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Abstract

Systematic sampling of points in continuous space is widely used in mi-
croscopy and spatial surveys. Classical theory provides asymptotic expres-
sions for the variance of estimators based on systematic sampling as the grid
spacing decreases. However, the classical theory assumes the sample grid is
exactly periodic; real physical sampling procedures may introduce errors in
the placement of the sample points. This paper studies the effect of errors in
sample positioning on the variance of estimators. First we sketch a general
approach to variance analysis using point process methods. We then analyse
three different models for the error process, calculate exact small-sample vari-
ances, and derive asymptotic variances. Errors in the placement of sample
points can lead to substantial inflation of the variance, dampening of ‘Zit-
terbewegung’ effects, and a slower order of convergence. This suggests that
current practice in some areas of microscopy may be based on over-optimistic
predictions of estimator accuracy.

1 Introduction
Systematic sampling in continuous space is a useful technique in stereology, in eco-
logical survey, and in other spatial sciences, see Baddeley & Jensen (2005) and
references therein. In one dimension, a systematic sample is a grid of equally-spaced
sample points, with fixed spacing t, randomly shifted with respect to the origin. It
may be constructed by setting xk = U + kt for all integers k, where U is uniformly
distributed on [0, t). Systematic sampling can be used to estimate the integral

Θ =

∫
R

f(x) dx
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of any integrable function f , using the unbiased estimator

Θ̂ = t
∑

k

f(xk).

Similarly in two or three dimensions, a systematic sample is a randomly shifted reg-
ular grid of points with fixed geometry; the integral of any integrable function f can
be estimated by summing the function values at the sample points and multiplying
by the area or volume of one tile in the grid. Such estimators were already known
in the nineteenth and the early twentieth century (Delesse (1847, 1848); Crofton
(1885); Rosiwal (1898); Steinhaus (1929, 1954); Thomson (1930); Glagolev (1933)).
Important early theoretical work on the performance of random grids and their re-
lation to systematic sampling can be found in Moran (1966, 1968), see also Jones
(1948).

A simple geometric example of systematic sampling in one dimension concerns
the estimation of the volume of a bounded object in R3. Here, we may let f(x)
be the area of the intersection of the object with a horizontal plane at height x ∈
R. The resulting sampling design is the ’egg-slicer design’. The corresponding
estimator is sometimes called ’the Cavalieri estimator’, see (Baddeley & Jensen,
2005, p. 155), due to Cavalieri’s principle, stating that two solid objects which have
equal cross-sectional areas on all horizontal planes must have equal volumes. There
are important applications of the Cavalieri estimator throughout biological science.

Systematic sampling, as formulated above, has since the mid-1980’s experienced
a renaissance in stereology. The main practical purpose of stereology is to esti-
mate quantitative parameters of a spatial object from microscopical images of sec-
tions through the object. The aim of stereology is not to reconstruct the three-
dimensional geometry of the object. Modern stereology is, however, not confined to
two-dimensional sections. The same principles apply to a two-dimensional projec-
tion, a three-dimensional volume image, a cylindrical core sample, etc. Stereological
methods are nowadays powerful tools in many fields of science. A very recent ac-
count of the mathematical and statistical foundations of stereology and the closely
related field of stochastic geometry can be found in Weil & Schneider (2008).

Estimation of the precision of Θ̂ based on systematic sampling is a question
of great current interest, see the recent volume of Journal of Microscopy, Mattfeldt
(ed.) (2006), devoted to this topic. There is extensive literature on the representation
and approximation of the variance of Θ̂, see (Baddeley & Jensen, 2005, Chapter 13)
and references therein. Matheron (1965, 1970) proposed to study this variance by
means of the transitive theory, which provides a variance representation based on
the Euler-MacLaurin formula; see also Cruz-Orive (1989). The variance can be
expressed as the sum of the extension term, which gives the overall trend of the
variance, the ‘Zitterbewegung’, which oscillates around zero, and higher order terms.
The extension term is used to estimate the variance of Θ̂. Matheron worked with the
fundamental fact that the extension term depends on the behaviour of the geometric
covariogram

g(z) :=

∫
f(z + x)f(x)dx, x ∈ R,

of f near the origin. In Kiêu (1997) and Kiêu et al. (1999), a general form of the
Euler-MacLaurin formula was derived, which reveals the connection between the
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variance of Θ̂ and the jumps of the function f and its derivatives. See also Arnau
& Cruz-Orive (1998).

Two main findings of the classical theory are that, as the sample spacing de-
creases, the variance of Θ̂ decreases at a faster rate than we might have expected
(‘superefficiency’) and that the variance does not decrease monotonically but fluc-
tuates between high and low values (‘Zitterbewegung’ or oscillation) because of
resonance effects (Baddeley & Jensen, 2005, Chapter 13).

However, the classical theory assumes that the grid points are exactly periodic.
In real sampling procedures, which may involve physically placing the sample points
or physically cutting a material, the positions of the sample points may be subject to
error. It appears to be unknown what effect these errors might have on the variance
of Θ̂.

The key idea of the present paper is to describe the noisy sampling points by
means of a point process Φ. This approach has earlier been used with success in
Pache et al. (1993) and Baddeley et al. (2006). The estimator to be considered takes
the following form

Θ̂ = τ
∑
x∈Φ

f(x),

where τ > 0 is a suitable normalization constant. The estimator Θ̂ will be denoted
a generalized Cavalieri estimator.

We will mainly study the case where the function f is defined on the line. There
are a number of important examples of this sampling situation in stereology, the
most prominent ones are volume estimation from measurement of section areas and
number estimation from disector counts (Baddeley & Jensen, 2005, pp. 155 and 258).

We study three models for errors in sample locations. They are inspired by
recent stereological studies of brain structure, see Dorph-Petersen (1999); Dorph-
Petersen et al. (2005, 2007); Sweet et al. (2005). The models are formulated here
so that they have general probabilistic interest. In the first model, called perturbed
systematic sampling, it is assumed that the sampling points are perturbed by in-
dependent and identically distributed errors Dk, k ∈ Z. This model was briefly
discussed in Baddeley et al. (2006). Under the second model, called systematic
sampling with cumulative error, the increments between successive sampling points
are independent and identically distributed. The last model, systematic sampling
with independent p-thinning, applies if observations are lost independently of each
other with probability p. Each of the two first models may be combined with p-
thinning. The models of perturbed systematic sampling and systematic sampling
with independent p-thinning have earlier been discussed in another spatial sampling
context in Lund & Rudemo (2000) under the names of displacement and thinning,
respectively.

One of the key results of this paper is that the effect of error in sample locations
on the variance of the estimator Θ̂ may be substantial. We assess the asymptotic
variance of Θ̂ as t → 0 in the case of systematic sampling with errors. For perturbed
systematic sampling the asymptotic variance can be determined, using the transitive
theory and its further development in Kiêu (1997) and Kiêu et al. (1999). The order
of magnitude of the asymptotic variance depends on the smoothness of f . For
systematic sampling with cumulative error, the asymptotic behavior of the variance
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is dominated by the term tCg(0), where g is the covariogram of f and C is a model
constant. We use renewal theory to show this result. It is remarkable that for both
perturbation mechanisms the ‘Zitterbewegung’ -effect is asymptotically negligible as
t → 0. We also derive the asymptotic variance under p-thinning combined with
either perturbed systematic sampling or systematic sampling with cumulative error.
In both cases, the variance behaves like tCg(0), where C is a constant depending
on whether perturbed systematic sampling or systematic sampling with cumulative
error applies.

Section 2 contains preliminaries about point processes. In Section 3, we show
under mild regularity conditions that Θ̂ is unbiased and derive an expression for
the variance of Θ̂ in terms of the covariogram g of f and the second order reduced
factorial moment measure of Φ. In Section 4, the three types of models for noisy
sampling points are described in more detail. The density of the second order
reduced factorial moment measure of Φ is derived in each of the three cases and
the resulting expression for var(Θ̂) is given. Section 5 contains the study of the
asymptotic variance as t → 0, while Section 6 gives an example of the effect of
errors in sampling locations. Section 7 discusses the obtained results.

2 Preliminaries
This section introduces the basics of point process theory needed in the sequel. For
a detailed exposition, see Daley & Vere-Jones (1988) and Stoyan et al. (1995). Let
Bd denote the Borel σ-algebra on Rd. All point processes considered are assumed to
be simple.

Definition 2.1 (Moment measures). Let Φ be a point process on Rd. For A1, . . . ,
Ak ∈ Bd we define

Mk(A1 × · · · ×Ak) := E (Φ(A1) · · ·Φ(Ak))

and
M[k](A1 × · · · × Ak) := E

(∑ 6=
x1,...,xk∈Φ

1A1(x1) · · ·1Ak
(xk)

)
,

where Φ(Ai) is the number of points in Ai, and the symbol
∑6=

x1,...,xk∈Φ indicates
summation over all k-tuples in Φk such that the components are pairwise different.
If Mk and M[k] are finite on bounded sets, they extend to uniquely defined symmetric
measures on the product σ-algebra ⊗k

i=1Bd = Bd⊗· · ·⊗Bd. In this case, Mk is called
the k-th order moment measure and M[k] the k-th order factorial moment measure
of Φ.

The first order moment measure M1 is also called the intensity measure of the
process. Note that M1 = M[1]. If Mk or M[k] have densities with respect to Lebesgue
measure on (Rd)k we denote them by mk, m[k], respectively.

Definition 2.2 (Stationarity). A point process Φ on Rd is strictly stationary if, for
all x ∈ Rd and all k ∈ N, A1, . . . , Ak ∈ Bd, n1, . . . , nk ∈ N,

pr(Φ(Ai) ≤ ni, i = 1, . . . , k) = pr(Φ(TxAi) ≤ ni, i = 1, . . . , k),

where the shift operator Tx is defined as TxA := x + A.
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Definition 2.3 (Moment Stationarity). A point process Φ is k-th order stationary
if its k-th order moment measure exists, and for each j = 1, . . . , k, bounded sets
A1, . . . , Aj ∈ Bd, and x ∈ Rd,

Mj(TxA1 × · · · × TxAj) = Mj(A1 × · · · × Aj).

It can be shown, see (Daley & Vere-Jones, 1988, p. 355), that in the case of simple
point processes the conditions on Mj for j < k are redundant. If a process is first
order stationary then the first order moment measure is a finite positive multiple
m ≡ m1(x) of the Lebesgue measure Ld on Rd. The proportionality constant m is
called the intensity of the process.

For a k-th order stationary point process, the k-th order moment measure Mk

can be factorized as follows. For any measurable function f on (Rd)k with bounded
support we have∫

(Rd)k

f(x1, . . . , xk)Mk(dx1 × · · · × dxk)

=

∫
Rd

∫
(Rd)k−1

f(x, x + y1, . . . , x + yk−1)M̃k(dy1 × · · · × dyk−1) dx, (1)

where M̃k is a reduced measure on (Rd)k−1, called the k-th order reduced moment
measure, see (Daley & Vere-Jones, 1988, Corollary 10.4.IV). The k-th order reduced
factorial moment measure M̃[k] is defined in the analogous way. Note that the
measure disintegration in equation (1) can be performed for any boundedly finite
Borel measure on (Rd)k, which is invariant under diagonal shifts, see (Daley & Vere-
Jones, 1988, Lemma 10.4.III). In analogy with the notation above we use m̃k and
m̃[k], respectively, to denote the density of the reduced measure if it exists.

If the density m[2] of the second order factorial moment measure M[2] exists, then
m[2](x, y)dxdy may be interpreted as the probability that two neighborhoods of x
and y of volume dx and dy, respectively, each contain a point from the point process.
The function ρ(x, y) = m[2](x, y)/(m1(x)m1(y)) is usually called the pair correlation
function. The process is second order stationary if it is first order stationary and
ρ(x, y) depends only on x−y and is locally integrable. This was used as the definition
of second order stationarity in Baddeley et al. (2006). Finally note that a strictly
stationary point process for which the k-th order moment measure exists is k-th
order stationary.

For a function f : Rd → R we define f̌ : Rd → R by f̌(x) = f(−x). The
convolution of two functions f, g : Rd → R is denoted by f ∗ g. Furthermore we
define the k-fold convolution of f by fk∗ = f (k−1)∗∗f , f 1∗ = f , for k ≥ 2. A function
f belongs to the space of locally integrable functions L1

loc, if for all compact sets K the
function 1Kf is Lebesgue integrable. The space of integrable (essentially bounded)
functions is L1 (L∞) with norm ‖·‖1 (‖·‖∞). The space of p-times continuously
differentiable functions is denoted by Cp. We write Cp

0 if they are also required to
have compact support.
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3 First and second order properties
The following two theorems, which are generalizations of results in Baddeley et al.
(2006), allow us to study the first and second order properties of estimators based
on systematic sampling with errors. Let f be a measurement function, i.e. an
integrable function with bounded support on R. Define Θ :=

∫
R f(x)dx.

Theorem 3.1. Suppose that Φ is a first order stationary point process with in-
tensity m1(x) = m, where m > 0. Then the generalized Cavalieri estimator Θ̂ =
τ
∑

x∈Φ f(x) with τ = 1/m is an unbiased estimator of Θ.

Proof. First order stationarity yields that M1 = mL. By Campbell’s Theorem
(Daley & Vere-Jones, 1988, p. 188) we have

E
(
Θ̂
)

= τ E
(∑

x∈Φ

f(x)
)

= τ

∫
R

f(x)M1(dx) = τm

∫
R

f(x)dx = Θ,

by the choice of τ .

Theorem 3.2. Suppose that Φ is a second order stationary point process with in-
tensity m1(x) = m > 0 and second order reduced factorial moment measure M̃[2].
Choosing τ = 1/m as above the variance of Θ̂ is given by

var
(
Θ̂
)

=
g(0)

m
+

1

m2

∫
R

g(z)M̃[2](dz)−
∫

R
g(z)dz,

where g(z) =
∫

R f(z + x)f(x)dx is the geometric covariogram of f .

Proof. Using the factorization of the second order factorial moment measure as given
by (1), Campbell’s Theorem and Fubini we obtain

var
(
Θ̂
)

= E
(
Θ̂2
)− E

(
Θ̂
)2

=
1

m2
E
( ∑

x,y∈Φ, x 6=y

f(x)f(y) +
∑
x∈Φ

f 2(x)
)
−Θ2

=
1

m2

(∫
R2

f(x)f(y)M[2](dx, dy) +

∫
R

f 2(x)m dx

)
−Θ2

=
1

m2

∫
R

∫
R

f(x)f(x + y)M̃[2](dy) dx +
g(0)

m
−Θ2

=
g(0)

m
+

1

m2

∫
R

g(y)M̃[2](dy)−Θ2.

Again by Fubini we have
∫

R g(z)dz =
∫

R
∫

R f(y)f(y + z)dzdy = Θ2.

It is possible to extend the above results to higher dimensions, see the Appendix.

4 Models for Φ

In this section we discuss three different models for systematic sampling with errors
on R.
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4.1 Perturbed systematic sampling

The first model we address is called perturbed systematic sampling. This model was
already considered in Baddeley et al. (2006). We assume that the intended equally
spaced sampling points xk = U + kt are perturbed by random errors (Dk)k∈Z, so
that the actual locations are yk = xk + Dk. The random variable U is uniformly
distributed on [0, t), where t > 0 is the intended spacing of the sampling points.
The sequence (Dk)k∈Z is independent and identically distributed with common den-
sity function h, which has bounded support. In order to have a realistic model, it
would normally be assumed that h is supported in [−t/2, t/2], which ensures that
the sample points yk are strictly increasing, with probability 1. However, this fact
is not used in the sequel unless explicitly stated. In relation to cutting of tissue in
stereological studies, perturbed systematic sampling will, for example, be a reason-
able model for devices consisting of an array of cutting blades (Gundersen et al.,
1988, Figure 7). Slight drift of the blades while cutting will perturb the actual cut
around the fixed position of each blade.

Lemma 4.1. Let Φ be a point process that follows the perturbed systematic sampling
model with error density h, which has bounded support. Then, the process Φ =
(yk)k∈Z is second order stationary, the intensity measure M1 is equal to 1

t
L and the

second order reduced factorial moment measure M̃[2] has density

m̃[2](y) =
1

t

∑
n∈Z, n 6=0

h ∗ ȟ(−y + nt).

Remark. Note that the convolution h ∗ ȟ is the density of Dk −Dl for k 6= l.

Proof. The density of U + Dk is

fU+Dk
(y) =

1

t

∫
R

h(x)1[y−t,y](x) dx.

Let a < b < ∞, we then obtain

M1([a, b)) = E (Φ([a, b)))

=
∑
k∈Z

E
(
1[a,b)(kt + Dk + U)

)
=
∑
k∈Z

∫
R
1[a−kt,b−kt)(y)

1

t

∫
R

h(x)1[y−t,y](x) dx dy

=
1

t

∑
k∈Z

∫
R

∫
R

h(x)1[z−(k+1)t,z−kt](x)1[a,b)(z) dx dz

=
1

t

∫ b

a

∫
R

h(x) dx dz =
1

t
(b− a) =

1

t
L([a, b)).

The joint density of (U + Dk, U + Dl) is

fU+Dk,U+Dl
(y1, y2) =

1

t

∫
R
1[0,t)(u)h(y1 − u)h(y2 − u)du.
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For B1, B2 ∈ B(R), we have

M[2](B1 × B2) = E
( ∑

x,y∈Φ, x 6=y

1B1(x)1B2(y)
)

=
∑

k,l∈Z, k 6=l

E (1B1−kt(U + Dk)1B2−lt(U + Dl))

=
∑

k,l∈Z, k 6=l

1

t

∫
R

∫
R

∫
R
1B1(y1 + kt)1B2(y2 + lt)

1[0,t)(u)h(y1 − u)h(y2 − u) du dy1 dy2

=
∑

n∈Z, n 6=0

1

t

∫
R

∫
R
1B1(z1)1B2(z2)

×
∫

R

∑
k∈Z

1(z1−(k+1)t,z1−kt](v)

× h(v)h(z2 − z1 − nt + v) dv dz1 dz2,

(2)

using the substitutions z1 = y1+kt, z2 = y2+lt, v = z1−kt−u and setting n = l−k.
Recall that ȟ(x) := h(−x). We can further simplify equation (2) as follows

M[2](B1 × B2) =

∫
R

∫
R
1B1(z1)1B2(z2)

1

t

∑
n∈Z, n 6=0

ȟ ∗ h(z2 − z1 − nt) dz1 dz2

=

∫
R

∫
R
1B1(z1)1B2(z1 + y)

1

t

∑
n∈Z, n 6=0

ȟ ∗ h(y − nt) dy dz1,

so we obtain that M̃[2] has density m̃[2](y) = 1
t

∑
n∈Z, n 6=0 ȟ ∗ h(y − nt). It is not

difficult to check that m̃[2] is always in L1
loc, hence the second order reduced factorial

moment measure of Φ exists for any density function h with bounded support.

Applying Theorem 3.2 we obtain the following representation of the variance for
the generalized Cavalieri estimator under perturbed systematic sampling

var
(
Θ̂
)

= tg(0) + t
∑

n∈Z, n 6=0

∫
R

g(z)ȟ ∗ h(z − nt) dz −
∫

R
g(z)dz

= tg(0) + t
∑

n∈Z, n 6=0

g ∗ ȟ ∗ h(nt)−
∫

R
g(z)dz.

(3)

4.2 Systematic sampling with cumulative error

The second model we consider is called systematic sampling with cumulative error.
We assume that the actual locations (yk)k∈Z of the sampling points are such that
the increments wk = yk − yk−1, k ∈ Z, are independent and identically distributed
with density h : R+ → R+ and finite expectation t > 0. We choose the ‘starting
distribution’ H̃ for y1 as follows

H̃(x) =
1

t

∫ x

0

(1−H(y)) dy,
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where H is the distribution function of h. Applying (Daley & Vere-Jones, 1988, The-
orem 12.3.II) we then have that Φ = (yk)k∈Z is a strictly stationary point process
with finite intensity m = 1

t
. Systematic sampling with cumulative error is appropri-

ate if the sampling procedure works like a meat slicer, where each successive section
is cut by advancing the material towards a stop plate a fixed distance from the
slicing blades. If the ‘block advance’ is slightly variable, e.g. due to elasticity of the
material leading to a variable degree of compression, then we get cumulative errors.

Lemma 4.2. Let Φ be a point process that follows the systematic sampling with
cumulative error model with error density h with mean t > 0. Then, Φ = (yk)k∈Z
is second order stationary, the intensity measure M1 is equal to 1

t
L and the second

order reduced factorial moment measure M̃[2] has density

m̃[2](x) =
1

t

∞∑
k=1

(hk∗(x) + ȟk∗(x)),

where hk∗ denotes the k-fold convolution of h. The density m̃[2] is locally integrable.

Proof. Denote by
◦

M 1 the first moment measure of the Palm distribution P0 of Φ.
We have ◦

M 1(A)− δ0(A) = EP0 (Φ(A\{0})) , A ∈ B. (4)

Define y′0 := 0, y′k :=
∑k

i=1 wi and y′−k :=
∑k−1

i=0 −w−i for k ≥ 1. We can calculate
the right-hand side of equation (4) in the following way

EP0 (Φ(A\{0})) = E
( ∞∑

k=1

1{y′k ∈ A}+

∞∑
k=1

1{y′−k ∈ A}
)

=

∫
A

∞∑
i=1

(hi∗(x) + ȟi∗(x)) dx.

The term
∑∞

k=1 hk∗(x) is the renewal density of a renewal process with holding
times that are independent and identically distributed with density h. Standard
renewal theory yields that

∑∞
k=1 hk∗(x) is locally integrable, so in particular the

series converges for almost all x ∈ R; see for example (Daley & Vere-Jones, 1988,
Chapter 4). The same argument holds for

∑∞
k=1 ȟk∗(x), where we have to consider

a renewal process with reversed time. Therefore m̃[2](x) ∈ L1
loc, which implies the

existence of the first moment measure
◦

M1 of the Palm distribution. By (Daley &
Vere-Jones, 1988, Proposition 12.2.V) this implies the existence of the second order
factorial moment measure M[2] and

M̃[2](A) = m(
◦

M 1(A)− δ0(A)).

Plugging in m = 1
t

yields the claimed formula.

Using Lemma 4.2, Theorem 3.2 yields the following variance for the generalized
Cavalieri estimator under systematic sampling with cumulative error

var
(
Θ̂
)

= tg(0) + t

∫
R

∞∑
k=1

g(z)(hk∗(z) + ȟk∗(z))dz −
∫

R
g(z)dz. (5)
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4.3 Systematic sampling with independent p-thinning

The third model we want to address is systematic sampling with independent p-
thinning. Suppose we have sampling points at locations Ψ = (yk)k∈Z, which form
a second order stationary point process, the so-called center process, with intensity
m = 1

t
and second order reduced factorial density m̃c

[2]. Let p > 0 be the probability
that the value of f cannot be determined at location yk. Let (Uk)k∈Z be a sequence
of independent and identically distributed uniform random variables on [0, 1] and
independent of (yk)k∈Z. The resulting point process is

Φ = {yk : Uk > p} .

Using (Daley & Vere-Jones, 1988, Proposition 8.2.IV), we derive the following
expressions for the intensity measure M1 and the second order factorial measure
M[2] of Φ

M1(A) =

∫
R
(1− p)1A(x)m dx = (1− p)mL(A), A ∈ B(R),

M[2](A× B) =

∫
R

∫
R
(1− p)21A(x)1B(y)M c

[2](dx, dy)

+

∫
R
((1− p)1A(x)1B(x)− (1− p)1A∩B(x))m dx

=

∫
R

∫
R
(1− p)21A(x)1B(x + y)m̃c

[2](y) dy dx, A, B ∈ B(R).

Hence, the intensity of Φ is (1−p)m and the second order reduced factorial moment
measure of Φ has density (1 − p)2m̃c

[2](y). Therefore we obtain the following rep-
resentation of the variance for the generalized Cavalieri estimator under systematic
sampling with independent p-thinning

var
(
Θ̂
)

=
g(0)

(1− p)m
+

1

m2

∫
R

g(z)m̃c
[2](z) dz −

∫
R

g(z)dz. (6)

Note that only the first term on the right-hand side is different from the formula
for the variance of the generalized Cavalieri estimator based on the process Ψ, see
Theorem 3.2.

5 Limiting behavior

5.1 Perturbed systematic sampling

In this section we study the asymptotic behavior of the variance for perturbed
systematic sampling. The measurement function will always be denoted by f , the
density of the error distribution by h. For perturbed systematic sampling we can

10



rewrite equation (3) for the variance as follows:

var
(
Θ̂
)

= tg(0) + t
∑

n∈Z, n 6=0

g ∗ ȟ ∗ h(nt)−
∫

R
g(z)dz

= t(g(0)− g ∗ ȟ ∗ h(0)) + t
∑
n∈Z

g ∗ ȟ ∗ h(nt)−
∫

R
g ∗ ȟ ∗ h(z)dz

+

∫
R

g ∗ ȟ ∗ h(z)dz −
∫

R
g(z)dz.

Using Fubini’s theorem it is easy to see that the last two terms in the above equation
cancel each other. Recall that the geometric covariogram g is defined as g(z) =∫

R f(x)f(x + z)dx, where f is the measurement function. Using this definition, it is
easy to check that

g ∗ ȟ ∗ h(z) =

∫
R

(f ∗ h(x + z)f ∗ h(x)) dx.

Define F := f ∗h. We now consider F as the measurement function. Its covariogram
is G(z) = g ∗ ȟ∗h(z). Let Ŵ := t

∑
j∈Z F (U + jt), where U is uniformly distributed

on [0, t). We then obtain

var(Ŵ ) = t
∑
j∈Z

G(jt)−
∫

R
G(z)dz, (7)

see (Baddeley & Jensen, 2005, (13.18)). As we want to study the asymptotic be-
havior of the variance of Θ̂ as t → 0, we need to specify how the error density h
depends on t. Throughout this section we assume that

ht(x) =
1

t
h0

(x

t

)
, x ∈ R,

t > 0, where h0 is a probability density function belonging to the class CK of Lebesgue
measurable functions with compact support and a finite number of jumps of finite
size.

In the proof of the asymptotic variance of Θ̂ we will use the definitions and
properties of piecewise smooth functions as given in Kiêu (1997). In particular, the
following definition will be important.

Definition 5.1. For a function q : R → R let

sq(x) := lim
y→x+

q(y)− lim
y→x−

q(y), x ∈ R,

where we assume that the limits are defined everywhere. Let Dq := supp(sq). The
function q is said to be (m, p)-piecewise smooth, m, p ∈ N0, if

(i) q(l) ∈ CK for all 0 ≤ l ≤ m + p

(ii) Dq(l) = ∅ for 0 ≤ l < m.

11



Thus, an (m, p)-piecewise smooth function has compact support. Furthermore,
all its derivatives of order less than m are continuous while derivatives of order m
up to m + p have a finite number of jumps of finite size.

Proposition 5.1. Let f be an (m, 1)-piecewise smooth measurement function. Then
its covariogram g is (2m+1, 1)-piecewise smooth and the variance of the generalized
Cavalieri estimator has the following expansion as t → 0

var
(
Θ̂
)

= t(g(0)− g ∗ ȟt ∗ ht(0))

− t2m+2sg(2m+1)(0)

∫
R

h0 ∗ ȟ0(x)P2m+2(x)dx + o(t2m+2),
(8)

where Pi(·) denotes the i-th Bernoulli polynomial as defined in (Knopp, 1996, Para-
graph 297). Let ck :=

∫
R |x|kh0 ∗ ȟ0(x)dx. For m = 0, the first term in (8) is

asymptotically equal to the following expression

t
(
g(0)− g ∗ ȟt ∗ ht(0)

) ∼ −t2
c1

2
sg′(0). (9)

If supp(h0) ⊆ [−1/2, 1/2] and m = 0, equation (8) simplifies to

var
(
Θ̂
) ∼ −t2

(
c2

2
+

1

12

)
sg′(0). (10)

For m ≥ 1, we have

t
(
g(0)− g ∗ ȟt ∗ ht(0)

)
= −t3

c2

2
g(2)(0) + o(t3). (11)

Remark. Note that by (Kiêu, 1997, Corollary 5.8) sg(2m+1)(0) 6= 0. From the defini-
tion of g it is clear that for m ≥ 1 we have g(2)(0) 6= 0.

Remark. In Kiêu (1997), the Bernoulli polynomial Pi is denoted by Pi,1. They are
defined as follows. For x ∈ [0, 1] we first define inductively P̃0(x) = 1, P̃1(x) = x− 1

2

and for i ≥ 2

P̃ ′
i+1 = P̃i

P̃i(0) = P̃i(1).

Then let Pi(x) = P̃i(x− [x]). So Pi is bounded, 1-periodic and P ′
i+1 = Pi for i ≥ 0,

in particular P2(x) = 1
2

(
(x− [x])(x− [x]− 1) + 1

6

)
.

Proof of Proposition 5.1. Suppose that the measurement function f is (m, p)-piece-
wise smooth with p ≥ 1. Let Ft := f ∗ ht. Then, it follows from (Kiêu, 1997,
Proposition 5.6 and Corollary 5.8) that the covariogram Gt = g ∗ ht ∗ ȟt of Ft is
(2m + 2)-times continuously differentiable and

(g ∗ ht ∗ ȟt)
(2m+2) = g(2m+2) ∗ ht ∗ ȟt + sg(2m+1) ∗ ht ∗ ȟt, (12)

where s∗ q(x) :=
∑

a s(a)q(x−a) for a function s with finite support and a function
q whose support has non-zero Lebesgue measure. In (Kiêu, 1997, Proposition 4.2)
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a refined Euler-MacLaurin formula for (m, 1)-piecewise smooth functions is given.
The proof relies on a partial integration formula for piecewise smooth functions. We
would like to apply the formula to the right-hand side of (7) with G = Gt. This
is not directly possible as the error term approximations are only valid, if G does
not depend on t, but following (Kiêu, 1997, proof of Proposition 4.2), we obtain,
using (12),

var(Ŵt) = −t2m+2

∫
R

g(2m+2) ∗ ht ∗ ȟt(x)P2m+2

(x

t

)
dx

− t2m+2
∑

a∈D
g(2m+1)

sg(2m+1)(a)

∫
R

ht ∗ ȟt(x− a)P2m+2

(x

t

)
dx.

(13)

Note that by (Kiêu, 1997, Corollary 5.8), we always have sg(2m+1)(0) 6= 0 and, as
g is an even function, we obtain sg(2m+1)(0) = 2g(2m+1)(0+), where g(2m+1)(0+) :=

limx→0+ g(2m+1)(x).
The second term on the right hand side of the above equation can be decomposed

as follows

t2m+2
∑

a∈D
g(2m+1)

sg(2m+1)(a)

∫
R

ht ∗ ȟt(x− a)P2m+2

(x

t

)
dx

= t2m+2sg(2m+1)(0)

∫
R

h0 ∗ ȟ0(x)P2m+2(x)dx

+ t2m+2
∑

a∈D
g(2m+1)

a6=0

sg(2m+1)(a)

∫
R

h0 ∗ ȟ0

(
x− a

t

)
P2m+2(x)dx.

(14)

For all a 6= 0 and x ∈ R the term h0∗ȟ0

(
x− a

t

)
P2m+2(x) converges to zero as t → 0.

As h0 ∗ ȟ0 is compactly supported and bounded, Lebesgue’s dominated convergence
theorem shows that

∫
R h0 ∗ ȟ0

(
x− a

t

)
P2m+2(x)dx converges to zero. Therefore the

second term of the right hand side of (14) converges to zero of order o(t2m+2).
The asymptotic behavior of the first term on the right hand side of (13) can

be determined by the following reasoning. If g(2m+2) is (0, 1)-piecewise smooth we
can again apply (Kiêu, 1997, Proposition 5.6) to obtain (g(2m+2) ∗ ht ∗ ȟt)

(1) =
g(2m+3) ∗ ht ∗ ȟt + sg(2m+2) ∗ ht ∗ ȟt. This derivative is again continuous, so partial
integration of the integral in the first term on the right hand side of (13) yields∫

R
g(2m+2) ∗ ht ∗ ȟt(x)P2m+2

(x

t

)
dx

= −t

∫
R

g(2m+3) ∗ ht ∗ ȟt(x)P2m+3

(x

t

)
dx

− t
∑

a∈D
g(2m+2)

sg(2m+2)(a)

∫
R

ht ∗ ȟt(x− a)P2m+3

(x

t

)
dx.

We here use that
∫

P2m+3

(
x
t

)
dx = 1

t
P2m+2

(
x
t

)
.

It is not difficult to see that both terms on the right hand side of the above
equation converge of order at least O(t), hence the first term on the right hand side
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of (13) converges to zero of order o(t2m+2). If instead of assuming that g(2m+2) is
(0, 1)-piecewise smooth, we only require that g(2m+2) ∈ CK , then g(2m+2) is Riemann
integrable, so for each ε > 0 there exists a step function g̃ ∈ CK , such that g̃ ≤ g(2m+2)

and

0 ≤
∫

R
g(2m+2)(x)dx−

∫
R

g̃(x)dx ≤ ε

2‖P2m+2‖∞ .

It is not difficult to check that this implies

0 ≤
∫

R
g(2m+2) ∗ ht ∗ ȟt(x)dx−

∫
R

g̃ ∗ ht ∗ ȟt(x)dx ≤ ε

2‖P2m+2‖∞
and ∣∣∣∣∫

R
g(2m+2) ∗ ht ∗ ȟt(x)P2m+2

(x

t

)
dx−

∫
R

g̃ ∗ ht ∗ ȟt(x)P2m+2

(x

t

)
dx

∣∣∣∣ ≤ ε

2
.

As g̃ is (0, 1)-piecewise smooth, we can apply the same argument as above in order
to show that Ĩ :=

∫
R g̃ ∗ ht ∗ ȟt(x)P2m+2

(
x
t

)
dx = O(t). In particular |Ĩ| ≤ ε

2
, for t

small enough. This implies∣∣∣∣∫
R

g(2m+2) ∗ ht ∗ ȟt(x)P2m+2

(x

t

)
dx

∣∣∣∣ ≤ ε

for t small enough, hence this integral tends to zero as t → 0. Therefore the first
term on the right hand side of (13) converges to zero of order o(t2m+2).

It only remains to show the representation of the first term in (8) as given in (9)
and (11). It is easy to see, that

g(0)− g ∗ ȟt ∗ ht(0) =

∫
R
(g(0)− g(tx))ȟ0 ∗ h0(x) dx.

Fix x ∈ R. For t > 0 small enough we can use Taylor expansion to obtain

g(xt)− g(0) =
m∑

k=1

1

(2k)!
g(2k)(0)x2kt2k +

1

(2m + 1)!
g(2m+1)(ξ)x2m+1t2m+1

as all uneven continuous derivatives of g are odd functions so they are zero at zero;
ξ is between 0 and xt. If m = 0 and x > 0, then

1

t2
t(g(xt)− g(0)) = g′(ξ)x → g′(0+)x as t → 0+.

Using Lebesgue’s dominated convergence theorem and sg′(0) = 2g′(0+), see (Kiêu,
1997, p. 56), one can deduce (9). Equation (11) also follows by dominated con-
vergence, using the boundedness of g(2m+1). Finally, one obtains equation (10)
combining (8) and (9) using the definition of the second Bernoulli polynomial.
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5.2 Systematic sampling with cumulative error

In this section we study the asymptotic behavior of var
(
Θ̂
)

under the model of
systematic sampling with cumulative error. We assume that the error density for a
certain spacing t > 0 is given by ht(x) = 1

t
h0

(
x
t

)
, where h0 is a probability density on

the positive halfline with expected value 1. Define u+
t :=

∑∞
k=1 hk∗

t , u−t :=
∑∞

k=1 ȟk∗
t .

Note that u+
t is supported on the positive halfline, while u−t is supported on the

negative halfline. Furthermore u±t (x) = 1
t
u±0
(

x
t

)
. Rewriting equation (5) with this

notation yields

var
(
Θ̂
)

= tg(0) +

∫ ∞

0

g(z)u+
0

(z

t

)
dz +

∫ 0

−∞
g(z)u−0

(z

t

)
dz −

∫
R

g(z)dz. (15)

The function u+
0 is the renewal density of a renewal process with holding times that

are independent identically distributed with density h0. The following theorem, see
(Alsmeyer, 1991, Satz 3.3.1, Satz 13.2.2), reveals the asymptotic behavior of u±0 .

Theorem 5.2. Let h : R+ → R+ be a probability density with expectation µ > 0
and let u :=

∑∞
k=1 hk∗. Suppose that h ∈ L∞ and lims→∞ h(s) = 0. Then

(a) u ∈ L∞ and u− h is continuous and bounded.

(b) lims→∞ u(s) = µ−1, where ∞−1 := 0.

(c) If h is absolutely continuous and there is an integer m ≥ 2, such that∫
R
|xm−1h′(x)|dx < ∞

and the m-th moment of h exists, then

u(s)− µ−1 = o(s1−m), as s →∞.

Remark. Absolutely continuous functions are almost everywhere differentiable. Ev-
ery Lipschitz-function is absolutely continuous. For further reference on absolute
continuity, see Rudin (1986).

We assume now that h0 ∈ L∞ and that lims→∞ h0(s) = 0. By part (b) of the
above theorem we obtain for each z ∈ [0,∞)

lim
t→0

g(z)u+
0

(z

t

)
= g(z)

and analogously for z ∈ (−∞, 0] and u−0 . Furthermore |g(z)u+
0

(
z
t

) | ≤ ‖u+
0 ‖∞|g(z)| ∈

L1, using part (a) of the above theorem, and again analogously for u−0 . Lebesgue’s
dominated convergence theorem now implies

lim
t→0

(∫ ∞

0

g(z)u+
0

(z

t

)
dz +

∫ 0

−∞
g(z)u−0

(z

t

)
dz

)
=

∫
R

g(z)dz

and hence
lim
t→0

var
(
Θ̂
)

= 0.

The actual order of convergence is determined in the proposition below. Note that if
h0 does not have expected value 1, then var

(
Θ̂
)

does not converge to zero for t → 0.
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Proposition 5.3. Assume that h0 satisfies the conditions in part (c) of Theorem 5.2
for some m ≥ 3 and that the covariogram g is continuous at 0 and bounded. Then
the variance of the generalized Cavalieri estimator under the model of systematic
sampling with cumulative error has the following limiting behavior

var
(
Θ̂
)

= tg(0)ν2 + o(t)

as t → 0, where ν2 < ∞ is the variance of a random variable with probability density
h0.

Proof. The assumptions on h0 yield that (u+
0 − 1) is integrable. Using substitution

we obtain ∫ ∞

0

g(z)
(
u+

0

(z

t

)
− 1
)

dz =t

∫ ∞

0

(g(tz)− g(0))(u+
0 (z)− 1)dz

+ tg(0)

∫ ∞

0

(u+
0 (z)− 1)dz.

The first term on the right hand side of the above equation converges of order o(t)
as t → 0. This can be seen by using dominated convergence and the continuity of g
at 0. As g is symmetric and u−0 (z) = u+

0 (−z) we obtain

var
(
Θ̂
)

= tg(0)

(
2

∫ ∞

0

(u+
0 (z)− 1)dz + 1

)
+ o(t), (16)

using equation (15). Let U be the renewal measure of the renewal process with
holding times that are independent identically distributed with density h0. Then u+

0

is a density for U−δ0. The function (u+
0 (z)−1)1[0,K](z) converges in L1 to u+

0 (z)−1
as K →∞, therefore∫ ∞

0

(u+
0 (z)− 1)dz = lim

K→∞

∫
(u+

0 (z)− 1)1[0,K](z)dz

= lim
K→∞

((U − δ0)([0, K])−K)

=
ν2 − 1

2
,

by (Alsmeyer, 1991, Theorem 3.4.1). Combining this with equation (16) yields the
claim.

5.3 Systematic sampling with independent p-thinning

The model of systematic sampling with independent p-thinning is a two-stage model.
We have to specify the underlying center process Ψ and the thinning probability
p > 0. We consider the two main cases of Ψ.

Perturbed systematic sampling with independent p-thinning: Suppose the center pro-
cess Ψ follows the model of perturbed systematic sampling with error density ht as
given in Section 5.1.
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Proposition 5.4. Let f be an (m, 1)-piecewise smooth measurement function. Then
its covariogram g is (2m+1, 1)-piecewise smooth and the variance of the generalized
Cavalieri estimator under perturbed systematic sampling combined with independent
p-thinning with thinning probability p > 0 has the following asymptotic behavior as
t → 0

var
(
Θ̂
)

= t
p

1− p
g(0) + o(t).

Proof. This follows by combining equation (6) in Section 4.3 with Proposition 5.1.

Systematic sampling with cumulative error and independent p-thinning: Let the
center process Ψ follow the model of systematic sampling with cumulative error
with increment density ht as defined in Section 5.2.

Proposition 5.5. Assume that the conditions on h0 of part (c) of Theorem 5.2
are fulfilled for some m ≥ 3 and that the covariogram g is continuous at 0 and
bounded. Then the variance of the generalized Cavalieri estimator under systematic
sampling with cumulative error combined with independent p-thinning with thinning
probability p > 0 has the expansion

var
(
Θ̂
)

= tg(0)

(
ν2 +

p

1− p

)
+ o(t)

as t → 0, where ν2 < ∞ is the variance of a random variable with probability density
h0.

Proof. This follows by combining equation (6) in Section 4.3 with Proposition 5.3.

6 An example
As an example, we have investigated the effect of errors in sample locations of section
planes on the precision of the estimator of the volume of the unit ball. In this case,
the measurement function f and the geometric covariogram g can be calculated as
follows

f(x) = π(1− x2)1[−1,1](x)

g(x) = π2

(
16

15
− 4

3
x2 +

2

3
|x|3 − 1

30
|x|5
)

1[−2,2](x).

In Figure 1, the variance of the generalized Cavalieri estimator under the model
of perturbed systematic sampling is displayed and compared to the variance of the
estimator under ‘exact’ systematic sampling. The density h0 is a truncated normal
density with mean zero and truncation points ±1/2. In Figure 1, the variance of the
resulting estimators are plotted against the expected number of sections n. Note
that t = 2/n as we are cutting a unit ball. The variances used in Figure 1 for
the truncated normal density are σ2 = 0, 0.052, 0.102 for the lower, middle and
upper plots, respectively. Here, σ2 = 0 corresponds to exact systematic sampling.
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The order of magnitude of the positive σ2s has been chosen in accordance with
what has been found in recent morphological studies where the model of perturbed
systematic sampling is appropriate, see Dorph-Petersen et al. (2005, 2007). Methods
of statistical analysis of this type of data will be provided in a forthcoming paper
written for users by Dorph-Petersen, Baddeley, Ziegel and Jensen.

The measurement function f of the unit ball is (1,∞)-piecewise smooth. Apply-
ing Proposition 5.1 we obtain that

var
(
Θ̂
)

= −c2

2
g(2)(0)t3 + o(t3)

under the model of perturbed systematic sampling. This asymptote can also be seen
as a line in Figure 1 for each of the two cases of positive σ2.

We also computed the variance of the generalized Cavalieri estimator under the
model of systematic sampling with cumulative error and compared it to the variance
of the estimator under ‘exact’ systematic sampling. The increment density h0 is a
truncated normal density with mean 1, truncation points 0 and 2 and variance σ2.
Again, σ2 = 0 corresponds to exact systematic sampling. For the calculation we
approximated the k-th fold convolution of the truncated normal density h0 by a
truncated normal density with mean k, truncation points 0 and 2k and variance√

kσ2. The variances used in Figure 2 are σ2 = 0, 0.052, 0.102 for the lower, middle
and upper curve, respectively.

It is of note that, as shown in Figure 2, cumulative error may have a substantial
effect on variance. For example, if 100 sections are used, exact sampling gives a very
small coefficient of variation (CV =

√
Variance/(4π/3)) which is about 0.002%.

But for systematic sampling with cumulative error even with the smaller standard
deviation of σ = 0.05, the CV is about 0.55%. The effect for perturbed systematic
sampling, on the other hand, appears to be less significant, cf. Figure 1.

7 Discussion
The reason why random sampling experiments have become so important in bio-
logical applications of stereological methods is that most biological structures are
highly organized and spatially inhomogeneous so that sampling inference cannot be
drawn from a single arbitrarily positioned sample Weibel (1978). Randomization
of sampling points is needed if the material cannot be regarded as homogeneous.
A first mention of a design based approach in stereology can be found in the far-
sighted paper Thompson (1932), see also the accompanying paper Thompson et al.
(1932) and Royall (1970). An alternative to randomization of sampling points would
be to develop a stochastic model for the biological structure under study. This is,
however, not needed for estimating parameters Θ expressible as integrals. There is
a strong analogy between randomizing the position of the grid for estimating Θ and
designing a sample survey for estimating the population total of a finite population.

In the present paper, we have proposed two quite different models to deal with
errors in systematic sampling. The choice of the model will be specific to the appli-
cation. Furthermore, the suggested models may be modified to take special features
of the sampling procedure into account, such as loss of observations. Our example
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Figure 1: Variance of the Cavalieri estimator of volume of a unit ball as a function
of the expected number of sections is shown on a log-log scale. The lower curve is
based on exact systematic sampling. The upper and middle curves were calculated
using the model of perturbed systematic sampling with a truncated normal error
distribution h0 with mean zero, truncation points ±1/2 and standard deviation
σ = 0.05 (middle curve) and σ = 0.10 (upper curve), respectively. The straight lines
represent the main terms of the asymptotic expansion of the variances.
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Figure 2: Variance of the Cavalieri estimators of volume of a unit ball as a function of
the expected number of sections is shown on a log-log scale. The lower curve is based
on exact systematic sampling. The upper and middle curves were calculated using
the model of systematic sampling with cumulative error with a truncated normal
increment distribution h0 with mean 1, truncation points 0 and 2 and standard
deviation σ = 0.05 (middle) and σ = 0.10 (upper), respectively. The straight lines
represent the main terms of the asymptotic expansion of the variances.
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in Section 6 shows that errors in the placement of sampling points may lead to a
substantial inflation of the estimator variance.

There are a number of ways in which the methods presented here may be ex-
tended. Measurement functions f with first order derivative being non-continuous
with infinite jumps are not covered by the asymptotic theory developed in the present
paper. In the case of the classical Cavalieri estimator, the asymptotic variance has
been derived for such measurement functions in García-Fiñana & Cruz-Orive (2000,
2004); García-Fiñana (2006). The variance exhibits a fractional trend. The trend
is often of order T 2p+2, typically with 0 < p < 1. For the perturbed systematic
sampling model a next step will be to use this theory to extend Proposition 5.1 to
very general measurement functions. Another obvious extension concerns the effect
on the variance of errors in placement of sampling points in the case where sampling
in two or three dimensions is performed. Appendix A of this paper represents a first
step in this direction.

For applications in microscopy and spatial surveys, it is of great importance to
be able to estimate the variance of the generalized Cavalieri estimator from data.
One obvious possibility is to try to estimate the leading terms of the asymptotic
expansions in Section 5 from data. This task is part of our future research plans.
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Appendix

Systematic sampling in higher dimensions

Assume we want to estimate the volume of a bounded Borel set B ⊆ Rd with the
unbiased estimator V̂ , defined by

V̂ = td
∑
z∈Z3

1B(t(U + z)),

where t > 0 and U is a uniform random variable in [0, 1]3. We can generalize this
estimator in the following way. Let Φ be a first order stationary point process in Rd

with intensity measure M1 = mL, m > 0 and f : Rd → R a measurement function
with compact support. In the case of volume estimation we simply have f = 1B.

Proposition 7.1. The estimator

Ṽ :=
1

m

∑
x∈Φ

f(x)

is an unbiased estimator of the integral W :=
∫

f(x)dx.
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Proof.

E
(
Ṽ
)

=
1

m
E
(∑

x∈Φ

f(x)
)

=
1

m

∫
f(x)M1(dx) =

∫
f(x)dx.

Proposition 7.2. Let C2 denote the second cumulant measure (covariance measure)
of Φ. Suppose it exists. Then

var
(
Ṽ
)

=
1

m2

∫
f(x)f(y)C2(dx× dy).

Proof. Let M2 denote the second moment measure of Φ, then C2 is defined as
C2(A× B) = M2(B × A)−M1(A)M2(B) for Borel sets A, B.

var
(
Ṽ
)

= E
(
Ṽ 2
)− E

(
Ṽ
)2

=
1

m2
E

((∑
x∈Φ

f(x)
)2
)
−W 2

=
1

m2
E
(∑

x,y∈Φ

f(x)f(y)
)
−W 2

=
1

m2

(∫
f(x)f(y)M2(dx× dy)−

(∫
f(x)M1(dx)

)2
)

=
1

m2

∫
f(x)f(y)C2(dx× dy).
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