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Abstract

Results on asymptotic normality for the maximum likelihood estimate in hid-
den Markov models are extended in two directions. The stationarity assump-
tion is relaxed, which allows for a covariate process influencing the hidden
Markov process. Furthermore a class of estimating equations is considered
instead of the maximum likelihood estimate. The basic ingredients are mix-
ing properties of the process and a general central limit theorem for weakly
dependent variables. The results are illustrated with a cyclic model for the
progesterone concentration in cowmilk.

Key words and phrases: Cyclic model, Estimating equation, Mixing proper-
ties, Progesterone concentration.

1 Introduction

Unless simulation based methods are used inference in hidden Markov models is based
on the asymptotic normality of the parameter estimates. For the case of a finite state
space for both the hidden variable x and the observed variable y, asymptotic normality
for the maximum likelihood estimate was established in the pioneering paper of Baum
and Petrie (1966). More than thirty years elapsed until this result was generalised to
a general state space for the observed variable y by Bickel, Ritov and Rydén (1998),
and still further generalized to a non-discrete state space for the hidden variable x by
Jensen and Petersen (1999). In these papers stationarity is a crucial assumption. The
log likelihood is a sum where the individual terms are the log densitites of yi given the
past y1, . . . , yi−1. These are replaced by the similar expressions conditioned instead on
the infinite past . . . , y−1, y0, . . . , yi−1. A martingale central limit theorem is then used
to establish asymptotic normality of the score function. In this paper we use a different
approach that allows us to consider nonhomogeneous processes and to consider alternatives
to the maximum likelihood estimates. To illustrate the scope of the setup we briefly
describe an example from evolutionary biology.

Example 1. Let v(t) = (v1(t), . . . , vn(t)) be a sequence of letters from the alphabet
{A,G,C, T} of nucleotides at time t. The sequence at time t = 0 is fixed and known.
Time is discrete. The process is observed at time t = T , but not observed at the times
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t = 1, 2, . . . , T − 1 in between. The sequence v(t) evolves according to a Markov chain
with transition probabilitites of the form

p(v(t+ 1)|v(t)) =
n∏
i=1

h(vi(t+ 1)|vi−1(t+ 1), vi(t), vi+1(t)),

for some transition probability h. This formalizes a time discretized version of a model
where the probability of a change of a nucleotide vi(t) depends on the two neighbour-
ing nucleotides. Let now xi = (vi(1), vi(2), . . . , vi(T )) be the complete history for nu-
cleotide i. It can be seen that the conditional distribution of xi given x1, . . . , xi−1 depends
on (xi−2, xi−1) only. We thus have a second order hidden Markov model where the ob-
served variable is yi = vi(T ). The underlying Markov structure is inhomogeneous due to
the fixed initial sequence v(0).

Asymptotic normality for a class of estimating equations, in the setting af evolution-
ary models for DNA, has been treated in Jensen (2005). In that paper both the state
space of the hidden variable x and the observed variable y is finite. Here we extend the
results in Jensen (2005) to a setup akin that of Jensen and Petersen (1999) with a general
state space for the observed variable and a general state space for the hidden variable.
Nonhomogeneity is introduced through a covariate. We base the asymptotic normality of
the “score function” directly on the mixing properties of the process, using a central limit
theorem extracted from Götze and Hipp (1983). Although the state space is general the
conditions imposed effectively restricts the space to be compact.

In section 2 we describe the setup and results in detail and define the class of estimating
equations that we consider. In section 3 we illustrate the results for a hidden cyclic model
used to describe the progesterone concentration in cowmilk. The proofs of the results are
split into three sections. In section 4 we study the mixing properties of the process and
use these in section 5 to derive a central limit theorem for the “score function”. Finally,
in section 6 we derive the uniform convergence of the “observed information”.

2 Assumptions and results

We consider an observed process y1, . . . , yn controlled by an unobserved Markov pro-
cess {xi}. Conditionally on the x-process the yis are independent. Both the observed yi
and the unobserved xi may be influenced by a covariate zi, making the process inhomo-
geneous. The transition density of the Markov process is pθ(xi|xi−1; zi), where pθ(x̃|x; z)
is a density in x̃ with respect to a probability measure µ on the state space for the hidden
variable. The conditional density of yi is pθ(yi|xi; zi), where pθ(y|x; z) is a density in y

with respect to a measure ν. Both these densities are parametrized by the d-dimensional
parameter θ. We split the assumptions into two parts, one part concerned with the process
itself, Conditions 2 and 3 below, and another part concerned with the estimating function
used, Condition 5 below.

Condition 2 ensures mixing of the underlying Markov chain. In order to allow for
the possibility that in a single step the Markov chain can reach only a subset of the state
space, we use the m0–step transition probabilities in the condition. This transition density
depends on several zi’s, but in order not to overburden the notation we write simply z

instead. We can start by establishing exponential mixing of the m0–step chain {xjm0}, and
from this trivially obtain mixing of the original chain {xj}. To avoid complicated notation
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we consider in the proofs the case with m0 = 1. In the setting of a DNA sequence as
in Jensen (2005) the two-step transition probabilities will suffice, whereas in the setting
of a process with a cyclic nature as described in section 3 higher order transitions may
be needed. Point (i) of Condition 3 limits the influence of the hidden variable on the
observed variable. This condition is needed when studying the mixing properties of the
hidden chain conditioned on the observed y–process. Point (ii) of Condition 3 limits the
conditional score function based on (xi, yi) given xi−1. The true value of the parameter
is θ0.

Condition 2. There exists δ0 > 0, a positive integer m0, and constants 0 < τ < σ <∞,
such that

τ ≤ pθ(xm0 |x0; z) ≤ σ for all (x0, xm0 , z) and all |θ − θ0| ≤ δ0.

To state the next condition we introduce some notation. Likelihood quantities for the
chain (xi, yi) are denoted by ω as follows

ωi(θ) = log[pθ(xi|xi−1; zi)pθ(yi|xi; zi)] and ωri (θ) =
∂

∂θr
ωi(θ).

With δ0, τ , and σ from Condition 2 define

ξ(y) = sup
x1,x2,z,|θ−θ0|≤δ0

pθ(y|x1; z)
pθ(y|x2; z)

, ρ(y) = 1− τ2/(σξ(y)),

and
β1 = inf

x,z

∫
pθ0(y|x; z)/ξ(y)ν(dy).

Condition 3. Let δ0 be as in Condition 2.

i) Assume that ξ(y) <∞ for all y and that β1 > 0.

ii) Assume that there exists a function h0(y) with

c0 = sup
x,z

∫
h0(y)pθ0(y|x; z)ν(dy) <∞,

such that for all r = 1, . . . , d and all i,

sup
xi−1,xi,zi,|θ−θ0|≤δ0

|ωri (θ)| ≤ h0(yi).

The second part of the conditions relates to the estimating equation. Let ψ(θ, x̄, y; z)
be a function of the parameter θ, a triple x̄ of consequtive states, an observed variable
y and covariates z. Let ψi(θ) = ψ(θ, x̄i, yi; z), where x̄i = (xi−1, xi, xi+1). We think of∑n

i=1 ψi(θ) = 0 as an estimating equation had both x and y being observed. Having
observed y only we use the estimating equation

n∑
i=1

Eθ[ψi(θ)|(1, n)] = 0, (1)

where Eθ(·|(1, n)) is the conditional mean given y1, . . . , yn. The coordinates of ψi(θ)
are denoted by ψri (θ), r = 1, . . . , d and the derivatives of these are ψrsi (θ) = ∂

∂θs
ψri (θ).
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In Appendix I a recursive formula for evaluating the estimating function on the left
hand side of (1) is given. To solve (1) one often uses an EM-type algorithm, that is,∑n

i=1Eθ[ψi(θ̃)|(1, n)] = 0 is solved with respect to θ̃, and this defines a new value improv-
ing on the old value θ. This EEE-algorithm (Expectation–Estimating–Equation) has been
considered in Heyde and Morton (1996), Rosen, Jiang and Tanner (2000) and Elashoff
and Ryan (2004).

The “observed information” in this setting, that is, the derivative of the left hand side
of (1), is given by

Jn(θ) = − ∂

∂θ
Eθ

[ n∑
i=1

ψi(θ)|(1, n)
]

= −Eθ
[ n∑
i=1

∂

∂θ
ψi(θ)|(1, n)

]
− Vθ

[ n∑
i=1

ψi(θ),
n∑
i=1

∂

∂θ
ωi(θ)|(1, n)

]
.

This formula corresponds to the formula in Louis (1982) for the maximum likelihood
equation. A derivation can be found in Jensen (2005).

Before stating the second part of the conditions it is convenient to introduce a notation
for a class of functions satisfying suitable conditions.

Definition 4. Consider for each i a function ai(θ) which also depends on (x̄i, yi, z). We
say that these functions belong to class Gk if there exist δ0 > 0, a function a0(y) and a
finite constant ck0(a) such that

|ai(θ)| ≤ a0(yi) for all (x̄i, z) and all |θ − θ0| ≤ δ0,

and
sup
x,z

∫
a0(y)kpθ0(y|x; z)ν(dy) ≤ ck0(a).

If, furthermore, there exist a function a1(y) and finite constants c1(a), cm1 (a) such that

|ai(θ)− ai(θ0)| ≤ |θ − θ0|a1(yi) for all (x̄i, z) and all |θ − θ0| ≤ δ0,

and

sup
x,z

∫
a1(y)pθ0(y|x; z)ν(dy) ≤ c1(a), sup

x,z

∫
a0(y)mh0(y)pθ0(y|x; z)ν(dy) ≤ cm1 (a),

we say that the set of functions belong to class Gk,m.

Condition 5. i) For all r = 1, . . . , d the set of functions {ψri (θ)} belongs to class G3

and Eθψi(θ) = 0.

ii) For all r, s = 1, . . . , d the set of functions {ψrsi (θ)} belongs to class G1,2.

iii) For all r = 1, . . . , d the set of functions {ωri (θ)} belongs to class G1,2.

We now formulate the results of this paper.

Theorem 6. Assumme that Condition 2, Condition 3(i), and Condition 5(i) hold. Define
Sn =

∑n
i=1Eθ0(ψi(θ0)|(1, n)/

√
n and assume that the covariates {zi} are such that the

variance of Sn converges to a positive definite limit. Then a central limit theorem holds
for the normalized sum Sn.
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Theorem 7. Assume that Condition 2, 3, and 5 hold. Let δn → 0 for n→∞. Then

Eθ0

{
sup

|θ−θ0|≤δn

1
n

∣∣Jn(θ)− Jn(θ0)
∣∣}→ 0.

Corollary 8. Assume that Condition 2, 3, and 5 hold. Assume that the covariates {zi} are
such that the variance of Sn =

∑n
i=1Eθ0(ψi(θ0)|(1, n)/

√
n converges to a positive definite

limit V (θ0), and also 1
nJn(θ0) converges to a positive definite limit I(θ0). Then there exists

a sequence θ̂n solving the estimating equation such that θ̂ → θ0 in probability and
√
n(θ̂−θ0)

has a limiting normal distribution with mean zero and variance I(θ0)−1V (θ0)I(θ0)−1.

3 Example: cyclic model

In Hansen (2008) a cyclic hidden Markov model is described for the progesterone concen-
tration in cowmilk. The observed process yj is the measured progesterone concentration
in the milk at each milking. The underlying dynamic is described by a stage ij , a level
vj giving the mean of the observed process, a slope sj which defines the increase in the
level vj , and a waiting time rj until the next change of the stage. The stage describes
a cyclic nature where i = 1 corresponds to a low stage, this is followed by an increasing
stage i = 2, followed next by a high stage i = 3, and ending in a decreasing stage i = 4.
Below, when i = 4 the sum i + 1 means the stage 1. The process is controlled by two
transition probabilities, p(r|i; γ) which is the probability of a new waiting time r at a point
in time where the stage changes from i− 1 to i and which depends on a parameter γ, and
p(s|r, v, i) which is the probability of a new slope s at a point in time where the stage
changes from i − 1 to i, the present level is v, and the new waiting time is r. Formally,
the Markov structure for the hidden variable xj = (ij , rj , vj , sj) is given by rj > 1,

ij+1 = ij
rj+1 = rj − 1
vj+1 = vj + sj
sj+1 = sj  rj = 1.

ij+1 = ij + 1
rj+1 ∼ p(·|ij+1; γ)
vj+1 = vj + sj
sj+1 ∼ p(·|rj+1, vj+1, ij+1)

Conditionally on the hidden state the observed variable yj is normally distributed with
mean vj and variance σ2.

We consider γ and σ2 to be cow specific parameters with γ allowing for variation in
the mean cycle length from cow to cow, and with σ2 allowing for varying degree of fit of
the hidden model. Finally, we consider the case where sj and vj belong to compact sets
and rj belongs to a finite set (this is slightly different from the setup in Hansen, 2008).

The full likelihood, having observed both xj and yj , j = 1, . . . , n, and conditioning on
x0, leads to the likelihood equations

n∑
j=1

[
(yj − vj)2 − σ2

]
= 0,

n∑
j=1

[ d
dγ

log p(rj |ij ; γ)
]
1(ij−1 6= ij) = 0.
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We replace the first of these equations with one giving a more robust estimate of σ. Thus
we use instead

n∑
j=1

[|yj − vj | − σ√ 2
π

]
= 0.

In relation to our general setup we thus have θ = (σ, γ) and

ψ1
j = |yj − vj | − σ

√
2
π
, ψ2

j =
[ d
dγ

log p(rj |ij ; γ)
]
1(ij−1 6= ij).

The derivatives of these with respect to σ and γ are

ψ11
j = −

√
2
π
, ψ12

j = 0,

ψ21
j = 0, ψ22

j =
[ d2

dγ2
log p(rj |ij ; γ)

]
1(ij−1 6= ij).

Furthermore, we have

ωj =

{
log
[
ϕ(yj ; vj , σ)

]
ij = ij−1,

log
[
p(rj |ij ; γ)p(sj |rj , vj , ij)ϕ(yj ; vj , σ)

]
ij 6= ij−1,

where ϕ(y; v, σ) is the density of a normal distribution with mean v and variance σ2.
The derivatives of ωj with respect to σ and γ are

ω1
j =

1
σ3

(yj − vj)2 − 1
σ
, ω2

j =
d

dγ
log p(rj |ij ; γ)

]
1(ij−1 6= ij).

Condition 2 will hold under mild conditions on the transition densities due to the
compactness of the state space. We do not discuss this further here. Since the state space
is bounded we make the assumption that the first three derivatives of p(·|i; γ) are bounded.
For condition 3 i) we find the bound ξ(y) ≤ exp(b0 +b1|y|) for suitable constants b0 and b1,
due to the finiteness of the level v. Then clearly also β1 > 0. For condition 3 ii) we can
take h0(y) = b0 + b1|y| + b2y

2 for suitable constants b0, b1, b2. Similarly in condition 5 i)
we can use a bound on the form a0(y) = b0 + b1|y|. For condition 5 ii) a0(y) and a1(y)
can be taken as constants. And, finally, for condition 5 iii) both a0(y) and a1(y) can be
bounded by b0 + b1|y|+ b2y

2 for suitable constants b0, b1, b2.
In conclusion we see that the standard asymptotic results hold for the estimates in a

cyclic model as described here and considered (with slight modifications) in Hansen (2008).

4 Mixing

As a first step in the proof of the main results we study the mixing properties of the process.
We use throughout Condition 2 with m0 = 1. Our results hold for all |θ − θ0| ≤ δ0, and
we skip θ in the notation below. First we state bounds on the transition densities for
the hidden chain conditioned on the observed y–process. The lemma has been proved in
Jensen and Petersen (1999).

Lemma 9. Assume Condition 2. Conditioned on the y–process {xn} constitute a Markov
chain with

τ2

σξ(ys)
≤ p(xs|xs−1, xs+1, y; z) ≤ σ2ξ(ys)

τ
.
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For the original Markov chain (not conditioned on y) we have trivially from Condition 2
that

τ2

σ
≤ p(xs+1|xs, xs+2; z) ≤ σ2

τ
. (2)

For easy reference we state here a Lemma from Jensen and Petersen (1999) that will be
used repeatedly.

Lemma 10. Assume that ν1 and ν2 are dominated by µ and ν1(X ) = ν2(X ). Then for
any real valued measurable function h on X we have∣∣∣∫

X
hdν1 −

∫
X
hdν2

∣∣∣ ≤ {sup
x
h(x)− inf

x
h(x)}{ν1(S+)− ν2(S+)},

where S+ = {dν1/dµ− dν2/dµ > 0}.
To establish mixing results for both the original hidden Markov chain and for the chain
conditioned on the y–process we consider a general Markov chain {xs} satisfying

τs ≤ p(xs|xs−1, xs+1) ≤ σs. (3)

with 0 < τs < σs <∞ for all s. We start with a result on one-sided and two-sided mixing.
To make the notation more transparent we let ur, for a lower case letter u, denote xr = u,
and let As, for a upper case letter A, denote xs ∈ A.

Lemma 11. Assume (3). Let r < s < t and let ρj = 1− τj. Then

sup
u
P (As|ur)− inf

v
P (As|vr) ≤

s∏
j=r+1

ρj ,

and

sup
a,b

P (As|ar, bt)− inf
u,v

P (As|ur, vt) ≤
s∏

j=r+1

ρj +
t−1∏
j=s

ρj .

Proof. The proof of the one-sided case is given in Jensen and Petersen (1999) based on
Doob (1953, page 198). In Jensen(2005) a similar proof for the two-sided case is indicated.
We give here the details of this proof.

Let r < s < t. Define, for a fixed set A and a fixed state w, D(r) = maxu P (As|ur, wt),
d(r) = minu P (As|ur, wt), and Sr = {x : p(xr = x|ur−1, wt) > p(xr = x|vr−1, wt)}. Using
Lemma 10 in the first inequality below we find

D(r − 1)− d(r − 1)

= max
u,v

[P (As|ur−1, wt)− P (As|vr−1, wt)]

= max
u,v

∫
P (As|αr, wt) [p(αr|ur−1, wt)− p(αr|vr−1, wt)]µ(dα)

≤ (D(r)− d(r)) max
u,v

[P (Sr|ur−1, wt)− P (Sr|vr−1, wt)]

≤ (D(r)− d(r)) max
u,v

[1− P (Scr |ur−1, wt)− P (Sr|vr−1, wt)]

≤ (D(r)− d(r))
(
1− τr

)
= (D(r)− d(r))ρr,
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where we used the bound

p(xr|ur−1, wt) =
∫
p(xr|ur−1, vr+1)p(vr+1|ur−1, wt)µ(dv) ≥ τr.

Iterating, we obtain

max
u,v
|P (As|ur, wt)− P (As|vr, wt)| ≤

s∏
j=r+1

ρj ,

A similar argument gives

max
u,v
|P (As|wr, ut)− P (As|wr, vt)| ≤

t−1∏
j=s

ρj .

Combining the two latter bounds lead to

max
a,b,u,v

|P (As|ar, bt)− P (As|ur, vt)|

≤ |P (As|ar, bt)− P (As|ur, bt)|+ |P (As|ur, bt)− P (As|ur, vt)|

≤
s∏

j=r+1

ρj +
t−1∏
j=s

ρj . (4)

Lemma 12. Assume Condition 2. Define ρ = 1−τ2/σ. For the y-process we have mixing
as in Lemma 11 with ρj ≡ ρ.

Proof. For the original Markov chain {Xn} we have the bounds in Lemma 11 with ρj ≡ ρ.
Letting yjr denote yr = yj and similarly with xjr, we find by using Lemma 10 twice

P (ys ∈ A|y1
r , y

1
t ; z)− P (ys ∈ A|y2

r , y
2
t ; z)

=
∫∫

P (ys ∈ A|xs; z)p(xs|xr, xt; z)µ(dxs)

× [p(d(xr, xt)|y1
r , y

1
t ; z)− p(d(xr, xt)|y2

r , y
2
t ; z)]

≤ sup
x1

r,x
1
t ,x

2
r,x

2
t

[∫
P (ys ∈ A|xs; z)p(xs|x1

r , x
1
t ; z)µ(dxs)

−
∫
P (ys ∈ A|xs; z)p(xs|x2

r , x
2
t ; z)µ(dxs)

]
≤ sup

x1
r,x

1
t ,x

2
r,x

2
t ,B

[
p(xs ∈ B|x1

r , x
1
t ; z)− p(xs ∈ B|x2

r , x
2
t ; z)

]
≤ ρs−r + ρt−s.

8



5 Central limit theorem

In this section we prove Theorem 6. First some notation. Mean values and probabilities
are with respect to the true measure corresponding to θ = θ0. We do not show θ0 in
the notation. The conditional mean given (ys, ys+1, . . . , yt) is denoted by E(·|(s, t)). If,
furthermore, we condition on xs and xt we use the notation E(·|[s, t]). The expression∏t
j=s(−u) cj is a short hand notation for the expression

∏u−1
j=s cj +

∏t
j=u+1 cj .

From Götze and Hipp (1983), which deals with Edgeworth expansion, we can extract
a central limit theorem suitable for our purpose. We have already seen in Lemma 12
that the observed process is exponentially fast mixing. If wi is a sequence of random
variables with uniformly bounded third absolute moment a central limit theorem holds for
the normalized sum under two additional assumptions. The first condition is the standard
assumption that the variance of the normalized sum converge. The second condition says
that each wi can for each m be approximated by a function of yi+mi−m introducing an error
that is exponentially small in m. To handle this last requirement we have the following
lemma.

Lemma 13. Assume Condition 2 and 3. Let ai be a function of (x̄i, yi, z). Assume that
the set {ai} belongs to class G1. Then

E
∣∣E (ai∣∣(1, n)

)− E (ai∣∣(i− l, i+ l)
)∣∣ ≤ 4c10(a)(1− τ2β1/σ)l−1,

where i − l is replaced by 1 when i − l < 1 and, similarly, i + l is replaced by n when
i+ l > n.

Proof. For the case i− l ≥ 1 and i+ l ≤ n, one finds using Lemma 10 and Lemma 11 with
ρj = ρ(yj) = 1− τ2/(σξ(yj)) (see Lemma 9) that∣∣E (ai∣∣(1, n)

)− E (ai∣∣(i− l, i+ l)
)∣∣

=
∣∣∣∣∫ E

(
ai
∣∣[i− l, i+ l]

) {
P
(
d(xi−l, xi+l)

∣∣(1, n)
)

− P (d(xi−l, xi+l)
∣∣(i− l, i+ l)

)}∣∣∣∣
≤ 2a0(yi) max

A,a,b,u,v
|P (x̄i ∈ A|ai−l, bi+l, y; z)− P (x̄i ∈ A|ui−l, vi+l, y; z)|

≤ 2a0(yi)
i+l−1∏

j=i−l+1(−i)
ρ(yj). (5)

To bound the mean of this we condition on the x–process and use the conditional inde-
pendence of the y’s given the x’s,

E
∣∣E (ai∣∣(1, n)

)− E (ai∣∣(i− l, i+ l)
)∣∣

≤ 2E
{
E(a0(yi)|xi)

i+l−1∏
j=i−l+1(−i)

E(ρ(yj)|xj)
}

≤ 2c10(a)
i+l−1∏

j=i−l+1(−i)

(
1− τ2

σ
β1

)
= 4c10(a)(1− τ2β1/σ)l−1,

where we have used Assumption 2 and 5. The two cases i − k < 1 and i + k > n are
treated similarly using one-sided mixing.
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Proof of Theorem 6. Since {ψri } are assumed to be of class G3 the third absolute moments
are uniformly bounded. Furthermore, since G3 ⊆ G1 we can use Lemma 13 with ai
replaced by ψri (θ0). The central limit theorem extracted from Götze and Hipp (1983) is
then applicable.

6 Uniform convergence of “observed information”

As a final step we prove here Theorem 7. In particular then we work under Condition 2.
To show uniform convergence of 1

nJn(θ) we need to bound the difference between
conditional mean values evaluated under θ and under θ0.

Lemma 14. Let bu be a funtion of x̄u with |bu| ≤ 1. Let s ≤ u− 2 and let t ≥ u+ 2. For
|θ − θ0| ≤ δ0 we have

|Eθ(bu|[s, t])− Eθ0(bu|[s, t])| ≤ 2d|θ − θ0|
t∑

i=s+1

h0(yi).

Proof. This lemma corresponds to Lemma 5 in Jensen (2005) with sums replaced by
integrals. The representation of the conditional density of x̄u given [s, t] is in our case∫ ∏t

i=s+1 ωi(θ)
∏u−2
i=s+1 µ(dxi)

∏t
i=u+2 µ(dxi)∫ ∏t

i=s+1 ωi(θ)
∏t
i=s+1 µ(dxi)

,

with ωi(θ) = pθ(xi|xi−1; zi)pθ(yi|xi; zi). An interchange of differentiation and integration
is possible since the derivative of the integrand is bounded. The details of the proof can
be seen in Jensen (2005).

Lemma 15. Let bu be a function of x̄u with |bu| ≤ 1. For |θ − θ0| ≤ δ0 and any integer
l ≥ 1 we have

|Eθ(bu|(1, n))− Eθ0(bu|(1, n))| ≤ 2d|θ − θ0|
u+l∑

i=u−l+1

h0(yi) + 4
u+l−1∏

j=u−l+1(−u)
ρ(yj).

Proof. We can replace Eθ(bu|(1, n)) by Eθ(bu|[u− l, u+ l]) with an error less than

sup
xu−l,xu+l

Eθ(bu|(u− l, u+ l), xu−l, xu+l)− inf
xu−l,xu+l

Eθ(bu|(u− l, u+ l), xu−l, xu+l).

Combining Lemma 11 and Lemma 10 this gives the bound 2
∏u+l−1
j=u−l+1(−u) ρ(yj). We use

this for both Eθ and for Eθ0 . Finally we use the bound from Lemma 14 for Eθ(bu|[u−l, u+l])
− Eθ0(bu|[u− l, u+ l]).

Lemma 16. Let the functions ai(θ) belong to class G1,1 and let δn → 0 for n→∞. Then

lim
n→∞Eθ0 sup

|θ−θ0|≤δn

∣∣∣ 1
n

n∑
i=1

{
Eθ(ai(θ)|(1, n))− Eθ0(ai(θ0)|(1, n))

}∣∣∣ = 0

10



Proof. We can replace Eθ(ai(θ)|(1, n)) by Eθ(ai(θ0)|(1, n)) with an error bounded by
δna1(yi). Next, from Lemma 15, we can replace Eθ(ai(θ0)|(1, n)) with Eθ0(ai(θ0)|(1, n)).
Adding together the error terms we need to consider

Eθ0

{
1
n

n∑
u=1

[
δna1(yu) + a0(yu)

(
2dδn

u+l∑
i=u−l+1

h0(yi) + 4
u+l−1∏

j=u−l+1(−u)
ρ(yj)

)]}
.

Conditioning first on the hidden process this gives the bound

δnc1(a) + 2dδn
[
c11(a) + 2lc10(a)c0

]
+ 8c10(a)(1− τ2β1/σ)l−1.

If we take l = δ
−1/2
n the last expression tends to zero for n→∞.

Lemma 17. Let the functions ai(θ) and bj(θ) belong to the class G1,2. Then there exist
constants q1, q2, q3 such that for any integer l ≥ 1

Eθ0 sup
|θ−θ0|≤δ

|Vθ(au(θ), bv(θ)|(1, n))− Vθ0(au(θ0), bv(θ0)|(1, n))|

≤ dδ[q1 + q2(|v − u|+ 6l)
]

+ q3(1− τ2β1/σ)l−1.

Proof. Let u ≤ v. The difference between the covariances can be written as the sum of
the two terms

Eθ(au(θ)bv(θ)|(1, n))− Eθ0(au(θ0)bv(θ0)|(1, n))

and

Eθ(au(θ)|(1, n))Eθ(bv(θ)|(1, n))− Eθ0(au(θ0)|(1, n))Eθ0(bv(θ0)|(1, n))
= Eθ(au(θ)|(1, n)){Eθ(bv(θ)|(1, n))− Eθ0(bv(θ0)|(1, n))}

+ {Eθ(au(θ)|(1, n))− Eθ0(au(θ0)|(1, n))}Eθ0(bv(θ0)|(1, n)).

For each of these terms we apply Lemma 15. For the first term this gives the bound

a0(yu)b0(yv)
{

2dδ
v+l∑

i=u−l+1

h0(yi) + 4
v+l−1∏

j=u−l+1(−(u:v))

ρ(yj)
}

for |θ − θ0| ≤ δ. For the second term the bound becomes

a0(yu)b0(yv)
{

2dδ
v+l∑

i=v−l+1

h0(yi) + 4
v+l−1∏

j=v−l+1(−v)
ρ(yj)

+ 2dδ
u+l∑

i=u−l+1

h0(yi) + 4
u+l−1∏

j=u−l+1(−u)
ρ(yj)

}
.

We next bound the mean of the sum of these two terms by first bounding the conditional
mean given the hidden process {xi}. For the case u 6= v we get the bound in the lemma
with

q1 = 4(c11(a)c10(b) + c11(b)c10(a)), q2 = 2c10(a)c10(b)c0, q3 = 24c10(a)c10(b),

and for the case u = v we get bound in the lemma with

q1 = 6
√
c21(a)c21(b), q2 = 2

√
c20(a)c20(b)c0, q3 = 24

√
c20(a)c20(b).

We use here that
∫
a0(y)b0(y)pθ0(y|x; z)ν(dy) is bounded by

√
c20(a)c20(b) and, similarly,∫

a0(y)b0(y)h0(y)pθ0(y|x; z)ν(dy) is bounded by
√
c21(a)c21(b).

11



Lemma 18. Let the assumptions be as in Lemma 17. Let δn → 0 for n→∞. Then

lim
n→∞Eθ0

{
sup

|θ−θ0|≤δn

∣∣∣ 1
n

n∑
u,v=1

{
Vθ(au(θ), bv(θ)|(1, n))− Vθ0(au(θ0), bv(θ0)|(1, n))

}∣∣∣}

= 0

Proof. The mixing result in Lemma 11 for the hidden process conditioned on the observed
process gives (for the case v > u)

|Vθ(au(θ), bv(θ)|(1, n))| ≤ 4a0(yu)b0(yv)
v−2∏
i=u+2

ρ(yi),

see Ibragimov and Linnik (1971, Theorem 17.2.1). Taking the mean of this, by first
evaluating the conditional mean given the hidden process, gives the bound

4c10(a)c10(b)(1− τ2β1/σ)|v−u|−3. (6)

Consider now a fixed u and the sum over v of the difference between the two covari-
ances. We split this sum into terms with |u − v| > l and terms with |u − v| ≤ l. For the
first set we use the bound in (6) for each covariance, and for the second set we use the
bound from Lemma 17. This gives the bound

16c10(a)c10(b)
τ2β1/σ

(1− τ2β1/σ)l−3 + dδn
[
(2l + 1)q1 + q2(l(l + 1) + 6l(2l + 1))

]
+ q3(2l + 1)(1− τ2β1/σ)l−1.

Taking l = δ
−1/4
n this bound tends to zero as δ1/2n and the lemma has been proved.

Proof of Theorem 7. The theorem follows directly from Lemma 18.

Appendix I: Recursions

Let us write the traditional recursive filter for the hidden Markov process in terms of the
joint density p(xk, yk1 ) of the state xk at time k and the observations yk1 = (y1, y2, . . . , yk).
We skip the covariates {zi} from the notation here. The recursion takes the form

p(xk+1, y
k+1
1 ) = p(yk+1|xk+1)

∫
p(xk, yk1 )p(xk+1|xk)µ(dxk).

We next state a similar recursion for the estimating function on the left hand side of (1).
Define ak(xk) = E

(∑k−1
i=1 ψi|xk, yk1

)
, where ψi is a function of yi and x̄i = (xi−1, xi, xi+1).

12



We then have

ak+1(xk+1) = E
(k−1∑
i=1

ψi + ψk|xk+1, y
k+1
1

)
=
∫ {

E
(k−1∑
i=1

ψi|xk, xk+1, y
k+1
1

)
+ E(ψk|xk, xk+1, y

k+1
1 )

}
× p(xk|xk+1, y

k+1
1 )µ(dxk)

=
∫ {

ak(xk) +
∫
ψkp(xk−1|xk, xk+1, y

k+1
1 )µ(dxk−1)

}
× p(xk, yk1 )p(xk+1|xk)p(yk+1|xk+1)

p(xk+1, y
k+1
1 )

µ(dxk)

=
∫ {

ak(xk) +
∫
ψk
p(xk−1, y

k−1
1 )p(xk|xk−1)p(yk|xk)
p(xk, yk1 )

µ(dxk−1)
}

× p(xk, yk1 )p(xk+1|xk)p(yk+1|xk+1)
p(xk+1, y

k+1
1 )

µ(dxk)

=
∫ {

ak(xk)p(xk, yk1 ) +
∫
ψkp(xk−1, y

k−1
1 )p(xk|xk−1)p(yk|xk)µ(dxk−1)

}
× p(xk+1|xk)p(yk+1|xk+1)

p(xk+1, y
k+1
1 )

µ(dxk).

A similar calculation gives that the estimating function is

E
( n∑
i=1

ψi|yn1
)

=
{∫

p(xn, yn1 )µ(dxn)
}−1

∫ {
an(xn)p(xn, yn1 ) +

∫∫
ψn

× p(xn−1, y
n−1
1 )p(xn|xn−1)p(yn|xn)p(xn+1|xn)µ(dxn−1)µ(dxn+1)

}
µ(dxn).

For the special case where ψi depends on yi and (xi−1, xi) only, we define instead
ãk(xk) = E

(∑k
i=1 ψi|xk, yk1

)
. The recursion becomes

ãk+1(xk+1) =
∫ {

ãk(xk) + ψk
}p(xk, yk1 )p(xk+1|xk)p(yk+1|xk+1)

p(xk+1, y
k+1
1 )

µ(dxk).

13
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