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1 Summary
The closed form of a rotational version of the famous Crofton formula is derived. In
the simplest case where the sectioned object is a compact subset of Rd with a (d−1)-
dimensional manifold of class C2 as boundary, the rotational average of intrinsic
volumes measured on sections passing through a fixed point can be expressed as an
integral over the boundary involving hypergeometric functions. In the more general
case of a compact subset of Rd of positive reach, the rotational average also involves
hypergeometric functions.
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2 Introduction
Local stereology is a collection of sampling designs based on sections through a
reference point of the structure under study, cf. [3]. The majority of the local stere-
ological methods have been derived in the nineties, including methods of estimating
number, length, surface area and volume. These methods have found numerous
applications, in particular in the microscopic analysis of tissue samples, cf. [2] and
the references therein.

Only very recently, a rotational integral formula has been derived for general
intrinsic volumes, cf. [4]. This new formula opens up the possibility for developing
local stereological methods of estimating curvature (for instance, integral of mean
curvature). The formula shows how rotational averages of intrinsic volumes mea-
sured on sections are related to the geometry of the sectioned object X ⊂ Rd. The
rotational average considered is of the following form∫

Ld
j

Vk(X ∩ Lj)dLdj , (1)
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0 ≤ k ≤ j ≤ d, where Ldj is the set of j−dimensional linear subspaces in Rd, Vk is
the kth intrinsic volume and dLdj is the element of the rotation invariant measure
on Ldj with total measure ∫

Ld
j

dLdj = cd,j.

Here,
cd,j =

σdσd−1 · · · σd−j+1

σjσj−1 · · ·σ1

,

where σk = 2π
k
2 /Γ(k

2
) is the surface area of the unit sphere in Rk.

In the simplest case whereX ⊂ Rd is compact with a (d−1)-dimensional manifold
of class C2 as boundary ∂X, the rotational average (1) takes the following form,
provided 0 /∈ ∂X, ∫

∂X

∑
I⊆{1,...,d−1}
|I|=j−1−k

wI,j(x)
∏
i∈I

κi(x)Hd−1(dx), (2)

where Hk denotes the k−dimensional Hausdorff measure, κi(x), i = 1, . . . , d−1, are
the principal curvatures at x ∈ ∂X and wI,j is a real non-negative function defined
on ∂X, cf. [4]. If X is a ball, the function wI,j is constant and the rotational average
is therefore proportional to the (d − j + k)th intrinsic volume of X which has the
following integral representation

Vd−j+k(X) =
1

σj−k

∫
∂X

∑
|I|=j−1−k

∏
i∈I

κi(x)Hd−1(dx),

cf. [7, Section 13.6] and [8, Section V.3].
In the present paper, we derive a closed form expression of the function wI,j

involving hypergeometric functions. This expression allows us to study in detail
how the rotational average depends on the local geometry of X in the non-spherical
case.

The paper is organized as follows. In Section 2, we define the function ωI,j and
provide background knowledge on hypergeometric functions and other issues. In
Section 3, the closed form expression of ωI,j is derived while Section 4 contains a
simplified expression of the rotational Crofton formula, under additional assump-
tions. The proof of one of the lemmas is deferred to an appendix.

3 Preliminaries

In [4], it was shown that the function wI,j satisfies the following equation

σj−k|x|d−jwI,j(x) = Qj(x, n(x), AI(x)), (3)

where n(x) is the outer unit normal to ∂X at x and AI(x) is the linear subspace
spanned by the principal directions of curvature ai(x) with i /∈ I. Furthermore, for
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any x ∈ Rd \ {0}, n ∈ Sd−1 and q−dimensional linear subspace Aq ⊆ Rd perpendic-
ular to n, Qj is given by the following integral representation

Qj(x, n,Aq) =

∫
Ld

j(1)

G(Lj, Aq)
2

|p(n|Lj)|d−q dLdj(1), (4)

where Ldj(1) is the set of j−dimensional subspaces containing the line spanned by x,
p(·|Lj) indicates orthogonal projection onto Lj and G(Lj, Aq) can be regarded as a
generalized sinus of the angle between the subspaces Lj and Aq. A precise definition
of G is provided at the end of this section. In the more general case of a compact
subset X ⊂ Rd of positive reach, the rotational average (1) can also be expressed in
terms of the functions ωI,j, cf. [4].

Note that in (2) and (3), we consider Aq with

q = d− 1− (j − 1− k) = d− j + k.

It follows that for such Aq we have j + q ≥ d. If j = 1 and x⊥n, then the integrand
in (4) is not defined; in this case we set Q1(x, n, n⊥) = 0. In all other cases, n 6⊥ Lj
for dLdj(1)-almost all Lj. Note that Qj(x, n,Aq) is finite whenever x 6⊥ n since
|p(n|Lj)| ≥ |x · n|/|x|.

Only in the cases q = 1 and q = d − 1, [4] succeeded in finding closed form
expressions forQj, involving hypergeometric functions. Recall that a hypergeometric
function can be represented by a series of the following form

F (a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a+ k)Γ(b+ k)

Γ(c+ k)

zk

k!
.

When a = 0 or b = 0, the hypergeometric function is identically equal to 1. The
series converges absolutely for |z| < 1. In case 0 < b < c, we can also represent the
hypergeometric series by an integral

F (a, b; c; z) =
1

B(b, c− b)
∫ 1

0

(1− zy)−ayb−1(1− y)c−b−1dy.

When z = 1, the extra assumption c − a − b > 0 is necessary. Transformations
formulae for hypergeometric functions are often useful. In particular, we shall use
the following formulae, cf. [1, (15.2.17) and (15.2.20)],

(c− a− 1)F (a, b; c; z) + aF (a+ 1, b; c; z) = (c− 1)F (a, b; c− 1; z) (5)
c(1− z)F (a, b; c; z) + (c− b)zF (a, b; c+ 1; z) = cF (a− 1, b; c; z). (6)

For q = d− 1, it was shown in [4] that

Qj(x, n,Aq) = cd−1,j−1F (−1/2, (d− j)/2; (d− 1)/2; sin2 β), (7)

where β = ∠(x, n). For q = 1, we must have j = d−1. For Aq = span{a}, a ∈ Sd−1,
it was shown in [4] for x and n linearly independent that,

Qd−1(x, n, span{a})

=
π(d−1)/2

2Γ((d+ 1)/2)
sin2 α

[
sin2 θF

(d− 1

2
,
1

2
;
d+ 1

2
; sin2 β

)
+ cos2 θF

(d− 1

2
,
3

2
;
d+ 1

2
; sin2 β

)]
, (8)
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where α = ∠(x, a), β = ∠(x, n) and θ = ∠(m, p(a|x⊥)). Here, m = π(n|x⊥) :=
p(n|x⊥)/|p(n|x⊥)|. Note that in the case where x is a multiple of a, θ is not well-
defined. Then, (8) should be understood as

Qd−1(x, n, span{a}) = 0.

In the next section, we address the remaining cases where 1 < q < d − 1. Let
us end this section by giving the precise definition of the function G which enters
into Qj. For this purpose, we let for p ≤ d and x1, . . . , xp ∈ Rd P (x1, . . . , xp) be the
parallelotope spanned by x1, . . . , xp,

P (x1, . . . , xp) = {λ1x1 + · · ·+ λpxp : 0 ≤ λi ≤ 1, i = 1, . . . , p}.
We let

∇p(x1, . . . , xp) = Hp(P (x1, . . . , xp)).

Definition 1 (cf. [9] p. 532). Let Lp ∈ Ldp and Lq ∈ Ldq . Choose an orthonormal
basis of Lp ∩ Lq and extend it to an orthonormal basis of Lp and an orthonormal basis
of Lq. Then, G(Lp, Lq) is the d-dimensional volume of the parallelotope spanned by
these vectors.

It follows from Definition 1 that if dim(Lp + Lq) < d then

G(Lp, Lq) = 0.

In the case dim(Lp + Lq) = d and either p = 0 or q = 0, G(Lp, Lq) = 1. Finally, if
dim(Lp + Lq) = d and 0 < p, q < d, we can choose orthonormal bases for

Lp ∩ Lq : a1, . . . , ap+q−d
Lp ∩ (Lp ∩ Lq)⊥ : b1, . . . , bd−q
Lq ∩ (Lp ∩ Lq)⊥ : c1, . . . , cd−p.

Then,

G(Lp, Lq) = ∇d (a1, . . . , ap+q−d, b1, . . . , bd−q, c1, . . . , cd−p)

= ∇d−q
(
p(b1|L⊥q ), . . . , p(bd−q|L⊥q )

)
= ∇d−p

(
p(c1|L⊥p ), . . . , p(cd−p|L⊥p )

)
,

cf. [3, Proposition 2.13 and 2.14].

4 Closed form of Qj

We will now derive a closed form of Qj(x, n,Aq) valid for 1 < q < d − 1. Possible
values for j are j = d− q, . . . , d− 1. Note that we must have d ≥ 3 and j ≥ 2. We
let α = ∠(x,Aq). The angle β and the unit vector m are defined as in the previous
section. We shall assume that x lies in a general position with respect to n and Aq,
so that α, β ∈ (0, π/2).

We first show the following lemma. We use here and in the following the notation
Lsr(M) for the set of r-dimensional linear subspaces contained in M ∈ Lds.
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Lemma 2. Let Aq ∈ Ld−1
q (n⊥), where Ld−1

q (n⊥) is the set of q-subspaces contained
in n⊥. Let Lj = Lj−1 ⊕ span{x}, where Lj−1 ∈ Ld−1

j−1(x⊥). Then,

G(Lj, Aq)
2 = sin2 αG(x⊥)(Lj−1, p(Aq|x⊥))2 + cos2 αG(x⊥)(Lj−1, Aq ∩ x⊥)2, (9)

where the upper index of G(x⊥) indicates that the function G is considered relatively
in x⊥. The second summand vanishes when j + q = d.

Proof. Consider first the case j + q = d. In this case,

dim(Lj−1 + Aq ∩ x⊥) < d− 1

and the second summand of (9) vanishes because

G(x⊥)(Lj−1, Aq ∩ x⊥) = 0.

In order to prove (9) in the case j+q = d, first notice that if dim(Lj +Aq) < d, then
left- and right-hand sides of (9) are both zero. If dim(Lj +Aq) = d, we can proceed
as follows. Let {a1, . . . , aq} be an orthonormal basis of Aq such that a1 = π(x|Aq)
and ai⊥x, i = 2, . . . , q. Then we have

G(Lj, Aq) = ∇q

(
p(a1|L⊥j ), p(a2|L⊥j ), · · · , p(aq|L⊥j )

)
= ∇q

(
p(p(a1|x⊥)|L⊥j ), p(a2|L⊥j ), · · · , p(aq|L⊥j )

)
= |p(a1|x⊥)|∇q

(
p(π(a1|x⊥)|L⊥j ), p(a2|L⊥j ), · · · , p(aq|L⊥j )

)
= |p(a1|x⊥)|∇q

(
p(π(a1|x⊥)|L⊥j−1), p(a2|L⊥j−1), · · · , p(aq|L⊥j−1)

)
= | sin ∠(x,Aq)|G(x⊥)

(
Lj−1, p(Aq|x⊥)

)
.

Let now j + q > d and choose an orthonormal basis {u1, . . . , uj−1} of Lj−1. Given
an index set I ⊆ {1, . . . , j − 1}, we shall write LI for the linear hull of {ui | i ∈ I}.
We have by [4, Lemma 1],

G(Lj, Aq)
2 =

∑
|I|=d−q

G(LI , Aq)
2 +

∑
|I|=d−q−1

G(LI + span{x}, Aq)2.

By applying the identity [3, Proposition 5.1]

G(LI , Aq) = cos ∠(x,Aq)G(x⊥)(LI , Aq ∩ x⊥)

to each summand in the first sum and by repeating the above procedure from the
case q + j = d to each summand of the second sum, we obtain

G(Lj, Aq)
2

=
∑
|I|=d−q

cos2 ∠(x,Aq)G(x⊥)(LI , Aq ∩ x⊥)2

+
∑

|I|=d−q−1

sin2 ∠(x,Aq)G(x⊥)(LI , p(Aq|x⊥))2

= cos2 ∠(x,Aq)G(x⊥)(Lj−1, Aq ∩ x⊥)2 + sin2 ∠(x,Aq)G(x⊥)(Lj−1, p(Aj−1|x⊥))2.
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Let Bp ∈ Ld−1
p (x⊥). Define

Id−1
j−1 (m,Bp) =

∫
Ld−1

j−1

f(cos2 ∠(m,Lj−1))G(x⊥)(Lj−1, Bp)
2dLd−1

j−1,

where
f(z) = (cos2 β + z sin2 β)−

d−q
2 .

Using Lemma 2, we have by definition of Qj

Qj(x, n,Aq) = sin2 αId−1
j−1 (m, p(Aq|x⊥)) + cos2 αId−1

j−1 (m,Aq ∩ x⊥). (10)

Note that the second term vanishes when j + q = d. In the next lemma, we give a
useful expression for Id−1

j−1 (m,Bp) in terms of an integral over a half-sphere that can
be used for Bp = p(Aq|x⊥) and Bp = Aq ∩ x⊥.

Lemma 3. Let m ∈ Sd−2(x⊥), the unit sphere in x⊥, Bp ∈ Ld−1
p (x⊥) and f :

R+ → R+ measurable. Then,

Id−1
j−1 (m,Bp) = cd−3,j−2

∫
Sd−2(x⊥)∩m+

f(cos2 ∠(v,m))

tanj−2 ∠(v,m)
J(v)Hd−2(dv),

where m+ = {x ∈ Rd | x ·m > 0},

J(v) = cos2 ∠(u,Bp)
(
kd−3
j−2,p−1 sin2 ∠(v,Bp ∩ u⊥) + kd−3

j−2,p−2 cos2 ∠(v,Bp ∩ u⊥)
)
,

u = π(m|v⊥) and kdi,j = i!j!
(i+j−d)!d!

if i+ j ≥ d and 0 otherwise. Note that the second
term in J(v) vanishes whenever d = j + p.

Proof. We apply the coarea formula for the mapping g : Lj−1 7→ π(m|Lj−1) defined
on Ld−1

j−1 ∩ {L : m 6⊥ L} with Jacobian Jj−2g(Lj−1) = tanj−2 ∠(m,Lj−1) (cf. [5,
Lemma 4.2]). Using that

g−1(v) = {Lj−2 ⊕ span{v} | Lj−2 ∈ Ld−3
j−2(x⊥ ∩ v⊥ ∩m⊥)},

we get

Id−1
j−1 (m,Bp)

=

∫
Ld−1

j−1

f(cos2 ∠(m,Lj−1))G(x⊥)(Lj−1, Bp)
2dLd−1

j−1

=

∫
Sd−2(x⊥)∩m+

∫
g−1(v)

f(cos2 ∠(m,Lj−1))G(x⊥)(Lj−1, Bp)
2

Jj−2g(Lj−1)
dLd−3

j−2Hd−2(dv)

=

∫
Sd−2(x⊥)∩m+

f(cos2 ∠(m, v))

tanj−2 ∠(m, v)

∫
g−1(v)

G(x⊥)(Lj−1, Bp)
2dLd−3

j−2Hd−2(dv)

=

∫
Sd−2(x⊥)∩m+

f(cos2 ∠(m, v))

tanj−2 ∠(m, v)

∫
Ld−3

j−2

G(x⊥)(Lj−2 ⊕ span{v}, Bp)
2dLd−3

j−2Hd−2(dv).
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It is enough to show that the inner integral is equal to cd−3,j−2 times the Jacobian
J(v) in the lemma. Using [5, Lemma 4.1], we can apply the decomposition

G(x⊥)(Lj−1, Bp)
2 = cos2 ∠(u,Bp)G(x⊥∩u⊥)(Lj−1, Bp ∩ u⊥)2.

Apply Lemma 2 to G(x⊥∩u⊥)(Lj−1, Bp ∩ u⊥)2, we get

G(x⊥∩u⊥)(Lj−1, Bp ∩ u⊥)2

= sin2 ∠(v,Bp ∩ u⊥)G(x⊥∩u⊥∩v⊥)(Lj−2, p(Bp ∩ u⊥|v⊥))2

+ cos2 ∠(v,Bp ∩ u⊥)G(x⊥∩u⊥∩v⊥)(Lj−2, Bp ∩ u⊥ ∩ v⊥)2.

Note that the second term vanishes when d = p + j. By integrating over Ld−3
j−2 and

using the identity ∫
Ld

i

G(Li, Lj)
2dLdi = kdijc(d, i),

(cf. [5, Lemma 4.3]), we finally obtain the expression for J(v).

Using Lemma 3, it is possible to express Id−1
j−1 in terms of hypergeometric func-

tions. The somewhat lengthy proof is deferred to the Appendix. The result is
formulated in the lemma below.

Lemma 4. Let the situation be as in Lemma 3. Then,

Id−1
j−1 (m,Bp) =

1

p
ς(j + 1, p+ 1, d+ 2)

×
[ (
p− (d− 1) cos2 θ

)
F

(
d− q

2
,
d− j

2
;
d+ 1

2
; sin2 β

)
+ (d− 1) cos2 θF

(
d− q

2
,
d− j

2
;
d− 1

2
; sin2 β

)]
,

where ς(j, p, d) = kd−3
j−2,p−1cd−3,j−2 and θ = ∠(m,Bp).

We are now ready to formulate and prove the main result. It turns out that the
result also holds for q = 1, d = 1, see below the proof of Theorem 5.

Theorem 5. Let q = 1, . . . , d − 1 and j = d − q, . . . , d − 1. Furthermore, let
x ∈ Rd \ {0}, n ∈ Sd−1 and let Aq ∈ Ld−1

q (n⊥). Let α = ∠(x,Aq), β = ∠(x, n) and
cos θ = cosα cosβ

sinα sinβ
. Suppose that α, β ∈ (0, π

2

)
. Then,

Qj(x, n,Aq) =
(d− j)
q

ς(j + 1, q + 1, d+ 2)

×
{

sin2 α

[
sin2 θF

(
d− q

2
,
d− j

2
;
d+ 1

2
; sin2 β

)
+ cos2 θF

(
d− q

2
,
d− j + 2

2
;
d+ 1

2
; sin2 β

)]
+
j + q − d
d− j F

(
d− q

2
,
d− j

2
;
d+ 1

2
; sin2 β

)}
.
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Proof. We use the form of Qj(x, n,Aq) given in (10). In the first summand in (10)
we have a factor of the form Id−1

j−1 (m,Bp) with p = dim p(Aq|x⊥) = q. We need to
determine ∠(m, p(Aq|x⊥)). Since

m =
n− p(n|x)

|p(n|x⊥)| =
1

sin β

(
n− cos β

|x| x
)
,

we have
p
(
m|p(Aq|x⊥)

)
=

1

sin β
p
(
n|p(Aq|x⊥)

)
.

By using the decomposition Aq = span{π(x|Aq)} ⊕ (Aq ∩ x⊥) and that n⊥Aq, we
get

p
(
n|p(Aq|x⊥)

)
= p
(
n|π(π(x|Aq)|x⊥)

)
,

where

π(π(x|Aq)|x⊥) =
π(x|Aq)− p(π(x|Aq)|x)

|p(π(x|Aq)|x⊥)| =
1

sinα

(
π(x|Aq)− cosα

x

|x|
)
.

Since n⊥π(x|Aq), we obtain

cos θ = |p(m|p(Aq|x⊥))| = |π(π(x|Aq)|x⊥) · n|
sin β

=
1

sinα sin β

(
cosα

x · n
|x|

)
=

cosα cos β

sinα sin β
.

In the second summand we have a similar factor with p = dim(Aq ∩x⊥) = q− 1 and
θ = π

2
, i.e cos θ = 0. Lemma 4 together with the identity

ς(j + 1, q, d+ 2) =
j + q − d

q
ς(j + 1, q + 1, d+ 2)

implies

Qj(x, n,Aq) =
ς(j + 1, q + 1, d+ 2)

q

×
{

sin2 α

[
(q − (d− 1) cos2 θ)F

(
d− q

2
,
d− j

2
;
d+ 1

2
; sin2 β

)
+ (d− 1) cos2 θF

(
d− q

2
,
d− j

2
;
d− 1

2
; sin2 β

)]
+ cos2 α(j + q − d)F

(
d− q

2
,
d− j

2
;
d+ 1

2
; sin2 β

)}
, (11)

where cos θ = cosα cosβ
sinα sinβ

. The result now follows by using (5).

Note that in case q = 1 and j = d − 1 , the equation in Proposition 5 reduces
to (8). When q = d − 1, we have ∠(x,Aq) = π

2
− ∠(x, n); hence, cosα = sin β and

cos θ = 1. Then, by applying (6) and (11) and using the identity ς(j + 1, d, d+ 2) =
cd−1,j−1, we obtain (7).
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5 The sum of Qj

The resulting expression for the rotational average, obtained by combining (2), (3)
and one of the expressions for Qj, is quite evolved. In this section, we discuss
simplified expression for the integrand of (2), under additional assumptions. First,
we derive a result for the sum of Qj.

Proposition 6. Let the situation be as in Theorem 5. Then, for 0 ≤ k < j < d,∑
I⊆{1,...,d−1}
|I|=j−1−k

Qj(x, n,AI(x)) = cd−1,j−1

(
j − 1

k

)
F

(
j − k − 2

2
,
d− j

2
;
d− 1

2
; sin2 β

)
.

Proof. The sum of the Qj−terms can be determined, using Theorem 5. Recall that

AI(x) = span{ai(x)|i /∈ I}.
If we let αI = ∠(x,AI(x)) and q = d− j + k, we find∑
|I|=j−1−k

cos2 αI =
∑

|I|=j−1−k
|p(x|AI(x))|2 =

∑
|I|=j−1−k

∑
i/∈I

(x · ai(x))2

=
∑
|I|=q

∑
i∈I

(x · ai(x))2 =
d−1∑
i=1

(
d− 2

q − 1

)
(x · ai(x))2

=

(
d− 2

q − 1

)∣∣p(x| span{a1(x), . . . , ad−1(x)}∣∣2 =

(
d− 2

q − 1

)
|p(x|n⊥)|2

=

(
d− 2

q − 1

)
sin2 β

and ∑
|I|=j−1−k

sin2 αI =

(
d− 1

q

)
−
(
d− 2

q − 1

)
sin2 β =

(
d− 2

q − 1

)(
d− 1

q
− sin2 β

)
.

By using (5), (6) and the relation d−1
q

(
d−2
q−1

)
ς(j+ 1, q+ 1, d+ 2) =

(
j−1

d−q−1

)
cd−1,j−1, we

arrive at the following formula∑
|I|=j−1−k

Q(x, n,AI(x))

=
ς(j + 1, q + 1, d+ 2)

q

(
d− 2

q − 1

)[
(j − 1) sin2 βF

(
d− q

2
,
d− j

2
;
d+ 1

2
; sin2 β

)
+ (d− 1) cos2 βF

(
d− q

2
,
d− j

2
;
d− 1

2
; sin2 β

)]
= cd−1,j−1

(
j − 1

d− q − 1

)
F

(
d− q − 2

2
,
d− j

2
;
d− 1

2
; sin2 β

)
= cd−1,j−1

(
j − 1

k

)
F

(
j − k − 2

2
,
d− j

2
;
d− 1

2
; sin2 β

)
.
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In case q = 1 and j = d − 1, the expression above reduces to the one in [4],
namely

d−1∑
i=1

Q(x, n, ai(x)) = cd−1,d−2F

(
d− 3

2
,
1

2
;
d− 1

2
; sin2 β

)
.

By using the series expansion of the hypergeometric function, the first order approx-
imation of

∑
Q becomes

∑
|I|=j−1−k

Q(x, n,AI(x)) ≈
(

j − 1

d− q − 1

)(
1 +

(d− q − 2)(d− j)
2(d− 1)

sin2 β

)
cd−1,j−1

=

(
j − 1

k

)(
1 +

(j − k − 2)(d− j)
2(d− 1)

sin2 β

)
cd−1,j−1.

We can use Proposition 6 to simplify the integrand of (2) for x ∈ ∂X satisfying

κi(x) = κ(x), i = 1, . . . , d− 1.

We find

∑
I⊆{1,...,d−1}
|I|=j−1−k

wI,j(x)
∏
i∈I

κi(x) =

(
j−1
k

)
cd−1,j−1

σj−k

1

|x|d−j κ(x)j−1−k

× F
(
j − k − 2

2
,
d− j

2
;
d− 1

2
; sin2 β

)
.

In particular, if Bd is the unit ball in Rd, we get∫
Ld

j

Vk(B
d ∩ Lj)dLdj =

(
j − 1

k

)
cd−1,j−1

σd
σj−k

.

This result can also be derived directly as follows∫
Ld

j

Vk(B
d ∩ Lj)dLdj = cd,jVk(B

j)

= cd,j

(
j

k

)
(j − k)

j

σj
σj−k

=

(
j − 1

k

)
cd−1,j−1

σd
σj−k

.
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Appendix: Proof of Lemma 4

In the proof of Lemma 4, we will utilize the following integral equation∫ ∞
0

(
cos2 β +

sin2 β

1 + r2

)−a
(r2)b(1 + r2)−cdr

=
1

2
B

(
b+

1

2
, c−

(
b+

1

2

))
F

(
a, b+

1

2
; c; sin2 β

)
, (12)

valid for a, b, c ∈ R+ whenever 0 < b+ 1
2
< c and β ∈ (0, π

2

)
. When β = π

2
, the extra

assumption c− (a+ b+ 1
2
) > 0 is necessary.

Let the situation be as in Lemma 3. If we let γ = ∠(v,m) ∈ [0, π] be the angle
between span(m) and span(v), we may write m = p(m|v) + p(m|v⊥) = v cos γ +
u sin γ, hence

|p(v|Bp ∩ u⊥)| = |p(m|Bp ∩ u⊥)|
cos γ

.

Consequently, by using Lemma 3,

Id−1
j−1 (m,Bp)

ς(j, p, d)
=

∫
Sd−2(x⊥)∩m+

|p(u|Bp)|2f(cos2 γ)

tanj−2 γ

×
(

1− d− j − 1

p− 1
|p(m|Bp ∩ u⊥)|2 cos−2 γ

)
Hd−2(dv),

where ς(j, p, d) = kd−3
j−2,p−1cd−3,j−2. We shall use the area formula with ψ(v) =

π(m|v⊥) = u defined on Sd−2(x⊥∩m+)\span(m). Since ψ is bijective with Jacobian
Jd−2ψ(v) = tand−3 ∠(m, v⊥) = tan−(d−3) ∠(m, v) and ζ = ∠(u,m) = π

2
− γ, the area

formula implies that

Id−1
j−1 (m,Bp)

ς(j, p, d)
=

∫
Sd−2(x⊥)∩m+

|p(u|Bp)|2f(sin2 ζ)

tand−j−1 ζ

×
(

1− d− j − 1

p− 1
|p(m|Bp ∩ u⊥)|2 sin−2 ζ

)
Hd−2(du),

where f(z) = (cos2 β + z sin2 β)−
d−q
2 . Hence,

Id−1
j−1 (m,Bp) = ς(j, p, d)

(
K1 − d− j − 1

p− 1
K2

)
, (13)

where

K1 =

∫
Sd−2(x⊥)∩m+

|p(u|Bp)|2f(sin2 ζ)

tand−j−1 ζ
Hd−2(du) (14)

and

K2 =

∫
Sd−2(x⊥)∩m+

|p(m|Bp ∩ u⊥)|2|p(u|Bp)|2f(sin2 ζ) cosd−j−1 ζ

sind−j+1 ζ
Hd−2(du). (15)
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Using the coarea formula with ϕ : (Sd−2(x⊥)∩m+) \ span(m)→ Sd−3(x⊥ ∩m⊥)
defined by ϕ(u) = π(u|m⊥) = u0 and with Jd−3ϕ(u) = (sin ∠(u,m))−(d−3), we obtain
(note: m+ = {x ∈ Rd|x ·m > 0})

K1 =

∫
Sd−3(x⊥∩m⊥)

∫
ϕ−1(u0)

|p(u|Bp)|2f(sin2 ∠(u,m))

tand−j−1 ∠(u,m)
J−1
d−3ϕ(u)H1(du)Hd−3(du0)

=

∫
Sd−3(x⊥∩m⊥)

∫
ϕ−1(u0)

|p(u|Bp)|2f(sin2 ∠(u,m))

× cosd−j−1 ∠(u,m) sinj−2 ∠(u,m)H1(du)Hd−3(du0).

Define ξ : R+ → ϕ−1(u0) by ξ(r) = u0+rm
|u0+rm| = u with J1ξ(r) = 1

1+r2
. The area

formula implies

K1 =

∫
Sd−3(x⊥∩m⊥)

∫ ∞
0

|p(ξ(r)|Bp)|2f(sin2 ∠(ξ(r),m))

× cosd−j−1 ∠(ξ(r),m) sinj−2 ∠(ξ(r),m)J1ξ(r)drHd−3(du0).

We now use that sin2 ∠(ξ(r),m) = 1
1+r2

and

|p(ξ(r)|Bp)|2 =
|p(u0|Bp)|2 + r2|p(m|Bp)|2 + 2rp(u0|Bp) · p(m|Bp)

1 + r2
,

which, in combination with the equality∫
Sd−3(x⊥∩m⊥)

p(u0|Bp) · p(m|Bp)Hd−3(du0) = 0

and (12), lead us to the following expression

K1 =

∫
Sd−3(x⊥∩m⊥)

∫ ∞
0

(|p(u0|Bp)|2 + r2|p(m|Bp)|2)f( 1
1+r2

)(r2)
d−j−1

2

(1 + r2)
d+1
2

drHd−3(du0)

=
1

2
B

(
d− j

2
,
j + 1

2

)
F

(
d− q

2
,
d− j

2
;
d+ 1

2
; sin2 β

)
H1

+
1

2
B

(
d− j + 2

2
,
j − 1

2

)
F

(
d− q

2
,
d− j + 2

2
;
d+ 1

2
; sin2 β

)
|p(m|Bp)|2σd−2,

with H1 =
∫
Sd−3(x⊥∩m⊥)

|p(u0|Bp)|2Hd−3(du0). The convergence criteria in (12) are
satisfied since 1 < j < d and 0 < β < π

2
by assumption. Note that the differences

between K1 and K2 are the extra terms sin2 ζ and

|p(m|Bp ∩ u⊥)|2 = |p(m|Bp)|2 |p(u|Bp ∩m⊥)|2
|p(u|Bp)|2 .

Hence, K2 can be rewritten as

K2 = |p(m|Bp)|2
∫
Sd−2(x⊥)∩m+

f(sin2 ζ)|p(u|Bp ∩m⊥)|2 cosd−j−1 ζ

sind−j+1 ζ
Hd−2(du).
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By applying the area formula for the mappings ϕ : u 7→ π(u|m⊥) and ξ : r 7→ u0+rm
|u0+rm| ,

the integral above becomes∫
Sd−3(x⊥∩m⊥)

∫
ϕ−1(u0)

f(sin2 ζ)|p(u|Bp ∩m⊥)|2 cosd−j−1 ζ sinj−4 ζH1(du)Hd−3(du0)

=

∫
Sd−3(x⊥∩m⊥)

|p(u0|Bp ∩m⊥)|2
∫ ∞

0

f
(

1
1+r2

)
(r2)

d−j−1
2

(1 + r2)
d−1
2

drHd−3(du0),

where we used |p(ξ(r)|Bp ∩m⊥)|2 = |p(u0|Bp∩m⊥)|2
1+r2

for the last equality. Using (12),
we obtain

K2 =
|p(m|Bp)|2

2
B

(
d− j

2
,
j − 1

2

)
F

(
d− q

2
,
d− j

2
;
d− 1

2
; sin2 β

)
H2

with H2 =
∫
Sd−3(x⊥∩m⊥)

∣∣p(u0|Bp ∩m⊥)
∣∣2Hd−3(du0). It remains to calculate the two

integrals H1 and H2.
Define ψ : Sd−3(x⊥ ∩m⊥)→ Sp−1(Bp) by ψ(u0) = π(u0|Bp) = u1 with

Jp−1ψ(u0) =
(sin2 θ + cos2 θ cos2 δ(u1))

1
2

|p(u0|Bp)|p−1
.

Here, u1 = π(u0|Bp), m1 = π(m|Bp), δ = δ(u1) = ∠(u1,m1) and θ = ∠(m,Bp). The
area formula gives us

H1 =

∫
Sp−1(Bp)

∫
ψ−1(u1)

|p(u0|Bp)|p+1Hd−p−2(du0)
Hp−1(du1)

(sin2 θ + cos2 θ cos2 δ)
1
2

.

Define ζ : m⊥ ∩B⊥p ∩ x⊥ → ψ−1(u1) by

ζ(ω) =
(sin θ)u1 + (cos θ cos δ)m2 + ω

|(sin θ)u1 + (cos θ cos δ)m2 + ω| , ω ∈ m⊥ ∩B⊥p ∩ x⊥,

where m2 = π(m|B⊥p ). The Jacobian of ζ is

Jζ(ω) =
(sin2 θ + cos2 θ cos2 δ)

1
2

(sin2 θ + cos2 θ cos2 δ + |ω|2)
d−p−1

2

.

Thus, by using the fact that

|p(ζ(ω)|Bp)| = sin θ

|(sin θ)u1 + (cos θ cos δ)m2 + ω| ,

the area formula implies∫
ψ−1(u1)

|p(u0|Bp)|p+1Hd−p−2(du0)

=

∫
m⊥∩B⊥p ∩x⊥

sinp+1 θ

(sin2 θ + cos2 θ cos2 δ + |ω|2)
p+1
2

Jζ(ω)Hd−p−2(dω)

= (sin2 θ + cos2 θ cos2 δ)
1
2

∫
m⊥∩B⊥p ∩x⊥

sinp+1 θ

(sin2 θ + cos2 θ cos2 δ + |ω|2)
d
2

Hd−p−2(dω).
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Hence,

H1 =

∫
Sp−1(Bp)

∫
m⊥∩B⊥p ∩x⊥

sinp+1 θ

(sin2 θ + cos2 θ cos2 δ + |ω|2)
d
2

Hd−p−2(dω)Hp−1(du1)

= σd−p−2

∫
Sp−1(Bp)

∫ ∞
0

sinp+1 θ

(sin2 θ + cos2 θ cos2 δ + r2)
d
2

rd−p−3drHp−1(du1)

= σd−p−2bd−p−3,d sinp+1 θ

∫
Sp−1(Bp)

1

(sin2 θ + cos2 θ cos2 δ)
p+2
2

Hp−1(du1),

where σm = Hm−1(Sm−1) = 2π
m
2

Γ( m
2

)
and

bm,n =

∫ ∞
0

tm

(1 + t2)
n
2

dt =
1

2
B

(
m+ 1

2
,
n−m− 1

2

)
.

The last integral can be evaluated after substitution with t = sin2 δ(u1)

H1 = p ωd−2 sinp+1 θF

(
p+ 2

2
,
p− 1

2
;
p

2
; cos2 θ

)
= ωd−2(p− cos2 θ), (16)

where ωd = π
d
2 /Γ(1 + d

2
) is the volume of the unit ball in Rd and the second equality

follows from the relation

F

(
p+ 2

2
,
p− 1

2
;
p

2
; z

)
=

(
1− 1

p
z

)
(1− z)−

p+1
2 ,

whenever z 6= 1. The computation of H2 can be carried out similarly. Define
ψ : Sd−3(x⊥∩m⊥)→ Sp−2(Bp∩m⊥) by ψ(u0) = π(u0|Bp∩m⊥) = u1 with Jψ(u0) =
|p(u0|Bp ∩m⊥)|−(p−2). The coarea formula implies

H2 =

∫
Sp−2(Bp∩m⊥)

∫
ψ−1(u1)

|p(u0|Bp ∩m⊥)|2Jψ(u0)−1Hd−p−1(du0)Hp−2(du1)

=

∫
Sp−2(Bp∩m⊥)

∫
ψ−1(u1)

|p(u0|Bp ∩m⊥)|pHd−p−1(du0)Hp−2(du1).

The inner integral can be calculated using the area formula with ζ(ω) = u1+ω
|u1+ω|

defined on (Bp ∩ m⊥)⊥ ∩ m⊥ with Jd−p−1ζ(ω) =
(

1
1+|ω|2

) d−p
2 . Using the equality

|p(ζ(ω)|Bp ∩m⊥)|2 = 1
1+|ω|2 , we obtain∫

ψ−1(u1)

|p(u0|Bp ∩m⊥)|pHd−p−1(du0)

=

∫
(Bp∩m⊥)⊥∩m⊥∩x⊥

(
1

1 + |ω|2
) p

2

Jd−p−1ζ(ω)Hd−p−1(dω)

=

∫
(Bp∩m⊥)⊥∩m⊥∩x⊥

(
1

1 + |ω|2
) d

2

Hd−p−1(dω)

= σd−p−1

∫ ∞
0

(
1

1 + r2

) d
2

rd−p−2dr

= σd−p−1bd−p−2,d.
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Hence,
H2 = σp−1σd−p−1bd−p−2,d = ωd−2(p− 1). (17)

By inserting (16) into (14) and (17) into (15) we get

K1 =
ωd−2(p− cos2 θ)

2
B

(
d− j

2
,
j + 1

2

)
F

(
d− q

2
,
d− j

2
;
d+ 1

2
; sin2 β

)
+
σd−2 cos2 θ

2
B

(
d− j + 2

2
,
j − 1

2

)
F

(
d− q

2
,
d− j + 2

2
;
d+ 1

2
; sin2 β

)
,

and

K2 =
ωd−2(p− 1) cos2 θ

2
B

(
d− j

2
,
j − 1

2

)
F

(
d− q

2
,
d− j

2
;
d− 1

2
; sin2 β

)
,

which, in combination with (13), implies

Id−1
j−1 (m,Bp)

=
1

2
ς(j, p, d)ωd−2B

(
d− j

2
,
j − 1

2

)
×
[
(p− cos2 θ)F

(
d− q

2
,
d− j

2
;
d+ 1

2
; sin2 β

)
+ (d− 2) cos2 θ

d− j
d− 1

F

(
d− q

2
,
d− j + 2

2
;
d+ 1

2
; sin2 β

)
− (d− j − 1)

p− 1
(p− 1) cos2 θ

j − 1

d− 1
F

(
d− q

2
,
d− j

2
;
d− 1

2
; sin2 β

)]
.

By using (5) the expression above can be rewritten

Id−1
j−1 (m,Bp) =

1

2
ς(j, p, d)ωd−2B

(
d− j

2
,
j − 1

2

)
×
[(

(j − 1)p

d− 1
− j − 1 + (d− 2)(j − 1)

d− 1
cos2 θ

)
× F

(
d− q

2
,
d− j

2
;
d+ 1

2
; sin2 β

)
+ (j − 1) cos2 θF

(
d− q

2
,
d− j

2
;
d− 1

2
; sin2 β

)]
.

Use
1

p
ς(j + 1, p+ 1, d+ 2) =

(j − 1)ς(j, p, d)ωd−2B(d−j
2
, j−1

2
)

2(d− 1)

and the proof is complete.
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