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Abstract

Completely random signed measures are defined, characterized and related
to Lévy random measures and Lévy bases.

1 Introduction
Completely random measures were defined in Kingman (1993). As described in
Kingman (1993); Karr (1991) and more recently in Daley and Vere-Jones (2003,
2008) completely random measures are related to point process models, in particular
Poisson cluster point processes. We make a natural extension of completely random
measures to completely random signed measures and give a characterization of this
class of signed random measures. It is shown that the class of Lévy random measures,
introduced and used in Lévy adaptive regression kernel models Tu et al. (2006), and
the class of Lévy bases, defined in Barndorff-Nielsen and Schmiegel (2004) and used
in spatio-temporal modeling in Barndorff-Nielsen and Schmiegel (2004); Hellmund
et al. (2008); Jónsdóttir et al. (2008), are natural extensions of completely random
signed measures. Furthermore we show the assumption of infinitely divisibility in
the definition of Lévy random measures and Lévy bases can be replaced by other
very mild assumptions. The most basic concept involved in the definition of Lévy
random measures and Lévy bases is thus independence.

2 Signed random measures
We let X denote a Borel subset of Rd for some d ≥ 1 and B = B (X ) denote the
trace of the Borel sigma algebra on X . By Bb we denote the set of bounded Borel
subsets of X . A subset of X is bounded, if the closure of the set is compact.

LetM denote the set of signed Radon measures on B, i.e. an element inM is
a σ-additive set function, which takes finite values on compact sets, in particular
on all bounded Borel subsets of X . We letM+ denote the subset ofM consisting

∗The author wish to thank Ole Barndorfff-Nielsen and especially Svend-Erik Graversen both at
The Department of Mathematical Sciences, University of Aarhus for many fruitful comments.
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of positive Radon measures. There are several different definitions of signed Radon
measures in the literature, we use, what we believe is the most general, see Ash
(1972).

We define a random signed measure M as a measurable mapping from a proba-
bility space (Ω, E , P ) into (M,F) where

F = σ {πf |f ∈ Cc (X )} , πf :M→ R : µ→
∫
X
f (x)µ (dx) ,

and Cc (X ) is the set of continuous functions on X with compact support.
Let F+ denote the trace of F onM+, then F+ = B (M+). A random measure

is defined as a measurable mapping from a probability space into (M+,F+).
The lemma below, used in the sequel, concerns the fixed atoms of a signed

random measure. We say x ∈ X is a fixed atom of M if and only if

P (|M ({x})| > 0) > 0.

Lemma 2.1. A signed random measure has at most countable many fixed atoms.

Proof. Assume there are more than countable many fixed atoms, then there exist
{xn|n ≥ 1} contained in a bounded set, such that

∃b > 0, a > 0∀n ≥ 1 : P (|M (xn)| > b) > a.

Thus P (lim supn {|M (xn)| > b}) ≥ a and
∑

nM ({xn}) cannot be convergent,
which is a contradiction.

3 A result on infinitely divisibility
Lemma 3.1. Let M denote a stochastic process with index set Bb such that
(M (Bn))n≥1 are independent and

M (∪Bn) =
∑

M (Bn)

P-a.s. for disjoint sets (Bn)n≥1 ⊂ Bb and ∪Bn ∈ Bb.
Then M (B) is infinitely divisible for any B ∈ Bb, if the cumulant function of

M (A) , A ∈ BB is of the form

C {M (A) ‡ t} = logE
[
eitM(A)

]
=

∫
A

ft,B (x)λB (dx) (1)

for some measurable function ft,B : X → C for all t ∈ R\ {0} and an atom-less
finite measure λB on (B,BB), where BB = B (B).

Remark 3.2. For a given t ∈ R and B ∈ Bb, because of independence, the cumulant
transform defines a complex measure on (B,BB). If M (A) is zero with probability
one on all sets in BB with Lebesgue measure zero, then Lebesgue measure dominates
the complex measure generated by the cumulant transform for all t ∈ R and thus,
by Radon-Nikodym, condition (3.1) in the above lemma is fulfilled.
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Proof. Let B ∈ Bb be given. Since λB (B) is finite using Lemma 12.2, p.268 in
Karlin and Studdun (1966) we can choose (Bs)0≤s≤1 such that B0 = ∅, Bs′ ⊆
Bs, s

′ ≤ s, B1 = B and λB (Bs) = s · λB (B) for s ∈ [0, 1]. It is clear the stochastic
process (Ms) = M (Bs∧1)s≥0 has independent increments and P-a.s. M (B0) = 0.
Furthermore (Ms) is stochastic continuous: Let 0 ≤ s < 1 be given, then for any
s′ ∈ (s, 1):

Ms′ −Ms = M (Bs′\Bs)

Since
λB (Bs′\Bs) = (s′ − s)λB (B)→ 0, s′ ↓ s,

we see
M (Bs′\Bs) →̃0.

Thus in probability M (Bs′\Bs) → 0 as s′ goes to s. Left continuity for 0 < s ≤ 1
is proved similar.

By definition 1.6 in Sato (2005) (Ms) is an additive process in law. Therefore
M1 = M (B) is infinitely divisible, see Theorem 9.1 Sato (2005).

4 Completely random signed measures
Definition 4.1. A completely random (signed) measure is a random (signed) mea-
sure M with independent values on disjoint sets, i.e. {M (An)} are independent, if
{An} is a family of disjoint sets.

Corollary 4.2. A completely random signed measure with cumulant transform sat-
isfying condition (1) in Lemma 3.1 has infinitely divisible values.

In the sequel we use the definition of a Poisson point process found in Kingman
(1993).

Definition 4.3. A Poisson point process Φ on Y , a Borel subset of Rl for some
l ≥ 1, is a random countable subset of Y , such that

• The number of points N (A) in a Borel subset A of Y is Poisson distributed
with mean value µ (A), where µ is a measure on B (Y) (µ may be infinite on
bounded sets!).

• Given disjoint sets A1, . . . , An the random variables N (A1) , . . . , N (An) are
independent.

The theorem below is stated in Kingman (1993), which also provides a sketch of
a proof. We give a detailed proof, since we use important elements of the proof in
the sequel.

Theorem 4.4. Given a completely random measure M fulfilling condition (1) in
Lemma 4.2 there exists a Radon measure m, an at most countable set of fixed atoms
{xi}i∈I ⊂ X , independent positive random variables {Wi} and a Poisson point pro-
cess Φ on X × R+ , such for any B ∈ Bb

M (B) ∼ m (B) +
∑

i

Wi · 1B (xi) +
∑

(Xj ,Uj)∈Φ

Uj · 1B (Xj) . (2)

3



Proof. Using Lemma 2.1 we note the set of fixed atoms is at most countable. In the
remaining part of the proof we assume M has no fixed atoms.

By Lemma 3.1 M (B) is infinitely divisible for any B ∈ Bb.
For any B in Bb there exists a constant m (B) ∈ R+ and a measure νB on R+,

such that
∫

(|x| ∧ 1) νB (dx) is finite and for any t ∈ R+:

λt (B) = logE
[
eitM(B)

]
= m (B) · it+

∫
(0,∞]

(eitz − 1)νB (dt) ,

see Exc. 11, Chap. 15 in Kallenberg (2002).
By the properties of λt, (A,B)→ νB (A) is a bi-measure. There exists a unique

σ-finite measure ν on (X × R+,B ⊗B ([0,∞))) satisfying

ν (B × C) = νB (C)

for all B ∈ Bb and C ∈ B ((0,∞]), see (9.17) in Sato (2005). We see m defines a
Radon measure on B. Assume without loss of generality, that m ≡ 0.

Let Φ denote a Poisson point process on X × R+ with mean measure ν. Notice
the number of points from Φ in a bounded set need not be finite. Define

M ′ (B) =
∑

(Xj ,Uj)∈Φ

Uj · 1B (Xj)

for any B ∈ Bb. Then for any B ∈ Bb, using ν is σ-finite and applying Campbell’s
Theorem Kingman (1993) we get

E [exp (itM ′ (B))] = exp

(∫
B×(0,∞]

(
eitz − 1

)
ν (dx× dz)

)
= exp

(∫
(0,∞]

(
eitz − 1

)
νB (dz)

)
Assuming without loss of generality, that M ′ is a random measure, M and M ′ are
equal in distribution.

We were not able to find a reference to the lemma below, concerning additive
processes, thus a short proof is provided.

Lemma 4.5. Given a continuous additive process (Xs), s ≥ 0 with paths of bounded
variation, X0 = 0 and with characteristic triplet on the form (As, 0, γ (s)) we have
As ≡ 0. i.e. the process has no Gaussian part and is deterministic, see Sato (2005)
for notation.

Proof. The total variation process
(
V X

s

)
of (Xs) is an increasing, continuous additive

process. Set

Ys =
e−V X

s

E
[
e−V X

s

] , s ≥ 0

Then Ys is a continuous martingale of bounded variation and thus constant, therefore
V X

s is deterministic, implying (Xs) is integrable and γ (s) is of bounded variation.
Xs − γ (s) therefore defines a continuous martingale of bounded variation, thus

Xs = γ (s)
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Lemma 4.6. Let M denote a completely random signed measure and suppose the
condition on the cumulant transform in Lemma 3.1 is fulfilled, then M has no Gaus-
sian part.

Proof. Let B ∈ Bb be given and let (Ms) denote the additive process in law con-
structed in the proof of Lemma 3.1 In the proof below, all references are to Sato
(2005).

By Theorem 11.5 we can choose a cadlag modification of (Ms). Given a cadlag
modification M̃ of M , n ≥ 1 and the partition 0 = s0 < s1 = 1/n < · · · < sn−1 =
(n− 1) /n < sn = 1 of the interval [0, 1] we have P-a.s.∑

i

∣∣∣M̃si
− M̃si−1

∣∣∣ =
∑

i

∣∣Msi
−Msi−1

∣∣ ≤ |M | (B) <∞,

since M is a random signed measure. Without loss of generality we assume M is an
additive process of bounded variation (see Lemma 21.8 (i)).

Using Theorem 9.8 the law ofM is uniquely determined by a characteristic triplet
(As, νs, γ (s)) each component satisfying some conditions given in the theorem. For
every s ≥ 0, νs is a Lévy measure on R. Define H = (0,∞)× R\ {0} and let B (H)
denote the Borel subsets of H.

By (19.1) we define

J (D,ω) = # {s > 0| (s,Ms −Ms−) ∈ D ∈ B (H)}
Because of bounded variation we have (Lemma 21.8) for any s > 0∫

(0,s]×R\{0}
|x| J (d (t, x) , ω) <∞

as shown page 1413-1425
∫
{|x|≤1} |x| νs (dx) <∞ for all s > 0.

Using Theorem 19.3 and Lemma 21.8 there exist processes MJ and MG, such
that M = MJ + MG and MG is P-a.s. an additive process, continuous in s with
characteristic triplet

(
As, 0, γ (s)− ∫{|x|≤1} xνs (dx)

)
and of bounded variation, thus

As ≡ 0 (see 4.5).

Theorem 4.7. Given a completely random signed measure M fulfilling condition
(1) in Lemma 3.1. Then for all B ∈ Bb:

M (B) ∼ µ+ (B)− µ− (B) +
k∑

i=1

Wi · 1B (xi) +
∑

(Xj ,Uj)∈Φ

Uj · 1B (Xj)

where Φ is a Poisson point process on X ×R, Wi are independent random variables,
the xi, i ∈ I is an at most countable set of points in X and µ+, µ− are Radon
measures.

Proof. Assume without loss of generality M has no fixed atoms. Applying Rajput
and Rosinski (1989) Proposition 2.1 (see this reference for notation) for everyB ∈ Bb:

C {M (B) ‡ t} = it ·
(
a (B)−

∫
{|z|≤1}

zUB (dz)

)
+

∫
R

(
eitz − 1

)
UB (dz)
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From the proof of the previous lemma, we have that∫
{|z|≤1}

(|z|)UB (dz) <∞. (3)

Thus we can apply Campbell’s Theorem Kingman (1993). In an argument, similar
to the one found in the proof of Theorem 4.4, we can construct a Poisson point
process Φ on X × R, such that

C
{ ∑

(Xj ,Uj)∈Φ

Uj · 1B (Xj) ‡ t
}

=

∫
R

(
eitz − 1

)
UB (dz)

(see Lemma 2.3 in Rajput and Rosinski (1989) for existence of a (mean) measure
on X × R with the acquired properties)

It remains to note that a (B)−∫{|z|≤1} zUB (dz) is finite for all bounded setsB.

5 Lévy bases
Definition 5.1. A stochastic process L indexed by Bb is called a Lévy basis, if L (B)
is infinitely divisible for all B in Bb and L (Bn),n ≥ 1 are independent and

L (∪nBn) =
∑

n

L (Bn)

P-a.s. for any sequence of disjoint sets (Bn)n≥1 ⊆ Bb, ∪Bn ∈ Bb .

Remark 5.2. The condition of infinite divisibility can be left out, if condition (1) in
Lemma 3.1 is fulfilled. As previously remarked the condition is fulfilled if L (B) ∈
L1 (P ) for all B ∈ Bb and E [L ({x})] = 0 for all x ∈ X .

It is proved in Rajput and Rosinski (1989) Lemma 2.3 that the cumulant trans-
form of a Lévy basis L can be written as

C{L (dx) ‡ t} =
{
ita (x)− 1

2
t2b (x)

+

∫
R

(
eitz − 1− itz · 1[−1,1] (z)

)
ρ (x, dz)

}
λ (dx) (4)

λ is called the control measure and is σ-finite, a is a Borel measurable mapping into
the real numbers and b is a density wrt. λ of a measure, ρ (x, ·) is a Lévy measure
for given x.

A Lévy basis such that a ≡ 0 and ρ ≡ 0 is called a purely Gaussian Lévy basis.

Theorem 5.3. Let L denote a Lévy basis. L has the same distribution as the sum
of a purely Gaussian Lévy basis and a completely random signed measure restricted
to Bb (all terms being independent) if and only if for any B ∈ Bb:∫

B

∫
{|z|≤1}

|z| ρ (x, dz)λ (dx) <∞
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Proof. From the proof of Lemma 4.6 we see the condition is necessary.
Assume the condition is fulfilled. Using the representation of the cumulant trans-

form of the Lévy we can make the following rearrangements:

C{dx ‡ t} =
{
it
(
a (x)−

∫
R

(
z · 1[−1,1] (z)

)
ρ (x, dz)

)
− 1

2
t2b (x) +

∫
R

(
eitz − 1

)
ρ (x, dz)

}
λ (dx) (5)

The non-Gaussian part of L has cumulant transform

{it
(
a (x)−

∫
R

(
z · 1[−1,1] (z)

)
ρ (x, dz)

)
+

∫
R

(
eitz − 1

)
ρ (x, dz)}λ (dx) (6)

Following the proof of Theorem 4.7 there is a completely random signed measure
with cumulant transform (6).

Definition 5.4. Lévy random measures are Lévy bases with no Gaussian part.

Corollary 5.5. A Lévy random measure is a completely random signed measure if
and only if for any B ∈ Bb:∫

B

∫
{|z|≤1}

|z| ρ (x, dz)λ (dx) <∞.

References
Ash, R. B., 1972. Real Analysis and Probability. Probability and Mathematical

Statistics. New York: Academic Press.

Barndorff-Nielsen, O., Schmiegel, J., 2004. Levy-based spatial-temporal modelling,
with applications to turbulence. Uspekhi Matematicheskikh Nauk 59 (1), 63–90.

Daley, D., Vere-Jones, D., 2003. An Introduction to the Theory of Point Processes,
Vol. I. New York: Springer-Verlag.

Daley, D. J., Vere-Jones, D., 2008. An Introduction to the Theory of Point Processes,
Vol. II. New York: Springer-Verlag.

Hellmund, G., Prokesova, M., Vedel, E., September 2008. Lévy based cox point
processes. Advances in Applied Probability 40 (3), to appear.

Jónsdóttir, K., Schmiegel, J., Jensen, E., 2008. Lévy-based growth models. Bernoulli
14 (1), 62–90.

Kallenberg, O., 2002. Foundations of Modern Probability, second edition Edition.
Probability and Its Applications. New York: Springer-Verlag.

Karlin, S. J., Studdun, W. J., 1966. Tchebycheff systems: With Applications in
Analysis and Statistics. Pure and applied mathematics. New York: Wiley.

7



Karr, A. F., 1991. Point Processes and Their Statistical Inference. Bora Raton: CRC
Press.

Kingman, J. F. C., 1993. Poisson Processes. Oxford Studies in Probability. Oxford:
Oxford University Press.

Rajput, B., Rosinski, J., 1989. Spectral representations of infinitely divisible pro-
cesses. Probability Theory and Related Fields 82, 451–487.

Sato, K., 2005. Lévy Processes and Infinitely Divisible Distributions. Cambridge
studies in advanced mathematics. Cambridge: Cambridge University Press.

Tu, C., Clyde, M., Wolpert, R., 2006. Lévy adaptive regression kernels. Discussion
Paper 2006-08, Duke University Department of Statistical Science.
URL ftp://ftp.stat.duke.edu/pub/WorkingPapers/06-08.html

8


