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Abstract

In this paper we introduce a general class of transformations of (all or most of) the
class M1, (R?), of d-dimensional L évy measures on R, into itself. We refer to trans-
formations of this type as Y transformations (or Upsilon transformations). Closely
associated to these are mappings of the set .# Z(R?) of all infinitely divisible laws on
R into itself. In considerable generality, the mappings are one-to-one, regularising
and bi-continuous. Furthermore, in many cases the transformations have a stochastic
interpretation in terms of stochastic integrals with respect to Lévy processes.

1 Introduction

In this paper we associate to any Lévy measure y on (0, ) certain transformations, which
we refer to as Upsilon-transformations corresponding to y. There are (at least) three
natural ways of viewing the Upsilon transformations, namely, listed in decreasing order
of generality,

(a) Transformations of Lévy measures: Yy,: D — DﬁL(Rd), where the domain D C
M, (RY) depends on 7.

(b) Transformations Y?: Y2 (R%) — .#2(R¢) of infinitely divisible probability mea-
sures.

(c) Transformations of infinitely divisible probability measures given in terms of ran-
dom integrals:

u '_’L{/fy(t>dzt};

where L{Y'} denotes the law of a random variable Y, fy is a fixed deterministic
function and (Z;) is a Lévy process, such that L{Z; } = L.

In the following we briefly describe the main features established in the paper of the above
three points of view.
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(a) Transformations of Lévy measures. For a o-finite Borel measure p on R4, we
define a new Borel measure Yy(p) on RY by the formula:

[Xy(p)](B) = /pr(xlB) y(dx), (1.1)

for any Borel set B. If [3°(1V x?) y(dx) < oo, then formula (1.1) produces a new Lévy
measure Yy(p) from any Lévy measure p, but if [;°(1V x?) y(dx) = oo, this is only true for
certain Lévy measures p, and we refer to the class of such p as the the Lévy domain of Y,
denoted by dom, Y, (cf. Section 3). The mapping Yy : dom; Yy — My (RY) is termed the
Upsilon transformation of Lévy measures associated to . Such transformations generally
have a regularising effect, as we point out in Section 2, and they arise naturally in the
study of random integrals and series representations of infinitely divisible laws (see e.g.
[Ro84]) and [R090]). An application of Upsilon transformations to the construction of
Lévy copulas with special properties is discussed in [BNLO7]. In the case where d = 1 and
the Lévy measure p is concentrated on (0,0), the measure Y (p) equals the multiplicative
convolution p ® ¥ of p and 7, and this reveals a commutativity of the roles of p and Y in the
construction. In addition to domains we also study the ranges and continuity properties
of the mappings Y. In many aspects the derived results turn out to be closely similar to
those of unbounded operators on Banach spaces. Thus, we prove that Yy is continuous
on dom, Y if and only if it is Lévy bounded, that is if and only if [;°(1Vx?)y(dx) < oo,
which, as mentioned above, is equivalent to having dom; Yy = SDTL(R”[). In this case we
also show that Yy is a closed mapping in the sense that it takes closed subsets of My (RY)
to new closed subsets of 9t (R?). This immediately implies that Yy is a homeomorphism
whenever it is injective. The topology on M (R?), to which the above results refer, is
that of Lévy weak convergence, as introduced in Section 5. The question of injectivity of
Yy is delicate. In Section 6 we give some partial results which may be used to establish
injectivity for rather general classes of Upsilon transformations. A more detailed analysis
will be given in a forthcoming paper.

(b) Transformations of infinitely divisible laws. If [;°(1Vx?)y(dx) < o, then we as-
sociate to ¥ a mapping Y7: #2(RY) — #9(R?), which may be defined in terms of
cumulant transforms by the equality

Cr(d) = | Culr)r@n.  (eR), 1.2

where e.g. C;; denotes the cumulant transform of t. From equation (1.2) it it is easy to
derive that Y7 preserves the affine structure of .#2(IR%), in the sense that

() Y7(wr* o) =YY ()« Y (1), (1, 2 € IZ(RY)),
(i) Y¥(Tpp) = TpY" (1),  (BE€My(R), u € I2(RY)),
(i) {Y7(8) |ce R} C {8 |ceR},

where Tpu denotes the transformation of u by the linear mapping Tp associated to the
d x d-matrix B, and 8, denotes the Dirac measure at ¢. As a consequence of (i)—(iii), for
any non-zero ¥ in Mpy((0,0)) the range of Y7 is a subset of .#2(R¥), which contains
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all Dirac measures and is closed under convolution and linear transformations. We prove
in addition that the range is closed in the topology of weak convergence. These proper-
ties of the ranges are shared by many important classes of infinitely divisible probability
measures (e.g., for d = 1, the selfdecomposable laws and the Goldie-Steutel-Bondesson
class), and, as we shall indicate, a significant number of such classes are in fact realised
as ranges of Upsilon transformations. If 7 is a o-finite Borel measure on (0, ) such that
Jo (1 Vx?) y(dx) = oo, then the integral in the right hand side of (1.2) is generally not
well-defined for all measures g from .#2(R?), and (1.2) only gives rise to a mapping
on a restricted class of measures (1. Nonetheless, interesting examples of such mappings
with restricted domains have already appeared in the literature. For instance if 7 is the
measure with Lebesgue-density ¢! 1(o,1)(t), then (1.2) gives rise to a mapping P, which
was studied (in the case d = 1) in [BNMSO06]. The domain of @ is the class of infinitely
divisible laws, for which the Lévy measure has finite logarithmic moment, and the range
of @ is the class of selfdecomposable laws (see Example 7.7 below).

(c) Transformations in terms of random integrals. Under certain restrictions on 7, in-
cluding the condition [;°(1Vx?)y(dx) < oo, the mapping Y? described above may be given
a stochastic interpretation via random integrals: Y7 () may be realised as the distribution
of the random integral

/fy(t)dzz»

for a suitable deterministic function fy (depending on ¥), and where (Z;) is a Lévy Process
with Z; having law . Mappings of this kind were introduced by Jurek [Ju90] under the
name of A-mixtures of dilations of measures on Banach spaces. The random integral
point of view is not the focus of the present paper, but it will be discussed briefly at the
end of the paper (Section 9), with reference in particular to extensive recent work of Sato,
[Sa06a],[Sa06b] and [Sa07].

The paper is organised as follows: Section 2 gives the definition of the Upsilon trans-
formations of Lévy measures, discusses their regularising effect and provides some exam-
ples. In that section we also establish the commutativity of the Upsilon transformations
and the relation of this to multiplicative convolution. Questions relating to the domains
of the transformations are discussed in Section 3, partly based on an auxiliary function
v, introduced in that section. Section 4 is concerned with composition and ranges of
the transformations, and Section 5 considers their continuity properties. Injectivity is
discussed in Section 6. The two penultimate sections discuss Upsilon transformations
of #2(R?). In Sections 7 we give their precise definition and establish their algebraic
properties, and Section 8 is concerned with their continuity properties. The final Section 9
discusses how the Upsilon transformations, in somewhat less generality, are representable
as random integrals with respect to Lévy processes.

Acknowledgement. This paper was begun during a research workshop at the Isaac
Newton Institute in February 2005 and have benefited from conversations then and since
with Ken-Iti Sato, Victor Perez—Abreu and Makoto Maejima. We are very grateful to
them for sharing ideas with us and keeping us informed of their ongoing work.



2 Definition, first properties and examples

2.1 Notation and definition

By 9(R?) we denote the set of all (positive) Borel measures on R¢, and by M s¢(RY)
we denote the set of all Borel o-finite measures p on R with p({0}) = 0. Furthermore,
SDTL(R" ) stands for the subset of imof(Rd ) consisting of the Lévy measures, i.e.

ML(RY) = {p € Mer(R?) | fra(1A[|x]?) p(dx) < oo},

with || - || the usual Euclidean norm on R?. The classes D((0,0)?), Ms¢((0,0)¢) and
M ((0,0)?) are defined analogously; and we use 9t} ((0,)) to denote the class of Lévy
measures for infinitely divisible distributions concentrated on (0,0), i.e.

My ((0,0)) = {p € Mor((0,00)) | Jo"(1Ax) p(dx) < o}

Elements of My¢(R?) will be denoted by p, o, or 7, and ¥ and i) will denote members
of Me¢((0,00)). Finally, we introduce the class 9y, (R?) of finite Borel measures on RY
with finite second moment:

M2 (RY) = {p € Mor(RY) | 57 (1V [|x]1?) p(dx) < oo}

2.1 Definition. For any ¥ € Moe((0,00)), let Yy : Mep(RY) — IM(RY) be the mapping

determined by
= [ Pl a)y(aw),

for all Borel sets A. We refer to Yy as the Upsilon transformation with dilation measure y.

We shall also use py as a shorthand notation for Yy(p), and if y is absolutely con-
tinuous with a density g we occasionally write Y, and p,. Note that a measure y from
Moe((0,00)) gives rise to an Upsilon transformation for each value of the dimension d.
We shall sometimes use the notation T(d) for this mapping, when it is appropriate to em-
phasise d. In case p is a measure on R\ {0} then we shall write p for the transformation
of p by the reciprocity mapping x — x~!

2.2 Commutativity and connection to multiplicative convolution

The proofs of the following two propositions are straightforward, thus omitted. The latter
result indicates that in wide generality Y has a regularising effect.

2.2 Proposition. Let p and y be measures in Mq¢(R) and Ms¢((0,00)), respectively.
Then for any Borel subset A of R\ {0},

pr(@)= [ p0A) 7 @)= [ Y0) p (@), @

2.3 Proposition. Suppose ¥ is a measure in Ms¢((0,0)) which is absolutely continuous
with respect to Lebesgue measure and let g denote the density of y. Let further p be a



measure in Ms¢(R). Then py is absolutely continuous with respect to Lebesgue measure,
and the density ry is given by

Jogwy)yp (dy),  ift>0,

22
12 g (ty) vl p (dy), ift<0. (22)

2.4 Example. The following examples of Upsilon transformations with dilation density
g(x) = 9 have previously been discussed in the literature (see the papers [BNTO04],
[BNTO06], [BNTO5], [BNMS06] and [BNPAO7]). We return to these examples in the
following sections.

ey

2)

3)

“4)

Setting
gx)=e™, (x € (0,0)),
produces the Upsilon mapping Yy which was introduced in [BNT04] and studied

further in [BNMSO06] and [BNTO06]. Proposition 2.3 reveals that for any measure p
in M¢(R), the density of Yo(p) is the Laplace transform of the measure y p (dy).
&

For ot in (0,1) we put

g(x) =a V%6, (x71Y), (x€(0,00)),
where oy, is the density of the positive a-stable law having Laplace transform e 9
We write Y for the associated Upsilon transformation. In the limiting case o = 0
we recover the mapping Y from (1) above, for a = 1 the identity mapping, and
the family {Yy | & € [0, 1]} interpolates smoothly between these two cases, see
[BNTO6].

For any p in Ms¢(R), it follows from Proposition 2.3 that Y (p) has Lebesgue-
density

ra(0) = o U [TE oy (18) V%) p (a8), (> 0).

For any A in (—2,00), let
g(x) =x* T (x € (0,00)).

The corresponding Upsilon mappings Y, were introduced and studied in [Sa05]
and [BNPAO7]; see also [Sa06a]. For an extension to Upsilon mappings of Lévy
measures on the cone of positive definite matrices, see [BNPAO7].

For A > —2, consider the Lévy density given by

gr) = (), (e (0,%0)).

We denote the corresponding Y-mapping by ®,. The mapping Py was introduced
and studied in [BNMSO06]. In this particular case, it follows from Proposition 2.3
and direct computation that for p in 9s¢(R), @(p) has Lebesgue-density

(1) = t~'p((t,)), if 1 >0,
NV p((—eot)), i <O



(5) For an arbitrary o in (0,2), consider the Lévy density of the elemental tempered
stable law, 1.e.
glx)=x"%le™, (x € (0,00)).

Such a Lévy measure is obtained as the image of the Lévy measure having density

Lo (&) > 1a-g)*!

under the transformation Y 2. .

Given two o-finite measures y and 1) on the multiplicative group (0,e) we consider
their convolution Yy ® 1 given by

Y®n(B) = /( , 1a(y) v(do)n(dy), (2.3)

700)

for any Borel subset B of (0,e0). Clearly the operation ® is commutative, i.e., y®n =
N ® 7, and the multiplicative convolution ® is converted into ordinary convolution by log
transformation.

It is easy to verify that

Ty =yen=n&y="Ty(). 24)
Moreover, if y(dt) = fy(t)dt, then (n ® y)(dt) = fhey(t)dt, where

Tnay(t) = /way<rs1>sln<ds>. (2.5)

If in addition n(dt) = f;(¢) dt, then

Tnay(t) = /Omfy(tﬂ)slfn (s) ds. (2.6)

2.5 Example. Notice that multiplicative convolution of o-finite measures need not be
o-finite. Indeed, let fy(t) = fn(t) =t~ '7%, o € R. Then

fnay(t) = foreveryt > 0.
Hence 1 ® 7 is infinite on every set of positive Lebesgue measure.

If n and 7y are probability measures on (0,c0) and X and Y are independent random
variables with distributions 1 and 7y respectively, then 11 ® 7 is the distribution of the
product XY. This provides a further link to infinite divisibility, which gives rise to a
concept of “semigroups of Upsilon transformations”, see [BNMO7].

3 Discussion of domains.

3.1 Lévy Domain: Definition, examples and first properties

For any Upsilon mapping Y, we define its Lévy domain by
dom; Yy = {p € Msr(R?) | py € ML (RY)},
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where dom stands for domain. In other words, dom; Yy is the set of measures from
Mr(RY) that are mapped to Lévy measures by Ty. We also define

dom; Yy = {p € M4((0, ‘P76m+((0 )d)}>
so that domzLTy is the pre-image for Yy of the class of Lévy measures for subordinators.

3.1 Example. We adopt the notation from Example 2.4, and assume for simplicity that
d=1.

(1) For the mapping Y we have dom; Yy = 9, (R), as was shown in [BNT04]. This
also follows immediately from Theorem 3.4 below.

(2) For the mappings Y it was shown in [BNT06] that dom; Yo = 9, (R). Again, this
may be seen as an immediate consequence of Theorem 3.4.

(3) For the Y, -mappings it is easily established [BNMSO06] that

M (R), ifA>0
domLY;L = Qﬁlog(R), ifA=0
M, (R), ifA e (—2,0)

where the classes Mo (R) and My (R), A € (0, 1), are defined by:

Miog(R) = {p € M(R) | [{"logyp(dy) < oo}

and
My (R) = {p € MR) | "y p(dy) <o},

respectively.

(4) For the Upsilon mappings @, , it is easy to check that for all A in (—2,e0) we have
dom;®; =domy Yy,
with Y as in (3).
3.2 Proposition. For any nonzero measure y in 9Mq¢((0,00)), we have
dom; Y\ C 9 (RY)  and  dom; Y\ C 9 ((0,00)%). 3.1)

Proof. Leta > 0 be such that y([a,e0)) = b > 0. Then for every p € dom; Yy
o> [ (A0 = [ @ a1 ranp(an
Zb/Rd (@®[|x]|> A1) p(dx) > b(a® /\1)/Rd(||x\|2/\l)p(dx)

which shows that p € 9, (R?). The second inclusion follows similarly by replacing
||x[|2 A1 by ||x|| A1 in the argument above. u



Proposition 3.2 is valid even when R is replaced by a Banach space, see Proposi-
tion 2 in Jurek [Ju90]. However, since Lévy measures on a general Banach space are not
determined by an integrability condition, the above simple proof does not apply.

3.3 Remark. (a) Suppose ¥ and 7 are o-finite measures on (0,0) and consider their
multiplicative convolution Y ® 1 (cf. Subsection 2.2). Then from (2.4) we infer that

y®N € M1 ((0,00)) <= n €domy Y, <= y & domYy. (3.2)
Assuming that y, 1 # 0, Proposition 3.2 together with (3.2) then asserts that
y®n € ML((0,%0)) = ¥,n € ML((0,%)). (3.3)

(b) Let p and y be measures in Mz (RY) and My¢((0,0)), respectively, and let ||p|
denote the transformation of p under the mapping x — ||x||. Using Tonelli’s theorem
we note then that

/Rd(HtzAl)Py(dX) :/(0700) (/Rd(tzﬂxuzm)p(dx)) ¥(de)

_ /(OM) ( /(0700)(;%% Dlpls)) vdr) G4

_ 2
= LA @),
so that
p e domLYy — Y€ domLYHp”. (3.5)
Taking then Proposition 3.2 into account, it follows that
Vy € Mor((0,00)): domp Yy # {0} =y € M ((0,0)), (3.6)

which shows that Y is only interesting as a mapping on the class of Lévy measures
if y is itself a Lévy measure.

The following theorem has also been noted, independently, by K. Sato (cf. [Sa05]).
In the following section we obtain a proof of the theorem as a result of a comparison of
domains for two T transformations.

3.4 Theorem. (i) Let y be a non-zero measure from 9Ms¢((0,00)). Then for any posi-
tive integer d we have

dom; Y\ = m; (RY) (3.7)

if and only if v € Mpp((0,0)), i.e. if and only if
7((0,0)) < oo and / 12 y(dt) < oo. (3.8)

0
(ii) Lety be a non-zero measure from M((0,0)). Then for any positive integer d,
dom; Y4 = 97 ((0,00)%) (3.9)
if and only if
/( )(1vr)y(dt) < oo, (3.10)
0700
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3.5 Remark. Combining Theorem 3.4 with (3.5) it follows that
Wy € ML((0,00)): dom, Y D Mgy (RY) (3.11)
and also that (cf. (3.6))

¥y € Meor((0,00)): domy TS £ {0} = dom, YL D Mgy (RY).

3.2 An auxiliary function: Definition and applications.

For a number of the calculations to follow, it is helpful to introduce an auxiliary function
Yy by

3.6 Definition. For a measure y inM¢((0,00)) we define the function yy: [0,00) — [0, 0]
by
vls) = [ (A, (s€[0.). (3.12)

It follows immediately from the calculation (3.4) that

dom; Yy = {p € ML(R?) | Jay(|Ix]]) p(dx) < oo} (3.13)

We mention in passing that for a non-zero Lévy measure ¥ on (0,c), Yy is a non-
decreasing continuous function with y,(0) = 0 and yy(s) > 0, whenever s > 0. Moreover,

limy—e Wy (s) = ((0,0)).

3.7 Remark. The characterisation (3.13) of dom; Y, remains valid when R is replaced
by a Hilbert space but is invalid for general Banach spaces. Jurek [Ju90] obtained some
characterisations of dom; X'y for Banach spaces in cases where either y or p have restricted
support.

Comparison of domains
3.8 Theorem. Let 7y, and > be measures from M s¢((0,°0)). Then dom LY%Z) C domLTg,fl)
for all d, if and only if

3C > 0: yy, (5) S Cyy(s), (s€[0,%0)). (3.14)

Proof. We note first that we may assume that both y; and 9, are Lévy measures. Indeed,
if y € Ms5((0,00)), then the inequalities

(1v$2) /(wa)(tz/\l)y(dt) >y (s) > (1As2) /(0700)(12/\1)y(dt)

verify the statement
Y ¢ Mr((0,00)) <= yy(s) =co, forallsin (0,00).
Moreover, for any ¥ in Ms¢((0,0)) we have
dom. Yy = {0} <= v & ML((0,%)),
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where “<” follows from (3.6) and “=" follows from the fact that §; € dom; Y for any
Lévy measure y. From these observations the proposition follows readily if one of the
measures Y; or » is not a Lévy measure. In a similar manner we may assume that y; and
7> are both non-zero. Indeed, for y in Ms¢((0,0)) we have

Yy =0 < y=0 < dom Yy = Msi(R),

where, in the latter bi-implication, the implication “<” is a consequence of Proposi-
tion 3.2.

So assume in the following that ¥;,7» are both non-zero Lévy measures on (0,00). It
follows immediately from (3.13) that condition (3.14) implies that dom;Y,, € dom.Y,.
Conversely, assume that (3.14) is not satisfied. We then construct, for each d in N, a
measure p in M, (R?) such that p € dom, Y, \ domYy,. Indeed, since (3.14) is not
satisfied we may, for each n in N, choose a number s, in (0, ) such that

Wy, (sn) > nyy, (sn).-

Then choose a fixed unit vector « in R? and define the measure p on R¢ by

Note then that

L vnliship = . HeCul < 7 4 <on

Thus, by (3.13), p € dom;Y,, so in particular p € M (R?) according to Proposition 3.2.

Note next that .
[ vatishp(a) = E elel ¥

so that p & domz Y. n
Based on Theorem 3.8 we present next the proclaimed proof of Theorem 3.4.

Proof of Theorem 3.4. (i) Suppose first that dom, Yy = M, (R) = dom; Y. Then it
follows from Theorem 3.8 that

[ aadran = wis) <Cys (9 =CAR),  Ge@=) 319
for some positive constant C. For s in (0, 1), (3.15) says that
| e adman <c.
0

and letting then s \, 0, we obtain by monotone convergence that [3°¢> y(dt) < C.
For s in [1,e0), (3.15) says that

/O T A2 y(d) < C,
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and letting s " oo, we obtain by monotone convergence that y((0,0)) = [;" 1 y(df) < C.
Altogether ¥ € M2 ((0,0)). Conversely assume that y € imog( (0,00)). Then

ws) = [ (AR 7ds) < (1A5%) [TV ) = Cwis 9),

0 0
where C = [5°(1V#?)y(dt) < e. Hence it follows from Theorem 3.8 that for any d in N,
d (d) (d)y _ d
SIRL(R ) 2 domL(Yy ) 2 domL(Y51 ) = EUIL(R ),
as desired.
(ii) Let p be a measure in Mtz ((0,00)%) and let ¥ be a measure in My¢((0,0)). Then

we denote by [|p||* and /7 the transformations of p and y by the mappings x — ||x||* and
t — +/t, respectively. Note then that

[ Al pysten = [ ([ A p(@) vitan

= [ (L anslelF)
= [ an9lplia)

which shows that

p e domLYEﬁ), — |Ip|® € domzLTg,l). (3.16)
In the case ¥ = 8, note that domLY(\/)6_ = 9, (RY) and that dom} Y( ) = = M ((0,0)),
1
and therefore (3.16) implies that
{llpl* I p € ML(RY)} = 9/ ((0,50)). (3.17)

Indeed, the inclusion “C” follows immediately from (3.16). Conversely, let o be a
measure from 9t/ ((0,%)), and let p be the transformation of o under the mapping
t — /tu: (0,00) — R? for some unit vector u in R?. Now, ||p|> = o and, by (3.16)
(with y = &), p € M (RY).

Using then (3.16), (3.17), Proposition 3.2 and part (1) it follows that

dom; Y = 9 ((0,00)) = domLTEﬁ), My (RY)
— /(OM)(I\/tZ)\/T/(dt)<oo 3.18)

— /0?00 (1Vs)y(ds) <

as desired. [ ]
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How small can the domain get?

If p € ML (RY) \ M2 (RY), or, equivalently, [|p]| € 9L((0,00)) \ M2 ((0,0)), then it fol-
lows from Theorem 3.4 that there is a measure 7 in 9z ( (O o)) such that 1 ¢ dom. Y.

This implies by (3.5) that p ¢ dom LYg7 ), and hence, taking also (3.11) into account, we
may conclude that

N domLY,%d) = Moz (RY).
NeML((0,0))

One may then ask whether there is a single measure 1 from 917((0,)) such that dom LY%d)
= M2 (RY). This will be answered in the negative in Proposition 3.9 below.

3.9 Proposition. For any Lévy measure y on (0,00) and for any positive integer d we
have that
dom Y 2 9o (RY).

Proof. Clearly we may assume that y # 0. Since yy is continuous and yy(0) = 0, we
can choose a sequence (s,) in (0, 1) such that

VneN: yy(s,) < i

Consider the measure p on R given by

where u is a fixed unit vector in R?. Now,

[

[ 0vIp) = ¥ o=

n=1

so that p is not in Mgz (RY). At the same time
=1 |
Jowlap(@) = T vl < X2 s <
n=1 n n=1 n
so that p € dom LY (1n particular p must be a Lévy measure; cf. Proposition 3.2). =

The case of regularly varying tails

In order to characterise dom; Yy we need to know the behaviour of v, (s) (defined by
formula (3.12)) at zero and infinity, cf. formula (3.13). This is possible when the tail of y
is regularly varying in the sense that we can specify the tail behaviours of Y in terms of
the behaviour of the tail measure of 7y at 0 and infinity.

Recall that a function L: (0,00) — [0, 00) is slowly varying at infinity (resp. at 0) if

as t — oo (resp. as t — 0),
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for any positive number x. A function U: (0,00) — [0,0) is regularly varying with index
o at infinity (resp. at 0), if it has the form

U(x) =x*L(x),
with L slowly varying at infinity (resp. at 0). Recall also that for yin 9t ((0,0)) we have
l[/y(s)7’}/([s_l’oo)) —0, ass—0

and

Wy (5), 7((s7,00)) — ¥((0,00)), ass — oo,

3.10 Proposition. Let y be a non-zero Lévy measure on (0,e), and suppose that the
function y*(t) = y([t,)) is regularly varying with index —a at zero (infinity, resp.),
where oo < 2. Then

— g s (0, resp.). (3.19)
Proof. We have

vols) =" [ 2 r(@) £ (15 )

= /(0 sl)/()XthtY(dx) ([ %))
— 2 /OooZty([t,s‘l Vi) dr +y([s 1, e0))
=< /0 20y([t,%0)) dr. (3.20)

We first consider the case of y([t,)) regularly varying at zero. From (3.20) we get

wls) =25 [ (i)

N
By our assumption we can write y([x~!,00)) = x*¢(x), where /(x) is slowly varying at
infinity. By Proposition 1.5.10 in [BGT] we have
W) 2Tl 2
= —
Y(Is™!,e0)) s*24(s) 2-a

(3.21)

as s — oo,

Now we consider the case of y([f,e0)) regularly varying at infinity. We can write
Y([t,0)) = t~%¢(t), where £(t) is slowly varying at infinity. Using Proposition 1.5.8
[BGT] and (3.20) we get

vy (x ) 2 e () de 2
Y(b=)  2%U(x) 2—a

as x — oo. This concludes the proof. ]
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3.11 Remark. Suppose 7 is a non-zero Lévy measure on (0,c0) and that the function
vt (t) = y(|t,)) is regularly varying at both 0 and infinity with indexes respectively
—a and —f from (—2,0). Then it follows from Proposition 3.10 that there are positive
constants ¢ and C such that

cy (s Swyyls) <Cyt(sTh),  (s>0). (3.22)

Indeed, it is a consequence of Proposition 3.10 that there exist positive numbers €, K,C’
such that
y (s < C'yy(s), forallsin [e,K]C.

Putting then C” = y"(K~1) /yy(€), we have for s in [¢,K] that
Y (™) <K = CMyyle) < CMwls).

Thus, the constant ¢ = 1/(C" vV C") satisfies the first inequality in (3.22), and a similar
argument produces a constant C satisfying the second inequality.

3.12 Corollary. Suppose y and 1 are non-zero measures from 9t;,((0,0)) such that the
functions y*(s) = y([s,e)) and N (s) = n([s,*)) are regularly varying at both 0 and
infinity with indexes in (—2,0). Then the following two assertions are equivalent:

(1) dom. Y, C dom,Y5.

(ii) 3C>0Vs>0: nT(s) < Cyt(s).

Proof. Suppose dom; Y, C dom;Y;. Then by Theorem 3.4 there is a positive constant
C' such that y; < C'yy and combined with Remark 3.11 this provides a constant C such
that n™ < Cy™. The converse implication follows similarly. ]

4 Composition and ranges

For two measures y and 1 from M5¢((0,0)) we may consider the composition Yg,d) oT%d)
with Lévy domain defined naturally by

dom, YY" oYY = {p € dom YY" | Yy (p) € dom, Y, ).

4.1 Proposition. Let 1 and y be non-zero measures from Ms¢((0,o0)). Then for any d
inN,

dom; YY" oY\ = dom; Y'Y = dom, Y o YL 4.1
and @) (d) _pld) _ (d) ()
T ot =y =y oyl 4.2)

Proof. For a measure p from 90,((0,e0)) we note first that by (3.2)

(d)
Yen

— |p| €dom XL < (y®n)®|p| € ML ((0,))

— yo(a@|lpl) € ML((0,)) <= n@|p|| € dom, Y},

p € dom, Y
4.3)

14



In particular, by virtue of (3.3),

(d)

yan == N@ o] € ML((0,0)) <= p € domLT%d). (4.4)

p € domyY
(d)

Moreover, assuming that p € dom LYn , note that

| Lan@Pye)yaoran = [ [ [ @) pon@s) v

_/‘/'/ (1A (%)) ||p | (du) 0 (ds) ¥(dr)

_// (LA (] @) (du) y(dr),

which verifies that
Vp € domLY%d): Y%d) (p) € domLYg,d) <~ |lpll®n e domLYg,l). 4.5)

Combining now (4.3), (4.4) and (4.5) establishes the first equality in (4.1), and the second
one follows by symmetry.

Turning now to (4.2), assume that p € dom;Yygy, and note then for any Borel subset
B of R? that

Tyor(p)B)= [ Bneyd = [ [ o) B)n(an) yias)
=/pmﬂmﬂ®=wwmmmm

0
as desired. [ ]
4.2 Example. Adopting the notation from Example 2.4, a direct calculation shows that
DY = YoPo =T |1-0-
The first of these equalities was noted in [BNMSO06]. It is a special case of formula (4.2).

For a measure ¥ in M4¢((0,0)) we define the Lévy range ran LYg,d) of Yg,d) by

ran, Yy = {X,(p) | p € dom Y}

4.3 Corollary. Lety; and > be non-zero measures from 9t ((0,00)). Then the following
assertions are equivalent:

(1) ranLng) C ranLYg,?) for all d in N.

(ii) ranLYg,;) - ranLYg,}).

(iii) » =y ®y =Yy, (y) for some measure y from 91 ((0,0)).

15



Proof. Assume first that y» = ¥ ® y for some measure ¥ from 917 ((0,00)). Then by
Proposition 4.1 it follows that

Y

ran LY%,ZZ) = ran LYS,?) o Yg,d) Cran LY%,?)

for all d in N. Assume conversely that ranLYg,;) C ranLTg,}). Since 1> € M ((0,0)), the

Dirac measure 6 € domLT%), so that

1 =_Y006) =1V (p)

for some measure p in dom;Yy,. Since 71 # 0, p € M (R) according to Proposition 3.2.
Moreover, since

0=Tal(=.0) = [ p((==,0)) n(d) = p((===,0)) - 1((0.52)).

and since y; # 0, it follows that p((—e0,0)) = 0, so that actually p € 9t,((0,)). There-
fore

r=YyP)=r®p,

as desired. [

4.4 Remark.
(i) Suppose 71,7 are non-zero measures from 97,((0,0)) and that ran; Yy, C rany Yy,.
Then Corollary 4.3 and Proposition 4.1 assert that Yg,f ) = Tg,d) o Tgf) for some mea-

sure ¥ from Mz ((0,e0)). By the definition of domLTg,d) ng,fl), this in particular
implies that
domLYgg) - domLYg,il),

for all d.

(ii) Let v be a non-zero measure from 917((0,)). Then by Proposition 4.1 we have
for any positive integer d

dom YY) D ran, YY) = vp € dom Y YV (p) € dom, Y\

= domLTg,d) ng,d) = domLTg,d)

In other words, the mapping Y, may be iterated without precaution on all of its
domain, if and only dom; Yygy = dom. Y.

(iii) Let ¥ and 1 be non-zero measures from 917((0,00)). Then using e.g. (2.3) it is
straightforward to check that

y®N € M2 ((0,0)) <= v,n € Mpa2((0,0)).

This may in fact also be extracted from Proposition 4.1, which, in the affirmative
case, asserts that
Yyon =YyoXn =TnoXy,

on all of M (RY).
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S Continuity Properties of 1,

For measures p,p1,02,P3,... from Mz (RY), we define Lévy-weak convergence of p, to
p, denoted p, — p, as follows:

pn——p = (LA[]?) pa(dx) == (1A [Ix]?) p(d).

The corresponding topology 7, on Mz (R?) is the weakest topology on 97 (R¢) making
the mapping
p = (1A [lx[?) p(dx) : 9 (RY) — (R

continuous, when the class Mt;(R¢) of finite Borel measures on R? is equipped with the
topology for usual weak convergence. It is straightforward to check that 9ty (R?) is dense
in M7 (R?) with respect to 77, and hence Remark 3.5 asserts that Yy is densely defined on
M (R?) for any Lévy measure y on (0,0). By Theorem 3.4, Y, can be defined on all of
M, (RY) if and only if ¥ € Mo ((0,0)).

5.1 Theorem. Lety be a Lévy measure on (0,o0) and let d be a positive integer. Then the
following statements are equivalent:

) 7€ Mp2((0,00)).

(i1) Yg,d): dom LYg,d) — M (RY) is continuous in the topology for Lévy weak conver-
gence.

(iii) Tg,d) is continuous at 0 € 9z (RY) in the topology for Lévy weak convergence.

Proof. Assume first that v belongs to Mp2((0,00)), and let p, py, p2,p3,. .. be measures
from R such that p, — p Lévy-weakly as n — o. In order to show that Y;(p,) — Yy(p)
Lévy-weakly, we must establish that

/Rdf(X)(lAIIXHz)Yy(Pn)(dX) —— | FOOLAXI) Yy(p) (d), (5.1)

n—oo R4

for any continuous bounded function f: RY — R. Note here that

LU p) @) = [ [ L) pu@nrds).  (52)

and that for a fixed s

L AP pald) = [ A1 ]) pa(a

gy SPALC )(LA [lx]1?) p(dx) (5.3)

n—oo

= /Rd F(sx)(1As?x]*) p(dx),

since the function

N[>
£ = {f(SX) e, ifx e RY\ {0}, 5.

s2£(0), ifx=0,
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is continuous and bounded. Note also that for any n

[ AL pa(@)| < 1Y) [ (A ) ()

< Clfllu(LVs?),

(5.5)

where || f]|,, = sup,cga |£(x)| < o and C = sup,,c Jga(1 A ||x]|?) pu(dt) < oo. Since y €
Mp2((0,0)) we have [5°(1Vs?) y(ds) < o, and hence by dominated convergence in com-
bination with (5.2)-(5.5) we obtain (5.1).

It remains to show that continuity of Yg,d) at 0 implies that 7y belongs to My, ((0,00)).
Consider first the sequence (p,,) of measures from Mz (R¥) given by

Pn=&n*8,1,, (n€N),

where u is a fixed unit vector in R? and (g,) is an arbitrary sequence of positive numbers
such that g, \, 0 as n — co. Note then that

L AR pulde) = (1 An72) = &,

1 .
so that p, = 0 as n — oo. At the same time we have

24y (@) T 2 A2, 2 _. [ 2000 o
LAY (@) = [ et (Uncn ) vdr) = & [ y(dr) + eny(ln,e=)).

From the calculation above it follows that Yg,d) (pn) ™. 0 for all choices of (&n) as pre-

scribed above if and only if [;°#%y(df) < eo, which is thus a necessary condition for con-

tinuity at O of Yg,d). Consider next the sequence (p,) defined by

Pn = 8)’1571147 (” S N)7

with u and (&,) as above. Then
LA pu(d0) = (1 An?) = &,

1
so that p, — 0 as n — oo. Furthermore

1/n

LAY () (@) = [t arn?) v = ean® [ 2 dn) + ep([1/n.9)),

and it follows that Y (p,) ™. 0 for all choices of (&,) if and only if y((0,00)) < co. Thus,
Y must also be finite in order for Yy to be continuous at 0. This completes the proof. m
5.2 Remark. When dealing with an upsilon transform Yg,d) : dom LYg,d) — M (RY), it is
natural to have in mind the setting of (unbounded) linear operators defined on subspaces
of a Banach space. From this point of view, Theorem 5.1 corresponds to the fact that
a linear, densely defined operator on a Banach space is bounded on its domain if and
only if it has a bounded extension to the full Banach space. In addition, this condition is
equivalent to continuity of the operator at 0 and also to continuity on all of the domain.
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The next theorem is essential for studying the topological properties of rany Yy and of
the inverse mapping of Y in case Yy is one-to-one.

5.3 Theorem. Let ¥ be a non-zero measure from 9y ((0,0)), and let (p,),cn be a se-
quence of measures from domLY( ) such that Y( ) (pn) — © for some measure G from

SﬁL(Rd) Then there is a subsequence (py,) peN and a Lévy measure p in domLT( ) such
that pp,, v, p. Moreover, o > Tg, )(p) and these measures are equal when
(AP o) = [ (AP TS (p)(dx) (5.6)
i X i X y (P : :

Before the proof, note that if (p,),cn is a sequence of Lévy measures on R?, then it
is certainly possible that (1 A ||x||?) p.(dx) converge weakly, as n — oo, to a finite mea-
sure v on R¢ with positive mass at 0. For instance, setting p, = n*§, /n» We have that

(1Ax?) pu(dx) — &(dx) weakly, as n — oo. According to the theorem above, the sequence
(Yy(pn))nen does not have any cluster point with respect to the Lévy weak topology.

Proof of Theorem 5.3. We show first that the sequence
Va(d) = (1A [x]*) paldx),  (nE€N),

is precompact. By [ADD, Theorem 7.8.7] it suffices to show that (V,,),cn is tight and that
(Vn(R?)),.cn is bounded. Regarding the latter aspect, note that

L anl?) s e, @)
> [LAAIPpulas) [ (1A 7@ = w(®) [ (1A yan. )

0

Since (1A ||x||? ) (pn) (1A ||x||?) o weakly, the left hand side of (5.7) is bounded in
n, and since y # O (5.7) thus implies boundedness of (v,(R¢)),cn. Regarding tightness
of (v,), we find similarly for / in (0,0) and € in (0, 1) that

2
/{x||>z}( Al Y / / Lt sy (111D (1A 8|17 pa(dx) (dis)

> [ twem (e A2 pafdo) vids)
= 2y([e,%))va({]1x]| > 1/2}),

Choosing then € so small that y([€,20)) > 0 and using the substitution / = re, we find that
_ - d
(el > ) < elee) ™ [ AP (o) (@),
{llxl>re}

and since the sequence (1 A [|x||?) Y )(pn)( dx) is tight by assumption, this implies tight-
ness of (V).
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Having established precompactness of (v, ),cn, we may infer the existence of a sub-
sequence (V,,)pen and a finite measure v on RY such that

(A lP) () = Vi (A1) 5 v(d),  as p— oo

Let f be a function from Cj,(R?) and note that

L I@A Y on,) @) = [ [ 01 A1) pa, () ().

For fixed s in (0,0) consider the continuous bounded function f;: R¢ — R introduced
in (5.4). Then by assumption

7600 ARI) pay () = [ AN P () —— [ 1) vi)

p—>

Assuming now that f > 0, it results from Fatou’s lemma that

/0oo Rdfs(x)v(dx <11m1nf/ / Fsx) (1A% x| ) Pn,, (dx) y(ds)

p—oo

~ liminf / YA [2]) Y y(pn, ) (d) (5.8)

= [ F@A ) o).
Note next that v may be decomposed as

v(dx) = (1A[Jx[|*) p(dx) +v({0})do(d),

with p a (uniquely determined) Lévy measure on R?. Hence

/Ow Rdfs(x)V( //fs (1A ]|x]1?) p(dx) 7(ds) +/ v({0})£:(0) y(ds)

:/w/df(sx)(lAs2||x||2)p(dx) ?’(ds)+v({0})f(0)/ s y(ds). (5.9)
0 JR 0

According to (5.8), the left hand side of (5.9) is finite, and hence, by considering the first
term in the resulting expression of (5.9) in the case f = 1, it follows that p € dom LT( )
Combining this observation with (5.8) and (5.9) we obtain the estimate

L F@0ALsP o) > [ @A P (o)) + vi{ons(0) [ rds)
(5.10)

which holds for all non-negative f from Cj,(R?). Now choose a sequence (g;);cn from
Cp(RY) such that 0 < g; < 1 and g;(0) = 1 for all i and such that g; — 110y point-wise as
i — oo. Then by dominated convergence

a0 Al o@) — [ 0s(a) =0,

[—00 Rd
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and hence (5.10) implies that
0= v({0}) [ 5*r(ds),
0

and since y # 0, we must then have v({0}) = 0. Consequently, v(dx) = (1 A ||x||?) p(dx),
which yields p,,, - p.

Now we will prove the last statement of the theorem. Formula (5.10) with v({0}) =
gives

[ @A @ = [ Al (p) (@ (5.11)

for any non-negative function f from C,(R¢), which implies ¢ > T( )(p). Let My =
sup, f(x), where f is as above. Using (5.11) for My — f in place of f and (5.6) we get the
reverse inequality in (5.11). Hence 0 = Y( )(p) and the proof is completed. ]

5.4 Corollary. Let y be a measure from My, ((0,00)), and let d be a positive integer.

(i) The mapping Y(d) is closed in the following sense: For any subset F of Mz (RY),
which is closed in the topology for Lévy weak convergence, the same holds for the
range Y( )( F)= {Y )( ) | p € F}. In particular the full range ranLY( ) is a closed
subset of My (RY).

(ii) If Tg,d) is injective, then it is automatically a homeomorphism with respect to Lévy
weak convergence, i.e. the inverse mapping (Yg,d))*l : rang Yy — M (RY) is con-
tinuous in the corresponding topology.

Proof. (i) Let F be a subset of Mt (R?), which is closed in the topology for Lévy weak
convergence, and let ¢ be a measure from the closure of Yy(F). Then we may choose
a sequence (p,) of measures from F, such that Yg,d) (pn) N, 6 asn — oo, According
to Theorem 5.3, there is a subzequence (pnp) pen converging Lévy weakly to a measure
p necessarily in F. Since Y, is continuous, and since the topology for Lévy weak
convergence is Hausdorff on 917((0,)), we may then conclude that

o = lim i (p,,) = X} (p) e YO (F),
p—oo
as desired.
(ii) Suppose that Y is injective. Then (i) informs us that the pre-image of any closed
subset of Mtz (R?) by the inverse mapping (Y(d)) is again a closed subset of Mtz (RY)
and hence of ran LT( ). This means that (Y(d )~!is continuous on ran LY( ) ]

Pursuing further the analogy to operators on a Banach space mentioned in Remark 5.2,
we introduce next the graph graph LTg, ) of T( ) defined by

graph, X\ = {(p,X,(p)) | p € dom, Y\ }.

We shall view graph LTg,d) as a subset of Mz (RY) x M (RY) equipped with the product

topology.
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5.5 Proposition. For any measure y from 9t ((0,0)), we have the implications:

Yg,d) is continuous — graphLYg,d)

Proof. Since domLY(d) My (R?), when Y(d) is continuous, the first implication is
straightforward. To prove the second one, assume (without loss of generality) that y # 0

and that graph LT%, ) is a closed subset of Mz (RY) x My (R?). Then let o be an element of
(d)

the closure of ran LY(d) in M, (R4), and choose a sequence (p,),cn from dom LY}, , such
that Y( )(pn) — o0 Lévy weakly as n — oo. Accordmg to Theorem 5.3, there is a subse-
quence (py, ) peN and a measure p from dom LTg, ) such that Pn, — p Lévy weakly as p —

co. Now (pp,, T i )(pnp)) — (p, o) in the product topology on 9tz (R?) x 9tz (R?), and
hence (p,0) € graphLTg,d), by our assumption. This means that 6 = Tyd) (p) € ranLTg,d ,

as desired. ]

(d)

is closed = ran Yy is closed.

5.6 Example. In this example we exhibit a measure ¥ from 917((0,0)) such that ran. Y,
is not closed. By Proposition 5.5 graph LYg, ) can not be closed either. Specifically, let y
be the Lévy measure on (0,o0) given by

Y(de) =121y (1) dt,
and consider the sequence (py),cn from Mgz (R) given by
pn:n(Sl/n, (l’lEN)

Then it is straightforward to check that p, — 0 Lévy weakly as n — oo, and that

Yy (Pn)(dt) =121y o) (1) di.

From the latter expression it is straightforward to check that Yy(p,)(dt) — 21 (0,00) (1) dt
Lévy weakly as n — oo. Since Yy(0) = 0, these observations show that graph; Y, is not
closed in Mz (R) x M (R). To see that ranz Yy is not closed (in Mz (R)) either, we show
that

o(dr):= t_zl(ojw) (t)dr ¢ rany Y.

We obtain this by proving that for any measure p from dom; Yy supported on (0,20), we
have that
aYy(p)((e,=)) — 0, as a — 0. (5.12)

Since Yy(p) is supported on (0,0) if and only if p is, and since o ((c,)) = o~! for
all «, the statement asserted above verifies that Y, (p) # o for all p in dom Y.
To establish (5.12), we note first that by direct calculation

vls) = [ (LA 7(ds) = (25 =) 101)(5) + 1.0 9)
and hence (cf. (3.13))

dom;Yy = {p € ML(R) | f_11)ls| p(ds) <o} (5.13)
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Now, let p be a measure from dom; Yy which is supported on (0,%0). Then for any o
in (0,1),

T (p)(:) = ATy () ((e,e2)) = & [ (s ot,e)) p(ds)
:a/o /S_lawt_zdtp(ds):oc/o (s~ A1) p(ds)

= ["sptas)+ap((a=) = [ sp(as) +ap(lo ) +ap([1,)).
0 0

Here, obviously ap([1,)) — 0 as @ — 0, and [; sp(ds) — 0 as & — 0 by dominated
convergence (cf. (5.13)). Finally

1
ap((e) = [ aly(Op(d) —0,  asa—0,

again by dominated convergence, since ¢l 1y(t) <t for all 7 in [0, 1]. This completes
the proof of (5.12).

6 Injectivity

We now consider the question of when Yg,d) is injective for fixed y € SUIS((O7 w))andd > 1.
It is possible that the answer may depend on the domain on which Y is considered. We
are naturally interested in the Lévy domain dom 1Y@ and henceforth the term injectivity
refers to a property of Yg, ) on that domain. It was estabhshed in [BNTO04] and [BNTO06]
that the injectivity is held by the Upsilon mappings introduced in Example 2.4(1) and (2).
As the following example shows, Ty cannot in general be expected to have this property.

6.1 Example. Consider the Lévy measure y on (0,o0) given by
Y(dr) = 1721 (0,00 (1) d1,

and for any positive number ¢, consider the measure
Pe = c0y e € Moz (R).

For any Borel subset B of R note then that

Yy (pe)] ( —c/ 8,c(t1B) y(dr) = /Ooolg(t/c)'(t/c)_z !
— [ tpwadu=y(8)

so that Yy(p.) = y for all c. In particular, Y is far from being injective.

The next proposition reduces the problem of uniqueness to d = 1 and measures on (0, o).

6.2 Proposition. Let y € 9t;((0,00)). Then Y( ) is one-to-one on domLY( ) for all d in
N, if and only Tyl is one-to-one on domLY( 'n imgf(( c)).
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Proof. Obviously, we only need to prove the proposition in one direction. Suppose that
Tg,l) is one-to-one on domz X'y N M ¢((0,00)).

First we will show that Yyl 1S one-to-one on domLYg,l). Let p; € domLYg,l), i=1,2.
Define for a Borel subset A of (0,)

pi+ (A) = pi(A N (0700))7 p; (A) = pi(_A A <_°°70))'

Then p;5,p; € domy YS! N Mgr((0,00)). Tf YL (p1) = Y8V (p,), then YV (i) =
Tg,l)(p;r) and Yg,l)(pl’) = Tg,l)(p{). By the assumption p;” = p5" and p; = p, . Thus

p1 = p2.
Now letd > 1 and p; € dom, T\), i = 1,2. Fory € R define p’ € dom; Y by

P (A) = pi({x e RY | {y.x) € A\ {0}}).
If Yg,d) (p1) = Yg,d) (p2), then for every u € R
[ e 1 ) o aoyy(an

I+l (yx)?

= /Ooo /Rd (eiu<y,fx> —1— Hib;gy—é;ily)[)z(dxy}/(dt)

or

- iust ust
/o/R(e _I_Hu—z(s,)z)ﬁ’f(ds)y(dt)

oo . 1 l.
- st — ) pd (ds) y(dt
JANAC ) P @)
Hence Tg,l) (p]) = Yg,l) (p3). From the already established case d = 1, we get p; = p; for
every y € R?. We conclude that p; = p». ]

According to this proposition, the injectivity property of Yg,d) is shared by all di-
mensions d. If it holds, we will simply say that Yy is injective. The injectivity of Y
is equivalent to the cancellation property of the multiplicative convolution: for every
p1,p2 € domz Y, NIM((0,00))

Y®PpI=Y®P2 = p1=pP2. (6.1)

If y has density fy then the map

1 frop(®) = [ fos™)s p(ay 62)

can be viewed as a transform of measures p € dom; Y. If this transform is one-to-one on
dom; Y, then (6.1) holds and Yy is injective. We will give a couple of examples where
this method works. First, however, we need to introduce some notation:

In case p is a measure on R\ {0} recall that we use the notation p for the transfor-
mation of p by the mapping x — x~ . -
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6.3 Example. (i) y(ds) = sA*11[071](s) ds, A > —2. Adapting the notation from Ex-
ample 2.4(4), recall that

M (R), ifA>0
domz®; = { Myog(R), ifA=0
M, (R), if A € (=2,0)

(see Example 3.1). If p € dom;®; then

Frepl) =" [ 57 p(as)
Obviously, this type of function determines p uniquely from dom;®;, so that q)jj
is injective. The cases of A =0 and A = 1 are of special interest. Indeed, ranLCIDEl
equals the class of selfdecomposable Lévy measures when A = 0 (see [BNMS06]),
and the class of s-selfdecomposable Lévy measures when A = 1 (see [Ju85]).

(i) y(ds) = sl_le_sl(qw) (s)ds, A > —2. Recall from Example 3.1 that dom. Y, =
domy®, forall A. We get

Frap(t) =117 /0 s%e /5 p(ds) = 1~ 1-@ /O e s p (ds)

Again, fygp determines p uniquely from dom; Y, so that YE{Z) is injective. The
cases of A =1, A =0 and —2 < A < 0 are of special importance. When A = 1,
we get the mapping Y introduced in Example 2.4(1). In the cases A =0 and —2 <

A <0, ranLY&d) equals the classes of Lévy measures corresponding to Thorin and to
tempered o-stable distributions on R9, respectively (see [BNMSO06] and [Ro07]).

6.4 Remark. For A in (—2,) the mapping Yg,d) is not injective when Y is given by
y(dx) = x*! 1(0,) (x) dx, which is the Lévy measure of a stable distribution. Indeed,
since

Frop) =11 [ 75 Fp(as),

Y® p is the same measure for all p having equal —A’th moment. It is also easy to see that
Yg,d) is non-injective when ¥ is the Lévy measure of a semistable distribution.

Besides (6.2) we may use other integral transforms to identify Lévy measures. They
are determined by a kernel K : (0, 0) — R (or C) as follows. For a measure ¥ € 9 ¢((0,0))
define

Ly(0) = | K(6x)7(dv). ©3)
where 6 € domLy := {6 | [;"|K(6x)|y(dx) < e}. Then
Lysp(6) = /O “Ly(6x)p(dx) 6 € domLysp. (6.4)

Below we give three examples of K and of the resulting integral transforms. These trans-
forms each identify measures from 97 ((0, <)), but the choice of which one to apply may
depend on the type of measure Y (cf. Example 6.5 below).
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(i) K(x)=1—cosx,x>0. ThenL,(0) = [;°(1 —cos(0x)) y(dx) is the Lévy exponent
of an infinitely divisible distribution generated by symmetrisation of y. We will call
it the Lévy transform of .

(ii) K(x) =x?exp(—x), x> 0. Then

Ly(8) = ez/wxze—"x y(dx), 6 >0.
0

(iii) K(x) =exp(—x"7),x >0, g > 0 (fixed). Then

Ly(6) = /Owe_eq” ¥(dx) = /:e_“" y (dx'/9), 6>0.

«—

In this case ILy is expressible as the Laplace transform of another measure.
6.5 Example. Let y be as in Example 2.4(2). That is,

fr(s) :Otfls*l*l/aca(s*l/“), s> 0,

where 0Oy is the density of the positive o-stable law having Laplace transform e %,

0 < a < 1. Take transformation (iii) with ¢ = 1 /c. Using (2.5) and (6.4) we get
Ly®p<9> — / e(-)—I/Ot;—l/oz/ a—l(ts—l)flfl/aaa((tsfl)fl/a)Sflp(ds) dr
0 0
- / / e 0 G0 (x) drp (ds)
0o Jo
- /O e 0 p(ds) = /0 e 0" p (ds).

—

Thus Ly, identifies p. We conclude that Y is injective. This was established in [BNT06]
by a closely similar argument.

A more detailed and deeper study of the injectivity problem will appear in a separate
paper.

7 Upsilon Mappings of .# 2 (R¢)

The Upsilon transformations discussed in the foregoing give rise to regularising mappings
from the class .#2(R¢) of infinitely divisible laws on R into itself. These mappings are
one-to-one when the corresponding Upsilon transformation of Lévy measures are. The
material discussed in this Section extends results obtained previously in the special case
d =1 and y(dx) = e *dx; cf. [BNT04] and [BNTO6].

Before proceeding with the formal definition of the mentioned mappings of .#%(R%),
we recall for convenience the version of the Lévy-Khintchine representation for mea-
sures in #2(RY) that we shall make use of: A probability measure u on R? belongs
to .#2(R¥) if and only if its characteristic function Ju can be represented in the form
fu(z) = exp(Cy(z)), where the cumulant Cy, of u is given by

Cu(@) =i(zm) — 3z + [ (€& —1—i(zx)lpy(Ix])) p(dx), (z€R’), 7.1

R4
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where 7 is a vector in R Aisa symmetric, non-negative definite d X d matrix (with real
entries) and p is a Lévy measure on R, The triplet (A, p,n) is uniquely determined by
u and is called the characteristic triplet for Q.

7.1 Definition. Assume that ¥ € M ((0,0)) and consider the mapping Yy: 9, (RY) —
My (R?). We then define the mapping Y¥: .#2(RY) — #9(R?) in the following way:
If u € 9(R?) with characteristic triplet (A,p,n), then Y(u) is the measure in

I9(RY) with characteristic triplet (Ma(y)A,Yy(p),M(y)7), where M;(y) denotes the
i’th moment of y (i = 1,2), and where

A=mn+ [ [ (Lol = 1oy () plaoyvan. (.2

The well-definedness of the vector-valued double integral in (7.2) is ensured by part (i)
of the following:

7.2 Lemma. Let p be a Borel measure on R.

(i) Foranyt in (0,c0) we have
el ol = 1oy ([ p(d) < (1) [ (1A J]) ().
(i) For any vector z in RY we have
[0 = 1=tz 0ty () [ pldo) < 2+ 311l?) [ (1Al p(av).

Proof. In the case d = 1, (i) may be extracted easily from the proof of Lemma 3.13
[BNTO5]. For d > 2 we note then for ¢ in (0, ) that

LWl el = 1oy (I (@) = [ as[10,1109) = 101 (5) 1l ().

and hence (ii) follows by applying the case d = 1 to the measure ||p||.
To prove (ii), we note first that for any x,z in R? we have the well-known estimate

’ei<z,x> -1 —i(Z,xH < %|<Z,X>|2 < %||Z||2||x||27

so that 5
i(z,x . <
[ e i ptay < 25 [ an ) ptay)
{1} R

Moreover,
/ €9 — 1| p(dx) < 2p ({|Ix]| > 1}) < 2/ (LA 1x]1%) p(dx).
{Ill>13 R

Combining the two estimates above, (i1) follows readily. ]

The following proposition motivates the choice of the constant 7] in the definition of Y7.
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7.3 Proposition. Assume thaty € Mg, ((0,0)) and consider the mapping Y?: 9 (R%) —
I9(R?) defined above. Then for any u in .99 (R?) we have the following relation be-
tween the cumulant transforms of 1 and YV (u):

Crri) / Cot2)Y(dr),  (z€RY). (7.3)

Proof. Let u be a measure in .#2(R¥) with characteristic triplet (A, p, ). For any vector
yin R we get from (i1) in Lemma 7.2 that

CuO)] < 1sml+ ) + [ [0 =1 =i 1oy ()] p ()

< iyl + z ANy + (2+%||y||2)/R(1 AlIxlI?) p(dx).

Since [;°(1V#?)y(dt) < oo, it thus follows for any vector z in RY that

| icutlvten) < Il (0 + Sl Pp
+ [P [ @ el ) <

which justifies the following calculations:

| Cutez vt
= (e, (1)~ H Az M ()
[T =1 —inta ) 1o (D) p (@) piar)
(

=iz, n>M1 Y) - Az, 2)Ma(y)
+/o </d(eum_1_i<Z’x>1[o,1}(HxH))P(tldx)) ¥(dr) (7.4)

R
y om (/R i) (101 e~ 1[0,1](HXH))P(dX)>y(dt)

= Cyy(y)(2),
as desired. ]

Recall that for a d x d matrix B, we denote by Tz: R?Y — R? the corresponding lin-
ear transformation. For a Borel measure i on R¢, we let furthermore Tgu denote the
transformation of u by the mapping 7p.

7.4 Corollary. Assume that y € 9, ((0,0)) and consider the mapping YV: 99 (R?) —
I9(R?) defined above. Then Y7 has the following properties:

ORUITEITYES U(TIES U] (U1, 12 € ID(RY)).
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(i) Y'(Tpp) = TpY? (),  (BE€My(R), p € I2(R?)).
(iii) Y7(8:) = 8y, (p)cs (c € RY).

Proof. (i) Assume that py, iy € #2(R?) and then note that

Coruape) (@) = || Cunan02)7(@0) = [ Cuu ()70 + [ Cunla2) )

= Cyruy) (z) + Crr(w,) (z) = Crr(uy )17 (o) (2);

for any vector z in RY. Clearly this implies (i).
(i1) Let B be a d x d matrix and let B* denote the transposed of B. Then for any vector
zin R? we find that

Crr(u) (2) = /O Cryp (12) y(dr) = /0 Cu(1B"2) Y(dt) = Crr () (B"2) = Cryyr(u)(2),

which implies (ii).
(iii) Let ¢ be a fixed vector in R?. Then for any z in R? we find that

oo

Crray (@)= [ 12.0)7(dn) = ile,0) [ 17(@) =M (Do) = Co,, . ().
which proves (iii). [ |

7.5 Corollary. Assume that ¥ € 9, ((0,0)) and consider the mapping Y": .2 (R%) —
I9(R?) defined above. We then have

(S (R)) SR and Y(Z(R))C LR,

where .7 (R?) and Z(R¥) denote, respectively, the class of d-dimensional stable and
selfdecomposable laws.

Proof. Recall first that .#(R?) is the class of probability measures p on R? satisfying
that (cf. [ST94, Definition 2.1.1])

Va,o >03a” > 03B € R: Dopt Doyt = D ji % 8,

where D denotes the scaling of u by the scalar ¢, i.e. Dct = T, t. Now, for any  in
Z(R%) and o, &’ from (0, ) it follows by application of (i)-(iii) of Corollary 7.4 that

Do Y7 () % Doy Y (1) = X" ((Doctt) # (Doyt)) = Y¥(Doyrtt 5 8g) = Doyr X (1) # Sy, ()

for suitable &’ from (0,0) and 8 from R. This shows that Y?(u) € . (R?) too. The
inclusion Y7(.Z(R?)) C £ (R?) follows similarly from (i) and (ii) of Corollary 7.4 by re-
calling that . (R?) may be characterised as the class of probability measures in .#2(R%)
satisfying that

Ve e (0,1) 3ue € ID(RY): f = Dept * e,

(cf. [Sato99, Proposition 15.5]). [
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7.6 Remark. If y € M. ((0,00)) \ 9Mp2((0,0)), then Definition 7.1 does not make sense,
even if we restrict attention to the class .#%7((RR) of infinitely divisible laws p with no drift
and no Gaussian part, i.e. laws with characteristic triplets of the form (0,p,0). For one
thing we need to require that p be in the Lévy domain dom; Yy, but this generally does
not ensure that the integral in (7.2) is well-defined. To remedy this situation we introduce
the subclass (cf. Proposition 7.3 below)

dom s X" = {1 € IPo(R) | Vz € R: [§7|Cuu(zt)| ¥(dr) < o}

For a given ¥, Definition 7.1 then makes sense for all y in dom 45 X" and gives rise
to a mapping Y?: dom s (Y?) — .#2(R¢) with (algebraic) properties similar to those
derived below in the case y € Mp2((0,0)). In the present paper we restrict attention
to the mappings Y7, where ¥ is assumed in M, ((0,0)), and we merely indicate by an
example (cf. Example 7.7(4) below) that the more general setting outlined above gives
rise to important and interesting mappings as well.

7.7 Example. We adopt the notation from Example 2.4.

(1) Consider the mapping Y introduced in Example 2.4(1). The corresponding map-
ping Y': #9(R) — .#2(R) is one-to-one and is related to free probability via the
formula

Cro(y) (2) = Caqp) (iz), (zeR),

where A is the so-called Bercovici-Pata bijection from .#2(R) onto the class of
infinitely divisible probability measures with respect to (additive) convolution in
free probability theory. In addition, ¥ is the analog of the cumulant transform in
free probability (see [BNTO04] for details). The range of YO was identified as the
so-called Goldie-Steutel-Bondesson class in [BNMS06]. Furthermore, Y° maps the
class of stable laws onto itself and the class of selfdecomposable laws onto the
so-called Thorin class (see [BNTO06]).

(2) For a in [0,1] consider the mapping Y introduced in Example 2.4(2). The asso-
ciated mapping Y*: Y2 (R) — .#2(R) was introduced and studied in [BNT06].
For all &, Y% is one-to-one. For & = 0, Y* agrees with the mapping Y described
in (1) and Y! is the identity mapping on .#2(R). The family (Ya)aep,1] thus, in
a certain sense, interpolates smoothly between infinite divisibility in classical and
free probability (see [BNT04]).

(3) Consider for A in (—2,00) the mapping Y, introduced in Example 2.4(3), i.e. the
Upsilon transformations corresponding to the measures ) (dt) = t*~le~*dr. When
A >0, 7 € Mp((0,)) and we obtain a mapping Y*: FP(R) — FP(R) via
Definition 7.1. When A € (—2,0], 73, ¢ Mp2((0,0)) and Definition 7.1 does not
apply. However, the construction outlined in Remark 7.6 gives rise to mappings
T*: dom s Y* — #P(R), where

dom_Y* = {p € IDo(R) | Vz € R: [§|Cular) [ Te " dt < oo}

Questions related to the random integral representations of these mappings Y* have
been studied by Sato in [Sa06a].
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(4) Consider for A in (—2,) the mapping @, introduced in Example 2.4(4), i.e. the
Upsilon transformations corresponding to the measures y; (df) = 1+~ Lio,1)(t)dt.
As in (3) we obtain mappings ®*: #2(R) — .#P(R) via Definition 7.1 when
A >0, and for A in (—2,0] the construction outlined in Remark 7.6 gives rise to
mappings ®* : dom y5®* — FP(R). The particular case A = 0 was studied in
[BNMSO06], where it was established that

dom s ®° = e IDR) | p(u) € Mg (R)},

where p () denotes the Lévy measure of p. Thus, the condition that the integral
Jo |Cu(zt)| y(dr) be finite for all z, is, in this case, equivalent to the requirement that
p(1) € Mg (R) = dom; Py, but, as indicated in Remark 7.6, this is not a general
feature. The range of @Y is the class of all selfdecomposable laws; cf. for instance
[BNMSO06].

We close this section by giving a Lévy-Khintchine type representation of Y7 ().

7.8 Proposition. Assume that’y € Mg, ((0,0)) and consider the mapping Y?: 9 (R%) —
I9(R?) defined above. Then for any z in RY

Crri)(2) =M1 () (z, M) — 3M2(Y)(Az,2)
+/Rd (9y((z,x)) = Mo(y) —iMi(y){z,x) 11,11 ([Ix]))) p(dx),

where ¢y(u) = [;"e™ y(dt) foru in R, and M;(y) = [5°t/ y(dt) (j =0,1,2).
Proof. Using the calculation (7.4) from the proof of Proposition 7.3 we find that

Cyy(p)(2) =iz, MM (y) — 3(Az,2)My(7)

) it z.¢ ; (7.5)
+/0 </1‘§d (el (zx) _ 1 —1t<z,x>1[071](||x||)) p(dx)) ’Y(dl‘)

By Lemma 7.2(ii) we may change the order of integration in the double integral, so that

/Ooo (/Rd (eit<z,X> -1 —it(z,x)1[071](\]x\])) p(dx)) ¥(dr)

= |, (9r{(2,x)) =Mo(y) =M (¥) (. x) Lo,y (Ix11)) P (),

which inserted in (7.5) yields the desired formula. [ |

8 Continuity properties of Y7

In this section we establish continuity results for upsilon transforms Y7 under the assump-
tion that y € M2 ((0,00)). The derived results may be seen as counterparts to the results
accomplished in Section 5.1 for Y, also in the 9y ((0,0))-case. We shall need the
following well-known lemma (see e.g. the proof of [BNMSO06, Proposition 2.4(v)]).
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8.1 Lemma. Let (u,) be a sequence of measures from #2(R?), and for each n let
(A, Pn,Mn) be the characteristic triplet for W,. Then (W,) is precompact if and only if
the following four conditions are satisfied:

@ sup,cy[lAd]| < o

(b) supen fpa (LA [[x]%)pa(dx) < oo.

(c) Ve > 03K >0: sup,cypu({lx]| > K}) <e.
(@ suppen Il < o

8.2 Proposition. For any y in Mo ((0,%0)) the mapping YV: I9(R?) — 9P (R?) is
continuous with respect to weak convergence, i.e. for any sequence (l,) of measures
in P (R%) and any measure u in .#9(R?) we have

Hy —— 0= Y (1) —— YV (p).

n—oo n—oo

Proof. Let (u,) be a sequence of measures from .#2(R?) such that p, — p as n — oo
for some measure U (necessarily) in .#% (Rd ). Then by [Sato99, Lemma 7.7]

Cu,(y) — Cu(y), for all y in RY,

n—oo

and it suffices to establish that

Crr(y) () — Crru)(y), for all y in R¢.

—0Q

By Proposition 7.3 and Lebesgue’s theorem on dominated convergence it suffices to ver-
ify, for each fixed z in R, the existence of a Borel function g;: (0,0) — [0, o) such that

VneN: |Cp,(2t)] < g:(t),  (t€(0,0)), (8.1)
and

/0 () y(dr) < (82)

For each positive integer n, let (A,, p,,N,) be the generating triplet for ,. Combining
then (7.1) with (ii) in Lemma 7.2, we find that

[Cus D) < Il V1] + 3 AullIy I + 2+ 3 1511%) /Rd(l A x%) pa(dx),

for any vector y in R?. Since 1, —  as n — oo, it follows that (cf. Lemma 8.1)

H :=sup||n,|| <e, A:=sup|A,||<e and R:=
neN neN

sup [ (1A [|x[|*) p(dx) < eo.
R4

neN

Thus, if we put
g:(t) = Hl|z[lr + 3AlIz]* + R(2+ 5 |l2l|*),

it follows that g satisfies both (8.1) and (8.2), since ¥ € M2 ((0,0)). [ ]
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8.3 Lemma. Let Yy be a non-zero measure from 9y, ((0,0)), and let (i,) be a sequence
of measures from .92 (R?) such that YY(u,) — v as n — oo for some measure v in
I9(R?). Then the sequence (L, ),en is precompact.

Proof. We proceed as in the proof of [BNMS06, Proposition 2.4(v)]: Denoting by
(An, Pn, ) the characteristic triplet for Y?(u,), let (3)—(d) be the conditions obtained
by replacing (A, Pp,Mn) by (An, Pn, M) in (a)—(d) of Lemma 8.1. Then our assump-
tion implies that (3)-(d) are satisfied. By definition of Y7 we have that A, = M>(}y)A,,
Pn = Yy(pn) and

A=+ [ [ (ol = Lo (1)) pldy v,

Hence, since y # 0, (a) is an immediate consequence of (2), and (b) follows from (6) and
the estimate

Lanld @)= [~ [ (A pafan vian
> [ [ AR P pa(an) )
= [Cand)ytan [ (ALl pafav),

recalling again that y # 0. To verify (c), note that for any positive numbers L and & we
have

P ({llxll > L}) = /0 pu({llxll > L/t}) y(de) = ¥([8,0))pu ({llx]| > L/8}).
Choosing now & such that y([0,)) > 0 and using the substitution L = K0, we find that

pu({llxll > K}) < 7(18,%0)) ™" pu({Ilx| > K 8}),

for any positive number K and any n in N. Therefore (c) is a consequence of (€). Finally,
to establish (d), note that

sup [~ [ ol 1.y 11x1) = 1.y Il | p (@) k) < o

neN
as a result of Lemma 7.2 in conjunction with (b). Therefore (d) follows from (d). [

8.4 Proposition. Let y be a measure in 9y, ((0,0)).

(i) The mapping Y': .99 (R?) — .#9(R?) is closed in the following sense: For any
subset F of .99 (R?), which is closed in the topology for weak convergence, the
same holds for YY(F) = {Y"(u) | u € F}.

(i) Assume that the mapping YV: 99 (R%) — 99 (R?) is injective. Then it is auto-
matically a homeomorphism onto its range ran g5 7.
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Proof. (i) We may clearly assume that 7 # 0. Let F be a closed subset of .#2(R¢) and
let v be a measure from the closure of Y7(F). Then we may choose a sequence (i,) from
F such that Y?(u,) — v as n — oo, and by Lemma 8.3 (,,) is necessarily precompact. In
particular there exists a subsequence ( Un,) peN converging weakly to some (1, which must

belong to F, since F is closed. Now by Proposition 8.2, Y7(u,,) 2 YY(u) as n — oo, and

since also Y7(,,) Y, v as n — oo, we conclude that v = Y7 () € YY(F), as desired.
(i1) This follows from (i) as in the proof of (ii) in Corollary 5.4. [

8.5 Corollary. Lety be a non-zero measure from 9, ((0,0)) and consider the full range
ran g5 Y7 := {7 (1) } ue f.@(Rd)}.
This subclass of .#2(R¥) has the following properties:
(i) Vi * vy € ran 45 Y7, whenever vi, Vv, € ran g5 7.

(ii) TgVv € ran 45 Y7, whenever v € ran 45XV and B € M;(R).

(iii) 8, € ran 45 Y7 for all ¢ in RY.

(iv) ran_s5 Y7 is a closed subset of .#%(R?) in the topology for weak convergence.
Proof. These properties follow readily from Corollary 7.4 and Proposition 8.4. ]

8.6 Example. (1) The Upsilon mapping Y': #2(R) — .#2(R) considered in Ex-
ample 7.7(1) is one-to-one and corresponds to the measure y(dt) = e 'dr from
Mp2((0,00)). Thus, by Corollary 8.4(ii), it is a homeomorphism onto its range (=
the Goldie-Steutel-Bondesson class). This was established directly in [BNMSO06].

(2) The Upsilon mappings Y*: #9P(R) — #2(R) considered in Example 7.7(2) are
also injective and correspond to measures Yy, from M, ((0,0)). Hence these map-
pings are also homeomorphisms onto their ranges.

(3) For A > 0 the mappings Y* considered in Example 7.7(3) correspond to measures
15, from DMy ((0,00)), and they are injective according to Example 6.3(ii). Thus,
these mappings are homeomorphisms as well.

(4) By virtue of Example 6.3(i), it follows as in (3) that for positive A the mappings
®*: 7P (R) — #2(R) introduced in Example 7.7(4) are homeomorphisms onto
their ranges.

9 Random Integral Representation

In many cases the Upsilon transformations introduced in Section 7 can be represented
as random integrals, in the following sense. (Here we consider only one-dimensional
integrators; for some results on the multivariate case cf. [BNMSO06].)

Suppose that ¥ has finite upper tail measure and let



Then y(d§) = —dey (§). The inverse function of &y, denoted €y, is defined by
ey (t)=inf{& >0 (&) <1}. 9.1)

Both functions § — €y (&) and t — €5 (¢) are decreasing and caglad.
Now, given a Lévy measure p and an ) € R, let Z = {Z;} be the Lévy process for
which the cumulant function of Z; is given by

Cp(2) = inz+ /]R (67— 1—izt1_y (1) )p (), 9.2)
and consider the random integral
&y(0) N
y = /0 £; (5)dZ,. 9.3)

9.1 Definition. We say that (9.3) is a random integral representation (RIR) of Y, at
p € dom Yy provided the integral (9.3) exists as the limit in probability of the Riemann
sums and the random variable Y (which is then necessarily infinitely divisible) has Lévy
measure py = Yy (p) and cumulant function

Co, (2) = ifiz+ /R (6 — 1 =izl 1y (1) ) py (dr) 9.4)
where

n= / 77+/ ) =1 () e (d)’))Y(dx)~

For Yy to have RIR at p(€ dom,Yy) it suffices that y € M, ((0,0)) and &y is contin-
uous. In that case it moreover holds that

/O |Cp (12)] 7 (dr) < oo 9.5)
and that we have the important relation
Cp, (2) = /O Cp (tz) y(dt), (9.6)

which in fact is the same as (7.3).

This result was established for the case y(dx) = e *dx in [BNTO04], and for the mea-
sures introduced in Example 2.4(2) in [BNTO06]. The proofs given in those cases extend
directly to the present setting.

9.2 Remark. The measures y in Example 3.1(1)—(3) all have second moment and contin-
uous 8;, and thus the RIR.

9.3 Remark. If we take Z to be the Lévy process with characteristic triplet (a,p,n) then,
again provided that y € 9 ((0,0)) and €5 is continuous, we have that (9.5) and (9.6)
hold (cf. Proposition 7.3) and, furthermore, that ¥ has triplet (d, py, ]) with @ = aM, ()
(where M, () denotes the second moment of y). Otherwise put, (9.3) is then a random
integral representation of the transformation Y? discussed in Sections 7 and 8.

Extensions and ramifications of the original results (in [BNT04] and [BNTO06]) are
also discussed in [BNMSO06], [Sa06a], [Sa06b] and [Sa07]. The latter three papers de-
velop the theory of integration of deterministic functions with respect to Lévy processes
and related RIR results in great generality and detail.
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