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Abstract

In the present paper we study moving average processes Xt =
∫
ϕ(t −

s) − ψ(−s) dWs, where ϕ and ψ are deterministic functions and (Wt)t∈R is
a Wiener process. Necessary and sufficient condition on (ϕ,ψ) are provided
for (Xt)t≥0 to be an (FX,∞t )t≥0-semimartingale, where FX,∞t := σ(Xs : s ∈
(−∞, t]). Our results are constructive - meaning that they provide a simple
method to obtain ϕ and ψ for which (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale
or an (FX,∞t )t≥0-Wiener process. Several examples are considered.

In the last part of the paper we study general Gaussian processes with sta-
tionary increments, (Xt)t∈R. We provide necessary and sufficient conditions
on spectral measure for (Xt)t≥0 to be an (FX,∞t )t≥0-semimartingale.

Keywords: semimartingales; Gaussian processes; stationary processes; mov-
ing average processes

AMS Subject Classification: 60G15; 60G10; 60G48; 60G57

1 Introduction

In this paper we study moving average processes, that is processes (Xt)t∈R on the
form

Xt =

∫
ϕ(t− s)− ψ(−s) dWs, t ∈ R, (1.1)

where ϕ and ψ are two deterministic function satisfying that s 7→ ϕ(t− s)−ψ(−s)
is square integrable and (Wt)t∈R is a Wiener process. We are concerned with the
semimartingale property of (Xt)t≥0 in the filtration (FX,∞t )t≥0. The class of mov-
ing average processes includes all centered L2(P )-continuous stationary Gaussian
process with absolutely continuous spectral measure (see Doob (1990, Page 533)),
the fractional Brownian motion and many Gaussian processes with stationary in-
crements. It readily seen that all moving average processes are Gaussian processes
with stationary increments.

∗Department of Mathematical Sciences, University of Aarhus,
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In the case where ψ = 0 and ϕ is 0 on (−∞, 0), Knight (1992, Theorem 6.5)
proved that (Xt)t≥0 is an (FW,∞t )t≥0-semimartingale if and only if

ϕ(t) = α +

∫ t

0

h(s) ds, t ∈ R+,

for some α ∈ R and a square integrable function h. This was reproved in Jeulin
and Yor (1993) with a shorter proof. Moreover, their proof extends to processes
where ψ is non-zero. In the case ψ = 0, Jeulin and Yor (1993) provided conditions
on the Fourier transform of ϕ for (Xt)t≥0 to be an (FX,∞t )t≥0-semimartingale.

Let (Xt)t≥0 be given by (1.1) and note that it is easier for (Xt)t≥0 to be an
(FX,∞t )t≥0-semimartingale than an (FW,∞t )t≥0-semimartingale and harder than be-
ing an (FXt )t≥0-semimartingale (FXt = σ(Xs : s ∈ [0, t])). Assume ψ equals ϕ
or 0 and that (Xt)t≥0 is an (FXt )t≥0-semimartingale with canonical decomposition
Xt = X0 +Mt+At. It follows from Basse (2007) that (Xt)t≥0 is an (FX,∞t )t≥0-semi-
martingale if and only if µA is absolutely continuous with a bounded density, where
µA denotes the measure induced by the mapping t 7→ E[Var[0,t](A)] and Var[0,t](A)
denotes the total variation of s 7→ As on [0, t].

Let S1 denote the unit circle in the complex plane C. For each measurable
function f : R→ S1 satisfying f = f(−·), define f̃ : R→ R by

f̃(t) := lim
a→∞

∫ a

−a

eits − 1[−1,1](s)

is
f(s) ds,

where the limit is in λ-measure. We prove that (Xt)t≥0 is an (FX,∞t )t≥0-semimartin-
gale if and only if ϕ can be decomposed as

ϕ(t) = β + αf̃(t) +

∫ t

0

f̂ ĥ(s) ds, λ-a.a. t ∈ R, (1.2)

where α, β ∈ R, h ∈ L2(λ) and f : R → S1 is as above, and if α 6= 0 then h

and
̂

f ̂(ϕ− ψ) are 0 on R+. In this case we can chose α, β, h and f such that the
(FX,∞t )t≥0-canonical decomposition of (Xt)t≥0 is given by Xt = X0+Mt+At, where

Mt = α

∫
f̃(t− s)− f̃(−s) dWs and At =

∫ t

0

(∫
f̂ ĥ(s− u) dWu

)
ds.

As a special case we have that (Xt)t≥0 is an (FX,∞t )t≥0-martingale if and only if ϕ
can be represented as in (1.2) with h = 0. Thus, to obtain examples of (FX,∞t )t≥0-
Wiener processes we have to calculate f̃ for some f : R → S1 and examples of
(FX,∞t )t≥0-semimartingales are obtained by also calculating f̂ ĥ and defining ϕ
by (1.2). Examples are provided in Example 3.5.

In the last part of the paper we are concerned with the spectral measure of
(Xt)t∈R, where (Xt)t∈R is either a stationary Gaussian semimartingales or Gaussian
semimartingales with stationary increments and X0 = 0. In both cases we provide
necessary and sufficient conditions on the spectral measure of (Xt)t∈R, for (Xt)t≥0

to be an (FX,∞t )t≥0-semimartingale.
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2 Notation and Hardy functions

Let (Ω,F , P ) be a complete probability space. By a filtration we mean an increasing
family (Ft)t≥0 of σ-algebras satisfying the usual conditions of right-continuity and
completeness. For a stochastic process (Xt)t∈R let (FX,∞t )t≥0 denote the least
filtration subject to Xs is FX,∞t -measurable for t ≥ 0 and s ∈ (−∞, t].

Let (Ft)t≥0 be a filtration. Recall that an (Ft)t≥0-adapted càdlàg process (Xt)t≥0

is said to be an (Ft)t≥0-semimartingale if there exists a decomposition of (Xt)t≥0

such that
Xt = X0 +Mt + At,

where (Mt)t≥0 is a càdlàg (Ft)t≥0-local martingale which starts at 0 and (At)t≥0 is
a càdlàg (Ft)t≥0-adapted process of finite variation which starts at 0.

A process (Wt)t∈R is said to be a Wiener process if for all n ≥ 1 and t0 < · · · < tn

Wt1 −Wt0 , . . . ,Wtn −Wtn−1

are independent, for −∞ < s < t < ∞ Wt − Ws follows a centered Gaussian
distributed with variance σ2(t− s) for some σ2 > 0, and W0 = 0. If σ2 = 1 we say
that (Wt)t∈R is a standard Wiener process.

Let f : R→ R. Then (unless explicitly stated otherwise) all integrability mat-
ters of f are with respect to the Lebesgue measure λ on R. For t ∈ R, let τtf
denote the function s 7→ f(t− s). We have:
Remark 2.1. Let f : R→ R be a locally square integrable function satisfying
τtf − τ0f ∈ L2(λ) for t ∈ R. Then R 3 t 7→ τtf − τ0f ∈ L2(λ) is continuous.

This follows by arguments as in Cheridito (2004, Lemma 3.4). Note that if f is
square integrable then the result can be proved by approximation with continuous
functions with compact support.

We now give a short survey of Fourier theory and Hardy functions. For a
comprehensive survey see Dym and McKean (1976). The Hardy functions will
become an important tool in the construction of the canonical decomposition of a
moving average process. For square integrable functions f, g : R → C define their
inner product as 〈f, g〉 :=

∫
fg dλ, where z denotes the complex conjugate of the

complex number z. For f ∈ L2(λ) define the Fourier transform of f as

f̂(t) := lim
a↓−∞, b↑∞

∫ b

a

f(x)eixt dx,

where the limit is in L2(λ). The Pancherel identity, shows that for all f, g ∈ L2(λ) we
have 〈f̂ , ĝ〉L2(λ) = 2π〈f, g〉L2(λ).Moreover, for f ∈ L2(λ) we have that ˆ̂

f = 2πf(−·).
Thus, the mapping f 7→ f̂ is (up to the factor

√
2π) a linear isometry from L2(λ)

onto L2(λ).
Let C+ denote the open upper half plane of the complex plane C, i.e. C+ :=

{z ∈ C : =z > 0}. An analytic function H : C+ → C is a Hardy function if

sup
b>0

∫
|H(a+ ib)|2 da <∞.
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Let H2
+ denote the space of all Hardy functions. It can be shown that a function

H : C+ → C is a Hardy function if and only if there exists a function h : R → C

which is 0 at (−∞, 0), belongs to L2(λ) and satisfies

H(z) =

∫
eizth(t) dt, z ∈ C+. (2.1)

In this case limb↓0H(a+ ib) = ĥ(a) for λ-a.a. a ∈ R and in L2(λ).
Let H ∈ H2

+ with h given by (2.1). Then H is called an outer function if it is
non-trivial and for all a+ ib ∈ C+ we have

log(|H(a+ ib)|) =
b

π

∫
log(|ĥ(u)|)

(u− a)2 + b2
du.

An analytic function J : C+ → C is called an inner function if |J | ≤ 1 on C+

and with j(a) := limb↓0 J(a + ib) for λ-a.a. a ∈ R we have |j| = 1 λ-a.s. For
H ∈ H2

+ (with h given by (2.1)) it is possible to factor H as a product of an outer
function Ho and an inner function J. If h is a real function J can be chosen such
that J(z) = J(−z) for all z ∈ C+.

For measurable functions f and g satisfying
∫ |f(t− s)g(s)| ds < ∞ for t ∈ R,

we let f ∗ g denote the convolution between f and g, that is f ∗ g is the mapping

t 7→
∫
f(t− s)g(s) ds.

A locally square integrable function f is said to have orthogonal increments if
τtf − τ0f ∈ L2(λ) for all t ∈ R and for all −∞ < t0 < t1 < t2 < ∞ we have that
τt2f − τt1f is orthogonal to τt1f − τt0f in L2(λ).

3 Main results

By S1 we shall denote the unit circle in the complex field C, i.e. S1 = {z ∈ C :
|z| = 1}. For each measurable function f : R→ S1 satisfying f = f(−·) we define
f̃ : R→ R by

f̃(t) := lim
a→∞

∫ a

−a

eits − 1[−1,1](s)

is
f(s) ds,

where the limit is in λ-measure. The limit exists since for a ≥ 1 we have∫ a

−a

eits − 1[−1,1](s)

is
f(s) ds =

∫ 1

−1

eits − 1

is
f(s) ds+

∫ a

−a
eits1[−1,1]c(s)f(s)(is)−1 ds,

and the last term converges in L2(λ) to the Fourier transform of

s 7→ 1[−1,1]c(s)f(s)(is)−1.

Moreover, f̃ takes real values since f = f(−·). Observe that for u ≤ t, we have

f̃(t+ ·)− f̃(u+ ·) = ̂̂1[u,t]f, λ-a.s. (3.1)
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The function f̃ has orthogonal increments. To see this let t0 < t1 < t2 < t3 be
given. By (3.1) we have

〈f̃(t3 − ·)− f̃(t2 − ·), f̃(t1 − ·)− f̃(t0 − ·)〉L2(λ)

= 2π〈1̂[t2,t3]f, 1̂[t0,t2]f〉L2(λ) = 〈1̂[t2,t3], 1̂[t0,t2]〉L2(λ) = 〈1[t2,t3], 1[t0,t2]〉L2(λ) = 0,

which shows the result.
Let (Wt)t∈R be a Wiener process and ϕ, ψ : R → R be measurable functions

satisfying ϕ(t − ·) + ψ(−·) ∈ L2(λ) for t ∈ R. In the following we let (Xt)t∈R be
given by

Xt =

∫
ϕ(t− s)− ψ(−s) dWs, t ∈ R.

Now we are ready to characterize the class of (FX,∞t )t≥0-semimartingales.

Theorem 3.1. (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale if and only if ϕ can be
decomposed as

ϕ(t) = β + αf̃(t) +

∫ t

0

f̂ ĥ(s) ds, λ-a.a. t ∈ R, (3.2)

where α, β ∈ R, h ∈ L2(λ), f : R → S1 is a measurable function such that f =

f(−·), and if α 6= 0 then h and
̂

f ̂(ϕ− ψ) are 0 on R+.
In this case we can chose α, β, h and f such that the (FX,∞t )t≥0-canonical de-

composition of (Xt)t≥0 is given by Xt = X0 +Mt + At, where

Mt = α

∫
f̃(t− s)− f̃(−s) dWs and At =

∫ t

0

(∫
f̂ ĥ(s− u) dWu

)
ds. (3.3)

The proof is given is Section 5. The last term on the right-hand side of (3.2) is
Lipschitz continuous of order 1/2 by Hölder’s inequality.

Corollary 3.2. (Xt)t≥0 is an (FX,∞t )t≥0-martingale if and only if ϕ can be decom-
posed as in (3.2) with h = 0.

The corollary shows that the mapping f 7→ f̃ (up to affine transformations)
is onto the space of functions with orthogonal increments (recall the definition on
page 4). Moreover, if f, g : R→ S1 are measurable functions satisfying f = f(−·)
and g = g(−·) and f̃ = g̃ λ-a.s. then (3.1) shows that for u ≤ t we have

1̂[u,t]f = 1̂[u,t]g, λ-a.s.

which implies f = g λ-a.s. Thus, we have shown:
Remark 3.3. The mapping f 7→ f̃ is one to one and (up to affine transformations)
onto the space of functions with orthogonal increments.

For each measurable function f : R → S1 such that f = f(−·) and for each
h ∈ L2(λ) we have∫ t

0

f̂ ĥ(s) ds = 〈1[0,t], f̂ ĥ〉L2(λ) = 〈1̂[0,t], (fĥ)(−·)〉L2(λ) (3.4)

= 〈1̂[0,t]f, ĥ(−·)〉 = 〈ˆ̂1[0,t]f, h〉L2(λ) =

∫ (
f̃(t+ s)− f̃(s)

)
h(s) ds,
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which gives an alternative way of writing the last term in (3.2).
In some cases it is of interest that (Xt)t≥0 is (FW,∞t )t≥0-adapted. This situation

is studied in the next result. We also study the case where (Xt)t≥0 is a stationary
process, which corresponds to ψ = 0.

Proposition 3.4. We have

(i) (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale which is (FW,∞t )t≥0-adapted if and
only if ϕ is represented as (3.2) with f(a) = limb↓0 J(−a+ib) for λ-a.a. a ∈ R,
for some inner function J. In this case (3.2) can be written as

ϕ = β1 + αf̃ + f̃ ∗ h1, λ-a.s. (3.5)

where β1 ∈ R and h1 = h(−·).
(ii) Assume ψ = 0. Then (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale if and only if

ϕ(t) = β + αf̃(t) +

∫ t

0

f̂ ĥ(s) ds, λ-a.a. t ∈ R, (3.6)

where α, β ∈ R, h ∈ L2(λ), f : R → S1 is a measurable function satisfying
f = f(−·), and if α 6= 0 then h is 0 on R+ and t 7→ α+

∫ t
0
h(−s) ds is square

integrable on R+.

According to Dym and McKean (1976, page 53), a function J : C+ → C is an
inner function if and only if J can be factorised as:

J(z) = Ceiαz exp
( 1

πi

∫
1 + sz

s− z F (ds)
)∏
n≥1

εn
zn − z
zn − z , (3.7)

where C ∈ S1, α ≥ 0, (zn)n≥1 ⊆ C+ satisfies
∑

n≥1=(zn)/(|zn|2 + 1) < ∞ and
εn = zn/zn or 1 according as |zn| ≤ 1 or not, and F is a nondecreasing bounded
singular function. Thus, a measurable function f : R→ S1 with f = f(−·) satisfies
the condition in Proposition 3.4 (i) if and only if

f(a) = lim
b↓0

J(−a+ b), λ-a.a. a ∈ R, (3.8)

for a function J given by (3.7). If f : R → S1 is given by f(t) = i sgn(t)
then obviously f = f(−·) (sgn denotes the signum function defined by sgn(t) =
−1(−∞,0)(t) + 1(0,∞)(t)). Moreover, f does not satisfy the condition in Proposi-
tion 3.4 (i). This seen from Example 3.5 and Lemma 4.3.

The condition in Proposition 3.4 (i) is weaker than (Xt)t≥0 being an (FW,∞t )t≥0-
semimartingale. The latter condition is satisfied if and only if ϕ can be represented
as in (3.2) with f constant.

In the next example we illustrate the method to obtaining (ϕ, ψ) for which
(Xt)t≥0 is an (FX,∞t )t≥0-semimartingale or an (FX,∞t )t≥0-Wiener process. The idea
is simply to pick a function f : R → S1 satisfying f = f(−·) and calculate f̃ .
Moreover, if one wants (Xt)t≥0 to be (FW,∞t )t≥0-adapted one has to make sure that
f is given by (3.8).
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Example 3.5. Let (Xt)t∈R be given by

Xt =

∫
ϕ(t− s)− ϕ(−s) dWs, t ∈ R.

(i) If ϕ equals t 7→ (e−t−1/2)1R+(t) or t 7→ log(|t|) then (Xt)t≥0 is an (FX,∞t )t≥0-
Wiener process.

(ii) If ϕ equals

t 7→ log(|t|) +

∫ t

0

log
(∣∣∣s− 1

s+ 1

s2 − 1

s2

∣∣∣) ds,
then (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale.

We use Theorem 3.1 and Corollary 3.4 to show the above stated results. Notice

that ψ = ϕ and hence the condition that ̂
f(ϕ̂− ψ) = 0 on R+ is trivially satisfied.

To show the first part let f be the function t 7→ (t+ i)(t− i)−1. For t ≥ 0,∫ a

−a

eits − 1[−1,1](s)

is
f(s) ds = 4

∫ a

0

cos(ts)− 1[0,1](s)

s2 + 1
ds+ 2

∫ a

0

sin(ts)

s

s2 − 1

s2 + 1
ds

→ 4e−t + π + 2(−1 + 2e−t) = 8e−t − 2 + π as a→∞,
and for t ∈ (−∞, 0),∫ a

−a

eits − 1[−1,1](s)

is
f(s) ds→ 2 + π as a→∞,

which shows f̃ equals t 7→ (e−t − 1/2)1R+(t) up to an affine transformation.
Now let f be the function t 7→ i sgn(t). For t ≥ 0 and a ≥ 1∫ a

−a

eits − 1[−1,1](s)

is
f(s) ds =

∫ a

−a

cos(ts)− 1[−1,1](s)

is
f(s) ds

= 2

∫ at

0

cos(s)− 1[0,t](s)

is
f(s/t) ds = 2

(∫ at

0

cos(s)− 1[0,1](s)

s
ds− log(t)

)
.

and since f̃(−t) = f̃(t) we conclude f̃(t) = −2(γ + log(|t|)) for t ∈ R, where γ
denotes Euler’s constant.

Let additionally h(t) = 1[−1,0](t). Due to the fact that ĥ(t) = 1−cos(t)
it

+ sin(t)
t

we
obtain ∫ a

−a
eitsĥ(s)f(s) ds

= i

∫ a

0

cos(ts)(ĥ(s)− ĥ(−s)) ds−
∫ a

0

sin(ts)(ĥ(s) + ĥ(−s)) ds

= 2
(∫ a

0

cos(ts)
1− cos(s)

s
ds−

∫ a

0

sin(ts)
sin(s)

s
ds
)

→ 2
(

1/2 log
(∣∣∣t2 − 1

t2

∣∣∣)− 1/2 log
(∣∣∣ t+ 1

t− 1

∣∣∣))
= log

(∣∣∣t− 1

t+ 1

t2 − 1

t2

∣∣∣) as a→∞,
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which shows

f̂ ĥ(t) = log
(∣∣∣t− 1

t+ 1

t2 − 1

t2

∣∣∣), t ∈ R,

and by Theorem 3.1 completes the proof. ♦

As a consequence of Example 3.5 (i) we have the following: Let (Xt)t≥0 be the
Ornstein-Uhlenbeck process given by

Xt = X0 −
∫ t

0

Xs ds+Wt, t ≥ 0,

where (Wt)t≥0 is a Wiener process and X0
D
= N(0, 1/2) is independent of (Wt)t≥0.

Then (Bt)t≥0, given by

Bt := Wt − 2

∫ t

0

Xs ds, t ≥ 0,

is a Wiener process (in its own filtration). Representations of the Wiener process
have been extensively studied by Lévy (1956), Cramér (1961), Hida (1961) and
many others. One of the most famous examples of such a representation is

Bt = Wt −
∫ t

0

1

s
Ws ds, t ≥ 0.

Let Xt =
∫
ϕ(t − s) − ϕ(−s) dWs for t ∈ R. Then ϕ has to be continuous on

[0,∞) (in particular bounded on compacts of R) for (Xt)t≥0 to be an (FW,∞t )t≥0-
semimartingales. This is not the case for the (FX,∞t )t≥0-semimartingale property.
Indeed, Example 3.5 shows that if ϕ(t) = log(|t|) then (Xt)t≥0 is an (FX,∞t )t≥0-
martingale, but ϕ is unbounded on [0, 1].

4 Functions with orthogonal increments

In the following we collect some properties of functions with orthogonal increments.
Let f : R→ R be a function with orthogonal increments. For t ∈ R we have

‖τtf − τ0f‖2L2(λ) = ‖τtf − τt/2f‖2L2(λ) + ‖τt/2f − τ0f‖2L2(λ) (4.1)

= 2‖τt/2f − τ0f‖2L2(λ).

Moreover, since t 7→ ‖τtf − τ0f‖2L2(λ) is a continuous function by Remark 2.1,
equation (4.1) shows that ‖τtf − τ0f‖2L2(λ) = K|t|, where K := ‖τ1f − τ0f‖2L2(λ).

This implies that ‖τtf − τuf‖2L2(λ) = K|t − u| for u, t ∈ R. For a step function
h =

∑k
j=1 aj1(tj−1,tj ] define the mapping

∫
h(u) dτuf :=

k∑
j=1

aj(τtjf − τtj−1
f).
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Then v 7→ (
∫
h(u) dτuf)(v) is square integrable and

‖h‖L2(λ) =
√
K‖
∫
h(u) dτuf‖L2(λ).

Hence, by standard arguments we can define
∫
h(u) dτuf through the above isom-

etry for all h ∈ L2(λ) such that L2(λ) 3 h 7→ ∫
h(u) dτuf ∈ L2(λ) is a linear

isometry.
Assume in addition that g : R2 → R is a measurable function, and µ is a finite

measure such that ∫∫
g(u, v)2 duµ(dv) <∞.

Then (v, s) 7→ (
∫
g(u, v) dτuf)(s) can be chosen measurable and in this case we

have ∫ (∫
g(u, v) dτuf

)
µ(dv) =

∫ (∫
g(u, v)µ(dv)

)
dτuf. (4.2)

Lemma 4.1. Let g : R→ R be given by

g(t) =

{
α +

∫ t
0
h(v) dv t ≥ 0

0 t < 0,

where α ∈ R and h ∈ L2(λ). Then, g(t− ·)− g(−·) ∈ L2(λ) for all t ∈ R.
Let f be a function with orthogonal increments.

(i) Let ϕ be a measurable function. Then there exists a constant β ∈ R such that

ϕ(t) = β + αf(t) +

∫ ∞
0

(
f(t− v)− f(−v)

)
h(v) dv, λ-a.a. t ∈ R,(4.3)

if and only if for all t ∈ R we have

τtϕ− τ0ϕ =

∫
g(t− u)− g(−u) dτuf, λ-a.s. (4.4)

(ii) Let g be a square integrable function. Then there exists a β ∈ R such that
λ-a.s.∫

g(−u) dτuf = β + αf(−·) +

∫ ∞
0

(
f(−u− ·)− f(−u)

)
h(u) du. (4.5)

Proof. To prove g(t−·)−g(−·) ∈ L2(λ) it is enough to show that s 7→ ∫ t−s
−s h(u) du ∈

L2(λ). But this follows since∫ (∫ t−s

−s
h(u) du

)2

ds ≤ t

∫ ∫ t−s

−s
h(u)2 du ds = t

∫ ∫ t

0

h(u− s)2 du ds

= t

∫ t

0

∫
h(u− s)2 ds du = t2

∫
h(s)2 du <∞.
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(i): We may and do assume that h is 0 on (−∞, 0). For t, u ∈ R we have that

g(t− u)− g(−u) =

{
α1(0,t](u) +

∫ t−u
−u h(v) dv, t ≥ 0

−α1(t,0](u)− ∫ −u
t−u h(v) dv. t < 0,

which by (4.2) implies that for t ∈ R we have λ-a.s.∫
g(t− u)− g(−u) dτuf = α(τtf − τ0f) +

∫ (
τt−vf − τ−vf

)
h(v) dv. (4.6)

First assume (4.4) is satisfied. For t ∈ R it follows from (4.6) that

τtϕ− τ0ϕ = α(τtf − τ0f) +

∫
[τt−vf − τ−vf ]h(v) dv, λ-a.s.

Hence, by Tonelli’s Theorem there exists a sequence (sn)n≥1 such that sn → 0 and
such that

ϕ(t− sn) = ϕ(−sn)− αf(sn) + αf(t− sn) (4.7)

+

∫ (
f(t− v − sn)− f(−v − sn)

)
h(v) dv, ∀n ≥ 1, λ-a.a. t ∈ R.

From Remark 2.1 it follows that ϕ(· − sn)− ϕ(·) and f(· − sn)− f(·) converge to
0 in L2(λ) and∫ (

f(t− v − sn)− f(−v − sn)
)
h(v) dv →

∫
[f(t− v)− f(−v)]h(v) dv, t ∈ R.

Thus we obtain (4.5) by letting n tend to infinity in (4.7).
Assume conversely (4.3) is satisfied. For t ∈ R we have

τtϕ− τ0ϕ = α(τtf − τ0f) +

∫
[τt−vf − τ−vf ]h(v) dv, λ-a.s.

and hence we obtain (4.4) from (4.6).
(ii): Assume g ∈ L2(λ). By approximation we may assume g has compact

support. Hence assume that g is on the form

g(t) = 1[0,T ](t)
(∫ T

0

−h(s) ds+

∫ t

0

h(s) ds
)

= −1[0,T ](t)

∫ T

t

h(s) ds

for some T > 0 and an h ∈ L2(λ). From (4.2) it follows that∫
g(−u) dτuf =

∫ (∫
−1(−u,T ](s)1[0,T ](−u)h(s) ds

)
dτuf

=

∫ (∫
−1(−u,T ](s)1[0,T ](−u)h(s) dτuf

)
ds =

∫ T

0

−h(s)
(∫ 0

−s
dτuf

)
ds

=

∫ T

0

−h(s)
(
τ0f − τ−sf

)
ds = g(0)τ0f +

∫ T

0

h(s)τ−sf ds.

Thus with β :=
∫ T

0
h(s)f(−s) ds we have that∫

g(−u) dτuf = β + g(0)f(−·) +

∫
h(s)[f(−s− ·)− f(−s)] ds,

which completes the proof.
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Lemma 4.2. Let h ∈ L2(λ), f : R→ R be a function with orthogonal increments,
(Wt)t∈R be a Wiener process and let (Bt)t∈R be given by

Bt =

∫
f(t− s)− f(−s) dWs =

∫
τtf(s)− τ0f(s) dWs, t ∈ R.

Then (Bt)t∈R is a Wiener process and∫
h(s) dBs =

∫ (∫
h(u) dτuf

)
(s) dWs.

The proof is simple. For details see Basse (2007, Lemma 3.1 (ii)).

Lemma 4.3. Let f : R→ S1 be a measurable function such that f = f(−·). Then
f̃ is constant on (−∞, 0) if and only if

f(a) = lim
b↓0

J(−a+ ib), λ-a.a. a ∈ R, (4.8)

for an inner function J.

Proof of Lemma 4.3. Assume f̃ is constant on (−∞, 0) and let t ≥ 0 be given.

We have ˆ̂1[0,t]f(−s) = 0 for λ-a.a. s ∈ (−∞, 0) due to the fact that ˆ̂1[0,t]f(−s) =

f̃(s) − f̃(−t + s) for λ-a.a. s ∈ R and hence 1̂[0,t]f ∈ H2
+. Moreover, since 1̂[0,t]f

has outer part 1̂[0,t] we conclude that f(a) = limb↓0 J(a + ib) for λ-a.a. a ∈ R and
an inner function J : C+ → C.

Assume conversely (4.8) is satisfied and fix t ≥ 0. Let G ∈ H2
+ be the Hardy

function induced by 1[0,t]. Since J is an inner function, we obtain GJ ∈ H2
+ and

thus

G(z)J(z) =

∫
eitzκ(t) dt, z ∈ C+,

for some κ ∈ L2(λ) which is 0 on (−∞, 0). The remark just below (2.1) shows

1̂[0,t](a)f(a) = lim
b↓0

G(a+ ib)J(a+ ib) = κ̂(a), λ-a.a. a ∈ R,

which implies

f̃(s)− f̃(−t+ s) = f̃(s)− f̃(−t+ s) = ˆ̂1[0,t]f(−s) = ˆ̂κ(−s) = 2πk(s),

for λ-a.a. s ∈ R. Hence, we conclude that f̃ is constant on (−∞, 0) λ-a.s.

We note that if f is the constant 1, then a simple calculation shows that f̃(t) =
π sgn(t).
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5 Proofs of main results

Let (Xt)t∈R be given by Xt =
∫
ϕ(t− s) dWs for t ∈ R. Doob (1990, Chapter XII,

Theorem 5.3) showed that if (Xt)t∈R is a regular process then

Xt =

∫ t

−∞
g(t− s) dBs, t ∈ R and (FX,∞t )t≥0 = (FB,∞t )t≥0,

for some Wiener process (Bt)t∈R and some g ∈ L2(λ). However, we need the fol-
lowing explicit construction of (Bt)t∈R.

Lemma 5.1 (Main Lemma). Let ϕ ∈ L2(λ) and (Xt)t∈R be given by Xt =∫
ϕ(t− s) dWs for t ∈ R, where (Wt)t∈R is a Wiener process.

(i) If ∫
log|ϕ̂|(u)

1 + u2
du > −∞, (5.1)

then there exist a measurable function f : R→ S1 with f = f(−·), a function
g ∈ L2(λ) which is 0 on (−∞, 0) such that we have the following: First of all
(Bt)t∈R defined by

Bt =

∫
f̃(t− s)− f̃(−s) dWs, t ∈ R,

is a Wiener process. Moreover,

Xt =

∫ t

−∞
g(t− s) dBs, t ∈ R,

and finally (FX,∞t )t≥0 = (FB,∞t )t≥0.

(ii) If ϕ is 0 on (−∞, 0), then ϕ satisfies (5.1) and the above f is given by f(a) =
limb↓0 J(−a+ b) for λ-a.a. a ∈ R, where J is an inner function.

Proof. (i): Due to the fact that |ϕ̂|2 is a positive integrable function which satis-
fies (5.1), Dym and McKean (1976, Chapter 2, Section 8, Exercise 4) shows there
is an outer Hardy function Ho ∈ H2

+ such that |ϕ̂|2 = |ĥ0|2 and ĥo = ĥo(−·), where
h0 is given by (2.1). Additionally, Ho is given by

Ho(z) = exp
( 1

πi

∫
uz + 1

u− z
log|ϕ̂|(u)

u2 + 1
du
)
, z ∈ C+.

Define f : R→ S1 by f = ϕ̂/ĥo and note that f = f(−·). According to Lemma 4.2,
(Bt)t∈R is a Wiener process due to the fact that f̃ has orthogonal increments.

We claim that

Xt = (2π)−1

∫
ho(t− s) dBs = (2π)−1

∫
τth

o(s) dBs, t ∈ R. (5.2)
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Fix t ∈ R and choose a sequence of step functions (hn)n≥1 such that hn converges
to τtho in L2(λ). Let n ≥ 1 and assume hn =

∑k
i=1 ai1(ti−1,ti]. We have∫

hn(s) dBs =
k∑
i=1

ai(Bti −Bti−1
) =

∫ k∑
i=1

ai
(
f(ti − s)− f(ti−1 − s)

)
dWs,

and
k∑
i=1

ai
(
f(ti − s)− f(ti−1 − s)

)
=

∫
R

k∑
i=1

ai
eitiu − eiti−1u

iu
f(u)e−isu du

=

∫
R

ĥn(u)f(u)e−isu du =
̂̂
hnf(−s),

by which we conclude ∫
hn(s) dBs =

∫ ̂̂
hnf(−s) dWs. (5.3)

Since hn converges to τtho in L2(λ), ĥnf converges to τ̂thof in L2(λ). Moreover, for
λ-a.a. u ∈ R we have

τ̂tho(u)f(u) = eituĥo(−u)f(u) = eituϕ̂(−u) = τ̂tϕ(u).

Thus, ĥnf converges to τ̂tϕ in L2(λ) which implies ̂̂hnf converges to ̂̂τtϕ = 2πϕ(t+·)
in L2(λ). In conclusion, ̂̂hnf(−·) converges to 2πτtϕ in L2(λ). We obtain (5.2) by
letting n tend to infinity in (5.3). Moreover since Ho is an outer function it follows
from (5.2) and page 95 in Dym and McKean (1976) that (FX,∞t )t≥0 = (FB,∞t )t≥0.

(ii): Assume ϕ ∈ L2(λ) is 0 on (−∞, 0). Equation (5.1) is satisfied according to
Dym and McKean (1976, Section 2.6) since ϕ induces a Hardy function H ∈ H2

+

given by (2.1). Let ho, f and (Bt)t∈R be given as above (recall that f = f(−·)). It
follows by Dym and McKean (1976, page 37) that J := H/Ho is an inner function
and the definition of J shows that f(−a) = limb↓0 J(a+ ib) for λ-a.a. a ∈ R which
completes the proof.

Lemma 5.2. Let κ be a locally integrable function and let ∆tκ denote the function

s 7→ t−1(κ(t+ s)− κ(s)), t > 0.

Then (∆tκ)t>0 is bounded in L2(λ) if and only if κ is absolutely continuous with
square integrable density.

Proof. Assume (∆tκ)t>0 is bounded in L2(λ) and choose a sequence (tn)n≥1 ⊆
(0,∞) converging to 0 such that ∆tnκ converges in the weak L2(λ)-topology. Call
the limit κ′. For λ⊗ λ-a.a. (u, v) with u ≤ v we have∫ v

u

κ′(s) ds = lim
n→∞

∫ v

u

∆tnκ(s) ds

= lim
n→∞

t−1
n

∫ v+tn

v

κ(s) ds− lim
n→∞

t−1
n

∫ u+tn

u

κ(s) ds = κ(v)− κ(u),

which shows that κ has density κ′.
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Assume conversely that κ is absolutely continuous with density κ′ ∈ L2(λ). For
0 < t we have∫ (

κ(t+ s)− κ(s)
)2
ds ≤ t

∫∫ s+t

s

κ′(v)2 dv ds

= t

∫∫ t

0

κ′(v + s)2 ds dv ≤ t2
∫
κ′(s)2 ds,

by which we conclude (∆tκ)t>0 is bounded in L2(λ).

Lemma 5.3. Let (Wt)t∈R be a Wiener process and Z be a random variable such
that {Z, (Wt)t∈R} is a Gaussian system. Define (Xt)t∈R by

Xt =

∫ t

−∞
ϕ(t− s) dWs, t ∈ R,

where ϕ ∈ L2(λ). Let Ft := FW,∞t ∨ σ(Z) for t ≥ 0. If (Xt)t≥0 is an (Ft)t≥0-
semimartingale of unbounded variation then (Wt)t≥0 is independent of Z.

Proof. Assume (Xt)t≥0 is an (Ft)t≥0-semimartingale and let Xt = X0 +Mt +At be
the canonical (Ft)t≥0-decomposition of (Xt)t≥0. By Basse (2007, Lemma 2.1 (iii)
and (v)) there exists a family of square integrable functions s 7→ Ht(s) such that
for all t ≥ 0 we have Mt =

∫ t
−∞Ht(s) dWs. The (Ft)t≥0-martingale property of

(Mt)t≥0 shows that

0 = E
[(
E[Mt|FW,∞0 ]

)2]
= E

[(∫ 0

−∞
Ht(s) dWs

)2]
=

∫ 0

−∞
Ht(s)

2 ds, 0 ≤ t,

and

0 = E
[(
E[Mt −Mu|FW,∞u ]

)2]
=

∫ u

−∞
(Ht(s)−Hu(s))

2 ds, 0 ≤ u ≤ t.

Thus, Ht = ξ1(0,t] λ-a.s. for all t ≥ 0 and some measurable function ξ. The sta-
tionary increments of (Xt)t∈R implies that [M ]t = [X]t = kt for t ≥ 0 and some
k ∈ R+ and it follows that E[M2

t ] = kt for t ≥ 0. This yields |ξ| = √k λ-a.s. and
hence

sp{Wt : t ∈ [0,∞)} = sp{Mt : t ∈ [0,∞)}.

We have shown that (Wt)t≥0 is independent of F0. In particular (Wt)t≥0 is inde-
pendent of Z.

Remark 5.4. Let H denote a normed space and R 3 t 7→ x(t) ∈ H be a continuous
mapping satisfying ‖xt − xu‖ = ‖xt+v − xu+v‖ for t, v, u ∈ R. Then

‖x(t)− x(0)‖ ≤ α + β|t|, t ∈ R,

for some α, β ∈ R+.

14



The next lemma, which is inspired by Masani (1972), shows how one can trans-
form a Gaussian process with stationary increments into a stationary Gaussian
process.

Lemma 5.5. Let (Xt)t∈R be a continuous and centered Gaussian process with sta-
tionary increments. Then there exists a continuous, stationary and centered Gaus-
sian process (Yt)t∈R, satisfying

Xt −X0 = Yt − Y0 −
∫ t

0

Ys ds, t ∈ R. (5.4)

Furthermore FX,∞t = σ(X0) ∨ FY,∞t for t ≥ 0.
Assume in addition ϕ and ψ are measurable functions such that

ϕ(t− ·) + ψ(·) ∈ L2(λ) and Xt =

∫
ϕ(t− s) + ψ(s) dWs, t ∈ R.

Then

ξ(t) :=

∫ 0

−∞
eu
(
ϕ(t)− ϕ(u+ t)

)
du, t ∈ R, (5.5)

is a well-defined square integrable function and Yt =
∫
ξ(t− s) dWs for t ∈ R.

Before proving the lemma we note that if

f(t) =

∫ 0

−∞
es
(
g(t)− g(t+ s)

)
ds = g(t)− e−t

∫ t

−∞
esg(s) ds, t ∈ R,

then

g(t)− g(0) = f(t)− f(0)−
∫ t

0

f(s) ds, t ∈ R. (5.6)

These identities are the main ingredients in the proof.

Proof of Lemma 5.5. Since (Xt)t∈R is a Gaussian process with continuous sample
paths, it is continuous in L2(P ) as well. Due to the stationary increments of (Xt)t∈R
it hence follows from Remark 5.4 that there is a P -null set outside which

Yt :=

∫ 0

−∞
eu(Xt −Xt+u) du = Xt − e−t

∫ t

−∞
euXu du, t ∈ R,

is well-defined and continuous. It is readily seen that (Yt)t∈R is a stationary centered
Gaussian process. Moreover, (5.4) follows by (5.6). By definition of (Yt)t∈R we have
FY,∞t ∨ σ(X0) ⊆ FX,∞t for t ≥ 0 and (5.4) shows that FX,∞t ⊆ FY,∞t ∨ σ(X0) for
t ≥ 0. Thus, we conclude that FY,∞t ∨ σ(X0) = FX,∞t for t ≥ 0.

Now assume that Xt =
∫
ϕ(t − s) + ψ(s) dWs for t ∈ R. From Remark 5.4 we

have ‖ϕ(t + ·) − ϕ(·)‖L2(λ) ≤ α + β|t| for t ∈ R and some α, β ∈ R+. This shows
that

ξ(t) :=

∫ 0

−∞
eu
(
ϕ(t)− ϕ(u+ t)

)
du, t ∈ R
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is a well-defined function belonging to L2(λ). For t ∈ R we have

Yt =

∫ 0

−∞

(∫
eu
(
ϕ(t− s)− ϕ(t+ u− s)) dWs

)
du

=

∫ (∫ 0

−∞
eu
(
ϕ(t− s)− ϕ(t+ u− s)) du)dWs =

∫
ξ(t− s) dWs,

where the second equality follows from Protter (2004, Chapter IV, Theorem 65).

Proof of Theorem 3.1. If: Assume (3.2) is satisfied. We show that (Xt)t≥0 is an
(FX,∞t )t≥0-semimartingale.

(1) : The case α 6= 0. Define Bt :=
∫
f̃(t − s) − f̃(−s) dWs for t ∈ R and let

g : R→ R be given by

g(t) =

{
α +

∫ t
0
h(u) du t ≥ 0

0 t < 0.

Since ϕ satisfies (3.2), Lemma 4.1–4.2 show

Xt −X0 =

∫
τtϕ(s)− τ0ϕ(s) dWs =

∫
g(t− s)− g(−s) dBs, t ∈ R.

Thus, from Cherny (2001, Theorem 3.1) it follows that (Xt−X0)t≥0 is an (FB,∞t )t≥0-
semimartingale with martingale component (αBt)t≥0. For t ≥ 0 we have

0 = 〈 ̂
f(ϕ̂− ψ), 1[0,t]〉L2(λ) = 〈(f(ϕ̂− ψ))(−·), 1̂[0,t]〉L2(λ) (5.7)

= 〈(ϕ̂− ψ)(−·), f 1̂[0,t]〉L2(λ) = 〈ϕ(·)− ψ(·), f̃(t+ ·)− f̃(·)〉L2(λ).

That is E[BtX0] = 0 for all t ≥ 0 and by Gaussianity it follows that X0 is indepen-
dent of (Bt)t≥0. Hereby we conclude that (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale
due to FX,∞t ⊆ FB,∞t ∨ σ(X0) for t ≥ 0.

(2) : The case α = 0. Since ϕ is absolutely continuous with square integrable
density, Lemma 5.2 implies

E[(Xt −Xu)
2] =

∫ (
ϕ(t− s)− ϕ(u− s))2ds ≤ K|t− u|2, t, u ≥ 0, (5.8)

for some constant K ∈ R+. The Kolmogorov-C̆entsov Theorem shows that (Xt)t≥0

has a continuous modification and from (5.8) it follows that this modification is of
integrable variation. Hence (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale.

Only if: Assume conversely that (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale.
(3) : First assume (in addition) that (Xt)t≥0 is of unbounded variation. Let ξ

and (Yt)t∈R be given as in Lemma 5.5. Since (Xt)t≥0 is of unbounded variation
it follows that FX,∞0 6= FX,∞∞ and we conclude that FY,∞0 6= FY,∞∞ . Thus, Szegö’s
Alternative (see Dym and McKean (1976, page 84)) shows that∫

log|ξ̂|(u)

1 + u2
du > −∞.
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Now choose f and g according to Lemma 5.1 (with (ϕ,X) replaced by (ξ, Y )) and
let (Bt)t∈R be given as in the lemma. The process (Yt)t≥0 is an (FB,∞t ∨σ(X0))t≥0-
semimartingale due to the fact that (FY,∞t )t≥0 = (FB,∞t )t≥0. Lemma 5.3 shows
that (Bt)t≥0 is independent of X0 which implies that τtf̃ − τ0f̃ is orthogonal to

ϕ(−·) + ψ(−·) for t ≥ 0. Therefore as in (5.7) it follows that ̂
f(ϕ̂− ψ) is 0 on R+.

Since (Yt)t≥0 (in particular) is an (FB,∞t )t≥0-semimartingale, it follows from Knight
(1992, Theorem 6.5) that

g(t) = α +

∫ t

0

ζ(u) du, t ≥ 0,

for some α ∈ R and some ζ ∈ L2(λ). Let η := ζ + g and κ be given by

κ(t) = α +

∫ t

0

η(u) du, t ≥ 0,

and κ(t) = 0 for t < 0. For all t ∈ R we have

Xt −X0 = Yt − Y0 −
∫ t

0

Yu du = Yt − Y0 −
∫ (∫ t

0

g(u− s) du
)
dBs

=

∫ (
g(t− s)− g(−s) +

∫ t−s

−s
g(u) du

)
dBs,=

∫
κ(t− s)− κ(−s) dBs,

where the second equality follows from Protter (2004, Chapter IV, Theorem 65).
By Lemma 4.2 we obtain

τtϕ− τ0ϕ =

∫
κ(t− u)− κ(−u) dτuf̃ , λ-a.s. ∀t ∈ R,

by which Lemma 4.1 (i) implies that

ϕ(t) = β + αf̃(t) +

∫ ∞
0

(
f̃(t− v)− f̃(−v)

)
η(v) dv, λ-a.a. t ∈ R,

for some β ∈ R. Thus, we obtain (3.2) (with h = η(−·)) from (3.4). Moreover, for
t ≥ 0 we have

Xt −X0 = αBt +

∫ (∫ t−s

−s
f̂ ĥ(u) du

)
dWs = αBt +

∫ t

0

(∫
f̂ ĥ(s− u) dWu

)
ds,

which shows that the (FX,∞t )t≥0-canonical decomposition of (Xt)t≥0 is given by
(3.3) since (Bt)t≥0 is an (FX,∞t )t≥0-martingale.

(4) : Assume (Xt)t≥0 is of bounded variation and therefore of integrable variation
(see Stricker (1983)). By Lemma 5.2 we conclude that ϕ is absolutely continuous
with square integrable density and hereby on the form (3.2) with α = 0 and f = 1.
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Proof of Proposition 3.4. (i) Only if: We have

ϕ(t− s)− ψ(−s) = 0, λ-a.a. s ∈ (t,∞) ∀t ≥ 0,

since (Xt)t≥0 is (FW,∞t )t≥0-adapted. By this it follows that ϕ is constant on (−∞, 0)
λ-a.s. Thus, we may and do assume ϕ(s) = 0 for λ-a.a. s ∈ (−∞, 0).

First assume (Xt)t≥0 is of bounded variation. By arguing as in (4) it follows
that ϕ is on the form (3.2) with f constant equal 1, and therefore f satisfies the
additional condition in (i).

Second assume (Xt)t≥0 is of unbounded variation. Proceed as in (3) in the proof
of Theorem 3.1. Since ϕ is 0 on (−∞, 0) it follows by (5.5) that ξ is 0 on (−∞, 0)
by which we can choose f such that the condition in (i) is satisfied according to
Lemma 5.1.

If: According to Lemma 4.3, f̃ is constant on (−∞, 0) λ-a.s. From (3.4) we
obtain ∫ (

f̃(t− s)− f̃(−s))h(−s) ds =

∫ t

0

f̂ ĥ(s) ds,

which implies that ϕ is constant on (−∞, 0) λ-a.s. Furthermore f(ϕ̂− ψ) ∈ H2
+

which shows H2
+ 3 ff(ϕ̂− ψ) = ϕ̂− ψ and hereby ϕ = ψ on (−∞, 0). Thus, we

conclude that (Xt)t≥0 is (FW,∞t )t≥0-adapted.
To prove (3.5) we assume that ϕ is represented as in equation (3.2) with f(a) =

limb↓0 J(−a + b) for λ-a.a. a ∈ R and some inner function J. By Lemma 4.3 it
follows that f̃ is constant on (−∞, 0) and hence we deduce (3.5) from (3.2) and
(3.4).

(ii): Assume ψ = 0. Only if: We may and do assume that (Xt)t≥0 is an
(FX,∞t )t≥0-semimartingale of unbounded variation. We have to show that we can
decompose ϕ as in (3.6) where α+

∫ ·
0
h(−s) ds is square integrable on R+. However,

this follows as in (3) above (without referring to Lemma 5.5).
Assume conversely that (3.2) is satisfied, with α, β, f and h as stated. Let

g ∈ L2(λ) be given by

g(t) =

{
α +

∫ t
0
h(−v) dv t ≥ 0

0 t < 0.

From Lemma 4.1 (ii) it follows that there exists a β̃ ∈ R such that∫
g(−u) dτuf̃ = β̃ + αf̃(−·) +

∫ (
f̃(−v − ·)− f̃(−v)

)
h(−v) dv, λ-a.s.

which by (3.2) and (3.4) implies∫
g(−u) dτuf̃ = β̃ − β + ϕ(−·), λ-a.s.

The square integrability of ϕ shows β̃ = β and by setting

Bt :=

∫
f̃(t− s)− f̃(−s) dWs, t ∈ R,
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it follows from Lemma 4.2 that X0 =
∫
g(−s) dBs. Lemma 4.1 (i) and Lemma 4.2

shows that Xt −X0 =
∫
g(t− s)− g(−s) dBs for t ∈ R. Hence, we conclude that

Xt =

∫
g(t− s) dBs, t ∈ R,

which show that (Xt)t≥0 is an (FB,∞t )t≥0-semimartingale and thus an (FX,∞t )t≥0-
semimartingale. This completes the proof.

6 The spectral measure of stationary
semimartingales

For t ∈ R, let Xt =
∫ t
−∞ ϕ(t − s) dWs where ϕ ∈ L2(λ). In this section we use

Knight (1992, Theorem 6.5) to give a condition on the Fourier transform of ϕ for
(Xt)t≥0 to be an (FW,∞t )t≥0-semimartingale. In the case where (Xt)t≥0 is a Markov
process we use this to provide a simple condition for (Xt)t≥0 to be an (FW,∞t )t≥0-
semimartingale. In the last part of this section we study a general stationary
Gaussian process (Xt)t∈R. Similar to Jeulin and Yor (1993), we provide a condition
on the spectral measure of (Xt)t∈R for (Xt)t≥0 to be an (FX,∞t )t≥0-semimartingale.

Proposition 6.1. Let (Xt)t∈R be given by Xt =
∫
ϕ(t− s) dWs, where ϕ ∈ L2(λ)

and (Wt)t∈R is a Wiener process. Then (Xt)t≥0 is an (FW,∞t )t≥0-semimartingale if
and only if

ϕ̂(t) =
α + ĥ(t)

1− it , λ-a.a. t ∈ R,

for some α ∈ R and some h ∈ L2(λ) which is 0 on (−∞, 0).

The result follows directly from Knight (1992, Theorem 6.5), once we have
shown the following technical result.

Lemma 6.2. Let ϕ ∈ L2(λ). Then ϕ is on the form

ϕ(t) =

{
α +

∫ t
0
h(s) ds t ≥ 0

0 t < 0,
(6.1)

for some α ∈ R and some h ∈ L2(λ) if and only if

ϕ̂(t) =
α + ĥ(t)

1− it , (6.2)

for some α ∈ R and some h ∈ L2(λ) which is 0 on (−∞, 0).

Proof. Assume ϕ satisfies (6.1). The square integrability of ϕ shows that we can
find a sequence (an)n≥1 converging to infinity such that ϕ(an) converges to 0. For
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all n ≥ 1 we have∫ an

0

ϕ(s)eits ds =

∫ an

0

ceitsds+

∫ an

0

[ ∫ s

0

h(u) du
]
eits ds

=
c(eiant − 1)

it
+

∫ an

0

h(u)
[ ∫ an

u

eitsds
]
du

=
c(eiant − 1)

it
+

∫ an

0

h(u)
[eiant − eiut

it

]
du

=
1

it

[
eiant

(
c+

∫ an

0

h(u)du
)− c− ∫ an

0

h(u)eitudu
]

=
1

it

[
eiantϕ(an)− c−

∫ an

0

h(u)eitudu
]
.

Hence by letting n tend to infinity, it follows that ϕ̂(t) = −(it)−1(c+ ĥ(t)) and we
obtain (6.2).

Assume conversely that (6.2) is satisfied and let e(t) := e−t1R+(t) for t ∈ R.

ϕ̂(t) =
α + ĥ

1− it = αê(t) + ĥ(t)ê(t). (6.3)

Note that h ∗ e is an square integrable function and ĥ ∗ e = ĥê. Thus from (6.3) it
follows that ϕ = αe+ h ∗ e λ-a.s. This shows in particular that ϕ is 0 on (−∞, 0).
It also yields that h(t)− h ∗ e(t) = αe(t) + h(t)− ϕ(t) =: f(t), which implies that

h(t)− h(0) = f(t)− f(0)−
∫ t

0

f(s) ds,

and hence

ϕ(t) =

{
ϕ(0) +

∫ t
0
ϕ(s)− h(s) ds t ≥ 0

0 t < 0.

This completes the proof of (6.1).

Now we apply Proposition 6.1 to give conditions on ϕ for a Markov process
(Xt)t∈R = (

∫ t
−∞ ϕ(t− s) dWs)t∈R to be an (FW,∞t )t≥0-semimartingale. This process

is always an (FX,∞t )t≥0-semimartingale, but not always an (FW,∞t )t≥0-semimartin-
gale. Recall that since (Xt)t∈R is an stationary centered Gaussian Markov process
which is continuous in probability it is actually an Ornstein-Uhlenbeck process, i.e.
it is a centered Gaussian process with covariance function given by

E[XtXu] = e−θ|t−u|, t, u ∈ R,

for some θ ∈ (0,∞).
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Example 6.3. Let (Xt)t∈R be given by

Xt =

∫
ϕ(t− s) dWs, t ∈ R,

where ϕ ∈ L2(λ) is 0 on (−∞, 0). Assume (Xt)t≥0 is an Markov process. Then
(Xt)t≥0 is an (FW,∞t )t≥0-semimartingale if and only if J − α ∈ H2

+ for some α ∈
{−1, 1}, where J is the inner part of the Hardy function induced by ϕ. In particular
if J is a singular inner function, that is on the form

J(z) = exp
(−1

πi

∫
sz + 1

s− z
1

1 + s2
F (ds)

)
, z ∈ C+,

where F is a singular measure which integrates s 7→ (1+s2)−1, and we assume F is
concentrated on Z, (F ({k}))k∈Z is bounded and

∑
k∈Z F ({k})2 = ∞, then (Xt)t≥0

is not an (FW,∞t )t≥0-semimartingale.
To prove the first part let J be the inner part of the Hardy function induced

by ϕ. Since (Xt)t∈R is an Ornstein-Uhlenbeck process we have (up to a scaling
constant) that

|ϕ̂(t)|2 = (θ + t2)−1, λ-a.a. t ∈ R,

for some θ ∈ (0,∞), which implies

ϕ̂(t) =
j(t)

θ − it , t ∈ R,

where j(t) = limb↓0 J(a + ib) for λ-a.a. a ∈ R. Moreover, Proposition 6.1 shows
that (Xt)t≥0 is an (FW,∞t )t≥0-semimartingale if and only if

ϕ̂(t) =
α + ĥ(t)

θ − it , λ-a.a. t ∈ R,

for some α ∈ R and h ∈ L2(λ) which is 0 on (−∞, 0). Thus, we conclude that
J − α = H, where H is the Hardy function induced by h and the proof of the first
statement is complete.

To prove the last part, we note that

|J(a+ ib)| = exp
(∫ −b

π((s− a)2 + b2)
F (ds)

)
.

Moreover, as a consequence of the Mean-Value Theorem, it follows that if f : R→
R is a bounded measurable function such that f /∈ L2(λ) then exp(f)− 1 /∈ L2(λ).
We will use this on

f(a) :=

∫ −b
π((s− a)2 + b2)

F (ds), a ∈ R.
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The function f is bounded since k 7→ F ({k}) is bounded. Moreover, f /∈ L2(λ)
since∫

|f(a)|2 da =
( b
π

)2
∫ (∑

j∈Z

F ({j})
(j − a)2 + b2

)2

da

≥
( b
π

)2
∫ ∑

j∈Z

( F ({j})
(j − a)2 + b2

)2

da =
( b
π

)2∑
j∈Z

∫ ( F ({j})
(j − a)2 + b2

)2

da

=
( b
π

)2∑
j∈Z

∫ (F ({j})
a2 + b2

)2

da =
( b
π

)2
∫ ( 1

a2 + b2

)2

da
∑
j∈Z

[F ({j})]2 =∞,

where the first inequality follows from the fact that the terms in the sum is positive.
Thus,

|J(a+ ib)− α| ≥ ||J(a+ ib)| − 1| = exp(f(a))− 1,

which shows J−α /∈ H2
+ and hence (Xt)t≥0 is not an (FW,∞t )t≥0-semimartingale. ♦

The proof of the next result is quite similar to the proof of Proposition 19 in
Jeulin and Yor (1993).

Proposition 6.4. Let (Xt)t∈R be an L2(P )-continuous stationary centered Gaus-
sian process with spectral measure µ = µs + f dλ (µs is the singular part of µ).
Then (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale if and only if

∫
t2 µs(dt) <∞ and

f(t) =
|α + ĥ(t)|2

1 + t2
, λ-a.a. t ∈ R,

for some α ∈ R and some h ∈ L2(λ) which is 0 on (−∞, 0) if α 6= 0. Moreover,
(Xt)t≥0 is of bounded variation if and only if α = 0.

Proposition 6.4 extends the well-known fact that an L2(P )-continuous station-
ary Gaussian process is of bounded variation if and only if

∫
t2 µ(dt) < ∞ (µ

denotes the spectral measure).

Proof of Proposition 6.4.
Only if: If (Xt)t≥0 is of bounded variation then

∫
t2 µ(dt) < ∞ and therefore

µ is on the stated form. Thus, we may and do assume (Xt)t≥0 is an (FX,∞t )t≥0-
semimartingale of unbounded variation. Now it follows that (Xt)t∈R is a regular
process and can therefore be decomposed as (see e.g. Doob (1990))

Xt = Vt +

∫ t

−∞
ϕ(t− s) dWs, t ∈ R,

where (Wt)t∈R is a Wiener process which is independent of (Vt)t∈R and Wr−Ws is
FX,∞t -measurable for s ≤ r ≤ t. The process (Vt)t∈R is a stationary Gaussian and
Vt is FX,∞−∞ -measurable for all t ∈ R, where

FX,∞−∞ :=
⋂
t∈R
FX,∞t .
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Moreover, (Vt)t∈R and (Xt−Vt)t∈R have spectral measure respectively µs and f dλ.
For 0 ≤ u ≤ t we have

E[|Vt − Vu|] = E[|E[Vt − Vu|FV,∞u ]|] = E[|E[Xt −Xu|FV,∞u ]|]
≤ E[|E[Xt −Xu|FX,∞u ]|],

which shows that (Vt)t≥0 is of integrable variation and hence
∫
t2 µs(dt) <∞. The

fact that (Vt)t≥0 is (FX,∞t )t≥0-adapted and of bounded variation implies that(∫ t

−∞
ϕ(t− s) dWs

)
t≥0

is an (FX,∞t )t≥0-semimartingale and therefore also an (FW,∞t )t≥0-semimartingale.
Thus, by Proposition 6.1 we conclude that

f(t) = |ϕ̂(t)|2 =
|α + ĥ(t)|2

1 + t2
, λ-a.a. t ∈ R,

for some α ∈ R and some h ∈ L2(λ) which is 0 on (−∞, 0).
If: If

∫
t2 µ(dt) < ∞, then (Xt)t≥0 is of bounded variation and therefore an

(FX,∞t )t≥0-semimartingale. Thus, we may and do assume
∫
t2f(t) dt = ∞. We

will show that (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale by constructing a process
(Zt)t∈R which equals (Xt)t∈R in distribution and such that (Zt)t≥0 is an (FZ,∞t )t≥0-
semimartingale. By Lemma 6.2 there exists a β ∈ R and a g ∈ L2(λ) such that
with ϕ(t) = β +

∫ t
0
g(s) ds for t ≥ 0 and ϕ(t) = 0 for t < 0, we have |ϕ̂|2 = f.

Define (Zt)t∈R by

Zt = Vt +

∫ t

−∞
ϕ(t− s) dWs, t ∈ R,

where (Vt)t∈R is a stationary Gaussian process with spectral measure µs and (Wt)t∈R
is a Wiener process which is independent of (Vt)t∈R. The processes (Xt)t∈R and
(Zt)t∈R are identical in distribution due to the fact that they are centered Gaus-
sian processes with the same spectral measure. It readily seen that (Zt)t≥0 is an
(FZ,∞t )t≥0-semimartingale and hence it follows that (Xt)t≥0 is an (FX,∞t )t≥0-semi-
martingale.

7 The spectral measure of semimartingales with
stationary increments

Let (Xt)t∈R be an L2(P )-continuous Gaussian process with stationary increments
such that X0 = 0. Then there exists a unique positive symmetric measure µ on R
which integrates t 7→ (1 + t2)−1 and satisfies

E[XtXu] =

∫
(eits − 1)(e−ius − 1)

s2
µ(ds), t, u ∈ R.
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The measure µ is called the spectral measure for (Xt)t∈R. The spectral measure of
the fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1) is

µ(ds) = cH |s|1−2H ds,

where cH ∈ R is a constant (see e.g. Yaglom (1987)). In particular the spectral
measure of the Wiener process (H = 1/2) equals the Lebesgue measure up to
a scaling constant. There should be no confusion with the spectral measure of
stationary processes, since the intersection of the stationary processes and processes
with stationary increments which starts at 0 is the 0 process.

Theorem 7.1. Let (Xt)t∈R be an L2(P )-continuous, centered Gaussian process
with stationary increments such that X0 = 0. Moreover, let µ = µs + fdλ be the
spectral measure of (Xt)t∈R. Then (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale if and
only if µs is a finite measure and

f = |α + ĥ|2, λ-a.s.

for some α ∈ R and some h ∈ L2(λ) which is 0 on (−∞, 0) if α 6= 0. Moreover,
(Xt)t≥0 is of bounded variation if and only if α = 0.

Proof. Assume (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale. Let (Yt)t∈R be the station-
ary centered Gaussian process given by Lemma 5.5 such that

Xt = Yt − Y0 +

∫ t

0

Ys ds, t ∈ R, (7.1)

and let ν denote the spectral measure of (Yt)t∈R, that is ν is a finite measure
satisfying

E[YtYu] =

∫
ei(t−u)a ν(da), t, u ∈ R.

By using Fubini’s Theorem it follows that

E[XtXu] =

∫ (
eits − 1

)(
e−ius − 1

)
s2

(1 + s2) ν(ds), t, u ∈ R. (7.2)

Thus, by uniqueness of the spectral measure of (Xt)t∈R we obtain µ(ds) = (1 +
s2) ν(ds). Since (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale (7.1) implies that (Yt)t≥0

is an (FY,∞t )t≥0-semimartingale and hence Proposition 6.4 shows that the singular
part νs of ν satisfies

∫
t2 ν(dt) < ∞ and the absolute continuous part is on the

form

|α + ĥ(s)|2(1 + s2)−1 ds,

for some α ∈ R and some h ∈ L2(λ) which is 0 on (−∞, 0) if α 6= 0. Thus, we
obtain the seeked decomposition of µ.

Conversely assume that µs is a bounded measure and f = |α+ ĥ|2 for an α ∈ R
and an h ∈ L2(λ) which is 0 on (−∞, 0) if α 6= 0. Let (Yt)t∈R be a centered Gaussian
process such that

E[YtYu] =

∫
ei(t−u)af(a)

1 + a2
da, t, u ∈ R.
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By Proposition 6.4 it follows that (Yt)t≥0 is an (FY,∞t )t≥0-semimartingale. Thus,
by defining (Zt)t∈R as

Zt := Yt − Y0 +

∫ t

0

Ys ds, t ∈ R,

we obtain that (Zt)t≥0 is an (FY,∞t )t≥0-semimartingale and hence also an (FZ,∞t )t≥0-
semimartingale. Moreover, by calculations as in (7.2) it follows that (Zt)t∈R is
distributed as (Xt)t∈R, which shows that (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale.
This completes the proof.

Let (Xt)t∈R be a fBm with Hurst parameter H ∈ (0, 1). Then by use of the
above theorem it is readily seen that (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale if and
only if H = 1/2 (this is already known by Rogers (1997)). As a consequence of the
above theorem we also have:

Corollary 7.2. Let (Xt)t∈R be a Gaussian process with stationary increments.
Then (Xt)t≥0 is of bounded variation if and only if (Xt−X0)t∈R has finite spectral
measure.
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