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1 Introduction

For a compact subset X of Rd, satisfying certain regularity conditions, the classical
Crofton formula relates integrals of intrinsic volumes defined on j−dimensional affine
subspaces to intrinsic volumes of X,

∫

Fd
j

Vk(X ∩ Fj)dF d
j = cd,j,kVd−j+k(X),

j = 0, 1, . . . , d, k = 0, 1, . . . , j. Here, Fdj is the set of j−dimensional affine subspaces
and dF d

j is the element of the motion invariant measure on j−dimensional affine
subspaces in Rd. Furthermore, Vk(X), k = 0, 1, . . . , d, are the intrinsic volumes
of X. Finally, cd,j,k is a known constant.

Motivated by applications in local stereology, a rotational version of the Crofton
formula has recently been derived, cf. [7]. This formula shows how rotational av-
erages of intrinsic volumes measured on sections passing through fixed points are
related to the geometry of the sectioned object. More specifically, for a compact
subset X ⊂ Rd of positive reach, the functionals βj,k, satisfying

∫

Ld
j

Vk(X ∩ Lj)dLdj = βj,k(X),

j = 0, 1, . . . , d, k = 0, 1, . . . , j, have been determined in [7]. For k = j, βj,j(X)
is a simple integral while in the case k < j, βj,k(X) is a complicated integral over
the unit normal bundle of X, involving principal curvatures and hypergeometric
functions.

In the present paper, we address the ‘opposite’ problem of finding functionals
αj,k, satisfying the following rotational integral equation

∫

Ld
j

αj,k(X ∩ Lj)dLdj = Vd−j+k(X), (1)

j = 0, 1, . . . , d and k = 0, 1, . . . , j. The solution of the problem is inspired by some
recent work reported in [3] and [4].
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2 The general solution

The main tools for deriving solutions to (1) are the classical Crofton formula and a
well-known geometric measure decomposition from integral geometry.

The motion invariant measure on j−dimensional affine subspaces can be decom-
posed as follows. For Fj = x + Lj, where Lj is a j−dimensional linear subspace
and x ∈ L⊥j , we have dF d

j = dxd−jdLdj where dLdj is the element of the rotation
invariant measure on Ldj , the set of j−dimensional linear subspaces and, for given
Lj ∈ Ldj , dxd−j is the element of the Lebesgue measure in L⊥j . The total mass of
dLdj is chosen to be

∫

Ld
j

dLdj = cd,j,

where

cd,j =
σdσd−1 · · ·σd−j+1

σjσj−1 · · ·σ1

(2)

and σk = 2πk/2/Γ(k/2) is the surface area of the unit sphere in Rk. With this choice,
the constant in the classical Crofton formula becomes

cd,j,k = cd,j ·
Γ( j+1

2
)Γ(d+k−j+1

2
)

Γ(k+1
2

)Γ(d+1
2

)
. (3)

The geometric measure decomposition used in the derivation of solutions to (1)
concerns the motion invariant measure on r−dimensional affine subpaces in Rd.
According to Gual-Arnau and Cruz-Orive [4], we have for r = 0, 1, . . . , d− 1 that

dF d
r = d(O,Fr)

d−r−1dF r+1
r dLdr+1, (4)

where d(O,Fr) denotes the distance from Fr to the origin O. Note that for r = 0,
(4) reduces to the standard polar decomposition of Lebesgue measure

dxd = |x|d−1dx1dLd1.

We formulate the main result of this paper in the proposition below.

Proposition 1. Let Y be a compact subset of Rj of positive reach. For j =
0, 1, . . . , d, k = 0, 1, . . . , j, the functional

αj,k(Y ) =
1

cd,j−1,k−1

∫

Fj
j−1

d(O,Fj−1)d−jVk−1(Y ∩ Fj−1)dF j
j−1 (5)

is a solution to (1).
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Proof. Using the Crofton formula and the measure decomposition (4), we find that

∫

Ld
j

αj,k(X ∩ Lj)dLdj

=
1

cd,j−1,k−1

∫

Ld
j

∫

Fj
j−1

d(O,Fj−1)d−jVk−1(X ∩ Lj ∩ Fj−1)dF j
j−1dLdj

=
1

cd,j−1,k−1

∫

Ld
j

∫

Fj
j−1

d(O,Fj−1)d−(j−1)−1Vk−1(X ∩ Fj−1)dF j
j−1dLdj

=
1

cd,j−1,k−1

∫

Fd
j−1

Vk−1(X ∩ Fj−1)dF d
j−1

= Vd−j+k(X).

3 The case k = j

For k = j, Proposition 1 provides a functional with rotational average equal to
the volume Vd(X). This functional can be simplified considerably, as shown in the
proposition below. We use here and in the following the notation p(x|Lr) for the
orthogonal projection of x ∈ Rd onto Lr ∈ Ldr .

Proposition 2. Let the situation be as in Proposition 1 and suppose that k = j.
Then,

αj,j(Y ) =
1

cd−1,j−1

∫

Y

|z|d−jdzj.

Proof. Using that Fj−1 = Lj−1 + x, where x ∈ L⊥j−1, we find

αj,j(Y ) =
1

cd,j−1,j−1

∫

Fj
j−1

d(O,Fj−1)d−jVj−1(Y ∩ Fj−1)dF j
j−1

=
1

cd,j−1,j−1

∫

Lj
j−1

∫

L⊥j−1

|x|d−jVj−1(Y ∩ (Lj−1 + x))dx1dLjj−1

=
1

cd,j−1,j−1

∫

Lj
j−1

∫

L⊥j−1

∫

Y ∩(Lj−1+x)

|x|d−jdyj−1dx1dLjj−1

=
1

cd,j−1,j−1

∫

Lj
j−1

∫

Y

|p(z|L⊥j−1)|d−jdzjdLjj−1

=
1

cd,j−1,j−1

∫

Y

|z|d−j
(∫

Lj
j−1

|p(z|L⊥j−1)|d−j
|z|d−j dLjj−1

)
dzj

=
1

cd,j−1,j−1

∫

Y

|z|d−j
(

cj,j−1

B(1
2
, j−1

2
)

∫ 1

0

y
d−j−1

2 (1− y)
j−3
2 dy

)
dzj.

At the last equality sign, we have used [6, Proposition 3.9]. The result now follows
immediately, using (2) and (3).
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4 The case k < j

It is also possible to make the expression of the functional αj,k more explicit for
k < j. We will concentrate on the case where ∂X is a (d−1)−dimensional manifold
of class C2. For k = 0, 1, . . . , d−1, the kth intrinsic volume has the following integral
representation

Vk(X) =
1

σd−k

∫

∂X

∑

|I|=d−1−k

∏

i∈I
κi(x)Hd−1(dx), (6)

where κi(x), i = 1, . . . , d−1, are the principal curvatures of ∂X at x ∈ ∂X and Hd−1

denotes the (d−1)-dimensional Hausdorff measure. Since ∂X is a (d−1)-dimensional
manifold of class C2, ∂X∩Fj is a (j−1)-dimensional manifold of class C2 for almost
all Fj ∈ Fdj . The principal curvatures of ∂X ∩ Fj at x ∈ ∂X ∩ Fj is denoted by
κFj ,i(x), i = 1, . . . , j − 1.

The proposition below gives a more explicit expression for αj,k for k < j than
the one given in (5).

Proposition 3. Let the situation be as in Proposition 1. Suppose k < j. Suppose
that Y ⊂ Rj has a boundary ∂Y which is a (j−1)−dimensional manifold of class C2.
For z ∈ ∂Y , let n(z) be the unit normal vector of ∂Y at z. Then,

cd,j−1,k−1 σj−k αj,k(Y )

=

∫

∂Y

∫

Lj
j−1

κ(z;Lj−1 + z) |p(n(z)|Lj−1)| |p(z|L⊥j−1)|d−jdLjj−1Hj−1(dz),

where for Fj−1 ∈ Fdj−1 and z ∈ ∂Y ∩ Fj−1

κ(z;Fj−1) =

{
1 if k = j − 1∑
|I|=j−k−1

∏
i∈I κFj−1,i(z) if k < j − 1.

Proof. According to (5), we have

αj,k(Y ) =
1

cd,j−1,k−1

∫

Fj
j−1

d(O,Fj−1)d−jVk−1(Y ∩ Fj−1)dF j
j−1

=
1

cd,j−1,k−1

∫

Lj
j−1

∫

L⊥j−1

|x|d−jVk−1(Y ∩ (Lj−1 + x))dx1dLjj−1.

Using the integral representation (6) of intrinsic volumes, the expression above be-
comes

cd,j−1,k−1αj,k(Y )

=
1

σ(j−1)−(k−1)

∫

Lj
j−1

∫

L⊥j−1

|x|d−j
∫

∂Y ∩(Lj−1+x)

κ(y;Lj−1 + x)H(j−1)−1(dy)dx1dLjj−1

=
1

σj−k

∫

Lj
j−1

∫

L⊥j−1

∫

∂Y ∩(Lj−1+x)

|p(y|L⊥j−1)|d−jκ(y;Lj−1 + y)Hj−2(dy)dx1dLjj−1.
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At the first equality sign we have used that ∂(Y ∩ Fj−1) = ∂Y ∩ Fj−1 for almost all
Fj−1. Using [6, Propositions 2.10 and 5.2] and Fubini, we finally get

cd,j−1,k−1αj,k(Y )

=
1

σj−k

∫

Lj
j−1

∫

∂Y

|p(n(z)|Lj−1)| |p(z|L⊥j−1)|d−jκ(z, Lj−1 + z)Hj−1(dz)dLjj−1

=
1

σj−k

∫

∂Y

∫

Lj
j−1

κ(z, Lj−1 + z)|p(n(z)|Lj−1)| |p(z|L⊥j−1)|d−jdLjj−1Hj−1(dz).

For k = j − 1, the expression for αj,k(Y ) given in Proposition 3 can be further
simplified thanks to the following proposition. The proof is referred to the Appendix.

Proposition 4. Let Lj ∈ Ldj , j = 1, . . . , d. Let x and y be unit vectors in Lj. Then,
for all m,n ∈ N,

∫

Lj
j−1

|p(x|Lj−1)|m |p(y|L⊥j−1)|ndLjj−1

=
σj−1

2
B

(
n+ 1

2
,
m

2
+
j − 1

2

)
F

(
−m

2
,−n

2
;
j − 1

2
, sin2 ∠(x, y)

)
.

As a consequence of Proposition 4, we get for m = 1 and n = d− j

αj,j−1(Y ) =
1

2cd−1,j−1

∫

∂Y

|z|d−jF
(
−1

2
,−d− j

2
;
j − 1

2
; sin2 ∠(n(z), z)

)
Hj−1(dz).

Appendix

In this appendix, we will prove Proposition 4. Without loss of generality, we assume
that x · y > 0. For simplicity, we write dzj instead of Hj(dz).

The Gauss hypergeometric series or hypergeometric function is defined for a, b, c ∈
R and z ∈ [−1, 1] as

F (a, b; c; z) = F (b, a; c; z) =
∞∑

k=0

(a)k(b)k
(c)k

zk

k!
,

where (x)k is the rising sequential product or Pochhammer symbol defined for a
non-negative integer k and x ∈ R by

(x)k =

{
Γ(x+k)

Γ(x)
if x > 0

(−1)k Γ(−x+1)
Γ(−x−k+1)

if x ≤ 0.

Note that (x)k = 0 whenever x ∈ {0,−1,−2, . . .} and k > −x.
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An application of [6, Propositions 3.2 and 3.3] gives
∫

Lj
j−1

|p(x|Lj−1)|m |p
(
y|L⊥j−1

)
|ndLjj−1

=

∫

Lj
1

|p(x|L⊥1 )|m |p (y|L1) |ndLj1

=
1

2

∫

Sj−1

|p(x|span{ω}⊥)|m |p (y|span{ω}) |ndωj−1

=
1

2

∫

Sj−1

√
1− (x · ω)2

m |y · ω|ndωj−1

=
1

2

∞∑

k=0

(
m
2

k

)
(−1)k

∫

Sj−1

|x · ω|2k|y · ω|ndωj−1. (7)

Now note that
∫

Sj−1

|x · ω|2k|y · ω|ndωj−1

=

∫

Sj−1

|p(p(ω|x⊕ y)|x)|2k|p(p(ω|x⊕ y)|y)|ndωj−1. (8)

In order to compute (8), we will use the following lemma.

Lemma 1. Let Bp ∈ Ldp. Then, for any non-negative measurable function g :
Rd → R,

∫

Sd−1

g(p(x|Bp))dx
d−1 =

σd−p
2

∫

Sp−1(Bp)

∫ 1

0

g
(
t

1
2x0

)
t

p−2
2 (1− t) d−p−2

2 dtdxp−1
0 ,

where Sp−1(Bp) is the unit sphere in Bp.

Proof. First, we use the co-area formula with

ψ : Sd−1 → Sp−1(Bp)

x→ π(x|Bp) := p(x|Bp)/|p(x|Bp)|.
The (p− 1)-dimensional Jacobian of ψ is given by

Jp−1ψ(x, Sd−1) = |p(x|Bp)|−(p−1).

Hence, the co-area formula yields
∫

Sd−1

g(p(x|Bp))dx
d−1 =

∫

Sd−1

g (|p(x|Bp)|π(x|Bp)) dxd−1

=

∫

Sp−1(Bp)

∫

ψ−1(x0)

g(|p(x|Bp)|x0)|p(x|Bp)|p−1dxd−pdxp−1
0 . (9)

Next, let x0 ∈ Sp−1(Bp) be fixed and apply the area formula with

ξ : B⊥p → ψ−1(x0)

ω 7→ ω + x0

|ω + x0|
.
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The (d− p)-dimensional Jacobian of ξ is

Jd−pξ(ω, S
d−1) =

(
1

1 + |ω|2
) d−p+1

2

.

Hence, since ξ maps B⊥p bijectively onto ψ−1(x0) and |p(ξ(ω)|Bp)| = 1
|ω+x0| =

(
1

1+|ω|2
) 1

2 , we have

∫

ψ−1(x0)

g(|p(x|Bp)|x0)|p(x|Bp)|p−1dxd−p

=

∫

ψ−1(x0)

∑

ω∈ξ−1(x)

g(|p(ξ(ω)|Bp)|x0)|p(ξ(ω)|Bp)|p−1dxd−p

=

∫

ψ−1(x0)

∑

ω∈ξ−1(x)

g

((
1

1 + |ω|2
) 1

2

x0

)(
1

1 + |ω|2
) p−1

2

dxd−p

=

∫

B⊥p

g

((
1

1 + |x|2
) 1

2

x0

)(
1

1 + |x|2
) p−1

2
(

1

1 + |x|2
) d−p+1

2

dxd−p

=

∫

B⊥p

g

((
1

1 + |x|2
) 1

2

x0

)(
1

1 + |x|2
) d

2

dxd−p.

Using [6, Proposition 2.8], we get

∫

B⊥p

g

((
1

1 + |x|2
) 1

2

x0

)(
1

1 + |x|2
) d

2

dxd−p

= σd−p

∫ ∞

0

g

((
1

1 + t2

) 1
2

x0

)(
1

1 + t2

) d
2

td−p−1dt. (10)

Substitution with s = 1
1+t2

yields

∫ ∞

0

g

((
1

1 + t2

) 1
2

x0

)(
1

1 + t2

) d
2

td−p−1dt

=
1

2

∫ 1

0

g
(
s

1
2x0

)
s

p−2
2 (1− s) d−p−2

2 ds

The last equation combined with (9) and (10) implies

∫

Sd−1

g(p(x|Bp))dx
d−1 =

σd−p
2

∫

Sp−1(Bp)

∫ 1

0

g
(
t

1
2x0

)
t

p−2
2 (1− t) d−p−2

2 dtdxp−1
0 .
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Applying Lemma 1 with B = span{x, y}, we get
∫

Sj−1

|p(p(ω|x⊕ y)|x)|2k|p(p(ω|x⊕ y)|y)|ndωj−1

=
σj−2

2

∫

S1(B)

∫ 1

0

tk|p(ω0|x)|2ktn/2|p(ω0|y)|nt 2−2
2 (1− t) j−2−2

2 dtdω1
0

=
σj−2

2

∫

S1(B)

|p(ω0|y)|n|p(ω0|x)|2kdω1
0

∫ 1

0

t
n+2k

2 (1− t) j−4
2 dt

=
σj−2B

(
n
2

+ k + 1, j−2
2

)

2

∫

S1(B)

|p(ω0|y)|n|p(ω0|x)|2kdω1
0. (11)

Successive application of [6, Proposition 3.2] and [5, Corollary 4.2] yield
∫

S1(B)

|p(ω0|y)|n|p(ω0|x)|2kdω1
0 = 2

∫

L2
1(B)

|p(x|L1)|2k|p(y|L1)|ndL2
1

= 2

∫ 1

−1

∫

S1∩y⊥
(1− t2)

2−1−2
2 |p(x|tx+

√
1− t2ω)|2k|p(y|tx+

√
1− t2ω)|ndωdt

= 2

∫ 1

−1

∫

S1∩y⊥
(1− t2)

2−1−2
2 |t|n|t(y · x) +

√
1− t2(x · ω)|2kdωdt

= 2

∫ 1

−1

(1− t2)
2−1−2

2 |t|n
(
|t(y · x) +

√
1− t2

√
1− (y · x)2|2k

+ |t(y · x)−
√

1− t2
√

1− (y · x)2|2k
)

dt.

Using the binomial formula, the last expression becomes

2
2k∑

l=0

(
2k

l

)∫ 1

−1

(
(1− t2)

2−1−2
2 |t|ntl(y · x)l(1− t2)

2k−l
2

√
1− (x · y)2

2k−l

+ (−1)l(1− t2)
2−1−2

2 |t|ntl(y · x)l(1− t2)
2k−l

2

√
1− (x · y)2

2k−l
)

dt

= 4
k∑

l=0

(x · y)2l(1− (x · y)2)k−l
(

2k

2l

)∫ 1

0

(1− t2)k−l−
1
2 tn+2ldt

= 2
k∑

l=0

(x · y)2l(1− (x · y)2)k−l
(

2k

2l

)
B

(
n

2
+ l +

1

2
, k − l +

1

2

)
.

By applying the duplication formula for the Gamma function,

Γ(2z) = Γ(z)Γ

(
z +

1

2

)
π−

1
2 22z−1,

we obtain

2 sin2k ∠(x, y)B

(
n

2
+

1

2
, k +

1

2

) k∑

l=0

(−k)l
(
n
2

+ 1
2

)
l(

1
2

)
l

(− tan−2 ∠(x, y))
l

l!

= 2 sin2k ∠(x, y)B
(
n
2

+ 1
2
, k + 1

2

)
F
(
−k, n

2
+ 1

2
; 1

2
;− tan−2 ∠(x, y)

)
.
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According to [1, (15.3.4)] with z = cos2 ∠(x, y),

sin2k ∠(x, y)F
(
−k, n

2
+ 1

2
; 1

2
;− tan−2 ∠(x, y)

)
= F

(
−k,−n

2
; 1

2
; cos2 ∠(x, y)

)
.

By insertion in (11), we get

∫

Sj−1

|x · ω|2k|y · ω|ndωj−1

= σj−2B

(
n

2
+ k + 1,

j − 2

2

)
B

(
k +

1

2
,
n

2
+

1

2

)
F

(
−k,−n

2
;
1

2
; cos2 ∠(x, y)

)
.

Hence, (7) becomes

∫

Lj
j−1

|p(x|Lj−1)|m |p
(
y|L⊥j−1

)
|ndLjj−1

=
σj−2

2

∞∑

k=0

(
m
2

k

)
(−1)kB

(
n

2
+ k + 1,

j − 2

2

)
B

(
n+ 1

2
, k +

1

2

)

· F
(
−k,−n

2
;
1

2
; cos2 ∠(x, y)

)
.

Since

σj−2

2

(
m
2

k

)
(−1)kB

(
n

2
+ k + 1,

j − 2

2

)
B

(
n+ 1

2
, k +

1

2

)

=
σj−1

2
B

(
j − 1

2
,
n+ 1

2

) (−m
2

)
k

k!

(
1
2

)
k(

n+j
2

)
k

,

we now have
∫

Lj
j−1

|p(x|Lj−1)|m |p
(
y|L⊥j−1

)
|ndLjj−1

=
σj−1

2
B

(
j − 1

2
,
n+ 1

2

) ∞∑

k=0

(
−m

2

)
k

(
1
2

)
k(

n+j
2

)
k

F
(
−k,−n

2
; 1

2
; cos2 ∠(x, y)

)

k!
.

Using the power series expansion of the hypergeometric function, then expanding
(1− sin2 ∠(x, y))k and applying the identities

(
k+l
l

)

(k + l)!
=

1

l!

1

k!
and (a)k+l = (a)l(a+ l)k,

it is straightforward to prove that the last expression equals

σj−1

2
B

(
n+ 1

2
,
m

2
+
j − 1

2

)
F

(
−m

2
,−n

2
;
j − 1

2
; sin2 ∠(x, y)

)
.

The proof is complete.
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