
08

THIELE CENTRE
for applied mathematics in natural science

THIELE CENTRE
for applied mathematics in natural science

Spectral representation of Gaussian semimartingales

Andreas Basse
www.thiele.au.dk

The T.N. Thiele Centre
Department of Mathematical Sciences
University of Aarhus

Ny Munkegade Building 1530
8000 Aarhus C
Denmark

Phone +45 89 42 35 15
Fax +45 86 13 17 69
Email thiele@imf.au.dk Research Report No. 03 February 2008





Spectral representation of Gaussian
semimartingales

Andreas Basse∗

Abstract

The aim of the present paper is to characterize the spectral representation
of Gaussian semimartingales. That is, we provide necessary and sufficient con-
ditions on the kernelK for (Xt)t≥0 = (

∫
Kt(s) dNs)t≥0 to be a semimartingale.

Here, N denotes an independently scattered Gaussian random measure on a
general space S. We study the semimartingale property of (Xt)t≥0 in three
different filtrations. First the (FXt )t≥0-semimartingale property is considered
and afterwards the (FX,∞t )t≥0-semimartingale property is treated in the case
where (Xt)t∈R is a moving average process and FX,∞t = σ(Xs : s ∈ (−∞, t]).
Finally we study a generalization of Gaussian Volterra processes. In particular
we provide necessary and sufficient conditions on K for the Gaussian Volterra
process (

∫ t
−∞Kt(s) dWs)t≥0 to be an (FW,∞t )t≥0-semimartingale ((Wt)t∈R de-

notes a Wiener process). Hereby we generalize a result of Knight (1992),
Cherny (2001) and Cheridito (2004) to the non-stationary case.

Keywords: semimartingales; Gaussian processes; Volterra processes; station-
ary processes; moving average processes

AMS Subject Classification: 60G15; 60G10; 60G48; 60G57

1 Introduction
Recently there has been major interest in Gaussian Volterra processes. That is,
processes (Xt)t≥0 given by

Xt =

∫ t

−∞
Kt(s) dWs, t ≥ 0, (1.1)

where (Wt)t∈R is a Wiener process with parameter spaceR and s 7→ Kt(s) is a square
integrable function for t ≥ 0. Knight (1992, Theorem 6.5), Cherny (2001), Cheridito
(2004) and Jeulin and Yor (1993) studied Gaussian Volterra processes with K on the
form Kt(s) = k(t− s) + f(s) (such processes are called moving average processes).
They characterized the set of K’s for which (Xt)t≥0 is an (FW,∞t )t≥0-semimartingale,
where FW,∞t := σ(Ws : s ∈ (−∞, t]). In the case where Kt(s) = k(t− s) Jeulin and
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Yor (1993, Proposition 19) gave a condition on the Fourier transform of k for (Xt)t≥0

to an (FX,∞t )t≥0-semimartingale by using complex function theory (in particular
Hardy theory).

A fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1) is an
example of a Gaussian Volterra process (it is in fact a moving average process). In
this case K is given by

Kt(s) = ((t− s)+)H−1/2 − ((−s)+)H−1/2.

It is well-known (see Rogers (1997)) that the fBm is a semimartingale if and only
if H = 1/2, i.e. it is a Brownian motion. Inspired by the fBm there has been de-
veloped (using Malliavin calculus) an integral for some Gaussian Volterra processes
which are not semimartingales, see Alòs et al. (2001), Decreusefond (2005) and Mar-
quardt (2006). This integral lacks some of the usual properties of the semimartingale
integral by the characterization of semimartingales as stochastic integrators (the
Bichteler-Dellacherie Theorem), see Protter (2004, Chapter 3, Theorem 43). Hence
it is important to characterize the set of K’s for which (Xt)t≥0 is a semimartingale.

According to Kuelbs (1973) every centered Gaussian process (Xt)t≥0, which is
right-continuous in probability, has a spectral representation in distribution, i.e.
(Xt)t≥0 is distributed as (

∫
Kt(s) dNs)t≥0, where N is an independently scattered

centered Gaussian random measure and (t, s) 7→ Kt(s) is a deterministic function.
The semimartingale property of Gaussian processes is determined by the distribution
of the process. Hence, (Xt)t≥0 is a semimartingale if and only if (

∫
Kt(s) dNs)t≥0 has

this property. The purpose of this paper is to characterize the spectral representation
of Gaussian semimartingales, that is we characterize the family of kernels K for
which (∫

Kt(s) dNs

)
t≥0

(1.2)

is a semimartingale. Note that the processes on the form (1.2) constitute a general-
ization of the Gaussian Volterra processes. We study the semimartingale property
with respect to the natural filtration and with respect to two larger filtrations. In
particular we characterize the K’s for which a Gaussian Volterra process (Xt)t≥0

given by (1.1) is an (FXt )t≥0-semimartingale or an (FW,∞t )t≥0-semimartingale (the
latter condition is strongest). Hereby we generalize results of Cheridito (2004),
Knight (1992, Theorem 6.5) and Cherny (2001). Our setting also covers Ambit
processes with deterministic volatility, see Barndorff-Nielsen and Schmiegel (2007).
Moreover, we characterize the functions k for which (Xt)t∈R = (

∫
k(t − s) dWs)t∈R

is an (FX,∞t )t≥0-semimartingale.
The paper is organised as follows. Section 2 contains notation and preliminary

results about Gaussian random measures. Section 3 contains measure-theoretic and
Gaussian results. In section 4 we characterize the spectral representation of Gaussian
semimartingales.

2 Notation and random measures
Let (Ω,F , P ) be a complete probability space. By a filtration we mean an increasing
family (Ft)t≥0 of σ-algebras satisfying the usual conditions of right-continuity and
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completeness. If (Xt)t≥0 is a stochastic process we denote by (FXt )t≥0 the least
filtration to which (Xt)t≥0 is adapted. Let T equal R+ or R. Then (Xt)t∈T is said
to have stationary increments if for all n ≥ 1, t0 < · · · < tn and 0 < t we have

(Xt1 −Xt0 , . . . , Xtn −Xtn−1)
D
= (Xt1+t −Xt0+t, . . . , Xtn+t −Xtn−1+t),

where D= denotes equality in distribution.
Let (Ft)t≥0 be a filtration. Recall that an (Ft)t≥0-adapted càdlàg process (Xt)t≥0

is said to be an (Ft)t≥0-semimartingale, if there exists a decomposition of (Xt)t≥0 as

Xt = X0 +Mt + At, t ≥ 0, (2.1)

where (Mt)t≥0 is a càdlàg (Ft)t≥0-local martingale starting at 0 and (At)t≥0 is a
càdlàg (Ft)t≥0-adapted process of finite variation starting at 0. We say that (Xt)t≥0

is a semimartingale if it is an (FXt )t≥0-semimartingale. Moreover (Xt)t≥0 is called
a special (Ft)t≥0-semimartingale if it is an (Ft)t≥0-semimartingale such that (At)t≥0

in (2.1) can be chosen (Ft)t≥0-predictable. In this case the representation (2.1)
with (At)t≥0 (Ft)t≥0-predictable is unique and is called the canonical decomposition
of (Xt)t≥0. From Stricker’s Theorem (see Protter (2004, Chapter 2, Theorem 4))
it follows that if (Xt)t≥0 is an (Ft)t≥0-semimartingale then it is also an (FXt )t≥0-
semimartingale.

For each function f : R+ → R of bounded variation, Vt(f) denotes the total
variation of f on [0, t] for t ≥ 0. If (At)t≥0 is a right-continuous Gaussian process of
bounded variation then (At)t≥0 is of integrable variation (see Stricker (1983)) and we
let µA denote the Lebesgue-Stieltjes measure induced by the mapping t 7→ E[Vt(A)].
For every Gaussian martingale (Mt)t≥0 let µM denote the Lebesgue-Stieltjes measure
induced by the mapping t 7→ E[M2

t ].
A process (Wt)t∈R is said to be a Wiener process if for all n ≥ 1 and t0 < · · · < tn,

Wt1 −Wt0 , . . . ,Wtn −Wtn−1

are independent, for −∞ < s < t < ∞ Wt − Ws follows a centered Gaussian
distribution with variance t− s, and W0 = 0.

We now give a short survey of properties of independently scattered centered
Gaussian random measures. Let S denote a non-empty set and A be a family
of subsets of S. Then A is called a ring if for every pair of sets in A the union,
intersection and set difference are also inA. A ringA is called a δ-ring if (An)n≥1 ⊆ A
implies

⋂
An ∈ A. If A is a δ-ring and there exists a sequence (An)n≥1 ⊆ A satisfying⋃

An = S then A is said to be σ-finite. Throughout the paper let A denote a σ-finite
δ-ring on a nonempty set S.

A familyN = {N(A) : A ∈ A} of random variables is said to be an independently
scattered centered Gaussian random measure if

1. For every sequence (An)n≥1 ⊆ A of pairwise disjoint sets with
⋃
An ∈ A,∑n

i=1N(Ai) converges to N(
⋃
Ai) in probability as n tends to infinity.

2. For all n ≥ 1 and all disjoint sets A1, . . . , An ∈ A, N(A1), . . . , N(An) are
independent centered Gaussian random variables.
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For a general treatment of independently scattered random measures, see Rajput
and Rosiński (1989). Let N denote an independently scattered centered Gaussian
random measure. It is readily seen that there is a σ-finite measure ν on (S, σ(A))
such that N(A) has a centered Gaussian distribution with variance ν(A) for all
A ∈ A. Following Rajput and Rosiński (1989), ν is called the control measure
of N . Throughout the paper N denotes a independently scattered centered Gaussian
random measure with control measure ν. We shall assume in addition that L2(ν) is
separable.

Let f =
∑n

i=1 αi1Ai
be a simple function. That is, n ≥ 1, α1, . . . , αn ∈ R and

A1, . . . , An ∈ A. Define
∫
f(s) dNs :=

∑n
i=1 αiN(Ai). By a standard argument the

integral
∫
f(s) dNs can be defined through the isometry∥∥∥∫ f(s) dNs

∥∥∥
L2(P )

= ‖f‖L2(ν)

for all f ∈ L2(S, σ(A), ν).
If S = R+, N could be the independently scattered random measure induced

by a Brownian motion. More generally, if S = R
d
+, N could be the independently

scattered random measure induced by a d-parameter Brownian sheet. In this case ν
is the Lebesgue measure on Rd

+ and we can choose A to be {(s1, t1]× · · · × (sd, td] :
si ≤ ti i = 1, . . . , d}. Another example is when S = R and N is the independently
scattered random measure induced by a Brownian motion (Wt)t∈R with parameter
space R.

3 Preliminary results
In this section we collect some measure-theoretical and Gaussian results. We let
(E, E ,m) be a σ-finite measure space and µ be a Radon measure on R+. If H is a
normed space and A ⊆ H, then spA denotes the closure of the linear span of A. For
each mapping R+×E 3 (t, s) 7→ Ψt(s) ∈ R we denote by Ψt the mapping s 7→ Ψt(s)
for t ≥ 0. The following Lemma 3.1 – 3.2 are taken from Basse (2007).

Lemma 3.1. Let Ψt ∈ L2(ν) for t ≥ 0 and define V := sp{Ψt : t ≥ 0}. Assume V
is a separable subset of L2(m) and t 7→ ∫

Ψt(s)g(s)m(ds) is measurable for g ∈ V.
Then there exists a measurable mapping R+ × E 3 (t, s) 7→ Ψ̃t(s) ∈ R such that
Ψ̃t = Ψt m-a.s. for t ≥ 0.

For a locally µ-integrable function f we define
∫ b
a
f dµ :=

∫
(a,b]

f dµ for 0 ≤ a <

b. Let BV(m) denote the space of all measurable mappings R+ × S 3 (r, s) 7→
Ψr(s) ∈ R for which Ψr ∈ L2(m) for r ≥ 0 and there exists a right-continuous
increasing function f such that ‖Ψt −Ψu‖L2(m) ≤ f(t)− f(u) for 0 ≤ u ≤ t.

Lemma 3.2. Let (r, s) 7→ Ψr(s) be a measurable mapping for which (Ψr)r≥0 is
bounded in L2(m). Then r 7→ Ψr(s) is locally µ-integrable for m-a.a. s ∈ E and by
setting

∫ t
0

Ψr(s)µ(dr) := 0 for t ≥ 0 if r 7→ Ψr(s) is not locally m-integrable we have

(t, s) 7→
∫ t

0

Ψr(s)µ(dr) ∈ BV(m).
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If in addition V is a closed subspace of L2(m) such that Ψr ∈ V for all r ∈ [0, t]
then

s 7→
∫ t

0

Ψr(s)µ(dr) ∈ V.

For a measurable mapping (r, s) 7→ Ψr(s) for which (Ψr)r≥0 is bounded in L2(m)

we always define the mapping (t, s) 7→ ∫ t
0

Ψr(s)µ(dr) as in the above lemma.

Lemma 3.3. Let (Ft)t≥0 be a filtration and (Yt)t≥0 ⊆ L1(P ) be a measurable process
with locally µ-integrable sample paths. Define

At :=

∫ t

0

Yr µ(dr), t ≥ 0.

Then (At)t≥0 is (Ft)t≥0-predictable if and only if Yt is Ft−-measurable for µ-a.a.
t ≥ 0.

Proof . Assume (At)t≥0 is (Ft)t≥0-predictable. Then there exists an (Ft)t≥0-pre-
dictable process (Zt)t≥0 with locally µ-integrable sample paths such that At =∫ t

0
Zr µ(dr) for t ≥ 0, see Jacod and Shiryaev (2003, Proposition 3.13). Hence

Yt = Zt P -a.s. for µ-a.a. t ≥ 0 and we conclude that Yt is Ft−-measurable for µ-a.a.
t ≥ 0.

Assume conversely that Yt is Ft−-measurable for µ-a.a. t ≥ 0 and let (pYt)t≥0

denote the (Ft)t≥0-predictable projection of (Yt)t≥0. Since Yt is Ft−-measurable for
µ-a.a. t ≥ 0 it follows that pYt = Yt P -a.s. for µ-a.a. t ≥ 0. Thus

At =

∫ t

0

pYs µ(ds), t ≥ 0,

and it follows that (At)t≥0 is (Ft)t≥0-predictable. This completes the proof.

Recall that N denotes an independently scattered centered Gaussian random
measure with control measure ν. Let R+×S 3 (r, s) 7→ Ψr(s) be a measurable map-
ping for which Ψr ∈ L2(ν) for r ≥ 0. Then we may and do choose (

∫
Ψt(s) dNs)t≥0

jointly measurable in (t, ω). To see this note that V := sp{N(A) : A ∈ A} is a
separable subspace of L2(P ) and

V =
{∫

f(s) dNs : f ∈ L2(ν)
}
. (3.1)

Hence for each element
∫
f(s) dNs ∈ V we have

E
[∫

Ψt(s) dNs

∫
f(s) dNs

]
=

∫
Ψt(s)f(s) ν(ds),

which shows t 7→ E[
∫

Ψt(s) dNs

∫
f(s) dNs] is measurable. The existence of a mea-

surable modification of (
∫

Ψt(s) dNs)t≥0 now follows from Lemma 3.1.
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Lemma 3.4. We have the following.

(i) Let (Yt)t≥0 be a measurable process such that (Yt)t≥0 ⊆ sp{N(A) : A ∈ A}.
Then there exists a measurable mapping R+ × S 3 (t, s) 7→ Ψt(s) ∈ R with
Ψt ∈ L2(ν) for t ≥ 0 and such that Yt =

∫
Ψt(s) dNs for t ≥ 0.

(ii) Let (r, s) 7→ Ψr(s) be a measurable mapping for which (Ψr)r≥0 is bounded in
L2(ν). Then r 7→ ∫

Ψr(s) dNs is locally µ-integrable P -a.s. and for t ≥ 0 we
have ∫ t

0

(∫
Ψr(s) dNs

)
µ(dr) =

∫ (∫ t

0

Ψr(s)µ(dr)
)
dNs. (3.2)

(iii) Let Kt ∈ L2(ν) for t ≥ 0 and (Xt)t≥0 be a right-continuous process satisfying
Xt =

∫
Kt(s) dNs for t ≥ 0. Then for 0 ≤ u ≤ t we have

E[Xt|FXu ] =

∫ (
PuKt

)
(s) dNs,

where PuKt denotes the L2(ν)-projection of Kt on sp{Kv : v ∈ [0, u]}.
(iv) Let (Ft)t≥0 be a filtration and (At)t≥0 be an (Ft)t≥0-predictable centered Gaus-

sian process which is right-continuous and of bounded variation. Then there
exists an (Ft)t≥0-predictable process (Yt)t≥0 ⊆ sp{At : t ≥ 0} satisfying
‖Yt‖L2(P ) = 1 for t ≥ 0 and

At =

∫ t

0

Yr µ(dr), t ≥ 0,

where µ :=
√

2/πµA.

Proof . (i): For t ≥ 0 there exists, by (3.1), a Φt ∈ L2(ν) such that Yt =
∫

Φt(s) dNs.
Moreover for f ∈ L2(ν), t 7→ ∫

Φt(s)f(s) ν(ds) is measurable since

E
[
Yt

∫
f(s) dNs

]
=

∫
Φt(s)f(s) ν(ds).

Hence it follows from Lemma 3.1 that there exists a Ψ as stated in (i).
(ii): Since for t ≥ 0 we have

E
[∫ t

0

∣∣∣∫ Ψr(s) dNs

∣∣∣µ(dr)
]
≤
∫ t

0

‖Ψr‖L2(ν) µ(ds) <∞,

the mapping r 7→ ∫
Ψr(s) dNs is locally µ-integrable P -a.s. Thus both sides of (3.2)

are well-defined. The right-hand side belongs to sp{N(A) : A ∈ A} and so does the
left-hand side by Lemma 3.2. Fix Y =

∫
g(s) dNs in sp{N(A) : A ∈ A}. We have

E
[
Y

∫ (∫
f(t, s)µ(dt)

)
dNs

]
=

∫
g(s)

∫
f(t, s)µ(dt) ν(ds).
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Moreover from Fubini’s Theorem we have

E
[
Y

∫ (∫
f(t, s) dNs

)
µ(dt)

]
=

∫
E[Y

∫
f(t, s) dNs]µ(dt)

=

∫∫
g(s)f(t, s) ν(ds)µ(dt) =

∫∫
g(s)f(t, s)µ(dt) ν(dt).

Hence, the left- and right-hand side of (3.2) have the same inner product with all
elements of sp{N(A) : A ∈ A}, from which equality follows.

(iii): From Gaussianity it follows that E[Xt|FXu ] is the L2(P )-projection of Xt

on sp{Xv : v ≤ u} and therefore (3.1) shows

E[Xt|FXu ] =

∫
f(s) dNs,

for some f ∈ L2(ν). Since L2(ν) 3 g 7→ ∫
g(s) dNs ∈ L2(P ) is an isometry it is

readily seen that f = PuKt.
(iv) is an immediate consequence of Basse (2007, Proposition 4.1).

4 Main results
In this section we characterize the spectral representation of Gaussian semimartin-
gales (Xt)t≥0. We study three different filtrations. First we consider the natural
filtration of (Xt)t≥0. Then we assume (Xt)t∈R is a moving average process and the
filtration is (FX,∞t )t≥0, where (FX,∞t )t≥0 is the least filtration for which Xs is FX,∞t -
measurable for t ≥ 0 and s ∈ (−∞, t]. Finally the filtration is generated by the
background driving random measure N. Recall that ν is the control measure of N.

Theorem 4.1. Let R+ 3 t 7→ Kt ∈ L2(ν) be a right-continuous mapping and
(Xt)t≥0 be given by Xt =

∫
Kt(s) dNs for t ≥ 0. Then the following three conditions

are equivalent:

(i) (Xt)t≥0 is a semimartingale (in its natural filtration).

(ii) For t ≥ 0 we have

Kt(s) = K0(s) +Ht(s) +

∫ t

0

Ψr(s)µ(dr), ν-a.a. s ∈ S, (4.1)

where R+ 3 t 7→ Ht ∈ L2(ν) is a right-continuous mapping satisfying H0 = 0
and ∫ (

Ht(s)−Hu(s)
)
Kv(s) ν(ds) = 0, 0 ≤ v ≤ u ≤ t, (4.2)

R+×S 3 (r, s) 7→ Ψr(s) ∈ R is a measurable mapping such that ‖Ψr‖L2(ν) = 1
and Ψr ∈ sp{Kv : v < r} for r ≥ 0, and µ is a Radon measure.

(iii) There exists a right-continuous increasing function f : R+ → R such that

‖PuKt −Ku‖L2(ν) ≤ f(t)− f(u), 0 ≤ u ≤ t,

where PuKt denotes the L2(ν)-projection of Kt on sp{Kv : v ≤ u}.
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The decomposition (4.1) is unique and if K is represented as in (4.1) then the canon-
ical decomposition of (Xt)t≥0 is given by

Xt = X0 +

∫
Ht(s) dNs +

∫ t

0

(∫
Ψr(s) dNs

)
µ(dr). (4.3)

Proof of Theorem 4.1. (i)⇒ (ii): Assume (Xt)t≥0 is a semimartingale. By Stricker
(1983, Théorème 1) (Xt)t≥0 is a special semimartingale with bounded variation
component (At)t≥0 ⊆ sp{Xt : t ≥ 0}. Hence by Lemma 3.4 (iv) there exists an
(FXt )t≥0-predictable process (Zt)t≥0 ⊆ sp{Xt : t ≥ 0} with ‖Zr‖L2(P ) = 1 such that
At =

∫ t
0
Zr µ(dr) for t ≥ 0, where µ =

√
2/πµA. Moreover Lemma 3.4 (i) shows

that there exists a measurable mapping (r, s) 7→ Ψr(s) satisfying Ψr ∈ L2(ν) and
Zr =

∫
Ψr(s) dNs for r ≥ 0. Since Zr is FXr−-measurable, it follows from Gaussianity

that Ψr ∈ sp{Kv : v < r} for r ≥ 0. From Lemma 3.4 (ii) we have

At =

∫ (∫ t

0

Ψr(s)µ(dr)
)
dNs, t ≥ 0.

Due to the fact that (Mt)t≥0 ⊆ sp{Xt : t ≥ 0}, Lemma 3.4 (i) shows that for all
t ≥ 0, Mt =

∫
Ht(s) dNs for some Ht ∈ L2(ν). The mapping t 7→ Ht ∈ L2(ν)

is right-continuous since (Mt)t≥0 is right-continuous. Stricker (1983, Théorème 1)
shows that (Mt)t≥0 is a true (FXt )t≥0-martingale and hence

0 = E[(Mt −Mu)Xv] =

∫ (
Ht(s)−Hu(s)

)
Kv(s) ν(ds), 0 ≤ v ≤ u ≤ t.

This completes the proof of (4.1).
(ii) ⇒ (i): Assume (4.1) is satisfied. We show that (Xt)t≥0 is a semimartingale

with canonical decomposition given by (4.3). For t ≥ 0 define

Mt :=

∫
Ht(s) dNs and At :=

∫ (∫ t

0

Ψr(s)µ(dr)
)
dNs.

Note Xt = X0 +Mt + At. Lemma 3.4 (ii) shows that

At =

∫ t

0

(∫
Ψr(s) dNs

)
µ(dr), t ≥ 0,

which implies that (At)t≥0 is right-continuous and of bounded variation. Let r ≥ 0.
Since Ψr ∈ sp{Kv : v < r}, ∫ Ψr(s) dNs is FXr−-measurable and hence it follows from
Lemma 3.3 that (At)t≥0 is (FXt )t≥0-predictable.

The only thing left to show is that (Mt)t≥0 is a càdlàg (FXt )t≥0-martingale.
Since Mt = Xt −X0 − At, (Mt)t≥0 is (FXt )t≥0-adapted. Equation (4.2) shows that
E[(Mt − Mu)Xv] = 0 for 0 ≤ v ≤ u ≤ t and hence from Gaussianity it follows
that Mt −Mu is independent of Xv. The (FXt )t≥0-martingale property of (Mt)t≥0

therefore follows by the L2(P ) right-continuity of (Mt)t≥0. Since (FXt )t≥0 satisfies
the usual conditions we can choose a càdlàg modification of (Mt)t≥0. Thus (Xt)t≥0

is a semimartingale with canonical decomposition given by (4.3).
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(i)⇔ (iii): From Stricker (1983, Théorème 1) it follows that (Xt)t≥0 is a semi-
martingale if and only if it is a quasimartingale on each bounded interval. That is,
for t ≥ 0 we have

sup
n∑
i=1

E[|E[Xti −Xti−1
|FXti−1

]|] <∞, (4.4)

where the sup is taken over all finite partitions 0 = t0 < · · · < tn = t of [0, t]. This is
equivalent to the existence of a right-continuous and increasing function f satisfying

E[|E[Xt −Xu|FXu ]|] ≤ f(t)− f(u), 0 ≤ u ≤ t.

The function f can now be chosen to be the left-hand side of (4.4). Moreover
Lemma 3.4 (iii) shows that

‖PuKt −Ku‖L2(ν) = ‖E[Xt −Xu|FXu ]‖L2(P ) =

√
π

2
E[|E[Xt −Xu|FXu ]|],

which implies that (i) and (iii) are equivalent.
Decompose K as in (4.1). We show that this decomposition is unique. In the

proof of “(ii)⇒ (i)” we showed that (4.3) is the canonical decomposition of (Xt)t≥0

and since this is unique we have that R+ 3 t 7→ Ht ∈ L2(ν) is unique. Let (At)t≥0

be the bounded variation component of the semimartingale (Xt)t≥0. We have

E[Vt(A)] = E
[∫ t

0

∣∣∣∫ Ψr(s) dNs

∣∣∣µ(dr)
]

=

∫ t

0

E
[∣∣∣∫ Ψr(s) dNs

∣∣∣]µ(dr)

=

√
2

π

∫ t

0

‖Ψr‖L2(ν) µ(dr) =

√
2

π
µ((0, t]),

and hence µ is uniquely determined and it follows that (t, s) 7→ Ψt(s) is uniquely
determined µ⊗ ν-a.s. This completes the proof.

The functions t 7→ Ht(s) can behave very differently for different H in the above
theorem. An example of such an H is Ht(s) = 1(0,t](s). In this case t 7→ Ht(s) is
constant except at s where it has a jump of size one. But there are also examples
of H for which t 7→ Ht(s) is continuous and nowhere differentiable (and hence of
unbounded variation).

We now apply Theorem 4.1 on an example.

Example 4.2. Let g, h ∈ C1(R) be two strictly increasing functions such that
0 ≤ g < h and g(∞) = ∞ and let f : R → R be a continuous function such that
f > 0. Define Kt(s) = 1[g(t),h(t)](s)f(s) and let (Wt)t≥0 be a Wiener process. We
show that (Xt)t≥0 given by

Xt =

∫
Kt(s) dWs =

∫ h(t)

g(t)

f(s) dWs, t ≥ 0,

is not a semimartingale.
Choose (a, b) ⊆ R+ such that h(0) ≤ g(x) ≤ h(a) for x ∈ (a, b) and let u, t ∈

(a, b) with u ≤ t be given. Moreover choose c, d ≥ 0 satisfying c ≤ d ≤ u, h(c) =
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g(u) and h(d) = g(t) and define ψ := Kd − Kc = (1[g(u),g(t)] − 1[g(c),g(d)])f. Let Pu

respectively Pψ denote the projection on sp{Kv : v ∈ [0, u]} respectively sp{ψ},
where the closure is in L2(λ) (λ denotes the Lebesgue measure). We have that

‖PuKt −Ku‖L2(λ) = ‖Puf1[g(u),g(t)]‖L2(λ) ≥ ‖Pψf1[g(u),g(t)]‖L2(λ),

and by choosing K1, K2 ∈ (0,∞) such that K1 ≤ f 2(s) ≤ K2 for s ∈ [0, g(t)], we get

|Pψf1[g(u),g(t)]| =
∣∣∣〈ψ, f1[g(u),g(t)]〉

〈ψ, ψ〉 ψ
∣∣∣ ≥ K1(g(t)− g(u))

K2(g(t)− g(u) + g(d)− g(c))
|ψ|.

Thus, by setting ϕ = g ◦ h−1 ◦ g, it follows that

‖PuKt −Ku‖L2(λ) ≥ K1K
−1
2

g(t)− g(u)

g(t)− g(u) + g(d)− g(c)
‖ψ‖L2(λ)

≥ K
3/2
1 K−1

2

g(t)− g(u)

g(t)− g(u) + g(d)− g(c)

√
g(t)− g(u) + g(d)− g(c)

= K
3/2
1 K−1

2

g(t)− g(u)√
g(t)− g(u) + ϕ(t)− ϕ(u)

≥ K
√
t− u,

for some K > 0. Hence we conclude, by Theorem 4.1, that (Xt)t≥0 is not a semi-
martingale. ♦

Let (Wt)t∈R be a given Wiener process and k and f be measurable functions
satisfying k(t − ·) − f(−·) ∈ L2(λ) for t ∈ R (λ denotes the Lebesgue measure
on R). Then (Xt)t∈R is said to be a (Wt)-moving average process with parameter
(k, f) if

Xt =

∫
R

k(t− s)− f(−s) dWs, t ∈ R.

For short we say (Xt)t∈R is a (Wt)-moving average process. Note that we do not
assume k and f are 0 on (−∞, 0). It is readily seen that all (Wt)-moving average
processes have stationary increments. By Doob (1990, page 533) it follows that
an L2(P )-continuous, stationary and centered Gaussian process has absolutely con-
tinuous spectral measure if and only if it is a (Wt)-moving average process with
parameter (k, 0), for some Wiener process (Wt)t∈R and function k.

Recall the definition of the filtration (FX,∞t )t≥0 on page 7.

Lemma 4.3. Let (Ft)t≥0 be a filtration and (Xt)t∈R be a (Wt)-moving average. If
(Xt)t≥0 is an (Ft)t≥0-semimartingale and either the martingale component or the
bounded variation component of (Xt)t≥0 is a (Wt)-moving average process, then
(Xt)t≥0 is an (FX,∞t )t≥0-semimartingale.

Proof . Let (Xt)t∈R be a process given by Xt =
∫
k(t− s)− f(−s) dWs and assume

(Xt)t≥0 is an (Ft)t≥0-semimartingale where the martingale or the bounded variation
component is a (Wt)-moving average. In either case the martingale component of
(Xt)t≥0 is given by Mt =

∫
h(t − s) − h(−s) dWs for t ≥ 0 for some measurable

10



function h. For t, v ∈ R+ we have

E[MtX−v] = E[Mt(X−v −X0)] =

∫ (
h(t− s)− h(−s))(k(−v − s)− k(−s)) ds

=

∫ (
h(t+ v − s)− h(v − s))(k(−s)− k(v − s)) ds

= E[(Mt+v −Mv)(X0 −Xv)] = 0,

and it follows from Gaussianity that (Mt)t≥0 is independent of (Xt)t≤0. This shows
that (Xt)t≥0 is an (Ft ∨G)t≥0-semimartingale, where G := σ(Xs : s ∈ (−∞, 0)), and
hence in particular an (FX,∞t )t≥0-semimartingale.

Theorem 4.4. Let (Xt)t∈R be a (Wt)-moving average process with parameters (k, 0).
Then (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale if and only if

k(t) = h(t) +

∫ t

0

ψ(r) dr, λ-a.a. t ∈ R, (4.5)

where h and ψ are measurable functions satisfying h(t−·)−h(−·) ∈ L2(λ) for t ≥ 0,∫ (
h(t− s)− h(u− s))k(v − s) ds = 0, 0 ≤ v ≤ u ≤ t, (4.6)

and

ψ(t− ·) ∈ sp{k(v − ·) : v ∈ (−∞, t]} ⊆ L2(λ), 0 ≤ t.

The above k and h are uniquely determined and the (FX,∞t )t≥0-canonical decompo-
sition of (Xt)t≥0 is given by

Xt = X0 +

∫
h(t− s)− h(−s) dWs +

∫ t

0

(∫
ψ(r − s) dWs

)
dr, (4.7)

and the martingale and the bounded variation component of (Xt)t≥0 are (Wt)-moving
average processes.

For each function g : R → R and u ∈ R, we let θug denote the function s 7→
g(s− u).

Proof of Theorem 4.4. Let Kt(s) := k(t− s) for t, s ∈ R.
Assume (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale. By the stationary increments,

(Xt)t≥0 has no fixed points of discontinuity. Moreover since (Xt)t≥0 is a Gaus-
sian semimartingale it follows from Stricker (1983, Proposition 3) that (Xt)t≥0 is
a continuous process. Let Xt = X0 + Mt + At be the (FX,∞t )t≥0-canonical decom-
position of (Xt)t≥0. For u ∈ R+, let Pu : L2(λ) → L2(λ) denote the projection on
sp{Kv : v ∈ (−∞, u]} and note that Pv+uKt+u = θuPvKt for v ≤ t and 0 ≤ u.
Standard theory shows that for t ≥ 0 we have

At = lim
n→∞

[t2n]∑
i=1

E[Xi/2n −X(i−1)/2n|FX,∞(i−1)/2n ]

= lim
n→∞

∫ [t2n]∑
i=1

(
P(i−1)/2nKi/2n(s)−K(i−1)/2n(s)

)
dWs in L2(P ),

11



where the second equality follows from Lemma 3.4 (iii). Thus with

Gt := lim
n→∞

[t2n]∑
i=1

(
P(i−1)/2nKi/2n −K(i−1)/2n

)
in L2(λ),

we have At =
∫
Gt(s) dWs. For t, u ∈ R+ it follows that

Gt+u −Gu = lim
n→∞

[(t+u)2n]∑
i=[u2n]+1

P(i−1)/2n

(
Ki/2n −K(i−1)/2n

)
= lim

n→∞

[t2n]∑
i=1

P(i−1)/2n+u

(
Ki/2n+u −K(i−1)/2n+u

)
(4.8)

= lim
n→∞

[t2n]∑
i=1

θuP(i−1)/2n

(
Ki/2n −K(i−1)/2n

)
= θuGt in L2(λ).

Which shows (At)t≥0 has stationary increments and therefore µA equals the Lebesgue
measure up to a scaling constant. Arguments as in the prove of ’(i) ⇒ (ii)’ in
Theorem 4.1 shows that

At =

∫ (∫ t

0

Ψr(s) dr
)
dWs, t ≥ 0,

for some measurable mapping (t, s) 7→ Ψt(s) satisfying that t 7→ ‖Ψt‖L2(λ) is constant
and Ψt ∈ sp{Ku : u ∈ (−∞, t]} for t ≥ 0. Hence Gt(s) =

∫ t
0

Ψr(s) dr for λ-a.a. s ∈ R
for t ≥ 0. For t, u ∈ R+, (4.8) yields∫ t

0

Ψr+u(s) dr =

∫ t+u

u

Ψr(s) dr = θu

∫ t

0

Ψr(s) dr =

∫ t

0

θuΨr(s) dr,

for λ-a.a. s ∈ R, which implies that Ψr+u = θuΨr λ-a.s. Thus there exists a ψ ∈
L2(λ) such that for r ≥ 0, Ψr(s) = ψ(r − s) for λ-a.a. s ∈ R. By setting h(t) =
k(t) − ∫ t

0
ψ(r) dr for t ∈ R, it follows that h(t − ·) − h(−·) ∈ L2(λ) and Mt =∫

h(t − s) − h(−s) dWs for t ≥ 0. The (FX,∞t )t≥0-martingale property of (Mt)t≥0

shows that h satisfies (4.6). This completes the proof of the only if statement.
Assume conversely k is on the form (4.5). By approximating k with continuous

functions with compact support it is readily seen that

lim
t→0

∫ (
k(t− s)− k(−s))2 ds = 0. (4.9)

Since (Xt)t≥0 is a stationary process, (4.9) shows that it is L2(P )-continuous. For
t ≥ 0 define

Mt :=

∫
h(t− s)− h(−s) dWs and At :=

∫ t

0

(∫
ψ(r − s) dWs

)
dr.

By Lemma 3.4 (ii) we have that

At =

∫ (∫ t

0

ψ(r − s) dr
)
dWs, t ≥ 0,
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which shows Xt = X0 + Mt + At for t ≥ 0. Since ψ(r − ·) ∈ sp{Kv : v ∈ (−∞, r]}
for r ≥ 0 it follows that

∫
ψ(r− s) dWs is FX,∞r -measurable for r ≥ 0 and therefore

(At)t≥0 is (FX,∞t )t≥0-adapted and hence by continuity (FX,∞t )t≥0-predictable.
Equation (4.6) and the translation invariancy of the Lebesgue measure shows∫ (

h(t− s)− h(u− s))k(v − s) ds = 0, −∞ < v ≤ u ≤ t.

This yields E[(Mt−Mu)Xv] = 0 for −∞ < v ≤ u ≤ t where 0 ≤ u and it follows by
Gaussianity that Mt −Mu is independent of Xv. Since Mt = Xt −X0 −At, (Mt)t≥0

is continuous in L2(P ). Moreover since (Mt)t≥0 is a centered process we conclude
that (Mt)t≥0 is an (FX,∞t )t≥0-martingale. Since (FX,∞t )t≥0 satisfies the usual condi-
tions, (Mt)t≥0 has a càdlàg modification. Hence (Xt)t≥0 is an semimartingale with
canonical decomposition given by (4.7).

We finally show that h and k are uniquely determined. Thus assume (4.5) is
satisfied for k, h and k̃, h̃. By the uniqueness of the (FX,∞t )t≥0-decomposition of
(Xt)t≥0 is follows from (4.7) and Lemma 3.4 (ii) that∫ t

0

ψ(r − s) dr =

∫ t

0

ψ̃(r − s) dr, λ-a.a. s ∈ R, all t ≥ 0,

which shows ψ(r− s) = ψ̃(r− s) for λ-a.a. r ≥ 0 and λ-a.a. s ∈ R and hence ψ = ψ̃
λ-a.s. Hereby it follows from (4.5) that h = h̃ λ-a.s. and the proof is complete.

As a consequence of Lemma 4.3 and Theorem 4.4 we have the following.

Corollary 4.5. Let (Xt)t∈R be a (Wt)-moving average process with parameter (k, 0).
Then (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale if and only if there exists a filtration
in which (Xt)t≥0 is a semimartingale with a martingale component which is a (Wt)-
moving average process.

For a (Wt)-moving average process on the form

Xt =

∫ t

−∞
k(t− s) dWs, t ∈ R,

Knight (1992, Theorem 6.5) proved that (Xt)t≥0 is an (FW,∞t )t≥0-semimartingale if
and only if k(t) = α+

∫ t
0
g(s) ds for λ-a.a. t ≥ 0, where α ∈ R and g ∈ L2(λ). After

proving this result he wrote "an interesting project for further research might be to
test the present methods in the non-stationary Gaussian case". The following result
generalizes his theorem to the non-stationary Gaussian case, but uses a different
approach.

Let (Ct)t≥0 be a family of increasing σ(A)-measurable sets satisfying⋂
u∈(t,∞)

Cu = Ct, t ≥ 0.

Let (FNt )t≥0 be the smallest filtration satisfying N(A) is FNt -measurable for A ∈ A
with A ⊆ Ct, and let (Xt)t≥0 be given by Xt =

∫
Ct
Kt(s) dNs for t ≥ 0.
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Theorem 4.6. Let (Xt)t≥0 and (FNt )t≥0 be given as above. Then (Xt)t≥0 is an
(FNt )t≥0-semimartingale if and only if for t ≥ 0 we have

Kt(s) = g(s) +

∫ t

0

Ψr(s)µ(dr), ν-a.a. s ∈ Ct, (4.10)

where g : S → R is square integrable w.r.t. ν on Ct for t ≥ 0, µ is a Radon measure
on R+ and R+ × S 3 (t, s) 7→ Ψt(s) ∈ R is a measurable mapping satisfying
‖Ψr‖L2(ν) = 1 and Ψr(s) = 0 for ν-a.a. s /∈ ⋃u<r Cu.

The decomposition (4.10) is unique and if K is represented as in (4.10), then the
(FNt )t≥0-canonical decomposition of (Xt)t≥0 is given by

Xt = X0 +

∫
Ct\C0

g(s) dNs +

∫ t

0

(∫
Ψr(s) dNs

)
µ(dr). (4.11)

Proof . Assume (Xt)t≥0 is an (FNt )t≥0-semimartingale with (FNt )t≥0-canonical de-
composition Xt = X0 +Mt+At. From Stricker (1983, Proposition 4 and 5) it follows
that (Mt)t≥0 ⊆ sp{Xt : t ≥ 0}. Thus for each t ≥ 0 there exists an Ht ∈ L2(ν) such
that Mt =

∫
Ct
Ht(s) dNs. Let 0 ≤ u ≤ t be given. The (FNt )t≥0-martingale property

of (Mt)t≥0 implies

0 = E[
(
E[Mt −Mu|FNu ]

)2
] = E[

( ∫
Cu

Ht(s)−Hu(s) dNs

)2
]

=

∫
Cu

(
Ht(s)−Hu(s)

)2
ν(ds),

which shows Ht(s) = Hu(s) for ν-a.a. s ∈ Cu. Thus there exists a measurable
function g : S → R which equals Ht ν-a.s. on Ct for t ≥ 0. By Lemma 3.4 (iv) there
exists a Radon measure µ and an (FNt )t≥0-predictable process (Yt)t≥0 ⊆ sp{At :
t ≥ 0} satisfying ‖Yr‖L2(P ) = 1 for r ≥ 0 and

At =

∫ t

0

Yr µA(dr), t ≥ 0.

In particular Yr is FNr− measurable for r ≥ 0. Thus by Lemma 3.4 (i) there exists a
measurable mapping (r, s) 7→ Ψr(s) satisfying Ψr(s) = 0 for ν-a.a. s /∈ ⋃u<r Cu and
Yr =

∫
Ψr(s) dNs. From Lemma 3.4 (ii) it follows that

Xt =

∫
Ct

(
g(s) +K0(s)

)
dNs +

∫ (∫ t

0

Ψr(s)µ(dr)
)
dNs,

which shows (4.10).
Assume conversely (4.10) is satisfied. We show that (Xt)t≥0 is an (FNt )t≥0-

semimartingale with canonical decomposition given by (4.11). From Lemma 3.4 (ii)
it follows that

Xt = X0 +

∫
Ct\C0

g(s) dNs +

∫ (∫ t

0

Ψr(s)µ(dr)
)
dNs

= X0 +

∫
Ct\C0

g(s) dNs +

∫ t

0

(∫
Ψr(s) dNs

)
µ(dr).
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And since (
∫
Ct\C0

g(s) dNs)t≥0 is an (FNt )t≥0-martingale it suffices to show that∫ t
0

( ∫
Ψr(s) dNs

)
µ(dr) is an (FNt )t≥0-predictable process. But this follows from

Lemma 3.3 since
∫

Ψr(s) dNs is FNr−-measurable for r ≥ 0.
To conclude the proof assume that K is decomposed as in (4.10). By uniqueness

of the martingale component of (Xt)t≥0 it follows that g is determined uniquely ν-
a.s. on

⋃
t≥0Ct. Using once more that ‖Ψr‖L2(ν) = 1 for r ≥ 0, we have that µ =

(2/π)1/2µA where (At)t≥0 is the bounded variation component of (Xt)t≥0, and hence
µ is uniquely determined and it follows from (4.10) that Ψ is uniquely determined
up to µ⊗ ν-null sets. This completes the proof.

Let the setting be as in Theorem 4.6 and assume that (Xt)t≥0 is an (FNt )t≥0-
semimartingale. Then Theorem 4.6 in particular shows that Kt = K̃t ν-a.s. on
Ct, where (t, s) 7→ K̃t(s) is a measurable mapping satisfying that t 7→ K̃t(s) is
right-continuous and of bounded variation for s ∈ S.

If (Xt)t∈R is given by

Xt =

∫ t

−∞
k(t− s) dWs, t ∈ R,

then (Xt)t≥0 satisfies the following relations

(FW,∞t )t≥0-semimartingale⇒ (FX,∞t )t≥0-semimartingale
⇒ (FXt )t≥0-semimartingale.

Hence the assumptions on (Xt)t≥0 are strongest in Theorem 4.6, weaker in Theo-
rem 4.4 and weakest in Theorem 4.1.
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