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Abstract

We discuss the determination of the mean normal measure of
a stationary random set Z C R? by measurements taken in
intersections of Z with k-dimensional planes. We show that mean
normal measures of sections with vertical planes determine the
mean normal measure of Z, if £ > 3 or k = 2 and an additional mild
assumption holds. The mean normal measures of finitely many flat
sections are not sufficient for this purpose. On the other hand,
a discrete mean normal measure can be verified by mean normal
measures of intersections with almost all m-tuples of planes, when
m > |d/k]+1. A consistent estimator for the mean normal measure
of Z, based on stereological measurements in vertical sections, is
also presented.
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verification
2000 Mathematics Subject Classification: Primary 60D05
Secondary 53C65;52A22

1. Introduction

Local first order properties of a stationary random surface are completely de-
scribed by its surface area density and its rose of normal directions. The surface area
density is a real valued quantity given as the mean surface area of the random surface
per unit volume. The rose of normal directions is a measure on the unit sphere and
can be interpreted as the distribution of the unit normal at the surface in a typical
point. This distribution has been used to describe (average) anisotropy properties
of the random surface and a number of stereological procedures has been suggested
to estimate this measure from flat sections; see |28, Chapter 9|, [1, Chapter 5| and
[2] and the references therein. Actually, all estimation procedures first yield the
unoriented mean normal measure, which is the product of the surface area density
and the rose of normal directions. An estimator of the rose is then simply obtained by
normalization. For sufficiently regular stationary random sets Z, the rose of normal
directions is often defined as the rose of the boundary 0Z of Z; see e.g. [18]. (By
duality, also the roses of tangent directions of stationary fibre processes are covered
by this theory.) However, not all kinds of anisotropy can be determined using
the unoriented mean normal measure. Consider for example the random surface
consisting of the union of small circles in the plane, arranged in horizontal rows.
This random set clearly exhibits anisotropy, but its rose is uniform. Such kind
of anisotropy, due to systematic spatial displacements, was formalized and studied
in [27]. Even if the displacement is not systematic, the rose of normal directions can
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be uniform, although the process is intuitively not isotropic. Consider for example
the boundary 07 of a stationary Boolean model Z in the plane whose typical particle
is a deterministic Reuleaux triangle (an equilateral triangle 7" with its sides replaced
by arcs with endpoints at two vertices of T" and centered at the third). In this case,
the rose of normal directions is uniform, as it does not distinguish between inner
and outer unit normals in a boundary point.

Weil [31] introduced a variant of the unoriented mean normal measure, the mean
normal measure S(Z,-) of a stationary random set Z in the extended convex ring,
taking only the outer unit normal into account. (Schneider [24] called S(Z,) the
oriented mean normal measure of Z.) The mean normal measure was previously
considered in [30], [17], [20] for Boolean models and further treated in [32], [33]. In
the above example, where Z is a Boolean model with a Reuleaux triangle as typical
particle, S(Z,-) is not uniform. Figure 1 illustrates that the mean normal measure
can also be used to distinguish between certain random sets, even if the unoriented
mean normal measures coincide.

A
v
v AY

FI1GURE 1: Two realizations of planar stationary random sets in a rectangular sampling
window with different (oriented) mean normal measures, but coinciding unoriented mean
normal measures.

The purpose of the present article is to discuss in how far S(Z,-) is determined
from information in lower dimensional sections and to suggest an estimator for
S(Z,-) using a stereological procedure based on vertical sections. Similar uniqueness
questions were dealt with in [13], but there, the intersection planes L were considered
to be uniform random and connections between certain means of the mean normal
measures S (Z N L,-) of ZN L (with respect to L) and S(Z,-) were discussed. In
contrast to the unoriented mean normal measure, S(Z, ) cannot be recovered from
one-dimensional sections alone, even if the distributions of the random sets Z N g
are known for all lines g; see [13]. Flat sections of dimension k are sufficient for this
purpose, if k is at least two: It was shown in |7] that the mean normal measures
S'(Z N L,-) determine S(Z,-), if L runs through the family of all k-dimensional
planes. It will be shown in Corollary 3.1 in Section 3 that one can even restrict
to planes containing a given direction u (vertical sections), if & > 3, and if & = 2
and a mild additional assumption is satisfied. Finitely many mean normal measures
of intersections are not sufficient to determine S(Z,-), but if S(Z,-) is discrete, it
can be verified by m intersections for almost all m-tuples of k-dimensional planes,
if m > |d/k] + 1. This is made precise in Theorem 3.2.

In Section 4 we discuss a procedure to estimate the mean normal measure. In the
planar case other approaches have been suggested. Weil [30] gave a method for sets
with polygonal boundary. He also suggested an estimator that uses the additivity
of the support function. Rataj [20] assumed the knowledge of the area dilation by
suitable test sets and gives an estimator of certain (mean) mixed areas. From the
latter one can derive an estimate of the mean normal measure. In some practical
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applications only digitizations of the random set Z are available. Estimators for the
mean normal measure from digital images can be found in [14] for the planar case
and in [9] and [34] for three-dimensional sets. The only other estimation procedure in
higher dimensions was suggested by Schneider in [24]. He uses classical stereological
information from intersections with pairs of parallel hyperplanes to estimate the
mean normal measure of a stationary particle process. It relies, however, on the
inversion of an integral transform, for which no discrete inversion algorithms exist.
In Section 4 we will present an estimator which is based on the analysis of vertical
sections of Z. For each vertical section plane L certain intersection points of 9(ZNL)
with test lines in L are counted. A two-fold application of a known algorithm
to invert the cosine transform then yields a discrete non-parametric estimator for
S(Z,-).

In the next section, we give a more formal definition of the mean normal measure
and recall relevant integral formulae connecting it to flat sections of Z.

2. The mean normal measure

We introduce some notation. The Euclidean norm and the inner product in R?
are denoted by || - ||, (-,+), respectively, the unit ball by B% and the unit circle by
S4=1 = 9B, Let u* be the linear hyperplane with unit normal v € S9!, We will
often use the great circle u° := u N S9!, orthogonal to u and the relative open half
spheres generated by it. Put

u® = {v e S (u,v) > 0},

and u® := (—u)®. Let £¢ be the Grassmannian of all k-dimensional linear subspaces
of R?, and v, be the rotation invariant probability measure on this space. We write

Li(u):={LeL} uel}

for the sheaf of all of k-dimensional subspaces containing the direction u. For a
measure p, defined on a sigma-algebra B, the restriction to the measurable sets in
B € B will be denoted by p. B. Note that there is a formal difference between
pr B and p(- N B), as the latter is a measure on B (concentrated on B). H™ will
always denote the Hausdorff measure of dimension m in R?. A measure px on S%*
is even, if it is coinciding with its even part given by

A= 5 (u(A) + p(=A))

for Borel sets A C S91.

Let K be the set of convex bodies (compact convex sets) in R%. The support
measures (generalized curvature measures) O;(K,-), j = 0,...,d —1, of K € K
can be defined as coefficients of a Steiner-type formula for local parallel volumes;
see [23]. As we will only use the support measure of order j = d — 1, we give a more
direct description, which applies to arbitrary closed sets [10], but will here only be
used for sets in the extended convex ring. The convex ring R is the family of all
finite unions of convex sets, and the extended convex ring

S={ACR:AnNK cRforal K € K}



4 Markus Kiderlen

is the family of sets that can locally be written as finite unions of convex bodies.
For K € S, let 0T K be the positive boundary consisting of all z € 0K that have
an outer normal v € S9! meaning that there is a positive ¢ such that z is the
(unique) metric projection of # +cu on K. Equivalently, the intersection of the ball
(r +eu) + eB? and K is the singleton {x}. The set N(K,z) of all outer normals of
K at x € 0T K contains either one, two antipodal or infinitely many points. Set

OK :={r€0"K :card N(K,x) =i}, i=1,2.

The unique normal in € 9'K at K is denoted by u(K,z). For z € 9*K we select
u(K,x) as one of the two possible normals in a measurable manner. As K € S, we
have

HIYHOK) = HT Y (0T K) = H Y (0' K U 9*K).

If K € S is topologically regular (i.e. it is the closure of its interior), then 9? K = ().
The support measure (of order d — 1) of K is the measure on R? x S%~! given by

O(K,) = / L e B (dr) + / Lo - e HY ' (d).
KUK 2K

The projection S(K,-) = O(K,R? x -) is the surface area measure (of order d — 1)
of K. If K is contained in a subspace L € £{ with k¥ < d — 2 the curvature measure
O(K,-) is trivial. We then often consider the curvature measure of K as a subset
of L and denote it by ©'(K,-). The subspace L will be clear from the context.
Note that ©'(K,-) is a measure on L x S*1(L), where S*71(L) = S41 N L is the
unit sphere in L. We denote the orthogonal projection of z € R? on L by x|L.
Let pry(u) := (u|L)/||ulL|| be the spherical projection of v € St on S*1(L).
As pr;(u) is undefined when v is in the orthogonal complement Lt of L, we set
pry(u) := vy for some fixed vector vy € S¥71(L) in this case. Rataj [21] showed a
translative Crofton-type formula for sets of positive reach, which, by additivity, also
holds for sets K € R. For L € L}, k =1,...,d — 1, and any measurable function
f: L+ x L xS*1(L)— R, we have

/ / f=z,2,u) 0 (K +2) N L,d(z,u)) H*"(dz)
Lt JLxSk=1(L)
= [ fGlLtelLpry(w) L] (K, d(z, w) 1)

Rd x §d—1
This relation can also be derived from [11, Satz 2.9 and Lemma 2.5| using support
measures relative to a gauge body which is not necessarily the Euclidean ball; see
also [15]. Specializing (1) to surface area measures, one obtains

[ S+ 0L ik az) = muS(K, ), 2

Lt
where 77, is a linear and weakly continuous operator from the space M of finite

signed Borel measures on S9! to the space M(L) of finite signed Borel measures
on S¥=1(L). For p € M the measure mzu is defined as the image measure of

/ lul L] () (3)
“)
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under the spherical projection pr;. In particular, if L = g = linwv is a line with
direction v € S%!, the measure 7, is concentrated on {—v, v} and has total mass

(mgu)({—v,v}) = Cp(v), (4)
where

Ciu= [ 1. )

is the cosine transform of . For later use we note that

7T]I\//[7TL:7TM (5)

for all non-trivial subspaces M C L, where 7%, is the projection operator on the

unit sphere in M, relative to L. The operator 7y, is strongly related to the cosine
transform and hence to projection bodies (see [29] and [3]). It is a special case of
more general spherical projection operators 7y, ,,, where the integrand in (3) is taken
to the power m (see [8] for their properties and use in geometric tomography, and
a proof of (5) in terms of 7 ,,). A generalization of (2) for mixed surface area
measures was shown in [7].

For a definition and basic properties of random closed sets we refer the reader
to the book of Schneider and Weil [26]. The mean normal measure S(Z,-) can
be defined for arbitrary closed sets in R¢ without any further assumption, cf. [10,
Section 7|. However, due to this generality even the intuitive property that its mean
total mass for a topologically regular random set equals the surface area density does
not hold. In the following we will only consider stationary random closed sets Z in
the extended convex ring §. Many of the results also hold for Upg-sets, that is sets
that can be written as locally finite unions of sets of positive reach, which are such
that any finite intersection of them has again positive reach. However, as we make
extensive use of translative Crofton formulae for surface area measures, this would
require additional assumptions on the relative positions of Z and the considered
intersection plane; see [21]. We assume throughout that Z is a stationary set in S
and has finite mean local surface area: We have

EHN0Z N K) < oo (6)

for one (and hence all) convex bodies K with interior points. In the literature, the
stronger integrability condition

E2N(ZNK) < o (7)

is sometimes assumed, where N (M) is the minimal number of convex bodies needed
to write the nonempty set M € R as their union, and N(}) = 0. We will not
require (7). For K € K with the origin in its interior Weil [31] defines the mean
normal measure of Z by

S(Z,-) = rlggo WES(Z nNrk,-), (8)

which is independent of K. Moreover,

S(Z,)=E(S(ZznC% ) —S(ZnCY,), (9)



6 Markus Kiderlen

where C? is the unit cube in R¢ and

Cl={z=(x1,...,14) € C?: max r; = 1}

is its “upper right boundary”. A third representation of the mean normal measure
is

— 1

S(Z, )= ——=FEO(Z; (int K) x - 10

(2.) = Far B0 it ) ), (10)

where K is an arbitrary convex body with interior points. (10) follows from a
special case of a translative integral formula for support measures in [22|. In [31]
the condition (7) was assumed, but can be replaced by the weaker condition (6), as,
for any Borel set A C S9!,

0<S(ZNK,A) <2H"Y0Z N K),

where the right hand side is monotone in K with respect to set inclusion.
A combination of (10) and (1) implies

S(zZnL,)=m.5(Z,-). (11)

This was shown by Weil [31] (see also [32]) and is the starting point for our uniqueness
results.

3. Determination of the mean normal measure

Fix k € {2,...,d — 1}. It was shown in [7| that a finite signed measure p on the
unit sphere is uniquely determined by the family of all its projections mu, L € £¢. In
view of (11) and the linearity of 7, this shows that the mean normal measure S(Z, -)
is uniquely determined by all mean normal measures of sections gl(Z NL,-),L e L.
Our first result states that the latter family actually contains considerable redundant
information, as we can restrict to vertical planes, i.e. planes all containing a line with
a given direction u € S%!, at least when k > 3. Its proof is based on injectivity
properties of the cosine transform and avoids the use of mixed volumes and spherical
harmonics which are the basis of the uniqueness result in [7]. We will write o for
the zero measure.

Theorem 3.1. Let a finite signed measure p on the unit sphere, k € {2,...,d—1},
and u € S be given. If k > 3 then

mop = o for all L € L (u) (12)

implies p = o. For k = 2 the same implication holds true when pL u® is even.

Proof. We first fix v € S9! and m > 2, and show an intermediate claim: If
T = o for all M € £% (v), (13)

then p L v® = o. In fact, as a unit vector is in v® if and only if its spherical projection
on M is in v® N M, (13) implies

T (p(- N0®)) = (marp) (- N0®) = 0.
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Hence, if ¢ is an arbitrary line in M and we abbreviate u® := p(- Nv®), (5) gives

7y (u®) = W;\/l (map®) = o.
As g was arbitrary in L, which in turn was arbitrary in £, (v), (4) implies that the
cosine transform Cp® of u® vanishes on S%~!. The cosine transform determines the
even part of a measure; see |23, Theorem 3.5.3 and Note 3 on p. 192]. As u?® is
concentrated on a relative-open half sphere, we find 4® = o and the intermediate
claim is shown.

Now let the assumptions of the theorem be satisfied with £ > 2. The intermediate

claim with m = k, v = +u implies
pL(u®Uu®) =o, (14)

and it is enough to show that ;° := p_ u® vanishes. For L € £¢(u) and M = LNu*,
we have pr; = pr,, on u°, so (14) and (12) imply

1

Ty (B°) = Tpp = o. (15)

Consider the case k > 3. As L can be chosen arbitrarily, (15) is true for all subspaces
M of ut of dimension & —1 > 2. Thus, the intermediate claim can be applied in u*
with m = k—1, u replaced by pu° and arbitrary v € u°. We obtain p°L(v®Nut) = o
for all v € u°, which clearly gives the desired result u = o.

For k =2, M in (15) is a line and (4) applied in u" together with the injectivity
of the cosine transform on even measures implies that the even part of ;° must be
zero. As we assumed that p° is even, this gives u° = o, as required.

Due to (11), we may rephrase this result in terms of the mean normal measure.

Corollary 3.1. Let Z be a stationary random set in the extended convex ring in R?
such that (6) holds. For fived u € S, the mean normal measure S(Z, ) is uniquely
determined by the mean normal measures gl(ZﬂL, -) where L runs through the sheaf
of planes L(u), if k > 3.

The same holds true if k =2 and S(Z,-) Lu® is even.

Some comments on the case k = 2 are in place here, as ordinary planes in R? are
the most important case for applications. Firstly, the additional condition for k = 2
is obviously fulfilled when S(Z,-)_u° = o, and this is true in particular if S(Z,-)
is absolutely continuous with respect to the spherical Lebesgue measure. If this
cannot be assumed, one can randomize the choice of u. If u is chosen as a random
isotropic direction on S9! (independent of Z), then S(Z,-)Lut = o holds almost
surely. Thus, also the uniqueness result holds almost surely. If extra assumptions
are to be avoided, one can consider one additional section with a hyperplane that is
not containing the axis of the sheaf: With essentially the same arguments that led
to Theorem 3.1 it can be shown that S(Z, -) is uniquely determined by the collection
of measures

S(ZNL,)), LeLiu)u{Ll,

where Ly € L3, satisfies u & Ly.
The question arises whether finitely many sections are enough to determine the
mean normal measure. This is not the case, as we will show below. On the other



8 Markus Kiderlen

hand, discrete mean normal measures can be verified by finitely many (actually
very few) suitably chosen flat sections. To prove these results, we will describe
the action of m;, on discrete measures in a more geometric way, apply tools from
geometric tomography, and transfer the obtained statements afterwards to mean
normal measures of random sets.

We call a measure discrete, if its support is at most countable. Let My, be the
space of all discrete finite signed measures and M be the sub-cone of positive
measures in My. Any measure y € M is of the form p = Zfil a;0,, with
positive masses «;, pairwise different support points g, us, ... in S ! and N € N or
N = oo. The idea that spherical projections of discrete measures are closely related
to orthogonal projections of associated point sets in R? was pointed out to us by W.
Weil and is expressed formally by (17) below. For u as above, we set

N

P(p) = U{azuz}

i=1
This gives rise to a bijection from M7 onto the family F of at most countable sets
F c R4\ {0} with the properties that

(a) any ray emanating from 0 hits F' in at most one point, and

(b) > ser llzll < oo
Let L € Eﬁ, 1 <k <d-—1. The definition of 7 implies

mp= Yzl Xpgy(r) e (16)
2€I\{0}

where
Xa(z) = card (AN (z+ L)), reL,

is the (discrete) X-ray function of A C R? in direction L*. Thus, 7yu is uniquely
determined by the X-ray function of P(u). The converse is true for L in

Ni(p) == {M € L :pry(u),...,pry(uy) are pairwise different and
M0 {w,...,un} = 0}.

For L € N&(u), we have Xp(,) = 1p(u on L and
P(rrp) =P(p)|L. (17)

Note that
W) =1 if 2<k<d-—1

for all p € M, whereas N{(u) = 0 if the support of p consists of at least
three points. Surface area measures of convex bodies with interior points have
this property for d > 2, which is the reason that (17) is of interest only for k > 2.

We now ask whether a discrete measure p is determined by spherical projections
on subspaces in a given finite set £ C £¢. Due to (17) and the injectivity of P, this
question can be translated to the problem, whether a discrete set in R? is determined
by all X-ray functions on planes in £. Discrete tomography yields an answer to this
question.
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Proposition 3.1. Let 1 < k< d—-1 and L C ﬁg be finite. Then there are two
different finite measures y and ', indistinguishable by their spherical projections on
the members of L:

T = mp
for all L € L. These measures can be chosen even and with finite supports.

Proof. Due to (5) it is enough to consider hyperplanes L. Let £L = {L;,..., L} C
L4 . According to [4, Lemma 2.3.2] there exists an {Li,..., L }-switching com-
ponent. This is a union A U A" of finite, disjoint and non-empty sets A and A’
with

card (AN (z+ L)) = card (A'N (z+ L)) forallz e R4 i=1,...,m. (18)

Hence, A and A’ have the same discrete X-ray functions in the directions Li, ..., Lt
although they are disjoint. (18) is invariant with respect to arbitrary translations of
AUA’. Tt is also unchanged when AU A’ is reflected at the origin. We can therefore
assume that

AﬂOszﬁﬂ[ﬁ#:&
i=1 i=1

that every ray starting at 0 hits AU A’ in at most one point and that A and A" are
both origin symmetric. These conditions imply that there are finite even measures
p and g/ with P(u) = A and P(y/) = A’ with disjoint finite supports. Due to
(16) the spherical projections of these measures can be expressed using the X-ray
functions of A and A’, which coincide by (18). We thus obtain 7y, u = 7z, for all
1=1,...,m.

Gardner [4, p. 64| introduces the notion of wverification of sets by X-rays. We
transfer this notion to the present context for measures in a sub-cone M’ of M:
A measure u € M’ can werified by spherical projections on m planes in L%, if
Lyi,..., Ly € L4 can be chosen (depending on ), such that if 4/ € M’ and 7p,u =
i for 1T < ¢ < m, then p = /. We say that a measure u € M’ can be
verified by spherical projections on almost all m-tuples of planes in L, if for all
(Ly,...,Ly) € L& x -+« x L& with the possible exception of a set of vi"-measure
zero, again, p’ € M’ and 7, u = mp ' for 1 < i < m implies p = y'. Note that the
set of measure zero may depend on p. This subtle dependence on p is the reason for
the use of the term verification instead of determination, cf. |4, p. 64|. Verification
by spherical projections on almost all m-tuples of planes is stronger than verification
by projections on m planes.

Proposition 3.2. Let2 <k <d—1 and m=|d/k] + 1.
Then any u € M can be verified by spherical projections on almost all m-tuples
of planes in L}. The value of m is best possible here.

Proof. Let p € M7, F := P(u) and m = |d/k] + 1. We modify the proof of
[5, Theorem 7.4| appropriately. We first choose m — 1 subspaces Li,..., L, €
N&(u) such that Li, ... Lt | are in general position. Note that V,?(m_l)—almost all

(L, ..., Ly_1) satisfy these conditions. The subspace T':= ()i"," L has dimension

dimT = (m —1)(d — k) — (m — 2)d = d — |d/k]k < k.
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The set

m—1
G = ﬂ{x—{—Lf‘ cx € F|L;}

i=1
is a finite union of translates of T, G = {y1 + T, ...,ys + T}, say. Let L;; be the
maximal linear subspace parallel to the affine hull of (y;+7)U(y;+7),1 <i < j < s.
As dimT' < k, we have dim L;; < k and almost all L,, € £¢ have the property that
L intersects L;; in one point for all 1 <4 < j < s. Hence all (d — k)-dimensional
planes z + L:, x € R? intersect at most one of the translates of T in G, and each
of these intersections is a single point. Fix one of these subspaces L,, € N(u). Tt
is easy to see that

F=({e+Li :zeF|L},
i=1
where the right hand side is determined by the spherical projections of p due to
(17). But F = P(u) determines u. Note that (Ly, ..., L,,) was chosen arbitrarily
in £§ x -+ x L{ excluding only a set of measure zero (which may depend on ).

It remains to show that the number m is best possible. In the proof of [5,
Theorem 7.4], the existence of a finite set F' C R? (being actually the vertex set of
a zonotope with interior points) is shown such that for any set £ C L¢ of |d/k]|
subspaces, there is a different finite set F/ C R? with the same X-rays as F in
directions L+ for all L € £. The two measures y and g/ with P(u) = F and
P(u') = F' show that m is optimal.

In view of (11), the above results can be reformulated in terms of random sets.
We call a random set Z polyhedral, if it is almost surely a locally finite union of
convex polytopes, and simple polyhedral, if there is an at most countable set of unit
vectors containing almost surely all facet normals of Z. A stationary random set Z is
simple polyhedral if and only if S(Z, ) is discrete. Typical examples of polyhedral
sets are crystalline media. The random sets in part (a) of the following theorem can
actually be chosen to be Boolean models (with deterministic grains); see [26] for a
definition.

Theorem 3.2.

(a) For any 1 <k <d —1 and any finite L C LY there are two stationary simple
polyhedral random sets Z and Z' with different mean normal measures, but
such that

— —!
S(ZnL,-)y=58(Z'NnL,-)
holds for all L € L.

(b) Let 2 < k <d—1, m = |d/k| + 1, and Z be a stationary simple polyhedral
random set obeying (6). Then, for v2™-almost all (Ly, ..., Ly) € (LH)™ and
all stationary polyhedral random sets Z'

S(zZnL,)=S(ZNL,"), i=1,....m,
implies S(Z,-) = S(Z',").

Proof. As (b) is a direct consequence of Proposition 3.2 and (11), it remains to
show (a). According to Proposition 3.1, there are two different finite even measures
@ and g/ with finite supports such that 7ppu = 7pu’ holds for all L € £. We may
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assume that the supports of ;2 and y’ are not concentrated on great circles of 41
(otherwise add a suitable even measure in M} to both). Due to Minkowkski’s
existence theorem (see e.g. [23, Section 7.1]) there are two convex polytopes K and
K’ (origin symmetric and with interior points) with S(K,-) = p and S(K',-) = p'.
Now let Z and Z’' be stationary Boolean models with deterministic typical grains
K and K', respectively. Their positive intensities v and +' are depending on the
volumes V(K) and V(K’) of K and K’ and chosen such that

A /
‘e Y V(K")

eV E) = =: Q.

Y
Using [33, Section 3.2|, we see that

S(Z,) =~re WES(K, ) = ap
and S(Z',-) = ay/. Hence S(Z,-) # S(Z',-) but
S(ZNL,)=ampp=amy =5 (Z' NL,)
holds for all L € L according to (11).

4. Estimation of the mean normal measure from vertical sections

From a stereological point of view, an estimation procedure for S(Z, -) should only
require simple data acquisition like measurements of lengths or counting. Schneider
[24] suggests to use surface area measurements in intersections with hyperplanes.
He considers the mean normal measure S(X, -) of a stationary particle process X of
convex particles, and shows that the family of densities

H 0" X nut), ue St

determines S(X, ) uniquely. Here H*™? denotes the density of the (k—2)-dimensional
Hausdorff measure and 0“X is the surface process of all boundary points of X-
particles having an outer unit normal in ¢! Nu® (Schneider actually works with
normals in the closed half sphere S?~!\ u®, which leads to the same densities for
almost all u). He also suggests to estimate ﬁdiz(ﬁuX Nut) using a pair of parallel
hyperplanes at small distance to avoid an explicit determination of the outer normal
in R?. His uniqueness proof is based on injectivity properties of the hemispherical
sine transform. As there is no discrete algorithm available which allows to invert
this integral transform, the suggested method is of limited value for applications, at
least at the time being.

We suggest here a method that is based on vertical sections in the spirit of
the proof of Theorem 3.1. It allows to replace inversion of the hemispherical sine
transform by inversion of the cosine transform, for which non-parametric algorithms
exist. The common direction u of the sheaf of vertical intersection planes will be
considered fixed and called reference direction in the following. For L € L%(u), let
0% (Z N L) be the set of all boundary points of Z N L (relative to L) that have an
outer unit normal in S¥71(L) Nu®. For a test line g = linv C L, v € S¥71(L), and
a measurable set W C g with 0 < HY (W) < oo set

v (v) == Hl(lW) card(WNo(ZNL)). (19)
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Obviously, v*(v) only requires the knowledge of Z N L, and Ev*(v) is independent
on the choice of W. Moreover, 41 is an unbiased estimator of the cosine transform
of S(Z,-Nu®), which can be shown using the concept of weighted surface processes
in [19]. We present an alternative proof here.

Proposition 4.1. Let Z be topologically regular (Z = clint Z) and assume that (6)
holds. With the notations as above, we have

Ev*(v) = /&B (w,v)| S(Z,dw) = C [S(Z,-Nu®)] (v) (20)

for all v € S 1.

Proof. Let D' and D%! be relative open unit cubes in g and v+, respectively, and
put C?:= cl(D' + D41). We may assume W = D'. As 9%(ZNL) = (0"Z)N L, we
have

Er*(v) = EO'(Z Ny, (0"ZND') x S'(g)) .

As support measures are defined locally, the stationarity of Z, Fubini’s theorem,
and (1) imply

Eryt(v) = /l EOQ([ZNg)N[C%+2],(8"ZN D) x S'(g))H* " (dz)

_E / O((ZNCY + 2N g, (87 + 2] N DY) x S (g))H (d2)

E/ 1$€8“Zl$|g€Dl||w|g|| G(Z N C’d,d(ac,w))
Rdx Sd—1

:E/ (w, )| ©(Z N C%, d(z, w)).
[int C4Naw Z] x S—1

In the last step we used that ©(Z N C<,-) vanishes outside C? x S471 and that
O(ZNC? -)-almost all (z,w) with x € D' x 9D ! satisfy w € v+ and do therefore
not contribute to the integral. Using again that support measures are defined locally,
we may replace ZNC% by Z. As Z = clint Z, H% '-almost all z € 07 have a unique
outer unit normal w and l,cguy = 1l,eue holds. Another application of Fubini’s
Theorem and (10) therefore yield

Ent(v) = /ea [(w,v)| E [©(Z,int C* x -)] (dw)
:/®|<w,v>|§(Z,dw).

Measurability issues in the preceding line of arguments follow from the weak conti-
nuity of support measures and the general considerations in [25, Anhang II].

We remark that Proposition 4.1 is still valid when Z is not topologically regular,
but the counts in the definition of 4™ must be modified: any isolated point of
gNAJYZNL)in W must be counted twice, as it (almost surely) comes from a
boundary point of Z with exactly two antipodal outer normals. Proposition 4.1
implies that Ey* determines S(Z,- N u®) uniquely, as this measure is concentrated
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on a set without antipodal pairs. Replacing u by —u, we can define a variable v~ (v)
like in (19). It satisfies

By~ =C[S5(Z,-nu)]. (21)

An estimation procedure for S(Z,-) is now straightforward, if we use known
inversion algorithms from [12]|, [6] to find a discrete approximation of a measure
from finitely many (approximate) values of its cosine transform. We choose here
the least squares approach, as it is more robust against measurement errors than
the linear program approach. To ease presentation, we restrict considerations to
two-dimensional vertical sections in R?® and assume Z = clint Z. An extension to
k-dimensional vertical sections for not necessarily topologically regular sets Z C R?
is straightforward, as long as 2 < k <d — 1.

(a) Choose a reference direction u € S? such that S(Z,-)Lu® = o; see the
comments after Corollary 3.1.

(b) Choose m € N vertical planes Ly, ..., L, € £3(u) and consider independent
realizations of the intersections Z N L;, i =1,...,m.

(c) In each L;, choose n € N test directions v;y,. .., vy, € SY(L;) and determine
the counts v~ (v;;) and 7y (v;;) of directed boundary points of Z N L; in unit
intervals, 7 = 1,...,n, ¢ = 1,...,m. Define the mn-dimensional vectors of
observations

I'™ = (v (v35))ij, and I := (77 (vij))iy-

According to (20), and (21) these vectors are unbiased estimators for
([CS(Z,- N u®)](viy))is, and ([CS(Z,- Nu®)|(vi))ss,

respectively.

(d) For p € My set u® := p(-Nu®) and
C™(u) := (Cu®(vy))y; € R™,

and define C*(u) analogously. Find solutions fi,, ,, and i, of the optimiza-
tion problems
minimize ||C(u) — T ||

subject to p € M, is even, (22)

and
minimize ||CT(u) — ']

subject to p € M, is even, (23)

respectively. As these solutions are even measures whose cosine transforms
best fit the measurements (in the least squares sense), they can be considered
as estimators for the even parts of S(Z,-Nu®) and S(Z,- Nu®), respectively.

(e) The measure
ﬂm,n =2 (:&7;,71( N u@) + ﬂ;;,n( N u®)) (24)

is an estimator for S(Z,-).
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The infinite dimensional least squares problems (22) and (23) can be discretized
in a loss-free way; see e.g. [6]. This means that among all solutions of (22) (and
similar among those of (23)) there is one with support in a finite set T" of prescribed
directions, where 7' is only depending on the measurement directions v;;. This allows
to replace (22) and (23) by quadratic programs with non-negativity constraints. The
latter can then be solved by standard software. Note that the resulting estimator
fim.n in (24) is not necessarily a mean normal measure of some stationary random
set, as its centroid need not coincide with the origin. Asymptotically, however, fi,, ,,
converges to the mean normal measure of Z if the number of test directions v;;
increases and these directions are chosen properly. To make this strong consistency
result precise, we impose a condition on v;;, which is slightly stronger than the
denseness of the symmetrized sequence in S?. Following [12, p. 14], the sequence

(Uij)ij = (0117 -ooy Vin, V215 - -+, U2p,y - - )

is called asymptotically dense in S? if

1
lim inf z card(F, N G) >0

k—o0

for all origin-symmetric open sets G # () in S?. Here F}, is the set of the first k
members of (v;;). Gardner et al. [6] discuss related notions.

Theorem 4.1. Let Z be a stationary random set in S with Z = clint Z and
E[N(Z N K)]* < o0 (25)

for one (and hence all) convex bodies K with interior points. Assume that (vi;)i;
is an asymptotically dense sequence in S?, and n is fized. Then, almost surely, the
weak convergence

W fnn = 5(Z,-)

m—00

holds.

Proof. Due to (24), it is enough to show that ', converges weakly and almost

surely to the even part v+ of S(Z,. Nu®) (and the corresponding result for s, .,
which follows by the replacement of w by —u). Note that (20) reads Ey* = Cv™
with this notation. The convergence claim is shown in several steps:

(o) The total masses i, ,(S?) of f ,, are almost surely uniformly bounded.
(B) Let (7,,) be the sequence of even probability measures

m n

Tm = ﬁ Z 2(5”12 + 5‘”11)

i=1 j=1

and (m’) a subsequence of (m) such that (7,,/) converges weakly to a measure
7, say. Then, almost surely,

1
— lim — 2 Cv") fd
3 mggomeva /52(1/)]”7

for any even continuous function f on the sphere.
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(7) If (m') is a subsequence of (m) such that a realization of y,',  converges weakly
to u* and 7, to 7, then

’

I o ©
© 3 Jim Sl o = [ (Cnt)Crtar
=1 =1

(6) Excluding a set of measure zero, we have that any accumulation point of yf, ,
T
is v,

(€) w4y, converges almost surely weakly to v*.

We start by showing () and write || f||o for the maximum norm of f. Consider
the independent random variables

1 n
Xj= > Fwig)s.
i=1
Their variance can be bounded by

A% (= 1) 2 n 2
Var(X;) < 2R ( D ) < |1F]% max E ()

i=1

’yi? counts (certain) boundary points of Z in a unit line segment s, say. Assuming
general position, a convex set can have at most two boundary points in s, so 7% <
2N(Z N's) and stationarity implies

E(v)? <4E[N(Z N 1/2B°].

By (25), the Kolmogorov criterion ), Var(X;)/j* < oo is satisfied and (X;) obeys
the strong law of large numbers. The set of measure zero to be excluded in the
strong law of large numbers can be chosen independent of f, as the Banach space
of continuous functions on S? is separable.

The claim () follows from (f3), as the weak convergence of p, ., to u* implies
uniform convergence of the corresponding cosine transforms; see e.g. [23, Theo-
rem 1.8.12].

To show (a), we use that s, , is a solution of (23). It therefore yields a better
objective function value than the zero measure, so

IC () — TH < T2

Let cij = C(u},,,)(vi) be the components of C* (s, ). Cauchy-Schwarz inequality
yields
1 ) 9 1/2
S < I G < (2 S eng) - @)

v v

As (v;;) is asymptotically dense, there is a constant ¢ > 0 such that

1 1
<
C_mnizjuvm )
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holds on S? for all sufficiently large m. The left hand side of (26) is therefore
bounded from below by ptf (S%)/c. As |(vy,-)| < 1, its right hand side can be
estimated from above, and we obtain

/L+ (52) < ﬁZTL
m,n — mn l] ’L]'

Again, the strong law of large numbers implies that the right hand side of the last
inequality is almost surely bounded.

To show (d) we fix a realization such that (i}, ,,(5%)) is bounded. Due to (c) this
holds for almost all realizations. Let u™ be an arbitrary accumulation point of this
sequence and assume that (u:;,’n) converges to it. Extracting a subsequence (m')
of (m’), we may assume 7,,» — T.

By definition of u;/m, no even measure in M, can yield a better objective function
value than u:;,m in (23). In particular, comparison with v yields

IC () = TF I < CH) = TF%

This gives
1 2
— (IC )P = ICOA)) < = S ([t (i) = OV (v5)) 5

i

In view of () and (), taking m — oo implies
/ [Cu™ — Cvt)?dr <.
S2

As (vy5) is asymptotically dense in S?, the support of 7 is S? and thus Cut—Cvt =0
on S?. The two measures involved are even and therefore uniquely determined by
their cosine transforms, which gives u+ = vt, as required.

Finally (¢) follows from the fact that a set of uniformly bounded measures is
relatively compact in the weak topology. Hence, convergence of (uf;m) to vT is
equivalent to the fact that " is the only accumulation point of (x;},,,). The latter
was shown in (d).

The proof of Theorem 4.1 is following Méannle [16], who showed the consistency
of a least squares estimator of a measure from cosine transforms under stochastic
independence of the measurements. In general, independence of the sequence 7;; can
only be assured if each of the counts is obtained from an independent realization of
Z — a sampling scheme, which is not realistic in practice. If long-range dependence
in Z is not present or negligible (like in the example of a Boolean model of convex
grains with uniformly bounded diameter), this independence can (approximately)
be assured by placing the test line segments W in the definition of 4t far enough
from each other. We mention that the above convergence result can also be derived
under stronger (but somewhat unrealistic) assumptions from [6, Section 9]. The
speed of convergence result, also shown there, cannot be transferred directly to the
present situation, as the restriction of measures in (24) is not a Lipschitz mapping
in the Prohorov metric. Our last result shows that the requirements in Theorem 4.1
are in particular satisfied, when w, L1, Lo, ... and the test directions are randomized.
To do so, we denote the unique normalized Haar measure on £3(u) by v,
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Corollary 4.1. Let Z be a stationary random set in S with Z = clint Z such that
(25) holds. Assume that n € N is fized and
(a) u € S?% is a random isotropic reference direction in S* independent of 7,

(b) given u, the planes Ly, Lo, . .. are independent identically distributed (i.i.d.) in
L3(u) with distribution vy independent of Z,

(¢) givenu and Ly, Lo, ..., for eachi = 1,2, ..., the directions vy, . . ., v;, are i.i.d.
isotropic random vectors in S*(L;), independent of Z.

Then fimn converges almost surely weakly to S(Z,-), as m — oo.

Proof. In view of Theorem 4.1 it remains to show that the (random) sequence
(vi;) is almost surely asymptotically dense in S?. Given u, the distribution of vq; is
up to a normalizing constant the measure

/ Llyev/ 1 — (u, w}fldw,
S2

which has S? as its support. The strong law of large numbers now shows that (v;;)
is almost surely asymptotically dense.
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