group Hp
D(Z,Z) of Z is

the p− 1'st hyper cohomology group

Hp−1(Z,Zp.∞)

of the above complex of sheaves.

Remark 2.1.2. The smooth Deligne cohomology groups are usually taken to be
the bi-graded groups Hq(Z,Zp,∞), but for q 6= p− 1 we have

Hq(Z,Zp,∞) =
{
Hq−1(Z,R/Z) q < p− 1
Hq(Z,Z) q > p− 1

so there is really only new information in the case q = p − 1. This is most easily
seen by observing that we have the following short exact sequence of complexes of
sheaves

0→ Z→ σ<pΩ∗ → Zp,∞ → 0 (2.2)

where the middle complex is the augmented de Rham complex

σ<pΩ∗ : Ω0 → Ω1 → · · · → Ωp−1.

Since the hyper cohomology of the augmented de Rham complex is given by

Hq(Z, σ<pΩ∗) =

 Hq
dR(Z) q < p− 1
0 q > p− 1

Ωp−1(Z)/dΩp−2(Z) q = p− 1
(2.3)

the claim follows directly from the long exact cohomology sequence.
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The Deligne cohomology groups are in general quite interesting. For p = 1 we
see that Z1,∞ is just the sheaf R/Z, so H1

D(Z,Z) = H0(Z,R/Z) is nothing but
the group of smooth functions Z → R/Z, but already for p = 2 the cohomology
group is actually isomorphic to the group of isomorphism classes of circle bun-
dles with connection (see proposition 2.1.5 below). The higher cohomology groups
correspond to groups of isomorphism classes of abelian n-gerbes with connection.
There are geometric constructions of 1-gerbes and 2-gerbes, but in general the
lack of a proper notion of a weak n-category has so far made it hard to come up
with a nice geometric notion of n-gerbes. We will simply identify an n-gerbe with
its underlying de�ning cocycle in Čn(U ,R/Z) and by a 'gerbe with connection'
simply refer to the underlying de�ning cocycle that represents a class in smooth
Deligne cohomology. To see what such a cocycle looks like we describe the �ech
complex corresponding to the complex of sheaves Zp,∞. It is also this model which
is best suited for the reformulation in terms of simplicial forms in section 2.2.

First pick U = {Ui}i∈I , a good open cover of Z. Here good means that all
intersections are contractible.

Let Ω̌p,q(U) = Čp(U ,Ωq) be the ordinary �ech-de Rham complex and let Ω̌∗(U)
denote the corresponding total complex with total di�erential D = δ + (−1)pd on
Ωp,q(U), where δ and d are the �ech and the de Rham di�erentials respectively.

It is well-known that the chain-map

ε∗ : Ωq(Z)→ Ω̌0,q(U),

induced by the natural map ε : tUi → Z gives an isomorphism

H∗
dR(Z)→ H∗(Ω̌∗(U))

in cohomology. We also have an inclusion of the ordinary �ech complex with
integer coe�cients

Čp(U ,Z)→ Ω̌p,0(U)

which gives us the quotient complex

Ω̌∗R/Z(U) = Ω̌∗(U)/Č∗(U ,Z).

Finally we have

Proposition 2.1.3. H l
D(Z,Z) is the cohomology of the sequence

Ω̌l−2
R/Z(U) d→ Ω̌l−1

R/Z(U) d→ Ω̌l
R/Z(U)/ε∗Ωl(Z).

Proof. Since U is a good open cover, the hyper cohomology is calculated by its
corresponding �ech complex (see e.g. [1, ch. 1]). It is clear that the cohomology
of this complex is the same as that of the sequence above.

Remark 2.1.4. 1. Take a ω = (ω0, . . . , ωl) ∈ Ω̌l(U), where ωi ∈ Ω̌i,l−i(U). That ω
is a cycle in the sequence above is equivalent to the relations

δωi−1 + (−1)idωi = 0, i = 1, . . . , l
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and
δωl ≡ 0 mod Z.

2. Since δωl ≡ 0 mod Z we have that θ = −ωl is a cocycle in Čl(U ,R/Z) that
is a de�ning cocycle for an l-gerbe. As mentioned above we will refer to the pair
(θ, ω) as a gerbe with connection.

The above discussion enables us to show

Proposition 2.1.5. H2
D(Z,Z) is isomorphic to the group of isomorphism classes

of circle bundles with connection.

Remark 2.1.6. Here and throughout the thesis, a circle bundle will mean a prin-
cipal R/Z-bundle.

Proof. Given a representative (ω0, ω1) for a class in H2
D(Z,Z), then since θ = −ω1

is a cocycle in Č1(U ,R/Z) it de�nes a circle bundle in the usual way. Now the �rst
relation in remark 2.1.4 says that ω0 is a collection of local connection forms with
respect to the transition functions given by θ. Another choice of representative
(ω′0, ω

′
1) results in an isomorphic bundle.

Similarly a circle bundle with connection will give cocycles satisfying the re-
lations in 2.1.4. Isomorphic circle bundles give cocycles which di�er by a bound-
ary.

We also have the following useful proposition

Proposition 2.1.7. 1. We have a commutative diagram

H l
D(Z,Z)

δ∗

��

d∗ // Ωl
cl(Z)

I

��
H l(Z,Z) // H l(Z,R)

where Ωl
cl(Z) is the set of closed l-forms with integral periods.

2. There are short exact sequences

0→ Ωl−1(Z)/Ωl−1
cl (Z)→ H l

D(Z,Z)→ H l(Z,Z)→ 0

and
0→ H l−1(Z,R/Z)→ H l

D(Z,Z) d∗→ Ωl
cl(Z)→ 0. (2.4)

3. Combining these we get

0→ H l−1(Z,R)/H l−1(Z,Z)→ H l
D(Z,Z)→ Rl(Z)→ 0,

where Rl(Z) = {(c, ω) ∈ H l(Z,Z)× Ωl
cl(Z) | c = [ω] in H l(Z,R)}.



2.2. Simplicial forms 11

Proof. 1. Let ω = (ω0, . . . , ωl−1) represent a class in H l
D(Z,Z). Note that since

δdω0 = dδω0 = d2ω1 = 0 then Fω = dω0 is actually a globally de�ned, closed
l-form. Fω is called the curvature of ω. d∗ is the map sending ω to Fω. δ∗ is just
the connecting homomorphism for the short exact sequence

0→ Z→ R→ R/Z→ 0

and I is the de Rham map. Now, commutativity of the diagram follows from the
fact that dω0 − δθ = dω0 + δωl−1 = Dω in Ω̌∗R(U), and the cohomology of this
complex is H∗(Z,R).

2. The �rst short exact sequence comes from the long exact sequence associated
with the short exact sequence of complexes of sheaves (2.2) together with the
result on the cohomology of the augmented de Rham complex (2.3).

The kernel of d∗ is the gerbes with �at connection. The calculation in 1. shows
that ω is a cocycle in the total complex Ω̌∗R/Z(U) if and only if the class [ω] lies
in the kernel of d∗. Since the cohomology of Ω̌∗R/Z(U) is H∗(Z,R/Z), the kernel is
H l(Z,R/Z).

3. Follows from 1. and 2.

2.2 Simplicial forms

The idea of looking at smooth Deligne cohomology in terms of simplicial forms
was introduced in [7]. It is in this setting, the constructions in chapter 4 are carried
out. In this section, we will brie�y explain the basics on simplicial forms, and then
show how they can be used to represent classes in smooth Deligne cohomology.

De�nition 2.2.1. A simplicial set X• = {Xp}p≥0 is a collection of sets together
with maps

dj : Xp → Xp−1, j = 0, . . . , p

called face maps, and maps

sj : Xp → Xp+1, j = 0, . . . p

called degeneracy maps, such that the following relations are satis�ed

didj = dj−1di, i < j,

sisj = sj+1si, i ≤ j,

disj =

 sj−1di, i < j,
id, i = j, i = j + 1,

sjdi−1, i > j + 1.

A simplicial manifold is a simplicial set X• = {Xp} where each Xp is a smooth
manifold, and the face and degeneracy maps are smooth.

We will mostly be interested in the following example of a simplicial manifold
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Example 2.2.2. Given an open cover U = {Ui} of Z we have the nerve NU =
{NU(p)} of the covering, where

NU(p) =
⊔

i0,...,ip

Ui0 ∩ · · · ∩ Uip
.

We denote Ui0 ∩ · · · ∩ Uip
by Ui0...ip

in the following. NU is a simplicial manifold
where the face and degeneracy maps comes from the inclusions

dj : Ui0...ip
→ Ui0...îj ...ip

and
sj : Ui0...ip

→ Ui0...ijij ...ip
.

We also have a corresponding simplicial set NdU = {NdU(p)} called the dis-
crete nerve of the covering. Here NdU(p) is simply the set consisting of an element
for each non-empty intersection of p + 1 open sets from U . We have a natural
forgetful map NU → NdU .

De�nition 2.2.3. A simplicial n-form ω = {ω(p)} on a simplicial manifold X•
consists of a collection of forms ω(p) ∈ Ωn(∆p ×Xp) which satis�es the relations

(εj × id)∗ω(p) = (id× dj)∗ω(p−1),

where εj : ∆p−1 → ∆p denotes the ordinary j'th face map. We denote the set of
simplicial forms on X by Ω∗(||X||). If the forms also satisfy the relations

(ηj × id)∗ω(p−1) = (id× sj)∗ω(p),

where ηj : ∆p → ∆p−1 is the ordinary j'th degeneracy map, the forms are called
normal. The set of normal forms is denoted Ω∗(|X|).

Remark 2.2.4. When X• = NU where

NU(p) =
⊔

i0,...,ip

Ui0 ∩ · · · ∩ Uip
,

it is customary to consider only ordered (p+1)-tuples, that is for a tuple (i0, . . . , ip)
we have i0 ≤ · · · ≤ ip (our index sets are always assumed to be ordered). Later
when we move on to prism complexes, this will in some instances be annoying.
Instead we demand that for a permutation σ ∈ Σ(p) the normal forms also satisfy
the relation

σ̃∗ω = ω

where σ̃ : ∆p×Ui0...ip → ∆p×Uiσ(0)...iσ(p) on the �rst factor is the simplicial map
that permutes the vertices of ∆p according to σ, and on the second factor is the
identity.

For a simplicial manifold X• we have a direct sum decomposition

Ωn(|X|) =
⊕

p+q=n

Ωp,q(|X|)
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where Ωp,q(|X|) is the set of forms that are of degree p in the barycentric coordi-
nates on the simplex in the product ∆k ×Xk for k ≥ p.

For X• = NU there is a chain map

I∆ : Ωp,q(|NU|)→ Ω̌p,q(U)

given by I∆(ω) =
∫
∆p ω

(p). This map gives an isomorphism in cohomology. In fact
it has a right inverse given on ∆k ×NU(k) by

E(ω) = p!
∑
|I|=p

ωI ∧ d∗Iω,

where I = (i0, . . . , ip) is a sequence of integers 0 ≤ i0 ≤ · · · ≤ ip ≤ k,

ωI =
p∑

j=0

(−1)jtij
dti0 ∧ ˆdtij

∧ dtip

are the elementary forms on ∆k and the dI 's are maps NU(k)→ NU(p) given by
dI = dj1 · · · djl

where 0 ≤ jl ≤ · · · ≤ j1 ≤ k is the complementary sequence of I
(see Dupont [4, ch. 2] for details).

The natural map tUi → Z also induces a map

ε′∗ : Ω∗(Z)→ Ω∗(|NU|),

so we get the following commutative diagram of homology isomorphisms:

Ωn(Z)

ε∗ %%KKKKKKKKKK
ε′∗ // Ωn(|NU|)

I∆

��
Ω̌n(U)

We need a notion of integral simplicial forms in order to imitate the construc-
tion in the previous section.

De�nition 2.2.5. A form ω ∈ Ω∗(|NU|) is called discrete if it is a pull-back of a
form on the discrete nerve NdU . Furthermore a discrete form is called integral if
I∆(ω) ∈ Č∗(U ,Z). It is easy to see that the integral forms form a subcomplex and
we denote this by Ω∗Z(|NU|).

Proposition 2.2.6. 1. We have

Hn(Ω∗Z(|NU|)) ∼= Hn(Č∗(U ,Z)) = Hn(Z,Z).

2. If we de�ne
Ω∗R/Z(|NU|) = Ω∗(|NU|)/Ω∗Z(|NU|)

then
Hn(Ω∗R/Z(|NU|)) ∼= Hn(Ω̌∗R/Z(U)) ∼= Hn(Z,R/Z).
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3. I∆ induces an isomorphism from the cohomology of the sequence

Ωl−2
R/Z(|NU|) d→ Ωl−1

R/Z(|NU|) d→ Ωl
R/Z(|NU|)/ε∗Ωl(Z) (2.5)

to H l
D(Z,Z).

Proof. 1. The map I∆ takes integral forms to integral cochains by de�nition. It
induces an isomorphism in cohomology, since the map E takes integral cochains
to integral forms, and since the chain homotopies from id to E ◦ I∆ given in [4,
ch. 2] are easily seen to map integral forms to integral forms.

2. This follows from the long exact sequences in cohomology of the short exact
sequences

0→ Ω∗Z(|NU|)→ Ω∗(|NU|)∗ → Ω∗R/Z(|NU|)→ 0

and

0→ Č∗(U ,Z)→ Ω̌∗(U)∗ → Ω̌∗R/Z(U)→ 0

together with 1. and the 5-lemma.

3. Since the cohomology group of (2.5) �ts into a short exact sequence analogous
to (2.4), the 5-lemma gives us that I∆ is an isomorphism.

Corollary 2.2.7. Every class in H l
D(Z,Z) can be represented by an (l− 1)-gerbe

θ with connection ω, where ω = I∆(Λ) for a Λ ∈ Ωl−1(|NU|) with

dΛ = ε∗α− β, α ∈ Ωl(Z), β ∈ Ωl
Z(|NU|). (2.6)

2.3 Cheeger-Simons di�erential characters

Cheeger-Simons di�erential characters were originally introduced in [3] in order to
re�ne the Chern-Weil construction of characteristic classes. We will return to this
in section 7.1. For now we will give the basic de�nitions and see that this is just
another way of looking at smooth Deligne cohomology.

Let Cs
∗(Z) be the chain complex of smooth singular chains on Z and let

Zs
∗(Z) ⊆ Cs

∗(Z) denote the smooth cycles. Then we have

De�nition 2.3.1. A di�erential character (of degree p) is a pair

(h, ω) ∈ Hom(Zp−1(Z),R/Z)× Ωp(Z)

so that
h(∂σ) ≡

∫
σ

ω mod Z.

The group of Cheeger-Simons di�erential characters of degree p is denoted by
Ȟp(Z,Z).
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It is useful to have a cochain model for the di�erential characters, that is a chain
complex of which the cohomology group is the group of di�erential characters. Such
a cochain model was given in Hopkins-Singer [16] (actually the existence of such
a cochain-model is brie�y noted already in Esnault [10]). Let

Cq(p)(Z) =
{

Ωq(Z)× Cq−1(Z,R)× Cq(Z,Z) q ≥ p
Cq−1(Z,R)× Cq(Z,Z) q < p

(2.7)

where the di�erential is given by

d(ω, h, c) = (dω, δh+ c− ω, δc)

for q ≥ p and

d(h, c) =
{

(0, δh+ c, δc) q = p− 1
(δh+ c, δc) q < p− 1

for q < p.
It is not hard to see that there is an isomorphism Hp(C∗(p)(Z)) ∼= Ȟp(Z,Z)

given by the map
[(ω, h, c)]→ (h̃, ω),

where h̃ : Zp−1(Z)→ R/Z is the map induced from h.
For p 6= q we have, as in remark 2.1.2 on smooth Deligne cohomology, that the

group Hq(C∗(p)(Z)) is an ordinary cohomology group.
Ȟp(Z,Z) �ts into the exact sequence

0→ Hp−1(Z,R/Z)→ Ȟp(Z,Z)→ Ωp
cl(Z)→ 0 (2.8)

where the �rst map is given by [h] 7→ [(δh, h, 0)] and the second by [(c, h, ω)] 7→ ω.
Given this it is not surprising that we have

Theorem 2.3.2.
Ȟp(Z,Z) ∼= Hp

D(Z,Z).

Proof. Since the two cohomology groups �t into analogous exact sequences, we
only need to come up with a map

Hp
D(Z,Z)→ Ȟp(Z,Z)

compatible with the short exact sequences, then the 5-lemma will do the work.
This is done in [7], but we repeat it here since we need the explicit construction
of this map later on.

First let
Čp,q(U) =

⊕
i0,...,ip

Cs
q (Ui0...ip)

be the �ech double complex of smooth singular chains. Here the horizontal di�eren-
tial δ is the �ech di�erential ,and the vertical di�erential ∂ is the usual di�erential
on simplices. Then as usual the di�erential in the total complex Č∗(U) is given by

Dτ = δτ + (−1)p∂τ, τ ∈ Čp,q(U).
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Let CU∗ (Z) ⊆ Cs
∗(Z) be the subcomplex generated by simplices with support

in some U ∈ U , i.e. to every simplex τ ∈ CU∗ (Z) there is a U ∈ U so that imτ ⊆ U .
The map ε :

⊔
Ui → Z induces a chain map

ε∗ : Čp(U)→ Č0,p(U)→ CUp (Z),

and there is a chain map
j : CU∗ (Z)→ Č∗(U)

so that ε∗ ◦ j = id and j ◦ ε∗ is chain homotopic to id.
Let us �rst see that in order to determine a di�erential character (h, α) ∈

Ȟp(Z,Z), it is enough to know h|ZU
p−1(Z), that is to know what values it take

on cycles generated by simplices with support in U . From the usual proof of the
excision theorem for singular homology, we have chain maps

p : C∗(Z)→ CU∗ (Z) and i : CU∗ (Z)→ C∗(Z)

and a chain homotopy s so that

id− i ◦ p = ∂s+ s∂.

Now for a cycle σ we have

h(σ)− h(i ◦ p(σ)) = h(∂sσ) ≡ 〈I(α), sσ〉

as wanted.
We can now use j to de�ne a map j∗ : Hp

D(Z,Z)→ Ȟp(Z,Z) as follows. Take
[ω] ∈ Hp

D(Z,Z) then let α = (ε∗)−1dω0 and de�ne h : Zp−1(Z)→ R/Z by h(σ) =
〈I(ω), j(σ)〉, where I : Ω̌p,q(U) → Čp,q(U) is the de Rham map. It is seen that
(h, α) is actually a di�erential character, and we can now de�ne j∗([ω]) = (h, α).
This is independent of the choice of j and ω.

Remark 2.3.3. 1. One could construct a map on the chain level, but this would
include even more choices, since in order to construct a cochain (c, h, ω), the ar-
gument above would only determine c and h on cycles with support in U , so
there is some ambiguity in lifting them to cochains - this is of course not seen in
cohomology.

2. Note that in the case p = 2 the above theorem combined with theorem 2.1.5
simply states that the isomorphism class of a circle bundle with connection is
determined by its curvature and holonomy. We can think of the theorem as a
generalisation of this.

It is not that hard to describe a choice of chain map j explicitly, and we include
it here for later use.

Let SUp (Z) be the set of p-simplices with support in U = {Ui}i∈I . Then we can
choose a map α : SUp (Z)→ I so that im(τ) ⊆ Uα(τ). If we denote a τ ∈ Cq(Ui0...ip)
by τi0...ip to emphasise that it maps to Ui0...ip , we have a map

s : Čp,q(U)→ Čp+1,q(U),
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given by
s(τi0...ip

) = (−1)p+1τi0...ipα(τ).

It is not hard to see that
δs+ sδ = id.

Note that this implies that the rows in the complex Č∗,∗(U) are exact. We are
now ready to construct j. Let j(τ)i be the term in Čp−i,i(U). Start by setting
j(τ)p = τα(τ), then in order to make j into a chain map we have to set j(τ)p−1 =
s∂j(τ)p ∈ Č1,p−1(U) and in general j(τ)i−1 = (−1)p−i+1s∂j(τ)i. In order to give
a closed formula for j(τ)i, we need some notation.

The set of �ags of length i of a simplex τ ∈ Sp(Z) is

F (τ, i) = {(τp−i, . . . τp) | τj is a face of τj+1, τp = τ}.

The simplex τj in a �ag (τj , . . . , τp) has an induced orientation from the �ag. That
is τp−1 has an induced orientation from τp and so on along the �ag. Let sgn(τj)
denote whether or not this orientation coincides with the standard orientation.

We can now write

j(τ)p−i =
∑

τ̄∈F (τ,i)

sgn(τp−i)(τp−i)α(τp)...α(τp−i).

This formula will be useful in section 5.2 in our analysis of the integration map
constructed by Gomi-Terashima in [14].





Chapter 3

Prism complexes

Now we leave smooth Deligne cohomology for a moment in order to introduce the
concept of a prism complex. It is a generalisation of a simplicial set (or manifold)
well suited for �bre bundles, which is needed in subsequent chapters.

3.1 De�nition and �rst examples

A prism complex P = {Pp} is a collection of multi-simplicial sets satisfying the
following: Each Pp is a (p+1)-simplicial set, that is for each set of positive integers
(q0, . . . , qp) we have sets Pp,q0...qp

with face and degeneracy maps

di
j : Pp,q0...qp

→ Pp,q0...qi−1...qp

and
si

j : Pp,q0,...,qp → Pp,q0...qi+1...qp

for each i = 0, . . . , p and j = 0, . . . qi. These maps satisfy the relations

di
j ◦ di

j′ = di
j′−1 ◦ di

j j < j′

si
j ◦ si

j′ = si
j′+1 ◦ si

j j ≤ j′

di
j ◦ si

j′ =


si

j′−1 ◦ di
j j < j′

id j = j′, j = j′ + 1
si

j′ ◦ di
j−1 j > j′ + 1

and si
j and di

j commute with si′

j′ and d
i′

j′ for i 6= i′.
Furthermore, we want another set of simplicial (i.e. commuting with the di

j 's
and si

j 's) face maps
di : Pp,q0...qp

→ Pp−1,q0...q̂i...qp

and degeneracy maps

si : Pp,q0...qp → Pp+1,q0,...qiqi...qp

so that (Pp, di, si) becomes an ordinary simplicial set. Note that in some appli-
cations the last set of degeneracy maps does not exist naturally so in these cases

19
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(Pp, di) is only a ∆-set. As with ordinary simplicial sets we can for each p form
the geometric and fat realisations |Pp| and ||Pp||, that is, the quotients of⊔

q0...qp

∆q0 × · · · ×∆qp × Pp,q0...qp

where we divide out by the equivalence relations generated by the face and degen-
eracy maps

εi
j : ∆q0...qi...qp → ∆q0...qi+1...qp

and (in case of the geometric realisation)

ηi
j : ∆q0...qi...qp → ∆q0...qi−1...qp

(where ∆q0...qp is short hand notation for the prism ∆q0 × · · · ×∆qp).
The face and degeneracy maps di and si now induce a structure of a simplicial

set on |Pp| (||Pp||) by acting as the projection and the diagonal on ∆q0 ×· · ·×∆qp

respectively. That is let πi : ∆q0...qp → ∆q0...q̂i...qp be the projection that deletes
the i'th coordinate and let ∆i : ∆q0...qp → ∆q0...qiqi...qp be the diagonal map that
repeats the i'th factor. Then we can form the geometric realisation

|P.| =
⊔
p≥0

∆p × |Pp|/ ∼

where the equivalence relation is generated by

(εit, s, x) ∼ (t, πis, dix), t ∈ ∆p−1, s ∈ ∆q0...qp , x ∈ Pp,q0...qp

and
(ηit, s, x) ∼ (t,∆is, six), t ∈ ∆p+1, s ∈ ∆q0...qp , x ∈ Pp,q0...qp .

The above de�nition might seem a bit complicated, so we will give some ex-
amples, in which this structure arises naturally. We start with an example that
originally motivated the de�nition.

Example 3.1.1. Given a smooth �bre bundle π : Y → Z with dimY = m + n,
dimZ = m and compact �bres, possibly with boundary, a theorem of Johnson [18]
gives us smooth triangulations K and L of Y and Z respectively and a simplicial
map π′ : K → L so that the following diagram commutes

|K|

|π′|
��

∼= // Y

π

��
|L|

∼= // Z

Here the horizontal maps are homeomorphisms which are smooth on each simplex.
Furthermore given such a triangulation of ∂Y → Z, we can also extend it to a
triangulation of Y → Z.

Now the geometric idea is that if z ∈ Z lies in the interior of a p-simplex of L
then the �bre over z is in a canonical way decomposed into p + 1-fold prisms of
the form ∆q0...qp as above (see �g. 3.1).
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ai z ak

bij0

bij1

bkj0

bkj1

Figure 3.1: A prism in the �bre π−1(z).

Formally we de�ne the prismatic complex PS(K/L) by letting

PSp(K/L)q0...qp
⊆ Sp+q0+···+qp

(K)× Sp(L)

be the subset of pairs of simplices (τ, η) so that qi + 1 of the vertices in τ lies over
the i'th vertex in η. Then we have face and degeneracy operators de�ned in the
obvious way. In particular this gives us boundary maps in the �bre direction of
the associated chain complex PCp(K/L) generated by such pairs of simplices,

∂i
F : PCp(K/L)q0...qp

→ PCp(K/L)q0...qi−1...qp

de�ned by ∂i
F =

∑
(−1)jdi

j , (∂
i
F = 0 for qi = 0), and also a total boundary map

along the �bre

∂F = ∂0
F + (−1)q0+1∂1

F + · · ·+ (−1)q0+···+qp−1+p∂p
F .

Also there is a horisontal boundary map

∂H = ∂0 + (−1)q0+1∂1 + · · ·+ (−1)q0+···+qp−1+p∂p,

where

∂i =
{

0 if qi > 0
di if qi = 0

so that ∂ = ∂F +∂H is a boundary map in the total complex PC∗(K/L). This is ac-
tually the cellular chain complex for the geometric realisation and hence calculates
the homology of Y .

There is a natural prismatic triangulation homeomorphism

` : |PS(K/L)|
∼=→ |K|

induced by
`(t, s0, . . . , sp, (τ, η)) = (t0s0, . . . , tpsp, τ)
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for (t, s, τ) ∈ ∆p ×∆q0...qp × PSp(K/L)q0...qp
. Note that if

◦
σ is an open p-simplex

in L then ` provides a natural trivialisation of |K| over ◦
σ

◦
σ ×|PSp(K/σ)|

∼=→ |K||σ

Example 3.1.2. Another example in the category of manifolds comes from the
nerve of compatible open coverings of the total space and the base space. That
is, given a covering U = {Ui} of Z we have a covering W = {Wi = π−1(Ui)} of
Y , and for each i, Vi is an open cover of Wi. This gives a covering V = ∪Vi of Y
(with lexicographically ordered index set). Then we put

PpN(V/U)q0...qp
=
⊔
V i0

j0
0
∩ · · · ∩ V i0

j0
q0
∩ · · · ∩ V ip

jp
qp

with V i
j ∈ Vi, and face and degeneracy maps are inclusions similarly to the sim-

plicial case in section 2.2. In the following, we will denote V i0
j0
0
∩ · · · ∩ V

ip

jp
qp

by
Vj0

0 ...jp
qp
.

A useful special case of this situation occurs in the context of example 3.1.1
above with the coverings consisting of the (open) stars of the triangulations of K
and L. More precisely U = {Ui = st(ai)} where ai ∈ L0 is a 0-simplex in L and
Vi = {V i

j = st(bij)} where bij ∈ π−1(ai) ∩K0. If we de�ne the discrete prismatic
nerve in the same way as the discrete simplicial nerve in example 2.2.2, then we
note that the discrete prismatic nerve of this covering is nothing but PS(K/L).

3.2 Prismatic forms

As a straightforward generalisation of simplicial forms, we introduce the complex
of (normal) prismatic forms on the prism complex in example 3.1.2 above.

De�nition 3.2.1. A prismatic n-form is a collection ω = {ωq0...qp
} of forms

ωq0...qp
∈ Ωn(∆p ×∆q0...qp × PpNV/Uq0...qp

) satisfying the relations

(id× εi
j × id)∗ωq0...qp

= (id× id× di
j)
∗ωq0...qi−1...qp

and
(εi × id× id)∗ωq0...qp = (id× πi × di)∗ωq0...q̂i...qp .

A form is called normal if it also satis�es the relations

(id× ηi
j × id)∗ωq0...qi−1...qp

= (id× id× si
j)
∗ωq0...qp

and
(ηi × id× id)∗ωq0...qp = (id×∆i × si)∗ωq0...qiqi...qp .

The complex of normal prismatic forms is denoted by

Ω∗(|PNV/U |).
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As in the simplicial case we have a direct sum decomposition of this complex

Ωn(|PNV/U |) =
⊕

p+q+r=n

Ωp,q,r(|PNV/U |)

=
⊕

p+q0+···+qp+r=n

Ωp,q0,...,qp,r(|PNV/U |),

where Ωp,q0,...,qp,r(|PNV/U |) is the set of forms of degree p in the barycentric
coordinates of the �rst simplex, of degree q0 in the second and so on and �nally
of degree r in some local coordinates on the nerve of the covering. This makes
Ω∗(|PNV/U |) into a triple complex. There is also a corresponding �ech-de Rham
triple complex

Ω̌p,q,r(V/U) =
⊕

q0+···+qp=q

Ωr(PpNV/Uq0,...,qp
)

with di�erentials

∂′ : Ω̌p,q,r(V/U)→ Ω̌p+1,q,r(V/U)
∂′′ : Ω̌p,q,r(V/U)→ Ω̌p,q+1,r(V/U)
∂′′′ : Ω̌p,q,r(V/U)→ Ω̌p,q,r+1(V/U)

Here ∂′ =
∑

(−1)i∂′i where

∂′iα|j0
0 ...jp+1

qp+1
=

{
0 if qi > 0
α|j0

0 ...ĵi
0...jp+1

qp+1
if qi = 0

∂′′ and ∂′′′ are usual �ech and de Rham di�erentials.
As in the simplicial case, we have

Proposition 3.2.2. The map

I∆ : Ωp,q,r(|PNV/U |)→ Ω̌p,q,r(V/U)

given by

I∆(ω) =
∫

∆p×∆q0...qp

ωq0...qp
, for ω ∈ Ωp,q0,...,qp,r(|PNV/U |)

induces an isomorphism in cohomology. The right inverse is given on ∆k0...kp ×
PpNV/Uk0...kp

by

E(ω) = p!q0! · · · qp!
∑
|J|=p

∑
|J0|=q0

· · ·
∑

|Jp|=qp

ωJ ∧ ωJ0 ∧ · · · ∧ ωJp ∧ d∗J0···Jp
ω.

The ωJj 's are the elementary forms on ∆qj , and dJ0···Jp are face maps as in the
simplicial case.

Proof. The proof is the same as in the simplicial case (see e.g. [4, ch. 2]).
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Proposition 3.2.3. The natural map tV i
j → Wi induces the maps ε∗1 and ε∗2 in

the following commutative diagram

Ωn(|NW|)

I∆

��

ε∗1 // Ωn(|PNV/U |)

I∆

��
Ω̌n(W)

ε∗2 // Ω̌n(V/U)

Both of these maps induce isomorphisms in cohomology.

Proof. Since both vertical maps induce isomorphisms in cohomology, it is enough
to see that also ε∗2 induces an isomorphism. This map factors as

Ω̌n(W)→ Ω̌n(V)→ Ω̌n(V/U).

The �rst of these maps is induced by a re�nement map, so it induces an isomor-
phism in cohomology. The only di�erence between the middle and the rightmost
complex is that on the right side we have split the �ech di�erential in two di�er-
ent maps, and this is not seen in the total complex, so the cohomology of these
complexes is isomorphic.

Remark 3.2.4. The above result could also have been obtained by showing directly
that ε∗1 induces an isomorphism. In section 4.1, we construct a right inverse φ to ε′.
Given the construction of φ it will be easy to see that we have a linear homotopy
φ ◦ ε′ ∼ id which in turn gives a chain homotopy directly on Ω∗(|PNV/U |).



Chapter 4

Integration of simplicial forms

In this chapter, we will construct an integration map for simplicial forms and
see that it induces a well-de�ned map in smooth Deligne cohomology. The �rst
construction given in section 4.1 is quite simple, and the only thing that turns out
to be di�cult is to show that the map takes integral forms to integral forms. For
the proof of this fact we will need another more combinatorial integration map
which we construct in section 4.3.

4.1 The integration map

Again, let π : Y → Z be a �bre bundle with compact oriented n-dimensional
�bre and m-dimensional base. Then with notation as in example 3.1.2, we want
to de�ne an integration map∫

: Ω∗+n(|NV|)→ Ω∗(|NU|),

for coverings U and V coming from compatible triangulations. To do so, we de�ne
a map |NW| → |NV| (recall that W = π−1(U)), and then our integration is
given by pulling back forms by this map and then integrating along the �bre in
|NW| → |NU|. We de�ne the map in two steps. First we have, similar to the
'prismatic triangulation' map in example 3.1.1, a map ` : |PNV/U | → |NV|,
where

` : ∆p ×∆q0...qp × Vj0
0 ...jp

qp
→ ∆p+q0+···+qp × Vj0

0 ...jp
qp

is given by

`(t, s0, . . . , sp, x) = (t0s0, . . . , tpsp, x).

Now recall that each Wi is covered by Vi = {st(bij)}j∈Ji
. Choose partitions of

unity {φi
j} on Wi subordinate Vi for each i. We are now ready to de�ne

φ̃ : |NW| → |PNV/U |

25
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on ∆p ×Wi0...ip
. Take x ∈ Wi0...ip

then for each i = i0, . . . , ip there is a minimal
set {ji

0, . . . j
i
qi
} ∈ Ji so that

qi∑
r=0

φi
ji
r
(x) = 1.

We then map
(t, x) ∈ ∆p ×Wi0...ip

to
(t, φi0

j0
0
(x), . . . , φi0

j0
q0

(x), . . . , φip

jp
qp

(x), x) ∈ ∆p ×∆q0...qp × Vj0
0 ···j

p
qp
.

Remark 4.1.1. Note that since the covering V comes from a triangulation it has
covering dimension n + m. This implies that we have q =

∑
qi ≤ n for non-

degenerate simplices. This observation will be important in some of the proofs in
the end of this chapter.

Now for ω ∈ Ωn+k(|NV|) de�ne
∫
[Y/Z]

ω ∈ Ωk(|NU|) by(∫
[Y/Z]

ω

)
|∆p×Ui0...ip

=
∫

∆p×Wi0...ip/∆p×Ui0...ip

φ̃∗`∗ω,

where the right hand side denotes usual integration along the �bres.

Theorem 4.1.2. Given triangulations and partitions of unity as above, the fol-
lowing holds.

1. Let ω ∈ Ω∗+n(|NV|) be a normal simplicial form, then
∫
[Y/Z]

ω is a well-de�ned

normal simplicial form.

2. For ω ∈ Ω∗+n−1(|NV|) we have∫
[Y/Z]

dω =
∫

[∂Y/Z]

ω + (−1)nd

∫
[Y/Z]

ω.

Proof. 1. It is clear that
∫
[Y/Z]

ω is a well-de�ned simplicial form i.e. is compatible
with respect to the degeneracy operators. Let us see that it is normal, that is

(ηj × id)∗
(∫

[Y/Z]

ω

)(p)

= (id× sj)∗
(∫

[Y/Z]

ω

)(p+1)

.

We �rst notice that

(ηj × id)∗
(∫

[Y/Z]

ω

)
|∆p×Ui0...ip

= (ηj × id)∗
∫

∆p×Wi0...ip/∆p×Ui0...ip

φ̃∗`∗ω

=
∫

∆p+1×Wi0...ip/∆p+1×Ui0...ip

(ηj × id)∗φ̃∗`∗ω

=
∫

∆p+1×Wi0...ip/∆p+1×Ui0...ip

φ̃∗(ηj × id)∗`∗ω

=
∫

∆p+1×Wi0...ip/∆p+1×Ui0...ip

φ̃∗(` ◦ (ηj × id))∗ω
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and at the same time

(id× sj)∗
(∫

[Y/Z]

ω

)
|∆p+1×Ui0...ijij ...ip

= (id× sj)∗
∫

∆p+1×Wi0...ijij ...ip/∆p+1×Ui0...ijij ...ip

φ̃∗`∗ω

=
∫

∆p+1×Wi0...ij ...ip/∆p+1×Ui0...ij ...ip

(id× sj)∗φ̃∗`∗ω

=
∫

∆p+1×Wi0...ip/∆p+1×Ui0...ip

φ̃∗(id× sj)∗`∗ω

=
∫

∆p+1×Wi0...ip/∆p+1×Ui0...ip

φ̃∗(` ◦ (id× sj))∗ω.

Hence we only need to show that (` ◦ (id× sj))∗ω = (` ◦ (ηj × id))∗ω. This can be
seen from the following commutative diagram

∆p ×∆q0...qp × Vj0
0 ...jp

qp

` // ∆p+q × Vj0
0 ...jp

qp

∆p+1 ×∆q0...qp × Vj0
0 ...jp

qp

ηj×id

OO

˜̀ //

id×sj

��

∆p+q+qj+1 × Vj0
0 ...jp

qp

η̃×id

OO

σ̃◦(id×s̃)

��
∆p+1 ×∆q0...qjqj ...qp × Vj0

0 ...jj
0 ...jj

qj
jj
0 ...jp

qp

` // ∆p+q+qj+1 × Vj0
0 ...jj

0 ...jj
qj

jj
0 ...jp

qp

where q =
∑
qi, ˜̀ is given by

˜̀(t, s0, . . . , sp, x)
= (t0s0, . . . , tjs

j
0, tj+1s

j
0, tjs

j
1, . . . , tj+1s

j
qj
, . . . , tp+1s

p, x),

η̃ (and similarly for s̃) is given by

η̃ = ηq0+···+qj−1+j ◦ ηq0+···+qj−1+j+2 ◦ · · · ◦ ηq0+···+qj−1+j+2qj

and �nally σ̃ is the map that permutes the vertices in the simplex as in remark
2.2.4, so that by assumption σ̃∗ω = ω.
2. Follows from the analogous formula for usual �bre integration.

There is a map ε′ : |NV| → |NW| induced by the natural map tV i
j → Wi

given on ∆p+q0+···+qp × Vj0
0 ...jp

qp
by

ε′(t00, . . . , t
0
q0
, . . . , tpqp

, x) = (
∑

j

t0j , . . . ,
∑

j

tpj , x) ∈ ∆p ×Wi0...ip .

Since ε′ is left inverse to ` ◦ φ̃ the following lemma follows easily from the con-
struction of the integral.
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Lemma 4.1.3. The following diagrams commute

Ω∗+n(Y )
R

Y/Z

��

ε∗ // Ω∗+n(|NV|)
R
[Y/Z]

��
Ω∗(Z) ε∗ // Ω∗(|NU|)

Ω∗+n(|NW|)
R

Y/Z

��

ε′∗ // Ω∗+n(|NV|)

R
[Y/Z]wwnnnnnnnnnnnn

Ω∗(|NU|)

that is, the integration of simplicial forms is compatible with the usual �bre inte-
gration.

The integration map is natural in the following sense:

Proposition 4.1.4. Let Y → Z be a �bre bundle and f : Z ′ → Z be an embedding,
then in the pull-back diagram

f∗Y
f̂ //

��

Y

��
Z ′

f // Z

we have

f∗
∫

[Y/Z]

ω =
∫

[f∗Y/Z′]

f∗ω ∈ Ω∗(|Nf∗U|),

where the integration on the right is with respect to the pull-back cover and the
induced partitions of unity on f∗Y .

Proof. The diagram

|Nf∗W|
φ̃f //

f̂

��

|PNf∗V/f∗U| ` //

f̂

��

|Nf∗V|

f̂

��
|NW|

φ̃ // |PNV/U| ` // |NV|

obviously commutes, so we get(
f∗
∫

[Y/Z]

ω

)
|∆p×Ui0···ip

= f∗
∫

∆p×Wi0···ip/∆p×Ui0···ip

φ̃∗`∗ω

=
∫

∆p×f∗Wi0···ip/∆p×f∗Ui0···ip

f̂∗φ̃∗`∗ω

=
∫

∆p×f∗Wi0···ip/∆p×f∗Ui0···ip

φ̃∗f `
∗f̂∗ω

=

(∫
[f∗Y/Z′]

f̂∗ω

)
|∆p×f∗Ui0···ip

.
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So far we have constructed an integration map for simplicial forms which is
compatible with the usual �bre integration map for di�erential forms. In order to
see that this map actually induces a map in smooth Deligne cohomology, we need
to see that it takes integral forms to integral forms. This is the goal of the next
sections.

4.2 The triangulated nerve

In chapter 5, we will see that Gomi-Terashima have constructed a combinatorial
integration formula for smooth Deligne cohomology in the case of a product bun-
dle. This inspired us to search for a similar combinatorial formula for simplicial
forms in the hope that it would be easier to see what happened on integral forms.
Such a construction is carried out in section 4.3, however, the resulting forms are
only piece-wise smooth, so in this section we introduce some tools to handle this
situation. It is indeed true that it is easier to see that this combinatorial map takes
integral forms to integral forms. This will, in turn, solve the problem of showing
that the map in section 4.1 does the same.

We start by introducing a new complex consisting of these piece-wise smooth
forms.

Given a triangulation L of a smooth manifold Z we have as mentioned earlier
an open cover U given by the stars st(a) where a ∈ L0 is a 0-simplex.

For every simplex σ ∈ L, the closed star

st(σ) =
⋃

τ∈Lm,σ⊆τ

|τ |

is the union of all top-dimensional simplices containing σ. It inherits a natural
triangulation Lσ from L. This gives a realisation |Lσ| ∼= st(σ).

De�nition 4.2.1. The triangulated nerve NL is the simplicial complex

NpL =
⊔

σ∈Lp

|Lσ|,

and for σ = [a0, . . . , ap] the face and degeneracy operators

dj : |La0...ap
| → |La0...âj ...ap

| and sj : |La0...ap
| → |La0...ajaj ...ap

|

are given by inclusions.

Our construction will give simplicial forms on |NL|.
Recall that a form ω on a simplicial complex is a collection of forms ω = {ω(p)}

with ω(p) ∈ Ω∗(∆p×NpL) satisfying the relation (εj× id)∗ω(p) = (id×dj)∗ω(p−1).
But the Lσ's, σ ∈ Lp are simplicial sets too, so our forms ω(p) actually live on

tσ∈Lp ti ∆p ×∆i × L(i)
σ ,

where L(i)
σ is the discrete set of i-simplices in Lσ.
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Now much of what has been done in the previous sections carry over. We can
de�ne integral forms Ω∗Z(|NL|) ⊆ Ω∗(|NL|) exactly as before and given triangu-
lations of a �bre bundle as in example 3.1.1 we also get triangulated nerves both
of the base and the total space. We can also associate a prism complex to this
situation in exactly the same way as in example 3.1.2. There is obviously also a
map ` : |PNK/L|→ |NK| as before.

Now let us show that with regard to cohomology it does not matter whether
we use ordinary simplicial forms or simplicial forms on the triangulated nerves.

We introduce the simplicial manifold (with corners) NU with

NpU =
⊔

i0,...,ip

Ui0...ip
.

Since the cohomology of Ω∗(|NU|) does not depend on the open cover and since
forms on a closed subset are restrictions of forms on a larger open subset, we get
that the restriction Ω∗(|NU|)→ Ω∗(|NU|) induces an isomorphism in cohomology.

Proposition 4.2.2. The map

ι : Ω∗(|N Ū |)→ Ω∗(|NL|)

induced by the homeomorphisms

|La0...ap
| ∼= st([a0, . . . , ap])

is an isomorphism in cohomology.

Proof. The result follows readily from the following commutative diagram

Ωp,q(|N Ū |) ι //

I∆

��

Ωp,q(|NL|)

I∆

��
Ωq(NpU) ι′ // Ωq(NpL)

since both vertical maps are isomorphisms in cohomology by the simplicial de
Rham theorem. In fact, the de Rham theorem also implies that the lower horizontal
map induces an isomorphism in cohomology for �xed p, since the map Ωq(st(σ))→
Ωq(|Lσ|) is a cohomology isomorphism for all σ ∈ L. That implies that there is
an isomorphism between the two spectral sequences already at the E1-term, so ι′

induces an isomorphism in cohomology of the total complexes.

Now let us show that we can also represent a class in Deligne cohomology by
a simplicial form on a triangulated nerve.

First, let U = {Ui}i∈I be a covering of Z and let L be a triangulation, so
that every closed star of L lies inside an open set of U . That is we have a map
α : L0 → I so that st(a) ⊆ Uα(a). This gives a chain map

T : Ω∗(|NU|)→ Ω∗(|NL|).
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Proposition 4.2.3. The map T induces an isomorphism both in ordinary coho-
mology and between the cohomology of (2.5) and

Ωl−1
R/Z(|NL|) d→ Ωl

R/Z(|NL|) d→ Ωl+1(|NL|)/ε∗Ωl+1(Z) (4.1)

Proof. Follows from the last proposition since T is the composition of a re�nement
map and ι.

Hence the smooth Deligne cohomology group is isomorphic to the cohomology
of the sequence (4.1).

4.3 The combinatorial integration map

In this section we �nally de�ne a combinatorial integration map∫
K/L

: Ω∗+n(|NK|)→ Ω∗(|NL|).

For this we will be needing the chain complex introduced in example 3.1.1. Here we
simplify the notation a little. Let PCk,l(K/L) be the chain complex generated by
pairs of simplices (τ, η) ∈ K(k+l) ×Ll such that τ maps to η under the projection
map. First, for a simplex σ = [a0, . . . , ap] ∈ L we de�ne a map

AW : PCk,m(K/Lσ)→
⊕

k1+k2=k

PCk1,p(K/σ)⊗ PCk2,m(K/Lσ).

Let (τ, η) ∈ PCk,m(K/Lσ). Since η is a top-dimensional simplex in Lσ (recall that
dimZ = m) we have σ ⊆ η. Let i0, . . . , ip ∈ {0, . . . , n} denote the indices of the
corresponding vertices of σ in η. Let us write τ as τ = [b00, . . . b

0
q0
| . . . |bm0 , . . . , bmqm

],
where the i'th block, |bi0, . . . , biqi

| consists of the qi +1 vertices in τ which lies over
the i'th vertex in η. For 0 ≤ sj ≤ qij

we de�ne

τ s0···sp = [bi00 , . . . , b
i0
s0
| . . . |bip

0 , . . . , b
ip
sp

] ∈ Ks0+···+sp+p

and

τs0···sp = [b00, . . . , b
0
q0
| . . . |bij

sj
, . . . , bij

qij
| . . . |bm0 , . . . , bmqm

] ∈ Kk−s0−···−sp .

Now our map is given by

AW(τ, η) =
∑

0≤sj≤qij

(τ s0···sp , σ)⊗ (τs0···sp , η),

that is, our map is an Alexander-Whitney type map with respect to each block of
vertices in τ lying over a vertex in σ.

The following lemma is a straightforward computation similar to the proof of
the usual AW map being a chain map.
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Lemma 4.3.1. The map

AW : PCk,m(K/Lσ)→
⊕

k1+k2=k

PCk1,p(K/σ)⊗ PCk2,m(K/Lσ)

is a chain map with respect to the boundary map ∂F from example 3.1.1, that is

AW∂F = ∂F AW.

�

We have to specify
∫

K/L
ω ∈ Ω∗(|NL|) as a form on ∆p × η for η ∈ Lσ. If, for

the moment, we let η be an m-simplex the formula is quite simple.
First pick an orientation of η. Since the �bres of π are oriented, this gives us

an orientation of Y|η and hence a fundamental class [Y|η] ∈ PCn+m(K/σ).
Now consider NK|π−1(|Lσ|) as a subset of |K||σ × |K|||Lσ|. We will de�ne∫

K/L
ω|∆p×η by restricting ω to AW([Y|η]) and integrate along the �bre over ∆p×η.

Set s =
∑p

i=0 si, then the formula is given by(∫
K/L

ω

)
|∆p×η

=
∑

τ∈PSn,m(K/η)

∑
0≤sj≤qij

ε(τ)
∫

∆p+s×τs0...sp/∆p×η

ω
(p+s)
τs0...sp , (4.2)

where ω(p+s)
τs0...sp ∈ Ω∗+n(∆p × Kτs0...sp ), and ε(τ) is the sign of τ in [Y|η]. The

integration shall be understood as follows: We restrict ω to ∆p+s × τs0...sp
and

then integrate it along the �bres over ∆p× η with respect to the map ∆p+s → ∆p

given by

(t0, . . . tp+s) 7→ (
s0∑

i=0

ti,

s0+s1+1∑
i=s0+1

ti, . . . ,

s0+···+sp+p∑
i=s0+···+sp−1+p

ti)

and the map τs0...sp → η which is just the restriction of π.

Remark 4.3.2. In the above, we could also have chosen to use ` to pull ω back to
|PNK/Lσ| and then integrate with respect to the map

∆p ×∆s0...sp × τs0...sp
→ ∆p × η.

This gives the same result, but will be more convenient when we shall see that the
two approaches to integration give the same result.

We still need to de�ne the integral on ∆p × η′ for η′ ∈ Sk(Lσ) a lower-
dimensional simplex. This will actually just be the restriction of the integral on
∆p× η for η a top-simplex such that η′ ⊆ η. We shall see that this is independent
of which top-simplex we choose (this also shows that the resulting form is really
simplicial on |Lσ|).

Let us �rst take a look at what happens to the formula (4.2) when the integral
is restricted to ∆p × η′ ⊆ ∆p × η. We de�ne the dimension in the direction of the
�bre, for a simplex in K, to be dimF τ = dim τ − dimπ(τ).

For a τ ∈ PSn,m(K/η) we see that
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∫
∆p+s×τs0...sp/∆p×η

ω
(p+s)
τs0...sp (4.3)

restricted to ∆p×η′ is non-zero exactly when τs0...sp
∩π−1(η′) and τs0...sp

have the
same dimension r = n− s in the direction of the �bre. That is τs0...sp

∩ π−1(η′) ∈
PSr,k(K/η′) and τs0...sp

∈ PSr,m(K/η).
Now in this case, let α be the simplex in Lσ 'spanned' by η′ and σ, then

τ ∩ π−1(α) is n-dimensional in the �bre direction, so over each η̃ ∈ Sm(Lσ), with
η′ ⊆ η̃, there is exactly one τ̃ ∈ PSn,m(K/η̃) with τ ∩ π−1(α) ⊆ τ̃ and in the
expression (4.3) it would make no di�erence if we used τ̃ instead of τ .

We can also give an explicit formula in this case, but �rst we need some no-
tation. For a top-simplex µ ∈ PSn,m(K/Lσ) set µ̃ = µ ∩ π−1(σ). For a simplex
ρ ∈ PSr,k(K/η′) let

Fρ = {µ ∈ PSn,m(K/Lσ) | ρ = µ ∩ π−1(η′),
dimF µ̃+ dimF ρ− dimF (µ̃ ∩ ρ) = n}.

Now write

ρ = [c00, . . . , c
0
r0
| . . . |ck0 , . . . , ckrk

] and µ̃ = [b00, . . . , b
0
q0
| . . . |bp0, . . . , bpqp

]

with µ ∈ Fρ and let i0, . . . , il ∈ {0, . . . , p} and j0, . . . , jl ∈ {0, . . . , k} denote the
coinciding blocks in µ̃ and ρ, that is

µ̃ ∩ ρ = [bi00 , . . . , b
i0
qi0
| . . . |bil

0 , . . . , b
il
qil

] = [cj00 , . . . , c
j0
qj0
| . . . |cjl

0 , . . . , c
jl
qjl

].

As before we set

ρs0...sl
= [c00, . . . , c

0
r0
| . . . |cjν

sν
, . . . , cjν

rjν
| . . . |ck0 , . . . , ckrk

]

and
µ̃s0...sl = [b00, . . . , b

0
q0
| . . . |biν

0 , . . . , b
iν
sν
| . . . |bp0, . . . , bpqp

],

and then �nally the integration formula is given on ∆p × η′ by∑
ρ∈PS∗,k(K/η′)

∑
{µ̃|µ∈Fρ}

∑
0≤sν≤qiν

ε(µ)
∫

∆p+s×ρs0...sl
/∆p×η

ω
(p+s)
µ̃s0...sl . (4.4)

Theorem 4.3.3. 1. Let ω ∈ Ω∗+n(|NK|) be a piece-wise smooth normal simpli-
cial form; then

∫
K/L

ω is a well-de�ned piece-wise smooth normal simplicial form.

2. Let ω ∈ Ωk+n−1(|NK|), then we have a Stokes' theorem∫
K/L

dω =
∫

∂F K/L

ω + (−1)nd

∫
K/L

ω

3. The map
∫

K/L
: Ω∗+n(|NK|) → Ω∗(|NL|) takes integral forms to integral

forms and, if ∂Y = ∅, it induces a map π! : H∗+n
D (Y,Z) → H∗

D(Z,Z) in smooth
Deligne cohomology.
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Proof. 1. This follows at once from the construction.

2. First we observe that for ω ∈ Ωk+n−1(|NK|) we have on ∆p × η (η ∈ L(n)
σ )∫

K/L

dω =
∑

τ∈PSn,m(K/η)

∑
0≤sj≤qij

∫
∆p+s×τs0...sp/∆p×η

(dω)τs0...sp

=
∑

τ∈PSn,m(K/η)

∑
0≤sj≤qij

∫
∂F (∆p+s×τs0...sp )/∆p×η

ω
(p+s)
τs0...sp +

+ (−1)n
∑

τ∈PSn,m(K/η)

∑
0≤sj≤qij

d

∫
∆p+s×τs0...sp/∆p×η

ω
(p+s)
τs0...sp

=
∑

τ∈PSn,m(K/η)

∑
0≤sj≤qij

∫
∂F (∆p+s×τs0...sp )/∆p×η

ω
(p+s)
τs0...sp +

+ (−1)nd

∫
K/L

ω.

In this formula, we recognise the �rst terms as
∫

∂F K/L
ω since lemma 4.3.1 gives

us that ∂FAW ([Y|η]) = AW (∂F [Y|η]). Hence we have veri�ed the formula for η a
top-dimensional simplex, and since the value of the integral on the other simplices
is given by restrictions, the formula holds in general.

3. If ω ∈ Ω∗+n(|NK|) is integral, then we observe that the only non-zero terms
in (4.2) are those for s = n, that is, the integration is only with respect to the
map ∆p+n → ∆p, and the resulting forms are then clearly integral. We also see
that there is a result similar to lemma 4.1.3, so it is now clear that we have an
induced map in Deligne cohomology.

Now we are ready to compare the two integration maps. This comparison will
also quite easily show that the �rst, smooth version of the integration map also
takes integral forms to integral forms.

First, choose a triangulation of the �bre bundle Y → Z and let V = {Vj}j∈J

and U = {Ui}i∈I be the associated coverings by the stars. Now let K and L be
subdivisions of these triangulations so that every closed star of K and L lies inside
an open set of V and U respectively. Then we get maps

T : Ω∗(|PNV/U |)→ Ω∗(|PNK/L|), T ′ : Ω∗(|NU|)→ Ω∗(|NL|)

inducing isomorphisms in cohomology.

Lemma 4.3.4. If ∂Y = ∅ then the map
∫
[Y/Z]

: Ω∗+n(|NV|) → Ω∗(|NU|) takes

integral forms to integral forms and hence induces a map in smooth Deligne coho-
mology.

Proof. Let β ∈ Ωk+n(|NV|) be an integral form. Now remark 4.1.1 ensures us
that the pull back `∗β ∈ Ωk+n(|PNV/U |) lies completely in the subcomplex⊕

q≤n Ωk+n−q,q,0(|PNV/U |). Note also that under the integration map every-
thing, besides the term in Ωk,n,0(|PNV/U |), is mapped to zero.
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In the following, we will make use of remark 4.3.2, that is, we will look at the
integration map in terms of the prism complex. We will thus repress the map `∗

from the notation and simply write β for `∗β ∈ Ωk+n(|PNV/U |).
Now in the diagram

Ω∗+n(|NW|)
ε∗1 //

R
Y/Z ((QQQQQQQQQQQQQ

Ω∗+n(|PNV/U |)
φ̃∗

oo
R
[Y/Z]

��

T // Ω∗+n(|PNK/L|)
R

K/L

��
Ω∗(|NU|) T ′

// Ω∗(|NL|)

(4.5)

we have commutativity of the triangle and the outer square. If we put β′ = ε∗1φ̃
∗β

then by remark 3.2.4 we have

β′ − β = hdβ + dhβ,

where h is the homotopy operator inducing the chain homotopy ε∗1φ̃
∗ ∼ id. Note

that since φ̃ ◦ ε1 is the identity in the variable of the �rst simplex and in those
on the nerve, h maps Ωp,q,r(|PNV/U |) into Ωp,q−1,r(|PNV/U |), so the image of
the integral forms under h is mapped to zero by the integration map. Now by
de�nition we have ∫

[Y/Z]

β =
∫

Y/Z

φ̃∗β

and hence commutativity of the outer square in (4.5) gives

T ′
∫

[Y/Z]

β = T ′
∫

Y/Z

φ̃∗β

=
∫

K/L

Tε∗1φ̃
∗β =

∫
K/L

Tβ′

=
∫

K/L

Tβ +
∫

K/L

T (hdβ + dhβ).

Because of the above remark and since
∫

K/L
Tdhβ = (−1)n−1d

∫
K/L

Thβ the last
integral is zero. We therefore �nally get

T ′
∫

[Y/Z]

β =
∫

K/L

Tβ,

and since the right side is clearly integral, as noted above, we conclude that
∫
[Y/Z]

maps integral forms to integral forms.

Theorem 4.3.5. If ∂Y = ∅ then the maps∫
[Y/Z]

: Ω∗+n(|NV|)→ Ω∗(|NU|)

and ∫
K/L

: Ω∗+n(|NK|)→ Ω∗(|NL|)
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induce the same map (under the obvious identi�cations by T and T ′)

π! : H∗+n
D (Y,Z)→ H∗

D(Z,Z)

in smooth Deligne cohomology.

Proof. This is similar to the proof above. Taking ω ∈ Ω∗+n(|PNV/U |) with dω =
ε∗α− β, we set ω′ = ε∗1φ̃

∗ω and get ω′ − ω = dhω + hdω. As above we have

T ′
∫

[Y/Z]

ω = T ′
∫

Y/Z

φ̃∗ω =
∫

K/L

Tε∗1φ̃
∗ω

=
∫

K/L

Tω′ =
∫

K/L

Tω + d

∫
K/L

Thω +
∫

K/L

Thdω.

Because ε′∗φ̃∗ obviously acts as the identity on ε∗α, we see that hdω = hε∗α−hβ =
−hβ, and then as in the proof of lemma 4.3.4 the last term vanishes, since β is
integral. Hence we get

T ′
∫

[Y/Z]

ω =
∫

K/L

Tω + dτ,

where τ =
∫

K/L
Thω.

Corollary 4.3.6. The induced integration map

π! : H∗+n
D (Y,Z)→ H∗

D(Z,Z)

is independent of choice of coverings, partitions of unity and triangulations.

Proof. The result follows directly from the above theorem, since the combinatorial
map does not depend on the choice of coverings and partitions of unity so in
cohomology none of the integration maps do. A similar argument applies to the
independence of triangulations.

Recall from example 3.1.1 that in the case of a �bre bundle Y → Z with
compact oriented �bres, where ∂Y 6= ∅ and a given triangulation of the bundle
∂Y → Z, it is possible to extend this triangulation to a triangulation of the bundle
Y → Z. The integration is actually independent of this extension in the following
sense.

Theorem 4.3.7. Given a form ω ∈ Ω∗+n(|NV|) representing a class in Deligne
cohomology and a triangulation of ∂Y → Z compatible with the covering V and
two extensions |K1| → |L| and |K2| → |L| of this to Y → Z then∫

K1/L

T1ω ∼
∫

K2/L

T2ω in Ω∗(|NL|),

where Ti : Ω∗(|NV|)→ Ω∗(|NKi|), i = 1, 2 are given as above.
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Proof. As in the proof of theorem 4.3.5 we set ω′ = ε∗1φ̃
∗ω, so that ω′ = ω+dhω+

hdω, and we get, for i = 1, 2,

T ′
∫

[Y/Z]

ω = T ′
∫

Y/Z

φ̃∗ω =
∫

K/L

Tε1φ̃ω

= T ′
∫

[Y/Z]

ω′ =
∫

Ki/L

Tiω
′

=
∫

Ki/L

Tiω +
∫

Ki/L

Ti(dhω + hdω)

=
∫

Ki/L

Tiω +
∫

Ki/L

Tidhω.

Now the theorem follows from the fact that∫
Ki/L

Tidhω = d

∫
Ki/L

Tihω ±
∫

∂F Ki/L

Tihω,

where the last term is easily seen to be independent of i.

Finally let us see that the integration map is compatible with the usual inte-
gration maps.

Proposition 4.3.8. The integration map constructed above �ts into the following
commutative diagram

0 // Hk+n−1(Y,R)/Hk+n−1(Y,Z)

π!

��

// H∗+n
D (Y,Z)

I

��

r // Rk+n(Y )

π!

��

// 0

0 // Hk−1(Z,R)/Hk−1(Z,Z) // H∗
D(Z,Z) r // Rk(Z) // 0

Proof. From lemma 4.1.3 we know that the integration map is compatible with
the usual �bre integration map for di�erential forms. Let Λ ∈ Ωk+n(|NK|) be a
discrete form, i.e. a form which is the pull-back of a form on the discrete nerve. For
such a form, the combinatorial integration map presented above simpli�es a great
deal. We see that the value of

∫
K/L

Λ ∈ Ωk(|NL|) integrated over a simplex τ ∈ L
is simply the integral of Λ over all simplices lying over τ . This is consistent with
the usual de�nition of the push forward map. Since integral forms are discrete, and
since the classes in Hk+n−1(Y,R)/Hk+n−1(Y,Z) can be represented by discrete
forms, the result follows.
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Integration in the other models

In this chapter, we will take a brief look at the constructions that exist in the
other models for Deligne cohomology. We will end this chapter by showing that
all these maps induce the same map in smooth Deligne cohomology. This is done
by showing that there is a unique integration map which is both natural and
compatible with the usual �bre integration maps.

5.1 The Hopkins-Singer construction

In this and the following sections, Y → Z will (unless otherwise mentioned) be a
�bre bundle with compact oriented n-dimensional �bres.

In [16], Hopkins-Singer have constructed an integration map in the cochain
model we described in section 2.3. We will only sketch their construction in the
following, and refer to [16, ch. 3] for the details.

They start with the case of a product bundle RN × Z → Z, where they only
consider cochains with compact support. In this case, the map

Cp+N
c (p+N)(RN × Z)→ Cp(p)(Z)

is simply a slant product

(ω, h, c) 7→
(∫

RN

ω, h/ZN , c/ZN

)
where ZN is a representative for the fundamental class of RN (in general this does
not make sense since RN is not compact, but since the cochains on which we take
the slant product are compactly supported we can in each case choose an ordinary
�nite chain that does the job).

For a general bundle Y → Z the concept of a Ȟ-orientation of the bundle is
needed. That is
1. An embedding Y → RN × Z over Z for some N .
2. A tubular neighbourhood W .
3. A choice of a (compactly supported) Thom cocycle

U ∈ CN−n
c (N − n)(RN × Z)

39
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on the normal bundle.
Then for a bundle Y → Z with a choice of Ȟ-orientation, the integration map∫

Y/Z

: Cp+n(p+ n)(Y )→ Cp(p)(Z)

is the composite

Cp+n(p+ n)(Y ) ∪U→ Cp+N (p+N)(RN × Z)
/[RN ]→ Cp(p)(Z).

In the case where ∂X = ∅, this construction induces a well-de�ned map in coho-
mology only depending on the usual orientation of the �bre.

The above construction gives an integration map for a general �bre bundle,
but has some small drawbacks. It does not give an explicit local formula, so it
can be hard to keep track of what happens with a cocycle when one takes the
product with the Thom cocycle. Another problem is the fact that the product in
this model is not as nicely behaved as in the other two models (see chapter 6),
this makes it hard to use this model to prove a projection formula as the one in
proposition 6.4.2.

5.2 The Gomi-Terashima construction

In the �ech-de Rham model, Gomi-Terashima [14] have created a more explicit
integration map in the case of a product bundle. For a bundle X ×Z → Z (again
with X compact and oriented), they construct a map∫

X

: Ω̌n+p(U ′ × U)→ Ω̌p(U),

where U is an open covering of Z, and U ′ is an open covering of X.
To describe this map we need some notation. A product of unions of open

sets U ′i0 ∩ · · · ∩ U
′
ip
× Uj0 ∩ · · · ∩ Ujq

can be rewritten as a union of products
U ′i0×Uj0 ∩· · ·∩U ′jp

×Ujp , with the (now lexicographic) order preserved, in several
di�erent ways, each corresponding to a shu�e ν ∈ S(p, q). We denote the union
of products corresponding to a certain ν ∈ S(p, q) by U ′ × Uν(i0...ip;j0...jq).

Recall also the notion of a �ag of a simplex introduced in the end of section
2.3. Now let ω = (ω0, . . . , ωp+n) ∈ Ω̌n+p(U ′ × U) then we want to describe τ =
(τ0, . . . , τp) =

∫
X
ω. We have

(τk)i0...ik
=

n∑
j=0

∑
σ

∑
σ̄∈F (σ,j)

∑
ν∈S(n−j,k)

sgn(ν)
∫

σj

(ωn−j+k)ν(α(σn)...α(σj);i0...ik),

where the orientation of σj is induced from the �ag σ̄, and the sum over σ is
a sum over all simplices in a representative for the fundamental class of X (in
[14] this is done by picking an explicit triangulation of X and summing over all
top-dimensional simplices in this).

This formula might look a bit strange to come up with and [14] does not give
much of an idea as to what is going on. A little analysis will show that it is
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simply a formula for taking the slant product in this model. This implies that the
induced map on cohomology is independent of all choices, and furthermore this
map coincides with the Hopkins-Singer map in cohomology when ∂X = ∅.

To do this we need the map j : CU∗ (Z) → Č∗(U) from section 2.3. It �ts into
the following commutative diagram

CU
′

∗ (X)× CU∗ (Z)

EZ

��

j×j // Č∗(U ′)× Č∗(U)

EZ′

��
CU

′×U
∗ (X × Z)

j // Č∗(U ′ × U)

where the two vertical maps are the usual Eilenberg-Zilber maps. To describe them
explicitly let ν ∈ S(p, q) be a (p, q)-shu�e, and let it also denote the corresponding
map ∆p+q → ∆p×∆q, then the left Eilenberg-Zilber map on a p-simplex τ and a
q-simplex η is given by

EZ ′(τ, η) =
∑

ν∈S(p,q)

sgn(ν)(τ × η) ◦ ν.

Similarly, given a p-chain τ = (τ0, . . . , τp) and a q-chain η = (η0, . . . , ηq) where
τi ∈ Čp−i,i(U ′) and ηi ∈ Čq−i,i(U) are simplices, the right map is given by

EZ(τ, η)l =
∑

r+s=l

∑
ν1∈S(r,s)

∑
ν2∈S(p−r,q−s)

sgn(ν1)sgn(ν2)ιν2 ◦ (τr × ηs) ◦ ν1

where, for ν ∈ S(p, q), ιν : U ′i0...ip
× Uj0...jq

→ U ′ × Uν(i0...ip;j0...jq) is simply the
identity.

Assume again that ∂X = ∅, take a class in Hn+p
D (X × Z,Z) represented by

a ω ∈ Ω̌n+p(U ′ × U) and consider j∗([ω]) = (h, α) then from the construction in
theorem 2.3.2 we get

h([X]× σ) = 〈I(ω), j(EZ([X]× σ))〉

= 〈I(ω), EZ(j[X], jσ)〉 =
n+p∑
l=0

〈I(ωn+p−l), EZ(j[X], jσ)l〉,

where
〈I(ωn+p−l), EZ(j[X], jσ)l〉

is given by the expression∑
r+s=l

∑
τ

∑
τ̄∈F (τ,r)

∑
σ̄∈F (σ,s)

∑
ν∈S(n−r,p−s)

sgn(ν)
∫

τr×σs

(ωn+p−l)ν(α(τn)...α(τr);β(σp)...β(σs)).

Given this, it is not that hard to see that

h([X]× σ) = 〈I(
∫

X

ω)), jσ〉.
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5.3 Equivalence of the constructions

In this section, we will show that all the integration maps presented above actu-
ally coincide in Deligne cohomology. We will do this by showing that there is a
unique integration map which is natural with respect to pull-backs and which is
compatible with the usual integration maps.

Theorem 5.3.1. Given a smooth �bre bundle Y → Z with closed, oriented n-
dimensional �bre, there is precisely one map I : H∗+n

D (Y,Z)→ H∗
D(Z,Z) satisfying

1. Compatibility
The following diagram is commutative

0 // H∗+n−1(Y,R)/H∗+n−1(Y,Z)

π!

��

// H∗+n
D (Y,Z)

I

��

r // R∗+n(Y )

π!

��

// 0

0 // H∗−1(Z,R)/H∗−1(Z,Z) // H∗
D(Z,Z) r // R∗(Z) // 0

2. Naturality
Let f : Z ′ → Z be an embedding. In the pull-back diagram

f∗Y

��

f̂ // Y

��
Z ′

f // Z

we have f∗I(x) = I(f∗x) for x ∈ H∗+n
D (Y,Z), i.e. the following diagram commutes

H∗+n
D (Y,Z)

I

��

f̂∗ // H∗+n
D (f∗Y,Z)

I

��
H∗
D(Z,Z)

f∗ // H∗
D(Z ′,Z)

Proof. The existence of an integration map is already clear from chapter 4, where
naturality is shown in proposition 4.1.4, and the compatibility is shown in propo-
sition 4.3.8, so we only need to prove uniqueness. Let I1, I2 be two maps satisfying
1. and 2. above and let h = I1 − I2. We see that since

r ◦ h = r ◦ I1 − r ◦ I2 = π! ◦ r − π1 ◦ r = 0

we have
h : H∗+n

D (Y,Z)→ H∗−1(Z,R)/H∗−1(Z,Z).

We shall see that h = 0 by showing that h(x) = 0 in Hk−1(Z,R)/Hk−1(Z,Z) for
all x ∈ Hk+n

D (Y,Z). Given such an x let ax ∈ Hk−1(Z,R) = homR(Hk−1(Z,R),R)
be a lift of h(x). We shall see that ax ∈ hom(Hk−1(Z),Z).
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Recall that one can always choose a basis for Hk−1(Z,R), which can be rep-
resented by embeddings of closed (k − 1)-dimensional manifold Z ′ → Z. We can
furthermore choose such a basis so that it generates the lattice imHk−1(Z,Z) ⊆
Hk−1(Z,R). It is enough to show that ax takes values in Z on this basis. So let σ
be such a class represented by the map f : Z ′ → Z.

Now since both I1 and I2 are natural, we get that

f∗h(x) = f∗(I1(x)− I2(x)) = I1(f∗x)− I2(f∗x) = π!(x)− π!(x) = 0,

where the second to last equality follows from dimensional reasons. Since dimZ ′ =
k − 1 we have dim f∗Y = n+ k − 1 which implies that

Hk+n
D (f∗Y,Z) ∼= Hk+n−1(f∗Y,R)/Hk+n−1(f∗Y,Z),

and here the maps I1 and I2 coincide with the usual push-forward map π!. Now
we get

ax(σ) = ax(f∗[Z ′]) = f∗ax([Z ′]),

and since

[f∗ax] = f∗[ax] = f∗h(x) = 0 in Hk−1(Z ′,R)/Hk−1(Z ′,Z),

we conclude that f∗ax ∈ hom(Hk−1(Z ′),Z), so we have ax(σ) ∈ Z. It follows that
h = 0 and the two integration maps coincide.

In [16, ch. 3], it is shown that the Hopkins-Singer map satis�es property 1. and
2. above, so we see that the two maps do induce the same map in cohomology.





Chapter 6

Products

All the models for smooth Deligne cohomology in chapter 2 carry product struc-
tures. We will brie�y describe these well-known constructions in the �ech-de Rham
and the Hopkins-Singer models, and then we will present a construction of a prod-
uct in the simplicial case. We will end the chapter by showing that these construc-
tions induce the same map in Deligne cohomology. This is done by showing that
there is a unique product satisfying some natural axioms.

6.1 The �ech-de Rham model

This is the easiest case. First we �x a good open covering U of our manifold Z,
and then at the cochain-level we have

De�nition 6.1.1. With the notation from remark 2.1.4 i), let ω = (ω0, . . . , ωp) ∈
Ω̌p(U) and τ = (τ0, . . . , τq) ∈ Ω̌q(U) then ω ∪ τ ∈ Ω̌p+q+1(U) is given by

ω ∪ τ = (ω0 ∧ dτ0, . . . , ωp ∧ dτ0, (−1)p+1δωp ∧ τ0, . . . , (−1)p+1δωp ∧ τq).

Here δ and d is the usual �ech and exterior di�erentials and ∧ should be read
as taking the ordinary cup product on the �ech cochains and the wedge product
on the coe�cients.

Remark 6.1.2. The above de�nition is just a reformulation of the usual de�nition
(see e.g. [1, ch. 1]).

Proposition 6.1.3. The map

∪ : Ω̌p(U)× Ω̌q(U)→ Ω̌p+q+1(U)

induces a well-de�ned graded-commutative product in smooth Deligne cohomology.

Proof. Simple checking. Note for instance that ω ∪ τ does represent a class in
Deligne cohomology since

D(ω ∪ τ) = dω0 ∧ dτ0 − δωp ∪ δτq,

where D is the di�erential in the total complex.

45
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6.2 The Hopkins-Singer model

There is a small problem when de�ning the product in the Hopkins-Singer model.
This is due to the fact that the usual cup product of two forms is not a form, thus
we have to choose a chain homotopy between the cup and wedge product i.e. a
map

B : (Ω∗(Z)⊗ Ω∗(Z))n → Cn−1(Z,R)

so that
ω ∧ τ − ω ∪ τ = δB(ω ⊗ τ) +B(δ(ω ⊗ τ)).

Given this we can make the following de�nition:

De�nition 6.2.1. Let (ω, h, c) ∈ Cp(p)(Z) and (ω′, h′, c′) ∈ Cq(q)(Z) then

(ω, h, c)∪(ω′, h′, c′) = (ω∧ω′, h∪c′+(−1)pω∪h′+B(ω⊗ω′), c∪c′) ∈ Cp+q(p+q)(Z).

Again we have

Proposition 6.2.2. The map

∪ : Cp(p)(Z)× Cq(q)(Z)→ Cp+q(p+ q)(Z)

induces a well-de�ned graded-commutative product in smooth Deligne cohomology.

Proof. Again this is simple checking. For instance the product becomes indepen-
dent of the chain homotopy B since two such maps are chain homotopic.

Remark 6.2.3. One way of constructing the chain homotopy B is by going through
the proof of the de Rham isomorphism using simplicial forms as in [4, ch. 2].

6.3 The simplicial model

Initially, we had a problem similar to the one in the Hopkins-Singer model, since
the subcomplex of integral forms is not closed under the ordinary simplicial wedge
product. This problem is overcome by introducing a new product on the complex
of simplicial forms which also turns out to be compatible with the integration map
introduced in section 4. This is done in the �rst part of this section, and then this
is used to construct a product in Deligne cohomology. Again let U be �xed good
open covering of Z.

First consider the maps

πi : |P1NU| → |NU|, i = 1, 2

where
π1 : ∆q0q1 × Ui0...iq0+q1+1 → ∆q0 × Ui0...iq0

is given by
(r0, r1, x) 7→ (r0, x)
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and similarly

π2 : ∆q0q1 × Ui0...iq0+q1+1 → ∆q1 × Uiq0+1...iq0+q1+1

is given by
(r0, r1, x) 7→ (r1, x).

For t ∈ ∆1 we have the map

`t : |P1NU| → |NU|

given by
`t(r0, r1, x) = (tr0, (1− t)r1, x).

It is clearly a homeomorphism for t ∈
◦

∆1.
The inverse is given as follows. Take an (r0, . . . , rn, x) ∈ ∆n × Ui0...in

and
choose p so that

∑p−1
i=0 ri ≤ t <

∑p
i=0 ri. Then

`−1
t (r0, . . . , rn, x) =

((
r0
t
, . . . ,

rp−1

t
, 1−

∑p−1
i=0 ri
t

), (1−
∑n

i=p+1 ri

1− t
,
rp+1

1− t
, . . . ,

rn
1− t

), spx).

Choose a smooth bump function φ : R→ R with supp(φ) ⊆ [0, 1], so that the
following holds

1.
∫ 1

0
φ(t)dt = 1.

2. limt→0 φ(t)/tp = 0 and limt→1 φ(t)/(1− t)p = 0 for all p ∈ N. We now have

De�nition 6.3.1. The product

∧1 : Ω∗(|NU|)× Ω∗(|NU|)→ Ω∗(|NU|).

is given by

ω1 ∧1 ω2 :=
∫

∆1
φ(t)dt ∧ (`−1

t )∗(π∗1ω1 ∧ π∗2ω2)

The choice of bump function ensures that there are no convergence problems,
so the construction is well-de�ned and gives a normal simplicial form.

Most of the following proposition is trivial.

Proposition 6.3.2. 1. Two di�erent choices of bump function give chain homo-
topic products.

2. For ω1 ∈ Ωp(|NU|) and ω2 ∈ Ωq(|NU|) we have

d(ω1 ∧1 ω2) = dω1 ∧1 ω2 + (−1)pω1 ∧1 dω2.

3. I∆ : Ω∗(|NU|)→ Ω̌∗(U) is multiplicative.

4. If ω1, ω2 ∈ Ω∗Z(|NU|) then ω1 ∧1 ω2 ∈ Ω∗Z(|NU|).
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Proof. 1. This is trivial since two choices of bump functions that satisfy the re-
quired conditions are certainly homotopic by a linear homotopy through such
bump functions.

2. Follows from the corresponding formula for the wedge product.

3. Suppose ω1 ∧1 ω2 ∈ Ωn,m(|NU|) then we have∫
∆n

(ω1 ∧1 ω2)i0...in =
∫

∆n

∫
∆1
φ(t)dt ∧ (`−1∗

t (π∗1ω1 ∧ π∗2ω2))i0...in

=
∫

∆1×∆n

φ(t)dt ∧ (`−1∗
t (π∗1ω1 ∧ π∗2ω2))i0...in

=
∑

p+q=n

∫
∆1×∆p×∆q

φ(t)dt ∧ `∗t η∗p(`−1∗
t (π∗1ω1 ∧ π∗2ω2))i0...in

=
∑

p+q=n

∫
∆1×∆p×∆q

φ(t)dt ∧ (ω1)i0...ip
∧ (ω2)ip...in

=
∑

p+q=n

∫
∆p

(ω1)i0...ip ∧
∫

∆q

(ω2)ip...in .

So I(ω1 ∧1 ω2) = I(ω1) ∧ I(ω2) as claimed.

4. This follows directly from the proof of 3.

Remark 6.3.3. Unfortunately the product is neither commutative nor associative
on the chain level but 3. above insures us that it is up to chain homotopy.

Let us move on to Deligne cohomology where the product structure is a little
di�erent.

De�nition 6.3.4. Let ω1 ∈ Ωp(|NU|) and ω2 ∈ Ωq(|NU|) be two forms represent-
ing classes in Deligne cohomology. That is dωi = ε∗αi − βi, where αi is a global
form and βi is integral. Then we de�ne

ω1∧̃ω2 := ω1 ∧1 ε
∗α2 + (−1)p+1β1 ∧1 ω2.

Some calculations show that this induces a well-de�ned product in Deligne
cohomology. E.g. take another representative ω1 + β for the class [ω1] then we
have

(ω1 + β)∧̃ω2 = (ω1 + β) ∧1 ε
∗α2 + (−1)p+1(β1 + dβ) ∧1 ω2

= ω1∧̃ω2 + β ∧1 ε
∗α2 + (−1)p+1dβ ∧1 ω2

= ω1∧̃ω2 + d(β ∧1 ω2) + β ∧1 β2

∼ ω1∧̃ω2.

Notably d(ω1∧̃ω2) = ε∗(α1 ∧1 α2)− β1 ∧1 β2.
With this product on Ω∗(|NU|), the map I∆ of section 2.2 between the simpli-

cial and the �ech-de Rhammodel for Deligne cohomology becomes an isomorphism
of graded rings.
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6.4 A projection formula

It turns out that the product constructed in section 6.3 is well-behaved with respect
to the integration map above.

So let Y → Z be a �bre bundle with compact oriented �bres and let, as before,
V and U be good open coverings of the total space and base space respectively.

Proposition 6.4.1. For ω1 ∈ Ωp+n(|NV|) and ω2 ∈ Ωq(|NU|) we have(∫
[Y/Z]

ω1

)
∧1 ω2 =

∫
[Y/Z]

ω1 ∧1 π
∗ω2. (6.1)

Proof. Note that

(π1 × π2) ◦ `−1
t ◦ ` ◦ φ̃ = (` ◦ φ̃ ◦ π1 × ` ◦ φ̃ ◦ π2) ◦ `−1

t

as maps
|NW| → |NV| × |NV|,

so for a pair of forms ω, τ ∈ Ω∗(|NU|) we get the relation

(` ◦ φ̃)∗(ω ∧1 τ) = (` ◦ φ̃)∗ω ∧1 (` ◦ φ̃)∗τ.

This implies that∫
[Y/Z]

ω1 ∧1 π
∗ω2 =

∫
Y/Z

(` ◦ φ̃)∗ω1 ∧1 (` ◦ φ̃)∗π∗ω2

=
∫

Y/Z

(` ◦ φ̃)∗ω1 ∧1 π
∗ω2

=

(∫
Y/Z

(` ◦ φ̃)∗ω1

)
∧1 ω2

=

(∫
[Y/Z]

ω1

)
∧1 ω2

as stated above.

The corresponding result in Deligne cohomology now follows immediately from
the above and a look at de�nition 6.3.4.

Proposition 6.4.2. For ω1 ∈ Ωp+n(|NV|) and ω2 ∈ Ωq(|NU|) representing
classes in Deligne cohomology, we have(∫

[Y/Z]

ω1

)
∧̃ω2 =

∫
[Y/Z]

ω1∧̃π∗ω2. (6.2)

Remark 6.4.3. If we look at the proposition above in the light of theorem 5.3.1,
we see that the unique integration map in smooth Deligne cohomology satis�es
such a projection formula with respect to the product introduced in section 6.3.
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6.5 Uniqueness

In this section, we will show that there is a unique product which is natural and
compatible with the usual cup and wedge products. The proof follows the same
line as the proof of uniqueness of the integration map.

Theorem 6.5.1. Given a smooth manifold X, there is a unique graded ring struc-
ture on H∗

D(X,Z) such that

1. Compatibility The product is compatible with the usual cup and wedge products
in the sense that

a) the following diagram commutes

Hn
D(X,Z)×Hm

D (X,Z)

��

∧ // Hm+n
D (X,Z)

��
Rn(X)×Rm(X)

∪×∧ // Rm+n(X)

,

whereas before Rn(X) = {(c, ω) ∈ Hn(X,Z)× Ωn(X) | c = [ω] ∈ Hn(X,R)}.
b) If we restrict the product to Hn

D(X,Z)×Hm−1(X,R)/Hm−1(X,Z), then the
product factors as

Hn
D(X,Z)×Hm−1(X,R)/Hm−1(X,Z)→
→ Hn(X,Z)×Hm−1(X,R)/Hm−1(X,Z)→
∪→ Hn+m−1(X,R)/Hn+m−1(X,Z)→
→ Hn+m−1

D (X,Z),

and similarly if we restrict to Hn−1(X,R)/Hn−1(X,Z)×Hm
D (X,Z).

2. Naturality Let f : X ′ → X be a di�erential map then the following diagram
commutes

Hn
D(X,Z)×Hm

D (X,Z)

f∗×f∗

��

∧ // Hm+n
D (X,Z)

f∗

��
Hn
D(X ′,Z)×Hm

D (X ′,Z)∧ // Hm+n
D (X ′,Z)

Proof. Instead of showing directly that the product is unique, we will show that
the corresponding exterior product is unique.

Assume that there are two products ∧1 and ∧2 satisfying 1) and 2) above.
Using 1a) we de�ne (for the corresponding exterior products)

h = ∧1 − ∧2 : Hn
D(X,Z)×Hm

D (Y,Z)→ Hn+m−1(X × Y,R)/Hn+m−1(X × Y,Z).

We will show that h(x, y) = 0 for all x ∈ Hn
D(X,Z) and y ∈ Hn

D(Y,Z). So take such
x and y and let ax,y be a lift of h(x, y) toHn+m−1(X×Y,R) = homR(Hn+m−1(X×
Y,R),R). Now the Künneth formula says that

Hn+m−1(X × Y,R) =
n+m−1⊕

1=0

Hi(X,R)⊗Hn+m−1−i(Y,R).
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As in the proof of theorem 5.3.1, it is enough to evaluate ax,y on cycles represented
by embedded manifolds of the form f ×f ′ : Z×Z ′ → X×Y where dimZ = i and
dimZ ′ = n+m−1− i. It is clear for dimensional reasons that the only interesting
cases are i = n − 1 and i = n. So assume that a cycle σ ∈ Hn+m−1(X × Y,R)
has a representative of the form f × f ′ : Z × Z ′ → X × Y where dimZ = n and
dimZ ′ = m− 1. Now

ax,y(σ) = ax,y((f × f ′)∗[Z × Z ′]) = (f × f ′)∗ax,y([Z × Z ′])

and since (f × f ′)∗ax,y represents (f × f ′)∗h(x, y) = h(f∗x, f ′∗y), it is integral.
This follows from property 1b) since Rm(Z ′) = 0, so h(f∗x, f ′∗y) = 0 in

Hn+m−1(X × Y,R)/Hn+m−1(X × Y,Z).

Clearly all the products introduced in this chapter satisfy the above axioms,
so they induce the same product in smooth Deligne cohomology.





Chapter 7

Applications of the integration map

In this chapter, we will apply the integration map to the construction of invariants
for families of bundles with connection as in [7]. This application was the original
motivation for the construction of an integration for smooth Deligne cohomology.
We will describe another interesting application in chapter 9.

7.1 Secondary invariants

In this section, we will brie�y describe the original Cheeger-Simons (see [3]) con-
struction of secondary invariants in the context of simplicial forms as in [7].

Let G be a Lie group G with �nitely many connected components. We denote
the set of invariant homogeneous polynomials of degree k by Ik(G). Let Ik

Z(G) ⊆
Ik(G) be the subset of polynomials that map to the image of H2k(BG,Z) inside
H2k(BG,R) under the Chern-Weil homomorphism.

Fix a Q ∈ Ik
Z(G) and let u ∈ H2k(BG,Z) be the corresponding integral class.

Then to a principal G-bundle P →M with connection A, we will associate a class
[Λ(Q, u,A)] ∈ H2k

D (M,Z).
The idea is to pick an integral cocycle representing u and then compare this

to the form coming from Chern-Weil theory. They represent the same class in
real cohomology, but are not identical since di�erential forms do not give integral
cocycles. Now since they represent the same class, their di�erence is a boundary.
This bounding cochain is well-de�ned up to a boundary since the odd dimensional
cohomology of BG vanishes.

To do this properly one would have to replace EG → BG with a smooth
approximation (which we also denote EG→ BG) and �nd a connection Ā in this
bundle, so that the classifying map f : M → BG for the bundle P → M satisfy
f∗Ā = A. This is done in detail in e.g. [7].

Now pick compatible coverings U of M and U ′ of BG and a representative
γ ∈ Ω2k

Z (|NU ′|) for u. Since γ and Q(F k
Ā
) represent the same class in H2k(BG,R),

there is a simplicial form Λ̄ ∈ Ω2k−1(|NU ′|) so that dΛ̄ = ε∗Q(F k
Ā
) − γ. Since

the odd dimensional cohomology of BG vanishes, Λ̄ is well-de�ned modulo exact
forms. Finally we set Λ(Q, u,A) = f∗Λ̄ ∈ Ω2k−1(|NU|), and we have the following
result (which proof is in [7, sec. 5]):

53
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Theorem 7.1.1. Λ(Q, u,A) represents a well-de�ned class

[Λ(Q, u,A)] ∈ H2k
D (M,Z)

independent of all choices.

The product introduced in section 6.3 enables us to simplify proposition 5.17
ii) in [7] a little.

Proposition 7.1.2. Given Q1 ∈ Ik1
Z (G) and Q2 ∈ Ik2

Z (G) with corresponding
integral classes u1 and u2, then

[Λ(Q1Q2, u1 ∪ u2, A)] = [Λ(Q1, u1, A)∧̃Λ(Q2, u2, A)]

in H
2(k1+k2)
D (M,Z).

Proof. Follows directly from the observation that

d(Λ(Q1, u1, A)∧̃Λ(Q2, u2, A)) = Q1(F k1
A ) ∧Q2(F k2

A )− γ1 ∧1 γ2

and that γ1 ∧1 γ2 represents u1 ∪ u2.

7.2 Invariants for families of connections

Now we are ready to construct invariants for families of bundles with connection.
We start with the de�nition.

De�nition 7.2.1. A family of principal G-bundles with connections is
1. A smooth �bre bundle π : Y → Z with oriented �bre X.
2. A principal G-bundle p : E → Y .
3. A smooth family A = {Az | z ∈ Z} of connections in the G-bundles Pz → Xz

where Xz = π−1(z) and Pz = E|Xz
.

Remark 7.2.2. The above de�nition is taken from [7]. In the corresponding de�ni-
tion in [11], the family in 3. is a connection for the whole bundle E → Y . In some
situations there are however a point in not letting the 'horizontal' information be
part of the structure, since the invariants for families of bundles with connection
might be independent of this extension to a connection in the whole bundle. Note
that it is always possible to construct such an extension using a partition of unity.

Now given such a family of bundles with connection, with X a closed manifold,
we can create invariants living in Deligne cohomology of the parameter space. This
is done as follows: First we extend the family of connections A to a connection
B in E → Y , then we proceed as in the section above where we to a polynomial
Q ∈ Ik

Z(G) obtained a simplicial form Λ(Q, u,B) ∈ Ω2k−1(|NV|), where V is a
good open cover of Y . Now we apply integration along the �bres in Y → Z and
get a form

ΛY/Z(Q, u,B) =
∫

[Y/Z]

Λ(Q, u,B) ∈ Ω2k−n−1(|NU|),

where U is a good open cover of Z, and n is the dimension of the �bre X. We now
have the following result from [7, sec. 6].
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Theorem 7.2.3. 1. ΛY/Z(Q, u,B) represents a well-de�ned class

[ΛY/Z(Q, u,B)] ∈ H2k−n
D (Z,Z)

with

dΛY/Z(Q, u,B) = ε∗
∫

Y/Z

Q(F k
B)−

∫
[Y/Z]

f∗γ.

2. If Fn−k+1
Az

= 0 for all z ∈ Z then the class in Deligne cohomology is independent
of the extension B.

3. If Fn−k
Az

= 0 then ΛY/Z(Q, u,B) is �at, i.e.
∫
[Y/Z]

Q(F k
B) = 0.

In the paper [7], this is applied to families of foliated bundles, and we refer
to this paper for examples of that type. Instead we will apply the above in the
following example which is mostly a reformulation in terms of simplicial forms of
the idea in [11, 13]. See also [6] for a generalisation of this example which originally
motivated the work in [7].

Example 7.2.4. Let k = 2 and take a Q ∈ I2
Z(G). Now let M be a smooth

compact oriented 3-manifold and assume at �rst that ∂M = ∅. Let Y → Z be a
�bre bundle with oriented �bre M and let E → Y be a family of bundles with
connections.

At �rst we get a form Λ(Q, u,B) ∈ Ω3(|NV|) representing a class

[Λ(Q, u,B)] ∈ H4
D(Y,Z).

The procedure above then gives us a 0-form

ΛM =
∫

[Y/Z]

Λ(Q, u,B) ∈ Ω0
R/Z(|NU|),

representing a class inH1
D(Z,Z), that is, simply a smooth function ΛM : Z → R/Z.

Since n = 3, we have n − k + 1 = 2, and since F 2
Az

= 0 on a 3-manifold, ΛM is
independent of the extension B.

If now ∂M = Σ 6= ∅, then ΛM is not a globally de�ned function anymore,
instead the Stokes formula gives us

dΛM =
∫

[∂Y/Z]

Λ(Q, u,B)−
∫

[Y/Z]

dΛ(Q, u,B). (7.1)

If we restrict Λ(Q, u,B) to ∂Y → Z, we get

ΛΣ =
∫

[∂Y/Z]

Λ(Q, u,B),

which represents a class in H2
D(Z,Z). As we saw in the proof of proposition 2.1.5,

ΛΣ then de�nes a circle bundle with connection over Z. If we write ΛΣ = Λ0
Σ+Λ1

Σ ∈
Ω0,1(|NU|)⊕Ω1,0(|NU|), then c =

∫
∆1 Λ1

Σ is the de�ning cocycle, and ω =
∫
∆0 Λ0

Σ

is the connection.
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The relation that comes from integrating - over ∆1 - the part of (7.1) that lies
in Ω1,0(|NU|) implies that ΛM is actually a section in the circle bundle given by
the cocycle c. The corresponding relation in Ω0,1(|NU|) gives that the covariant
derivative of ΛM is

∫
M
Q(F 2

B).
Note that the circle bundle and the section do depend on the choices made e.g.

of the integral form representing u, the partition of unity used in the integration
and so on, but the isomorphism class does not. Although it still does depend on
the extension B.

However, if we restrict ourselves to a family of �at connections i.e. FAz = 0
for all z ∈ Z then the isomorphism class of ΛΣ becomes independent of the exten-
sion B. Furthermore since

∫
M
Q(F 2

B) vanishes, ΛM actually becomes a covariant
constant section in ΛΣ.

In this example, one usually takes Z to be the smooth part of the representation
variety hom(π1(M), G)/G and let Y = M × Z be the trivial �bre bundle. In this
case, E is the canonical G-bundle over Y with �brewise �at connection. If we at
the same time let Z ′ be the smooth part of hom(π1(Σ), G)/G and similarly let
Y ′ = Σ× Z ′ and let E′ be the canonical G-bundle over Y ′, then we get from the
above a circle bundle with connection over Z ′, and if we pull this circle bundle
back to Z with the map ι : Z → Z ′ induced from the inclusion Σ→M we have a
covariantly constant section ΛM in ι∗ΛΣ.



Chapter 8

Symplectic topology

In this chapter, we will go through some of the basics of symplectic topology that
will be needed in the next chapters, mainly focusing on the theory of symplec-
tic �brations. A more comprehensive introduction to symplectic topology can be
found in e.g. McDu� and Salamon's book [25].

8.1 Symplectomorphism groups

A symplectic manifold (M,ω) is a manifold M equipped with a closed, non-
degenerate 2-form ω called the symplectic form. That ω is non-degenerate means
that the map TpM → T ∗pM given by sending a tangent vector X ∈ TpM to
ωp(X,−) ∈ T ∗pM is an isomorphism.

This isomorphism gives a one-to-one correspondence between vector �elds and
1-forms on M . The vector �elds that correspond to closed forms are called sym-
plectic vector �elds, and the vector �elds that correspond to exact forms are called
hamiltonian vector �elds.

That ω is non-degenerate also implies that M is even dimensional, of say
dimension 2n, and that the top power ωn is an orientation form so M comes with
a preferred orientation.

The Lie bracket of two symplectic vector �elds has a very nice description in
terms of the symplectic form ω. Given two symplectic vector �elds X and Y then
[X,Y ] is the hamiltonian vector �eld associated to the exact 1-form d(ω(X,Y )), so
the symplectic vector �elds form a Lie algebra which we denote by χω(M), and the
hamiltonian vector �elds form an ideal in χω(M) which we denote by χh(M). We
have that the Lie algebra of hamiltonian vector �elds �t into the exact sequence

0→ R→ C∞(M)→ χh(M)→ 0, (8.1)

where the rightmost map is given by sending a h ∈ C∞(M) to Xh the unique
hamiltonian vector �eld that satis�es ιXh

ω = dh. We call h the hamiltonian func-
tion associated to Xh ∈ χh(M). We give C∞(M) a Poisson structure by setting
{f, g} = ω(Xf , Xg).

In general (8.1) is not split, but if M is closed, we obtain a splitting, by iden-
tifying χh(M) with C∞0 (M) = {f ∈ C∞(M) |

∫
M
fωn = 0} the functions that

57
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integrate to zero. Here we see that since we generally have

ω(X,Y )ωn = nω(X,−)ω(Y,−)ωn−1,

we get ∫
M

{f, g}ωn = n

∫
M

df ∧ dg ∧ ωn−1 = n

∫
M

d(f ∧ dg ∧ ωn−1) = 0,

so C∞0 (M) is an ideal in C∞(M).
A symplectomorphism φ : M → M is a di�eomorphism such that φ∗ω = ω.

We denote the group of symplectomorphisms by Symp(M) ⊆ Diff(M).
Both the di�eomorphism group and the symplectomorphism group are ILH-

groups. That is they are smooth in�nite dimensional Lie groups modeled on a
vector space E = lim←−Hi which is an inverse limit of Hilbert spaces Hi. ILH-
groups are, although in�nite dimensional, quite well-behaved, so we will not need
to be too concerned with these underlying analytical details. We refer to the survey
[30] and references therein for details.

Let us see that the Lie algebra Lie(Symp) of Symp = Symp(M) is the Lie
algebra of symplectic vector �elds. Let γ : (−ε, ε)→ Symp be a curve with γ(0) =
idM , then we get a vector �eld X onM where X(p) = d

dtφt(p)|t=0. Since ω is �xed
by φt, the homotopy formula gives

0 =
d

dt
φ∗tω = LXω = ιXdω + dιXω = dιXω,

and we see that X is a symplectic vector �eld. Similarly we see that the �ow of a
symplectic vector �eld �xes ω.

A symplectomorphism is called a hamiltonian symplectomorphism or a hamil-
tonian di�eomorphism if it is generated by a time-dependent hamiltonian vec-
tor �eld, i.e. if there is a curve of symplectomorphisms φt ∈ Symp such that
d
dtφt(p) = Xt(φt(p)) with φ0 = id and φ1 = φ, where ιXt

ω = dht. It is not hard
to see that the hamiltonian di�eomorphisms form a connected normal subgroup
Ham(M) ⊆ Symp(M) of the symplectomorphism group.

It turns out that the Lie algebra of Ham = Ham(M) is actually the Lie algebra
of hamiltonian vector �elds, so now we have Lie groups corresponding to two of
the Lie algebras in the short exact sequence

0→ χh(M)→ χω(M)→ H1(M,R)→ 0. (8.2)

We will also need the �ux homomorphism, which is a lift of the Lie algebra homo-
morphism χω(M)→ H1(M,R) to the Lie group level.

The �ux homomorphism is most easily de�ned on the universal cover S̃ymp0

of the identity component of the symplectomorphism group, where it is a homo-
morphism

F̃lux : S̃ymp0 → H1(M,R) = hom(π1(M),R).
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It is given by

F̃lux([φt])([σ]) =
∫

Tφt,σ

ω, [φt] ∈ S̃ymp0, [σ] ∈ π1(M),

where Tφt,σ : S1 × I → M is given by (s, t) 7→ φt(σ(s)). That is, the �ux ho-
momorphism measures the area of the cylinder given by moving σ around with
the curve φt. It is not hard to see that this is indeed a well-de�ned homomor-
phism. If we let Γ = F̃lux(π1(Symp0)) then we get a well-de�ned homomorphism
Symp→ H1(M,R)/Γ, which we also call the �ux homomorphism. It turns out that
the kernel of this homomorphism is given by the hamiltonian di�eomorphisms, so
we have a short exact sequence

1→ Ham→ Symp0 → H1(M,R)/Γ→ 0.

The group Γ is called the �ux group. It has recently been proved by Ono that
Γ ⊆ H1(M ; R) is a discrete subgroup, so we see that Ham is a closed subgroup of
Symp of codimension b1 = dimH1(M,R).

8.2 Symplectic �brations

A symplectic �bration is a �bre bundle Y → Z with �bre (M,ω), a symplectic
manifold, and with structure group Symp(M). Similarly a hamiltonian �bration
is a �bre bundle with �bre (M,ω) and structure group Ham(M).

Since the structure group preserves the symplectic form ω, such a �bration
carries a �brewise symplectic form {ωz}z∈Z . There are several reasons as to why
one wants to extend this to a globally de�ned 2-form on the total space Y .

One reason is that any extension Ω ∈ Ω2(Y ) de�nes a horizontal distribution
HΩ ⊆ TY by setting

HΩx = {v ∈ TxY | Ω(v, w) = 0,∀w ∈ T v
xY },

where T vY = kerπ∗ is the vertical tangent bundle.
It is not too hard to see that HΩ⊕T vY ∼= TY . That Hωx∩T v

xY = {0} follows
from ωπ(x) being non-degenerate. That Hωx⊕T v

xY → TxY is surjective is seen by
using Ω to project onto HΩx and T v

xY respectively.
Such a horizontal distribution de�nes a connection in Y → Z, and it turns out

that we have

Proposition 8.2.1. The connection HΩ has symplectic holonomy around all loops
in Z if and only if Ω is �brewise closed, that is if and only if we have

dΩx(X,Y,−) = 0 for all X,Y ∈ T v
xY.

We refer to [25, ch. 6] for a proof.
Assume now that Ω1 and Ω2 are two closed extensions de�ning the same con-

nection HΩ1 = HΩ2 . We have that their di�erence τ = Ω1 − Ω2 is a basic 2-form,
this is clear, since if X ∈ T vY is a vertical vector, then ιXτ = ιXΩ1 − ιXΩ2
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vanishes both on a vertical and a horizontal vector, and τ is closed. On the other
hand, if we have closed extensions Ω1 and Ω2 di�ering by a basic 2-form τ then
they de�ne the same connection.

This means that if we have a connection H = HΩ coming from a closed exten-
sion form Ω, then there is a unique extension Ω′ with HΩ′ = HΩ and satisfying
the normalisation condition ∫

M

Ω′n+1 = 0.

Here Ω′ is given by

Ω′ = Ω− 1
(n+ 1)vol

p∗
∫

M

Ωn+1. (8.3)

Such a normalised extension is called a coupling form. In [15], Guillemin-
Lerman-Sternberg showed that in a symplectic �bration with simply connected
�bre and connection H with hamiltonian holonomy around every contractible
loop there is a closed extension Ω such that H = HΩ. Their construction of Ω is
quite analytic. Below we sketch a more topological proof by McDu�.

Remark 8.2.2. It is easy to construct a �brewise closed extension by using a
partition of unity. Let U = {Ui} be an open cover of the base Z such that we
have local trivialisations φi : Y|Ui

→ Ui ×M of Y . Let ωi = φ∗iω and let {ρi} be a
partition of unity subordinate U . Then we de�ne

Ω =
∑

ρi ◦ π · ωi

and dΩ =
∑
d(ρi ◦ π) ∧ ωi, so if X,Y ∈ T v

xY and Z ∈ TxY then we get

dΩx(X,Y, Z) =
∑

d(ρi ◦ π)(Z)ωi(X,Y )

=
∑

d(ρi ◦ π)(Z)ω(X,Y )

= (
∑

d(ρi ◦ π)(Z))ω(X,Y ) = 0,

where the second equality comes from the fact that X and Y are vertical, and the
last equality is true because

∑
ρi = 1.

A priori it is less clear whether or not one can construct a closed extension.
A computation of Thurston (see e.g. [25] for a proof) shows that it is enough
to ask for a cohomology class c ∈ H2(Y,R) extending the �brewise class [ωz] ∈
H2(Yz,R) = H2(M,R), because if such a class exists then one can always �nd an
extension form Ω with [Ω] = c. This fact was used by Lalonde-McDu� [23] to show
that ω extends for hamiltonian �brations.

The class [ω] ∈ H2(M,R) extends to a class in H2(Y,R) exactly when [ω] ∈
E0,2

2 survives to the E∞-term in the Serre spectral sequence for the �bration
Y → Z. We have the following lemma from [23].

Lemma 8.2.3. If Y → Z is a hamiltonian �bration, the class [ω] ∈ E0,2
2 =

H2(M,R) survives to E0,2
∞ , and there exists a closed extension Ω of ω.
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Proof. There are two di�erentials to look at. The �rst is d2 : E0,2
2 → E2,1

2 , and the
second is d3 : E0,2

3 → E3,0
3 . It is enough to consider the universal case Z = BHam,

so we can assume that π1(Z) = 0. This implies that E3,0
3 = E3,0

2 = H3(Z,R) and
of course E2,1

2 = H2(Z,H1(M,R)) = H2(Z,R)⊗H1(M,R).
To see that d2([ω]) = 0, we note that since π1(Z) = 0 we have H2(Z,R) =

hom(π2(Z),R) so it is enough to check the case Z = S2, and here it is possible
to give an explicit construction of a coupling form so in this case d2([ω]) = 0. We
will come back to the construction during our analysis in section 9.1.

Now let us see that also d3([ω]) = 0. Now since ωn+1 = 0 for dimensional
reasons, we get that

0 = dωn+1 = (n+ 1)dω ⊗ ωn,

and since the map − ∧ [ωn] : H0(M,R) → H2n(M,R) is an isomorphism, we get
that dω = 0.

Remark 8.2.4. 1. If τ ∈ H2(M,Z) is an integral lift of the class [ω] ∈ H2(M,R),
we see that we still have d2τ = 0 in H2(B,H1(M,Z)). This follows from the fact
that H2(Z,H1(M,Z)) is torsion free in the universal case Z = BHam, so here

H2(Z,H1(M,Z))→ H2(Z,H1(M,R)

is injective. Unfortunately we can only conclude from the above argument that
d3τ is a torsion class and that (n + 1)vol · d3τ = 0. In [24], there is an example
where d3τ does not vanish.
2. Note that in the universal case Z = BHam, we get the following exact sequence
from the Serre spectral sequence

H2(Z,R)→ H2(Y,R)→ H2(M,R)

so we see that in this case there is a unique normalised extension class c ∈ H2(Y,R)
with π!c

n+1 = 0, so in general there is a canonical choice of extension class given
by the pull-back of the universal extension class.

We end this section by showing how to construct an extension form when the
structure group is �nite dimensional.

Example 8.2.5. [25, 32] Let (M,ω) be a symplectic manifold and let G be a
Lie group with a hamiltonian action on M with moment map µ : M → g∗.
Given a principal G-bundle P → Z with connection A, we shall see that we can
construct a connection 2-form in the associated bundle P ×G M → Z from these
data. The construction goes as follows. The connection in P gives a projection
TP → TV P = P ×G TG and dually a map ιA : P ×G T

∗G→ T ∗P . We can use ιA
to pull back the canonical symplectic form ω0 on T ∗P to a 2-form on P ×G T ∗G.
Now we have the 2-form ω′ = ι∗Aω0+ω on P×GT

∗G×M . We also have a �brewise
action of G and a corresponding �brewise moment map µ′ = µ0 ◦ ιA + µ, where
µ0 is the moment map on T ∗P . Now we can perform symplectic reduction, and
we see that P ×G T ∗G ×M//G = µ′−1(0)/G = P ×G M . The induced 2-form
on the quotient restricts to ω on each �bre, so it is a connection 2-form. We will
elaborate further on this example in section 9.4.
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8.3 Reznikov's classes

In [28], Reznikov noticed that there is a number of invariant polynomials on
Lie(Ham). This enabled him to construct characteristic classes for hamiltonian
�brations using the usual Chern-Weil construction. In this section, we will look
closer at this construction and see how far Reznikov was able to go using the
original �nite dimensional approach and where this approach runs into problems.

As mentioned in section 8.1, we have for a symplectic manifold (M,ω) that the
Lie algebra of Ham(M) can be identi�ed with

Lie(Ham(M)) = C∞0 (M) = {f : M → R |
∫

M

fωn = 0},

equipped with the Poisson bracket {f, g} = ω(Xf , Xg). The adjoint action of
Symp(M) on this Lie algebra is given by

Ad(φ)(f) = f ◦ φ−1, φ ∈ Symp, f ∈ C∞0 (M).

There is a non-degenerate inner product on the Lie algebra given by

〈f, g〉 =
∫

M

fgωn,

which is easily seen to be invariant under the adjoint action of Symp, since ω
is invariant under Symp. For a �nite dimensional Lie algebra this would make
Lie(Ham) semi-simple. What is known about Lie(Ham) suggests that we can think
of it as being semi-simple, i.e. we have that Lie(Ham) = {Lie(Ham),Lie(Ham)}
[2]. This is the general idea of Reznikov [28], which is pursued further by e.g.
McDu� [23], that Symp0 behaves much like a �nite dimensional Lie group, and
that we should think of Ham as a maximal compact subgroup of Symp0.

Besides the inner product, we have in general the invariant polynomials

Qk(f1, . . . , fk) =
∫

M

f1 · · · fkω
n, for k ≥ 2. (8.4)

on Lie(Ham). These invariant polynomials give rise to characteristic classes qk ∈
H2k(BHam(M),R) for k ≥ 2 by the exact same construction as for a �nite di-
mensional Lie group G and principal G-bundles.

In [28], Reznikov notes that if there is a hamiltonian action of a compact Lie
group G on M , then one can try to show that the classes qk ∈ H2k(BHam,R)
are non-trivial by showing that the pull-back of the invariant polynomials Qk to
g are non-trivial, then the usual Chern-Weil theory will imply that the pull-back
and hence the qk's themselves are non-trivial. Reznikov does this explicitly in the
case where M = CPn and G = SU(n+ 1) and concludes that the Qk's pull back
to multiplicative generators of the ring of invariant polynomials, I∗(SU(n + 1)).
We go through this computation, since a little extra work will show that they up
to scaling actually pull back to the symmetric polynomials - this will be useful in
the next section.

Proposition 8.3.1. Let p : SU(n + 1) → Symp(CPn) then we have qk ◦ p∗ =
const · σk where σk is the k'th elementary symmetric polynomial.
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Proof. Recall that

su(n+ 1) = {A ∈M(n+ 1,C) | A+A∗ = 0, trA = 0}.

The map p∗ : su(n+ 1)→ Lie(Symp)(CPn) = C∞0 (CPn) is given by

A 7→ ([z] 7→ 〈Az, z〉),

where z ∈ S2n+1 is a representative of [z] ∈ CPn.
Using the Fubini theorem we then get

qk ◦ p∗(A) =
∫

CP n

(p∗A)k = const ·
∫

S2n+1
〈Az, z〉kdz.

Furthermore if B ∈ M(n + 1,C) is a positive de�nit hermitian matrix, we have
that ∫

Cn+1
e−〈Bz,z〉 = const · (detB)−1.

This is trivial if B is diagonal with positive eigenvalues, and since the expression
is invariant under unitary conjugation it is true for all positive hermitian matrices.

We also have∫
Cn+1

e−〈Bz,z〉dz =
∫

S2n+1

∫ ∞

0

r2n+1e−r2〈Bv,v〉drdv = const ·
∫

S2n+1
〈Bv, v〉−n−1,

where we �rst changes to polar coordinates and then use the equality∫ ∞

0

r2n+1e−ar2
dr = const · a−n−1

which comes from di�erentiating
∫∞
0
re−ar2

dr = 1
2a n times with respect to a.

Now take A ∈ su(n + 1). For t > 0 big enough B = tI + 1
2πiA is a positive

de�nit hermitian matrix, so we get∫
S2n+1

t−n−1(1 + t−1〈Av, v〉)−n−1dv = const · det
(
tI +

1
2πi

A

)−1

,

and using the binomial series we get, again for t > 0 big enough,∫
S2n+1

t−n−1(1 + t−1〈Av, v〉)−n−1 =
∞∑

k=0

(
−n− 1
k

)
t−k−n−1

∫
S2n+1

〈Av, v〉k.

From this, Reznikov concludes that ring of invariant polynomials on su(n + 1) is
generated by the p∗ ◦qk's, but it is possible to be a little more precise. If we denote
the eigenvalues of A by λ1, . . . , λn+1 then we have

det
(
tI +

1
2πi

A

)−1

=
n+1∏
j=1

(
t+

1
2πi

λj

)−1

= t−n−1
n+1∏
j=1

(
1 +

1
2πi

λj

t

)−1

,
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so we get

∞∑
k=0

(
−n− 1
k

)
t−k

∫
S2n+1

〈Av, v〉k = const ·
n+1∏
j=1

( ∞∑
k=0

(
−1
2πi

λj

t

)k
)
.

Comparing coe�cients, we see that

qk ◦ p∗(A) = const
∫

S2n+1
〈Av, v〉k = const · σk(A)

as claimed.

In the case of M = CP 2 Gromov has shown that Ham = Symp0 = Symp
homotopy retracts onto PSU(2), so here Reznikov is, in the �at case, able to lift
q2 to a class in H3(BHam(CP 2)δ,R/Z). This is not possible for n ≥ 3 because
of the lack of knowledge about the topology of the symplectomorphism group,
and whether or not the qk's lie in the integral lattice in H2k(BHam(CPn),R). In
chapter 9, we will see that if we lift the problem to a central extension of Ham, we
can ensure that the classes are actually integral, and we can lift them to secondary
classes depending only on a connection in the �bration and a choice of prequantum
line bundle for (M,ω).

8.4 Characteristic classes from the coupling class

In the paper [17], Januszkiewicz-K�edra used the existence of a coupling class to
de�ne another set of characteristic classes. For a hamiltonian �bration Y → Z,
we can pick a normalised extension Ω of the �brewise symplectic form {ωz}, this
is possible by lemma 8.2.3. Furthermore, the cohomology class of this extension is
unique in the universal case. Given such a class they consider the classes

χk =
∫

M

[Ω]n+k ∈ H2k(Z,R).

We have the following result from [19]

Proposition 8.4.1. We have χk = const · qk ∈ H2k(BHam,R).

Proof. Fix a normalised closed extension form Ω and let H = HΩ be the corre-
sponding connection.

The proposition essentially follows from the fact that the curvature of H is
given by FHz(v, w) = Ω(v#, w#) ∈ C∞(Yz), where v# and w# are the horizontal
lifts of v and w respectively (see [25, ch. 6]). Recall that the classes are represented
by the forms

∫
M

Ωn+k and
∫

M
(F k

H)ωn respectively. For v1, . . . , v2k vector �elds on
BHam and w1, . . . , w2n vectors tangent to the �bre at some x ∈MHam we have

Ωn+k(v#
1 , . . . , v

#
2k, w1, . . . , w2n) = const · Ωk(v#

1 , . . . , v
#
2k)ωn(w1, . . . , w2n),

and the result follows.



Chapter 9

Secondary invariants for hamiltonian

�brations

In the last chapter, we saw how Reznikov constructed characteristic classes qk ∈
H2k(BHam(CPn),R) extending the usual Chern classes. In this chapter, we will
try to construct secondary classes lifting the qk's to Deligne cohomology. We cannot
do this on Ham, but in the case where we can lift the structure group to a central
extension we will see that we get a family of bundles with connections, and we can
then use the machinery from chapter 4. The classes constructed here di�er from
the examples in chapter 7 in that the �brewise connection is far from being �at.

9.1 Preliminary analysis

In the following, we will assume that the symplectic form ω has integral periods.
This implies that we can pick a prequantum circle bundle, i.e. a circle bundle with
connection (L,α), such that α has curvature ω (in order to keep the same notation
as in the �rst chapters of this thesis we look at a prequantum circle bundle instead
of the usual hermitian complex prequantum line bundle). In this case, one could
hope to construct secondary invariants for a symplectic �bration Y → Z with
connection in the following way. If we could extend ω to an integral coupling form
Ω on Y compatible with the connection in Y → Z, we could hope to construct a
circle bundle with connection on Y such that its Deligne class Λ ∈ H2

D(Y,Z) only
depended on the prequantum circle bundle and the connection in the hamiltonian
�bration. Now applying the machinery of chapter 4, we could then de�ne classes
χ̂k ∈ H2k

D (Z,Z) as follows

χ̂k =
∫

[Y/Z]

Λ∧̃(n+k).

There are several problems in the procedure suggested above. First of all, it is not
clear that we can pick an integral extension of ω which is normalised. Secondly,
even though the group Ham �xes the class [(L,α)] ∈ H2

D(M,Z) there is no action
of Ham on L so even if we have a circle bundle extending L we do not a priori
have a �brewise connection in the same way that we have a �brewise symplectic
form. We will see that these two problems are very much related.

65
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First we take a deeper look at the second problem. We start with the following
lemma which implies that Ham �xes the Deligne class of (L,α) as claimed above.

Lemma 9.1.1. Let φ ∈ Symp0(M) then Flux(φ) is (mod Z) the holonomy of the
�at bundle (φ∗L)−1 ⊗ L.

Proof. To see this let h : Z1(M) → R/Z be the holonomy homomorphism of L.
Then the holonomy of (φ∗L)−1 ⊗ L is given by h − h ◦ φ. Since φ is isotopic to
the identity we have a chain homotopy Hφ such that id− φ = ∂Hφ +Hφ∂. So for
a ∈ Z1(M) we get

(h− h ◦ φ)(a) = h(∂Hφ(a)) ≡
∫

Hφ(a)

ω = Flux(φ)(a)

So for φ ∈ Ham the lemma gives us that (φ∗L, φ∗α) and (L,α) are isomorphic
as circle bundles with connection. This implies that we can lift any φ ∈ Ham to a
bundle map φ̂ : L→ L that preserves the connection. Let Gα be the group of such
maps. This group is a central extension

0→ R/Z→ Gα → Ham→ 0. (9.1)

The extension was introduced by Kostant in [20] and is called the quantomorphism
group. We will see in section 9.3 that the isomorphism class of this central extension
does not depend on the choice of connection α, but for now it is convenient with
this description of the central extension.

We see that we can restate the second problem mentioned above to whether
or not we can lift the structure group of a given hamiltonian �bration to Gα.

We will need the following lemma form [20] later on

Lemma 9.1.2. We can identify the Lie algebra gα of Gα with C∞(M) equipped
with the usual Poisson bracket.

Proof. Take a curve φt ∈ Gα with φ0 = id and let X be the vector �eld on L given
by X(p) = d

dtφt(p)|t=0. We see that since the φt's are equivariant with respect
to the R/Z-action, X also becomes equivariant. This implies that it descents to
a vector �eld on M which we denote by XM , and furthermore that the function
p 7→ αp(X(p)) is invariant, so it descents to a function hX = −α(X) ∈ C∞(M)
on M . We have

0 =
d

dt
φ∗tα = LXα = dιXα+ ιXM

dα = −dhX + ιXω,

so XM is a hamiltonian vector �eld onM , and hX is a, not necessarily, normalised
hamiltonian function for XM .

The above says that we have a map gα → C∞(M) given by X 7→ hX , and since
both Lie algebras are extensions of C∞0 (M) by R, the 5-lemma gives that it is an
isomorphism, so we only need to show that it is a Lie algebra homomorphism.
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Take X,Y ∈ gα then we have

h[X,Y ] = −α([X,Y ]) = −ω(X,Y )− Y α(X) +Xα(Y )
= −dhX(Y ) + dhX(Y )− dhY (X) = −dhY (X) = −ω(Y,X) = {hX , hY }.

Let us now see where the �rst problem takes us. We see from remark 8.2.4
that the obstruction to extend ω to an integral form is a torsion class in H3(Z,Z),
so this is really just a question of rescaling the symplectic form on M . The real
problem lies in the normalising condition

∫
M

Ωn+1 = 0. As we saw in section 8.2
we have to divide by (n+ 1)vol when we normalise the coupling class. That is, we
can normalise our integral class if and only if [

∫
M

Ωn+1] lies in the image of the
map

H2(Z,Z)
×(n+1)vol→ H2(Z,Z).

In the universal case Z = BHam, we have π1(Z) = 0 so the Serre spectral sequence
gives us the exact sequence

H2(Z)→ H2(Y )→ H2(M),

so we see that the only way of changing the cohomology class of the extension is
by adding a class from H2(Z). If we change our extension form Ω by adding a
2-form τ ∈ Ω2(Z) from the base, we get that∫

M

(Ω + p∗τ)n+1 =
∫

M

Ωn+1 + (n+ 1)volτ,

and we see that there is a single well-de�ned obstruction o ∈ H2(Z,Z/(n+ 1)vol)
to getting an integral coupling class. We have the following

Proposition 9.1.3. The obstruction class o ∈ H2(BHam,Z/(n+ 1)vol) vanishes
if and only if the central extension (9.1) splits.

The proof is a bit technical, and the only if part will occupy the rest of this
section. We will postpone the if part of the proof until the end of the next section,
after we have developed more of the theory.

Before we go into the details of the proof, we will need some preliminary results
on hamiltonian �brations over S2. This is because of the following calculation: We
have that BHam is simply connected so the Hurewitz and the universal coe�cient
theorems give us that

H2(BHam,Z/(n+ 1)vol) = hom(π2(BHam),Z/(n+ 1)vol))
= hom(π1(Ham),Z/(n+ 1)vol)).

This implies that we only have to look at the case of hamiltonian �brations over
S2.

Such a �bration is given by a clutching function, i.e. a map φ : S1 → Ham,
and it is possible to make quite explicit calculations in this case see e.g. [27] which
we follow in the construction of a coupling form below.
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Let φt be a loop in Ham. Let D2
+ and D2

− be two copies of D2 with the usual
and the reversed orientation respectively. Let Φ : M × ∂D2

− →M × ∂D2
+ be given

by Φ(x, t) = (φt(x), t) and set

Yφ = M ×D2
+ ∪Φ M ×D2

−.

This de�nes a �bration Yφ → S2. It is not hard to see that homotopic loops de�ne
isomorphic bundles.

A coupling form in the �bration Yφ → S2 is constructed as follows. Let ht

be the normalised (that is ht ∈ C∞0 (M)) time-dependent hamiltonian function
corresponding to the loop of hamiltonian di�eomorphisms φt. Let c : [0, 1]→ [0, 1]
be a monotonely increasing function which is equal to 0 near 0 and equal to 1 near
1. The coupling form is then given by

Ω =
{

ω on M ×D2
+

ω + d(c(r)Ht(x)) ∧ dt on M ×D2
−,

where (r, t) ∈ D2
− is the radius and the normalised angle respectively and Ht(x) =

ht(φt(x)). It is clear that Ω is closed and extends ω so we only need to see that∫
Yφ

Ωn+1 = 0

in order to conclude that Ω is a coupling form. We have

Ωn+1 =
{

0 on M ×D2
+

(n+ 1)ωn ∧ d(c(s)Ht(x)) ∧ dt on M ×D2
−,

so ∫
Yφ

Ωn+1 = (n+ 1)
∫

M×D2
−

ωn ∧ d(c(r)Ht(x)) ∧ dt

= −(n+ 1)
∫

M×S1
Ht(x)ωn ∧ dt

= −(n+ 1)
∫

S1

(∫
M

Ht(x)ωn

)
∧ dt

= −(n+ 1)
∫

S1

(∫
M

ht(x)ωn

)
∧ dt = 0,

(9.2)

since ht ∈ C∞0 (M).
The coupling form Ω constructed above does not necessarily have integral

periods. By changing the above construction a little we can construct an extension
that has, but then we can no longer guarantee that ht has zero mean, and the last
calculation above will fail in general, i.e. we will not get a coupling form.

Since R/Z is connected, the long exact sequence of homotopy groups we get
from (9.1) implies that π1(Gα) → π1(Ham) is surjective, so we can pick a loop
φ̃t ∈ Gα over φt ∈ Ham. In the same way as before, we have a function Φ̃ :
L× ∂D2

− → L× ∂D2
+ given by Φ̃(x, t) = (φ̃t(x), t), and we set

YLφ̃ = L×D2
+ ∪Φ̃ L×D

2
−
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An explicit connection in the circle bundle YLφ̃ → Yφ is given as follows

A =
{

α on L×D2
+

α+ (c(r)H̃t(x)) ∧ dt on L×D2
−,

where H̃t(x) = h̃t(φ̃t(x)) and ht is the (time-dependent) function associated to
the unique vector �eld that satis�es

d

dt
φ̃t = X̃t ◦ φ̃t.

We have as usual that the curvature ΩZ = dA descents to Yφ, and we see that

ΩZ =
{

ω on M ×D2
+

ω + d(c(r)H̃t(x)) ∧ dt on M ×D2
−.

Since ΩZ is a curvature form, it is clearly an integral extension, but we see that
a calculation similar to (9.2) does not give us that ΩZ is a coupling form, but we
can at least conclude that

(n+ 1)
∫

S1

(∫
M

h̃t(x)ωn

)
∧ dt =

∫
Yφ

Ωn+1
Z ∈ Z. (9.3)

Lemma 9.1.4. If the expression∫
S1

(∫
M

h̃t(x)ωn

)
∧ dt (9.4)

takes values in vol · Z for all loops φ̃t in Gα, then the short exact sequence

R/Z→ Gα → Ham

splits.

Proof. Let G̃α be the universal cover of Gα, then we will de�ne a map

H : G̃α → R.

First we de�ne a continuous map H ′ : PGα → R from the path space of Gα. Let,
for a path φt,

H ′(φt) = (n+ 1)
∫

M

∫
I

hφ
t dt ∧ ωn,

where hφ
t is the function associated to the unique vector �eld that satis�es

d

dt
φt = Xt ◦ φt.

We see that H ′ only depends on the homotopy class of the curve, since we know
from the discussion above, that H ′ restricted to the loop space ΩGα takes integral
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values, so in particular we have that H ′ vanishes on null-homotopic curves. This
means that H ′ descents to a map H : G̃α → R.

Note that H restricted to R = R̃/Z ⊆ G̃α is multiplication by (n + 1)vol.
Take s ∈ R, then the natural representing curve γ for s is the curve that at
constant speed s goes around R/Z, i.e. at time 1 it has travelled bsc full times
around R/Z and ends in [s] ∈ R/Z. Such a curve in Gα has the constant function
ht(x) = s associated to the time-dependent vector �eld given by the curve, so
H([γ]) = (n+1)vol ·s. This together with our assumption that H(π1(Gα)) ⊆ vol ·Z
implies that H : G̃α → R induces a map Gα → R/Z which is a left inverse to the
inclusion R/Z→ Gα, and the sequence splits.

Now we are �nally ready to prove the �rst half of proposition 9.1.3.

Proof. (of the only if part of proposition 9.1.3) Assume that the obstruction
vanishes. As we saw before

H2(BHam,Z/(n+ 1)vol) = hom(π1(Ham),Z/(n+ 1)vol)),

so we can view the obstruction as a homomorphism o : π1(Ham) → Z/(n+ 1)vol
the value of o on a representing loop φt ∈ Ham is given as follows. Form the
corresponding hamiltonian �bration over S2 and pick any integral extension ΩZ,
then o(φt) =

∫
Yφ

Ωn+1
Z mod (n+1)vol. That the obstruction vanishes implies that

the expression (9.4) takes values in vol · Z, so lemma 9.1.4 gives us that the exact
sequence (9.1) splits.

The following commutative diagram with exact columns illustrates the situa-
tion above

π1(R/Z)� _

��

×(n+1)vol// (n+ 1)vol · Z� _

��
π1(Gα)

����

H // Z

����
π1(Ham) o // Z/(n+ 1)vol

,

where one sees that o vanishes if H(π(Gα)) ⊆ (n+ 1)vol · Z.

9.2 Gα-�brations

The above results show that it is most natural to consider Gα-�brations when
trying to carry out the construction suggested in the beginning of the last section.

In this section, we show that such �brations have properties similar to those
of symplectic �brations mentioned in chapter 8.

A Gα-�bration is a �bre bundle YL → Z with �bre L and structure group Gα.
Since Gα is a group of bundle maps, we have an action of R/Z on YL and if we
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set Y = YL/(R/Z) we get a hamiltonian �bration Y → Z with a circle bundle
YL → Y which carries a �brewise connection {αz}z∈Z in YLz → Yz.

A map of Gα- �brations is a bundle map

Y ′L

��

f̂ // YL

��
Z ′

f // Z

,

where f̂ is equivariant with respect to the �brewise action and preserves the �-
brewise connection i.e. f̂∗αf(z) = αz. This implies that we get an induced map
f̄ : Y ′ → Y which gives us both a map of circle bundles and a map of hamiltonian
�brations.

We noted already in remark 7.2.2 that using a partition of unity we can extend
a family of �brewise connections to a full connection in YL → Y .

We have the following result:

Proposition 9.2.1. There is a one-to-one correspondence between extensions of
the family {αz} to full connections in the circle bundle YL → Y and connections
in YL → Z, that is, horizontal distribution H ⊆ TYL, that satisfy

Rg∗Hz = Hzg for g ∈ R/Z. (9.5)

Proof. Given an extension A of {αz} we get an extension Ω = dA of the family of
symplectic forms {ωz} in Y → Z, which in turn gives us a horizontal distribution
HΩ ⊆ TY as in section 8.2. We de�ne a horizontal distribution H ⊆ TYL by

H = kerA ∩ p−1
∗ (HΩ) ⊆ TYL.

Let us see that this is indeed a horizontal distribution, that is for each z ∈ YL we
have to show that TzYL = T v

z YL ⊕Hz.
First, we see that Hz ∩ T v

z YL = {0}. Take v ∈ Hz ∩ T v
z YL then, if p : YL → Y

is the projection map, we have p∗v ∈ HΩp(z) ∩ T v
p(z)Y = {0} so v ∈ ker p∗, but

at the same time we have v ∈ kerA so we conclude that v = 0. Now take any
v ∈ TzYL then we can write p∗v = vh +vv, where vh and vv are the horizontal and
vertical parts of p∗v respectively with regard to the horizontal distribution HΩ. If
we denote by vh# ∈ TzYL the horizontal lift of vh ∈ HΩp(z) ⊆ Tp(z)Y with respect
to A we see that vh# ∈ Hz and v − vh# ∈ T v

z YL since p∗(v − vh#) = vv ∈ T v
z Y .

We also see that Rg∗Hz = Hzg for all g ∈ R/Z, since we have Rg∗ kerAz =
kerAzg and p : YL → Y is of course invariant under the R/Z-action.

On the other hand, let H ⊆ T vYL be a horizontal distribution satisfying (9.5)
then we can de�ne a connection A in the circle bundle YL → Y as follows.

The family of connections de�nes splittings T v
z YL

∼= R ⊕Hα
z for each z ∈ YL,

so combining this with our distribution H ⊆ TYL we get that

TzYL
∼= T v

z YL ⊕Hz
∼= R⊕Hα

z ⊕Hz
∼= R⊕ (Hα

z ⊕Hz) .

If we set HAz = Hα
z ⊕Hz, we see that we have de�ned a horizontal distribution in

the circle bundle YL → Y and since Rg∗HAz = HAzg for all g ∈ R/Z, this de�nes
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a connection A with kerA = HA, and this connection clearly extends the family
{α}.

Given a connection H ⊆ TYL satisfying (9.5), the curvature is

FH(v, w) = [v#, w#]− [v, w]# = [v#, w#]v,

where v, w : Z → TZ are vector �elds on the base space, and v#, w# : YL → TYL

are their horizontal lifts. Note that since H satis�es (9.5), the lifted vector �elds
are equivariant under the R/Z-action. This implies that the vector �eld FH(v, w)
is also equivariant, so plugging it into the connection form A gives a function on
Y , which can be seen as a section in the adjoint bundle. We have the following
curvature formula:

Lemma 9.2.2. Let Ω = dA be the curvature of the connection A in the circle
bundle YL → Y and let FH be the curvature of the associated connection H in
YL → Z then we have

Ω(v#, w#) = α ◦ FH(v, w)

for v, w vector �elds on Z.

Proof. This is a straightforward calculation

Ω(v#, w#) = dA(v#, w#) = v#A(w#)− w#A(v#) +A([v#, w#])

= A([v#, w#]) = A([v#, w#]v)

= α([v#, w#]v)

Given a symplectic �bration one can de�ne a corresponding frame bundle. This
is done in e.g. [25, ch. 6]. We generalise this to Gα-�brations.

De�nition 9.2.3. Given a Gα-�bration YL → Z we de�ne the associated frame
bundle P → Z to be the bundle over Z with �bre

Pz = {f : L→ YL | f∗αz = α and f is equivariant}.

This de�nes a principal Gα-bundle π : P → Z. If we have a Gα-connection in
YL → Z, we can de�ne a connection 1-form in the frame bundle as follows. First
note that the tangent space at a point f ∈ P is given by

TfP = {s is a section in f∗TYL → L | π∗ ◦ f̄∗ ◦ s = const,
Ω(s(z),−) = −dA(s(z)), and s is equivariant, i.e. s(zg) = Rg∗(s(z))},

where A is the connection form in YL → Y induced by the connection in YL → Z.
The vertical tangent bundle is given by

Vf = {s ∈ TfP | s = f̄∗ ◦ s′ for s′ a section in TL→ L}.
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We have a connection A in P given as follows. For s ∈ TfP we have

Af (s) = A ◦ s ∈ C∞(M),

this de�nes a function on M since s is equivariant and A is invariant under the
action of Rg∗.

As noted in section 9.1, the Lie algebra of Gα can be identi�ed with C∞(M),
so we still have the invariant polynomials Qk, that where de�ned in section 8.3.
Recall that they where given by

Qk(f1, . . . , fk) =
∫

M

f1 · · · fkω
n, f1, . . . , fk ∈ C∞0 (M).

These are of course de�ned on all of C∞(M), where furthermore we have the
invariant polynomial Q1 given by

Q1(f) =
∫

M

fωn,

which clearly vanishes on the subalgebra C∞0 (M).
As usual Chern-Weil theory gives us corresponding classes qk ∈ H2k(BGα,R).

We see that if the short exact sequence 9.1 splits, then the pull-back of these
classes by the map Ham → Gα (which is unique, since Ham is perfect) coincides
with Reznikov's classes in H2k(BHam,R). On BGα, we furthermore have

Proposition 9.2.4. Let YL → Z be a Gα-�bration then we have classes

χk ∈ H2k(BGα,Z), for k ≥ 1,

and χk = const · qk in H2k(BGα,R).
Under the map BR/Z→ BGα χ1 pulls back to vol · c1 ∈ H2(BR/Z,Z).

Proof. The �rst Chern class c1(YL) ∈ H2(Y,Z) of the circle bundle YL → Y gives
rise to the classes

χk =
∫

M

c1(YL)n+k ∈ H2k(BGα,Z).

If we pick a connection in YL → Z we get an extension A of {αz}. Since the
χk's maps to the classes

∫
M

[Ω]n+k ∈ H2k(Z,R) and since the curvature of the
connection is given by F (v, w) = Ω(v#, w#) the proof of proposition 8.4.1 applies
in this setting as well, so up to a scalar, the classes χk and qk agree in H2k(Z,R).

To see that χ1 pulls back to vol · c1, note that Q1(t) = vol · t for t ∈ R ⊆
C∞(M), and the invariant polynomial that maps to c1 under the Chern-Weil
homomorphism is just the identity map id : R→ R.

In [12], Gal-K�edra presents a somewhat di�erent approach to the construction
of integral classes.

Now let us return to the proof of proposition 9.1.3, where we still have to prove
that we can construct a normalised integral coupling class if the central extension
9.1 splits.
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Proof. (of the if part of proposition 9.1.3) From the discussion above, we
see why we cannot expect an integral extension to be normalisable in general. The
class

∫
M

[Ω]n+1 ∈ H2(Z,Z) is the characteristic class corresponding to the invariant
polynomial Q1 de�ned above. If the central extension (9.1) splits, we can reduce
the connection in the Gα-bundle to a connection that takes values in C∞0 (M). Now
Q1 vanishes when restricted to C∞0 (M), so in this case

∫
M

[Ω]n+1 = 0.

9.3 Secondary invariants

In this section, we use the theory developed above to carry out the idea described
in the beginning of the chapter.

Theorem 9.3.1. Given a Gα-�bration YL → Z with connection we have well-
de�ned secondary classes

χ̂k ∈ H2k
D (Z,Z),

which are natural with respect to maps of Gα-�brations and induced connections.

Proof. As we saw in the last section, a connection in a Gα-�bration YL → Z gives
an extension A of the �brewise connection {αz} to a connection in the circle bundle
YL → Y . This gives us a well-de�ned class Λ = [(YL, A)] ∈ H2

D(Y,Z), and we now
have χ̂k =

∫
[Y/Z]

Λ∧̃n+k.

Since the group Gα itself depends on the choice of connection α in the prequan-
tum circle bundle L, it is not so easy to see directly from the construction above
what happens if we change the connection. In order to say something about this
issue, we �rst need a construction of the structure group which is independent of
α.

First, recall that the action of Ham on M �xes the Deligne class of the circle
bundle L with connection, so in particular it �xes the isomorphism class of L, so
we can lift any φ ∈ Ham to a map of circle bundles φ̃ : L→ L over φ - now we do
not care whether or not it preserves a connection in L. The group GHam of such
maps is an extension of Ham

G → GHam → Ham

by the gauge group G = Map(M,R/Z). Let (GHam)0 ⊆ GHam denote the connected
component that contains the identity map, then we have the extension

G0 → (GHam)0 → Ham,

where G0 = Map(M,R/Z)0 = Map(M,R)/Z is the identity component of G. Note
that inside this group we have C∞0 (M), and if we set H̃am = (GHam)0/C∞0 (M) we
get the extension

R/Z→ H̃am→ Ham.
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This extension is clearly equivalent to the extension (9.1) for any connection α,
since we have a map ιαGα ⊆ GHam → H̃am which is then an isomorphism by the
(short) 5-lemma.

Since there is no canonical action of H̃am on L, we do not have a natural notion
of H̃am-�bration, but we still have the following:

Theorem 9.3.2. Given a symplectic manifold (M,ω) with a prequantum circle

bundle (L,α), then for a principal H̃am-bundle P → Z with connection, there are
well-de�ned classes

χ̂k(α) ∈ H2k
D (Z,Z),

which are natural with respect to bundle maps and induced connections.
If α and α′ are gauge equivalent connections in L then χ̂k(α) = χ̂k(α′).

Proof. By identifying H̃am with Gα, we get an associated Gα-�bration YL → Z
with connection from the principal bundle P → Z. The �rst claim follows then
trivially from theorem 9.3.1. So assume that we have two gauge equivalent con-
nections α and α′. That is, we have f ∈ G such that f∗α′ = α. This gives a map
f̃ : Gα → Gα′ where f̃(φ) = f ◦ φ ◦ f−1. We see that f̃ �ts into the following
commutative diagram

Gα

ια !!DD
DD

DD
DD

f̃ // Gα′

ια′||zz
zz

zz
zz

H̃am

This follows from the fact that

f ◦ φ ◦ f−1 = φ ◦ (φ−1 ◦ f ◦ φ ◦ f−1)

and φ−1 ◦ f ◦ φ ◦ f−1 ∈ G0 because φ−1 ◦ f ◦ φ is isotopic to f .
We have an action of Gα on P × L given by g.(x, z) = (x.ια(g−1), g(z)) and

similarly Gα′ acts on P × L through ια′ .
The map

F : P × L→ P × L

given by

F (x, z) = (x, f(z))

is equivariant in the sense that

f̃(g).F (x, z) = F (g.(x, z)).

The induced map on the quotients �ts into the following commutative diagram
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P ×Gα
L

""EEEEEEEE
F // P ×Gα′ L

||xxxxxxxx

P ×Gα
M = P ×Gα′ M

and the claim follows.

Corollary 9.3.3. Given a symplectic manifold (M,ω) with a prequantum circle
bundle (L,α) we have well-de�ned classes

χ̂k(α) ∈ H2k−1(BH̃am
δ
,R/Z), for k ≥ 1.

Under the map BR/Z→ BGα χ̂1 pulls back to vol·ĉ1 = vol·id ∈ H1(BR/Z,R/Z) =
hom(R/Z,R/Z).

If α and α′ are gauge equivalent connections in L then χ̂k(α) = χ̂k(α′).

Proof. It follows directly from the interpretation of the extension form Ω as the
curvature form, or equivalently from proposition 9.2.4, that the image of the class

in Ω2k
cl (BH̃am

δ
) vanishes when the connection is �at. This implies that the class

lives in H2k−1(BH̃am
δ
,R/Z).

To see that χ̂1 pulls back to ĉ1, pick a connection in the universal H̃am bundle

over BH̃am that pulls back to the �at connection in the bundle over BH̃am
δ
. The

diagram

BR/Zδ

��

// BR/Z

��

BH̃am
δ //

BH̃am

combined with the result from proposition 9.2.4 then gives that on BR/Zδ χ̂1 and
vol · ĉ1 coincide, since both classes are pull-backs of the class χ̂1 ∈ H2

D(BH̃am,Z).

9.4 Examples

Example 9.4.1. Recall from example 8.2.5 that if we have a symplectic manifold
(M,ω) with a hamiltonian action of a Lie group G with moment map µ : M → g∗,
then, for a principal G-bundle P → Z with connection A, we can construct a
closed extension of ω in the hamiltonian bundle P ×G M → Z.

Now let us furthermore assume that we have a circle bundle with connection
(L,α) on M such that the G-action on M lifts to an action on L that leaves α
invariant. Then we can proceed in much the same way as in example 8.2.5 and
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construct a global connection form in P ×G L → P ×G M as follows. If λ0 is
the canonical 1-form on T ∗P and ιA as before is the dual of the projection map
induced from the connection in P → Z, then α′ = ι∗Aλ0 + α is a connection in
P ×G T ∗G × L → P ×G T ∗G ×M . This connection descents to a connection in
the circle bundle P ×G L → P ×G M if the moment map µ is constructed from
the invariant connection, i.e. if µx(χ) = αx̃(Xχ(x̃))

This gives, as in the general case above, a class

Λ = [(P ×G L,α′)] ∈ H2
D(P ×G M,Z)

and thus classes χ̂k ∈ H2k
D (Z,Z).

Example 9.4.2. In this example, we look more closely at the case M = CPn

with ω = ωFS - the usual Fubini-Study symplectic form. Since π1(CPn) = 0,
we have Ham(CPn) = Symp0(CPn), and there is, up to equivalence, only one
prequantum circle bundle - the canonical circle bundle H → CPn. Recall from
section 8.3 that there is a hamiltonian action of PSU(n + 1) on CPn, and over
this action we have an action of SU(n+ 1) on the canonical bundle H. Let α be
an SU(n+1)-invariant connection on H, such a connection can be constructed by
averaging over SU(n+ 1), i.e. pick any connection α′ and let

α =
∫

g∈SU(n+1)

g∗α′

where the integration is done with respect to the biinvariant Haar measure on
SU(n+ 1).

All in all, we have a commutative diagram

SU(n+ 1)

��

// Gα

��
PSU(n+ 1) // Ham

Now following example 9.4.1 for any SU(n+1)-bundle P → Z with connection,
we get a �bration YH → Z with connection, and from theorem 9.3.1 we get classes

χ̃k ∈ H2k
D (Z,Z),

which are natural with respect to bundle maps and induced connections. Since
proposition 8.3.1 shows that the qk's are a multiple of the usual Chern classes,
we see that the χ̃k's are a multiple of the usual Cheeger-Simons lifts of these
classes, since both classes are lifts of (a multiple of) the usual Chern classes and
are natural.

In the case of �at bundles, we see that classes χ̂k ∈ H2k−1(BH̃am
δ
,R/Z) ex-

tend a multiple of the usual Chern-Simons classes ĉk ∈ H2k−1(BSU(n+1)δ,R/Z).





Chapter 10

Symplectic surface bundles

This last chapter is more open-ended than the preceding ones. It builds on the
interesting work of Kotschick-Morita [21, 22] on the cohomology of the discrete
hamiltonian and symplectic groups of a closed oriented surface Σg of genus g.
Our idea was to see how much of their work we could generalise to general sym-
plectic manifolds, using classical constructions of secondary classes and by pos-
sibly carrying out these constructions on extensions of Ham(Σg) and Symp(Σg).
The proofs in [21] rely heavily on techniques from the theory of surfaces, and it
turned out to be harder than expected to generalise their ideas. However along the
way, we where able to give an explicit description of some characteristic classes
in H2(BHam(Σg)δ,R)H1(M,R) and thus answer a question posed by Kotschick-
Morita in the end of [21]. In the �rst section, we will quickly review the work of
Kotschick-Morita [21] in order to put the construction in section 10.2 into a proper
context. We will end the chapter with a section, in which we will try to explain
some of the ideas we had about generalising the work of Kotschick-Morita.

Below we will abbreviate H1(Σg,R) by H1
R in order to make the notation a bit

easier.

10.1 Overview of the work of Kotschick-Morita

In the papers [21, 22], Kotschick-Morita focus on the closed oriented surfaces Σg

of genus g ≥ 2, so let us �rst state some preliminary facts about this special case.
First of all, Moser's stability theorem (see e.g. [25, ch. 3]) implies that the

group of orientation preserving di�eomorphisms Diff(Σg) homotopy retracts onto
Symp(Σg), and that we have the short exact sequence

1→ Symp0(Σg)→ Symp(Σg)→Mg → 1, (10.1)

whereMg is the usual mapping class group.
Since Diff0(Σg) is contractible by a theorem of Earle-Eells [9], we get that

Symp0(Σg) too is contractible, so π1(Symp0) = 0 and the �ux group Γ ⊆ H1
R

vanish. This gives us the short exact sequence

1→ Ham(Σg)→ Symp0(Σg)→ H1
R → 0. (10.2)

79
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In [22], Kotschick-Morita noticed that for Σg as above, it is possible to extend
the �ux homomorphism Flux : Symp0 → H1

R to a crossed homomorphism F̂lux :
Symp→ H1

R, i.e. a map satisfying

F̂lux(φψ) = F̂lux(ψ) + ψ∗F̂lux(φ).

This is possible because, for the universal �at symplectic �bration ΣSymp =
ESympδ ×Sympδ Σg → BSympδ, there are two essentially di�erent classes that
extend the �brewise symplectic form. There is the connection 2-form Ω which
de�nes the �at connection. This is just the form induced from the invariant form
ω on ESympδ×Σg. Furthermore, we have on ΣSymp the Euler class of the �brewise
tangent bundle e = e(T vΣSymp) ∈ H2(ΣSymp,Z). If we scale the symplectic form
such that

∫
Σg
ω = 2g − 2 then −e will extend [ω].

Since both [Ω] and −e extend [ω], we get that F = [Ω] + e is a class in
H1(Sympδ,H1

R). Kotschick-Morita show that any representative for F will be a
crossed homomorphism extending Flux. Furthermore, such an extension is essen-
tially unique in the sense that the cohomology class F ∈ H1(Symp,H1

R) is unique.
This follows from the exact sequence

H1(Mg,H
1
R)→ H1(Sympδ,H1

R)→ H1(Sympδ
0,H

1
R)Mg ,

since H1(Mg,H
1
R) = 0 by a calculation of Morita [26]. The exact sequence is

obtained from the spectral sequence associated with the short exact sequence
(10.1) and with coe�cients in H1

R.
Note that it is too much to expect the extension to be a homomorphism, since

the usual �ux homomorphism satis�es the relation

Flux(ψ−1φψ) = ψ∗Flux(φ), for φ ∈ Symp0 and ψ ∈ Symp.

The above can be generalised to any symplectic manifold M where there is a
universal extension of the �brewise symplectic form in MSymp = ESymp ×Symp

M → BSymp, e.g. when ω is proportional to the �rst Chern class c1 = c1(TM).
McDu� elaborates further on this in [24].

The existence of F̂lux : Symp→ H1
R was used in [21] to construct characteristic

invariants as follows. First one notes that since Ham is perfect H1(Ham) = 0. This
together with the spectral sequence associated with the short exact sequence (10.2)
implies that the �ux homomorphism induces a surjective homomorphism

H2(Sympδ
0)→ H2(H1 δ

R ) = Λ2
ZH

1
R.

Kotschick-Morita shows that for a surface Σg we have an isomorphism

(ΛZH
1
R)Mg

∼= S2
ZR

induced by the discrete cup product pairing. This means that the extended �ux
homomorphism induces a surjective homomorphism

H2(Sympδ)→ S2
ZR.
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This induces a map

H2k(Sympδ)→ Sk(S2
ZR),

which they show is surjective for g ≥ 3k. In fact they show an even stronger result.
The �rst Miller-Morita-Mumford class gives a surjective mapH2(Sympδ)→ Z, and
combining these maps they show that, for g ≥ 3k, there is a surjective map

H2k(Symp(Σg)δ)→ Z⊕ S2
ZR⊕ S2(S2

ZR)⊕ · · · ⊕ Sk(S2
ZR).

The other part of [21] is concerned with the map

H∗(H1 δ
R ,R)→ H∗(Sympδ

0,R)

induced by the �ux homomorphism. Here we look at H1
R as a discrete abelian

group, so the cohomology groups Hk(H1 δ
R ,R) = homZ(Λk

ZH
1
R,R) are huge, but by

restricting to the continuous cohomology Hk
cts(H

1 δ
R ,R) ⊆ Hk(H1 δ

R ,R) Kotschick-
Morita are able to determine the kernel of this map. Here the continuous coho-
mology is the subgroup

Λk
RH1(Σg,R) = homR(Λk

RH
1
R,R) ⊆ homZ(Λk

ZH
1
R,R) = Hk(H1 δ

R ,R).

Let {x1, y1, . . . , xg, yg} be a symplectic basis forH1(Σg,R) (see �g. 10.1) and let
ω0 =

∑
xi∧yi be the standard symplectic form on Λ2

ZH1(Σg,R). Kotschick-Morita
shows that the kernel of the map Λ∗RH1(Σg,R) → H∗(Sympδ

0,R) is generated by
ω0 ∧H1(Σg,R). This is done by an explicit calculation using the fact that, since
Symp0 is contractible any Symp0-bundle is trivialisable. The image of 2ω0 in
H2(Sympδ

0,R) coincides with the restriction of the class α ∈ H2(Sympδ,R) which
induces the map H2(Symp)→ S2

ZR→ R.

y1

x1

y2

x2

yg

xg

Figure 10.1: The symplectic basis {x1, y1, . . . , xg, yg}.

From the spectral sequence associated to the short exact sequence (10.2) we
get, since H1(Hamδ) = 0, the exact sequence

0→ H2(H1 δ
R ,R)→ H2(Sympδ

0,R)→

→ H2(Hamδ,R)H1
R → H3(H1 δ

R ,R)→ H3(Sympδ
0,R).
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This means that the classes ω0∧H1(Σg,R) ⊆ H3(H1 δ
R ,R) can be lifted to classes in

H2(Hamδ,R)H1
R . Kotschick-Morita use this fact, together with the corresponding

homology spectral sequence, to show that there is an inclusionH1
R ⊆ H2(Hamδ)H1

R
.

We will give an explicit description of these lifted classes below.

10.2 Explicit construction of classes for hamiltonian surface
bundles

In this section, we will start by looking at a general Lie group G with Lie algebra g.
Let FG be the homotopy �bre of the canonical map BGδ → BG. It is well-known
that FG classi�es �at G-product bundles. If G is contractible FG is homotopy
equivalent to BGδ.

The homology H∗(g) of a Lie algebra g is the homology of the chain complex
Λ∗(g) with di�erential

d(v1 ∧ · · · ∧ vk) =
∑
i<j

(−1)i+j [vi, vj ] ∧ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v̂j ∧ · · · ∧ vk.

There is a natural map λ : H∗(FG)→ H∗(g) from the homology of FG to the
Lie algebra homology of g. We refer to [5] for an explicit, natural construction of
this map at the chain level.

In the �nite dimensional case, where H ⊆ G is a maximal compact subgroup
and G is semi-simple, the short exact sequence of Lie algebras

h→ g→ h/g

splits, so the corresponding spectral sequence is not that interesting. In the case of
the in�nite dimensional groups G = Symp0 and H = Ham, the sequence does not,
however, split in general, so there might be non-trivial di�erentials in the spectral
sequence.

Both
H1(Hamδ) = Ham/[Ham,Ham]

and
H1(Lie(Ham)) = Lie(Ham)/[Lie(Ham),Lie(Ham)]

vanish so by combining the E3-term in the spectral sequences for the short exact
sequences of groups (10.2) and for the corresponding short exact sequence of Lie
algebras

Lie(Ham)→ Lie(Symp)→ H1
R (10.3)

together with the natural map λ, we get the following commutative diagram

H3(H1 δ
R )

λ

��

d3 // H2(Hamδ)H1
R

λ

��
H3(Lie(H1

R))
d3 // H2(Lie(Ham))H1

R

(10.4)
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On the left hand side, the map λ is nothing but the natural map

H3((H1 δ
R )) = Λ3

ZH
1
R → Λ3

RH
1
R = H3(Lie(H1

R)),

which is clearly surjective. So one way to see homology inH2(Hamδ)H1
R
is by trying

to calculate the image of d3 : H3(Lie(H1
R))→ H2(Lie(Ham))H1

R
.

Recall from section 8.3 that we have an Ad-invariant inner product

〈f, g〉 =
∫

M

fgωn.

Now for a closed 1-form α ∈ Ω1(M) we de�ne the 2-cocycle hα on Lie(Ham) by

hα(f, g) = 〈f, [g, α]〉 =
∫

M

fdg ∧ α ∧ ωn−1.

Clearly, this only depends on the cohomology class of α, so we get a linear map
h : H1

R → H2
cts(Lie(Ham)), where H∗

cts means that we only take cohomology of
the complex of continuous cochains. The classes hα were introduced by Roger in
[29] where he also announced that the map h is in fact an isomorphism for any
symplectic manifold M . To our knowledge a proof of this has been published, so
it should probably be seen as a conjecture rather than a theorem. Below we will
see that at least for M = Σg a closed surface of genus g ≥ 2 the map is injective.

If we see hα as a map H2(Lie(Ham))H1
R
→ R, we have

Proposition 10.2.1. For g ≥ 2 the map ha ◦ λ : H2(Ham(Σg)δ
H1

R
→ R is non-

trivial for all a ∈ H1
R.

Proof. The idea is to show that hα ◦ d3 is non-trivial, since λ : H3(H1 δ
R ) →

H3(Lie(H1
R)) is surjective the commutativity of (10.4) will then imply that hα ◦ λ

is non-trivial. So we have to look closer at the di�erential d3 : E3
0,2 → E3

3,0 in
the spectral sequence for the short exact sequence of Lie algebras (10.3). Recall
that the spectral sequence is obtained from a �ltration of the chain complex C∗ =
Λ∗(Lie(Symp)), where

FrCn = {x =
∑

vi1 ∧ · · · ∧ vin ∈ Λn(Lie(Symp)) |

For each i at least r of the vij
′s lies in Lie(Ham)}.

If we let Zr
pq = {x ∈ FpCp+q | dx ∈ Fp−rCp+q−1} then the Er-term in the spectral

sequence is given by

Er
pq = Zr

pq/dZ
r−1
p+r−1,q−r+2 + Zr−1

p−1,q+1.

In order to see what the di�erential d3 does, take an element a∧ b∧ c ∈ Λ3H1
R and

representatives α, β and γ ∈ Ω1(Σg) for a, b and c respectively. We have

d(α ∧ β ∧ γ) = −[α, β] ∧ γ + [α, γ] ∧ β − [β, γ] ∧ α,

and since [Lie(Symp),Lie(Symp)] ⊆ Lie(Ham) we have d(α ∧ β ∧ γ) ∈ F1C2.
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This is the di�erential on the E2-page of the spectral sequence. We know that
Lie(Ham) = [Lie(Ham),Lie(Ham)] so the d2-di�erential vanishes. To calculate the
next di�erential we have to add something in F2C3 to α ∧ β ∧ γ so that the
di�erential maps it into F2C2. To make the calculations more transparent, we will
identify Lie(Ham) with the exact 1-forms B1(Σg) and �rst switch to functions at
the end. Pick dfγ , dgγ ∈ Lie(Ham) such that [α, β] = [dfγ , dgγ ] and similarly for
fβ , gβ and fα, gα. Then if we set

x = α ∧ β ∧ γ − dfγ ∧ dgγ ∧ γ + dfβ ∧ dgβ ∧ β − dfα ∧ dgα ∧ α,

we see that x ≡ α∧β ∧ γ mod Z2
2,1, so both elements represent a∧ b∧ c ∈ E3

3,0 =
E2

3,0 = H3(Lie(H1
R)).

We have

dx = −[dfγ , γ] ∧ dgγ + [dgγ , γ] ∧ dfγ+
+ [dfβ , β] ∧ dgβ − [dgβ , β] ∧ dfβ−
− [fα, α] ∧ dgα + [dgα, α] ∧ dfα.

Now let τ ∈ Z1(Σg) be a closed 1-form then

h[τ ](dx) = −〈[dfγ , γ], [dgγ , τ ]〉+ 〈[dgγ , γ], [dfγ , τ ]〉+
+ 〈[dfβ , β], [dgβ , τ ]〉 − 〈[dgβ , β], [dfβ , τ ]〉−
− 〈[dfα, α], [dgα, τ ]〉+ 〈[dgα, α], [dfα, τ ]〉

and here

〈[dfγ , γ], [dgγ , τ ]〉 − 〈[dgγ , γ], [dfγ , τ ]〉 = 〈[τ, [dfγ , γ]], dgγ〉 − 〈[γ, [dfγ , τ ]], dgγ〉
= 〈[dfγ , dgγ ], [γ, τ ]〉
= 〈[α, β], [γ, τ ]〉.

Similarly in the other two cases, so we get that

h[τ ](dx) = −〈[α, β], [γ, τ ]〉+ 〈[α, γ], [β, τ ]〉 − 〈[β, γ], [α, τ ]〉.

Now choose a symplectic basis {x1, y1, · · · , xg, yg} for H1(Σg,R) (see �g. 10.1)
and let x∗i and y∗i be the corresponding Poincaré duals. Pick 1-forms αi and βi

representing x∗i and y∗i respectively, such that they have support near yi and xi

respectively.
Then we have

[αi, αj ] = [βi, βj ] = 0

and for i 6= j

[αi, βj ] = 0,
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simply because the 1-forms have disjoint support. We then get from the calculation
above that for i 6= j

hy∗j
(d(x∗i ∧ y∗i ∧ x∗j )) = −〈[αi, βi], [αj , βj ]〉+ 〈[αi, αj ], [βi, βj ]〉 − 〈[βi, αj ], [αi, βj ]〉

= −〈[αi, βi], [αj , βj ]〉.

If we let Xi and Yi be the symplectic vector �elds corresponding to αi and βi we
get that the hamiltonian function that corresponds to the exact form [αi, βi] is
given by ω(Xi, Yi) + const, where the constant is chosen such that the function
has zero integral. That is

const = −
∫

Σg

ω(Xi, Yi)ω = −
∫

Σg

ιXi
ω ∧ ιYi

ω = −
∫

Σg

αi ∧ βi = −1.

This gives

hy∗j
(d(x∗i ∧ y∗i ∧ x∗j )) = −

∫
Σg

(ω(Xi, Yi)− 1) (ω(Xj , Yj)− 1)ω

= −2− vol = −2g 6= 0

in which we have used that ω(Xi, Yi) and ω(Xj , Yj) have disjoint support.

From the proof above we get:

Theorem 10.2.2. The classes

ha ∈ hom(H2(Ham(Σg)δ)H1
R
,R) = H2(Ham(Σg)δ,R)H1

R

are the explicit representatives sought after by Kotschick-Morita in [21].

After the above work had been �nished we realised that in [31], Vizman have
also calculated the di�erential d3, but in a di�erent context than ours. Her goal is
to show that for a general symplectic manifold M , hα will in many cases lie in the
kernel of the di�erential d3 : H2

cts(Lie(Ham))H1
R → H3(Lie(H1

R)), so it is possible
to extend it to a class in H2

cts(Lie(Symp)). She shows that

d3(hα)([β1] ∧ [β2] ∧ [β3]) = n(n− 1)
∫

M

α ∧ β1 ∧ β2 ∧ β3 ∧ ωn−2−

− n2
∑

cyclic perm

of the βi's

∫
M

α ∧ β1 ∧ ωn−1 ·
∫

M

β2 ∧ β3 ∧ ωn−1,

which is consistent with our result for M = Σg. This more general formula should
make it possible to �nd cohomology classes in H2(FHam(M),R)H1

R for more gen-
eral symplectic manifolds in the same way as above, but since Ham(M) is generally
not contractible, it is probably hard to say whether these classes are coming from
H2(BHam(M)δ,R)H1

R .



86 Chapter 10. Symplectic surface bundles

10.3 Unsolved problems

In this last section, we will describe some ideas about how to generalise the work
of Kotschick-Morita [21]. There are no �nal results in this section, but the ideas
might be interesting in the sense that they present new angles on known results.

We had hoped that we would be able to generalise the result of Kotschick-
Morita mentioned in section 10.1, i.e. that there is a surjective map

H2k(Symp)→ Sk(Λ2
ZH

1
R).

In the case k = 1, this is true for any symplectic manifold M , since it only builds
on the fact that Ham(M) is perfect, which is always true. We had hoped that we
would be able to generalise this under some mild restrictions by looking at a cover
of Symp(M) where the extended �ux homomorphism is always de�ned. However
the proof of Kotschick-Morita's result relies heavily on techniques from the theory
of surfaces, and we were not able �nd an alternative proof.

We will still give the de�nition of the extended �ux homomorphism on a cover
of Symp. Let (M,ω) be a symplectic manifold such that ω has integral periods
and let (L,α) be a prequantum line bundle. Furthermore, let SympL ⊆ Symp be
the subgroup of symplectomorphisms that �xes the isomorphism class of the line
bundle L, so if e.g. H2(M,Z) is torsion-free then SympL = Symp. Then if we
denote the group of bundle maps of L lying over a symplectomorphism by GSymp

we have the following short exact sequence of groups

1→ G → GSymp → SympL → 1,

where G = Map(M,R/Z) is the gauge group. Now we can de�ne a map

F : GSymp → H1
R

by

F (φ) = φ∗α− α.

We see that the identity component of the gauge group G0 = Map(M,R)/Z lies in
the kernel of F , so if we set S̃ymp = GSymp/G0, we get an induced map

F̃lux : S̃ymp→ H1
R.

We have that S̃ymp is a cover of Symp with �bre H1
Z. If we restrict to Symp0, we

see that S̃ymp0 has a natural trivialisation by identifying Symp0 with (GSymp)0/G0,
and that F̃lux and Flux coincide here as maps Symp0 → H1

R/Γ.
The above �ts nicely with the results of McDu� [24], where it is shown that

there is always an extension of �ux F̂lux : Symp → H1
R/H

1
Z. This also suggests

that the above construction could make it possible to say maore about when Flux
extends besides what is shown in [24].

In section 10.1, we noted that the kernel of the map

Λ∗RH1(M,R)→ H∗(Symp,R)
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was generated by ω0 ∧ H1(M,R). This was shown in [21], �rst by showing that
the ideal generated by ω0∧H1(M,R) lies in the kernel and then, by evaluating on
certain homology classes, it is seen that this is in fact all of the kernel.

We will try to put this into a slightly di�erent context, where one can see that
these classes arise in the same way as in the case of �nite dimensional Lie groups.
This might help to understand the nature of these classes, but the underlying
argument that ensures the non-triviality of the classes is really the same as the
one Kotschick-Morita use.

For an ordinary Lie group G with maximal compact subgroup K the quotient
G/K is contractible, and one way to construct characteristic classes inH∗(BGδ,R)
is as follows: Take a G-invariant closed form τ ∈ Ωk(G/K)G, this induces a form
on the total space of the associated bundle EGδ×Gδ G/K → BGδ, and since G/K
is contractible, the map

H∗(BGδ)→ H∗(EGδ ×Gδ G/K)

is an isomorphism, so we get a map

Hk(Ω∗(G/K)G)→ Hk(BGδ).

In the �nite dimensional case, this map is injective. This is true because there
exists a discrete, torsion-free subgroup Λ ⊆ G such that Λ\G is a closed manifold.
Then one can show that the composite map

Hk(Ω∗(G/K)G)→ Hk(BGδ)→ Hk(BΛ)→ Hk(Λ\(G/K))

is injective.
In the in�nite dimensional case with G = Symp0 and K = Ham, we have

G/K = H1
R and Ωk(G/K)G = ΛkH1∗

R , since Symp0 acts on H1
R by translations.

Furthermore, the di�erential vanishes, since the forms are translation invariant,
so in this case we have Hk(Ω∗(G/K)G) = Λk(H1∗

R ) = ΛkH1(M,R).
If we could �nd a discrete subgroup in Symp0 lying over the lattice H1

Z ⊆ H1
R,

we would have Λ\(G/K) = H1
R/H

1
Z, and we could imitate the proof of the �nite

dimensional case to see that the map ΛkH1(Σg,R)→ Hk(BSympδ
0,R) is injective.

This is of course not possible, since Kotschick-Morita has shown that the kernel
of this map is generated by ω0 ∧H1(M,R). There are, however, many lattices in
H1

Z ⊆ H1
R of rank g, with the property that we can choose a discrete subgroup

Λ ⊆ Symp0 over this lattice. One can e.g. pick symplectomorphisms φ1, . . . , φg

with support near x1, . . . , xg in �g. 10.1, and such that the Flux(φi)'s generate a
lattice of rank g in H1

Z.
If instead we set G = Symp(Σg) the whole symplectic group and let K be the

kernel of the extended �ux homomorphism F̂lux : Symp→ H1
R, then we have that

Ωk(G/K)G = (ΛkH1
R)Mg and again the di�erentials vanish. We see here that ωg

0 ∈
(Λ2gH1

R)Mg , and if, in this case, we could �nd a discrete group Λ ⊆ Symp lying
over H1

Z, this would imply that the corresponding class in H2g(BSymp(Σg),R)
is non-zero. This is quite conjectural, but if this approach is successful it would
generalise the result from [21] that ωk

0 6= 0 for g ≥ 3k. It would also give a direct
explanation of why the class ω2

0 is non-zero in H4(BSymp,R) but ω2
0 vanishes in

H4(BSymp0,R).
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