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Integral Transforms in Geometric Tomography

Paul Goodey, Markus Kiderlen∗and Wolfgang Weil

Abstract

We consider a variety of integral transforms arising in Geometric Tomog-
raphy. It will be shown that these can be put into a common framework using
spherical projection and lifting operators. These operators will be applied to
support functions and surface area measures of convex bodies and to radial
functions of star bodies. We then investigate averages of lifted projections
and show that they correspond to self-adjoint intertwining operators. We ob-
tain formulas for the eigenvalues of these operators and use them to ascertain
circumstances under which tomographic measurements determine the original
bodies. This approach via mean lifted projections leads us to some unexpected
relationships between seemingly disparate geometric constructions.

AMS 2000 Subject Classification: Primary 52A20, 52A30;
Secondary 33C55, 47G10.

1 Introduction

Geometric Tomography deals with the retrieval of information about a compact set
K in Rd from data arising from sections or projections of K. In particular, one
can ask which information about sections and projections suffices to determine K
uniquely (possibly up to a translation or another simple transformation). In case K
is convex or star-shaped (with respect to the origin o), K can be conveniently (and
uniquely) described by its support function h(K, ·) (in the convex case) respectively
its radial function ρ(K, ·) (in the star-shaped case, which includes convex sets, of
course). Consequently, these sets may be associated with functions defined on the
unit sphere Sd−1. For convex bodies, further analytical descriptions exist, for exam-
ple using the surface area measures Sj(K, ·), j = 1, . . . , d− 1, which are finite Borel
measures on Sd−1.

Since the projection K|L of a convex body K onto a subspace L is convex and
the intersection K ∩ L of a star-shaped body K with a subspace L (through o) is
star-shaped, the analytical description of K|L, respectively K ∩ L, yields a func-
tion f(K,L, ·) (or measure µ(K,L, ·)) on the subsphere Sd−1 ∩ L. Exploiting these
data in various ways (for example by averaging over all L or by other geometrical
procedures), one usually obtains a function (or measure) F (K, ·) on Sd−1 which rep-
resents the tomographic data, and the basic question is whether (or to what extent)
the body K is determined by F (K, ·). Analytically, this situation can be described
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by a spherical transform T which maps h(K, ·) (or ρ(K, ·) or Sj(K, ·)) to F (K, ·) and
is, in most cases, given in integral form. In this way, the tomographic uniqueness
problem for convex or star-shaped bodies K corresponds to the injectivity properties
of the integral transform T .

For a large class of tomographic uniqueness problems, the associated integral
operator is linear. We briefly describe two classical examples of this kind. From
now on, we concentrate on compact sets K with nonempty interior (either convex
or star-shaped) and we assume, in the star-shaped case, that o is an interior point
and that ρ(K, ·) is continuous. As usual, we speak of these sets as convex bodies,
respectively star bodies.

Example 1 (Radon transform). The first example concerns the determination
of a star body K by the (d − 1)-volume Vd−1(K ∩ u⊥) of its hyperplane sections
K ∩ u⊥, u ∈ Sd−1 (here u⊥ denotes the subspace orthogonal to u). Since

Vd−1(K ∩ u⊥) =
1

d− 1

∫
Sd−1∩u⊥

ρd−1(K, v) dv,

where the integration is with respect to the spherical Lebesgue measure on Sd−1∩u⊥,
the geometric transform K 7→ Vd−1(K ∩ (·)⊥) is associated with the spherical Radon
transform R,

(Rf)(u) =

∫
Sd−1∩u⊥

f(v) dv, u ∈ Sd−1.

Since R is known to be injective (only) on even functions f , the volumes of the
central sections K ∩ (·)⊥ determine K only if K is symmetric (with respect to o).

Example 2 (Cosine transform). The second example is, in some sense, a dual.
For a convex bodyK, we consider the volumes Vd−1(K |u⊥) of the (d−1)-dimensional
projections and ask whether they determine K. Here,

Vd−1(K |u⊥) =
1

2

∫
Sd−1

|〈u, v〉|Sd−1(K, dv), u ∈ Sd−1,

where 〈·, ·〉 is the standard scalar product in Rd. The associated integral transform
C is the cosine transform, it maps measures µ on Sd−1 to functions via

(Cµ)(u) =

∫
Sd−1

|〈u, v〉|µ(dv), u ∈ Sd−1.

C is known to be injective (only) on even measures. Therefore, the volumes of the
projections K | (·)⊥ determine the surface area measure Sd−1(K, ·) only, if Sd−1(K, ·)
is even. Since Sd−1(K, ·) determines K up to a translation and is even, if and only if
K is centrally symmetric, we obtain the statement that a centrally symmetric convex
body K is uniquely determined (up to a translation) by the (d − 1)-dimensional
volumes of its projections (onto hyperplanes).

Various generalizations of the two examples above are possible. For instance,
we can replace the (d − 1)-volume of the sections or projections by the Hausdorff
measure of their boundaries or by other geometric functionals. Another obvious
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generalization is to replace hyperplanes by j-dimensional subspaces, j ∈ {2, . . . , d−
2}, yielding functions on the Grassmannian Ldj of j-spaces instead of the sphere.
For convex bodies K, we can consider intersections with affine hyperplanes (or more
generally, affine j-flats), and again the resulting functions live on a more complicated
(homogeneous) space. Finally, the sectional or projectional data can be averaged
in many different ways. For instance, we can average the sets directly, building the
Minkowski sum, the Blaschke sum or the radial sum. Here, we give two examples
of that kind. In both cases, K is a convex body and k ∈ {1, . . . , d − 1} is a fixed
dimension.

Example 3 (Projection mean body). For each k-dimensional subspace L ⊂ Rd,
we consider the projection K|L as a (k-dimensional) body in Rd and average this
set over all L. The resulting convex body Pk(K) is called the k-th projection mean
body of K. Analytically, it is defined by its support function,

h(Pk(K), ·) =

∫
Ld

k

h(K|L, ·) dL,

where the integration is with respect to the invariant probability measure on Ldk. The
projection mean body Pd−1(K) was introduced by Schneider [27], who showed that
K is a ball, if and only if Pd−1(K) is homothetic to K. Spriestersbach [35] proved an
injectivity result for the associated spherical operator pd−1 : h(K, ·) 7→ h(Pd−1(K), ·).
Further injectivity results for the corresponding operators pk are due to Goodey [7]
and Goodey and Jiang [9]. In summary, pk is injective for k ≥ d/2 and for k = 3,
whereas p2 is injective only for d 6= 14. The cases 3 < k < d/2 are still open.

Example 4 (Blaschke section body). In order to define the k-th Blaschke section
body Bk(K) of K, we first consider a fixed subspace L ∈ Ldk. Integration over all
parallel sections of K, in the sense of Blaschke addition, defines a relative Blaschke
section body BL(K) ⊂ L. More precisely, BL(K) is given by its surface area measure
in L,

S ′k−1(BL(K), ·) =

∫
L⊥
S ′k−1((K + x) ∩ L, ·) dx,

where the integration is with respect to the Lebesgue measure in the orthogonal
space L⊥. Here, we used Minkowski’s existence theorem to guarantee that the right
hand side is indeed the (k−1)-st surface area measure of some convex body in L. By
the same theorem, the invariant mean of the measures S ′k−1(BL(K), ·) (considered
as measures on Sd−1) is the (d−1)-st surface area measure of a convex body Bk(K):

Sd−1(Bk(K), ·) =

∫
Ld

k

S ′k−1(BL(K), ·) dL.

The Blaschke section body Bk(K) was first studied in [10]. Surprisingly, the as-
sociated transform bk : Sd−1(K, ·) 7→ Sd−1(Bk(K), ·) is (up to linearity) just the
extension of pk to measures. It therefore has similar injectivity properties.

A different averaging procedure arises if geometric functionals of sections or
projections are integrated over all k-dimensional subspaces which contain a given
direction u. Again, the resulting function or measure will live on Sd−1 and gives
rise to a spherical operator. We conclude this introduction with an example of that
kind.
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Example 5 (Directed section mean). Let K be a star body, u ∈ Sd−1 and
L ∈ Ldk a subspace containing u. If u+ denotes the half-space bounded by u⊥ and
containing u, L ∩ u+ is a k-dimensional half-space. We define the averaged directed
section function sk(K, ·) as the volume of K ∩ L ∩ u+, integrated over the set L[u]

k

of all k-spaces L which contain u,

sk(K, u) =
1

k

∫
L[u]

k

∫
Sd−1∩L∩u+

ρk(K, v) dv dL, u ∈ Sd−1.

The associated spherical operator Adk satisfies

(Adkf)(u) =

∫
L[u]

k

∫
Sd−1∩L∩u+

f(v) dv dL, u ∈ Sd−1.

As we shall see, it exhibits a much more diverse injectivity behavior.

In the following, we discuss tomographic transforms involving sections and pro-
jections and the associated spherical operators in greater generality. We introduce
families of spherical projections and liftings and study their averages. In order to
investigate the injectivity properties, we make use of the fact that the resulting in-
tegral operators intertwine the group SOd of rotations. For such operators T , the
methods of spherical harmonic analysis can be applied. In particular, the eigenfunc-
tions of T are the spherical harmonics, and the injectivity properties of T require us
to know which of the corresponding eigenvalues are nonzero, see [6] for a discussion
of these ideas in the context of convexity.

2 Basic notations

In this section, we describe some standard notations, including those which were
already mentioned above.

Throughout the following, we work in d-dimensional Euclidean space Rd. We
generally assume d ≥ 3, although many operators are also defined for d = 2 or even
d = 1. However, these cases often require additional interpretations and frequently
their injectivity behavior is different. From the point of view of applications, the
three-dimensional case is the most interesting one.

We use 〈u, x〉 for the standard scalar product of u, x ∈ Rd and ‖ · ‖ for the
(Euclidean) norm. Bd is the unit ball and Sd−1 the unit sphere. The Lebesgue
measure in Rd is denoted by λd and the spherical Lebesgue measure on Sd−1 is
denoted by ωd−1. The volume of Bd will be denoted by κd and so the surface area
of Sd−1 is $d = ωd−1(Sd−1) = dκd. Explicitly, we have

$d =
2πd/2

Γ(d/2)
. (2.1)

For u ∈ Sd−1, let [u] be the line generated by u, u⊥ the (d − 1)-dimensional
subspace orthogonal to u and u+ = {x ∈ Rd : 〈u, x〉 ≥ 0} the closed half-space
generated by u (and containing u). 1A is the indicator function of a set A and A|L
denotes the orthogonal projection of a set A ⊂ Rd onto a subspace L.
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For j ∈ {0, . . . , d}, let Ldj denote the Grassmannian of all j-dimensional subspaces
in Rd. If j 6= k and M ∈ Ldk, we let LMj be the submanifold of all j-spaces containing
or contained in the fixed k-space M (depending on whether j > k or j < k). Also,
for M ∈ Ldk and u ∈ Sd−1, M ∨u is the subspace generated by M and u. We denote
the unique invariant probability measures on Ldj and LMj by νj and νMj , respectively.
For L ∈ Ldj , we put Sj−1(L) = L∩Sd−1 and denote the spherical Lebesgue measure
on Sj−1(L) by ωLj−1.

Within integrals, we simply write dx, du, dL, . . . if integration is with respect to
the corresponding invariant measure, as long as the latter is clear from the range
given under the integral sign.

For a compact set T ⊂ Rd, let C(T ) be the Banach space of continuous functions
f on T , supplied with the maximum norm ‖f‖∞. The dual space M(T ) is the
space of finite signed Borel measures on T (and we supply the latter with the weak*
topology). The Borel σ-algebra on T is denoted by B(T ). Measurability of functions
always refers to the corresponding Borel σ-algebra.

We shall frequently use the following decomposition of ωd−1 with respect to
cylindrical coordinates (see e.g. [23]),∫

Sd−1

f(v) dv =

∫
Sd−2(u⊥)

∫ 1

−1

f(tu+
√

1− t2v) (1− t2)(d−3)/2 dt dv. (2.2)

Here, u ∈ Sd−1 is fixed and f ≥ 0 is a measurable function. A more general result
yields ∫

Sd−1

f(v) dv =

∫
Sk−1(L)

∫
Hd−k(L,v)

f(w)〈v, w〉k−1 dw dv, (2.3)

for k ∈ {1, . . . , d− 1} and L ∈ Ldk. Here,

Hd−k(L, v) = {u ∈ Sd−1 \ L⊥ : prL(u) = v}
is the relatively open (d − k)-dimensional half-sphere, generated by L⊥ and v ∈
Sk−1(L), and prL(u) = u|L

‖u|L‖ is the spherical projection of u ∈ Sd−1 \ L⊥ onto

Sk−1(L). This decomposition (2.3) of the spherical Lebesgue measure was already
used in [36] and [4]. For k = d−1 and L = u⊥, and shifting to cylindrical coordinates,
it yields formula (2.2).

We also recall an integral formula of Chern in the form quoted in [7]. For a
measurable function h ≥ 0 on Ldk and v ∈ Sd−1, we have∫

Ld
k

h(L) dL =
$k

2$d

∫
Lv⊥

k−1

∫
Sd−k(M⊥)

h(M ∨ u)|〈u, v〉|k−1 du dM. (2.4)

A similar formula, for u ∈ Sd−1 and a measurable function h ≥ 0 on the sphere, can
be obtained from a decomposition of the spherical Lebesgue measure in M⊥ and an
invariance argument,∫

Sd−1

h(v)(1− 〈v, u〉2)(1−k)/2 dv =
$d−1

$d−k

∫
Lu⊥

k−1

∫
Sd−k(M⊥)

h(v) dv dM. (2.5)

As we already mentioned, a convex body K in this work is a compact convex
set in Rd, which has interior points. The latter assumption is usually not made in
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convex geometry (see for example the book of Schneider [28] which we use as the
standard reference, in the following). It is, however, helpful in our context since
some injectivity results only hold with dimensional restrictions on the sets under
consideration. The disadvantage is that some of the results are not stated in their
utmost generality, but the reader should be able to make the necessary extensions.
We denote by Kd the set of all convex bodies and supply it with the Hausdorff
metric. A convex body K can be described by its support function h(K, ·),

h(K, y) = max{〈x, y〉 : x ∈ K}, y ∈ Rd.

h(K, ·) is a continuous function on Rd which is homogeneous of degree 1. Therefore,
we will mostly work with the restriction of h(K, ·) to the unit sphere Sd−1. The
mapping

Kd → C(Sd−1), K 7→ h(K, ·),
is then continuous and injective. It is, in addition, linear with respect to nonnegative
linear combinations of convex bodies. An alternative description of convex bodies
makes use of the surface area measures

Sj(K, ·), j = 1, . . . , d− 1.

For a Borel set A ∈ B(Sd−1), they are defined by the local Steiner formula

λd(Bε(K,A)) =
1

d

d−1∑
j=0

εd−j
(
d

j

)
Sj(K,A), (2.6)

for ε > 0. Here, Bε(K,A) is the (Borel) set of all points x /∈ K whose nearest point
p(K, x) ∈ K satisfies ‖x− p(K, x)‖ ≤ ε and (x− p(K, x))/‖x− p(K, x)‖ ∈ A. Note,
that the measure S0(K, ·), occurring in (2.6), is independent of K (it coincides with
the spherical Lebesgue measure ωd−1). For j = 1, . . . , d− 1, the mapping

K 7→ Sj(K, ·)

is again continuous but determines the body K only up to translation. K 7→ S1(K, ·)
is also linear.

For a star-shaped compact set K, containing o in its interior, we consider the
radial function

ρ(K, u) = max{r ≥ 0 : ru ∈ K}, u ∈ Sd−1.

As mentioned earlier, we assume that ρ(K, ·) ∈ C(Sd−1) and refer to those sets as
star bodies. Let Sd be the set of all star bodies, supplied with the radial metric.
The standard reference here is the book of Gardner [5] (which uses a slightly more
general definition of star bodies). Again,

K 7→ ρ(K, ·)

is injective and linear (with respect to nonnegative radial combinations of star bod-
ies), and continuous on Sd. We note that a convex body K which contains o in its
interior is a star body.
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The geometric operations which we consider in the following are sections and
projections. The projection K|L of a convex body onto a subspace L ∈ Ldj is a
convex body (in L), the section by an affine subspace K ∩ (L + x), x ∈ L⊥, is a
convex body in L, as long as x is a relative interior point of K|L⊥. The section
K ∩ L of a star body K by L ∈ Ldj is a star body in L. The support function of
the projection is denoted by h′(K|L, ·) ∈ C(Sj−1(L)) and the surface area measures
by S ′i(K|L, ·) ∈ M(Sj−1(L)), i = 1, . . . , j − 1. The radial function of the section is
ρ′(K ∩ L, ·) ∈ C(Sj−1(L)).

3 Analytic tools

In this section, we describe in more detail the analytic tools which we use, including
some basic facts from spherical harmonic analysis.

Differentiability properties of a function f on the sphere are understood as differ-
entiability properties of its radial extension f̌ on Rd \ {o}, where f̌(x) = f(x/‖x‖);
see [16, Section 1.2]. Let k ∈ N or k = ∞ be given and let Ck(Rd \ {o}) denote
the space of k-times continuously differentiable real functions on Rd \ {o}. We say
that f ∈ Ck(Sd−1) if f̌ ∈ Ck(Rd \ {o}). If f ∈ Ck(Sd−1) and q = (q1, . . . , qd) is a
multi-index of nonnegative integers with |q| = q1 + · · ·+ qd ≤ k, we put

∂qf(u) =
∂|q|

∂q1 · · · ∂qd f̌(u), u ∈ Sd−1.

For finite k, the space Ck(Sd−1) will be endowed with the norm topology generated
by all derivatives ∂q with |q| ≤ k and C∞(Sd−1) will carry the projective topology.
Thus, a sequence (fn) of functions converges to f in Ck(Sd−1), k ∈ N ∪ {∞}, if and
only if (∂qfn) converges uniformly to ∂qf for all multi-indices q, |q| ≤ k. The dual
space of C∞(Sd−1) is called the space of distributions (or generalized functions) on
Sd−1. A distribution F is called regular, if it can be represented by an integrable
function f in the sense that

F (g) =

∫
Sd−1

f(u)g(u) du, g ∈ C∞(Sd−1).

In the following, we will identify a regular distribution with its representation f and
write F = f in the sense of distributions. Of course, f is determined by F only
ωd−1-almost everywhere. Any finite signed measure µ on Sd−1 can be interpreted as
the distribution

g 7→
∫
Sd−1

g dµ, g ∈ C∞(Sd−1).

This distribution is regular if and only if µ is absolutely continuous with respect to
ωd−1.

The Laplace-Beltrami operator ∆ on the sphere is a second order differential opera-
tor. If f ∈ C2(Sd−1), then ∆f is obtained by applying the ordinary Laplace operator
to f̌ and restricting the resulting function to the sphere. It can be extended to dis-
tributions. If the distribution F can be represented by f ∈ C2(Sd−1), then ∆F is,



8 P. Goodey, M. Kiderlen, W. Weil

by definition, the distribution represented by ∆f . For arbitrary F , we put

(∆F )(g) = F (∆g), g ∈ C∞(Sd−1).

This is an extension of the definition for regular distributions, since∫
Sd−1

(∆f)(u)g(u) du =

∫
Sd−1

f(u)(∆g)(u) du;

holds for all f, g ∈ C2(Sd−1); see e.g. [16, (1.2.5)]. The Laplace-Beltrami operator
plays an important role in convex geometry, since it connects the support function
and the first surface area measure of a convex body K. We have(

∆

d− 1
+ 1

)
h(K, ·) = S1(K, ·) (3.1)

in the sense of distributions.
In [2], it is shown that ∆ commutes with rotations. The eigenspaces of the

Laplace-Beltrami operator on C2(Sd−1) are the spaces Hd
n of spherical harmonics in

dimension d of order n, n = 0, 1, 2, . . . . We have

∆hn = −n(n+ d− 2)hn, hn ∈ Hd
n.

For a square-integrable spherical function f , let fn be the orthogonal projection of
f on Hd

n in the Hilbert space L2(Sd−1). The series
∑∞

n=0 fn converges to f in the
L2-sense and is called the spherical harmonic expansion of f .

It is well known that the smoothness properties of f can be deduced from its
spherical harmonic expansion. We state this result as a lemma.

Lemma 3.1. Let f ∈ L2(Sd−1) with spherical harmonic expansion
∑∞

n=0 fn be given.
Then, for any multi-index q, there is a constant c = c(d, |q|) such that

‖∂qfn‖∞ ≤ cnd/2+|q|−1‖fn‖∞. (3.2)

Hence, if the sequence (‖fn‖∞) converges to 0 faster than any polynomial in n, then
f ∈ C∞(Sd−1) and

∑∞
n=0 fn converges to f in C∞(Sd−1).

Conversely, f ∈ C∞(Sd−1) implies that (‖fn‖∞) converges to 0 faster than any
polynomial in n.

Proof. (3.2) is taken from Lemma 3.6.5 in [16]. The remaining claims follow directly
from this and Proposition 3.6.2 in [16], which guarantees the existence of a constant
c′ = c′(d) with

‖fn‖∞ ≤ c′‖∆kf‖∞nd/2−2k−1

whenever f ∈ C2k(Sd−1), k ∈ {1, 2, . . . }.
In the following sections we will describe various geometric transformations, asso-

ciated with certain linear operators on spaces of functions or measures on the sphere
Sd−1. As we mentioned in the introduction, from the point of view of geometric to-
mography, it is important to know the injectivity properties of these transformations.
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From the analytic point of view, this is equivalent to investigating the injectivity
properties of the associated linear operators.

We will now briefly describe a general framework within which such questions
can be answered. Our geometric transformations will typically intertwine the action
of the rotation group SOd. This means that these transformations are rotation
covariant. If T is one of the associated linear operators acting on a space F of
spherical functions we have

Tfρ = (Tf)ρ for f ∈ F , ρ ∈ SOd, (3.3)

here fρ is the rotation of f defined by fρ(u) = f(ρ−1u) for each u ∈ Sd−1. Of course,
the Laplace-Beltrami operator ∆ is an example of an intertwining operator.

A natural setting for the investigation of such operators is spherical harmonic
analysis, which has group representation theory as its background. In order to
apply harmonic analysis to our transformations, it is important to know that the
spaces, Hd

n (n = 0, 1, . . . ), of spherical harmonics in dimension d are the irreducible
invariant subspaces of L2(Sd−1), see [3] for example. These are finite dimensional
subspaces of C∞(Sd−1); moreover, the union of their orthonormal bases forms a
complete orthonormal system in the Hilbert space L2(Sd−1). It is a consequence of
Schur’s Lemma that, for a linear operator T : C∞(Sd−1)→ C(Sd−1) which intertwines
the group action of SOd in the sense of (3.3), T acts as a multiple of the identity when
restricted to any one of the spaces Hd

n. It follows that, for any intertwining linear
operator T , we have multipliers a1, a2, . . . such that Thdn = anh

d
n, for all hdn ∈ Hd

n.
If P d

n denotes the Legendre polynomial of degree n in dimension d, then
P d
n(〈u, ·〉) ∈ Hd

n for any fixed u ∈ Sd−1. Clearly this spherical harmonic is in-
variant under the action of SOd−1, the subgroup of rotations leaving u fixed. In
fact, it is the unique function having this property and mapping u to the number 1.
This allows us to give a specific formulation for the multipliers an, namely

an = anP
d
n(〈u, u〉) = (TP d

n(〈u, ·〉)(u). (3.4)

The following proposition summarizes the facts mentioned so far and states, in
addition, the relevant injectivity result. We denote by I the identity map.

Proposition 3.2. Let T : C∞(Sd−1) → C(Sd−1) be a linear operator which inter-
twines the group action of SOd.

(a) For n = 1, 2, . . . , we have
T |Hd

n
= anI,

where
an = T (P d

n(〈u, ·〉)(u),

for arbitrary u ∈ Sd−1.

(b) If T is also continuous, then T is self-adjoint, in the sense that∫
(Tf)(u)g(u)du =

∫
f(u)(Tg)(u)du, (3.5)

for all f, g ∈ C∞(Sd−1), and T is injective, if and only if an 6= 0 for all n.



10 P. Goodey, M. Kiderlen, W. Weil

The same statements hold true for a linear operator T : C(Sd−1) → C(Sd−1)
which intertwines the group action of SOd.

Proof. It remains to prove (b) and we start by proving (3.5) for operators T :
C∞(Sd−1)→ C(Sd−1). Fix u ∈ Sd−1. The mapping A : f 7→ (Tf)(u), f ∈ C∞(Sd−1),
is a spherical distribution. As Sd−1 is compact, the order of A is finite: there is a
k ∈ N and a constant c > 0 such that

|Af | ≤ cmax
|q|≤k
‖∂qf‖∞,

cf. [34, pp. 31-32]. For f = P d
n(〈u, ·〉), we have Af = an and Lemma 3.1 implies

|an| ≤ c′nd/2+k−1 (3.6)

for some c′ > 0. This lemma also states that the spherical harmonic expansion∑∞
n=0 fn of f ∈ C∞(Sd−1) converges in C∞(Sd−1) to f and that

∑∞
n=0 anfn converges

uniformly due to (3.6). For g ∈ C∞(Sd−1) this implies∫
Sd−1

Tf(u)g(u) du =

∫
Sd−1

∞∑
n=0

(Tfn)(u)g(u) du

=

∫
Sd−1

∞∑
n=0

anfn(u)g(u) du =
∞∑
n=0

an

∫
Sd−1

fn(u)g(u) du

=
∞∑
n=0

an

∫
Sd−1

fn(u)gn(u) du.

Interchanging the roles of f and g yields (3.5).
For linear continuous operators T : C(Sd−1) → C(Sd−1) which intertwine the

group action of SOd, (3.5) is now obtained as follows: the restriction of T to C∞(Sd−1)
is a linear continuous intertwining operator from C∞(Sd−1) to C(Sd−1), so (3.5) holds
for all f, g ∈ C∞(Sd−1) and by approximation for all continuous f and g.

The injectivity statement is now an easy consequence of (3.5). Clearly, T is not
injective if we have an = 0 for some n = 0, 1, . . . . For the converse, assume that
an 6= 0 for all n = 0, 1, . . . and use the fact that the spherical harmonics in the
expansion

∑∞
n=0 fn of some function f can be written as

fn = cn,d

∫
Sd−1

f(u)P d
n(〈u, ·〉) du (3.7)

where cn,d > 0 are known constants; cf. [23]. If Tf = 0 for f in the appropriate
class of functions on Sd−1, we have due to (3.7), (3.5), and (a),

0 = (Tf)n = cn,d

∫
Sd−1

(Tf)(u)P d
n(〈u, ·〉) du

= cn,d

∫
Sd−1

f(u)
(
TP d

n(〈u, ·〉)) du
= ancn,d

∫
Sd−1

f(u)P d
n(〈u, ·〉) du

= anfn.

It follows that fn = 0 for each n and so f = 0.



Integral Transforms in Geometric Tomography 11

It is also clear, from similar considerations, that intertwining operators commute.

Corollary 3.3. Fix u ∈ Sd−1. Let T : C∞(Sd−1) → C(Sd−1) be a continuous and
intertwining linear operator.

Then T = 0, if and only if

T (〈u, ·〉k)(u) = 0, k = 0, 1, 2, . . . . (3.8)

Proof. Using (3.4) and the fact that P d
n(x) is a polynomial, we see that (3.8) is

equivalent to an = 0 for all n = 0, 1, 2, . . . . The convergence of spherical harmonic
expansions for C∞-functions implies that the latter is equivalent to T = 0.

We now concentrate on transforms T given in integral form and seek an explicit
representation of ∆T . Using Corollary 3.3, we need to consider the values(

T∆ϕ(〈u, ·〉))(u),

with ϕ(x) = xk, k = 0, 1, 2, . . .. The calculation of these values can be reduced to
the one-dimensional setting, since

∆ϕ(〈u, ·〉) = (Dd ϕ)(〈u, ·〉) (3.9)

with the (one-dimensional) differential operator

Dd = (1− x2)
d2

dx2
− (d− 1)x

d

dx
.

(3.9) can be seen by expressing the operator ∆ in terms of cylindrical coordinates;
see for example [23, equation (54)]. If F is a distribution on R, then,

F (Ddϕ) = (D∗dF )(ϕ),

where

D∗dF =
d2

dx2
(1− x2)F + (d− 1)

d

dx
xF.

This follows directly from the definition of derivatives of distributions on R. Let
w be the weight function x 7→ (1 − x2)(d−3)/2 and L1([−1, 1], w) be the space of
w-integrable functions on the interval [−1, 1].

Theorem 3.4. For G ∈ L1([−1, 1], w) the transform T , given by

Tf =

∫
Sd−1

G(〈v, ·〉)f(v) dv, f ∈ C(Sd−1),

has the following properties.

(a) T is a continuous endomorphism of C(Sd−1) which intertwines the action of
the rotation group.
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(b) If, in addition, D∗d(1[−1,1]Gw) is a regular distribution and f ∈ C(Sd−1), then
∆(Tf) is also a regular distribution. In fact, if D∗d(1[−1,1]Gw) is represented
by the integrable function g, then

∆(Tf) =

∫
Sd−1

f(v)
g(〈·, v〉)
w(〈·, v〉) dv (3.10)

in the sense of distributions.

Proof. (a) It is easy to see from (2.2) that G ∈ L1([−1, 1], w) if and only if v 7→
G(〈u, v〉) is integrable with respect to ωd−1 (for any fixed unit vector u). Let f ∈
C(Sd−1) and assume that the sequence (un) ⊂ Sd−1 converges to u ∈ Sd−1. There is
a sequence (ρn) ⊂ SOd converging to the identity on Rd with ρnu = un. Hence

lim
n→∞

(Tf)(un) = lim
n→∞

∫
Sd−1

G(〈ρnu, v〉)f(v) dv

= lim
n→∞

∫
Sd−1

G(〈u, v〉)f(ρnv) dv

= (Tf)(u)

by the uniform continuity of f on the compact set Sd−1. Thus, T : C(Sd−1) →
C(Sd−1). The continuity and the intertwining property of T follow easily from the
properties of the kernel function G(〈u, ·〉).

To show (b) fix f ∈ C(Sd−1). By definition, the operator ∆Tf acts on C∞(Sd−1)
by

(∆Tf)h =

∫
Sd−1

(Tf)(u)(∆h)(u) du

=

∫
Sd−1

f(u)T (∆h)(u) du, h ∈ C∞(Sd−1),

where we used (a) and Proposition 3.2(b) for the second equation. Due to (a),
S := T∆ is a continuous linear operator from C∞(Sd−1) to C(Sd−1) intertwining the
action of the rotation group. The right hand side of (3.10), considered as a regular
distribution, maps h ∈ C∞(Sd−1) to∫

Sd−1

h(u)

∫
Sd−1

f(v)
g(〈u, v〉)
w(〈u, v〉) dvdu =

∫
Sd−1

f(v)S ′h(v) dv,

with

S ′h :=

∫
Sd−1

h(u)
g(〈u, v〉)
w(〈u, v〉) du.

Here, Fubini’s theorem was applied using the fact that g/w ∈ L1([−1, 1], w). The
operator S ′ can be applied to continuous functions h and is then a continuous
endomorphism of C(Sd−1) that intertwines the action of the rotation group by (a).
Hence its restriction to C∞(Sd−1) is continuous, linear and intertwining with values
in C(Sd−1). To show (3.10), it is enough to prove S = S ′. By Corollary 3.3, the
latter is equivalent to the fact that(

Sϕ(〈u, ·〉))(u) =
(
S ′ϕ(〈u, ·〉))(u)
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with ϕ(x) = xk, k = 0, 1, 2, . . . . Using (3.9) and introducing cylindrical coordinates,
we obtain (

Sϕ(〈u, ·〉))(u) =

∫
Sd−1

G(〈u, v〉)(Ddϕ)(〈u, v〉) dv

= $d−1

∫ 1

−1

G(x)(Ddϕ)(x)w(x) dx

= $d−1

∫ ∞
−∞

1[−1,1](x)G(x)w(x)(Ddϕ)(x) dx

= $d−1

(
D∗d(1[−1,1]Gw)

)
(ϕ).

= $d−1

∫ 1

−1

g(x)ϕ(x) dx

=

∫
Sd−1

ϕ(〈u, v〉) g(〈u, v〉)
w(〈u, v〉) dv

=
(
S ′ϕ(〈u, ·〉))(u),

and the proof is complete.

4 Projection and lifting on the sphere

Operations like sections and projections of sets can frequently be represented ana-
lytically by projection and lifting operators on the sphere. Consider, for example,
the projection K|L of a convex body K onto a k-dimensional linear subspace L,
1 ≤ k ≤ d − 1. The support function h′(K|L, ·) of K|L, as a convex body in L, is
the restriction h(K, ·)|Sk−1(L) of h(K, ·) to Sk−1(L). The restriction operator

πL,∞ : f 7→ f |Sk−1(L), f ∈ C(Sd−1),

will be represented in the sequel as a special spherical projection operator.
On the other hand, the support function h(K|L, ·) of the same set K|L, embed-

ded in Rd, satisfies

h(K|L, u) = h(K, u|L) = ‖u|L‖h(K, prL(u)), u ∈ Sd−1 \ L⊥. (4.1)

Formula (4.1) defines an operator π∗L,1 : C(Sk−1(L))→ C(Sd−1) by

(π∗L,1f)(u) = ‖u|L‖ f(prL(u)), u ∈ Sd−1 \ L⊥,
and (π∗L,1f)(u) = 0, for u ∈ Sd−1 ∩L⊥. π∗L,1 is a particular case of a spherical lifting.

In the following, more general spherical projections and liftings will be intro-
duced. As these operators are also applied to surface area measures, we define them
as operators on (certain subspaces of) M(Sd−1) and M(Sk−1(L)), respectively.

In the subsequent definitions, we fix k ∈ {1, . . . , d − 1} and L ∈ Ldk, and let
m > −k be an integer. We put

Mm,L(Sd−1) =
{
µ ∈M(Sd−1) :

∫
Sd−1

‖u|L‖m |µ|(du) <∞
}
.

For m ≥ 0, we have Mm,L(Sd−1) =M(Sd−1), whereas for m < 0, Mm,L(Sd−1) is a
proper subspace of M(Sd−1).
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Definition 4.1. The m-weighted spherical projection πL,m is the mapping from
Mm,L(Sd−1) into M(Sk−1(L)

)
, given by

πL,mµ =

∫
Sd−1\L⊥

1(·)(prL(u))‖u|L‖m µ(du).

Definition 4.2. The operator π∗L,m :M(Sk−1(L)
)→M(Sd−1

)
, given by

π∗L,mµ =

∫
Sk−1(L)

∫
Hd−k(L,v)∩(·)

〈v, w〉k+m−1 dw µ(dv),

is called the m-weighted spherical lifting.

Note that the definitions would make sense for more general values of m, in
particular for m ≤ −k and for real values of m (under appropriate integrability
assumptions on the measures µ). However, the current definitions cover all applica-
tions which will occur. For any m > −k, the family {π∗L,m : L ∈ Ldk} is a family of
liftings in the sense of [20].

The lifting π∗L,mµ of a measure µ ∈M(Sk−1(L)
)

can be interpreted as a disper-
sion of µ, in a weighted manner, along half-spheres orthogonal to L. The weight
depends on m and is chosen in such a way that π∗L,0 ω

L
k−1 = ωd−1, which amounts

to (2.3).
Both the spherical projection and the spherical lifting are weakly continuous

linear operators that map positive measures to positive measures. By identifying a
measurable function f (which is integrable with respect to ωd−1, respectively ωLk−1)
with the measure

∫
(·) f(u) du, we can apply the operators πL,m and π∗L,m also to

functions, and the results will again be functions. Here, (2.3) implies that, for an
integrable function f on Sd−1, we have∫

(·)
f(u) du ∈Mm,L(Sd−1),

for all m > −k. As a further consequence of (2.3), we obtain

(πL,mf)(u) =

∫
Hd−k(L,u)

f(v)〈u, v〉k+m−1 dv, u ∈ Sk−1(L).

In particular, for f ≡ 1, we obtain

πL,m1 =

∫
Hd−k(L,v)

〈v, ·〉k+m−1 dv =
$d+m

$k+m

. (4.2)

Similarly, for an integrable function h on Sk−1(L), we get

(π∗L,mh)(u) = ‖u|L‖mh(prL(u)), u ∈ Sd−1 \ L⊥, (4.3)

and we put (π∗L,mh)(u) = 0, for u ∈ Sd−1∩L⊥. In particular, πL,mf is defined for all

m > −k and all f ∈ C(Sd−1
)
, and is then a continuous function. On the other hand,
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π∗L,mh is defined for all m > −k and and all h ∈ C(Sk−1(L)
)
, and gives a continuous

function if m > 0. However, for m ≤ 0, the function π∗L,mh is measurable and∫
Sd−1

|π∗L,mh|(u)µ(du) <∞,

for all µ ∈Mm,L(Sd−1).
We now see that π∗L,m can be considered as the transpose of πL,m (and vice versa),

since ∫
Sk−1(L)

f d(πL,mµ) =

∫
Sd−1

(π∗L,mf) dµ, (4.4)

for all integrable functions f on Sk−1(L) and µ ∈Mm,L(Sd−1), and∫
Sk−1(L)

πL,mf dµ =

∫
Sd−1

f d(π∗L,mµ), (4.5)

for all µ ∈M(Sk−1(L)
)

and integrable functions f on Sd−1.

Lemma 4.3. Let m > −k be an integer and µ ∈ M(Sd−1). Then, we have µ ∈
Mm,L(Sd−1), for νk-almost all L.

Proof. We may assume µ ≥ 0. Fubini’s theorem implies∫
Ld

k

∫
Sd−1

‖u|L‖m µ(du) dL

=

∫
Sd−1

∫
Ld

k

‖u|L‖m dLµ(du) = cd,m,kµ(Sd−1) <∞.

with the constant

cd,m,k =

∫
Ld

k

‖u|L‖m dL =
1

$d

∫
Sd−1

‖u|L0‖ du =
$d+m$k

$k+m$d

(4.6)

(with L0 ∈ Ldk fixed). Hence,∫
Sd−1

‖u|L‖m µ(du) <∞,

for νk-almost all L.

Some of the above definitions and considerations have a natural extension to the
case m = ∞. We have already introduced the restriction operator πL,∞ which can
be applied to any measurable function f on Sd−1. IfM(Sk−1(L)

)
andM(Sd−1

)
are

endowed with the total variation norm, π∗L,m becomes a continuous operator with
operator norm $d+m/$k+m, due to (4.2). If the operators are normalized, we have
for µ ∈M(Sk−1(L)

)
$k+m

$d+m

π∗L,mµ→ π∗L,∞µ, m→∞, (4.7)
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in the weak sense, where π∗L,∞µ = µ( · ∩ Sk−1(L)) is the trivial extension of µ to
the whole of Sd−1. The formula for m =∞, corresponding to (4.5), then reads∫

Sk−1(L)

πL,∞f dµ =

∫
Sd−1

f d(π∗L,∞µ), (4.8)

thus π∗L,∞ is the transpose of the restriction operator πL,∞.
We emphasize the fact, that πL,∞ cannot be extended, in a weakly continuous

manner, to an operator on measures µ. Hence, the kind of symmetry between
functions and measures, which we encountered in the case of the operators πL,m
and π∗L,m, does not extend to m =∞. In fact, if we consider π∗L,mf for a continuous
function f and let m → ∞, (4.3) produces a different natural limit operator τ ∗L,
namely

(π∗L,mf)(u)→ (τ ∗Lf)(u) =

{
f(u), if u ∈ L,
0, otherwise,

for f ∈ C(Sk−1(L)
)

and u ∈ Sd−1. The transpose τL of τ ∗L would be defined by∫
Sk−1(L)

f d(τLµ) =

∫
Sd−1

(τ ∗Lf) dµ,

for f ∈ C(Sk−1(L)
)

and µ ∈ M(Sd−1). Hence τLµ must be the restriction of the
measure µ to the Borel sets in Sk−1(L). If µ is a function f , we therefore have
τLf ≡ 0, which is, of course, very different from πL,∞f . We will not need the
operators τL and τ ∗L, in the following.

Next we will prove a lemma, which allows us to reduce certain considerations in-
volving projections or lifting to the case where L is a hyperplane. It generalizes [4,
Lemma 5.2], where m = 1 and m = −1 are treated. Assume that L and M are
two linear subspaces with {o} 6= M ⊂ L 6= Rd and denote by πLM,m and π∗LM,m the
projection and lifting operator in L.

Lemma 4.4. Let L and M be linear subspaces with {o} 6= M ⊂ L 6= Rd and let
m > − dimM be an integer. Then

πLM,mπL,mµ = πM,mµ,

for measures µ ∈Mm,M(Sd−1), and

π∗L,mπ
∗L
M,mµ = π∗M,mµ,

for µ ∈M(Sk−1(L)).

Proof. For u ∈ Sd−1 \M⊥, we have (u|L)|M = u|M and thus

‖u|L‖(prL(u)|M) = u|M.

This gives prM
(
prL(u)

)
= prM(u), for u 6∈ M⊥ and therefore almost surely with

respect to the measure
∫

(·) ‖u|M‖m |µ|(du). The definition of projections now implies

πLM,mπL,mµ =

∫
Sd−1\M⊥

1(·)(prM(prL(u))‖prL(u)|M‖m‖u|L‖m µ(du)

=

∫
Sd−1\M⊥

1(·)(prM(u))‖u|M‖m µ(du)

= πM,mµ.
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This shows the first claim. The second follows by transposition.

5 Tomographic interpretations

In this section, we give some tomographic interpretations of spherical liftings and
projections. The following results were originally obtained in [19].

Assume L ∈ Ldk and that K is a convex body in L. If we consider the support
function h(K, ·) of K in Rd, the definition of π∗L,m implies

(π∗L,mh
′(K, ·))(u) = ‖u|L‖m−1h(K, u), (5.1)

for all u ∈ Sd−1, where u 6∈ L⊥ is required in addition, whenever m < 1. For an
arbitrary convex body K ⊂ Rd, we have already seen that h′(K|L, ·) = πL,∞h(K, ·)
(on Sk−1(L)) and thus

h(K|L, ·) = π∗L,1πL,∞h(K, ·) (5.2)

on Sd−1. This shows that, for m =∞, the lifted projection π∗L,1πL,m maps the cone
of support functions into itself. The following theorem yields an extension of this
fact to all m ∈ (−k,∞].

Theorem 5.1. Let m ∈ (−k,∞] be an integer and K ∈ Kd. Then, πL,mh(K, ·) is
the support function of some convex body in L. In particular, π∗L,1πL,mh(K, ·) is the
support function of a convex body in L, embedded in Rd.

Proof. Since πL,∞h(K, ·) = h′(K|L, ·) we may assume m <∞ and, by Lemma 4.4 we
may restrict our attention to the case L = x⊥ for some x ∈ Sd−1. For u ∈ Sd−2(x⊥)
put

h(u) =
(
πx⊥,mh(K, ·))(u)

=

∫
H1(x⊥,u)

h(K, z)〈u, z〉d+m−2 dz

=

∫ 1

−1

h(K, sx+
√

1− s2u)(1− s2)(d+m−3)/2 ds.

It follows from [28, Theorem 1.7.1] that h is a support function on x⊥ if and only if

h(u1) + h(u2)

ρ
≥ h

(
u1 + u2

ρ

)
(5.3)

holds for all linearly independent u1, u2 ∈ Sd−2(x⊥), where ρ = ‖u1 + u2‖ ∈ (0, 2).
We will establish (5.3). The support function h(K, ·) satisfies

h(K, sx+
√

1− s2u1) + h(K, sx+
√

1− s2u2) ≥ h(K, 2sx+
√

1− s2(u1 + u2))

and thus

h(u1) + h(u2)

ρ
≥ 1

ρ

∫ 1

−1

h(K, 2sx+
√

1− s2(u1 + u2))(1− s2)(d+m−3)/2 ds.
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Substituting

t =
2s

‖2sx+
√

1− s2(u1 + u2)‖ =
s√

(ρ/2)2 + (1− (ρ/2)2)s2

and using the abbreviations u(t) = tx+
√

1− t2(u1 + u2)/ρ and

gρ(t) =
ρ/2(

1− (1− (ρ/2)2)t2
)(d+m+1)/2

yields
h(u1) + h(u2)

ρ
≥
∫ 1

−1

gρ(t)h
(
K, u(t)

)
(1− t2)(d+m−3)/2 dt

We conclude that (5.3) holds if

J(K) =

∫ 1

−1

(gρ(t)− 1)h
(
K, u(t)

)
(1− t2)(d+m−3)/2 dt ≥ 0. (5.4)

The integral in (5.4) does not change if K is replaced by its reflection in x⊥

and we may therefore assume that K is symmetric with respect to x⊥, that is,
h(K, u(t)) = h(K, u(−t)) for all t ∈ [−1, 1]. The function t 7→ gρ(t) − 1 is strictly
increasing on [0, 1] and has a zero at

tρ =

√
1− (ρ/2)2/(d+m+1)

1− (ρ/2)2
.

For 0 ≤ t ≤ tρ, we have gρ(t)− 1 ≤ 0 and u(t) = γu(tρ) + δu(−tρ) with

2γ =
t

tρ
+

√
1− t2√
1− t2ρ

≥ 0 and 2δ = − t

tρ
+

√
1− t2√
1− t2ρ

≥ 0.

Using the symmetry property of K, this implies

h
(
K, u(t)

) ≤ γh
(
K, u(tρ)

)
+ δh

(
K, u(−tρ)

)
=

√
1− t2√
1− t2ρ

h
(
K, u(tρ)

)
.

If tρ ≤ t ≤ 1, we have gρ(t)− 1 ≥ 0 and u(tρ) = γ̃u(−tρ) + δ̃u(t) with

γ̃ =
−tρ
√

1− t2 + t
√

1− t2ρ
tρ
√

1− t2 + t
√

1− t2ρ
≥ 0 and δ̃ =

2tρ
√

1− t2ρ
tρ
√

1− t2 + t
√

1− t2ρ
> 0.

Hence

h
(
K, u(t)

) ≥ 1

δ̃

(
h
(
K, u(tρ)− γ̃h

(
K, u(−tρ)

)))
=

√
1− t2√
1− t2ρ

h
(
K, u(tρ)

)
.

Substituting this into the integral in (5.4), we obtain

J(K) = 2

∫ 1

0

(gρ(t)− 1)h
(
K, u(t)

)
(1− t2)(d+m−3)/2 dt

≥ 2h
(
K, u(tρ)

)√
1− t2ρ

∫ 1

0

(gρ(t)− 1)(1− t2)(d+m−2)/2 dt.
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The latter integral vanishes, since∫ 1

0

gρ(t)(1− t2)(d+m−2)/2 dt =

∫ 1

0

(1− s2)(d+m−2)/2 ds,

(re-substitute s = (ρ/2)t√
1−(1−(ρ/2)2)t2

), so (5.4) holds.

In view of our definition of convex bodies, it remains to show that the compact
convex set M ⊂ x⊥ with support function h′(M, ·) = πx⊥,mh(K, ·) contains a (d−1)-
dimensional ball. Replacing K with K+a for some translation vector a ∈ Rd leads to
a translation of M by (γa)|x⊥, γ = $d+m+1/$d+m, since h(K+a, ·) = h(K, ·)+〈a, ·〉
and

(πx⊥,m〈a, ·〉)(u) =
〈
a,

∫
H1(x⊥,u)

z〈z, u〉d+m−2 dz
〉

=
〈
a,

∫ 1

−1

(tx+
√

1− t2u)(1− t2)(d+m−3)/2 dt
〉

= 〈a, u〉
∫ 1

−1

(1− t2)(d+m−2)/2 dt

= 〈γa, u〉, u ∈ Sd−2(x⊥).

We may therefore assume that the origin is an interior point of K. If δ > 0 is such
that δBd ⊂ K, then

h′(M, ·) = πx⊥,mh(K, ·) ≥ πx⊥,mh(δBd, ·) ≡ const > 0,

shows that M contains a (d− 1)-dimensional ball centered at the origin.

Theorem 5.1 can be seen as a generalized dual statement to Busemann’s theorem.
In terms of liftings, the latter theorem states that if K is a convex body with
o ∈ intK and L ∈ Ldk, then πL,1−kρd−k+1(K, ·) is the radial function of a convex
body in L. Theorem 5.1 with m = 1 − k implies that πL,1−kh(K, ·) is the support
function of a convex body in L.

There is no similar result for the lifting operator π∗L,m. For m < 0 and a convex
body M in L, the function π∗L,mh

′(M, ·) is unbounded and therefore not a support
function. For m = 0, it is only a support function, if it is constant, that is M is a
ball (in L). For m > 0, the lifted function vanishes on L⊥. Hence, if it is the support
function of a body K, we must have K ⊂ L. This immediately implies K = M and
m = 1, the trivial case.

Next, let 1 ≤ j < k ≤ d−1 and assume that K ⊂ Rd is a convex body in L ∈ Ldk.
In the following result, we show the connection between S ′j(K, ·), the j-th surface
area measure of K as a subset of L, and Sj(K, ·), the j-th surface area measure of
K in Rd.

Theorem 5.2. Let 1 ≤ j < k ≤ d− 1, L ∈ Ldk, and K ⊂ Rd be a convex body in L.
Then, (

k−1
j

)
π∗L,−jS

′
j(K, ·) =

(
d−1
j

)
Sj(K, ·). (5.5)
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For centrally symmetric K and j = 1, (5.5) was shown earlier in [4] (up to
missing constants).

Proof. As surface area measures depend weakly continuously on K and the lifting
is a weakly continuous operator, it is enough to prove (5.5) for polytopes K and
then use approximation. Let K ⊂ L be a polytope and let Fj(K) be the family of
its j-faces. For F ∈ Fj(K), let N(K,F ) and N ′(K,F ) be the normal cones of K at
F in Rd, respectively in L. Then, we have

N(K,F ) = N ′(K,F ) + L⊥. (5.6)

The j-th surface area measure of K relative to L can be written as(
k−1
j

)
S ′j(K, ·) =

∑
F∈Fj(K)

ωL
′

k−j−1(N ′(K,F ) ∩ (·))Vj(F ),

see [28, (4.2.11) and (4.2.18)]. Here L′ ⊂ L is the linear hull of N ′(K,F ). We apply
the definition of the lifting π∗L,−j, equation (5.6) and the decomposition (2.3) in the
space L′ + L⊥:

π∗L,−j
(
ωL
′

k−j−1(N ′(K,F ) ∩ (·)))
=

∫
Sk−j−1(L′)∩N ′(K,F )

∫
Hd−k(L,v)∩(·)

〈v, w〉k−j−1 dw dv

=

∫
Sk−j−1(L′)

∫
Hd−k(L,v)∩(·)

1N(K,F )(v)〈v, w〉k−j−1 dw dv

=
(
π
∗(L′+L⊥)
L′,0 ωL

′
k−j−1

)
(N(K,F ) ∩ (·))

= ωL
′+L⊥

d−j−1 (N(K,F ) ∩ (·)).
This implies(

k−1
j

)
π∗L,−jS

′
j(K, ·) =

∑
F∈Fj(K)

ωL
′+L⊥

k−j−1 (N(K,F ) ∩ (·))Vj(F )

=
(
d−1
j

)
Sj(K, ·).

A translative Crofton-type formula for surface area measures involving πL,1 is
given in [10]; see also [25]. It contains the special case∫

L⊥
S ′k−1((K + x) ∩ L, ·) dx = πL,1Sd−1(K, ·), (5.7)

where K is an arbitrary convex body in Rd. Lifting with π∗L,1−k implies(
d−1
k−1

) ∫
L⊥
Sk−1((K + x) ∩ L, ·) dx = π∗L,1−kπL,1Sd−1(K, ·), (5.8)

a result which will be used later.
If K is a star body in Rd, we have

ρ(K ∩ L, ·) = πL,∞ρ(K, ·)
on Sk−1(L).

In addition to the previously mentioned connections between geometric oper-
ations on the one hand and spherical liftings and projections on the other hand,
the latter operators also play an important role in the theory of zonoids and their
generalizations, see [4] (where πL,1 is denoted πL and πL,−1 is denoted τL) and the
references therein.
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6 Averaging of sets

In the introduction, we described two general principles for averaging lower dimen-
sional data. The first one was to average the (lower dimensional) sets directly. In
the case of (central) sections of star bodies, this will usually be based on radial
addition. For projections (or affine sections) of convex bodies we have two different
additions, Minkowski and Blaschke addition. Moreover, different averages arise if
we interpret lower dimensional sets as sets in the pertinent subspace or in Rd. As we
shall see, all these averages can be expressed as integrals of combinations of liftings
and projections.

The first results in this section are mostly taken from [19], the case j = 1 is also
treated in [20].

Definition 6.1. For 1 ≤ k ≤ d− 1 and −k < m, j <∞, we define the mean lifted
projection π

(k)
m,j by

(π
(k)
m,jµ)(A) =

∫
Ld

k

(π∗L,mπL,jµ)(A) dL, (6.1)

for µ ∈M(Sd−1) and A ∈ B(Sd−1).

This definition makes sense, since the integrand is defined for νk-almost all L
by Lemma 4.3. Moreover, π

(k)
m,j is a weakly continuous linear operator, mapping the

spaceM(Sd−1) into itself, and commuting with rotations in SOd. By definition, π
(k)
m,j

can also be applied to integrable functions f on Sd−1, and then yields a function
π

(k)
m,jf . Due to (4.5), (4.4) and Fubini’s theorem, we obtain∫

Sd−1

f d(π
(k)
m,jµ) =

∫
Sd−1

(π
(k)
j,mf) dµ, (6.2)

for any such f and µ ∈ M(Sd−1). In order to obtain some continuity properties of
π

(k)
m,j on functions, we first derive a suitable representation of π

(k)
m,jf . Using formula

(2.4) in the definition of π
(k)
m,j, we get

(π
(k)
m,jf)(v)

=

∫
Ld

k

(π∗L,mπL,jf)(v) dL

=
$k

$d

∫
Lv⊥

k−1

∫
Sd−k(M⊥)

1v+(u)(π∗M∨u,mπM∨u,jf)(v)〈u, v〉k−1 du dM

=
$k

$d

∫
Lv⊥

k−1

∫
Sd−k(M⊥)

∫
Sd−k(M⊥)∩u+

1v+(u)‖v|(M ∨ u)‖m〈u, v〉k−1

× f(w)〈u,w〉k+j−1 dw du dM

=
$k

$d

∫
Lv⊥

k−1

∫
Sd−k(M⊥)

f(w)I(v, w) dw dM (6.3)

where

I(v, w) =

∫
Sd−k(M⊥)

1v+∩w+(u)〈u, v〉k+m−1〈u,w〉k+j−1 du.
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Obviously, 0 ≤ I(v, w) ≤ $d−k+1 and I(v, w) is continuous in v and w. Conse-

quently, π
(k)
m,j is a continuous endomorphism on the Banach space C(Sd−1). Proposi-

tion 3.2 shows that it is self-adjoint, that is,∫
Sd−1

(π
(k)
m,jf)(u) g(u) du =

∫
Sd−1

f(u) (π
(k)
m,jg)(u) du,

for f, g ∈ C(Sd−1). A comparison with (6.2) now shows that

π
(k)
m,j = π

(k)
j,m,

a relation that can also derived from the next theorem, where we explicitly describe
the integral kernel of the spherical integral operator π

(k)
m,j. This result follows ideas

in [7], the special case π
(k)
1,1−k has been treated in [20, Theorem 3.2].

Theorem 6.2. Assume 1 ≤ k ≤ d− 1, −k < m, j <∞ and µ ∈M(Sd−1). Then

π
(k)
m,jµ = γ

∫
Sd−1∩(·)

∫
Sd−1

K
(k)
m,j(〈u, v〉)µ(du) dv, (6.4)

where
γ =

$d+k+m+j−1$d−k$k

$2k+m+j$d$d−1

(6.5)

and

K
(k)
m,j(t) = (1− t2)(1−k)/2

∫ π−arccos(t)

0

sink+m−1(s) sink+j−1(s+ arccos(t)) ds,

for −1 ≤ t ≤ 1.

Proof. Let γ be the constant given by (6.5). By (6.2) and Fubini’s theorem, it is
enough to show

(π
(k)
m,jf)(v) = γ

∫
Sd−1

f(w)K
(k)
m,j(〈v, w〉) dw,

for all continuous functions f and all unit vectors v. Combining (6.3) with (2.5)
gives

(π
(k)
m,jf)(v) =

$k

$d

∫
Lv⊥

k−1

∫
Sd−k(M⊥)

f(w)I(v, w) dw dM

=
$k$d−k
$d$d−1

∫
Sd−1

f(w)I(v, w)(1− 〈v, w〉2)(1−k)/2 dw.

We can identify M⊥ with Rd−k+1 and decompose ωM
⊥

d−k using (2.3) in this space
to obtain

I(v, w) =

∫
S1(v∨w)

∫
Hd−k−1(v∨w,z)

1v+∩w+(u)〈u, v〉k+m−1 × 〈u,w〉k+j−1〈u, z〉 du dz.

For any pair (u, z) of integration variables, we have

〈u, v〉 = 〈u, z〉〈v, z〉 and 〈u,w〉 = 〈u, z〉〈w, z〉.
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In particular, u ∈ v+ ∩ w+ if and only if z ∈ v+ ∩ w+ and we obtain

I(v, w) =

∫
S1(v∨w)∩v+∩w+

〈v, z〉k+m−1〈w, z〉k+j−1

×
∫
Hd−k−1(v∨w,z)

〈u, z〉2k+m+j−1 du dz

=
$d+k+j+m−1

$2k+m+j

∫
S1(v∨w)∩v+∩w+

〈v, z〉k+m−1〈w, z〉k+j−1 dz,

where in the last step we used the fact that the inner integral is independent of z
and can be determined using (4.2).

Finally, we identify v ∨ w with R2. Due to the invariance properties of ω1 with
respect to rotations and reflections (at arbitrary lines through the origin), we may
assume v = (0, 1) and w to be in the right closed half-plane. Let α = α(v, w) =
arccos(〈v, w〉) be the (smaller) angle between v and w. The parametrization z =
(cos s, sin s) with s ∈ [0, 2π) implies

I(v, w) =
$d+k+j+m−1

$2k+m+j

∫ π−α

0

sink+m−1(s) sink+j−1(s+ α) ds.

This representation of I(v, w) can be substituted into (5.1), to yield the required
result.

Definition 6.1 can be extended to the case m =∞.

Definition 6.3. For 1 ≤ k ≤ d − 1 and −k < j < ∞, we define the mean lifted
projection π

(k)
∞,j by

(π
(k)
∞,jµ)(A) =

∫
Ld

k

(π∗L,∞πL,jµ)(A) dL,

for µ ∈M(Sd−1) and A ∈ B(Sd−1).

Again, we observe that π
(k)
∞,j is a weakly continuous linear operator, mapping

M(Sd−1) to itself, and commuting with rotations ϑ. The kernel representation of

π
(k)
∞,j is given in the following theorem; cf. [20, Theorem 3.2] for j = 1.

Theorem 6.4. Let −k < j <∞, and µ ∈M(Sd−1). Then

π
(k)
∞,jµ =

$d−k$k

$d$d−1

∫
Sd−1∩(·)

∫
Sd−1

K
(k)
∞,j(〈u, v〉)µ(du) dv (6.6)

with
K

(k)
∞,j(t) = 1t≥0t

k+j−1(1− t2)(1−k)/2, −1 ≤ t ≤ 1.

Proof. It would be possible to repeat the proof of Theorem 6.2 with appropriate
modifications. We prefer however an approximation argument, which will make use
of the statement of Theorem 6.2. For fixed µ ∈ M(Sd−1) and L ∈ Ldk, the weak
convergence

lim
m→∞

$k+m

$d+m

π∗L,mπL,jµ = π∗L,∞πL,jµ
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follows from (4.7). The total variations of all the members of this sequence are
bounded from above by the total variation of µ, so Lebesgue’s dominated theorem
yields

lim
m→∞

$k+m

$d+m

π
(k)
m,jµ = π

(k)
∞,jµ.

Theorem 6.2 states that $k+m

$d+m
π

(k)
m,jµ has Radon-Nikodym derivative

γm

∫
Sd−1

$k+m

$k+m+1

K
(k)
m,j(〈u, ·〉)µ(du)

with
γm =

$k+m+1$d+k+m+j−1$d−k$k

$d+m$2k+m+j$d$d−1

→ $d−k$k

$d$d−1

as m→∞, by Stirling’s formula. The functions

(u, v) 7→ $k+m

$k+m+1

K
(k)
m,j(〈u, v〉)

≤ (1− 〈u, v〉2)(1−k)/2 $k+m

$k+m+1

∫ π

0

sink+m−1(s) ds

= (1− 〈u, v〉2)(1−k)/2

are bounded uniformly in m by a µ× ωd−1-integrable function. For t 6= 0, we have

lim
m→∞

$k+m

$k+m+1

K
(k)
m,j(t) = K

(k)
∞,j(t),

as the probability measures

$k+m

$k+m+1

∫
(·)

sink+m−1(s)10≤s≤π ds

converge weakly to the Dirac measure δπ/2, as m→∞. The claim therefore follows
once more by an application of the Lebesgue dominated theorem.

The operator π
(k)
∞,j is self-adjoint, if applied to continuous functions, in the sense

that ∫
Sd−1

(π
(k)
∞,jf)(u) g(u) du =

∫
Sd−1

f(u) (π
(k)
∞,jg)(u) du, (6.7)

for f, g ∈ C(Sd−1). Note that, by (4.8) and (4.4), the transpose of π
(k)
∞,j is the

operator π
(k)
j,∞ on C(Sd−1), given by

(π
(k)
j,∞f)(u) =

∫
Ld

k

(π∗L,jπL,∞f)(u) dL, u ∈ Sd−1.

(6.7) shows that π
(k)
∞,j, restricted to C(Sd−1), coincides with π

(k)
j,∞. However, π

(k)
j,∞µ is

not defined for measures µ.
We mention some special cases. For k = j = 1, f ∈ C(Sd−1) and u ∈ Sd−1, we

obtain

(π
(1)
∞,1f)(u) = 2$−1

d

∫
Sd−1∩u+

〈u, v〉f(v) dv.
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For even f , this yields

$d(π
(1)
∞,1f)(u) = (Cf)(u), (6.8)

hence π
(1)
∞,1f coincides up to a factor with the cosine transform Cf of f , which we

discussed in Example 1.
The operator π

(1)
∞,0 is a multiple of the spherical cap transform (also called the

hemispherical transform, see [16]), since

$d

2
(π

(1)
∞,0f)(u) =

∫
Sd−1∩u+

f(v) dv, u ∈ Sd−1,

for all continuous f .
Concerning Example 3 (the projection mean body), we now see from (5.2)

and (6.1), that

h(Pk(K), ·) = π
(k)
1,∞h(K, ·).

Thus, (6.6) implies

h(Pk(K), u) =
$d−k$k

$d$d−1

∫
Sd−1∩u+

cosk α(u, v)

sink−1 α(u, v)
h(K, v) dv, u ∈ Sd−1,

where α(u, v) is again the (smaller) angle between u and v.
For the Blaschke section body in Example 4, (5.7) implies that

Sd−1(Bk(K), ·) = π
(k)
∞,1Sd−1(K, ·).

Since π
(k)
∞,1 = π

(k)
1,∞, this shows the result mentioned in the introduction, namely

that Bk(K) and Pk(K) are associated with the same operator. In particular,
Sd−1(Bk(K), ·) has ωd−1-density

$d−k$k

$d$d−1

∫
Sd−1∩(·)+

cosk α(·, v)

sink−1 α(·, v)
Sd−1(K, dv).

This result was already stated in [25, Theorem 2], in even more general form (for
support measures of sets of positive reach).

The following two examples concern variations of section and projection means.

Example 6 (Blaschke section body of the second kind). As a variant, we
consider the k-th Blaschke section body B̃k(K) of the second kind. In contrast to
Example 4, the integrand is the (k − 1)-st surface area measure of (K + x) ∩ L,
considered as a subset of Rd. The convex body B̃k(K) is defined by

Sd−1(B̃k(K), ·) =

∫
Ld

k

∫
L⊥
Sk−1((K + x) ∩ L, ·) dx dL.

Relation (5.8) implies

Sd−1(B̃k(K), ·) =

(
d− 1

k − 1

)−1

π
(k)
1,1−kSd−1(K, ·).
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Now (6.4) shows that this measure has the ωd−1-density∫
Sd−1

sin1−k α(·, v)f(α(·, v))Sd−1(K, dv)

with

f(t) =

(
d− 1

k − 1

)−1
$d+1$d−k$k

$d$d−1$k+2

∫ 1

− cos t

(1− s2)(k−1)/2ds.

This result is taken from [20, Theorem 3.2].

In the following we introduce variations of the projection mean bodies Pk(K)
These variations were already mentioned in [19, p. 110] and are derived from K by
an m-weighted projection which produces a convex body in L ∈ Ldk. These bodies
are then thought of as bodies in Rd and averaged over all L.

Example 7 (Support body). In order to define the k-th m-weighted support body
Wk,m(K) of K, let L be some k-dimensional subspace and m > −k. Theorem 5.1
implies that the function

u 7→
∫
Hd−k(L,u)

h(K, v)〈u, v〉k+m−1 dv = (πL,mh(K, ·))(u)

on Sk−1(L) is the support function of a convex body WL,m(K) in L. Interpreting
this set as a (lower dimensional) convex body in Rd, we can average in the sense of
Minkowski addition with respect to all k-dimensional planes L and obtain a support
function of a convex body Wk,m(K) given by

h(Wk,m(K), u) =

∫
Ld

k

h(WL,m(K), u) dL = (π
(k)
1,mh(K, ·))(u), u ∈ Sd−1.

Due to Corollary 8.2 below, the 1-weighted support body Wk,1(K) determines K for
all k. The same holds true for Wk,2(K).

We see again that the Examples 6 and 7 with m = 1− k are both related to the
same spherical operator π

(k)
1,1−k.

With respect to star bodies K, the situation is slightly different. It is not
meaningful to average the sections K ∩ L over all L ∈ Ldk as an integral of
radial functions, since ρ(K ∩ L, ·) = 0 outside Sk−1(L). Instead, we can con-
sider ρ(K ∩ L, ·) = πL,∞ρ(K, ·) as a measure on Sk−1(L), extend it to Sd−1 by
π∗L,∞πL,∞ρ(K, ·) and average over L. The resulting measure is however proportional
to
∫

(·) ρ(K, u) du, as a simple invariance argument shows, hence the corresponding

average operator is trivial.

We now use the Laplace-Beltrami operator ∆ to obtain connections between different
operators π

(k)
∞,j. Theorem 3.4 can be applied to the operators T = π

(k)
∞,j. It turns out

that π
(k−2)
∞,j , π

(k)
∞,j and π

(k+2)
∞,j are closely related by the application of ∆. This is made

precise in the next proposition, see also [21, Proposition 2] for the case j = 1. It is
convenient to extend the definition of π

(k)
∞,j to k = −1 and k = 0 using Theorem 6.4.

By definition, π
(−1)
∞,j and π

(0)
∞,j map the measure µ to the function given by (6.6) with

k = −1 and k = 0, respectively, where $−1 is given by (2.1) and $0 = 1.
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Proposition 6.5. For d ≥ 3 and f ∈ C(Sd−1) the following equalities hold in the
sense of distributions.

(a) For 2 ≤ k ≤ d− 3 and 3− k ≤ j <∞ we have(
∆− ak

)
π

(k)
∞,jf = bkπ

(k−2)
∞,j f − ckπ(k+2)

∞,j f. (6.9)

Here b2 = (d− 2)(j + 1)j and the other coefficients are given by

ak = (2k− d)(k+ j − 1)− j, bk =
d− k
k − 2

(k+ j − 1)(k+ j − 2), ck = k(k− 1).

(b) For k = d− 2 ≥ 3 and 3− k ≤ j <∞ we have(
∆− ad−2

)
π

(d−2)
∞,j f = bd−2π

(d−4)
∞,j f − p f

with p = (d−2)(d−3)
$d−1

.

(c) For k = 1 and 2 ≤ j <∞ we have(
∆− a1

)
π

(1)
∞,jf = b1π

(−1)
∞,j f

For k = j = 1, we have (
∆ + (d− 1)

)
π

(1)
∞,1f =

2

$d

Rf, (6.10)

where R is the spherical Radon transform.

Proof. By Theorem 6.4, T = π
(k)
∞,j satisfies the conditions of Theorem 3.4 with the

function
Gk(x) =

$d−k$k

$d$d−1

1[0,1](x)xk+j−1(1− x2)(1−k)/2.

By Theorem 3.4(b), the main step is to calculate D∗dFk for

Fk(x) = 1[−1,1](x)Gk(x)w(x) =
$d−k$k

$d$d−1

1[0,1](x)xk+j−1(1− x2)(d−k−2)/2,

x ∈ R. This can be done introducing the functions

fr,s(x) = 1[0,1](x)xr(1− x2)s/2, x ∈ R, (6.11)

and using the fact that

f ′r,s =


rfr−1,s − sfr+1,s−2, if r > 0, s > 0
rfr−1,s − δ1, if r > 0, s = 0
δ0 − sf1,s−2, if r = 0, s > 0
δ0 − δ1, if r = 0, s = 0

holds in the sense of distributions. For example, in case (a), we obtain

D∗dFk = akFk + bkFk−2 + ckFk+2.
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The right hand side is an integrable function, so (3.10) implies (6.9).

The case (b) and the first case of (c) are treated the same way. Note however,
that the case k = j = 1 in (c) leads us out of the class of mean lifted projections, as
we obtain

D∗dF1 = (1− d)F1 +
2

$d

δ0.

The right hand side is not a regular distribution, so (3.10) cannot be used. One
could extend Theorem 3.4(b) to measures (replacing regular distributions) on R,
but (6.10) also follows more directly: It is well known ([12, Proposition 2.1]) that(
∆ + (d − 1)

)
C = 2R holds in the sense of distributions. Together with (6.8), this

implies (6.10).

Theorem 3.4 can also be applied to determine ∆π
(k)
m,j, for m 6=∞. Typically, the

result is again an integral transform with an integrable kernel function. However,
it cannot be written as a linear combination of mean lifted projections, and we
therefore omit the explicit formulas here.

7 Directed averages

A second possible average process which produces functions on Sd−1 arises if, for
a given u ∈ Sd−1, a scalar functional ϕ of K|L (convex case) or K ∩ L (star body

case) is averaged over all L ∈ L[u]
k , that is, over all k-spaces containing the given

direction u.

For example, if K ∈ Kd, ϕ(K|L) could be the volume Vk(K|L), the averaged
function is then

V k(K, u) =

∫
L[u]

k

Vk(K|L) dL, u ∈ Sd−1.

Since Vk(K|L) = Vk(−K|L), the corresponding operator can only be injective on
even functions. A similar approach is possible for central sections of star bodies K,
the averaged section function is then

Rk(K, u) =

∫
L[u]

k

Vk(K ∩ L) dL, u ∈ Sd−1. (7.1)

Here, we recall that

Vk(K ∩ L) =
1

k

∫
Sk−1(L)

ρk(K, v) dv. (7.2)

Again, the corresponding operator can only be injective on even functions.

In order to obtain better injectivity results, we may allow the functional ϕ not
only to depend on K and L, but also on u, for example by considering only the ”half”
of the projection K|L or section K ∩ L which is in direction u. This slightly vague
formulation can be made precise analytically by restricting functions and measures
to the half-sphere u+ ∩ Sd−1, respectively u+ ∩ Sk−1(L), L ∈ Ldk.
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A first example of this kind is the directed section mean presented in the in-
troduction (Example 5). As a generalization of (7.1) and (7.2), this function was
defined by

sk(K, u) =
1

k

∫
L[u]

k

∫
Sk−1(L)∩u+

ρk(K, v) dv dL, u ∈ Sd−1.

For the question as to whether K is determined by the function sk(K, ·), the power
k in the integrand does not play a role. We therefore may and will replace it by 1,
that is, we consider

s1k(K, u) =
1

k

∫
L[u]

k

∫
Sk−1(L)∩u+

ρ(K, v) dv dL, u ∈ Sd−1.

Example 8 (Directed projection mean). The analogue for projections of a con-
vex body K is the directed projection mean

p1k(K, u) =
1

k

∫
L[u]

k

∫
Sk−1(L)∩u+

h(K, v) dv dL, u ∈ Sd−1.

Up to a constant, p1k(K, ·) is the directed version of the averaged mean width of the
projections, since∫

Sk−1(L)∩u+

h(K, v) dv +

∫
Sk−1(L)∩(−u)+

h(K, v) dv = cdV1(K|L).

Directed versions of other intrinsic volumes of K|L (in particular, a directed
version of the k-dimensional volume Vk(K|L), based on the tensor formulas of [29]
and [31]), have also been studied (see [14] and [15]). However, their averages depend
in a nonlinear way on K (as long as Minkowski addition is considered), therefore
we concentrate on p1k(K, ·), in the following. Later, we also discuss a variant of
p1k(K, ·), where the support function is replaced by the first surface area measure.

It is obvious that K 7→ s1k(K, ·) (for star bodies K) and K 7→ p1k(K, ·) (for
convex bodies K) lead to the same linear operator on C(Sd−1) and we now aim
to describe it in terms of spherical projections. Due to the different nature of the
averaging process, there are no liftings involved.

Definition 7.1. For 1 ≤ k ≤ d− 1 and 0 ≤ m, j <∞, we define the mean directed
projection τ

(k)
m,j by

(τ
(k)
m,jµ)(u) =

∫
L[u]

k

(πL[u],mπL,jµ)({u}) dL, (7.3)

for u ∈ Sd−1 and µ ∈M(Sd−1).
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For 0 ≤ m, j <∞, we have

(πL[u],mπL,jµ)(u) =

∫
Sk−1(L)\L⊥

1{pr[u](w)∈{u}}‖w|[u]‖m (πL,jµ)(dw)

=

∫
Sk−1(L)∩(u+\u⊥)

‖w|[u]‖m (πL,jµ)(dw)

=

∫
Sd−1∩(u+\u⊥)

(π∗L,j‖(·)|[u]‖m)(x)µ(dx)

=

∫
Sd−1∩(u+\u⊥)

‖x|L‖j ‖prL(x)|[u]‖m µ(dx).

For µ =
∫

(·) fdωd−1, we consider τ
(k)
m,j also as an operator on functions, hence

(τ
(k)
m,jf)(u) =

∫
L[u]

k

∫
Sd−1∩u+

‖x|L‖j ‖prL(x)|[u]‖m f(x) dx dL. (7.4)

In Definition 7.1 we excluded the cases where one of the numbers m or j equals ∞,
as the corresponding spherical projections cannot naturally be defined on the space
of measures. On the space of continuous functions we may use (7.3) with µ replaced
by f and the singleton {u} replaced by u. This yields

(τ (k)
m,∞f)(u) =

∫
L[u]

k

∫
Sk−1(L)∩u+

f(v)〈u, v〉m dv dL,

and

(τ
(k)
∞,jf)(u) =

∫
L[u]

k

∫
Hd−k(L,u)

f(v)〈u, v〉j dv dL,

0 ≤ m, j < ∞. Both these relations can alternatively be obtained by considering
the limits j → ∞ and m → ∞ in the appropriately normalized right hand side of
(7.4). We see that

s1k(K, ·) =
1

k
τ

(k)
0,∞ρ(K, ·), p1k(K, ·) =

1

k
τ

(k)
0,∞h(K, ·).

As we shall now show, the operator τ
(j)
s,∞ fits into our series of mean lifted pro-

jections π
(k)
m,∞.

Theorem 7.2. For k ∈ {1, . . . , d− 1} and m > −k, we have

τ
(d−k+1)
k+m−1,∞ = π(k)

m,∞.

In particular τ
(j)
0,∞ = π

(d−j+1)
j−d,∞ , for j = 1, . . . , d− 1.

Proof. For f, g ∈ C(Sd−1), the self-adjointness of π
(k)
m,∞ and Fubini’s theorem imply∫

Sd−1

(π(k)
m,∞f)(u)g(u) du

=

∫
Sd−1

f(u)(π(k)
m,∞g)(u) du

=

∫
Ld

k

∫
Sd−1

‖u|L‖mf(u)g (prL(u)) du dL.
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Applying (2.3) yields∫
Sd−1

(π(k)
m,∞f)(u)g(u) du

=

∫
Ld

k

∫
Sk−1(L)

g(v)

∫
Hd−k(L,v)

〈v, w〉k+m−1f(w) dw dv dL.

Finally, we use [33, Satz 6.1.1] to obtain∫
Sd−1

(π(k)
m,∞f)(u)g(u) du

=

∫
Sd−1

g(u)

∫
L[u]

k

∫
Sd−k(L⊥∨u)∩u+

〈u,w〉k+m−1f(w) dw dLdu

=

∫
Sd−1

g(u)

∫
L[u⊥]

d−k

∫
Sd−k(M∨u)∩u+

〈u,w〉k+m−1f(w) dw dM du

=

∫
Sd−1

g(u)

∫
L[u]

d−k+1

∫
Sd−k(L)∩u+

〈u,w〉k+m−1f(w) dw dLdu

=

∫
Sd−1

g(u)(τ
(d−k+1)
k+m−1,∞f)(u) du.

Since g is arbitrary, this proves the result.

If we concentrate on even functions, we obtain a further connection between
mean lifted projections and mean directed projections. Namely, for f ∈ C(Sd−1)
even and u ∈ Sd−1, we have

(π
(k)
m,1−kf)(u) =

1

2

∫
Ld

k

‖u|L‖m
∫
Sd−k(L⊥∨u)

f(v) dv dL.

An invariance argument shows that the image measure of
∫

(·) ‖u|L‖m dL under the

mapping L 7→ L⊥ ∨ u is a multiple of ν
[u]
d−k+1. Hence,

(π
(k)
m,1−kf)(u) =

cd,m,k
2

∫
L[u]

d−k+1

∫
Sd−k(L)

f(v) dv dL, (7.5)

where cd,m,k is given by (4.6). In view of the definition of τ
(d−k+1)
0,∞ and Theorem 7.2

we obtain
π

(k)
m,1−kf = cd,m,kτ

(d−k+1)
0,∞ f = cd,m,kπ

(k)
∞,1−kf

for all even continuous functions f . Consequently, on even functions, the operators
π

(k)
m,1−k, m = 1− k, 2− k, . . . are proportional to τ

(d−k+1)
0,∞ and π

(k)
∞,1−k.

In particular, for centrally symmetric K, (7.5) implies

(kcd,1,d−k+1)p1k(K, ·) = cd,1,d−k+1τ
(k)
0,∞h(K, ·)

= π
(d−k+1)
1,k−d h(K, ·) = h(Wd−k+1,k−d(K), ·).

Hence p1k(K, ·) and h(Wd−k+1,k−d(K), ·) coincide (up to constants) with the invariant
average of the mean width of all projections of the symmetric body K onto k-planes
containing u.
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Another instance, where we get a connection between directed means and mean
lifted projections, is the class of transforms τ̃

(k)
m defined on C∞(Sd−1) by

(τ̃ (k)
m f)(u) =

∫
L[u]

k

∫
Sk−1(L)∩u+

(
∆LπL,∞f

)
(v)〈u, v〉m dv dL,

where, 2 ≤ k ≤ d and m ≥ 0. This can be written more concisely as

(τ̃ (k)
m f)(u) =

∫
L[u]

k

(
πL[u],m∆LπL,∞f

)
(u) dL.

We include here the case k = d, which reads

(τ̃ (d)
m f)(u) =

∫
Sd−1∩u+

(
∆f
)
(v)〈u, v〉m dv = $d/2

(
(π(1)
∞,m∆)f

)
(u),

by Theorem 6.4.

Theorem 7.3. Fix 2 ≤ k ≤ d. Then we have

(a) 1
$d−1

τ̃
(k)
0 = 1

$k−1
τ̃

(d)
0 = $d

2$k−1
π

(1)
∞,0∆,

(b) τ̃
(k)
1 = $k−1

$d−1
R− pk π(d−k+1)

∞,k−d+1,

(c) τ̃
(k)
m = qkπ

(d−k−1)
∞,k−d+m − pk π(d−k+1)

∞,k−d+m for m ≥ 2.

Here the constants are given by

qk =
m(m− 1)$d$d−1$k−1

$k+1$d−k−1

and pk =
(k − 1)$d$d−1

$d−k+1

.

Proof. For an orthonormal basis x1, . . . , xk of L, we have

‖ ∂
2

∂x2
i

(
πL,∞f

)̌ ‖∞ = ‖ ∂
2

∂x2
i

f̌‖∞ ≤ max
q∈Nd

0,|q|≤2
‖∂qf‖∞ =: ‖f‖C2 ,

so we get ‖∆LπL,∞f‖∞ ≤ k‖f‖C2 and

‖τ̃ (k)
m f‖∞ ≤ k$k/2‖f‖C2 .

Thus, τ̃
(k)
m is a linear continuous operator from C∞(Sd−1) to C(Sd−1) and it inter-

twines the action of the rotation group. As the right hand sides of (a), (b) and (c)
have the same properties, we may apply Corollary 3.3. It is therefore enough to
prove the identities when applied to functions of the form ϕ(〈u, ·〉) with ϕ(x) = xn,
n = 0, 1, 2, . . . and evaluated at u. As u ∈ L, we have

∆LπL,∞ϕ(〈u, ·〉) = ∆Lϕ(〈u, ·〉) = (Dkϕ)(〈u, ·〉),
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where (3.9) was used in the k-dimensional space L. Introducing cylindrical coordi-
nates, we arrive at

(
τ̃ (k)
m ϕ(〈u, ·〉)(u) =

∫
L[u]

k

∫
Sk−1(L)∩u+

(Dkϕ)(〈u, v〉)〈u, v〉m dv dL

= $k−1

∫ 1

0

(Dkϕ)(x)xm(1− x2)(k−3)/2dx

= $k−1

(
D∗kfm,k−3)(ϕ),

where the functions (6.11) are used. Explicit calculation for m = 0 shows that(
D∗kf0,k−3

)
= δ′0 (7.6)

is independent of k and thus

$d−1

(
τ̃

(k)
0 ϕ(〈u, ·〉)(u) = $k−1

(
τ̃

(d)
0 ϕ(〈u, ·〉)(u),

which implies (a). (Actually, (7.6) shows that τ̃
(k)
m is, up to a constant, equal to

the derivative of the generalized spherical Radon transform at height x = 0, see, for
example, [22] where this transform is defined.)

For m = 1 we get (
D∗kf1,k−3

)
= δ0 − (k − 1)f1,k−3.

Using (
R(ϕ(〈u, ·〉))(u) = $d−1ϕ(0)

and Theorem 6.4, (b) is obtained. Finally, m ≥ 2 implies(
D∗kfm,k−3

)
= m(m− 1)fm−2,k−1 − (k − 1)fm,k−3,

which, in view of Theorem 6.4, implies (c).

Explicitly, Theorem 7.3(a) reads∫
L[u]

k

∫
Sk−1(L)∩u+

(
∆LπL,∞f

)
(v) dv dL =

∫
Sd−1∩u+

(
∆f
)
(v) dv,

which was shown in [15, Theorem 7 and 8] by calculating and comparing the mul-
tipliers of the operators on both sides.

8 Harmonic analysis of the operators π
(k)
m,j

As we have seen, for finite values of m and j, the operator π
(k)
m,j can be considered

as a self-adjoint and intertwining continuous linear operator on C(Sd−1). According
to (3.4) the corresponding multipliers are given by

ad,k,m,j,n =
(
π

(k)
m,jP

d
n(〈u, ·))(u). (8.1)
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If µ ∈M(Sd−1) with π
(k)
m,jµ = 0, we have

ad,k,m,j,n

∫
Sd−1

hn(u)µ(du) =

∫
Sd−1

(
π

(k)
j,mhn

)
(u)µ(du) = 0,

for all h ∈ Hd
n and for all n = 0, 1, . . . . If the multipliers ad,k,m,j,n are all nonzero, the

measure µ would annihilate all spherical harmonics and, therefore, all continuous
functions. Consequently, µ = 0 which implies that π

(k)
m,j : M(Sd−1) → M(Sd−1)

would be injective.

In order to find an explicit representation for the multipliers ad,k,m,j,n, we will

make use of the connection coefficients cd,d
′

n,t . These are positive numbers which allow
us to express d-dimensional Legendre polynomials in terms of Legendre polynomials
of dimension d′ ∈ {2, . . . , d− 1}, see [1]. We have

P d
n(x) =

[n
2 ]∑
t=0

cd,d
′

n,t P
d′
n−2t(x), (8.2)

where

cd,d
′

n,t =
(2(n− 2t) + d′ − 2)n!

(d′ − 2)t!(n− 2t)!

(
d− 2

2

)
n−t

(
d− d′

2

)
t

(d′ − 2)n−2t(
d′

2

)
n−t

(d− 2)n

.

Here, we have used the Pochhammer symbol

(a)n = a(a+ 1) · · · (a+ n− 1), for a ∈ R;

we also put (a)0 = 1, for all a ∈ R. In the sequel, it will be convenient to extend
(8.2) to include the case d′ = d ≥ 2. For this extension, we put cd,dn,t = 0 for t > 0

and cd,dn,0 = 1. The connection coefficients will allow us to relate the operators π
(k)
m,j

to certain intertwining operators in lower dimensions.

We define the operator Id,p on C(Sd−1) by

(Id,pf) (v) =

∫
Sd−1∩v+

f(u)〈u, v〉p du.

By Theorem 3.4(a) this is a continuous endomorphism of C(Sd−1) which intertwines
the action of SOd. If f is continuous on [−1, 1], we can use cylindrical coordinates
to deduce

(Id,pf(〈v, ·〉)) (v) = $d−1

∫ 1

0

xpf(x)
(
1− x2

)(d−3)/2
dx. (8.3)

We use Proposition 3.2 and (3.4) to see that the multipliers of Id,p are given by

βd,p,n = $d−1

∫ 1

0

P d
n(x)xp(1− x2)(d−3)/2 dx (n = 0, 1, . . . ).
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If d ≥ 2, we have

βd,p,n =


p!

2n(p−n)!( d−1
2 )

n

$d−1$d+p+n

$d+2n−1$p−n+1
, if 0 ≤ n ≤ p,

p!

2p+1( d−1
2 )

p+1

$d−1P
d+2p+2
n−p−1 (0), if p < n

(8.4)

for p > 0 and

βd,0,n =
$d−1

d− 1
P d+2
n−1(0). (8.5)

Both results can be found in [21, proof of Proposition 3], where 2 ≤ p ≤ d− 1 was
assumed, but not needed. Since P d

2n+1(0) = 0 and

P d
2n(0) = (−1)n

(
1
2

)
n(

d−1
2

)
n

, n = 0, 1, 2, . . .

(see [16, Lemma 3.3.8]), the multipliers βd,p,n are explicitly known. In particular,
$−1
d−1βd,p,n is a rational multiple of π for even d and even p + n with n ≤ p. In all

other cases $−1
d−1βd,p,n ∈ Q.

Theorem 8.1. Fix 1 ≤ k ≤ d− 1 and −k < m, j <∞.

(a) The multipliers of π
(k)
m,j satisfy

ad,k,m,j,n =
$k

$d

[n
2 ]∑
t=0

cd,d−k+1
n,t βd−k+1,k+j−1,n−2tβd−k+1,k+m−1,n−2t,

(b) The multipliers of π
(k)
∞,j satisfy

ad,k,∞,j,n =
$k

$d

[n
2 ]∑
t=0

cd,d−k+1
n,t βd−k+1,k+j−1,n−2t. (8.6)

Proof. To prove (a) we use (8.1), definitions of π
(k)
m,j, Is,p and βs,p,n and obtain

ad,k,m,j,n =
(
π

(k)
m,jP

d
n(〈u, ·〉)

)
(u)

=

∫
Ld

k

‖u|L‖m
∫
Hd−k(L,prL(u))

P d
n (〈u, v〉) 〈v, prL(u)〉k+j−1 dv dL

=

∫
Ld

k

‖u|L‖m (Id−k+1,k+j−1P
d
n (〈u, ·〉)) (prL(u)) dL

=

[n
2 ]∑
t=0

cd,d−k+1
n,t βd−k+1,k+j−1,n−2t

∫
Ld

k

‖u|L‖m P d−k+1
n−2t (〈u, prL(u)〉) dL

=

[n
2 ]∑
t=0

cd,d−k+1
n,t βd−k+1,k+j−1,n−2t

∫
Ld

k

‖u|L‖m P d−k+1
n−2t (‖u|L‖) dL.
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In order to continue, we consider integrals of the form∫
Ld

k

f (‖u|L‖) dL,

where f ∈ C(Sd−1) and u ∈ Sd−1. The rotation invariance of νk implies that this
integral is independent of the choice of u ∈ Sd−1. A further application of rotation
invariance gives

$d

∫
Ld

k

f (‖u|L‖) dL =

∫
Sd−1

∫
Ld

k

f (‖u|L‖) dL du

=

∫
Sd−1

f (‖u|L‖) du.

We deduce that, for any L ∈ Ldk,

$d

∫
Ld

k

f (‖u|L‖) dL =

∫
Sk−1(L)

∫
Hd−k(L,v)

|〈w, v〉|k−1f (‖w|L‖) dw dv

=

∫
Sk−1(L)

∫
Hd−k(L,v)

|〈w, v〉|k−1f (|〈w, v〉|) dw dv

=

∫
Sk−1(L)

(Id−k+1,k−1f (|〈v, ·〉|)) (v) dv.

Combining this with our earlier calculation of ad,k,m,j,n and (8.3) gives (a).
To show (b), the same arguments as above can be used:

ad,k,∞,j,n =
(
π

(k)
∞,jP

d
n (〈u, ·〉)

)
(u) =

∫
Ld

k

‖u|L‖jP d
n (‖u|L‖) dL

=
1

$d

∫
Sd−1

‖u|L‖jP d
n (‖u|L‖) du

=
$d−k$k

$d

∫ 1

0

xk+j−1P d
n(x)

(
1− x2

)(d−k−2)/2
dx

=
$k

$d

[n
2 ]∑
t=0

cd,d−k+1
n,t βd−k+1,k+j−1,n−2t.

This completes the proof.

Corollary 8.2. Let 2 ≤ k ≤ d be given.
Then π

(k)
j,j and π

(k)
j,j+1 are injective for all −k < j <∞.

Proof. The injectivity of π
(k)
j,j follows directly from Theorem 8.1(a), which shows

that all the multipliers are positive.
To show that the multipliers of π

(k)
j,j+1 are all positive, we use the abbreviations

d′ = d− k + 1 and p = k + j. According to Theorem 8.1(a) we have

ad,k,j,j+1,n =
$k

$d

[n
2 ]∑
t=0

cd,d
′

n,t βd′,p−1,n−2tβd′,p,n−2t.
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All summands with n − 2t > p (if any) vanish, as evaluation with (8.4) involves a
Legendre polynomial of odd degree. Here we used the fact that p−1 and p obviously
have different parity. All summands with n − 2t ≤ p − 1 are positive due to (8.4).
If n − p is odd, all summands have been treated and we have ad,k,j,j+1,n > 0, since
there is at least one natural t ≤ [n/2] with n− 2t ≤ p− 1. Otherwise,

ad,k,j,j+1,n ≥ $k

$d

cd,d
′

n,(n−p)/2βd′,p−1,pβd′,p,p > 0

again by (8.4) and (8.5).

Although π
(k)
∞,j need not be injective for a fixed k, we can show that certain linear

combinations of these operators for two different dimensions k are injective. Let the
field extension Q(π) be the smallest subfield of R which contains π and all rationals.

Proposition 8.3. Let integers 2 ≤ k < k′ ≤ d − 1 and j ≥ 1 − k be given. If
a, b ∈ R, b 6= 0 are such that a/b 6∈ Q(π), then

a$−1
k π

(k)
∞,j + b$−1

k′ π
(k′)
∞,j

is injective on M(Sd−1).

Proof. It can be seen from (8.6) and (8.4) that the multipliers of

$d

$d−1$k

π
(k)
∞,j and

$d

$d−1$k′
π

(k′)
∞,j

are all in Q(π). It is therefore enough to show that for all n = 0, 1, 2, . . . , at least
one of the multipliers ad,k,∞,j,n and ad,k′,∞,j,n is nonzero. We distinguish two cases
depending on the parities of k and k′.

If k and k′ have different parity, the claim follows from the fact that

ad,k,∞,j,n > 0, for all n such that k + j + n is odd. (8.7)

We show (8.7) for the case, where k + j is odd, the even case follows analogously.
Let n be even. Again from (8.6) and (8.4), and the fact that P d

q (0) = 0 for odd q it
follows that

ad,k,∞,j,n =

k+j−1
2∑
t=0

cd,d−k+1
n,n/2−t βd−k+1,k+j−1,2t

is a sum of positive numbers and hence positive.
The remaining case, where k and k′ have the same parity, can be treated as in

[21, Lemma 1]. Therefore, we keep the arguments short. Assume that there is an
n ∈ N such that ad,k,∞,j,n = ad,k′,∞,j,n = 0. (8.6) and (8.4) imply n ≥ k′ + j + 1.
From ad,k,∞,j,n = 0 and repeated application of Proposition 6.5(a) we conclude that
for all p > 0 such that k + 2p ≤ d− 1,

ad,k+2p,∞,j,n = c(d, p, n)ad,k+2,∞,j,n (8.8)

with some constants c(d, p, n). The condition n ≥ k′ + j + 1 and the fact that the
n-th multiplier of ∆ is −n(n + d − 2) implies that c(d, p, n) > 0 for k + 2p ≤ k′.
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But ad,k′,∞,j,n = 0, so (8.8) implies first ad,k+2,∞,j,n = 0 and then ad,k+2p,∞,j,n = 0
for all k+ 2p ≤ k′. Repeated application of Proposition 6.5(a), starting with k′ and
increasing the dimension k implies ad,d−1,∞,j,n = 0 or ad,d−2,∞,j,n = 0. As d ≥ 4 we
have found p ≥ d/2 with ad,p,∞,j,n = 0. But this is impossible:

As the multipliers of π
(p)
∞,j are, up to non-vanishing multiplicative constants, equal

to ∫ 1

0

xp+j−1(1− x2)(d−p−2)/2P d
n(x) dx,

the arguments in [7] imply that the multipliers of π
(p)
∞,j are all positive as long as

d/2 ≤ p ≤ d− 1 and −p < j <∞.

As mentioned previously in Section 6, the mean projection operator (Example 3)

and the Blaschke section operator (Example 4) both correspond to π
(k)
1,∞. Here, we

have incomplete injectivity results. Roughly speaking, the operators are known to
be injective for k ≥ d/2 and for k = 3, however, they are known to be non-injective
for k = 2 in the dimension d = 14 (see [7], [9] and [10]).

The Blaschke section bodies of the second kind (Example 6) and the k-th support
bodies with weight 1 − k (Example 7) both correspond to the operator π

(k)
1,1−k; see

Section 6. In [19, proof of Satz 3.20] (see also [20, p. 517]) the multipliers of π
(k)
1,1−k

are calculated explicitly for 1 < k < d:

ad,k,1−k,1,n =
(k − 1)(d− 2)

16
(
d+n−3
n

) $d+1$d−k+n+1$k$n+2

$d+n−2$k+n−1$6

for n 6= 1 and ad,k,1−k,1,1 = k
d(d−k)

$d−k. This shows that π
(k)
1,1−k is injective on

M(Sd−1) for all 1 < k < d, and so here we always have injectivity for these opera-
tors.

The directed section mean (Example 5) and the directed projection mean (Ex-

ample 8) correspond to the operator π
(d−k+1)
k−d,∞ (see Section 7). Building on the ideas

in [17] and [18], these were studied in [13] and [14] where equation 8.6 was used to

show that π
(d−k+1)
k−d,∞ is injective for 2 ≤ k < (2d− 3)/5 and for (d− 2)/2 ≤ k ≤ d− 1.

These injectivity properties are based on recursion formulas which were derived us-
ing an algorithm of Zeilberger, see [24]. This algorithm finds formulas for the n-th
multiplier of the form an = pn(d, k)/qn(d, k), where pn, qn are polynomials in the di-
mensions d of the ambient space and k of the sections (projections). Hence, we have
an = 0 (and therefore non-injectivity), if (d, k) is an integer point on the algebraic
curve pn(d, k) = 0. If the curve is singular, there may be an infinite family of such
points and consequently a whole family of pairs (d, k), where injectivity fails. If the
curve is non-singular, Siegel’s theorem guarantees that there are at most finitely
many integer solutions of pn(d, k) = 0. The integer solutions (d, k) which satisfy
2 ≤ k ≤ d− 1 correspond to non-injectivity cases of the integral operator, and these
are usually of an isolated nature. To give an example of these phenomena, we note
that, for π

(d−k+1)
k−d,∞ , we have p5(d, k) = 4(d+ 4)(2d− 5k− 3). It follows that π

(3i+1)
−3i−3,∞

is not injective for any i = 1, 2, . . . . On the other hand p9(d, k) = 24(d + 8)f(d, k)
where

f(d, k) = 16d3− 72d2k+ 126dk2− 105k3 + 72d2− 72dk− 315k2 + 170d− 975k− 525.
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The corresponding algebraic curve can have only finitely many integer points. How-
ever, these do occur. In fact f(60, 25) = 0 and so π

(36)
−35,∞ is not injective.

9 Related tomographic transforms

In this section we collect some examples of tomographic data that can be written
in terms of mean lifted projections, although they are not defined as averages with
respect to k-dimensional planes. The first two examples are tomographic data which
can be expressed using π

(k)
m,j directly, where m <∞, but k = 0. We therefore extend

the definition of mean lifted projections to the case k = 0 using Theorem 6.4.
For this purpose we let π

(0)
m,j be the operator defined by (6.6) with k = 0 (where

$0 = 1). The third example consists of tomographic data that can be expressed as
combinations of two mean lifted projections and the Laplace-Beltrami operator.

Example 9 (Mean section body). For 1 ≤ k ≤ d − 1, the mean section body
Mk(K) of K ∈ Kd is defined by

h(Mk(K), ·) =

∫
Ld

k

∫
L⊥
h(K ∩ (L+ x), ·) dx dL.

Up to a multiplicative constant, Mk(K) can be interpreted as the invariant
Minkowski-average of all intersectionsK∩E, where E runs through all k-dimensional
affine subspaces hitting K.

For k = 2, Goodey and Weil [11] showed that h(Mk(K), ·) coincides with an
integral transform of the surface area measure of K up to a linear term (which
corresponds to a translation of Mk(K)). If M∗

k (K) denotes the centered version of
Mk(K) (the translate of Mk(K) with Steiner point at the origin), then

h(M∗
2 (K), u) =

1

(d− 1)π

∫
Sd−1

α(u,−v) sinα(u,−v)Sd−1(K, dv).

(The constant here is corrected for a missing multiplicative term 1/(2π) in [11].) As
α(u,−v) + α(u, v) = π, this gives

h(M∗
2 (K), ·) =

1

π
π

(0)
1,1Sd−1(K, ·).

In [11], the multipliers of this transform are calculated explicitly and shown to be
all nonzero.

Explicit integral representations of h(Mk(K), ·) for arbitrary convex bodies K
in the case k ≥ 3 are not known. However, using Radon transforms of projection
functions, Goodey [8] showed that in this case Mk(K) determines K in the class of
all centrally symmetric convex bodies.

We also extend the definition of mean lifted projections with m =∞ to the case
k = 0. Let π

(0)
∞,j be the integral transform given by (6.6), where we put $0 = 1. In

particular, π
(0)
∞,1 satisfies

(π
(0)
∞,1µ)(u) =

1

$d−1

∫
Sd−1∩u+

sinα(u, v)µ(dv)

u ∈ Sd−1, µ ∈M(Sd−1).



40 P. Goodey, M. Kiderlen, W. Weil

Example 10 (Upper surface integral). For a convex body K and u ∈ Sd−1 define
the upper boundary ∂uK of K as the set of all boundary points of K which have an
outer unit normal in u+. Then ∂uK is a compact (d− 1)-surface. For 1 ≤ k ≤ d− 1
and u ∈ Sd−1 put

Hk(K, u) =

∫
Lu⊥

k

∫
L⊥
Hk−1

(
∂uK ∩ (L+ x)

)
dx dL (9.1)

(Hj denotes j-dimensional Hausdorff measure). These are the tomographic mea-
surements obtained from contents of sections of the upper boundary with affine
k-planes orthogonal to u.

Note that the subset ∂u+K of ∂uK consisting of all points with an outer normal
in the open half-space u+ \u⊥ can be interpreted as the set of illuminated boundary
points of K from direction u. For ωd−1-almost all u we have Hd−1(∂uK \ ∂u+K) = 0
and for these u we could just as well work with the illuminated part instead of ∂uK.)

Proposition 9.1. Let 1 ≤ k ≤ d − 1, K a convex body and let Hk(K, ·) be given
by (9.1). Then we have

Hk(K, ·) =
$d$k

$k+1

π
(0)
∞,1Sd−1(K, ·).

In particular, the transforms Hk(K, ·), 1 ≤ k ≤ d− 1, differ only by a multiplicative
constant.

Proof. The inner integral in (9.1) can be expressed in terms of the surface area
measure of K,∫

L⊥
Hk−1

(
∂uK ∩ (L+ x)

)
dx =

∫
Sd−1∩u+

‖v|L‖Sd−1(K, dv). (9.2)

This is a special case of a translative integral formula of Crofton type [37, Corol-
lary 1.3.1]. In view of [28, Theorem 4.2.5, (4.2.10)], we have

Hk−1
(
∂uK ∩ (L+ x)

)
= 2Φk−1(K ∩ (L+ x), ∂uK)

for almost all x ∈ L⊥ (here, Φk−1(M, ·) is the (k − 1)-st curvature measure of
M ∈ K), so (9.2) can also be derived from a translative integral formula for curvature
measures, see e.g. [32, Corollary B].

Using (9.2) and Fubini’s theorem, (9.1) becomes

Hk(K, u) =

∫
Sd−1∩u+

∫
Lu⊥

k

‖v|L‖ dLSd−1(K, dv).

As L ⊂ u⊥, we have, for v 6= ±u,

‖v|L‖ = ‖(v|u⊥)|L‖ = ‖pru⊥(v)|L‖‖v|u⊥‖ = ‖pru⊥(v)|L‖ sinα(u, v),

which implies

Hk(K, u) =

∫
Sd−1∩u+

sinα(u, v)

∫
Lu⊥

k

‖pru⊥(v)|L‖ dLSd−1(K, dv).
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Relation (4.6) applied in u⊥ with m = 1 gives

Hk(K, u) =
$d$k

$d−1$k+1

∫
Sd−1∩u+

sinα(u, v)Sd−1(K, dv). (9.3)

The definition of π
(0)
∞,1 implies the assertion.

Motivated by stereological questions, the transform Hd−1(K, ·) was introduced
by Schneider in [30], where (9.3) is derived for k = d − 1 and all the multipliers of
this transform are shown to be nonzero. Together with the above result, this implies
that Hk(K, ·) determines K if known for one k ∈ {1, . . . , d− 1}.

It should be noted that the above considerations can also be applied in a non-
directed setting. If we replace ∂uK in (9.1) with ∂K, then the resulting function is
a multiple of the sine transform of Sd−1(K, ·). The special case k = d− 1 then reads∫ ∞

−∞
Hd−2(∂K ∩ (u⊥ + tu)) dt =

∫
Sd−1

sinα(u, v)Sd−1(K, dv), (9.4)

and was already observed by Schneider [26]. As sinα(v, ·) is the support function of
the unit ball in v⊥, (9.4) implies that Hk(K, ·) is the support function of a convex
body, whenever K is origin symmetric. This is not true in general; note that Hk(K, ·)
need not even be continuous on Sd−1.

We turn to the second class of examples, where combinations of mean lifted projec-
tions and ∆ can be used to express the tomographic data under consideration.

Example 11 (Directed projection mean (first kind)). For 1 ≤ i < k ≤ d− 1,
the average directed projection function (of the first kind) vik(K, ·) of K ∈ Kd is
defined as

vik(K, u) =

∫
L[u]

k

S ′i(K|L, u+ ∩ Sk−1(L)) dL, u ∈ Sd−1.

For i = 1, this function can be expressed more explicitly using(
∆L

k − 1
+ 1

)
h′(M, ·) = S ′1(M, ·),

which is (3.1) applied to a convex body M ⊂ L. Recalling the facts that h′(K|L, ·) =
πL,∞h(K, ·) and that the hemispherical transform in L can be expressed using πL[u],0,
we get

v1k(K, u) =

∫
L[u]

k

(
πL[u],0(

∆L

k − 1
+ 1)πL,∞h(K, ·))(u) dL

=
1

k − 1
(τ̃

(k)
0 h(K, ·))(u) +

(
τ

(k)
0,∞h(K, ·))(u).

Using Theorems 7.3(a) and 7.2 we conclude

v1k(K, ·) =

(
$d$d−1

2(k − 1)$k−1

π
(1)
∞,0∆ + π

(d−k+1)
∞,k−d

)
h(K, ·).
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This shows that v1k(K, ·) can be written as combination of mean lifted projections
and the Laplace-Beltrami operator, applied to the support function ofK. Estimating
the multipliers of this transform, it was shown in [14] that K is determined up to
translation by v1k(K, ·) whenever 2 ≤ k ≤ (2d − 3)/5 or (d − 2)/2 ≤ k ≤ d − 1. A
corresponding stability result for these cases is derived there, as well.
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