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Lévy driven moving averages and semimartingales

Andreas Basse and Jan Pedersen
www.thiele.au.dk

The T.N. Thiele Centre
Department of Mathematical Sciences
University of Aarhus

Ny Munkegade Building 1530
8000 Aarhus C
Denmark

Phone +45 89 42 35 15
Fax +45 86 13 17 69
Email thiele@imf.au.dk Research Report No. 08 June 2008
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Abstract

The aim of the present paper is to study the semimartingale property
of continuous time moving averages driven by Lévy processes. We provide
necessary and sufficient conditions on the kernel for the moving average to be
a semimartingale in the natural filtration of the Lévy process, and when this
is the case we also provide a useful representation. Assuming that the driving
Lévy process is of unbounded variation, we show that the moving average is a
semimartingale if and only if the kernel is absolutely continuous with a density
satisfying an integrability condition.
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1 Introduction
The present paper is concerned with the semimartingale property of moving averages
which are driven by Lévy processes. More precisely, let (Xt)t≥0 be a moving average
on the form

Xt =

∫ t

0

φ(t− s) dZs, t ≥ 0, (1.1)

where (Zt)t≥0 is a Lévy process and φ : R+ → R is a deterministic function for which
the integral exists. We are interested in when (Xt)t≥0 is an (FZt )t≥0-semimartingale,
where (FZt )t≥0 denotes the natural filtration of (Zt)t≥0.

Moving averages occur naturally in many different contexts e.g. in stochastic
Volterra equations (see e.g. Protter (1985)) and in stochastic delay equations (see
e.g. Reiß et al. (2007)), but also in finance, turbulence and telecommunication.
Moreover, it is often important that the process of interest is a semimartingale, and
in particular the following two properties are crucial: Firstly, if (Xt)t≥0 models an
asset price which is locally bounded and satisfies the No Free Lunch with Vanishing
Risk condition then (Xt)t≥0 has to be an (FZt )t≥0-semimartingale (see Delbaen and
Schachermayer (1994, Theorem 7.2)). Secondly, it possible to define a “reasonable”
∗Department of Mathematical Sciences, University of Aarhus, Ny Munkegade,

DK-8000 Aarhus C, Denmark.
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stochastic integral
∫ t

0
Hs dXs for all locally bounded (FZt )t≥0-predictable processes

(Ht)t≥0 if and only if (Xt)t≥0 is an (FZt )t≥0-semimartingale due to the Bichteler-
Dellacherie Theorem (see Bichteler (1981, Theorem 7.6)).

Let (Zt)t≥0 denote a general semimartingale, φ : R+ → R be absolutely continu-
ous with a bounded density and let (Xt)t≥0 be given by (1.1). Then by a stochastic
Fubini result it follows that (Xt)t≥0 is an (FZt )t≥0-semimartingale, see e.g. Protter
(1985, Theorem 3.3) or Reiß et al. (2007, Theorem 5.2). In the case where (Zt)t∈R
is a two-sided Wiener process, φ ∈ L2(R+, λ) and (Xt)t≥0 is given by

Xt =

∫ t

−∞
φ(t− s) dZs, t ≥ 0,

Knight (1992, Theorem 6.5) shows that (Xt)t≥0 is an (FZ,∞t )t≥0-semimartingale if
and only if φ is absolutely continuous with a square integrable density (FZ,∞t :=
σ(Zs : −∞ < s ≤ t)). Related results can be found in Cherny (2001), Cheri-
dito (2004) and Basse (2008b). Moreover, results characterizing when (Xt)t≥0 is an
(FX,∞t )t≥0-semimartingale are given in Jeulin and Yor (1993) and Basse (2008a).

The above presented results only provide sufficient conditions on φ or are only
concerned with the Brownian case. In the present paper we study the case where
(Zt)t≥0 is a Lévy process and we provide necessary and sufficient conditions on φ for
(Xt)t≥0 to be an (FZt )t≥0-semimartingale. Assume (Zt)t≥0 is of unbounded variation
and has characteristic triplet (γ, σ2, ν). Our main result is the following:

(Xt)t≥0 is an (FZt )t≥0-semimartingale if and only if φ is absolutely continuous on
R+ with a density φ′ satisfying∫ t

0

∫
[−1,1]

(|xφ′(s)|2 ∧ |xφ′(s)|) ν(dx) ds <∞, ∀t > 0, if σ2 = 0, (1.2)∫ t

0

|φ′(s)|2 ds <∞, ∀t > 0, if σ2 > 0. (1.3)

In the case where (Zt)t≥0 is a symmetric α-stable Lévy process, (1.2) corresponds
to φ′ ∈ Lα([0, t], λ) for all t > 0 when α ∈ (1, 2) and to |φ′| log+(|φ′|) ∈ L1([0, t], λ)
for all t > 0 when α = 1. When (Xt)t≥0 is an (FZt )t≥0-semimartingale it can be
decomposed as

Xt = φ(0)Zt +

∫ t

0

(∫ u

0

φ′(u− s) dZs
)
du, t ≥ 0. (1.4)

As a corollary of (1.4) it follows that (Xt)t≥0 is càdlàg and of bounded variation if
and only if it is absolutely continuous, which is also equivalent to φ is absolutely
continuous on R+ with a density satisfying (1.2)-(1.3) and φ(0) = 0.

Finally we study two-sided moving averages, i.e. where (Xt)t≥0 is given by

Xt =

∫ t

−∞
(φ(t− s)− ψ(−s)) dZs, t ≥ 0,

(Zt)t∈R is a two-sided Lévy process and φ, ψ : R → R are deterministic functions
for which the integral exists. The conditions on φ from the one-sided case translate
into necessary conditions in the two-sided case. That is, if (Zt)t∈R is of unbounded
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variation and (Xt)t≥0 is an (FZ,∞t )t≥0-semimartingale then φ is absolutely continuous
on R+ with a density satisfying (1.2)-(1.3). Moreover, Knight (1992, Theorem 6.5)
is extended from the Gaussian case to the α-stable case with α ∈ (1, 2]. Several
examples are considered, including fractional Lévy processes.

The paper is organized as follows. In Section 2 we collect some preliminary
results. The main results are presented in Section 3. All proofs are given in Section 4.
The two-sided case is considered in Section 5.

2 Preliminaries

Throughout the paper (Ω,F , P ) denotes a complete probability space. Let (Zt)t≥0

denote a Lévy process with characteristic triplet (γ, σ2, ν), that is for t ≥ 0, E[eiθZt ] =
etκ(θ) for all θ ∈ R, where

κ(θ) = iγθ − σ2θ2/2 +

∫ (
eiθs − 1− iθs1{|s|≤1}

)
ν(ds), θ ∈ R.

For a general treatment of Lévy processes we refer to Sato (1999), Bertoin (1996) or
Protter (2004). Let f : R→ R denote a measurable function. Following Rajput and
Rosiński (1989, page 460) we say that f is Z-integrable if there exists a sequence
of simple functions (fn)n≥1 such that fn → f λ-a.s. and limn

∫
A
fn(s) dZs exists in

probability for all A ∈ B([0, t]) and all t > 0 (λ denotes the Lebesgue measure
on R). In this case we define

∫ t
0
f(s) dZs as the limit in probability of

∫ t
0
fn(s) dZs.

By Rajput and Rosiński (1989, Theorem 2.7), f is Z-integrable if and only if the
following three conditions are satisfied for all t > 0:∫ t

0

f(s)2σ2 ds <∞, (2.1)∫ t

0

∫ (
|xf(s)|2 ∧ 1

)
ν(dx) ds <∞, (2.2)∫ t

0

∣∣∣f(s)
(
γ +

∫
x(1{|xf(s)|≤1} − 1{|x|≤1}) ν(dx)

)∣∣∣ ds <∞. (2.3)

In this case
∫ t

0
f(s) dZs is infinitely divisible with characteristic triplet (γf , σ

2
f , νf )

given by

γf =

∫ t

0

f(s)
(
γ +

∫
x(1{|xf(s)|≤1} − 1{|x|≤1}) ν(dx)

)
ds,

σ2
f =

∫ t

0

f(s)2σ2 ds,

νf (A) = (ν × λ)((x, s) ∈ R× [0, t] : xf(s) ∈ A \ {0}), A ∈ B(R).

If f is locally square integrable it is easily shown that (2.1)–(2.3) are satisfied and
hence

∫ t
0
f(s) dZs is well-defined for all t ≥ 0. Note also that (2.3) is satisfied if

(Zt)t≥0 is symmetric. Recall that (Zt)t≥0 is a symmetric α-stable Lévy process with
α ∈ (0, 2] if γ = σ2 = 0 and ν has density s 7→ c|s|−1−α for some c > 0 when
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α ∈ (0, 2), and ν = 0 and γ = 0 when α = 2. In this case (2.1)–(2.3) reduce to
f ∈ Lα([0, t], λ) for all t > 0.

Let I ⊆ R denote an interval (not necessarily bounded) and f be a function from
I into R; f is said to be of bounded variation if on each finite interval [a, b] ⊆ I the
total variation of f is finite, that is

Va,b(f) := sup
n∑
i=1

|f(ti)− f(ti−1)| <∞, (2.4)

where the sup is taken over all partitions a = t0 < · · · < tn = b, n ≥ 1 of [a, b]. Note
that a Lévy process (Zt)t≥0 is of bounded variation if and only if

∫
[−1,1]
|s| ν(ds) <∞

and σ2 = 0 (see e.g. Sato (1999, Theorem 21.9)). In addition, f is said to be
absolutely continuous if there exists a locally integrable function h such that

f(t)− f(u) =

∫ t

u

h(s) ds, ∀u, t ∈ I, u ≤ t,

and in this case h is called the density of f . If f is assumed measurable and
g : R+ → R+ is another measurable function, then f is said to have locally g-
moment if ∫ t

u

g(|f(s)|) ds <∞, ∀u, t ∈ I, u ≤ t. (2.5)

If (2.5) is satisfied with g(x) = xα for some α > 0 then f is said to have locally
α-moment.

An increasing family of σ-algebras (Ft)t≥0 is called a filtration if it satisfies the
usual conditions of right-continuity and completeness. For each process (Yt)t≥0 we
let (FYt )t≥0 denote its the natural filtration, i.e. (FYt )t≥0 is the least filtration for
which (Yt)t≥0 is (FYt )t≥0-adapted. Let (Ft)t≥0 denote a filtration. We say that
(Xt)t≥0 is an (Ft)t≥0-semimartingale if it admits the following representation

Xt = X0 +Mt + At, t ≥ 0,

where (Mt)t≥0 is a càdlàg local (Ft)t≥0-martingale starting at 0 and (At)t≥0 is (Ft)t≥0-
adapted, càdlàg, of bounded variation and starting at 0, and X0 is F0-measurable.
(Recall that càdlàg means right-continuous with left-hand limits).

We need the following standard notation: For functions f, g : R → (0,∞) we
write f(x) ≈ g(x) as x → ∞ if f/g is bounded above and below on some inter-
val (K,∞), where K > 0. Furthermore we write f(x) = o(g(x)) as x → ∞ if
f(x)/g(x)→ 0 as x→∞. A similar notation is used as x→ 0.

Assume ν has positive mass on [−1, 1]. Similar to Marcus and Rosiński (2001)
we let ξ : [0,∞)→ [0,∞) be given by

ξ(x) =

∫
[−1,1]

(
|sx|2 ∧ |sx|

)
ν(ds), x ≥ 0. (2.6)

Note that ξ is 0 at 0, continuous and increasing and satisfies:
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(i) ξ(x)/x→ ∫
[−1,1]
|s| ν(ds) ∈ (0,∞] as x→∞,

(ii) If
∫

[−1,1]
|s|α ν(ds) <∞ for α ∈ (1, 2] then ξ(x) = o(xα) as x→∞.

To show (i)–(ii) let

H(x) = x

∫
x−1≤|s|≤1

|s| ν(ds) and K(x) = x2

∫
|s|<x−1

s2 ν(ds),

and note that ξ(x) = H(x) +K(x) for x > 1. We have∫
x−1≤|s|≤1

|s| ν(ds) ≤ ξ(x)x−1 ≤
∫

[−1,1]

|s| ν(ds), x > 1, (2.7)

where the first inequality follows from H ≤ ξ and the second from (2.6) since
|xs|2 ∧ |xs| ≤ |xs|. Hence by (2.7) and monotone convergence (i) follows. To show
(ii) assume

∫
[−1,1]
|s|α ν(ds) <∞ for some α ∈ (1, 2]. For all ε > 0 we have

lim sup
x→∞

H(x)x−α ≤
∫

[−ε,ε]

|s|α ν(ds),

and

K(x)x−α ≤
∫

|s|<x−1

|s|α ν(ds),

which shows ξ(x)x−α → 0 as x→∞ and completes the proof of (ii).
Assume ν is absolutely continuous in a neighborhood of zero with a density f

satisfying f(x) ≈ |x|−α−1 as x → 0 for some α ∈ (0, 2) (this is satisfied in the
α-stable case). An easy calculation shows:

(1) ξ(x) ≈ xα as x→∞ if α ∈ (1, 2),

(2) ξ(x) ≈ x log(x) as x→∞ if α = 1,

(3)
∫

[−1,1]
|s| ν(ds) <∞ if α ∈ (0, 1).

3 Main results
First let (Zt)t≥0 denote a nondeterministic Lévy process with characteristic triplet
(γ, σ2, ν) and φ : R+ → R be a measurable function which is Z-integrable (see
(2.1)–(2.3)). Throughout this section we let (Xt)t≥0 be the moving average

Xt =

∫ t

0

φ(t− s) dZs, t ≥ 0. (3.1)

Theorem 3.1 below is the main result of the paper. It provides a complete char-
acterization of when (Xt)t≥0 is an (FZt )t≥0-semimartingale. Recall the definition of
the function ξ in (2.6).
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Theorem 3.1. Assume (Zt)t≥0 is of unbounded variation. Then (Xt)t≥0 is an
(FZt )t≥0-semimartingale if and only if φ is absolutely continuous on R+ with a den-
sity φ′ which is locally square integrable when σ2 > 0 and has locally ξ-moment when
σ2 = 0 (that is, φ′ satisfies (1.2)–(1.3)).

Assume (Zt)t≥0 is of bounded variation. Then (Xt)t≥0 is an (FZt )t≥0-semimartin-
gale if and only if it is of bounded variation which is also equivalent to φ is of bounded
variation.

In particular, if σ2 = 0,
∫

[−1,1]
|x|α ν(dx) < ∞ for some α ∈ (1, 2] and φ is

absolutely continuous on R+ with a density having locally α-moment then it follows
by (ii) on page 5 and the above theorem that (Xt)t≥0 is an (FZt )t≥0-semimartingale.
In the case where (Xt)t≥0 is a semimartingale the next proposition provides a useful
representation of this process.

Proposition 3.2. Assume (Zt)t≥0 is of unbounded variation and (Xt)t≥0 is an
(FZt )t≥0-semimartingale. Then

Xt = φ(0)Zt +

∫ t

0

(∫ u

0

φ′(u− s) dZs
)
du, t ≥ 0,

where φ′ denotes the density of φ and (
∫ u

0
φ′(u− s) dZs)u≥0 is chosen measurable.

Hence we obtain the following corollary.

Corollary 3.3. Assume (Zt)t≥0 is of unbounded variation. Then the following four
statements are equivalent:

(a) (Xt)t≥0 is càdlàg and of bounded variation,

(b) (Xt)t≥0 is absolutely continuous,

(c) (Xt)t≥0 is an (FZt )t≥0-semimartingale and φ(0) = 0,

(d) φ is absolutely continuous with a density satisfying (1.2)"=(1.3) and φ(0) = 0.

In the symmetric α-stable case with α ∈ (1, 2) the equivalence between (b)
and (d) follows by Rosiński (1986, Theorem 6.1). Braverman and Samorodnitsky
(1998) studies, among other things, processes (Yt)t≥0 on the form Yt =

∫ t
0
f(t, s) dZs,

where (Zt)t≥0 is a symmetric Lévy process and f is a deterministic function. Their
Theorem 5.1 provides necessary and sufficient conditions on f(t, s) for (Xt)t≥0 to be
absolutely continuous. In Marcus and Rosiński (2003) and Kwapień et al. (2006)
necessary and sufficient conditions on φ are obtained for (Xt)t≥0 to have locally
bounded or continuous sample paths.

The next corollary follows by Theorem 3.1 and the estimates on ξ given in (1)–(3)
on page 5.

Corollary 3.4. Assume σ2 = 0 and ν is absolutely continuous in a neighborhood
of zero with a density f satisfying f(x) ≈ |x|−α−1 as x → 0 for some α ∈ (0, 2)
(this is satisfied in the α-stable case with α ∈ (0, 2)). Then (Xt)t≥0 is an (FZt )t≥0-
semimartingale if and only if
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(i) φ is absolutely continuous with a density having locally α-moment when α ∈
(1, 2),

(ii) φ is absolutely continuous with a density having locally x log+(x)-moment when
α = 1,

(iii) φ is of bounded variation when α ∈ (0, 1).

Here log+ denotes the positive part of log, i.e. log+(x) = log(x) for x ≥ 1 and 0
otherwise.

In the following let (Xt)t≥0 be the Riemann-Liouville fractional integral given by

Xt =

∫ t

0

(t− s)γ dZs, t ≥ 0, (3.2)

where γ is such that the integral exists. If (Zt)t≥0 is a Wiener process and γ > −1
2
,

(Xt)t≥0 is called a Lévy fractional Brownian motion (see Mandelbrot and Van Ness
(1968, page 424)). Assume (Zt)t≥0 has no Brownian component (i.e. σ2 = 0). For
(Xt)t≥0 to be well-defined it is necessary that one of the following (a)-(c) are satisfied:

(a) γ > −1
2
,

(b) γ = −1
2
and

∫
[−1,1]

x2|log|x|| ν(dx) <∞,

(c) γ < −1
2
and

∫
[−1,1]
|x|−1/γ ν(dx) <∞.

Condition (a) is also sufficient for (Xt)t≥0 to be well-defined and when (Zt)t≥0 is
symmetric, the conditions (a)-(c) are both necessary and sufficient for (Xt)t≥0 to
be well-defined. When γ = 0, (Xt)t≥0 = (Zt)t≥0; thus let us assume γ 6= 0. As a
consequence of Theorem 3.1 we have the following.

Corollary 3.5. Let (Xt)t≥0 be given by (3.2) and assume (Zt)t≥0 has no Brownian
component. Then (Xt)t≥0 is an (FZt )t≥0-semimartingale if and only if one of the
following (1)-(3) is satisfied:

(1) γ > 1
2
,

(2) γ = 1
2
and

∫
[−1,1]

x2|log|x|| ν(dx) <∞,

(3) γ ∈ (0, 1
2
) and

∫
[−1,1]
|x|1/(1−γ) ν(dx) <∞.

Note that 1/(1− γ) ∈ (1, 2) when γ ∈ (0, 1
2
). Let us in particular consider

Xt =

∫ t

0

(t− s)H−1/α dZs, t ≥ 0,

where (Zt)t≥0 is a symmetric α-stable Lévy process with α ∈ (0, 2] and H > 0
(note that (Xt)t≥0 is well-defined). To avoid trivialities assume H 6= 1/α. As a
consequence of Corollary 3.5 (α ∈ (0, 2)) and Theorem 3.1 (α = 2) it follows that
(Xt)t≥0 is an (FZt )t≥0-semimartingale if and only ifH > 1 when α ∈ [1, 2] orH > 1/α
when α ∈ (0, 1).
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4 Proofs

Throughout this section (Xt)t≥0 is given by (3.1). We extend φ to a function from
R into R by setting φ(s) = 0 for s ∈ (−∞, 0). For any function f : R → R, let
∆nf denote the function s 7→ n(f(1/n + s) − f(s)) for all n ≥ 1. We start by the
following extension of Hardy and Littlewood (1928, Theorem 24).

Lemma 4.1. Let I be either R+ or R, f : I → R be locally integrable and g : R+ →
R+ be an increasing convex function satisfying g(x)/x → ∞ as x → ∞. Then
f is absolutely continuous with a density having locally g-moment if and only if
(g(|∆nf |))n≥1 is bounded in L1([a, b], λ) for all a, b ∈ I with a < b. In this case
(g(f(t+·)−f(·)

t
))t∈(0,b) is bounded in L1([a, b], λ) for all a, b ∈ I with a < b.

If (Zt)t≥0 is of unbounded variation the above lemma can be applied with ξ play-
ing the role of g (ξ is given by (2.6)), since in this case ξ satisfies all the conditions im-
posed on g except ξ is not convex. But h, defined by h(x) = x21{x≤1}+(2x−1)1{x>1})
for all x ≥ 0, is convex and if we let

g(x) =

∫
[−1,1]

h(|xs|) ν(ds), x ≥ 0, (4.1)

then g satisfies all the conditions in the lemma and g/2 ≤ ξ ≤ g. Thus, if f : I → R
is locally integrable then f is absolutely continuous with a density having locally
ξ-moment if and only if (ξ(∆nf))n≥1 is bounded in L1([a, b], λ) for all a, b ∈ I with
a < b.

Proof. Note that g is continuous and x 7→ g(|x|) is a convex function from R into R,
since g is increasing and convex. Let a, b ∈ I satisfying a < b be given and assume
(g(|∆nf |))n≥1 is bounded in L1([a, b], λ). Since g(x)/x→∞ as x→∞, {∆nf : n ≥
1} is uniformly integrable and hence weakly sequentially compact in L1([a, b], λ)
(see e.g. Dunford and Schwartz (1957, Chapter IV.8, Corollary 11)). Choose a
subsequence (nk)k≥1 and an h ∈ L1([a, b], λ) such that ∆nkf → h in the weak
L1([a, b], λ)-topology. For all c, d ∈ [a, b] with c < d we have∫ d

c

∆nkf dλ→
∫ d

c

h dλ, as k →∞.

Moreover,∫ d

c

∆nkf dλ = nk

(∫ d+1/nk

c+1/nk

f dλ−
∫ d

c

f dλ
)

= nk

∫ d+1/nk

d

f dλ− nk
∫ c+1/nk

c

f dλ→ f(d)− f(c), as k →∞,

for λ×λ-a.a. c < d. Thus, we conclude that f is absolutely continuous with density
h. Choose a sequence (κn)n≥1 of convex combinations of (∆nkf)k≥1 such that κn → h

8



in L1([a, b], λ) and a subsequence (bn)n≥1 such that κbn → h λ-a.s. By Fatou’s lemma
and convexity and continuity of g we have∫ b

a

g(|h|) dλ ≤ lim inf
n→∞

∫ b

a

g(|κbn|) dλ ≤ sup
k≥1

∫ b

a

g(|∆nkf |) dλ <∞,

which shows that h has g-moment on [a, b]. This completes the proof of the if -part.
Assume conversely that f is absolutely continuous with a density, h, having

locally g-moment. For all t ∈ (0, b), we have by Jensen’s inequality that∫ b

a

g
(∣∣∣t−1

∫ s+t

s

h(u) du
∣∣∣) ds ≤ ∫ b

a

(
t−1

∫ t

0

g(|h(u+ s)|) du
)
ds

= t−1

∫ t

0

∫ b

a

g(|h(u+ s|) ds du ≤
∫ 2b

a

g(|h(s|) ds <∞,

which shows that (g(f(t+·)−f(·)
t

))t∈(0,b) is bounded in L1([a, b], λ) and completes the
proof.

In following we are going to use two Lévy-Itô decompositions of (Zt)t≥0 (see e.g.
Sato (1999, Theorem 19.2)).

(a) Decompose (Zt)t≥0 as Zt = Z1
t +Z2

t , where (Z1
t )t≥0 and (Z2

t )t≥0 are two indepen-
dent Lévy processes with characteristic triplets (0, σ2, ν1) respectively (γ, 0, ν2),
where ν1 = ν|[−1,1] and ν2 = ν|[−1,1]c . (Z1

t )t≥0 and (Z2
t )t≥0 are (FZt )t≥0-adapted.

Moreover, when φ is locally bounded we let

X1
t =

∫ t

0

φ(t− s) dZ1
s , and X2

t =

∫ t

0

φ(t− s) dZ2
s , t ≥ 0.

(b) Decompose (Zt)t≥0 as Zt = Wt + Yt, where (Wt)t≥0 is a Wiener process with
variance parameter σ2 and (Yt)t≥0 is a Lévy process with characteristic triplet
(γ, 0, ν). (Wt)t≥0 and (Yt)t≥0 are independent and (FZt )t≥0-adapted. Moreover,
let

XW
t =

∫ t

0

φ(t− s) dWs, and XY
t =

∫ t

0

φ(t− s) dYs, t ≥ 0.

If σ2 = 0 and (Xt)t≥0 is càdlàg it follows by Rosiński (1989, Theorem 4) and a
symmetrization argument that by modification on a set of Lebesgue measure 0, we
may and do chose φ càdlàg.

The following lemma is closely related to Knight (1992, Theorem 6.5).

Lemma 4.2. We have the following:

(i) (Xt)t≥0 is an (FZt )t≥0-semimartingale if φ is absolutely continuous on R+ with
a locally square integrable density.

(ii) Assume (Zt)t≥0 is a Wiener process. Then φ is absolutely continuous on R+

with a locally square integrable density if (Xt)t≥0 is an (FZt )t≥0-semimartingale.

9



Proof. (i): Decompose (Zt)t≥0 and (Xt)t≥0 as in (a) above. Since both φ and (Z2
t )t≥0

are càdlàg and of bounded variation, (X2
t )t≥0 is càdlàg and of bounded variation as

well. Hence, it is enough to show (X1
t )t≥0 is an (FZt )t≥0-semimartingale. Since

X1
t =

∫ t

0

(φ(t− s)− φ(0)) dZ1
s + φ(0)Z1

t , t ≥ 0,

we may and do assume φ(0) = 0. Then, φ is absolutely continuous on R with locally
square integrable density and hence for all T > 0, ‖φ(t+·)−φ(·)

t
‖L2([−T,T ],λ) ≤ K for

some constant K > 0 and all t ∈ (0, T ] by Lemma 4.1 with g(x) = x2. By letting
c = E[|Z1

1 |2] we have

E[(X1
t −X1

u)2] = c‖φ(t− ·)− φ(u− ·)‖2
L2([0,t],λ) ≤ cK2(t− u)2, ∀u, t ∈ [0, T ],

which by the Kolmogorov-C̆entsov Theorem (see Karatzas and Shreve (1991, Chap-
ter 2, Theorem 2.8)) shows that (X1

t )t≥0 has a continuous modification (also to be
denoted (X1

t )t≥0). Moreover, for all 0 = t0 < · · · < tn = T we have

E[
n∑
i=1

|X1
ti
−X1

ti−1
|] ≤

n∑
i=1

‖X1
ti
−X1

ti−1
‖L2(P ) ≤ KT,

which shows that (X1
t )t≥0 is of integrable variation and hence an (FZt )t≥0-semi-

martingale.
To show (ii) assume (Zt)t≥0 is a standard Wiener process and (Xt)t≥0 is an

(FZt )t≥0-semimartingale. Since (Xt)t≥0 is a Gaussian process, Stricker (1983, Propo-
sition 4+5) shows that (Xt)t≥0 is an (FZt )t≥0-quasimartingale on each compact in-
terval [0, N ]. Hence for 0 ≤ u ≤ t we have

E[|E[Xt −Xu|FZu ]|] = E[|
∫ u

0

(
φ(t− s)− φ(u− s)) dZs|]

=

√
2

π
‖
∫ u

0

(
φ(t− s)− φ(u− s)) dZs‖L2(P )

=

√
2

π

(∫ u

0

(
φ(t− s)− φ(u− s))2

ds
)1/2

=

√
2

π

(∫ u

0

(
φ(t− u+ s)− φ(s)

)2
ds
)1/2

,

where the second equality follows by Gaussianity. Hence

nN∑
i=1

E[|E[Xi/n−X(i−1)/n|FZ(i−1)/n]|] ≥ Nn√
π2

(∫ N/2

0

(
φ(1/n+s)−φ(s)

)2
ds
)1/2

, (4.2)

and since (Xt)t≥0 is an (FZt )t≥0-quasimartingale on [0, N ] the left-hand side of (4.2)
is bounded in n, which shows that (∆nφ)n≥1 is bounded in L2([0, N/2], λ). By
Lemma 4.1 with g(x) = x2 this shows that φ is absolutely continuous on R+ with a
locally square integrable density.
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Lemma 4.3. If (Xt)t≥0 is an (FZt )t≥0-semimartingale then (X1
t )t≥0 is an (FZ1

t )t≥0-
semimartingale.

Proof. Assume (Xt)t≥0 is an (FZt )t≥0-semimartingale, fix T > 0 and let

A := {∆Z2
t = 0 ∀t ∈ [0, T ]}.

Note that P (A) > 0 and (Z1
t )t≥0 is P -independent of A. Let QA denote the probabil-

ity measure given by QA(B) := P (B ∩A)/P (A). (Xt)t≥0 is an (FZt )t≥0-semimartin-
gale under QA, since QA is absolutely continuous with respect to P . Moreover, since
(Zt)t≥0 and (Z1

t )t≥0 are QA-indistinguishable it follows that (X1
t )t≥0 is an (FZ1

t )t≥0-
semimartingale under QA and since A is independent of (Z1

t )t≥0 this is also true
under P.

In the next lemma we study the jump structure of (Xt)t≥0.

Lemma 4.4. Assume σ2 = 0 and (Xt)t≥0 is càdlàg. Then (∆Xt1{∆Zt 6=0})t≥0 and
(φ(0)∆Zt)t≥0 are indistinguishable.

Before proving the lemma we note the following:

Remark 4.5.

(a) Let (Xt)t≥0 and (Yt)t≥0 denote two independent càdlàg processes such that
P (∆Xt = 0) = P (∆Yt = 0) = 1 for all t ≥ 0. Then as a consequence of
Tonelli’s Theorem we have P (∆Xt∆Yt = 0, ∀t ≥ 0) = 1.

(b) If ν is concentrated on [−1, 1] then the mapping t 7→ ∫ t
0
φ(t−s) dZs is continuous

fromR+ into L1(P ). This follows by approximating φ with continuous functions.

Proof of Lemma 4.4. Since Xt =
∫ t

0
(φ(t − s) − 1) dZs + Zt we may and do assume

φ(0) 6= 0. Recall from page 9 that φ is chosen càdlàg; moreover ∆φ(0) = φ(0).
First we show the lemma in the case where ν is a finite measure. Let τn denote

the time of the nth jump of (Zt)t≥0 ((τn+1 − τn)n≥1 is thus an i.i.d. sequence of
exponential distributions) and let (σn)n≥1 ⊆ [0,∞) denote the jump times of φ.
Note that the event

B := {∃ (j, k) 6= (j′, k′) : τj + σk = τj′ + σk′},

has probability zero. Since (Zt)t≥0 only has finitely many jumps on each compact
interval we may regard (Xt)t≥0 as a pathwise Lebesgue-Stieltjes integral and hence
it follows that

(∆Xt)t≥0 =
(∑
k≥1

∆Zt−σk∆φ(σk)
)
t≥0

.

Let us show that on Bc the series
∑

k≥1 ∆Zt−σk∆φ(σk) has at most one term which
differs from zero for all t ≥ 0. Indeed, to see this assume that ∆Zt−σk∆φ(σk) and
∆Zt−σk′∆φ(σk′) both differ from zero, where k 6= k′. Then there exist n, n′ ≥ 1 such
that τn = t − σk and τn′ = t − σk′ which implies τn + σk = τn′ + σk′ , and hence
we have a contradiction. In particular, if ∆Zt 6= 0 then ∆Zt∆φ(0) 6= 0 and thus
∆Xt = ∆Zt∆φ(0) = φ(0)∆Zt.
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Now let (Zt)t≥0 be a general Lévy process for which σ2 = 0. For each n ≥ 1,
decompose (Zt)t≥0 as Zt = Y n

t + Un
t , where (Y n

t )t≥0 and (Un
t )t≥0 are two inde-

pendent Lévy processes with characteristic triplets (0, 0, ν|[−1/n,1/n]) respectively
(0, 0, ν|[−1/n,1/n]c). Moreover, set

XY n

t =

∫ t

0

φ(t− s) dY n
s and XUn

t =

∫ t

0

φ(t− s) dUn
s .

Since (Un
t )t≥0 has piecewise constant sample paths the second integral is a pathwise

Lebesgue-Stieltjes integral. Hence (XUn

t )t≥0 is càdlàg and it follows that (XY n

t )t≥0

is càdlàg as well. Set

C :=
⋂
n≥1

{∆XY n

t ∆Un
t = 0, ∀t ≥ 0},

D :=
⋂
n≥1

{∆XUn

t 1{∆Unt 6=0} = φ(0)∆Un
t , ∀t ≥ 0}.

From Remark 4.5 (b) it follows that P (∆XY n

t = 0) = 1 for all t ≥ 0 which together
with Remark 4.5 (a) shows that C has probability one. Moreover, from the first part
of the proof it follows that D has probability one. When ∆Zt 6= 0, choose n ≥ 1
such that |∆Zt| > 1/n. Thus, ∆Un

t 6= 0, and hence ∆XY n

t = 0 on C, which shows
∆Xt = ∆XUn

t = φ(0)∆Un
t = φ(0)∆Zt on C ∩D and completes the proof.

Lemma 4.6. Assume σ2 = γ = 0, ν is concentrated on [−1, 1] and (Xt)t≥0 is a
special (FZt )t≥0-semimartingale. Then (φ(0)Zt)t≥0 is the martingale component of
(Xt)t≥0.

Proof. Let Xt = Mt + At denote the canonical decomposition of (Xt)t≥0. Since
(Zt)t≥0 is a Lévy process, it is quasi-left-continuous (see Jacod and Shiryaev (2003,
Chapter II, Corollary 4.18)) and thus there exists a sequence of totally inaccessible
stopping times (τn)n≥1 which exhausts the jumps of (Zt)t≥0. On the other hand,
since (At)t≥0 is predictable there exists a sequence of predictable times (σn)n≥1

which exhausts the jumps of (At)t≥0. From the martingale representation theorem
for Lévy processes (see Jacod and Shiryaev (2003, Chapter III, Theorem 4.34)) it
follows that (Mt)t≥0 is a purely discontinuous martingale which jumps only when
(Zt)t≥0 does. Furthermore, since

P (∃n, k ≥ 1 : τn = σk <∞) = 0,

Lemma 4.4 shows

φ(0)∆Zτn = ∆Xτn = ∆Mτn + ∆Aτn = ∆Mτn , P -a.s. on {τn <∞} ∀n ≥ 1.

Hence (∆Mt)t≥0 and (φ(0)∆Zt)t≥0 are indistinguishable which implies that (Mt)t≥0

and (φ(0)Zt)t≥0 are indistinguishable since they both are purely discontinuous mar-
tingales (see Jacod and Shiryaev (2003, Chapter I, Corollary 4.19)). This completes
the proof.

The following lemma is concerned with the bounded variation case and it relies
on an inequality by Marcus and Rosiński (2001).
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Lemma 4.7. Assume γ = σ2 = 0, ν is concentrated on [−1, 1] and (Zt)t≥0 is of
unbounded variation. Then (Xt)t≥0 is càdlàg and of bounded variation if and only
if φ is absolutely continuous on R+ with a density having locally ξ-moment and
φ(0) = 0.

Recall the definition of ∆nφ on page 8 and of V0,t(f) in (2.4).

Proof. We start by showing the following (i) and (ii) under the assumptions stated
in the lemma:

(i) If (Xt)t≥0 is càdlàg and of bounded variation, then (Xt)t≥0 is of integrable
variation.

(ii) For all N ≥ 1 we have

N

8
sup
n≥1

{(∫ N/2

−N/2
ξ(|∆nφ(s)|) ds

)
∧
(∫ N/2

−N/2
ξ(|∆nφ(s)|) ds

)1/2}
(4.3)

≤ E[V0,N(X)] ≤ 3N sup
n≥1

{∫ N

−N
ξ(|∆nφ(s)|) ds+ 1

}
.

To show (i) assume (Xt)t≥0 is càdlàg and of bounded variation. According to
Rosiński (1989, Theorem 4) we may and do assume that φ is of bounded varia-
tion. Fix t0 > 0 and let T := [0, t0] ∩ Q. Moreover, let X : Ω → RT denote the
canonical random element induced by (Xt)t∈T and let µ be given by

µ(A) = (λ× ν) ((s, x) ∈ [0, t0]×R : xφ(· − s) ∈ A \ {0}) , A ∈ B(RT ). (4.4)

For all t1, . . . , tn ∈ T , (Xt1 , . . . , Xtn) is infinitely divisible with Lévy measure µ ◦
p−1
t1,...,tn , where pt1,...,tn(f) = (f(t1), . . . , f(tn)) for all f ∈ RT . For f ∈ RT let
q(f) denote the total variation of f on T . Then q : RT → [0,∞] is clearly a
lower-semicontinuous pseudonorm on RT . Since ν has compact support and φ is
of bounded variation there exists an r0 > 0 such that µ(f ∈ RT : q(f) > r0) = 0
and hence by Lemma 2.2 in Rosiński and Samorodnitsky (1993), E[eεq(X)] <∞ for
some ε > 0. In particular (Xt)t≥0 is of integrable variation.

(ii): From Marcus and Rosiński (2001, Corollary 1.1) we have

1
4

min(ai,n, a
1/2
i,n ) ≤ E[|n(Xi/n −X(i−1)/n)|] ≤ 3 max(ai,n, a

1/2
i,n ), (4.5)

where

ai,n :=

∫ ∞
0

∫
[−1,1]

(|xfi,n(s)|2 ∧ |xfi,n(s)|) ν(dx) ds =

∫ (i−1)/n

−1/n

ξ(|∆nφ(s)|) ds,

and fi,n(s) = n(φ(i/n− s)− φ((i− 1)/n− s)). Since

E[V0,N(X)] = sup
n≥1

1

n

nN∑
i=1

E[|n(Xi/n −X(i−1)/n)|],
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it follows that
N

2
sup
n≥1

inf
nN/2<i≤Nn

E[|n(Xi/n −X(i−1)/n)|] ≤ E[V0,N(X)]

≤ N sup
n≥1

sup
1≤i≤Nn

E[|n(Xi/n −X(i−1)/n)|],

which by (4.5) shows (4.3).
By combining (i) and (ii) it follows that (Xt)t≥0 is càdlàg and of bounded varia-

tion if and only if (ξ(∆nφ))n≥1 is bounded in L1([−a, a], λ) for all a > 0. Hence the
discussion just below Lemma 4.1 completes the proof, since (Zt)t≥0 is of unbounded
variation.

The following remark is a consequence of the Bichteler-Dellacherie Theorem (see
Dellacherie and Meyer (1982, Theorem 80)).
Remark 4.8. Let (Yt)t≥0, (Ut)t≥0, (Ỹt)t≥0 and (Ũt)t≥0 denote four processes such that
(Ut)t≥0, (Ũt)t≥0 are càdlàg, (Yt)t≥0 is (FUt )t≥0-adapted, (Ỹt)t≥0 is (F Ũt )t≥0-adapted
and (Y·, U·)

D
= (Ỹ·, Ũ·). If (Yt)t≥0 is an (FUt )t≥0-semimartingale then (Ỹt)t≥0 has a

modification which is an (F Ũt )t≥0-semimartingale.
We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We prove the result in the following three steps (1)-(3). Re-
call (a) and (b) on page 9.

(1) Let σ2 > 0.
Assume (Xt)t≥0 is an (FZt )t≥0-semimartingale. Let Z̃t = Yt − Wt and X̃t =∫ t

0
φ(t − s) dZ̃s. We have FZt = FWt ∨ FYt = F−Wt ∨ FYt = F Z̃t and since (X·, Z·)

D
=

(X̃·, Z̃·), Remark 4.8 shows that (X̃t)t≥0 is an (FZt )t≥0-semimartingale. Hence,
(XW

t )t≥0 = ((Xt − X̃t)/2)t≥0 is an (FZt )t≥0-semimartingale and thus an (FWt )t≥0-
semimartingale, and by Lemma 4.2 (ii) we conclude that φ is absolutely continuous
on R+ with a locally square integrable density.

On the other hand, if φ is absolutely continuous with a locally square integrable
density it follows by Lemma 4.2 (i) that (Xt)t≥0 is an (FZt )t≥0-semimartingale.

(2) Let σ2 = 0 and (Zt)t≥0 be of unbounded variation.
Assume (Xt)t≥0 is an (FZt )t≥0-semimartingale. By Lemma 4.3 it follows that

(X1
t )t≥0 is an (FZ1

t )t≥0-semimartingale. Let T = Q ∩ [0, t], q(f) = sups∈T |f(s)| for
all f ∈ RT and µ be given by (4.4) with ν replaced by ν1. Since ν1 has compact
support and φ is locally bounded (recall from page 9 that φ is chosen càdlàg) there
exists an r0 > 0 such that µ(f ∈ RT : q(f) ≥ r0) = 0 and hence, according to
Rosiński and Samorodnitsky (1993, Lemma 2.2), E[sups∈[0,t]|X1

s |] <∞. This shows
that (X1

t )t≥0 is a special (FZ1

t )t≥0-semimartingale. Let X1
t = Mt + At denote the

canonical (FZ1

t )t≥0-decomposition of (X1
t )t≥0. Then Lemma 4.6 yields (Mt)t≥0 =

(φ(0)Z1
t )t≥0 and hence (At)t≥0, given by

At =

∫ t

0

ψ(t− s) dZ1
s , t ≥ 0, (4.6)

where ψ(t) = φ(t)−φ(0) for t ≥ 0, is of bounded variation. Thus, by Lemma 4.7 we
conclude that ψ, and hence also φ, is absolutely continuous on R+ with a density
having locally ξ-moment.
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Assume conversely that φ is absolutely continuous with a density having locally
ξ-moment. Since φ and (Z2

t )t≥0 are càdlàg and of bounded variation it follows
that (X2

t )t≥0 is càdlàg and of bounded variation as well. Let (At)t≥0 is given by
(4.6). By Lemma 4.7 it follows that (At)t≥0 is càdlàg and of bounded and hence
(X1

t )t≥0 = (φ(0)Z1
t + At)t≥0 is an (FZt )t≥0-semimartingale and we have shown that

(Xt)t≥0 is an (FZt )t≥0-semimartingale.
(3) Let (Zt)t≥0 be of bounded variation.
Assume (Xt)t≥0 is an (FZt )t≥0-semimartingale. By arguing as in (2) it follows that

(At)t≥0 given by (4.6) is of bounded variation. Hence Rosiński (1989, Theorem 4)
and a symmetrization argument shows that ψ, and hence also φ, is of bounded
variation.

Assume conversely that φ is of bounded variation. Since (Zt)t≥0 is càdlàg and
of bounded variation it follows that (Xt)t≥0 is càdlàg and of bounded variation and
hence an (FZt )t≥0-semimartingale.

To show Proposition 3.2 we need the following Fubini type result.

Lemma 4.9. Let T > 0, µ denote a finite measure on R+ and let f : R2
+ → R be a

measurable function such that either (i) or (ii) are satisfied, where

(i) σ2 = 0, ξ(|f(t, ·)|) ∈ L1([0, T ], λ) for all t ≥ 0 and ξ(|f |) ∈ L1(R+× [0, T ], µ×
λ).

(ii) σ2 > 0, f(t, ·) ∈ L2([0, T ], λ) for all t ≥ 0, and f ∈ L2(R+ × [0, T ], µ× λ).

Then (
∫ T

0
f(t, s) dZs)t≥0 can be chosen measurable and in this case∫ (∫ T

0

f(t, s) dZs

)
µ(dt) =

∫ T

0

(∫
f(t, s)µ(dt)

)
dZs P -a.s. (4.7)

Proof. Assume (i) is satisfied. To show (4.7) we may and do assume that (Zt)t≥0

has characteristic triplet (0, 0, ν) where ν is concentrated on [−1, 1]. Let g be given
by (4.1). Since g is 0 at 0, symmetric, increasing, convex, limx→∞ g(x) = ∞ and
g(2x) ≤ 4g(x) for all x ≥ 0, g is a Young function satisfying the ∆2-condition
(see Rao and Ren (1991, page 5+22)). Let Lg([0, T ], λ) denote the Orlicz space of
measurable functions with finite g-moment on [0, T ] equipped with the norm

‖h‖g = inf{c > 0 :

∫ T

0

g(c−1h(s)) ds ≤ 1}.

According to Chapter 3.3, Theorem 10, and Chapter 3.5, Theorem 1, in Rao and
Ren (1991), Lg([0, T ], λ) is a separable Banach space. Let ft := f(t, ·) for all t ≥ 0.
Since ξ(|ft|) ∈ L1([0, T ], λ) for all t ≥ 0, it is easy to check that ft satisfies (2.1)–(2.3)
and hence Yt :=

∫ T
0
ft(s) dZs is well-defined for all t ≥ 0. We show that (Yt)t≥0 has

a measurable modification. Since Lg([0, T ], λ) is separable and t 7→ ‖ft − h‖g is
measurable for all h ∈ Lg([0, T ], λ) it follows that t 7→ ft is a measurable mapping
from R+ into Lg([0, T ], λ). Furthermore, since Lg([0, T ], λ) is separable there exists
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(hnk)n,k≥1 ⊆ Lg([0, T ], λ) and disjoint measurable sets (Ank)k≥1 for all n ≥ 1 such that
with

fnt (s) =
∑
k≥1

hnk(s)1Ank (t),

we have ‖ft − fnt ‖g ≤ 2−n for all t ≥ 0. Set Y n
t =

∑
k≥1

∫ T
0
hnk(s) dZs1Ank (t) for all

t ≥ 0 and n ≥ 1. Then (Y n
t )t≥0 is a measurable process and by Marcus and Rosiński

(2001, Theorem 2.1) it follows that

‖Y n
t − Yt‖L1(P ) ≤ 3‖fnt − ft‖g ≤ 3× 2−n, ∀t ≥ 0, ∀n ≥ 1. (4.8)

For all t ≥ 0 and ω ∈ Ω let Ỹt(ω) = limn Y
n
t (ω) when the limit exists in R and zero

otherwise. Then (Ỹt)t≥0 is measurable and for all t ∈ R, Ỹt = Yt P -a.s. by (4.8).
Thus we have constructed a measurable modification of (Yt)t≥0.

Let us show that both sides of (4.7) are well-defined. Since g/2 ≤ ξ ≤ g and
ξ(ax) ≤ (a+ 1)2ξ(x) for all x, a > 0, it follows by Jensen’s inequality that∫ T

0

ξ
(∫
|f(t, s)|µ(dt)

)
ds ≤ 2(µ(R) + 1)2

µ(R)

∫ T

0

∫
ξ(|f(t, s)|)µ(dt) ds <∞.

Thus, the right-hand side of (4.7) is well-defined. The left-hand side is well-defined
as well since

E
[ ∫ ∣∣∣ ∫ T

0

f(t, s) dZs

∣∣∣µ(dt)
]

≤ 3

∫ (∫ T

0

ξ(|ft(s)|) ds
)
∨
(∫ T

0

ξ(|ft(s)|) ds
)1/2

µ(dt) <∞,

where the first inequality follows by Marcus and Rosiński (2001, Corollary 1.1).
Furthermore, (4.7) is obviously true for simple f on the form

f(t, s) =
n∑
i=1

αi1(si−1,si](t)1(ti−1,ti](s).

If f is a given function satisfying (i) we can choose a sequence of simple (fn)n≥1

converging to f and satisfying |fn| ≤ |f |. We have∫ (∫ T

0

fn(u, s) dZu

)
µ(ds) =

∫ T

0

(∫
fn(u, s)µ(ds)

)
dZu, (4.9)

and by estimates as above it follows that we can go to the limit in L1(P ) in (4.9),
which shows (4.7).

The case (ii) follows by a similar argument. In this case we have to work in
L2([0, T ], λ) instead of Lg([0, T ], λ).

Proposition 3.2 is an immediate consequence of Theorem 3.1 and Lemma 4.9,
since

φ(t− s) = φ(0) +

∫ t−s

0

φ′(u) du = φ(0) +

∫ t

0

1{s≤u}φ′(u− s) du, s ∈ [0, t].
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5 The two-sided case
Let (Xt)t≥0 be given by

Xt =

∫ t

−∞
(φ(t− s)− ψ(−s)) dZs, t ≥ 0, (5.1)

where (Zt)t∈R is a (two-sided) nondeterministic Lévy process with characteristic
triplet (γ, σ2, ν) and φ, ψ : R → R are measurable functions for which the integral
exists (still in the sense of Rajput and Rosiński (1989, page 460)). Also assume that
φ and ψ are 0 on (−∞, 0) and let (FZ,∞t )t≥0 denote the least filtration for which
σ(Zs : −∞ < s ≤ t) ⊆ FZ,∞t for all t ≥ 0. Let (X1

t )t≥0 and (X2
t )t≥0 be given by

X1
t =

∫ t

0

φ(t− s) dZs, and X2
t =

∫ 0

−∞
(φ(t− s)− ψ(−s)) dZs, t ≥ 0.

Similar to Remark 4.8 we have the following.

Remark 5.1. Let (Yt)t≥0, (Ut)t∈R, (Ỹt)t≥0 and (Ũt)t∈R denote four processes such
that (Ut)t∈R, (Ũt)t∈R are càdlàg, (Yt)t≥0 is (FU,∞t )t≥0-adapted, (Ỹt)t≥0 is (F Ũ ,∞t )t≥0-
adapted and (Y·, U·)

D
= (Ỹ·, Ũ·). If (Yt)t≥0 is an (FU,∞t )t≥0-semimartingale then (Ỹt)t≥0

has a modification which is an (F Ũ ,∞t )t≥0-semimartingale.

Lemma 5.2. Assume (Zt)t∈R is symmetric. Then (Xt)t≥0 is an (FZ,∞t )t≥0-semi-
martingale if and only if (X1

t )t≥0 is an (FZt )t≥0-semimartingale and (X2
t )t≥0 is càdlàg

and of bounded variation.

Proof. The if -part is trivial. To show the only if -part assume (Xt)t≥0 is an (FZ,∞t )t≥0-
semimartingale. Let X̃t = X1

t −X2
t and let Z̃t = Zt for t ≥ 0 and Z̃t = −Zt when

t < 0. Since (Zt)t∈R is symmetric (X·, Z·)
D
= (X̃·, Z̃·) and from Remark 5.1 it

follows that (X̃t)t≥0 is an (F Z̃,∞t )t≥0-semimartingale and hence an (FZ,∞t )t≥0-semi-
martingale since (F Z̃,∞t )t≥0 = (FZ,∞t )t≥0. Thus, (X1

t )t≥0 = ((Xt + X̃t)/2)t≥0 is an
(FZ,∞t )t≥0-semimartingale and hence an (FZt )t≥0-semimartingale. Moreover, (X2

t )t≥0

is an (FZ,∞t )t≥0-semimartingale and hence càdlàg and of bounded variation since X2
t

is FZ,∞0 -measurable for all t ≥ 0.

We have the following consequence of Lemma 5.2 and Theorem 3.1.

Proposition 5.3. Let (Xt)t≥0 be given by (5.1) and assume it is an (FZ,∞t )t≥0-
semimartingale.

If (Zt)t∈R is of unbounded variation then φ is absolutely continuous on R+ with
a density φ′ satisfying (1.2)-(1.3).

If (Zt)t∈R is of bounded variation then (Xt)t≥0 is of bounded variation and φ is
of bounded variation as well.

Proof. Let Z̃t = Zt − Z ′t where (Z ′t)t∈R is an independent copy of (Zt)t∈R and let
(X ′t)t≥0 be given by

X ′t =

∫ t

−∞
(φ(t− s)− ψ(−s)) dZ ′s, t ≥ 0.
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By Remark 5.1, (X ′t)t≥0 is an (FZ′,∞t )t≥0-semimartingale, which by independence of
filtrations shows that (X̃t)t≥0 := (Xt − X ′t)t≥0 is a semimartingale in the (FZ,∞t ∨
FZ′,∞t )t≥0-filtration and hence in the (F Z̃,∞t )t≥0-filtration. Since (Z̃t)t∈R is symmetric
Lemma 5.2 shows that (X̃1

t )t≥0 is an (F Z̃t )t≥0-semimartingale and since (Z̃t)t≥0 has
characteristic triplet (0, 2σ2, ν̃) where ν̃(A) = ν(A)+ν(−A), the proposition follows
by Theorem 3.1.

Let (Xt)t≥0 denote a fractional Lévy motion, that is

Xt =

∫ t

−∞
((t− s)γ − (−s)γ+) dZs, t ≥ 0, (5.2)

where γ is such that the integral exists and x+ := x ∨ 0 for all x ∈ R. In the
following let us assume (Zt)t∈R has no Brownian component. It is necessary that
γ < 1

2
,
∫

[−1,1]c
|x|1/(1−γ) ν(dx) < ∞ and (a)-(c) on page 7 are satisfied for (Xt)t≥0 to

be well-defined and when (Zt)t∈R is symmetric these conditions are also sufficient.
Marquardt (2006) studies processes on the form (5.2) under the assumptions that
σ2 = 0,

∫
[−1,1]c

|x|2 ν(dx) <∞, γ = − ∫
[−1,1]c

x ν(dx) and 0 < γ < 1
2
.

To avoid trivialities assume γ 6= 0. As an application of Proposition 5.3 and
Corollary 3.5 we have the following.

Corollary 5.4. Assume (Zt)t∈R has no Brownian component and let (Xt)t≥0 be
given by (5.2). If (Xt)t≥0 is an (FZ,∞t )t≥0-semimartingale then γ ∈ (0, 1

2
) and∫

[−1,1]
|x|1/(1−γ) ν(dx) <∞.

In particular let (Xt)t≥0 denote a (linear) fractional stable motion with indexes
α ∈ (0, 2] and H ∈ (0, 1), that is

Xt =

∫ t

−∞

(
(t− s)H−1/α − (−s)H−1/α

+

)
dZs, t ≥ 0,

where (Zt)t∈R is a symmetric α-stable Lévy process (see Samorodnitsky and Taqqu
(1994, Definition 7.4.1)). For α = 2, (Xt)t≥0 is a fractional Brownian motion (fBm)
with Hurst parameter H (up to a scaling constant). From Corollary 5.4 it follows
that (Xt)t≥0 is an (FZ,∞t )t≥0-semimartingale if and only if H = 1/α.

Let (Xt)t≥0 be given by (5.1) and assume (Zt)t∈R is a symmetric α-stable Lévy
process with α ∈ (1, 2]. If (Xt)t≥0 is an (FZ,∞t )t≥0-semimartingale it follows by
Proposition 5.3 and (1) on page 5 that φ is absolutely continuous on R+ with
a density having locally α-moment. The next result shows that this condition is
actually necessary and sufficient for (Xt)t≥0 to be an (FZ,∞t )t≥0-semimartingale if
we delete “locally”. Thus, extending Knight (1992, Theorem 6.5) from α = 2 to
α ∈ (1, 2] we have the following.

Proposition 5.5. Let (Xt)t≥0 be given by (5.1) and assume (Zt)t∈R is a symmetric
α-stable Lévy process with α ∈ (1, 2]. Then (Xt)t≥0 is an (FZ,∞t )t≥0-semimartingale
if and only if φ is absolutely continuous on R+ with a density in Lα(R+, λ).
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Let B denote a Banach space (not necessarily separable) and assume there exists
a countable subset D of the unit ball of B′ (the dual space of B) such that

‖x‖ = sup
F∈D
|F (x)|, ∀x ∈ B. (5.3)

Following Ledoux and Talagrand (1991, page 133), a B-valued random element X
is called α-stable if

∑n
i=1 aiFi(X) is a real-valued α-stable random variable for all

n ≥ 1, F1, . . . , Fn ∈ D and a1, . . . , an ∈ R.
Let T denote an interval in R+ and let B denote the subspace of RT containing

all functions which are càdlàg and of bounded variation. Then B is a Banach space
in the total variation norm (but not separable) and since the unit ball of B′ consists
of F on the form

F (f) =
n∑
i=1

αi(f(ti)− f(ti−1)), f ∈ B,

where (ai)
n
i=1 ⊆ [−1, 1] and (ti)

n
i=0 is an increasing sequence in T , it follows that B

satisfies (5.3).

Proof of Proposition 5.5. For α = 2 the result follows by Cherny (2001, Theo-
rem 3.1); thus let us assume α ∈ (1, 2).

Assume (Xt)t≥0 is an (FZ,∞t )t≥0-semimartingale. According to Proposition 5.2
(X2

t )t≥0 is càdlàg and of bounded variation. Consider (X2
t )t≥0 as an α-stable ran-

dom element with values in the Banach space consisting of functions which are
càdlàg and of bounded variation equipped with the total variation norm. Hence
from Ledoux and Talagrand (1991, Proposition 5.6) it follows that (X2

t )t≥0 is of
integrable variation on each compact interval. Moreover, by Marcus and Rosiński
(2001, Corollary 1.1) we have

E[|n(X2
i/n −X2

(i−1)/n)|] ≥ 1
4

(
ai,n ∧√ai,n

)
, i, n ≥ 1,

where

ai,n :=

∫ ∞
(i−1)/n

ξ̃(|∆nφ(s)|) ds, and ξ̃(x) :=

∫
(|xs|2 ∧ |xs|) ν(ds).

Since i 7→ ai,n is decreasing it follows that

E[V0,1(X2)] = sup
n≥1

n∑
i=1

E[|X2
i/n −X2

(i−1)/n|] ≥ sup
n≥1

1
4

(
an,n ∧√an,n

)
. (5.4)

By (5.4) we conclude that (an,n)n≥1 is bounded and hence (ξ̃(|∆nφ|))n≥1 is bounded
in L1([1,∞), λ). A straightforward calculation shows ξ̃(x) = c1x

α for all x ≥ 0 for
some constant c1 > 0, which implies that (∆nφ)n≥1 is bounded in Lα([1,∞), λ).
Since α > 1, a sequence in Lα([1,∞), λ) is bounded if and only if it is weakly
sequentially compact (see Dunford and Schwartz (1957, Chapter IV.8, Corollary 4)).
Thus, by arguing as in Lemma 4.1 it follows that φ is absolutely continuous with a
density in Lα([1,∞), λ). Furthermore, since (X1

t )t≥0 is an (FZt )t≥0-semimartingale
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it follows by Corollary 3.4 that φ is absolutely continuous on R+ with a density
locally in Lα(R+, λ). This shows the only if -part.

Assume conversely φ is absolutely continuous on R+ with a density in Lα(R+, λ).
By Corollary 3.4 (X1

t )t≥0 is an (FZt )t≥0-semimartingale. Thus it is enough to show
that (X2

t )t≥0 is càdlàg and of bounded variation. Since φ is absolutely continuous
on R+ with a density in Lα(R+, λ) it follows by arguing as in Lemma 4.1 that
‖φ(t− ·)− φ(u− ·)‖Lα((−∞,0),λ) ≤ c(t− u) for some c > 0 and all 0 ≤ u ≤ t. For all
p ∈ [1, α) and all u, t ≥ 0 we have

‖X2
t −X2

u‖Lp(P ) = Kp,α‖φ(t− ·)− φ(u− ·)‖Lα((−∞,0),λ) ≤ Kp,αc|t− u|, (5.5)

for some constant Kp,α > 0 only depending on p and α. By letting p ∈ (1, α),
(5.5) and the Kolmogorov-C̆entsov Theorem show that (X2

t )t≥0 has a continuous
modification. Moreover, by letting p = 1 (5.5) shows that this modification is of
integrable variation on each compact interval. This completes the proof.

Motivated by Lemma 5.2 we study in the following proposition infinitely divis-
ible processes (Xt)t≥0 of bounded variation, where (Xt)t≥0 is on the form Xt =∫
R
f(t, s) dZs. Assume (Xt)t≥0 is càdlàg and of bounded variation. Rosiński (1989,

Theorem 4) shows that t 7→ f(t, s) is of bounded variation for λ-a.a. s ∈ R. Ex-
tending this we show that the total variation of f(·, s) must satisfy an integrability
condition which is equivalent to the existence of

∫
R

V0,t(f(·, s)) dZs for all t > 0
when (Zt)t∈R is symmetric and has no Brownian component.

Proposition 5.6. Let f : R+ × R → R denote a measurable function such that
Xt =

∫
R
f(t, s) dZs is well-defined for all t ≥ 0. If (Xt)t≥0 is càdlàg and of bounded

variation then ∫∫ (
1 ∧ |xV0,t(f(·, s))|2) ν(dx) ds <∞, ∀t > 0. (5.6)

Let (εi)i≥1 denote a Rademacher sequence, i.e. (εi)i≥1 is an i.i.d. sequence such
that P (ε1 = −1) = P (ε1 = 1) = 1

2
. It is well-known that if (αi)i≥1 ⊆ R then∑∞

i=1 εiαi converges P -a.s. if and only if
∑∞

i=1 α
2
i < ∞. Let B denote a Ba-

nach space satisfying (5.3). Following Ledoux and Talagrand (1991, page 99), a
B-valued random element X is called a vector-valued Rademacher series if there
exists a sequence (xi)i≥1 in B such that

∑∞
i=1 F

2(xi) < ∞ for all F ∈ D and
(F1(X), . . . , Fn(X)) equals (

∑∞
i=1 εiF1(xi), . . . ,

∑∞
i=1 εiFn(xi)) in distribution for all

n ≥ 1 and all F1, . . . , Fn ∈ D.

Proof of Proposition 5.6. By a symmetrization argument we may and do assume
that σ2 = 0 and (Zt)t∈R is symmetric. Define

Yt =
∞∑
j=1

εjCjf(t, Uj), t ≥ 0, (5.7)

where (εj)j≥1 is a Rademacher sequence, (τj)j≥1 are the partial sums of i.i.d. stan-
dard exponential random variables and (Uj)j≥1 are i.i.d. standard normal random
variables with density ρ, and (εj)j≥1, (τj)j≥1 and (Uj)j≥1 are independent. Let
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ν← : R+ → R+ denote the right-continuous inverse of the mapping x 7→ ν((x,∞)),
that is, ν←(s) = inf{x > 0 : ν((x,∞)) ≤ s}, and let Cj := ν←(τjρ(Uj)) for all j ≥ 1.
By Rosiński (1989, Proposition 2), the series (5.7) converges P -a.s. and (Yt)t≥0 has
the same finite dimensional distributions as (Xt)t≥0. Thus, (Yt)t≥0 has a càdlàg
modification of locally bounded variation. Hence we may and do assume (Xt)t≥0 is
given by (5.7). Moreover we may define (εj)j≥1 on a probability space (Ω′,F ′, P ′),
(τj)j≥1 and (Uj)j≥1 on a probability space (Ω′′,F ′′, P ′′) and (Xt)t≥0 on the product
space. Let T = [0, t] denote a compact interval in R+ and let B denote the subspace
of RT consisting of functions which are càdlàg and of bounded variation. Inspired
by Marcus and Rosiński (2003) let us fix ω′′ ∈ Ω′′ and consider X = (Xt)t∈T as a
B-valued Rademacher series under P ′. From Ledoux and Talagrand (1991, Theo-
rem 4.8) it follows that E ′[eα‖X‖2 ] < ∞ for all α > 0, which in particular shows
that (Xt)t∈T is of P ′-integrable variation. By Khinchine’s inequality there exists a
constant c > 0 such that E[|Xt −Xu|] ≥ c‖Xt −Xu‖L2(P ) for all u, t ≥ 0. Together
with the triangle inequality in l2 this shows that

E ′[
n∑
i=1

|Xti −Xti−1
|] ≥ c

n∑
i=1

( ∞∑
j=1

C2
j (f(ti, Uj)− f(ti−1, Uj))

2
)1/2

≥ c
( ∞∑
j=1

( n∑
i=1

|Cj(f(ti, Uj)− f(ti−1, Uj))|
)2)1/2

= c
( ∞∑
j=1

(
|Cj|

n∑
i=1

|f(ti, Uj)− f(ti−1, Uj)|
)2)1/2

.

Thus, by monotone convergence we conclude

E ′[V0,t(X)] ≥ c
( ∞∑
j=1

(
Cj V0,t(f(·, Uj))

)2
)1/2

,

and in particular (Cj V0,t(f(·, Uj))j≥1 ∈ l2. Thus, we have shown that the series∑∞
j=1 εjCj V0,t(f(·, Uj)) converges P -a.s. and from Theorem 2.4 and Proposition 2.7

in Rosiński (1990) it follows that∫ ∞
0

∫ (
1 ∧H(u, v)2

)
ρ(v) dv du <∞, (5.8)

where H(u, v) = ν←(uρ(v)) V0,t(f(·, v)). Furthermore, (5.8) equals∫∫ (
1 ∧ (ν←(u) V0,t(f(·, v)))2

) 1

ρ(v)
du ρ(v) dv

=

∫∫ (
1 ∧ (uV0,t(f(·, v))2

)
ν(du) dv,

which shows (5.6).
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