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Abstract

Many processes must complete in the presence of failures. Different sys-
tems respond to task failure in different ways. The system may resume a
failed task from the failure point (or a saved checkpoint shortly before the
failure point), it may give up on the task and select a replacement task from
the ready queue, or it may restart the task. The behavior of systems under
the first two scenarios is well documented, but the third (RESTART) has
resisted detailed analysis. In this paper we derive tight asymptotic relations
between the distribution of task times without failures to the total time when
including failures, for any failure distribution. In particular, we show that
if the task time distribution has an unbounded support then the total time
distribution H is always heavy-tailed. Asymptotic expressions are given for
the tail of H in various scenarios. The key ingredients of the analysis are the
Cramér–Lundberg asymptotics for geometric sums and integral asymptotics,
that in some cases are obtained via Tauberian theorems and in some cases by
bare-hand calculations.
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1 Introduction

For many systems failure is rare enough that it can be ignored, or dealt with as an
afterthought. For other systems, failure is common enough that the design choice of
how to deal with it may have a significant impact on the performance of the system.
Consider a job that ordinarily would take a time T to be executed on some system
(e.g., CPU). If at some time U < T the processor fails, the job may take a total time
X ≥ T to complete. We let F,G be the distributions of T, U and H = HF,G the
distribution of X which in addition to F,G depends on the failure recovery scheme.

Many papers discuss methods of failure recovery and analyze their complexity
in one or more metrics, like restartable processors in Chlebus et al. [7], or stage
checkpointing in De Prisco et al. [8], etc. There are many specific and distinct
failure recovery schemes, but they can be grouped into three broad classes:

RESUME, also referred to as preemptive resume (prs);
REPLACE, also referred to as preemptive repeat different (prd);
RESTART, also referred to as preemptive repeat identical (pri).

The analysis of the distribution function H(x) = P(X ≤ x) when the policy is
RESUME or REPLACE was carried out by Kulkarni et al. [14], [15]. In the RE-
SUME scenario, if there is a processor failure while a job is being executed, after
repair is implemented the job can continue where it left off. All that is required
mathematically is to remember the state of the system when failure occurred. If
repair time is an issue then the number of failures before final completion must also
be considered. In what follows, we ignore the time for repairs, with the knowledge
that this can be properly handled separately. In the REPLACE situation, if a job
fails, it is replaced by a different job from the same distribution. Here, no details
concerning the previous job are necessary in order to continue.

The work by Kulkarni et al. [14], [15], and Bobbio & Trivedi [4] clearly suggests
that if F is phase-type or, more generally, matrix-exponential ([16], [1], [2]), and
G(u) = P(U > u) = e−βu, then H for the RESUME and REPLACE policies can
also be represented by matrix-exponential distributions. This means that they could
be analyzed entirely within a Markov chain framework.

However, the RESTART policy has resisted detailed analysis. The total time
distribution H under this policy was defined and examined through its Laplace
transform in Kulkarni et al. [14], [15]. They were able to show that it definitely was
not matrix-exponential, i.e., the Laplace transform cannot be rational, and therefore
it cannot be solved in the Markov Chain framework. However, by numerically taking
the inverse Laplace transform (see Jagerman [10]), Chimento & Trivedi [6] (following
a model proposed by Castillo [5]) were able to find the RESTART time distribution
for a few cases, for a limited range of the total time (x ≤ 3ET ). The method seems
to be unstable for larger x. It is this problem that interests us here.

There are many examples of where the RESTART scenario is relevant. The
obvious one alluded to above involves execution of a program on some computer. If
the computer fails, and the intermediate results are not saved externally (e.g., by
checkpointing), then the job must restart from the beginning. As another example,
one might wish to copy a file from a remote system using some standard protocol
as FTP or HTTP. The time it takes to copy a file is proportional to its length. A
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transmission error immediately aborts the copy and discards the partially received
data, forcing the user to restart the copy from the beginning. Yet another example
would be receiving ‘customer service’ by telephone. Often, while dealing with a
particular service agent, the connection is broken. Then the customer must redial
the service center, and invariably (after waiting in a queue) end up talking to a
different agent, and have to explain everything from the beginning.

In our previous paper (Sheahan et al. [18]), we derived an expression for the
Laplace transform of the total time distribution H for the RESTART policy with
exponential failure rate, β. We used it to get an expression for the moments EX`

of the total time. From this we were able to argue that if the task-time distribution
has an exponential tail, then X has infinite moments for ` ≥ α = λ/β, where λ is
the rate of the exponential tail (i.e., F (t) ∼ ce−λt). This in turn implies that roughly
H(x) ≈ c/xα, i.e., X is power-tailed.

This can have important implications, particularly in applications where the
time to finish a task is bounded by necessity. If a task takes too long to complete
it must be aborted, and an alternate solution provided. In such applications it may
be important to know H(x), for that is the probability that a job will be aborted.
Power tails and heavy tails, generally, have a small but non-negligible probability of
lasting for many, many times the mean, and thus H(x) for large x can be important.

In this paper we derive the asymptotic behavior of H(x) as x→∞ under more
general assumptions than in [18] and in sharper form in a number of important
cases. As a first guess, one could believe that the heaviness of H is determined
by the heaviness of F and/or G. However, it turns out that the important feature
is rather how close are F and G. This is demonstrated in a striking way by the
following result for the diagonal case:

Proposition 1.1 If F = G, then H(x) ∼ 1

µx
.

Here µ = 1/EU ; we assume throughout in the paper that µ > 0 and, for convenience,
that F,G have densities f, g (this assumption can be relaxed at many places but
we will not give the details). It is notable that no other conditions are required for
Proposition 1.1, in particular no precise information on how heavy the common tail
F = G is!

The assumption that the task time distribution F and the failure time distribu-
tion G be identical of course lacks interpretation in the RESTART setting. Thus,
Proposition 1.1 is more of a curiosity, which is further illustrated by the fact that a
proof can be given which is far simpler than the our proofs for more general situa-
tions (see Section 6). Nevertheless, the result indicates that the tail behaviour of H
depends on a delicate balance between the tails of F and G. We will also see that
making F heavier makes H heavier, making G heavier makes H lighter. However,
except for the case when F has a finite support, H is always heavy-tailed:

Proposition 1.2 Assume that the support of F is unbounded. Then eεxH(x) → ∞
for any ε > 0.

In general, we will be able to obtain sharp asymptotics for H(x) when F and G
are not too far away. The form of the result (Theorem 2.2) is regular variation of
H. For example, the following result covers Gamma distributions:
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Corollary 1.1 Assume f, g belong to the class of densities of asymptotic form
ce−λttα−1, with parameters λF , αF , cF for f and λG, αG, cG for g. Then H(x) ∼
cH logαF−αHαG x/xαH , where αH = λF/λG and

cH =
cFΓ(αH)λαH−1−αF+αHαG

G

µαHcαHG
.

Numerical illustrations are given in [18] for αG = 1 (i.e., G exponential) and show
an excellent fit.

When F and G are more different (say F has a power tail and G is exponen-
tial), we will derive logarithmic asymptotics for H. We will see forms varying from
extremely heavy tails like 1/ logα x over power tails 1/xα to moderately heavy tails
like the Weibull tail e−x

β
with β < 1.

The proofs of the paper are based on the representation

X = T + S where N = inf {n : Un+1 > T} , S =
N∑
i=1

Ui , (1)

and U1, U2, . . . are the succesive failure times (assumed i.i.d. with distribution G and
independent of T ). More precisely, we will use that given T = t, S(t) =

∑N
1 Ui is a

compound geometric sum for which exponential Cramér-Lundberg tail asymptotics
is available, and uncondition to get our final results. In Section 2 we state our main
results, except for the case of a bounded task time T which is treated in Section 3.
The analysis there departs from a careful study of the case T ≡ t. Section 4 is
devoted to the proof of the following lemma, which is the key to the unbounded
case:

Lemma 1.1 Let µ = 1/EU and define

I±(x, ε) =

∫ ∞
0

exp
{−µG(t)x(1± ε)} f(t) dt

Then for each ε > 0,

1− ε ≤ lim inf
x→∞

H(x)

I+(x, ε)
≤ lim sup

x→∞

H(x)

I−(x, ε)
≤ 1 + ε .

This lemma essentially reduces the investigation of the asymptotics of H(x) to the
(not always straightforward!) purely analytical study of the asymptotics of I+(x, ε)
and I−(x, ε). Indeed, we will see in Section 5 that once this is done, one is most
often able to obtain the logarithmic asymptotics of H(x) by letting ε ↓ 0, and in
some cases even the sharp asymptotics. Finally, Section 6 contains some concluding
remarks.

2 Statement of Main Results

Except for Proposition 3.2, we will assume throughout the paper that the support
of F is infinite.
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We shall use the concept of logarithmic asymptotics familiar from large deviations
theory and write f(t) ≈log g(t) for two functions f, g > 0 with limits 0 at t =∞ if
log f(t)/ log g(t)→ 1 as t→∞. We then consider the following distribution classes:

F1 : f(t) ≈log e−αt
η

, F2 : f(t) ≈log
1

tα+1
,

G1 : G(t) ≈log e−βt
γ

, G2 : G(t) ≈log
1

tβ

Note that these definitions do not completely identify the tail behaviour of F,G.
For example, if G(t) ∼ ctαe−βt

γ
, then G ∈ G1, but one cannot identify c, α, and if

f(t) ∼ c logβ t/tα+1, then F ∈ F1, but one cannot identify c, β.
Note also that f ∈ F2 implies that F (t) ≈log 1/tα, and that a sufficient (but not

necessary) condition for G ∈ G2 is that g(t) is regularly varying with index −β − 1.
Similarly to the definition of f ≈log g, we will write f ≈log log g if

log
(− log f(t)

)
log
(− log g(t)

) → 1 .

See further part (1:2) of Theorem 2.1 and Remark E) in Section 6.
With these distribution classes, we obtain a complete description of the logarith-

mic asymptotics of H(x) except for the case f ∈ F1, G ∈ G2 where we only obtain
≈log log asymptotics.:

Theorem 2.1
(1:1) Assume F ∈ F1, G ∈ G1. Then H(x) ≈log exp

{−c11 logθ11 x
}

where θ11 =
η/γ, c11 = α/βθ11;

(2:2) Assume F ∈ F2, G ∈ G2. Then H(x) ≈log
1

xθ22
= exp {−θ22 log x} where

θ22 = α/β;

(2:1) Assume F ∈ F2, G ∈ G1. Then H(x) ≈log
1

logθ21 x
= exp {−θ21 log log x}

where θ21 = α/γ;
(1:2) Assume F ∈ F1, G ∈ G2. Then H(x) ≈log log exp

{−xθ12} where θ12 =
η/(β + η) ∈ (0, 1).

Note that the asymptotic expressions are in agreement with H(x) being necessarily
heavy-tailed, cf. Proposition 1.2. E.g. the asymptotics in part (1:2) is as for the
heavy-tailed Weibull distribution, and the one in part (1:1) as for regular variation
if θ11 = 1 and as for the lognormal distribution if θ11 = 2.

Generalizing [18], we will also show:

Proposition 2.1 Assume g(t) ≥ cf(t)1/α−ε for all large t, where α, ε > 0, c < ∞.
Then

∫∞
0
xαH(dx) < ∞. If g(t) ≤ cf(t)1/α for all large t, where α > 0, c > 0,

then
∫∞

0
xαH(dx) = ∞.

For example, the mean of H is finite when the tail of F is slightly lighter than the
tail of G and infinite when it is equal or or heavier. Similar, checking finite variance

amounts to a comparison of F and G
2
.

Our main results on sharp asymptotics is as follows (here and in the follow-
ing, slowly varying functions are assumed to have the additional property of being
bounded on compact subsets of (0,∞)):
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Theorem 2.2 Assume

f(t) = g(t)G(t)β−1L0

(
G(t)

)
(2)

where L0(s) is slowly varying at s = 0. Then

H(x) ∼ Γ(β)

µβ
L0(1/x)

xβ
, x→∞ . (3)

Here f(x) ∼ g(x) means f(x)/g(x)→ 1. For example:

Corollary 2.1 Assume f, g belong to the class of regularly varying densities of the
form L(t)/t1+α where L is slowly varying, with parameters αF , LF for f and αG, LG
for g. Then H(x) = LH(x)/xαH , where αH = αF/αG and LH is slowly varying
with

LH(x) ∼ Γ(αH)ααH−1
G

µαH
LF
(
x1/αG

)
LαHG

(
x1/αG

) .
Corollary 2.2 Assume f, g belong to the class of densities of the form e−λt

η
tαL(t)

where L is slowly varying at t =∞, with parameters λF , αF , LF for f and λG, αG, LG
for g, and the same η = ηF = ηG. Then H(x) = LH(x)/xαH , where αH = λF/λG
and LH is slowly varying with

LH(x) ∼ Γ(αH)λαH−1−ω
G ηαH−1

µαHλ
αF /η−αGαH/η+αH−1
G

logω x
LF
(
log1/η x

)
LαHG

(
log1/η x

) ,
where ω = αF/η + αH(η − αG − 1)/η + 1/η − 1.

Of course Corollary 2.1 is close in spirit to Theorem 2.1(2:2); the conditions are
slightly stronger, but so are also the conclusions. The difference between Corol-
lary 2.2 and Theorem 2.1(1:1) is somewhat more marked, since Corollary 2.2 only
applies when ηF = ηG (i.e., η = γ in the notation of Theorem 2.1, where η = γ is
not required).

Finally consider ordering and comparison results. One expects intuitively a
heavier tail of F to lead to a heavier H. The precise statement of this is in terms of
stochastic order (s.o.):

Proposition 2.2 Assume given two task time distributions F1, F2 such that F1 is
smaller than F2 in s.o., that is, F 1(t) ≤ F 2(t) for all t. Then also HF1,G ≤ HF2,G

in s.o. for any fixed G.

This follows from (1) and the coupling characterization of s.o. ([17]) by noting that
if T1 ≤ T2, then (in obvious notation) N(T1) ≤ N(T2) and hence S(T1) ≤ S(T2),
X(T1) ≤ X(T2)

Similarly, one expects a lighter tail ofG to lead to a largerX. However, stochastic
ordering cannot be inferred since if G1, G2 are given (F is fixed) such that G1 is
smaller than G2 in s.o, then on one hand N is smaller for G2 than for G1 for any
t but on the other the Ui(t) are larger. However, we will establish an asymptotic
order under a slightly stronger condition than G1 being smaller than G2 in s.o.:
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Proposition 2.3 Assume that G1 is smaller than G2 in s.o. and that in addition
lim supt→∞G1(t)/G2(t) < 1. Then for F fixed,

lim sup
t→∞

HF,G2(t)

HF,G1(t)
≤ 1 .

3 Geometric Sums. Bounded Job Time T

Given T = t, the number N(t) of restarts is geometric with failure parameter G(t) =
P(Ui ≤ t) = 1−G(t) so that

P
(
N(t) > n

)
= G(t)n, EN(t) =

G(t)

G(t)
∼ 1

G(t)
.

It follows that given T = t, we can write

X
D
= t + S(t) where S(t) =

N(t)∑
i=1

Ui(t)

(here
D
= means equality in distribution) where the Ui(t) are independent of N(t)

and i.i.d. with the distribution Gt being G truncated to [0, t), that is, with density

G(t)−1g(s)I(s ≤ t) at s. Then X
D
= T + S(T ) so that

H(x) =

∫ ∞
0

P
(
S(t) > x− t) f(t) dt . (4)

This is the basic identity to be used in the following.
A first implication of (4) is that asymptotic properties of geometric sums must

play a role for the asymtotics of H(x). We shall use Cramér-Lundberg theory, cf.
[1], [2], [19], more precisely the following result:

Proposition 3.1 Let V1, V2, . . . be i.i.d. with common density k(v), N ∈ N an
independent r.v. with P(N = n) = (1−ρ)ρn, and S = V1+· · ·+VN . Then P(S > x) ∼
Ce−γx where γ is the solution of ρ

∫∞
0

eγyk(y) dy = 1 and C = (1 − ρ)/γB where
B = ρ

∫∞
0
yeγyk(y) dy. Furthermore, letting

c−(x) = inf
0≤z≤x,K(z)>0

eγxK(x)∫∞
x

eγyk(y) dy
, c+(x) = sup

0≤z≤x,K(z)>0

eγxK(x)∫∞
x

eγyk(y) dy,

we have the Lundberg inequality

c−(x)e−γx ≤ P(S > x) ≤ c+(x)e−γx

for all x.

For a proof, see Willmot & Lin [19] pp. 108-109. Alternatively, Proposition 3.1
follows easily from

P(S > x) = P(N ≥ 1, V1 > x) +

∫ x

0

P(S > x− y)P(N ≥ 1, V1 ∈ dy)

= ρK(x) +

∫ x

0

P(S > x− y)ρk(y) dy ,
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which is a defective renewal equation to which standard theory applies (see [2] V.7
and also [1] III.6c).

Corollary 3.1 In the RESTART setting, P
(
S(t) > x

) ∼ C(t)e−γ(t)x, x → ∞,

where γ(t) > 0 is the solution of
∫ t

0
eγ(t)yG(dy) = 1 and C(t) = G(t)/γ(t)B(t)

where B(t) =
∫ t

0
yeγ(t)yg(y) dy. This estimate is uniform in t1 ≤ t ≤ t2 for given

0 < t1 < t2. Furthermore,

e−γ(t)te−γ(t)x ≤ P
(
S(t) > x

) ≤ e−γ(t)t .

Proof. The first statement is a trivial translation of the first statement of Proposi-
tion 3.1. For the two-sided Lundberg inequality, note that in the RESTART setting
with K(y) = Kt(y) = P

(
U(t) ≤ y

)
, the integral in the definition of c−(x) extends

only up to t which gives c−(x) ≥ e−γt, and that c+(x) ≤ 1. For the uniformity of
the Cramér-Lundberg approximation, appeal to uniform estimates of the renewal
functions corresponding to the eγ(t)yKt(dy) as given, e.g., Kartashov [12], [13] (see
also Wang & Woodroofe [20]). 2

In particular, Corollary 3.1 settles the case of a fixed job size:

Corollary 3.2 Assume T ≡ t0 and G(t0) > 0. Then

H(x) ∼ C(t0)e
γ(t0)t0e−γ(t0)x .

In the case of an infinite support of f , Corollary 3.2 shows that the tail of H is
heavier than e−γ(t)x for all t (note that γ(t) ↓ 0 as t → ∞; more precise estimates
are given later). This observation proves Proposition 1.2.

If T is random, we need to mix over t with weights f(t). If the support of f has
a finite upper endpoint t0, Corollary 3.2 suggests that the asymptotics of H(x) is
not too far from e−γ(t0)x, and in fact, we shall show:

Proposition 3.2 Assume that the support of F has upper endpoint 0 < t0 < ∞,
that G(t0) > 0 and that

f(t) ∼ A(t0 − t)α, t ↑ t0, (5)

for some 0 < A <∞ and some α ≥ 0. Then

H(x) ∼ AB(t0)
αG(t0)Γ(α + 1)

γ(t0)eαγ(t0)g(t0)α+1

e−γ(t0)x

xα+1
.

Proof. For simplicity of notation, write B = B(t0), γ = γ(t0) etc.
It is easy to see that γ(t) is continuous and differentiable in t. To obtain the

asymptotics as t ↑ t0 we write

1 =

∫ t

0

eγ(t)yG(dy) =

∫ t0

0

eγ(t)yG(dy) −
∫ t0

t

eγ(t)yG(dy)

=

∫ t0

0

eγy
[
1 + (γ(t)− γ)y

]
G(dy) − (t0 − t)eγt0g(t0) + o

(
γ(t)− γ)

= 1 + (γ(t)− γ)B − (t0 − t)eγt0g(t0) + o
(
γ(t)− γ)

8



so that
γ(t)− γ ∼ (t0 − t)D (6)

where D = eγt0g(t0)/B. Appealing to the uniformity in Corollary 3.1, we therefore
get

H(x) =

∫ t0

0

Zt(x− t)f(t) dt =

∫ t0

t0−ε
Zt(x− t)f(t) dt + o(e−γx)

= r1(ε)

∫ t0

t0−ε
Ce−γ(t)(x−t)A(t0 − t)α dt + o(e−γx)

= r2(ε)ACe−γ(x−t0)

∫ t0

t0−ε
e−(γ(t)−γ)x(t0 − t)α dt + o(e−γx)

where Zt(x) = P (S(t) > x) and r1(ε), r2(ε), . . . → 1 as ε ↓ 0. Thus substituting
y = (γ(t)− γ)x and noting that dy ∼ −Ddt by (6), we get up to the o(e−γx) term
that

H(x) = r2(ε)ACD
−α−1 e−γ(x−t0)

xα+1

∫ (γ(t0−ε)−γ)x

0

yαe−y dy

Letting first x→∞, next ε ↓ 0, and rewriting the constants completes the proof. 2

4 Proof of Lemma 1.1

We will need the asymptotics of the Cramér root γ(t):

Lemma 4.1 As t→∞, γ(t) ∼ µG(t).

Proof. Consider∫ t

0

(
eγ(t)y − 1− γ(t)y

)
G(dy) = G(t)− γ(t)

(
1/µ− o(1)

)
. (7)

The non-negativity of the l.h.s. yields γ(t) = O
(
G(t)

)
. Since tG(t) because of

µ > 0, the integrand in (7) can therefore be writtes as γ(t)yε(y, t) where ε(y, t)→ 0
uniformly in y ≤ t as t → ∞. Therefore (7) equals γ(t)o(1) which shows the
assertion. 2

Proof of Proposition 1.2. Given ε > 0, choose t0 such that γ(t0) < ε, cf. Lemma 4.1,
and a so large that γ(t0 + a) < γ(t0). We then get

lim inf
x→∞

eεxH(x) ≥ lim inf
x→∞

eγ(t0)xH(x) ≥ lim inf
x→∞

∫ ∞
t0+a

P
(
S(t) > x

)
e−γ(t0)x

≥
∫ ∞
t0+a

lim inf
x→∞

P
(
S(t) > x

)
e−γ(t0)x

f(t) dt =

∫ ∞
t0+a

∞ · f(t) dt = ∞

where we used Fatou’s lemma in the third step and Corollary 3.1 in the next. 2
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Lemma 4.2 For any t0 <∞, P
(
X > x, T ≤ t0

)
goes to zero at least exponentially

fast.

Proof. By Lundberg’s inequality,

P
(
X > x, T ≤ t0

) ≤ F (t0)P
(
S(t0) > x− t0

) ≤ F (t0)e
−γ(t0)(x−t0) . 2

Lemma 4.3 Define Sn(t) = U1(t) + · · · + Un(t), m(t) = EUi(t) = E[Ui |Ui ≤ t].
Then

P
(∣∣Sn(t)/n−m(t)

∣∣ > ε
)

= o(1), n→∞,
where the o(1) is uniform in t > δ for any δ > 0.

Proof. Define Ui(t, n) = Ui(t)I
(
Ui(t) < n

)
. Then, in obvious notation

P
(
Sn(t, n) 6= Sn(t)

) ≤ nP
(
Un(t, n) 6= Un(t)

) ≤ n

G(t)
P(U > n)

goes to zero uniformly in t > δ because of EU <∞. Further,

1

n
EUi(t, n)2 =

∫ n

0

2x

n
P
(
Ui(t, n) > x

)
dx ≤ 2

G(t)

∫ n

0

x

n
P
(
U > x

)
dx = o(1)

uniformly in t > δ, as follows by dominated convergence with P
(
U > x

)
as majorant.

Hence by Chebycheff’s inequality,

P
(∣∣Sn(t, n)/n−m(t, n)

∣∣ > ε
)
≤ nEUi(t, n)2

n2ε2
= o(1)

uniformly in t > δ. Also

m(t)−m(t, n) = EUi(t)I
(
Ui(t) ≥ n

) ≤ 1

G(t)
EUI

(
U ≥ n

)
= o(1)

uniformly in t > δ. Putting these estimates together completes the proof. 2

Proof of Lemma 1.1. Given ε > 0, it follows by Lemma 4.1 that we can choose t0
such that γ(t) ≥ µG(t)(1 − ε) and (since G has finite mean) γ(t)t < log(1 + ε) for
t ≥ t0 . Thus by the upper Lundberg bound and Lemma 4.2,

H(x) =

∫ ∞
t0

P
(
S(t) > x− t)f(t) dt + o(e−rx)

≤
∫ ∞
t0

e−γ(t)(x−t)f(t) dt + o(e−rx)

≤ (1 + ε)

∫ ∞
t0

e−µG(t)(1−ε)xf(t) dt + o(e−rx)

≤ (1 + ε)I−(x, ε) + o(e−rx)

for some r > 0. Now note that H(x) decays slower than e−rx by Proposition 1.2.
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For the lower bound, let ε > 0 be given and let ε1, ε2 > 0 satisfy (1 + ε)(1− ε1) >
1 + ε2 > 1. Lemma 4.3 implies that there is an n0 such that

P
(
Sn(t) > nm(t)(1− 2ε1)

) ≥ 1− ε
for all n ≥ n0 and all t ≥ t0. Since m(t)→ 1/µ, we have then also

P
(
Sn(t) > n(1− ε1)/µ

) ≥ 1− ε

for all n ≥ n0 and all t ≥ t0. Choose next g0 such that e−(1+ε2)g ≤ 1 − g for
0 < g < g0. Replacing t0 by a larger t0 if necessary, we may assume G(t) < g0 for
t ≥ t0 and get

H(x) ≥
∫ ∞
t0

P
(
S(t) > x

)
f(t) dt

≥ (1− ε)
∫ ∞
t0

P
(
N(t) > xµ/(1− ε1)

)
f(t) dt

= (1− ε)
∫ ∞
t0

G(t)xµ/(1−ε1)f(t) dt

≥ (1− ε)
∫ ∞
t0

exp
{−G(t)xµ(1 + ε2)/(1− ε1)

}
f(t) dt

≥ (1− ε)
∫ ∞
t0

exp
{−G(t)xµ(1 + ε)

}
f(t) dt .

Since the last integral differs from I+(x, ε) by a term which goes to zero exponentially
fast and hence is o(H(x)), the proof is complete. 2

Proof of Proposition 1.1. When F = G, we have dG(t) = −f(t). Hence

I±(x, ε) =
[ 1

µx(1± ε)e−µG(t)x(1±ε)
]∞
t0

=
1

µx(1± ε)
(
1− e−µG(t0)x(1±ε))

∼ 1

µx(1± ε) .

The assertion now follows easily from Lemma 1.1 by letting first x → ∞ and next
ε→ 0. 2

Proof of Proposition 2.1. Under the assumptions of the last part of the Proposition,
G(t) ≤ c1F (t)1/α for t ≥ t0 and hence∫ ∞

0

xαH(dx) = α

∫ ∞
0

xα−1H(x) dx

≥ c2

∫ ∞
0

xα−1dx

∫ ∞
0

e−µG(t)xf(t) dt

≥ c3

∫ ∞
t0

1

G(t)α
f(t) dt ≤ c4

∫ ∞
t0

1

F (t)
f(t) dt

= c4

∫ 1

0

1

y
dy = ∞ ,
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proving the last part of the Proposition. For the first part, we get similarly∫ ∞
0

xαH(dx) ≤ c5 + c6

∫ 1

0

1

y1−αεdy < ∞ . 2

Proof of Proposition 2.3. Write I1
±(x, ε), µ1 when G = G1 and similarly for G2. We

may assume G1 6= G2. Then the s.o. assumption implies µ1 < µ2. Hence if ε > 0 is
so small that µ1(1 + ε) < µ2(1− ε), we have µ1G1(t)(1 + ε) ≤ µ1G2(t)(1− ε) for all
t. We then obtain

HG1(x) ≥ (1− ε)I1
+(x, ε) ≥ (1− ε)I2

−(x, ε) ≥ 1− ε
1 + ε

HG2(x) ,

where the outer inequalities are asymptotic and the inner one exact. Let first x→∞
and next ε→ 0. 2

5 Proofs: Integral Asymptotics

Lemma 5.1 For given constants a, b, γ, η > 0,

I =

∫ ∞
t0

exp
{−e−bt

γ

z − atη} dt ≈log e−ab
−η/γ logη/γ z

as z →∞.

Proof. Let c = ab−η/γ, t1 = (log z/b)1/γ and let I1, I2 be the contributions to I from
the intervals (t1,∞), resp. (t0, t1). In I1, we bound the first term in the exponent
below by 0 so

I1 ≤
∫ ∞
t1

e−at
η

dt ≈log e−at
η
1 = e−c logη/γ z .

In I2, we substitute y = e−bt
γ
z. Then

t = (log z − log y)1/γb−1/γ, dt = − 1

γy
(log z − log y)1/γ−1b−1/γdy

so that I2 becomes

1

γb1/γ

∫ e−t
γ
0 z

1

1

y
(log z − log y)1/γ−1 exp

{−y − c(log z − log y)η/γ
}

dy

We split this integral into the contributions I3, I4 from the intervals [1, 2), [2, e−t
γ
0z).

Here

I3 ∼ 1

γb1/γ
log1/γ−1 z e−c logη/γ z

∫ 2

1

1

y
e−y dy ≈log e−c logη/γ z .

For I4, we write q = η/γ, h(y) = −y/2 + c logq z − c(log z − log y)q. Then

h(y) = −y/2 + cq

∫ y

1

(log z − log y)q−1

y
dy ≤ −y/2 + cq logq−1 z log y .

12



The r.h.s. is maximized for yz = 2cq logq−1 z, where

h(yz) = logq−1 zO(log log z) = o
(
logq z

)
.

Hence

I4 ≤ b−1/γ log1/γ−1 ze−c logq z

∫ z

1

1

y
e−y/2+h(y) dy

≤ e−
(
c+o(1)

)
logq z

∫ z

1

1

y
e−y/2 dy ≈log e−c logq z .

Adding these estimates shows that e−ab
−η/γ logη/γ z is an asymptotic upper bound

in the logarithmic sense, and that it is also a lower one follows from the estimate
for I3. 2

Lemma 5.2 For given constants a, b,∫ ∞
t0

e−t
−βz 1

tα+1
dt ≈log

1

zα/β
.

Proof. Substitute y = t−βz to get∫ ∞
t0

e−t
−βz 1

tα+1
dt =

∫ t−β0 z

0

yα/β−1

βzα/β
e−y dy ∼ Γ

(
α/β

)
βzα/β

) ≈log
1

zα/β
. 2

Lemma 5.3 For given constants a, b, γ > 0,

I =

∫ ∞
t0

exp
{−e−bt

γ

z − (a+ 1) log t
}

dt ≈log
1

loga/γ z

as z →∞.

Proof. Let again t1 = t1(z) =
(
log z/b

)1/γ
(then e−bt

γ
1z = 1) and let I1, I2 be the

contributions to I from the intervals (t1,∞), resp. (t0, t1). In I1, 0 ≤ e−bt
γ
z ≤ 1

and so
e−1

a
(
log(z/b)

)a/γ ≤ I1 ≤ 1

a
(
log(z/b)

)a/γ .
For I2, let rz(t) = e−bt

γ
z + (a+ 1) log t, s(t) = tγe−bt

γ
. Then

r′z(t) = −bγtγ−1e−bt
γ

z +
a+ 1

t
=

1

t

[−bγs(t)z + (a+ 1)
]
.

Since s is continuous with s(t0) > 0 and s(t) is monotonically decreasing for large
t with limit 0, we have s(t) ≥ s(t1) = log(z/b)/z for all t0 ≤ t ≤ t1 and all large z
because of t1(z)→∞. Hence r′z(t) < 0 for t0 ≤ t ≤ t1 and all large z so that

I2 =

∫ t1

t0

e−rz(t) dt ≤ (t1 − t0)e−rz(t1)

≤ t1e
−(a+1) log t1 =

1

ta1
=

1(
log(z/b)

)a/γ .
Putting the upper bounds for I1, I2 together and noting that

(
log(z/b)

)a/γ ≈log

loga/γ x shows that log−a/γ z is an upper bound in the logarithmic sense, and that
it is also a lower bound follows from the lower bound for I1. 2
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Lemma 5.4 Let η > 0 be fixed. Then for any a, b > 0,

I =

∫ ∞
t0

exp
{−t−bz − atη} dt ≈log exp

{−c12(a, b)z
θ12(b)

}
as z →∞ where

θ12(b) = η/(b+ η), c12(a, b) = a1−θ12[(η/b)1−θ12(b) + (b/η)θ12
]
.

Proof. We choose t1 = t1(z) to minimize f(t) = t−bz + atη which gives

t1 =
( bz
aη

)1/(b+η)

, f(t1) = c12(a, b)z
θ12(b) .

Thus the claim of the lemma can be written as I ≈log e−f(t1). As lower bound, we
use ∫ t1+1

t1

exp
{−t−bz − atη} dt ≥ exp

{−t−b1 z − a(t1 + 1)η
} ≈log e−f(t1)

where in the last step we used (t+1)η = tη
(
1+o(1)

)
. For the upper bound, we write

I = I1 + I2 + I3 where I1, I2, I3 are the contributions from the intervals t0 < t < t1,
t1 < t < Kt1, resp. Kt1 < t < ∞ where K satisfies aKη > c12(a, b). Since f
is decreasing in the interval t0 < t < t1 and increasing in t1 < t < ∞, we have
I1 ≤ t1e

−f(t1) ≈log f(t1) and I2 ≤ (K − 1)t1e
−f(t1) ≈log e−f(t1). Finally,

I3 ≤
∫ ∞
Kt1

e−at
η

dt ≈log e−aK
ηtη1

can be neglected because of the choice of K. 2

Proof of Theorem 2.1. In (1:1), we can choose t0 such that G(t) ≤ e−bt
γ

and f(t) ≥
e−at

η
, t ≥ t0, for any given b < β and a > α. With I±(x, ε) as in Lemma 1.1, we

then get

lim inf
x→∞

log I+(x, ε)

− logη/γ x

= lim inf
x→∞

1

− logη/γ x
log

∫ ∞
t0

exp
{−µG(t)x(1 + ε)

}
f(t) dt

≥ lim inf
x→∞

1

− logη/γ x
log

∫ ∞
t0

exp
{−µe−bt

γ

x(1 + ε)− atη} dt

= lim inf
x→∞

ab−η/γ logη/γ
(
µx(1 + ε)

)
− logη/γ x

= ab−η/γ

where we used Lemma 5.1 with z = µx(1 + ε) in the third step. Letting a ↓ α, b ↑ α
shows that e−c11 logθ11 x is an asymptotic lower bound in the logarithmic sense. That
it is also an asymptotic upper bound follows in the same way by noting that the
contribution to H(x) from (0, t0) goes to zero exponentially fast by Proposition 1.2

for any t0 and hence is negligible compared to e−c11 logθ11 x.
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Parts (2:2) and (2:1) follow in a similar way from Lemmas 5.2 and 5.3. For (1:2),
we choose b > β, a < α and get

lim inf
x→∞

log
(− logH(x)

)
log
(− log e−xθ12

) ≥ lim inf
x→∞

log
(− log I+(x, ε)

)
θ12 log x

= lim inf
x→∞

1

θ12 log x

(
− log

∫ ∞
t0

exp
{−µG(t)x(1 + ε)

}
f(t) dt

)
≥ lim inf

x→∞
1

θ12 log x

(
− log

∫ ∞
t0

exp
{−µt−bx(1 + ε)− atη} dt

)
= lim inf

x→∞
log
(
c12(a, b)

(
µx(1 + ε)

)θ12(b))
θ12 log x

=
θ12(b)

θ12

.

Letting a ↑ α, b ↓ α shows that e−x
θ12 is an asymptotic lower bound in the ≈log log

sense. That it is also an asymptotic upper bound follows similarly. 2

Proof of Theorem 2.2. In Lemma 1.1, we insert (2) and substitute s = G(t) to get

I± =

∫ s0

0

exp
{−sxµ(1± ε)}sβ−1L0(s) ds .

where s0 = G
−1

(t0). Then by Karamata’s Tauberian theorem ([3, Theorems 1.5.11
and 1.7.1]),

I± ∼ Γ(β)
L
(
1/(xµ(1± ε))
xβµβ(1± ε)β ∼ Γ(β)

L(1/x)

xβµβ(1± ε)β .
Let ε ↓ 0. 2

Proof of Corollary 2.1. We have G(t) = L′G(t)/tαG , where L′G(t) ∼ LG(t)/(αG + 1)
as t → ∞. Then (2) holds with β = αF/αG and L0

(
G(t)

)
= LF (t)/LG(t)L′G

β−1(t).
Note that L0 is s.v. because the inverse of a s.v. function is again s.v. ([3, p. 28])
and because the composition of two s.v. functions is again s.v. Further, ([3, p.

29]) LF
(
G
−1

(s)
) ∼ LF

(
s−1/αG

)
as s ↓ 0 and similarly for LG. Thus, L0(s) ∼

LF
(
s−1/αG

)
(αG + 1)β−1/LβG

(
s−1/αG

)
. 2

Proof of Corollary 2.2. We have

G(t) =

∫ ∞
t

e−λGy
η

yαGLG(y) dy ∼ 1

ηλG
e−λGt

η

tαG+1−ηGLG(t)

(e.g., substitute z = e−λGy
η

and apply Karamata’s theorem). From this it is easy to
see that

G
−1

(s) ∼ (− log s)1/η/λ
1/η
G , s ↓ 0.

In particular, LF
(
G
−1

(s)
) ∼ LF

(
(− log s)1/η

)
and similarly for LG. Thus if L0 is

defined by (2) with β = λF/λG, we have

L0(s) ∼ λβ−1−ω
G ηβ−1(− log s)ω

LF
(
(− log s)1/η

)
LβG
(
(− log s)1/η

)
which in particular shows that L0 is s.v. at s = 0. Now just replace s by 1/x and β
by αH to obtain the Corollary. 2

Corollary 1.1 is a special case of Corollary 2.2.
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6 Concluding Remarks

A) The representation (1) easily gives a proof of the asymptotics H(x) ∼ 1/µx for
the diagonal case F = G (Proposition 1.1). Indeed, the event N = n corresponds
to the ordering U1 < T, . . . , Un < T , Un+1 > T . Since the n + 2 random variables
T, U1, . . . , Un, Un+1 are i.i.d. when F = G, we therefore have P(N = n) = 1/(n+ 2) ·
(n + 1), P(N > n) = 1/(n + 2) (we are grateful to Clive Anderson for a remark
triggering this observation). One can now argue that in order for X to be large, N
has to be large which in turn is only possible if T is large. Then the distribution
of the Ui is close to G, so that the geometric sum is approximately N/µ. Since
ET = 1/µ <∞ implies that the tail of T is lighter than 1/x, we therefore get

P(X > x) ≈ P
( N∑
i=1

Ui > x
)
≈ P(N > µx) ∼ 1

µx
.

Th argument is not hard to make rigorous, but we omit the details since the
further results of the paper are much more general than Proposition 1.1 and require
different proofs.

B) An application of the above results occurs in parallel computing. Assume that a
job of length NT is split into N subjobs of length T which are placed on N parallel
processors (N may run in the order of hundreds or thousands). If one processor
fails, the corresponding subjob is restarted on a new processor. With X1, . . . , XN

the total times of the subjobs, the total job time is then MN = max(X1, . . . , XN).
The asymptotic behaviour of MN as N →∞ is available from extreme value theory
once the tails of the Xn is known, which is precisely what has been the objective of
this paper.

Whether this asymptotic scheme is the most relevant one is, however, question-
able. One could equally well assume the job length fixed at T and the length of
the N subjobs to be T/N , and intermediate possibilities. This leads into specific
questions on extreme value theory in a triangular array setting, which are currently
under investigation.

C) An alternative to the Cramér-Lundberg theory for geometric sums that has been
one of our main tools is what could suitably be called Renyi theory, cf. [11]. One
considers there a weak convergence triangular setting where still x → ∞ but the
parameters of the geometric sum depend on x; this is also related to the heavy-traffic
or diffusion limit setting of risk and queueing theory, cf. e.g. [1] and [2] X.7. Renyi
theory (e.g. [11]) provides the following alternative to Proposition 3.1:

Proposition 6.1 For each x, let V1(z), V2(z), . . . be i.i.d. with common density
k(v; z) and N(z) ∈ N an independent r.v. with P(N(z) = n) = (1 − ρ(z))ρ(z)n,

S(z) = V1(z) + · · ·+ VN(z). If ρ(z)→ 1 as z →∞ and Vk(z)
D→ V , EVk(z)→ 1/µ

for some r.v. V with finite mean µ−1, then µ(1 − ρ(z)S(z) has a limiting standard
exponential distribution.

Corollary 6.1 In the RESTART setting, µG(t)S(t) has a limiting standard expo-
nential distribution as t→∞.
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The implication is that
P
(
µG(t)S(t) > y

) → e−y (8)

for any fixed y. Noting that µG(t) ∼ γ(t) and replacing y by γ(t)x, this suggests
P(S(t) > x) ≈ e−γ(t)x, i.e. the Cramér-Lundberg approximation. Of course, the
derivation is not rigorous since (8) requires that y is fixed. Nevertheless, it is indeed
possible to derive some of our results from (8). The main reason that we have
chosen Cramér-Lundberg asymptotics as our basic vehicle is that simple bounds are
available (Lundberg’s inequality) which is not the case for Renyi theory.

D) Since H is a mixture of the Ht given by Ht(x) = P
(
S(t) + t ≤ x

)
and the tail

of Ht obeys the Cramér-Lundberg asymptotics, we are dealing with the problem
of determining the tail of a mixture where the tails of the mixing components are
known. Looking for literature on this problem, we found a set of papers emerging
from reliability and survival analysis (Finkelstein & Esaulova [9] and references
there) which suggest our logarithmic asymptotics results but do not prove them
because the assumptions are too stringent to apply to our setting.

E) The ≈log log asymptotics in part (1:2) identifies θ12 as the correct exponent to

x in logH(x), but does not allow sharpenings like H(x) ≈log e−c12x
θ12 , H(x) ≈log

e−c12 logq12 xxθ12 etc. Inspection of the proof shows that to obtain such strengthenings,
one needs first of all to be able to replace the b in Lemma 5.4 with a fixed value β
rather than considering b’s arbitrarily close to β. This would be the case if, e.g., one
assumed G to be regularly varying with index −β rather than just G(t) ≈log t

−β.
This does not appear to be all that restrictive, but does not suffice since one also
needs to replace the ±ε in Lemma 1.1 with sharper bounds. This amounts to
second-order asymptotics of the H t(x), i.e. to obtain second-order uniform Cramér-
Lundberg expansions which does not appear easy at all.
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