
08

THIELE CENTRE
for applied mathematics in natural science

THIELE CENTRE
for applied mathematics in natural science

Efficient simulation of tail probabilities
of sums of correlated lognormals
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Abstract

We consider the problem of efficient estimation of tail probabilities of sums
of correlated lognormals via simulation. This problem is motivated by the tail
analysis of portfolios of assets driven by correlated Black-Scholes models. We
propose two estimators that can be rigorously shown to be efficient as the
tail probability of interest decreases to zero. The first estimator, based on
importance sampling, involves a scaling of the whole covariance matrix and
can be shown to be asymptotically optimal. A further study, based on the
Cross-Entropy algorithm, is also performed in order to adaptively optimize
the scaling parameter of the covariance. The second estimator decomposes
the probability of interest in two contributions and takes advantage of the fact
that large deviations for a sum of correlated lognormals are (asymptotically)
caused by the largest increment. Importance sampling is then applied to each
of these contributions to obtain a combined estimator with asymptotically
vanishing relative error.

Keywords: Black-Scholes model, correlated lognormals, Importance sam-
pling, Cross-Entropy method, efficiency, rare-event simulation, vanishing rel-
ative error.
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1 Introduction

We consider the problem of efficient estimation of tail probabilities of sums of ran-
dom variables that are correlated and possess heavy tails. As a motivating example,
one could consider the problem of computing the probability of large losses or high
returns on a portfolio of correlated asset prices. A very popular model in the fi-
nancial literature is the so-called Black-Scholes model, in which stock prices follow
a lognormal distribution which are usually considered to have significative corre-
lations. Motivated by these types of financial risk problems, we shall concentrate
on efficient tail estimation of sums of correlated lognormals. More precisely, let
Y = (Y1, Y2, . . . , Yd)

T be a d-dimensional vector distributed jointly Gaussian with
mean µ = (µ1, . . . , µd)

T and covariance matrix Σ (we say that Y ∼ N (µ,Σ)). Fi-
nally, define Xi = exp(Yi) and set Sd = X1 + · · · + Xd. We are interested in the
efficient estimation of α (b) = P (Sd > b) as bր∞.

Recall that an unbiased estimator Zb for α (b) is said to be weakly efficient,
logarithmically efficient or asymptotically optimal if logEZ2

b / logα (b) −→ 2 as
b ր ∞. Equivalently, weak efficiency can be stated in terms of the requirement
that supb≥0EZ

2
b /α (b)2−ε < 0 for each ε > 0. Moreover, an estimator is strongly

efficient or is said to have bounded relative error if supb≥0EZ
2
b /α (b)2 < ∞. These

notions are standard in rare event simulation, see for instance Asmussen and Glynn
(2007); Bucklew (2004); Juneja and Shahabuddin (2006). Finally, a notion that
has been recently introduced (see Juneja, 2007) is that of asymptotically vanishing
relative error, which goes beyond strong efficiency and requires the second mo-
ment of the estimator to achieve the best possible asymptotic performance, namely
limb−→∞EZ2

b /α (b)2 = 1.
Most of the literature on efficient rare-event simulation for heavy-tailed systems

has focused on random walk-type models (see, for instance, Asmussen and Kroese,
2006; Juneja and Shahabuddin, 2002; Dupuis, Leder and Wang, 2006; Blanchet and
Glynn, 2007; Blanchet, Glynn and Liu, 2007). In contrast, we consider a rare-event
simulation problem that involves the sum of dependent increment distributions.
The dependence structure makes the available rare-event simulation algorithms for
tails of sums of iid heavy-tailed increments difficult to apply in our current setting
because they rely heavily on the iid assumption.

We mentioned before that our current setting relates to applications in finance,
in the context of tail probabilities of assets driven by correlated Black-Scholes mod-
els. In this context, a popular approach that is often suggested is approximating
the prices by a t-distributed model. Such approximation is motivated by means of
a Taylor expansion which is often called a Delta approximation, if it involves the
first derivative only or Delta-Gamma approximation, if the first and second deriva-
tives are considered (Glasserman, 2000). The use of t-distributions is appealing in
these settings in order to capture the heavy-tailed behavior which is present in the
original lognormal model (which is approximated by means of the Delta-Gamma
development). Efficient rare-event simulation procedures are then designed for the
Delta-Gamma approximation with t-distributed factors or quadratic forms of Gaus-
sian factors (Glasserman, Heidelberger and Shahabuddin, 1998; Glasserman, 2000).
The simulation estimators that we propose and analyze here avoid the need for a
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Delta-Gamma approximation by working directly with the lognormal factors in an
efficient way. So, we do not incur in bias errors that are inherent to the use of the
Delta-Gamma approximation and, at the same time, efficiency of the estimators is
preserved.

Our contributions are as follows. We analyze and propose two importance
sampling estimators for α (b). The first estimator is closely related to the use of
Cross-Entropy methods for finding the best tuning for the importance distribution.
Interestingly, such tuning can be related to an appropriate exponential change-of-
measure, but not directly to the underlying Gaussian distributions, but to the radial
component expressed in polar coordinates. Such change-of-measure turns out to be
equivalent to scaling the covariance matrix by a factor that grows at a suitable
slow speed as bր∞. Since the sampler involves a simple scaling, the estimator is
straightforward to implement and it can be shown to be asymptotically optimal as
b ր ∞. The second of our estimators takes advantage of the fact that the largest
of the increments dominates the large deviations behavior of the sums of correlated
lognormals. The strategy is to decompose the tail event of interest in two contribu-
tions, a dominant piece corresponding to the tail of the maximum and a remaining
contribution. The dominant contribution is analyzed by means of a strongly efficient
estimator for the maximum of multivariate Gaussians and the remaining contribu-
tion is independently handled using the importance sampling strategy utilized in
the design of the first estimator. We show that our second estimator is strongly
efficient and, under additional mild conditions, actually it possesses asymptotically
vanishing relative error.

The rest of the paper is organized as follows. Basic large deviations results for
sums of correlated lognormals are briefly discussed in Section 2. The description and
analysis of our first importance sampling estimator is given in Section 3. Section 4
contains the analysis of our strongly efficient estimator. Finally, numerical examples
are given in our last section, namely, Section 5.

2 Tail Asymptotics for Sums of Lognormals

In order to state a few basic results that we shall exploit in the construction and the
analysis of our estimator we must introduce some notation. We shall write σ2

i = Σi,i,
σi,j = Σi,j for i 6= j and ρi,j = σi,j/(σiσj); these three notions correspond to the
variance of the i-th Gaussian component and the covariance and correlation between
the i-th and j-th components respectively. We reserve the use of boldface to denote
matrices and vectors (which by convention will be in column form). The use of
capital letter is mostly reserved for random variables and the corresponding lower-
case version is used to denote specific realizations. Finally, we also use the notation
f (t) = O (g (t)) if there exists a constant m1 ∈ (0,∞) such that |f (t)| ≤ m1g (t); if,
in addition, |f (t)| ≥ m2g (t) for some m2 ∈ (0,∞), then f (t) = Θ (g (t)). Finally,
we say that f (t) = o (g (t)) as tր∞ if f (t) /g (t) −→ 0 as tր∞.

As indicated in the Introduction, Sd = X1 + · · ·+ Xd, and we also write Md =
max{Xi : 1 ≤ i ≤ d}. In addition, we let

σ2 = max
1≤k≤d

σ2
k, µ = max

k:σ2
k=σ2

µk, md := #
{
k : σ2

k = σ2, µk = µ
}
.
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The parameters σ2 and µ allow to characterize the dominant tail behavior among the
Xj’s or, equivalently, among the Yj’s – recall from the introduction that Xj = log Yj.
In order to see this, let us recall the following well known asymptotic relation (often
refered to as Mill’s ratio, cf. Resnick, 1992); if Yi ∼ N (µi, σ

2
i ) then as y ր∞

P (Yi > y) =
σi

(2π)1/2 (y − µi)
exp

(
−(y − µi)

2σ2
i

2
)

(1 + o(1)). (1)

In particular, the approximation (1) indicates that P (Xj > b) = o (P (Xi > b)) if
σ2

i > σ2
j , or σ2

i = σ2
j and µi > µj.

We shall introduce the following assumption:

Assumption A: Suppose that ρkℓ < 1 whenever σ2
k = σ2

ℓ .

The following result will be necessary for the efficiency analysis of our estimators.

Theorem 1 (Asmussen and Rojas-Nandayapa (2008)). Suppose 0 < γ (b) → γ∗ ∈
(0,∞) as b ր ∞. Define Y (b) = (Y1 (b) , . . . , Yd (b)) ∼ N (µ, γ (b)Σ), Xj (b) =
exp (Yj (b)) and put Sd (b) = X1 (b) + · · ·+Xd (b). Then, if Assumption A holds, we
have

lim
b→∞

P(Sd (b) > b)

P (µ+ σγ (b)N (0, 1) > log b)
= md,

where with a slight abuse of notation we write N(0, 1) for the random variable as
well as the distribution.

The previous result in the case in which γ (b) = 1 is proved in Asmussen and
Rojas-Nandayapa (2008). The extension to the situation γ (b) −→ γ∗ ∈ (0,∞),
which is required in our future development, follows exactly as in Asmussen and
Rojas-Nandayapa (2008) and therefore the details are omitted here.

Theorem 1 is an extension of the subexponential property for sums of i.i.d.
lognormal random variables which states that (see Embrechts, Klüppelberg and
Mikosch, 1997)

P (Sd > b) ∼
d∑

j=1

P (Xj > b) = dP (Xj > b)

as bր∞. Indeed, it follows from (1) (following the notation in Theorem 1) that if
Y (b) ∼ N (µ, γ (b)Σ) then

d∑
j=1

P (Sj (b) > b) ∼ mdP (µ+ σγ (b)N (0, 1) > log b)

as bր∞.
In the iid case, it is straightforward to show that P (Md > b) ∼ dP (Xj > b) as

bր∞ and therefore, we obtain that P (Md > b|Sd > b) −→ 1 as bր∞. In turn,
we can intuitively interpret this result by saying that sum of iid lognormals are large
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due to the contribution of a single large increment, namely, the maximum. The next
Corollary, whose proof is given at the end of the section, provides useful intuition
behind the occurrence of the event {Sd (b) > b} in our setting. In particular, it
indicates that, just as in the iid case, we have the when dealing with correlated log-
normals we also have that P (Md (b) > b|Sd (b) > b) −→ 1 as bր∞ and therefore,
the same intuition as before, namely, that the sum is large due to the contribution
of the maximum increment, remains valid.

Corollary 1. Under the assumptions of Theorem 1, if Md (b) = max{Xk (b) : 1 ≤
k ≤ d}, then

lim
b→∞

P(Md (b) > b)

P (µ+ σγ (b)N (0, 1) > log b)
= md.

Proof of Corollary 1. Note that

md = lim
b→∞

P(Sd (b) > b)

P (µ+ σγ (b)N (0, 1) > log b)

≥ lim
b→∞

P(Md (b) > b)

P (µ+ σγ (b)N (0, 1) > log b)

≥ lim
b→∞

∑d
i=1 P(Xi (b) > b)−∑j 6=i P(Xi (b) > b,Xj (b) > b)

P (µ+ σγ (b)N (0, 1) > log b)
.

We claim that the last line in the previous display is asymptotically equivalent to

lim
b→∞

∑d
i=1 P(Xi (b) > b)

P (µ+ σγ (b)N (0, 1) > log b)
= md.

To see this, write

P (Xi (b) > b,Xj (b) > b) =

 P (Xi (b) > b|Xj (b) > b) P (Xj (b) > b)

P (Xj (b) > b|Xi (b) > b) P (Xi (b) > b) .

If P(Xk (b) > b) = o (P (µ+ σγ (b)N (0, 1) > log b)) as b ր ∞ for k = i or k = j,
then the claim holds immediately, so, the interesting case is when the Xi (b) and
Xj (b) are identically distributed with P(Xk (b) > b) = P (µ+ σγ (b)N (0, 1) > log b).
However, it is well known (see, for instance, McNeil, Frey and Embrechts, 2005) that
if Z1 and Z2 are jointly standard Gaussian r.v.’s then P (Z1 > b|Z2 > b) −→ 0 as
bր∞. A straightforward adaptation of this result to the case of Gaussian random
variables with scaled covariance structure allows to conclude the previous claim in
this case and, in turn, the result.

3 Asymptotically Optimal IS via Variance

Scaling

A principle that is popular in financial risk analysis is that high variance or volatility
is associated with high risk. Of course, one has to be careful when applying this
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principle in light of what is meant by risk. Typically, the notion of risk is associated
to tail behavior and, in general, variance has little to do with tail behavior. However,
as we saw in Section 2, more precisely by means of approximation (1), in the case of
Gaussian random variables, the variance controls the tail behavior of the underlying
factors.

Using the previous principle a natural importance sampling strategy that one
might consider for computing α (b) is one that induces high variances. This motivates
considering as importance sampler a distribution such as N (µ,Σ/(1− θ)) for some
0 < θ < 1; in other words, relative to the nominal (original) probability distribution,
we just inflate the covariance matrix by the factor 1/(1 − θ). This importance
sampling distribution is denoted by Pθ (·) and we shall use the notation Eθ (·) for
the associated expectation operator.

The estimator induced by this simple strategy is

Z1 (b) =
I (Sd > b) exp

(−(Y − µ)TΣ−1(Y − µ)/2
)
/ det (Σ)1/2

exp
(−(Y − µ)TΣ−1(Y − µ)(1− θ)/2

)
det (Σ/(1− θ))1/2

= I (Sd > b)
exp

(−θ(Y − µ)TΣ−1(Y − µ)/2
)

(1− θ)d/2
.

The next lemma summarizes a useful representation for the second moment of Z1 (b)
under the importance sampling distribution. However, in order to state such rep-
resentation we introduce another family of probability measures (in addition to
the Pθ’s), which we shall denote by (Qθ : 0 ≤ θ ≤ 1). We use Qθ (·) to denote a
probability measure under which Y is N (µ,Σ/(1 + θ)).

Proposition 1.
EθZ

2
1 (b) = (1− θ2)−d/2Qθ (Sd > b) . (2)

Proof.

EθZ
2
1 (b) =

∫ I (ey1 + · · ·+ eyd > b) exp
(
−2θ (y − µ)T Σ−1 (y − µ) /2

)
(1− θ)d

×
exp

(
−(1− θ) (y − µ)T Σ−1 (y − µ) /2

)
(2π)d/2 det(Σ/(1− θ))1/2

dy1 . . . dyd

=

∫
I (ey1 + · · ·+ eyd > b)

×
exp

(
−(1 + θ) (y − µ)T Σ−1 (y − µ) /2

)
(1− θ)d/2(1 + θ)d/2 (2π)d/2 det(Σ/(1 + θ))1/2

dy1 . . . dyd

= (1− θ2)−d/2Qθ (Sd > b) .

As an immediate consequence of the previous result we obtain that the estimator
Z1 (θ) is logarithmic efficient if one chooses θ (b) −→ 1 at an appropriate speed. We
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wish to select θ close to unity because under Qθ (·) the variances are multiplied by
the factor 1/(1 + θ) and, to obtain logarithmic efficiency, we wish to match the
rate of decay of α (b)2 which, again in logarithmic terms as seen by equation (1), is
determined by the factor one half times the largest variance parameter.

Theorem 2. Suppose that ψ(b) := 1− θ (b) = o(1), then for ǫ ≥ 0

Eθ(b)Z
2
1 (b)

α (b)2−ǫ = Θ

(
(log b)1−ǫ ψ(b)−d/2 exp

(
−(ǫ− ψ(b)) (log b− µ)2

2σ2

))
. (3)

In particular, if 1/ψ(b) = o(ep(log b)2) then Z1 (b) is logarithmically efficient.

Proof. Theorem 1 applied with γ (b) = 1/(1+ θ (b)) together with a straightforward
extension of approximation (1) in the case of scaled variances yields

Qθ(b) (Sd > b) = Θ
(
P
(
µ+ σ(1 + θ (b))−1/2N(0, 1) > log b

))
= Θ

(
P
(
N(0, 1) >

log b− µ

σ(1 + θ (b))−1/2

))
= Θ

(
1

log b− µ
exp

(
−(log b− µ)2 (1 + θ (b))

2σ2

))

= Θ

(
1

log b
exp

(
−(log b− µ)2 (2− ψ(b))

2σ2

))

Since we have that

α (b)2−ǫ = Θ

(
1

(log b)2−ǫ
exp

(
−(log b− µ)2 (2− ǫ)

2σ2

))
,

the result follows by noting that(
1− θ (b)2)−d/2

= Θ
(
(ψ(b))−d/2

)
and plugging in this estimate together with that of Qθ(b) (Sd > b) into representa-
tion (2).

One can choose θ (b) in many ways which are consistent with the condition that
1− θ (b) = o

(
e−p(log b)2

)
for all p > 0 as b −→∞. One of them involves finding θ (b)

that minimizes the asymptotic expressions for the second moment of the estimator
given by (2). A simpler approach is to find the unique positive root θ (b) (which
exists for b large enough) to the equation Eθ(b)Sd = b. This root-finding procedure
does not contribute significantly to the computational cost of the algorithm because
is done just once. The next proposition shows that using the root-finding procedure
we obtain 1− θ (b) = Θ ((log b)−1) as bր∞.
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Proposition 1. The function θ(b) given as the unique root of the equation

Eθ(b)Sd = eµ1+σ2
1/(2(1−θ(b))) + · · ·+ eµd+σ2

d/(2(1−θ(b))) = b

is such that
1

log b− µ
≤ 2 (1− θ (b))

σ2
≤ 1

log b− µ− log (d)

for all b sufficiently large.

Proof. First, we note that existence and uniqueness for sufficiently large b follows
easily by virtue of a monotonicity argument. Note that

eµ+σ2/(2(1−θ(b))) ≤ Eθ(b)Sd ≤ deµ+σ2/(2(1−θ(b))).

Let θ+ (b) be the solution to the equation

eσ2/(2(1−θ+(b))) = b exp (−µ) /d.

We must have that 1− θ (b) ≤ 1− θ+ (b). However,

σ2

2 (1− θ+ (b))
= log b− µ− log (d) .

Moreover, we also have that

1− θ (b) ≥ 1− θ− (b) =
σ2

2 (log b− µ)
.

These observations imply the statement of the proposition.

The precise form of the algorithm for Z1 (b) that we implement in Section 6 is
given next.

Algorithm 1

1. Find θ := θ(b) which as the root of the equation

Eθ(b)Sd = eµ1+σ2
1/(2(1−θ(b))2) + · · ·+ eµd+σ2

d/(2(1−θ(b))2) = b

2. Sample Y ∼ N (µ,Σ/(1− θ)).

3. Return

Z1(b) = I (Sd > b)
exp

(−θ (Y − µ)TΣ−1(Y − µ)/2
)

(1− θ)d/2

As a corollary to the analysis in Theorem 2 and Proposition 1 we obtain the
following result.
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Proposition 2. The estimator Z1(b) given by Algorithm 1 satisfies

V arθZ1(b)

α (b)2 = O
(
b1/4 log bd/2+1

)
Proof. Note that

exp

(
−(1− θ (b)) (log b− µ)2

2σ2

)
= O

(
b1/4
)
,

since 1− θ(b) = σ2 (log (b)− µ)−1 /2+O (1) by Proposition 1. The result follows by
inserting this in (3).

Although the estimator Z1 (b) possesses two very convenient features, namely, is
very easy to implement and is asymptotically optimal, it also has the disadvantage
that the premultiplying factor in the asymptotic variance expression (3) might grow
substantially involving a factor such as O

(
log bd/2+1

)
. So, for moderate values of

b and d, the variance performance of the estimator might degrade in a significant
way. To cope with this problem one can introduce additional variance reduction
techniques, such as stratified sampling or conditional Monte Carlo. Preliminary
work on this direction is reported in Blanchet, Juneja and Rojas-Nandayapa (2008).
Another alternative that takes advantage of the intuitive interpretation given by
Corollary 1 and that achieves bounded relative error will be studied later, but first,
we shall provide another interpretation of the change-of-measure behind Z1 (b) using
Cross-Entropy ideas.

3.1 Cross-Entropy Implementation of IS via Variance

Scaling

The Cross-Entropy can be used to provide an answer on how to select θ (b) within
the class of importance sampling distributions given by Pθ(b) (cf. Rubinstein and
Kroese, 2004). The Cross-Entropy method is an iterative procedure which, in prin-
ciple, improves the estimator in every step. In this section we shall explore an
implementation of Cross-Entropy that starts with a choice of θ (b), based on the
solution to the equation Eθ(b)Sd = b, that, as we saw previously, can be shown to be
asymptotically optimal. Consequently, the application of the Cross-Entropy method
is intuitively expected to improve the variance performance of the corresponding es-
timator.

For our first algorithm in the previous section, we considered µ ∈ Rd and
Σ ∈ Rd×d fixed and we draw samples from

N(µ,Σ/(1− θ)).

Here we will use instead a larger, but still simple family of parametric multivariate
distributions. Our proposal is to take Σ fixed and consider

N(µ̃, Σ/(1− θ)) µ̃ ∈ Rd θ ∈ R+.
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Here we provide directly the expression for the parameters omitting the details of the
calculation. For more details on the Cross-Entropy method we refer to Rubinstein
and Kroese (2004).

The parameters for the k-th iteration of the Cross-Entropy method are described
as follows. First, we sample r iid rv’s (Yi,k : 1 ≤ i ≤ r) such that

Yi,k ∼ N(µ̃k−1,Σ/(1− θk−1)).

Given Yi,k = yi,k we compute

µ̃k :=

r∑
i=1

wi,k yi,k

r∑
i=1

yi,k

,
1

1− θk
:=

r∑
i=1

wi,k (yi,k − µ̃k)
TΣ−1(yi,k − µ̃k)

r
r∑

i=1

wi,k

(4)

where the weights wi,k are given by

wi,k := (1− θk)
−d/2 exp

(−(yi,k − µ̃k)
TΣ−1(yi,k − µ̃k)

)
exp

(−(yi,k − µ̃k−1)
TΣ−1(yi,k − µ̃k−1)

)I(Sd,i > b),

It is an easy calculus exercise to verify that this expressions satisfy the conditions
of the Cross-Entropy method. One could try to choose a larger family of impor-
tance sampling distributions to provide better estimates, however, the expressions
can quickly become complicated and more difficult to implement. We performed nu-
merical experiments (the output is given in Section 6) and noted that the algorithm
converges in a few iterations suggesting that our initial distribution is not that far
from the optimal distribution within the new family. The precise description of the
algorithm is given below.

Cross-Entropy Sampling Algorithm.

1. Let k = 1 and µ̃0 := µ. Define θ0 := θ(b) as the solution of

eµ1+σ2
1θ(b)/2 + · · ·+ eµd+σ2

dθ(b)/2 = b.

2. Simulate a sequence of random vectors r iid rv’s (Yi,k : 1 ≤ i ≤ r), Yi,k ∼
N(µ̃k,Σ/(1 − θk)) and calculate µ̃k+1 and θk+1 as given in (4). If the new
parameters satisfy a convergence criteria go to 3 (see our comments below for
a convergence criteria that we used in our numerical examples). Else make
k := k + 1 and repeat 2.

3. Return

Z̃1(b) := (1− θk)
−d/2 exp

(−(Yi,k − µ̃k)
TΣ−1(Yi,k − µ̃k)

)
exp

(−(Yi,k − µ̃k−1)
TΣ−1(Yi,k − µ̃k−1)

)I(Sd,i > b)

We might choose several criteria in Step 2 above. However, since we are interested
in the relative error we will stop iterating when the absolute difference between the
empirical coefficient of variation between the wk,i’s (for 1 ≤ i ≤ r) and that of the
wk−1,i’s is smaller than α · 100% the empirical coefficient of variation of the wk−1,i’s.
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4 Vanishing Relative Error IS

In our intuitive discussion leading to Corollary 1 we observed that large values of Sd

happen due to the contribution of a single large jump (the maximum). On the other
hand, in the previous section, we constructed a weakly efficient estimator using an
importance sampler based on the fact that, roughly speaking (i.e. in logarithmic
sense) and according to (1) and Theorem 1, the variances dictate the tail behavior
Sd. The idea in this section is to combine these two intuitive observations in order
to produce a strongly efficient importance sampling estimator. First, note that

α (b) = α1 (b) + α2 (b) ,

where

α1 (b) = P
(
max
1≤i≤d

Xi > b
)
,

α2 (b) = P
(
Sd > b, max

1≤i≤d
Xi ≤ b

)
.

In view of Theorem 1 we must have that α2 (b) = o (α1 (b)) as b ր ∞, so the
most important contribution comes from the term α1 (b). We shall refer to α2 (b) as
the “residual probability”.

The strategy is to design independent and unbiased estimators, say Z2,1 (b) and
Z2,2 (b), for the terms α1 (b) and α2 (b) respectively. This idea has been exploited
previously in the literature, see Juneja (2007), in the context of iid increment dis-
tributions. The gain comes if Z2,1 (b) is strongly efficient for α1 (b) even if Z2,2 (b)
has a coefficient of variation of order O (α (b) /α2 (b)) as b ր ∞. In other words,
Z2,2 (b) may not be strongly efficient for α2 (b), but its coefficient of variation could
grow slowly enough so that the combined estimator Z2 (b) = Z2,1 (b) + Z2,2 (b) for
α (b) is strongly efficient.

For Z2,2 (b) we propose to use (recall the notation introduced in Section 3) Pθ

as our importance sampling distribution (i.e. Y has distribution N (µ, ,Σ/(1− θ)))
with θ = θ (b) = 1− log (b)−2. The corresponding estimator takes the form

Z2,2 (b) = I
(
Sd > b, max

1≤i≤d
Xi ≤ b

)exp
(−θ (b) (Y − µ)TΣ−1(Y − µ)/2

)
(1− θ (b))d/2

.

The reason for using Pθ as importance sampler is that for estimating α2 (b) one
must induce the underlying rare event {Sd > b,max1≤i≤d Xi ≤ b} by means of more
than one large component (which might be achieved by inflating the variances), as
opposed to inducing a single large jump as suggested by Corollary 1.

Just as in Section 3, we conclude that

Eθ(b)Z2,2 (b)2 =
(
1− θ (b)2)−d/2

Qθ(b)

(
Sd > b, max

1≤i≤d
Xi ≤ b

)
. (5)

The following result, whose proof is given at the end of the section, provides the
necessarily elements to analyze the Eθ(b)Z2,2 (b)2.
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Lemma 1. Suppose that Assumption A is in force and that 1−θ (b) = Θ
(
log (b)−p)

for some p > 0. Then,
Eθ(b)Z2,2 (b)2

α1 (b)2 → 0

as bր∞.

Finally, we turn our attention to Z2,1 (b), which involves computing

α1 (b) = P(max
1≤j≤d

Yj > log (b)).

We shall use fj (yj) to denote the marginal density of Yj evaluated at yj ∈ R and y−j

to denote the vector (y1, .., yj−1, yj+1, . . . , yd). The expression f (y−j| yj) is used to
denote the conditional density of Y−j = (Y1, .., Yj−1, Yj+1, . . . , Yd)

T evaluated at y−j

given Yj = yj. The density of the vector Y evaluated at y is denoted by f (y). Note
that for all j we have that f (y) = fj (yj) f (y−j| yj). We consider as importance
sampling density g (·) defined via

g (y) =

d∑
j=1

pj (b) fj (yj) f (y−j| yj)
I (yj > log (b))

P (Yj > log (b))
, (6)

where

pj (b) = P (Yj > log (b)) /(
d∑

i=1

P (Yi > log (b))).

We shall use the notation Var g (·) to denote the variance operator under the prob-
ability measure induced by g (·).

In other words, we first select the j-th index with probability proportional to
P (Yj > log (b)). Then, given that j∗ has been selected we sample Yj∗ given that
Yj∗ > log (b). Finally, we sample the rest of the components under the nominal
distribution given that Yj∗ = yj∗ (i.e. we use the law f ( ·| yj∗)). The corresponding
estimator is

Z2,1 (b) =
f (Y)

g (Y)
=

∑d
i=1 P (Yi > log (b))∑d
j=1 I (Yj > log (b))

≤
d∑

i=1

P (Yi > log (b)) .

This sampler is proposed and studied in Adler, Blanchet and Liu (2008). It
follows immediately from Theorem 1 and Corollary 1 that if Assumption A is in
force, then the coefficient of variation of the estimator Z2,1 (b) converges to zero as
bր∞. We record this property in the following Lemma.

Lemma 2. Under Assumption A, the estimator Z2,1 (b) generated under the density
g (·) in (6) possesses asymptotically negligible coefficient of variation.

Combining the Lemma 1 and Lemma 2 we arrive at the following result, which
summarizes the performance of the estimator Z2 (b) = Z2,1 (b) + Z2,2 (b).

12



Theorem 1. Suppose that Assumption A is in force and that ψ(b) := 1 − θ (b) =
Θ
(
log (b)−p) for some p > 0. Then, the unbiased estimator Z2(b) has bounded

relative error in the sense that

sup
b≥0

VarZ2 (b)

α (b)2 = sup
b≥0

(
VarZ2,1 (b)

α (b)2 +
VarZ2,2 (b)

α (b)2

)
<∞.

Moreover, Z2 (b) vanishing relative error in the sense that

VarZ2 (b)

α (b)2 −→ 0

as bր∞.

Proof of Lemma 1. Recall (5) and note that

Qθ(b)

(
Sd > b, max

1≤i≤d
Xi ≤ b

)
=

d∑
k=1

Qθ(b)

(
Sd > b,Xk = max

1≤i≤d
Xi ≤ b

)
.

Moreover, define

Sd,−k := X1 + · · ·+Xk−1 +Xk+1 + · · ·+Xd.

and consider the following decomposition (which is valid for every β ∈ (0, 1))

d∑
k=1

Qθ(b)

(
Sd > b, Xk = max

1≤i≤d
Xk < b

)
=

d∑
k=1

Qθ(b)

(
Sd > b, Xk = max

1≤i≤d
Xk < b, Sd,−k > bβ

)
+Qθ(b)

(
Sd > b, Xk = max

1≤i≤d
Xk < b, Sd,−k < bβ

)
≤

d∑
k=1

Qθ(b)

(
Sd,−k(b) > bβ, Xk(b) > bβ/d

)
+Qθ(b)

(
b− bβ < Xk(b) < b

)
. (7)

The proof of the Lemma 1 follows as an immediate consequence of the following two

results combined with (5) and the fact that
(
1− θ (b)2)−d/2

= Θ
(
log (b)pd).

Lemma 3. There exists β ∈ (0, 1) such that for any γ ∈ R it follows that

Qθ(b)(Sd,−k > bβ , Xk > bβ/d)

bγα(b)2
= o(1) k = 1, . . . , d.

Lemma 4.

Qθ(b)(b− bβ < Xk < b)

α(b)2
= O

(
(log b)2

b1−β

)
k = 1, . . . , d

for any 0 < β < 1.

Proof of Lemma 3. For the proof we will consider two cases. The first when σk < σ
and the second when σk = σ (cf. Assumption A).

13



Case 1.

Proof. If σk 6= σ take βk := σk/σ and observe that

Qθ(b)(Sd,−k > bβk , Xk > bβk/d) ≤ Qθ(Xk > bβk/d)

= P
(
µk + σk(2− ψ(b))−1/2N(0, 1) > βk log b− log d

)
= P

(
N

(
µk + log d

βk
,

σ2
k

βk
2(2− ψ(b))

)
> log b

)
The assertion follows by using Mill’s ratio to prove that the last term is dominated
by the tail of α2(b) even after premultiplying by a power term bγ = expγ log b.

Case 2.

Proof. If σk = σ define η = max{σℓ.k/σ
2 : ℓ 6= k}. By assumption, we have that

σ2
k ≤ σ2 for k = 1, . . . , d, and thereover

1 >
∣∣max

ℓ 6=k
(ρkℓ)

∣∣ =
∣∣∣max

ℓ 6=k

(
σℓ,k

σℓσk

) ∣∣∣ ≥ ∣∣∣ max
k=1,...,d

{σℓ,k

σ2

}∣∣∣ ≥ η.

Therefore η ∈ [−1, 1), so we can choose βk close enough to 1 such that max{1/2, η} <
β2

k < 1 and (βk − η/βk)
2 + β2

k > 1; note that such βk can always be chosen by
continuity since (1− η/1)2 + 12 > 1. Consider

Qθ(b)

(
Sd,−k > bβk , Xk > bβk/d

)
≤ Qθ(b)

(
Sd,−k(b) > bβk , bβk/d < Xk < b1/βk

)
+Qθ(b)

(
Sd,−k > bβk , b1/βk < Xk

)
≤ Qθ(b)

(
Sd,−k(b) > bβk , bβk/d < Xk < b1/βk

)
+Qθ(b)

(
b1/βk < Xk

)
. (8)

Define Q′
θ(b),t(·) the probability measure under which

Y ∼ N

(
µ + Σ·,k

t− µk

σ2
, (1 + θ2)

(
Σ− Σ·,kΣk,·

σ2

))
or equivalently the conditional distribution of Y|Yk = t. Moreover, since Y has the
same distribution under the measure Q′

θ(b),t that Y + Σ·,k t/σ2
k under the measure

Q′
θ(b),0 and η was chosen in such way that η ≥ Σ·,k/σ2

k, then if b > 1 it holds that

Qθ(b)(Sd,−k > bβk , b1/βk > Xk > bβk/d)

= EQθ(b)
(
Q′

θ(b),Yk
(Sd,−k > bβk) ; βk log b < Yk < log b/βk

)
≤ EQθ(b)

(
Q′

θ(b),0(Sd,−k e
ηYk > bβk) ; βk log b < Yk < log b/βk

)
(9)

If η ≤ 0, the previous expectation is bounded by

Q′
θ(b),0

(
Sd,−k > bβk

)
Qθ(b)

(
Xk > bβk/d

)
.

The previous two factors have lognormal tails due to Theorem 1. In fact, since the
covariances of the gaussian conditional random variables are never larger than the
unconditional ones we obtain the following relation

Q′
θ(b),0

(
Sd,−k > bβk

)
Qθ(b)

(
Xk > bβk/d

)
= o

(
Pθ(b)(Xk > bβk)Pθ(b)(Xk > bβk/d)

)
,
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and in turn we have

Pθ(b)(Xk > bβk)Pθ(b)(Xk > bβk/d) = o
(
P2

θ(b)(Xk > bβk/d)
)
.

By Mill’s ratio we obtain that the last expression is equivalent to

Θ

(
1

log(b)2
exp

(
−2β2

k(1 + θ(b))(log(b)− (µk + log(d))/d)2

2σ2

))
.

Since we choose 2β2
k > 1 the last expression is dominated by the tail of α2(b) and

this result holds after multiplying by a power term bγ = exp (γ log b).

In the case where η > 0, the expression (9) can be bounded by

Q′
θ(b),0

(
Sd,−k > bβk−η/βk

)
Qθ(b)

(
Xk > bβk/d

)
Observe that βk − η/βk > 0 since we took βk

2 > η (otherwise bβk−η/βk → 0 and the
first term will go to 1); so we can use a similar argument as above to conclude that

Q′
θ(b),0

(
Sd,−k > bβk−η/βk

)
Qθ(b)

(
Xk > bβk/d

)
= o

(
1

log(b)2
exp

(
−2
(
(βk − η/βk)

2 + βk
2
)
(1 + θ(b))(log(b)− µk)

2

2σ2

))

which again is dominated by α2(b) because of the choice (βk − η/βk)
2 + βk

2 > 1.
Again, multiplying by a power function will not alter the result of the theorem. We
conclude the proof by selecting β such that

max{β1, . . . , βd} < β < 1.

Proof of Lemma 4. Take

Qθ(b)(b− bβ < Xk < b)

= Qθ(b)

(
Xk > b(1− bβ−1)

)−Qθ(b)(Xk > b)

=

(
1 + θ(b)√

2πσk log(b− bβk)
exp

(
− (log(b− bβk)− µk)

2

2σ2
k/(1 + θ(b))

)
−Qθ(b)(Xk > b)

)
(1 + o(1))

=

(
Qθ(b)(Xk > b)

[
exp

{
− 2(log b− µk) log(1− bβ−1) + log2(1− bβ−1)

2σ2
k/(1 + θ(b)2)

}
− 1

])
Using basic calculus we can verify that the expression in the brackets is

Θ

(
log b

b1−βσ2

)
Inserting this expansion in the limit we prove the lemma.
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5 Numerical Examples

We implemented the estimators described above in three examples corresponding
to low, medium and high correlations. In particular, we use 10 lognormal random
variables with parameters µi = i − 10 and σ2

i = i with common correlation as
indicated: Example 1 assumes that the Gaussian factors involved are iid; in Example
2 we use a common correlation coefficient equal to 0.4 and Example 3 involves a
common correlation coefficient equal to 0.9. The number of replication was r =
10000.

In the construction of the tables we use the following abbreviations: IS denotes
the importance sampling strategy based on variance scaling discussed in Section 3,
CE corresponds to the Cross-Entropy method also discussed in section 3, ISVE
relates to the importance sampling strategy with aymptotically vanishing error de-
scribed in Section 5. Finally, CV denotes the empirical coefficient of variation of
the estimator (i.e. the empirical standard deviation divided by the empirical mean)
and CPU Time denotes the time consumed to generate the estimation.

We compare our results against a multivariate version of the algorithm proposed
in Asmussen and Kroese (2006) which was empirically studied in Asmussen and
Rojas-Nandayapa (2006) and will be referred as AK estimator. In particular, it is
provable that the AK estimator has asymptotically vanishing relative error in the
i.i.d. case. However, it is not the case when any two random variables are positively
correlated.

In a regime with low correlations the estimator AK is favored over the proposed
algorithms in this paper. However, under medium and high correlations the proposed
algorithms outperform the AK estimator. The ISVE error is favored over the CE
and IS estimators. In all cases, the CE estimator produces a significative efficiency
improvement of the IS estimator.

Example 1: Low Correlations. Tables 1–2 show results for the independent case.
Method Estimator Standard Deviation Variation Coefficient CPU Time

AK 0.000796811 0.000013590 0.017055492 7.291000000
IS 0.000789030 0.013791689 17.479294625 1.869000000
CE 0.000817766 0.008468312 10.355427008 7.149000000
ISVE 0.000796693 0.000298392 0.374538006 9.413000000
CEVE 0.000795513 0.000052044 0.065421681 9.353000000

Table 1: P(S10 > 25000).

Method Estimator Standard Deviation Variation Coefficient CPU Time

AK 0.000355509 0.000003500 0.009843926 7.142000000
IS 0.000339130 0.007848602 23.143320859 2.171000000
CE 0.000371338 0.003719949 10.017698816 7.501000000
ISVE 0.000355512 0.000059181 0.166465560 9.908000000
CEVE 0.000355207 0.000022709 0.063932959 9.850000000

Table 2: P(S10 > 50000).
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Example 2: Medium Correlations. Tables 3–4 show results using common correlation
ρ = 0.4.
Method Estimator Standard Deviation Variation Coefficient CPU Time

AK 0.000803580 0.003486440 4.338636203 7.239000000
IS 0.000703717 0.012571480 17.864394058 1.782000000
CE 0.000824336 0.005202383 6.310999337 4.072000000
ISVE 0.000815476 0.001780942 2.183930081 8.877000000
CEVE 0.000821330 0.002219614 2.702464808 8.812000000

Table 3: P(S10 > 25000)

Method Estimator Standard Deviation Variation Coefficient CPU Time

AK 0.000375481 0.002153569 5.735486580 7.156000000
IS 0.000361793 0.007090875 19.599282297 1.588000000
CE 0.000348522 0.002622606 7.524936333 4.075000000
ISVE 0.000373001 0.002737429 7.338933047 9.048000000
CEVE 0.000364823 0.000763095 2.091687622 8.959000000

Table 4: P(S10 > 50000)

Example 3: High Correlations. Tables 5–6 show results using common correlation
ρ = 0.9.
Method Estimator Standard Deviation Variation Coefficient CPU Time

AK 0.000873648 0.018286913 20.931676902 7.488000000
IS 0.000849124 0.015421618 18.161788946 1.685000000
CE 0.000869637 0.004291614 4.934947533 4.341000000
ISVE 0.000872102 0.006837540 7.840302405 8.721000000
CEVE 0.000906716 0.008471035 9.342543426 8.661000000

Table 5: P(S10 > 25000)

Method Estimator Standard Deviation Variation Coefficient CPU Time

AK 0.000320807 0.010576502 32.968427927 7.380000000
IS 0.000419221 0.010046781 23.965358018 1.877000000
CE 0.000398255 0.002240668 5.626220343 4.671000000
ISVE 0.000413913 0.004764553 11.511000979 9.007000000
CEVE 0.000403871 0.004627017 11.456671218 8.948000000

Table 6: P(S10 > 50000)
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