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Preface

This thesis consists of three papers. The �rst paper Lévy based Cox point

processes includes background material, basic de�nitions and other core ma-
terial. The second paper Completely random signed measures answers some
fundamental probability theoretical questions regarding Lévy bases, while
the third paper Strong mixing with a view toward spatio-temporal estimating

functions is concerned with estimation theory for (non-stationary) Cox point
processes.

Before the actual papers, I provide an informal readers guide as introduc-
tion where I put emphasis on the �ndings I favor.
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A readers guide

Below, I give an informal readers guide to the three papers of the thesis.
Section number etc. refer to the paper in question. References can be found
immediately after the readers guide.

Paper 1: Lévy based Cox point processes

Cox point processes are point processes with random intensity, i.e. given a
realization of the generating random �eld Λ = λ the resulting point process
is a Poisson point process with intensity λ.

The most widely used Cox point process models are log-Gaussian Cox
processes (LGCPs) driven by log-Gaussian random �elds and shot-noise Cox
processes (SNCPs) driven by shot-noise random �elds. The introduction
of Paper 1 provides a short discussion of the literature and points out the
major result that both LGCPs and SNCPs can be constructed through kernel
smoothings of so-called Lévy bases.

A Lévy basis L de�ned on Rd is a stochastic process indexed by the
bounded Borel subsets of Rd such that

• Its values on disjoint sets are independent

• The values of L are in�nitely divisible

• Given any disjoint sequence of bounded Borel sets (An) such that ∪An

is a bounded Borel subset

L (∪An) =
∑

L (An) , P − a.s.

Section 2 provides theoretical background material which also enables the
reader to understand integration wrt. Lévy bases. Since the random �elds
driving (log) Lévy based Cox point processes are kernel smoothings of Lévy
bases this is an important Section. Lemma 1 gives su�cient conditions for
integrability of a kernel wrt. a Lévy basis. Necessary and su�cient conditions
for integrability are given in [2], but their conditions are not as user-friendly
as our conditions.

For readers unfamiliar with Cox point processes some key concepts are
summarized in Section 3.

The de�nition of Lévy driven Cox processes is given in Section 4.1. Sec-
tion 4.2 provides nth order product densities (Proposition 3), and probability
generating functional (Proposition 6). A mixing result (Proposition 7) that
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might be interesting for inference of stationary point processes is given in Sec-
tion 4.3, while Section 4.4 provides examples of Lévy driven Cox processes
incl. the important SNCPs.

The de�nition of log Lévy driven Cox Processes is given in Section 5.1.
As shown in Section 5.4.2. these include log-Gaussian Cox point processes
driven by stationary Gaussian random �elds - but it also includes the log
shot-noise Cox processes and combinations of these two classes as discussed
in Section 5.1. A traditional argument for using LGCPs is that the Gaussian
random �eld model random events - events that make the intensity increase or
decrease. Using a stationary Gaussian random �eld will however on average
provide equal increases and decreases of the intensity. Log shot-noise random
�elds can be used to separate (and quantify) the amount of respectively
increases and decreases in the intensity generated by random events. The
use of a positive shot-noise random �eld in a log Lévy driven Cox process can
describe the positive e�ect on the intensity by random events and a negative
shot-noise random �eld can be used to describe the negative e�ect on the
intensity by random events. (see �gure 3 on page 21 of Paper 1). Section 5.2
provides details on nth order product densities while a mixing result (useful
in a stationary setting) is provided by Proposition 11 in Section 5.3.

Finally in Section 6 combinations of Lévy driven Cox processes and log
Lévy driven Cox processes are given. Section 7 discusses inhomogeneous
(log) Lévy driven Cox processes.

In the concluding discussion in Section 8 spatio-temporal extensions are
given in Section 8.2 and in Section 8.3 inference based on summary statistics
is mentioned.
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Paper 2: Completely random signed measures

A Lévy basis can be seen as a 'generalized' random measure. It is however
not a random (signed) measure in the usual sense, since its realizations may
not be (signed) Radon measures.

A question to be answered is: How fundamental is the concept of a Lévy
basis and how is it related to the usual notion of random measures? These
questions are answered in the paper Completely random signed measures.

According to Lemma 3.1 the assumption of in�nitely divisible values of
Lévy bases (that might seem odd at �rst) is a natural consequence of the
independence assumption, if the values of the Lévy basis on bounded Borel
sets are assumed to have �nite variance or the Lévy basis is dominated by
Lebesgue measure. The proof of Lemma 3.1 uses a result in [1] and a trans-
lation of the problem to a one dimensional stochastic process setting, a trick
that is also used in other proofs.

The question: 'When is a Lévy basis a (signed) random measure?' is
answered by Corollary 5.5 (in conjunction with Lemma 4.6 and De�nition
5.4).

As a side-e�ect of these investigations we were able to give a characteri-
zation of completely random signed measures that extends known results for
completely random measures (Theorem 4.7).
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Paper 3: Strong mixing with a view toward spatio-temporal

estimating functions

As described in Lévy based Cox point processes the Lévy based Cox processes
constitute a large and �exible class of point processes driven by random �elds.
Most often second-order reweighted stationarity or even other kinds of non-
stationary models are natural to consider in an applied situation. As noted
in Section 1.1 the recent literature on Cox point processes focuses on second-
order reweighted stationary processes on the form

Λ (x) = exp (β · z (x)) Ψ (x) , (1)

where β is a parameter vector, z is covariate information and Ψ is a stationary
�eld.

The literature on Cox point processes de�ned on (rectangular) observa-
tion windows in R2 has so far used minimum contrast methods for summary
statistics to obtain parameter estimates - most recently in [3]. A major draw-
back of these methods is that the summary statistics are only well-de�ned
if the Cox point process under investigation is stationary or second-order
re-weighted stationary. Instead of using summary statistics, the Bernoulli
composite likelihood introduced in [4] can be used in much more general
settings (see Section 2.1).

However departing from stationarity introduces di�culties when proving
asymptotic results. The concept of strong mixing that is essential for consis-
tency and asymptotic normality (Section 2.2) of parameter estimates in the
non-stationary setting is introduced in Section 1.1.

For the �rst time in the literature on Cox point processes de�ned on
(rectangular) observation windows in R2 we obtain parameter estimates for
a process which is neither stationary nor second-order re-weighted station-
ary (see the short simulation study in Section 2.3). The fact that parameter
estimates can be obtained in a non-stationary setting will make Cox point
processes more attractive when modeling the dynamics of natural phenom-
ena.

Furthermore we introduce a �exible class of shot-noise Cox processes
based on the (in geostatistical context) popular Whittle-Matern family of
covariance functions (Section 1.2). The �exible second-order structure of
this family of stationary random shot-noise �elds makes it a good choice
of the �eld Ψ in formula (1), when Cox point processes are used to obtain
information on the e�ect of covariates.
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T.N. Thiele Centre for Applied Mathematics in Natural Science

Department of Mathematical Sciences

University of Aarhus, Denmark

Abstract

In this paper, we introduce Lévy driven Cox point processes (LCPs) as Cox
point processes with driving intensity function Λ defined by a kernel smooth-
ing of a Lévy basis (an independently scattered infinitely divisible random
measure). We also consider log Lévy driven Cox point processes (LLCPs)
with Λ equal to the exponential of such a kernel smoothing. Special cases are
shot noise Cox processes, log Gaussian Cox processes and log shot noise Cox
processes. We study the theoretical properties of Lévy based Cox processes,
including moment properties described by nth order product densities, mixing
properties, specification of inhomogeneity and spatio-temporal extensions.

Keywords: Cox process; infinitely divisible distribution; inhomogeneity; kernel
smoothing; Lévy basis; log Gaussian Cox process; mixing; product density;
shot noise Cox process
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1 Introduction

Cox point processes constitute one of the most important and versatile classes
of point process models for clustered point patterns [12, 13, 30, 31, 33, 41].
During the last decades several new classes of Cox point process models have
appeared in the literature – e.g. shot noise Cox processes defined by means of
generalized gamma measures [5], log Gaussian Cox processes [9, 29] and shot
noise Cox processes [27]. These models share some common properties and
differ in others, depending on how the driving intensity measure of the Cox
process is constructed. One of the aims of this paper is to introduce a unified
framework which is able to include all the different models mentioned above
thus showing them in new light, investigate their relationships and define
further natural extensions of those models.

The starting point for us will be the notion of a Lévy basis L – an indepen-
dently scattered infinitely divisible random measure. The short terminology of
a Lévy basis has been introduced in [2, 3]. Independently scattered infinitely
divisible random measures have been studied in detail in [36]. Lévy bases in-
clude Poisson random measures, mixed Poisson random measures, Gaussian
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random measures as well as so-called G−measures [5]. Thus having in mind
the construction of the shot noise Cox processes the second step in defining
the driving intensity Λ of the Cox process should be a kernel smoothing of
the Lévy basis

Λ(ξ) =

∫
k(ξ, η)L(dη),

where k is a kernel (weight) function. By this we arrive at the definition of
the Lévy driven Cox processes (LCPs) – i.e. Cox processes with the random
driving intensity function defined by an integral of a weight function with
respect to a Lévy basis. This construction has earlier been discussed by Robert
L. Wolpert under the name of Lévy moving average processes [48], see also
[49, 50]. It will be shown that LCPs are, under regularity conditions, shot
noise Cox processes with additional random noise.

Furthermore, it is also possible to define the driving intensity as the expo-
nential of a kernel smoothing of a Lévy basis (now allowing for non-positive
weight functions and non-positive Lévy bases) thus arriving at the log Lévy
driven Cox processes (LLCPs). It will be shown that LLCPs have, under reg-
ularity conditions, a driving field of the form Λ = Λ1 ·Λ2, where Λ1 and Λ2 are
independent, Λ1 is a log Gaussian field and Λ2 is a log shot noise field. The
latter process may describe clustered point patterns with randomly placed
empty holes.

Shot noise Cox processes, log Gaussian Cox processes and log shot noise
Cox processes will appear as natural building blocks in a modelling framework
for Cox processes. Different types of combinations of the building blocks
(corresponding to thinning and superposition) will be discussed in the present
paper.

Having defined the framework the second aim is to study the theoret-
ical properties of Lévy based Cox processes, including moment properties
described by nth order product densities, mixing properties, specification of
inhomogeneity and spatio-temporal extensions.

Examples where the new models are needed do already appear in the
literature. In [47], an LCP (Cox process with additional random noise) is used
in the modelling of tropical rain forest. In [13, pp. 92–100], a point pattern
from forestry is described by a shot noise Cox process thinned by a random
field, taking unexplained large scale environmental heterogeneity into account.
If this field is log Gaussian, the resulting process is one of the combinations
of LCPs and LLCPs to be described in the present paper. In the very recent
review paper [33], tropical rain forest is modelled by inhomogeneous shot noise
Cox processes, obtained by thinning of a homogeneous shot noise Cox process
with a log-linear deterministic field depending on explanatory variables. If
the deterministic field is substituted with a log Gaussian field, we again arrive
at a combination of an LCP and an LLCP.

The present paper is organized as follows. In Section 2 we give a short
overview of the theory of Lévy bases and integration with respect to such
bases. In Section 3 we recall standard results about Cox processes. In Sec-
tion 4 we introduce and study the Lévy driven Cox processes and in Section 5
the log Lévy driven Cox processes. Combinations of LCPs and LLCPs are
discussed in Section 6, while inhomogeneous LCPs and LLCPs are considered
in Section 7. We conclude with a discussion.
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2 Lévy bases

This section provides a brief overview of the general theory of Lévy bases, in
particular the theory of integration with respect to Lévy bases. For a more
detailed exposition, see [3, 36] and references therein.

Let R be a Borel subset of Rd, B(R) the Borel sets contained in R, and A
the δ-ring of bounded Borel subsets of R.

Following [36], we consider a collection of real-valued random variables
L = {L(A), A ∈ A} with the following properties

• for every sequence {An} of disjoint sets in A, L(A1), . . . , L(An), . . . are
independent random variables and L(∪nAn) =

∑
n L(An) a.s. provided

∪nAn ∈ A,

• for every A in A, L(A) is infinitely divisible.

If L has these properties, L will be called a Lévy basis, cf. [3]. If L(A) ≥ 0
for all A ∈ A, L is called a non-negative Lévy basis.

For a random variable X, the logarithm of the characteristic function
log E(eivX) will be called the cumulant function and will be denoted by C(v,X).
This notation has been used in the paper [3] where the terminology of a Lévy
basis was introduced. When L is a Lévy basis, the cumulant function of L(A)
can by the Lévy-Khintchine representation be written as

C(v, L(A)) = iva(A) − 1

2
v2b(A) +

∫

R

(eivr − 1 − ivr1[−1,1](r))U(dr,A), (1)

where a is a σ−additive set function on A, b is a measure on B(R), U(dr,A)
is a measure on B(R) for fixed dr and a Lévy measure on B(R) for each
fixed A ∈ B(R), i.e. U({0}, A) = 0 and

∫
R
(1 ∧ r2)U(dr,A) < ∞, where ∧

denotes minimum. In fact U is a measure on B(R) × B(R), cf. [36, Lemma
2.3]. This measure is referred to as the generalized Lévy measure and L is
said to have characteristic triplet (a, b, U). If b = 0 then L is called a Lévy
jump basis, if U = 0 then L is a Gaussian basis, see the examples below. A
general Lévy basis L can always be written as a sum of a Gaussian basis and
an independent Lévy jump basis. Note that the term iva(A) corresponds to
a nonrandom shift of the values of L. The nonrandom shift may be included
in the Gaussian component or in the jump component of the Lévy basis or
may be shared amongst them.

Let |a| = a+ + a−. Then, there exists a unique non-negative measure µ on
B(R), satisfying

µ(A) = |a|(A) + b(A) +

∫

R

(1 ∧ r2)U(dr,A),

for A ∈ A, cf. [36, Proposition 2.1, Definition 2.2]. We will call µ the control
measure. In [36, Lemma 2.3] it has been shown that the generalized Lévy
measure U factorizes as

U(dr, dη) = V (dr, η)µ(dη), (2)

where V (dr, η) is a Lévy measure for fixed η. Moreover a and b are absolutely
continuous with respect to µ, i.e.

a(dη) = ã(η)µ(dη), b(dη) = b̃(η)µ(dη), (3)
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and obviously |ã|, b̃ ≤ 1 µ a.s. .
Let L′(η) be a random variable with the cumulant function

C(v, L′(η)) = ivã(η) − 1

2
v2b̃(η) +

∫

R

(eivr − 1 − ivr1[−1,1](r))V (dr, η). (4)

Then, we get the representation

C(v, L(A)) =

∫

A
C(v, L′(η))µ(dη). (5)

The random variables L′(η) will play an important role in the following and
will be called spot variables. Note that L′(η) characterizes the behaviour of L
at location η. For later use, note that if E(L′(η)) and Var(L′(η)) exist, then

E(L′(η)) = ã(η) +

∫

[−1,1]C
rV (dr, η),

Var(L′(η)) = b̃(η) +

∫

R

r2V (dr, η).

By (1) – (3) it is no restriction if we for modelling purposes only consider
Lévy bases with characteristic triplet (a, b, U) of the form

a(dη) = ãν(η)ν(dη) (6)

b(dη) = b̃ν(η)ν(dη) (7)

U(dr, dη) = Vν(dr, η)ν(dη) (8)

where ν is a non-negative measure on B(R), aν : R → R and bν : R →
[0,∞) are measurable functions and Vν(dr, η) is a Lévy measure for fixed
η. The random variable satisfying (5) with µ replaced by ν will be denoted
by L′

ν(η). For simplicity, we write L′
µ(η) = L′(η), ãµ = ã, b̃µ = b̃ and

Vµ(dr, η) = V (dr, η). If Vν(·, η), ãν(η) and b̃ν(η) do not depend on η neither
does the distribution of L′

ν(η) and the Lévy basis L is called ν−factorizable.
If moreover the measure ν is proportional to the Lebesgue measure, L is called
homogeneous and all the finite dimensional distributions of L are translation
invariant.

Let us now consider integration of a measurable function f on (R,B(R))
with respect to a Lévy basis L. The function f is said to be integrable
with respect to L, cf. [36], if there exists a sequence of simple functions
fn converging to f µ−a.e. and such that

∫
A fn dL converges in probability,

as n → ∞, for all A ∈ B(R). The limit is denoted
∫
A f dL. The integral of a

simple function fn =
∑k

j=1 xj1An
j

with respect to L is defined in the obvious
manner ∫

A
fn dL =

k∑

j=1

xjL(A ∩ An
j ).

The following lemma gives conditions for integrability and characterizes the
distribution of the resulting integral.

Lemma 1 Let f be a measurable function on (R,B(R)) and L a Lévy basis
on R with characteristic triplet (a, b, U). If the following conditions
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(i)
∫
R |f(η)| |a|(dη) < ∞

(ii)
∫
R f(η)2 b(dη) < ∞

(iii)
∫
R

∫
R
|f(η)r)|V (dr, η)µ(dη) < ∞

are satisfied, then the function f is integrable with respect to L and
∫
R f dL is

a well defined random variable with the cumulant function

C

(
v,

∫

R
f dL

)
= iv

∫

R
f(η)a(dη) − 1

2
v2

∫

R
f(η)2b(dη) (9)

+

∫

R

∫

R

(eif(η)vr − 1 − if(η)vr1[−1,1](r))V (dr, η)µ(dη).

Proof. It suffices to check that the regularity conditions of [36, Theorem
2.7] are satisfied under the assumptions of Lemma 1. More specifically we
need to check that

(a)
∫
R |h(f(η), η)|µ(dη) < ∞,

(b)
∫
R f(η)2b̃(η)µ(dη) < ∞,

(c)
∫
R

(∫
R

min{1, (rf(η))2}V (dr, η)
)
µ(dη) < ∞,

where

h(u, η) = uãτ (η) +

∫

R

(τ(ru) − uτ(r))V (dr, η).

Here,

τ(r) = r1[−1,1](r) +
r

|r|1[−1,1]C (r)

and

ãτ (η) = ã(η) +

∫

[−1,1]C

r

|r|V (dr, η).

To proof (a), note that |τ(ru) ≤ |ur|. Therefore,

|h(f(η), η)| ≤ |f(η)ãτ (η)| + 2

∫

R

|f(η)r|V (dr, η).

Using (i) and (iii) of Lemma 1, it follows that
∫

R
|h(f(η), η)|µ(dη) ≤

∫

R
|f(η)ã(η)|µ(dη)+3

∫

R

∫

R

|f(η)r|V (dr, η)µ(dη) < ∞.

Condition (b) is the same as (ii) and (c) follows from (iii) and

min{1, (rf(η))2} ≤ |rf(η)|.

�

The conclusions of Lemma 1 hold under weaker assumptions, see [20,
Proposition 5.6] or [36, Theorem 2.7]. The assumptions in Lemma 1 are sim-
ple to check and suffice for our purposes. The master thesis [20] also contains
new selfcontained proofs of a number of other results concerning integration
with respect to a Lévy basis.

Using equation (4) we can rewrite (9) as

C

(
v,

∫

R
f dL

)
=

∫

R
C(vf(η), L′(η))µ(dη). (10)
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The logarithm of the Laplace transform of a random variable X will be
called the kumulant function and denoted by K(v,X) = log E(e−vX ) for v ∈
R, in accordance with the notation used in [3]. If the kumulant function of
the integral

∫
R f dL exists, then

K

(
v,

∫

R
f dL

)
=

∫

R
K(vf(η), L′(η))µ(dη). (11)

Example 1 (Gaussian Lévy basis). If L is a Gaussian Lévy basis with
characteristic triplet (a, b, 0), then L(A) is N(a(A), b(A)) distributed for each
set A ∈ A. If (6) and (7) hold, we obtain L′

ν(η) ∼ N(ãν(η), b̃ν(η)). Further-
more,

C

(
v,

∫

R
f dL

)
= iv

∫

R
f(η) a(dη) − 1

2
v2

∫

R
f(η)2 b(dη).

It follows that
∫

R
f dL ∼ N

(∫

R
f(η) a(dη),

∫

R
f(η)2 b(dη)

)
.

The basis is ν−factorizable when ãν and b̃ν are constant. A concrete exam-
ple of a Gaussian Lévy basis is obtained by attaching independent Gaussian
random variables {Xi} to a locally finite sequence {ηi} of fixed points and let

L(A) =
∑

ηi∈A

Xi, A ∈ A.

Another example of a Gaussian Lévy basis is the white noise process, cf. e.g.
[24, Section 1.3]. �

Example 2 (Poisson Lévy basis). The simplest Lévy jump basis is the
Poisson basis for which L(A) ∼ Po(ν(A)), where ν is a non-negative measure
on B(R). Clearly, L is a non-negative Lévy basis. This basis has characteristic
triplet (ν, 0, δ1(dr)ν(dη)), where δc denotes the Dirac measure concentrated
at c. Note that ãν(η) ≡ 1 and Vν(dr, η) = δ1(dr). This basis is always
ν−factorizable. The random variable L′

ν(η) has a Po(1) distribution. �

Example 3 (generalized G-Lévy basis). A broad and versatile class of
(non-negative) Lévy jump bases are the so-called generalized G–Lévy bases
with characteristic triplet of the form (a, 0, U) depending on a non-negative
measure ν on B(R). The measures a and U satisfy (6) and (8) with

Vν(dr, η) = 1R+
(r)

r−α−1

Γ(1 − α)
e−θ(η)r dr and ãν(η) =

∫ 1

0

r−α

Γ(1 − α)
e−θ(η)r dr,

where α ∈ (−∞, 1) and θ : R → (0,∞) is a measurable function. Γ denotes the
gamma function. The class includes two important special cases – the gamma
Lévy basis for α = 0 with L′

ν(η) ∼ Γ(1, θ(η)), and the inverse Gaussian Lévy
basis for α = 1

2 with L′
ν(η) ∼ IG(

√
2,
√

2θ(η)). In case the function θ is
constant θ(η) = θ we get that L(A) ∼ G(α, ν(A), θ), i.e. L is a G-measure as
defined in [5, Section 2]. �

The following theorem is a special case of the Lévy-Ito decomposition.
This theorem will play a crucial role for the interpretation of some of the
Lévy driven Cox processes to be considered in the subsequent sections.
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Theorem 2 Suppose that the Lévy basis L has no Gaussian part (b = 0) and
its generalized Lévy measure U satisfies the following conditions

• U({(r, η)}) = 0 for all (r, η) ∈ R × R (U is diffuse),

•
∫
[−1,1]×A |r|U(dr, dη) < ∞ for all A ∈ A.

Then

L(A) = a0(A) +

∫

R

rN(dr,A), A ∈ A, (12)

where

a0(A) = a(A) −
∫

[−1,1]
rU(dr,A), A ∈ A,

and N is a Poisson measure on R × R with intensity measure U .

The conditions of Theorem 2 are satisfied for a Poisson Lévy basis and a
generalized G-Lévy basis if ν is a diffuse locally finite measure on B(R).

3 Cox processes

Let S be a Borel subset of Rd and suppose that {Λ(ξ) : ξ ∈ S} is a non-
negative random field which is almost surely integrable (with respect to the
Lebesgue measure) on bounded Borel subsets of S. A point process X on S is
a Cox process with the driving field Λ, if conditionally on Λ, X is a Poisson
process with intensity Λ, cf. [11, 12, 31]. The driving measure ΛM of the Cox
process X is defined by

ΛM (B) =

∫

B
Λ(ξ)dξ, B ∈ Bb(S),

where Bb(S) is the bounded Borel subsets of S.
In the following, the intensity function of X will be denoted by ρ(ξ) and,

more generally, ρ(n)(ξ) is the nth order product density of X. It follows from
the conditional structure of X that ρ(n) can be computed from Λ by

ρ(n)(ξ1, . . . , ξn) = E

n∏

i=1

Λ(ξi), ξi ∈ S. (13)

(for a proof, using moment measures, see e.g. [12]). A useful characteristic of
a point process is the pair correlation function defined by

g(ξ1, ξ2) =
ρ(2)(ξ1, ξ2)

ρ(1)(ξ1) ρ(1)(ξ2)
, ξ1, ξ2 ∈ S,

provided that ρ(1)(ξi) > 0 for i = 1, 2. (We let g(ξ1, ξ2) = 0, if ρ(1)(ξ1) ρ(1)(ξ2) =
0, cf. [31, p. 31].) Note that for a Cox process, the pair correlation function
can be calculated as

g(ξ1, ξ2) =
E Λ(ξ1, ξ2)

E Λ(ξ1)E Λ(ξ2)
.

It can be shown that a Cox process is overdispersed relative to the Poisson
process, i.e.

Var(X(B)) ≥ EX(B),

7



where X(B) denotes the number of points from X falling in B.
Examples of Cox processes include shot noise Cox processes (SNCPs, see

[5, 27, 49]) with driving field of the form

Λ(ξ) =
∑

(r,η)∈Φ

r k(ξ, η),

where k is a probability kernel (k(·, η) is a probability density) and Φ is the
atoms of a Poisson measure on R+×R, say. Concrete examples of probability
kernels are the uniform kernel

k(ξ, η) =
1

ωdRd
1[0,R](‖ξ − η‖),

where R > 0 and ωd = πd/2/Γ(1 + d/2) is the volume of the unit ball in Rd,
and the Gaussian kernel

k(ξ, η) =
1

(2πσ2)d/2
exp(−‖ξ − η‖2/2σ2), (14)

where σ2 > 0. Another important class of Cox processes are the log Gaussian
Cox processes (LGCPs, see [29]) driven by the exponential of a Gaussian field
Ψ

Λ(ξ) = exp(Ψ(ξ)).

4 Lévy driven Cox processes (LCPs)

4.1 Definition

A point process X on S is called a Lévy driven Cox process (LCP) if X is a
Cox process with a driving field of the form

Λ(ξ) =

∫

R
k(ξ, η)L(dη), ξ ∈ S, (15)

where L is a non-negative Lévy basis on R. Furthermore, k is a non-negative
function on S × R such that k(ξ, ·) is integrable with respect to L for each
ξ ∈ S and k(·, η) is integrable with respect to the Lebesgue measure on S for
each η ∈ R.

Note that it is always possible for each pair (k, L) to construct an asso-
ciated pair (k̃, L̃) generating the same driving field Λ where now k̃(·, η) is a
probability kernel. We may simply let

k̃(ξ, η) = k(ξ, η)/α(η),

L̃(dη) = α(η)L(dη)

where

α(η) =

∫

S
k(ξ, η)dξ

is assumed to be strictly positive. In the formulation and analysis of the
models it is however convenient not always to restrict to probability kernels.

It is important to note that from the non-negativity of the Lévy basis L
and [12, Theorem 6.1.VI], we get that L is equivalent to a random measure on

8



R. Thus, the measurability of Λ defined in (15) follows from measurability of
k as a function of η and ξ and Tonelli’s theorem. Therefore, Λ is a well-defined
random field and (under the condition of local integrability - see below) the
driving measure

∫
B Λ(ξ)dξ, B ∈ Bb(S), is also a well-defined random measure

determined by the finite-dimensional distributions of L.
It will be assumed that the function k and the Lévy basis L have been

chosen such that Λ is almost surely locally integrable, i.e.
∫
B Λ(ξ)dξ < ∞

with probability 1 for B ∈ Bb(S). A sufficient condition for the last property
is that, cf. [31, Remark 5.1],

∫

B
EΛ(ξ)dξ < ∞, B ∈ Bb(S). (16)

If L is factorizable, then (16) is satisfied if the following conditions hold

∫ ∞

1
rV (dr) < ∞,

∫

B

∫

R
k(ξ, η)µ(dη)dξ < ∞, B ∈ Bb(S).

4.2 The nth order product densities of an LCP

It is possible to derive a number of properties of LCPs, using the theory of
Lévy bases presented in Section 2. Below, the nth order product densities,
the generating functional and the void probabilities of an LCP are consid-
ered. In the proposition below, (complete) Bell polynomials, well known in
combinatorics, are used, see [10].

Proposition 3 Suppose that

E

(∫

R
k(ξ, η)L(dη)

)n

< ∞

and ∫

R

∫

R+

(k(ξ, η)r)nV (dr, η)µ(dη) < ∞,

for all ξ ∈ S. Then, the nth order product density of an LCP is given by

ρ(n)(ξ1, . . . , ξn) =
1

2nn!

∑

t∈Tn




n∏

j=1

tj


Bn(κ1(t), . . . , κn(t)),

ξ1, . . . , ξn ∈ S, where Tn denotes the set of all functions from {1, . . . , n} to
{−1, 1}n, Bn is the nth complete Bell polynomial evaluated at

κj(t) =

∫

R

(
n∑

i=1

tik(ξi, η)

)j

κj(L
′(η))µ(dη), j = 1, . . . , n,

and κj(L
′(η)) is the jth cumulant moment of the spot variable L′(η).
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Proof. First we rewrite ρ(n)(ξ1, . . . , ξn) = E
∏n

i=1 Λ(ξi), using the polariza-
tion formula, cf. [15, p. 43],

E

n∏

i=1

Λ(ξi) =
1

2nn!

∑

t∈Tn

(
n∏

i=1

ti

)
E

(
n∑

i=1

tiΛ(ξi)

)n

. (17)

The terms

E

(
n∑

i=1

tiΛ(ξi)

)n

can be computed by evaluating the nth complete Bell polynomial in the first
n cumulants of

∑n
i=1 tiΛ(ξi) =

∫
R

∑n
i=1 tik(ξi, η)L(dη). Thus, we have

E

(
n∑

i=1

tiΛ(ξi)

)n

= Bn(κ1(t), . . . , κn(t)),

where κj(t) is the jth cumulant of

∫

R

n∑

i=1

tik(ξi, η)L(dη).

Under the assumptions of the proposition, κj(t) can be calculated by differ-
entiating (11) j times with f(η) =

∑n
i=1 tik(ξi, η). We get

κj(t) =

∫

R

(
n∑

i=1

tik(ξi, η)

)j

κj(L
′(η))µ(dη).

Note that

E

(∫

R

n∑

i=1

tik(ξi, η)L(dη)

)j

< ∞

and ∫

R

∫

R+

(

n∑

i=1

tik(ξi, η))jV (dr, η)µ(dη) < ∞,

j = 1, . . . , n, under the assumptions of the proposition. �

Corollary 4 Suppose that k(ξ, ·) satisfies the assumptions of Lemma 1 for
each ξ ∈ S. Then, the intensity function of the LCP exists and is given by

ρ(ξ) =

∫

R
k(ξ, η)E(L′(η))µ(dη) (18)

for all ξ ∈ S. Furthermore, if

E

(∫

R
k(ξ, η)L(dη)

)2

< ∞, (19)

and ∫

R

∫

R

(k(ξ, η)r)2 V (dr, η)µ(dη) < ∞, (20)

for each ξ ∈ S, the pair correlation function of the process exists and is given
by

g(ξ, ζ) = 1 +

∫
R k(ξ, η)k(ζ, η)Var(L′(η))µ(dη)

ρ(ξ)ρ(ζ)
, (21)

for all ξ, ζ ∈ S.
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Proof. The result follows from Proposition 3, using that the first and
second complete Bell polynomials are given by B1(x) = x, B2(x1, x2) = x2

1 +
x2. Also recall that κ1(L

′(η)) = E(L′(η)) and κ2(L
′(η)) = Var(L′(η)). �

Corollary 5 (Stationary LCP) Let S = R = Rd and assume that k is a
homogeneous kernel in the sense that

k(ξ, η) = k(ξ − η) for all ξ, η ∈ R
d. (22)

Let
∫

k(η)dη = α. Assume that L is a homogenous Lévy basis with control
measure µ(dη) = cdη for some c > 0. Then, (18) and (21) take the following
simplified form

ρ =c EL′α

g(ξ, ζ) =1 +
Var L′

(EL′)2
Ik(ζ − ξ)

c
,

where Ik only depend on the kernel k

Ik(ζ − ξ) =

∫

Rd

k(ζ − ξ + η)k(η)

α2
dη.

Note that the fraction Var L′

(E L′)2 is equal to 1
E L′ , 1 and EL′ for the Poisson,

gamma and inverse Gaussian basis, respectively. The choice of the Lévy basis
changes substantially the correlations in the LCP and the overall variability
in the point pattern even when the corresponding LCPs are stationary and all
other parameters of the model are the same. As an illustration, Figure 1 shows
3 stationary LCPs observed on a [0, 100] × [0, 200] window with c = 0.003,
EL′ = 2 and a Gaussian kernel obtained as 10 times the kernel (14) with
σ = 4. The spot variable L′ is distributed as EL′ times a Po(1)-distributed
variable, as a Γ(1,E L′)-distributed variable and a IG(1, 1/E L′)-distributed
variable, respectively. From left to right, an increasing irregularity is clearly
visible.

The distribution of a point process X on S can be characterized by the
probability generating functional GX . This functional is defined by

GX(u) = E

∏

ξ∈X

u(ξ),

for functions u : S → [0, 1] with {ξ ∈ S : u(ξ) < 1} bounded. As proved e.g.
in [12] the probability generating functional of a Cox process can be computed
by

GX(u) = E exp

(
−
∫

S
(1 − u(ξ))Λ(ξ)dξ

)
. (23)

Void probabilities can be calculated as

v(B) := P (X ∩ B = ∅) = E exp

(
−
∫

B
Λ(ξ)dξ

)
, B ∈ Bb(S).

Below, we give the expressions for GX and v for an LCP.
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Figure 1: Examples of realizations of homogeneous LCPs with Poisson (left), gamma
(middle) and inverse Gaussian (right) Lévy bases. For details, see the text.

Proposition 6 The probability generating functional of an LCP has the fol-
lowing form

GX(u) = exp

(
−
∫

R+

∫

R

[
1 − exp

(
−
∫

S
(1 − u(ξ))k(ξ, η)rdξ

)]
U(dr, dη)

−
∫

R

∫

S
(1 − u(ξ))k(ξ, η)dξa0(dη)

)
,

while the void probabilities are given by

v(B) = exp

(
−
∫

R+

∫

R

[
1 − exp(−r

∫

B
k(ξ, η)dξ)

]
U(dr, dη)

−
∫

R

∫

B
k(ξ, η)dξa0(dη)

)
, B ∈ Bb(S).

Proof. Since Λ(ξ) is almost surely locally integrable,

∫

S
(1 − u(ξ))Λ(ξ)dξ ≤

∫

S
1supp(1−u)(ξ)Λ(ξ)dξ < ∞ (24)

is a well-defined non-negative random variable and its kumulant transform
exists. (In (24), the support of the function 1 − u is denoted supp(1 − u).)

12



Using the key relation (11) for the kumulant function, we get

log (GX(u)) = log

(
E exp(−

∫

S
(1 − u(ξ))Λ(ξ)dξ)

)

=K

(
1,

∫

S
(1 − u(ξ))Λ(ξ)dξ

)

=K

(
1,

∫

S
(1 − u(ξ))

∫

R
k(ξ, η)L(dη)dξ

)

=K

(
1,

∫

R

(∫

S
(1 − u(ξ))k(ξ, η)dξ

)
L(dη)

)

=

∫

R
K

(∫

S
(1 − u(ξ))k(ξ, η)dξ, L′(η)

)
µ(dη)

= −
∫

R

∫

S
(1 − u(ξ))k(ξ, η)dξa0(dη)

+

∫

R

∫

R+

(
exp

(
−
∫

S
(1 − u(ξ))k(ξ, η)rdξ

)
− 1

)
V (dr, η)µ(dη).

The result for the void probabilities is obtained by choosing u(ξ) = 1Bc(ξ). �

4.3 Mixing properties

The following proposition gives conditions for stationarity and mixing of an
LCP. Mixing and ergodicity are important e.g. for establishing the consistency
of model parameter estimates, including nonparametric estimates of the n-th
order product density ρ(n) and the pair correlation function g. Mixing [12,
Definition 10.3.I] implies ergodicity [12, p. 341]. The case of an LCP with
G-Lévy basis has been treated in [5, Proposition 2.2].

Proposition 7 Let S = R = Rd and assume that the Lévy basis L and the
kernel k are homogeneous. Then, an LCP with driving field Λ of the form
(15) is stationary and mixing.

Proof. Note that a Cox process is stationary/mixing if and only if the driving
field of the Cox process has the same property [12, Proposition 10.3.VII]. Using
the assumptions of the proposition it is easily seen that {Λ(ξ + x) : ξ ∈ Rd}
has the same distribution as {Λ(ξ) : ξ ∈ Rd} for all x ∈ Rd.

According to [12, Proposition 10.3.VI(a)], Λ is mixing if and only if

LΛ[h1 + Txh2] → LΛ[h1]LΛ[h2],

as ‖x‖ → ∞. Here, h1 and h2 are arbitrary non-negative bounded functions
on Rd of bounded support, and LΛ is the Laplace functional defined by

LΛ[h] = E exp

(
−
∫

Rd

h(ξ)Λ(ξ)dξ

)
,
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and Txh(ξ) = h(ξ + x), ξ, x ∈ Rd. We get

LΛ[h1 + Txh2]

= E exp

(
−
∫

Rd

∫

Rd

(h1(ξ) + h2(ξ + x))k(ξ − η)L(dη)dξ

)

= E exp

(
−
∫

Rd

(∫

Rd

h1(ξ)k(ξ − η)dξ +

∫

Rd

h2(ξ)k(ξ − η − x)dξ

)
L(dη)

)

= E

[
exp

(
−
∫

Rd

h̃1(η)L(dη)

)
· exp

(
−
∫

Rd

h̃2(η + x)L(dη)

)]
,

where

h̃i(η) =

∫

Rd

hi(ξ)k(ξ − η)dξ.

If k has bounded support, then we can find a C > 0 such that for ‖x‖ > C

{η ∈ R
d : h̃1(η) > 0} ∩ {η ∈ R

d : h̃2(η + x) > 0} = ∅.

It follows that for ‖x‖ > C

LΛ[h1 + Txh2] = E exp

(
−
∫

Rd

h̃1(η)L(dη)

)
· E exp

(
−
∫

Rd

h̃2(η + x)L(dη)

)

= LΛ[h1]LΛ[h2],

since L is independently scattered. If k does not have bounded support, we
define a series of functions with bounded support

kn(ξ − η) = k(ξ − η)1[0,n)(‖ξ − η‖), n = 1, 2, . . .

that converges monotonically from below to k. It follows that h̃i,n defined by

h̃i,n(η) =

∫

Rd

hi(ξ)kn(ξ − η)dξ

converges monotonically from below to h̃i(η) and for fixed n we can find Cn

such that for ‖x‖ > Cn

E

[
exp

(
−
∫

Rd

h̃1,n(η)L(dη)

)
· exp

(
−
∫

Rd

h̃2,n(η + x)L(dη)

)]

= E exp

(
−
∫

Rd

h̃1,n(η)L(dη)

)
· E exp

(
−
∫

Rd

h̃2,n(η + x)L(dη)

)

Using the reasoning just after [12, Proposition 10.3.VI], it follows that

LΛ[h1 + Txh2] → LΛ[h1]LΛ[h2],

for the original functions h1 and h2. �

4.4 Examples of LCPs

4.4.1 Shot noise Cox processes (SNCPs) with random noise

Under the assumptions of Theorem 2, the driving field of an LCP takes the
form

Λ(ξ) =

∫

R
k(ξ, η)a0(dη) +

∑

(r,η)∈Φ

rk(ξ, η), (25)
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where Φ is the atoms of a Poisson measure on R+ ×R with intensity measure
U . An LCP X with such a driving field is distributed as a superposition
X1 ∪ X2 where X1 and X2 are independent, X1 is a Poisson point process
with intensity function

ρ1(ξ) =

∫

R
k(ξ, η)a0(dη)

and X2 is a shot noise Cox process as defined in [27] with driving field

Λ2(ξ) =
∑

(r,η)∈Φ

rk(ξ, η).

An LCP with driving field Λ of the form (25) is therefore an SNCP with
additional random noise. Simulation of the associated Lévy basis can be per-
formed, using the algorithm introduced in [16], if L is factorizable, otherwise
the algorithm developed in [50] may be used, see also [46]. A third option is
the method used in [27]. An overview of available methods of simulating Lévy
processes can be found in [39].

For a0 ≡ 0, we get the familiar SNCPs. In [27], three specific examples of
stationary SNCPs are considered. Using the notion of a Lévy basis, they are
specified by U(dr, dη) = V (dr, η)ν(dη), where ν(dη) ∝ dη and

• V is concentrated in a single point c > 0, i.e. V (dr) = δc(dr). If c = 1,
the corresponding Lévy basis is Poisson. If c 6= 1, L(A) ∼ cPo(ν(A)).
LCPs of this type are the well-known Matérn cluster process [25] and
the Thomas process [42].

• V ((0,∞)) < ∞. In this case, Φ can be represented as a marked Pois-
son point process. Examples of LCPs with such a Lévy basis are the
Neyman-Scott processes, cf. [34].

• V (dr) = 1R+
(r) r−α−1

Γ(1−α) e−θr dr corresponding to a G-Lévy basis. The

resulting LCP is a so-called shot noise G Cox process [5].

In Figure 2, we show an example of an SNCP with a homogeneous Poisson
process (a0 is proportional to Lebesgue measure) as additional random noise.
More precisely, the process X = X1 ∪ X2 is defined on [0, 200] × [0, 100], X1

is a Poisson process with intensity 0.01 and X2 is an SNCP with Gaussian
kernel (14) with σ = 2 and an intensity measure U of the form U(dr, dη) =
δ25(r) · 0.0025dη. The process X2 is thereby a Thomas process.

4.4.2 LCPs driven by smoothed discrete random fields

We suppose that {ηi} is a locally finite sequence of fixed points and let

L(A) =
∑

ηi∈A

Xi,

where {Xi} is a sequence of independent and identically distributed non-
negative random variables with infinitely divisible distribution. If, for in-
stance, Xi is gamma or inverse Gaussian distributed, then L is a special case
of a gamma or inverse Gaussian Lévy basis, respectively. The driving intensity
of the associated LCP will take the form

Λ(ξ) =
∑

ηi

k(ξ, ηi)Xi.
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Figure 2: Example of a shot noise Cox process with extra noise. For details, see the text.

5 Log Lévy driven Cox processes (LLCPs)

5.1 Definition

A point process X on S is called a log Lévy driven Cox process (LLCP) if X
is a Cox process with intensity field of the form

Λ(ξ) = exp

(∫

R
k(ξ, η)L(dη)

)
, (26)

where L is a Lévy basis and k is a kernel such that k(ξ, ·) is integrable with
respect to L for each ξ ∈ S, k(·, η) is integrable with respect to Lebesgue
measure on S for each η ∈ R and Λ is almost surely locally integrable.

Since the driving intensity field of an LLCP is always non-negative because
of the exponential function, we can generally use kernels and Lévy bases which
also have negative values. Moreover, using the Lévy-Khintchine representa-
tion (1), we see that each Lévy basis L is equal to a sum of two independent
parts – a Lévy jump part (let us denote it by LJ) and a Gaussian part (let us
denote it by LG). Thus we can represent the driving intensity of an LLCP as
a product of two independent driving fields

Λ(ξ) = exp

(∫

R
k(ξ, η)LJ (dη)

)
exp

(∫

R
k(ξ, η)LG(dη)

)
= ΛJ(ξ)ΛG(ξ).

(27)
If LJ ≡ 0, Λ is the driving field of a log Gaussian Cox process (LCP)

[9, 29]; if LG ≡ 0, Λ is under regularity conditions the driving field of a log
shot noise Cox process, see the examples in Section 5.4 below.

Because of the exponential function in the definition of Λ(ξ), stronger con-
ditions on k and L are needed in order to ensure that Λ is almost surely
locally integrable. A sufficient condition is that the kumulant transform
K(−k(ξ, η), L′(η)) exists for all ξ ∈ S and η ∈ R, and that
∫

B
exp

(∫

R
K(−k(ξ, η), L′(η))µ(dη)

)
dξ < ∞, for all B ∈ Bb(S). (28)

This result follows from the definition of the kumulant function and from the
key relation (11) for the kumulant transform. In particular, we use that

EΛ(ξ) = exp

(
K(1,−

∫

R
k(ξ, η)L(dη))

)
= exp

(∫

R
K(−k(ξ, η), L′(η))µ(dη)

)
.
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Note that

K(−k(ξ, η), L′(η)) = k(ξ, η)ã(η) +
1

2
k(ξ, η)2b̃(η)

+

∫

R

(ek(ξ,η)r − 1 − k(ξ, η)r1[−1,1](r))V (dr, η).

If L is factorizable, then (28) is satisfied if either there exist B > 0, C > 0
and D > 0 such that

|k(ξ, η)| ≤ C for all ξ ∈ S, η ∈ R (29)∫

R
|k(ξ, η)|iµ(dη) < B · Di, i = 1, 2, . . . , ξ ∈ S (30)

∫

R

(
e(C∨D)|r| − 1 − (C ∨ D)|r|1[−1,1](r)

)
V (dr) < ∞, (31)

or there exist C > 0 and R > 0 such that

|k(ξ, η)| ≤ C for all ξ ∈ S, η ∈ R (32)

k(ξ, η) = 0 for ‖ξ − η‖ > R (33)

µ is locally finite (34)∫

R

(
eC|r| − 1 − C|r|1[−1,1](r)

)
V (dr) < ∞. (35)

Note that (29) and (30) are satisfied for the Gaussian kernel if µ is Lebesgue
measure, while (32) and (33) hold for the uniform kernel. In the case of a
purely Gaussian basis, (30) is only needed for i = 2 and conditions (31) and
(35) are trivially fulfilled since V ≡ 0.

5.2 The nth order product densities of an LLCP

The nth order product densities of LLCPs are easily derived, using Lévy
theory.

Proposition 8 The nth order product density is given by

ρ(n)(ξ1, . . . , ξn) = exp

(∫

R
K(−

n∑

i=1

k(ξi, η), L′(η))µ(dη)

)
, (36)

ξ1, . . . , ξn ∈ S, provided the right-hand side exists.

Proof. The formula follows directly from the definition of the kumulant
function and from the key relation (11). We get

ρ(n)(ξ1, . . . , ξn) = E

n∏

i=1

Λ(ξi) = E exp

(
n∑

i=1

∫

R
k(ξi, η)L(dη)

)

= exp

(
K(1,−

n∑

i=1

∫

R
k(ξi, η)L(dη))

)

= exp

(∫

R
K(−

n∑

i=1

k(ξi, η), L′(η))µ(dη)

)
.

�
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Corollary 9 The intensity function of an LLCP X is given by

ρ(ξ) = exp

(∫

R
K(−k(ξ, η), L′(η))µ(dη)

)
, (37)

provided the right-hand side exists. When the second order product density
exists, the pair correlation function of an LLCP takes the following form

g(ξ, ζ) = exp

(∫

R
[K(−k(ξ, η) − k(ζ, η), L′(η))

−K(−k(ξ, η), L′(η)) − K(−k(ζ, η), L′(η))]µ(dη)

)

= exp

(∫

R
k(ξ, η)k(ζ, η)b(dη)

+

∫

R

∫

R

[
e(k(ξ,η)+k(ζ,η))r − ek(ξ,η)r − ek(ζ,η)r + 1

]
V (dr, η)µ(dη)

)
.

Corollary 10 (Stationary LLCP) Let S = R = Rd. Assume that k is a
homogeneous kernel and L a homogeneous Lévy basis with µ(dη) = cdη for
some c > 0. Then,

ρ = exp

(
c

∫

Rd

K(−k(η), L′)dη

)

and

g(ξ, ζ) = exp

(
b̃c

∫

Rd

k(ξ − ζ + η)k(η)dη

+c

∫

Rd

∫

R

(e(k(ξ−ζ+η)+k(η))r − ek(ξ−ζ+η)r − ek(η)r + 1)V (dr)dη

)
.

5.3 Mixing properties

Proposition 11 Let S = R = Rd and assume that the Lévy basis L is homo-
geneous and the kernel k is homogeneous. Then, an LLCP with driving field
of the form (26) is stationary and mixing.

Proof. As in the proof of Proposition 7, we immediately get the station-
arity. The method of proving mixing has to be modified compared to the one
used in Proposition 7. First, rewrite

LΛ[h1 + Txh2]

= E

[
exp

(
−
∫

Rd

h1(ξ) exp

(∫

Rd

k(ξ − η)L(dη)

)
dξ

)

· exp

(
−
∫

Rd

h2(ξ + x) exp

(∫

Rd

k(ξ − η)L(dη)

)
dξ

)]

= E[A · Bx],

say. If k has bounded support, A and Bx will be independent if ‖x‖ is large
enough. If k does not have bounded support, we use a series of functions kn
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with bounded support that converges to k. To be precise, let as in Proposi-
tion 7

kn(u) = k(u)1[0,n)(‖u‖), u ∈ R
d,

n = 1, 2, . . . . We have kn → k and |kn| ≤ |k|. Now, let

An = exp

(
−
∫

Rd

h1(ξ) exp

(∫

Rd

kn(ξ − η)L(dη)

)
dξ

)

and

Bx,n = exp

(
−
∫

Rd

h2(ξ + x) exp

(∫

Rd

kn(ξ − η)L(dη)

)
dξ

)
.

Note that 0 ≤ A,An, Bx, Bx,n ≤ 1. Now, consider the following inequality

|E[A · Bx] − EA · EBx|
≤ |E[A · Bx] − E[A · Bx,n]| + |E[A · Bx,n] − E[An · Bx,n]|

+|E[An · Bx,n] − E An · EBx,n| + |E An · E Bx,n − E An · E Bx|
+|E An · EBx − EA · E Bx|.

= δ1xn + δ2xn + δ3xn + δ4xn + δ5xn,

say. Let us evaluate each of these five terms. Using that 0 ≤ A ≤ 1 and that
L is homogeneous, we get

δ1xn = |E[A · (Bx − Bx,n)]|
≤ E[A · |Bx − Bx,n|]
≤ E |Bx − Bx,n|
= E |B0 − B0,n|.

Now, since kn → k and |kn| ≤ |k|, where k is L−integrable, it follows that
∫

Rd

kn(ξ − η)L(dη) →
∫

Rd

k(ξ − η)L(dη),

almost surely. We can therefore find n1 (not dependent on x) such that
for n ≥ n1, δ1xn ≤ ǫ, say. Using the same type of arguments, we can find
n2, n4, n5 such that for n ≥ ni, δixn ≤ ǫ, i = 2, 4, 5. Now choose a fixed
n ≥ max(n1, n2, n4, n5) and consider

δ3xn = |E[An · Bx,n] − EAn · EBx,n|.

Using the previous results for bounded functions of bounded support, we
finally find a constant C > 0 such that for x with ‖x‖ > C we have δ3xn ≤ ǫ.
This completes the proof. �

5.4 Examples of LLCPs

5.4.1 Log shot noise Cox processes (LSNCPs)

Under the assumptions of Theorem 2, the driving field of an LLCP takes the
form

Λ(ξ) = exp


d(ξ) +

∑

(r,η)∈Φ

rk(ξ, η)


 , (38)
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where d(ξ) is a deterministic function and Φ is the atoms of a Poisson measure
on R × R with intensity measure U . Such a process is called a log shot noise
Cox process (LSNCP).

It is important to realize that SNCPs and LSNCPs are quite different
model classes. An SNCP X with driving field of the form

Λ(ξ) =
∑

(r,η)∈Φ

rk(ξ, η)

is a superposition of independent Poisson processes X(r,η), (r, η) ∈ Φ, where
X(r,η) has intensity function rk(·, η). (The process {η : (r, η) ∈ Φ} is usually
called the centre process (although it is not necessarily locally finite) while
X(r,η) is called a cluster around η.) The presence of a particular cluster X(r,η)

will not affect the presence of the other clusters.
In contrast to this, the driving field of an LSNCP takes the form

Λ(ξ) = exp(d(ξ))
∏

(r,η)∈Φ

exp(rk(ξ, η)).

A cluster X(r,η) with negative, numerically large values of rk(·, η) will very
likely contain 0 points and moreover, wipe out points from other clusters in
the neighbourhood of η. In the resulting point pattern, empty holes may
therefore be present. Examples of such point patterns are shown in Figure 3.
Here, {η} is a homogeneous Poisson process on [0, 100]× [0, 200] with intensity
c = 0.003, V (dr) = 1

3δ1(r)+ 2
3δ−1(r) and the kernel is (left) k(ξ) = 1(|ξ| ≤ R)

and (right) k(ξ) = (1 − |ξ|3

R3 )1(|ξ| ≤ R), respectively, with R = 10.

5.4.2 Log Gaussian Cox processes (LGCPs)

In this subsection, we consider LLCPs with driving field of the form

Λ(ξ) = exp

(∫

R
k(ξ, η)L(dη)

)
, (39)

where L is a Gaussian Lévy basis.
Clearly, the resulting process is an LGCP [9, 29]. If k and L are homoge-

neous, the process is stationary. In this case, the random intensity function
Λ(ξ) is well defined for all ξ ∈ Rd and almost surely integrable if

k(ξ) ≤ C, ξ ∈ R
d, and

∫

Rd

k(ξ)2 dξ < ∞. (40)

The covariance function of the Gaussian field

Ψ(ξ) =

∫

Rd

k(ξ − η)L(dη)

takes the form

Cov(Ψ(ξ1),Ψ(ξ2)) =

∫

Rd

k(ξ1 − ξ2 + η)k(η)dη = c(ξ1 − ξ2),

say. Note that under (40) c is integrable. Under the mild additional assump-
tion that the set of discontinuity points of k has Lebesgue measure 0, c is also
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Figure 3: Examples of log shot noise Cox processes. Notice the circular empty holes

in the point patterns. For details, see the text.

continuous. In the proposition below, we show that any stationary LGCP
with a continuous and integrable covariance function can indeed be obtained
as a kernel smoothing (39) of a Gaussian Lévy basis. The proposition is a
generalization of a result mentioned in [21].

Proposition 12 Any stationary Gaussian random field with continuous and
integrable covariance function can be generated by a kernel smoothing of a
homogeneous Lévy basis.

Proof. Let {Ψ(ξ) : ξ ∈ Rd} be an arbitrary stationary zero mean Gaussian
field. Let c(ξ1, ξ2) = c(ξ1 − ξ2) denote its covariance function which is a
function of ξ = ξ1 − ξ2 due to the stationarity. Since c is continuous and
positive definite, it follows from Bochner’s Theorem that

c (ξ) =

∫

Rd

eiξ·ητ (dη)

for some non-negative measure τ . Since c is integrable and symmetric, τ
has a symmetric density f , which can be found using the inverse Fourier-
transform.

√
f is continuous and a member of L2

(
Rd
)
. Note: For a symmetric

function defined on Rd the Fourier transform and its inverse are the same up
to multiplication/division with the constant (2π)d/2.

By the convolution theorem for the Fourier(-Plancerel) transform we get

̂(√̂
f ∗
√̂

f
)−1

=
̂̂√

f

−1

·
̂̂√

f

−1

= f,
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thus √̂
f ∗
√̂

f (ξ) = c (ξ) .

Put k =
√̂

f and let L denote a homogeneous Lévy basis, with characteristic
triplet (0, 1, 0). Then, since the covariance function for

∫
kdL is equal to k∗k,

our proof is complete. �

In [29, Theorem 3], conditions for ergodicity is given in the special case
of a stationary LGCP. Note that under (40) c(ξ) → 0 for ‖ξ‖ → ∞ and the
conditions for ergodicity stated in [29, Theorem 3b] are satisfied.

6 Combinations of LCPs and LLCPs

The driving field of an LLCP has the form

Λ(ξ) = exp

(∫

R
k(ξ, η)LJ (dη)

)
exp

(∫

R
k(ξ, η)LG(dη)

)
= ΛJ(ξ)ΛG(ξ).

It seems natural to extend the model such that the kernels used in the jump
part and the Gaussian part do not need to be the same. We thereby arrive at
Cox processes with a driving field of the form

Λ(ξ) = exp

(∫

R
k(ξ, η)LJ (dη)

)
ΛG(ξ) (41)

with ΛG an arbitrary log Gaussian random field.
If LJ satisfies the regularity conditions of Theorem 2, we get

Λ(ξ) = exp


d(ξ) +

∑

(r,η)∈Φ

rk(ξ, η) + Y (ξ)


 ,

where d(ξ) is a deterministic function, Φ is the atoms of a Poisson measure
with intensity measure U and Y is an independent Gaussian field.

A related model can be found in [37] for modelling the positions of off-
springs in a long-leaf pine forest given the positions of the parents and infor-
mation about the topography. The model is in [37] formulated conditional on
the positions η of the parents.

There are, of course, other possibilities for combining shot noise compo-
nents and log Gaussian components in the driving field than the one suggested
above. For instance, if LJ is a non-negative Lévy jump basis, we may consider
Cox processes driven by

Λ(ξ) =

(∫

R
k(ξ, η)LJ (dη)

)
ΛG(ξ)

=



∫

R
k(ξ, η)a0(dη) +

∑

(r,η)∈N

rk(ξ, η)


ΛG(ξ), (42)

cf. [45]. In [13, pp. 92-100], a Cox process model of the type described in (42)
has been considered but now with the Gaussian field replaced by a Boolean
field. Such a model will be able to produce shot noise point patterns with
empty holes generated by the Boolean field.
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7 Inhomogeneous LCPs and LLCPs

In [33], it has recently been suggested to introduce inhomogeneity into a
Cox process such that the resulting process becomes second-order intensity
reweighted stationary, see [1] for details. In this section, we describe four types
of inhomogeneity. Only Type 3 leads to second-order intensity reweighted sta-
tionary processes.

We concentrate on SNCPs with a0 ≡ 0, cf. Section 4.4.1. The interpreta-
tion of the type of inhomogeneity introduced may be facilitated by using the
cluster representation of a shot noise Cox process X. It is not needed that
the process of cluster centres (mothers) is locally finite in order to use this
interpretation.

Example 4 (Type 1). The kernel is assumed to be homogeneous k(ξ, η) =
k(ξ− η) while the Lévy basis satisfies V (dr, η) = V (dr), ν(dη) = cf(η)dη. If
the function f is non-constant, mothers will be unevenly distributed (accord-
ing to ν) but the distribution of the clusters will not depend on the location
in the sense that the distribution of X(r,η) − η does not depend on η. �

Example 5 (Type 2). The kernel is assumed to be homogeneous k(ξ, η) =
k(ξ−η) while the Lévy basis satisfies V (dr, η) = V (d( r

f(η) )) and ν(dη) = cdη.
In this case, the mothers will be evenly distributed while the distribution of
the clusters may be location dependent. A model with (k, V ) replaced by
k(ξ, η) = k(ξ − η)f(η) and V (dr, η) = V (dr) will result in the same type of
LCP. �

Example 6 (Type 3). The kernel is inhomogeneous of the form k(ξ, η) =
k(ξ − η)f(ξ) while the Lévy basis is homogeneous V (dr, η) = V (dr) and
ν(dη) = cdη. The resulting LCP will be a location dependent thinning of a
stationary LCP. This option has been discussed in [33, 44] with the following
log-linear specification of the function f

f(ξ) = exp(z(ξ) · β).

Here, z(ξ) is a list of explanatory variables and β a parameter vector. Note
that Type 2 and 3 inhomogeneity will typically have a similar appearance.
The reason is that they can be regarded as only differing in the specification
of the kernel as either of the form

k(ξ, η) = k(ξ − η)f(η) (Type 2)

or
k(ξ, η) = k(ξ − η)f(ξ) (Type 3),

and k(ξ − η)(f(η)− f(ξ)) is only non-negligible if ξ and η are close enough so
that k(ξ−η) is non-negligible and at the same time there is an abrupt change
in f between ξ and η. �

Example 7 (Type 4). Inhomogeneity may also be introduced into the pro-
cess by a local scaling mechanism [17, 18]. Here, the kernel is inhomogeneous

k(ξ, η) = k

(
ξ − η

f(η)

)
1

f(η)d
.
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while V (dr, η) = V (dr) and ν(dη) = cdη/f(η)d. The inhomogeneity of the
resulting point process can be explained by local scaling. �

In Figure 4, examples of inhomogeneous LCPs of Type 1, 2 and 4 are given
on S = R = [0, 100]× [0, 200]. Here, k is the Gaussian kernel (14) with σ = 2,
c = 1/200 and V is concentrated in r = 18. The inhomogeneity function f is
linear in all three cases, f(x, y) = y/100.

Figure 4: Examples of realizations of inhomogeneous LCPs. From left to right, Type 1,
2 and 4, respectively. For details, see the text.

Inhomogeneity may be introduced into an LSNCP by changing L or k as
indicated in the examples above. Compared to LCPs, the effects are now
multiplicative.

8 Discussion

During the last years, there has been some debate concerning which one of
the two model classes (SNCP or LGCP) are most appropriate [28, 32, 38,
49]. The modelling framework described in the present paper provides the
possibility for using models involving both SNCP and LGCP components
and subsequently test whether it is appropriate to reduce the model to a
pure SNCP model or a pure LGCP model. Figure 5 summarizes the most
important model classes treated in the present paper. Below, we discuss a
few additional issues.
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Lévy based Cox point processes

LCP LLCP

SNCP
with

random
noise

LCP
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smoothed
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LCP
thinned

by
LGF

LSNCP LGCP

Figure 5: Overview of Lévy based Cox point processes. The abbreviations DF and LGF
are used for a discrete random field and a log Gaussian random field, respectively. For
further details, see the text.

8.1 Probability densities of LCPs and LLCPs

It is possible to derive an expression for the density of an LCP or an LLCP,
using the methodology of Lévy bases. For instance, in the case of an LCP
with a0 ≡ 0, the density of XB for B ∈ Bb(S) can be written as an expan-
sion involving complete Bell polynomials evaluated at certain cumulants. The
derivation of this result utilizes (17). Unfortunately, the expansion seems to
be too complicated to be of practical use for inference. The same type of con-
clusion has been reached for likelihood inference in G-shot-noise Cox processes
and in log Gaussian Cox processes, see [5, Section 4.2.1] and [29]. Closed form
expressions for densities of other types of Cox processes are available, see [26].

8.2 Spatio-temporal extensions

The LCPs and LLCPs extend easily to spatio-temporal Cox processes. The
set S on which the process is living is now a Borel subset of Rd × R where
the last copy of R indicates time. The dependency on the past at time t and
position x may be modelled using an ambit set

At(x), x ∈ R
d, t ∈ R,

satisfying

(x, t) ∈ At(x)

At(x) ⊆ R
d × (−∞, t]

A spatio-temporal LCP is then defined by a driving intensity of the form

Λ(x, t) =

∫

At(x)
k((x, t), (y, s))L(d(y, s)),

where L is a non-negative Lévy basis on R ⊆ Rd × R and k is a non-negative
weight function. Likewise, a spatio-temporal LLCP has driving field of the
form

Λ(x, t) = exp

(∫

At(x)
k((x, t), (y, s))L(d(y, s))

)
,
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where L and k do not need to be non-negative anymore. Using the tools of
Lévy theory, it is possible to derive moment relations as shown in the present
paper for the purely spatial case [35]. This approach to spatio-temporal mod-
elling is expected to be very flexible and has earlier been used with success in
growth modelling [23], see also [22]. It will be interesting to investigate how
it performs compared to earlier methods described in [6, 7, 8, 14].

8.3 Statistical inference

Statistical inference for Cox processes has been studied earlier in a number
of papers, including [4, 19, 28, 32, 33, 43]. It remains to investigate to what
degree known procedures, based on summary statistics, likelihood or Bayesian
reasoning, can be adjusted to deal with LCPs and LLCPs. For a stationary
LCP with Λ = ρ1 + Λ2, it is easy to determine the summary statistics F , G
and J in terms of the corresponding characteristics F2, G2 and J2 of the shot
noise component with intensity field Λ2. Thus,

1 − F (r) = exp(−ρ1|B(0, r)|)(1 − F2(r)),

1 − G(r) = exp(−ρ1|B(0, r)|)
(

ρ1

ρ1 + ρ2
(1 − F2(r)) +

ρ2

ρ1 + ρ2
(1 − G2(r))

)
,

J(r) =
ρ1

ρ1 + ρ2
+

ρ2

ρ1 + ρ2
J2(r).

However, in general simple expressions for G2 and J2 in terms of model pa-
rameters are not available. Likewise, it does not seem to be possible to derive
general closed form expressions for F , G and J in the case of an LLCP.

In order to evaluate whether both a jump part and a Gaussian part is
needed in an LLCP, we may consider a third order summary statistic, sug-
gested in the paper [29] (for stationary point processes)

z(t) =
1

π2t4

∫

‖ξ‖≤t

∫

‖ζ‖≤t

ρ(3)(ξ, ζ)

(ρ(1))3 g(ξ) g(ζ) g(ξ − ζ)
dξ dζ, t > 0, (43)

where the following abbreviated notation is used due to the stationarity

g(ξ1, ξ2) = g(ξ2 − ξ1),

ρ(3)(ξ1, ξ2, ξ3) = ρ(3)(ξ2 − ξ1, ξ3 − ξ1).

When computing the integrand in z(t) for an LLCP we obtain

ρ(3)(ξ1, ξ2, ξ3)

(ρ(1))3 g(ξ1, ξ2) g(ξ2, ξ3) g(ξ1, ξ3)

=
E(
∏3

i=1 ΛJ (ξi)) (
∏3

i=1 E ΛJ(ξi))

E(ΛJ (ξ1)ΛJ (ξ2)) E(ΛJ (ξ2)ΛJ (ξ3)) E(ΛJ(ξ1)ΛJ(ξ3))
, (44)

where ΛJ(ξ) = exp
(∫

R k(ξ, η)LJ (dη)
)

is the part of the driving intensity orig-
inating from the pure jump part of the Lévy basis. Thus, this characteristic
of X is not influenced by the Gaussian part of the model. In particular, z ≡ 1
for log Gaussian Cox processes. A non-parametric unbiased estimator of z(t)
has been derived in [29, Theorem 2].

Assessment of the full potential of the new modelling framework described
in the present paper will also require more detailed studies of inhomogeneity
and practical experience with concrete applications of the models.
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Abstract

Completely random signed measures are de�ned, characterized and related

to Lévy random measures and Lévy bases.

1 Introduction

Completely random measures were de�ned in Kingman (1993). As described in
Kingman (1993); Karr (1991) and more recently in Daley and Vere-Jones (2003,
2008) completely random measures are related to point process models, in particular
Poisson cluster point processes. We make a natural extension of completely random
measures to completely random signed measures and give a characterization of this
class of signed random measures. It is shown that the class of Lévy random measures,
introduced and used in Lévy adaptive regression kernel models Tu et al. (2006), and
the class of Lévy bases, de�ned in Barndor�-Nielsen and Schmiegel (2004) and used
in spatio-temporal modeling in Barndor�-Nielsen and Schmiegel (2004); Hellmund
et al. (2008); Jónsdóttir et al. (2008), are natural extensions of completely random
signed measures. Furthermore we show the assumption of in�nitely divisibility in
the de�nition of Lévy random measures and Lévy bases can be replaced by other
very mild assumptions. The most basic concept involved in the de�nition of Lévy
random measures and Lévy bases is thus independence.

2 Signed random measures

We let X denote a Borel subset of Rd for some d ≥ 1 and B = B (X ) denote the
trace of the Borel sigma algebra on X . By Bb we denote the set of bounded Borel
subsets of X . A subset of X is bounded, if the closure of the set is compact.

LetM denote the set of signed Radon measures on B, i.e. an element inM is
a σ-additive set function, which takes �nite values on compact sets, in particular
on all bounded Borel subsets of X . We letM+ denote the subset ofM consisting
of positive Radon measures. There are several di�erent de�nitions of signed Radon
measures in the literature, we use, what we believe is the most general, see Ash
(1972).
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We de�ne a random signed measure M as a measurable mapping from a proba-
bility space (Ω, E , P ) into (M,F) where

F = σ {πf |f ∈ Cc (X )} , πf :M→ R : µ→
∫
X
f (x)µ (dx) ,

and Cc (X ) is the set of continuous functions on X with compact support.
Let F+ denote the trace of F onM+, then F+ = B (M+). A random measure

is de�ned as a measurable mapping from a probability space into (M+,F+).
The lemma below, used in the sequel, concerns the �xed atoms of a signed

random measure. We say x ∈ X is a �xed atom of M if and only if

P (|M ({x})| > 0) > 0.

Lemma 2.1. A signed random measure has at most countable many �xed atoms.

Proof. Assume there are more than countable many �xed atoms, then there exist
{xn|n ≥ 1} contained in a bounded set, such that

∃b > 0, a > 0∀n ≥ 1 : P (|M (xn)| > b) > a.

Thus P (lim supn {|M (xn)| > b}) ≥ a and
∑

nM ({xn}) cannot be convergent,
which is a contradiction.

3 A result on in�nitely divisibility

Lemma 3.1. Let M denote a stochastic process with index set Bb such that
(M (Bn))n≥1 are independent and

M (∪Bn) =
∑

M (Bn)

P-a.s. for disjoint sets (Bn)n≥1 ⊂ Bb and ∪Bn ∈ Bb.
Then M (B) is in�nitely divisible for any B ∈ Bb, if the cumulant function of

M (A) , A ∈ BB is of the form

C {M (A) ‡ t} = logE
[
eitM(A)

]
=

∫
A

ft,B (x)λB (dx) (1)

for some measurable function ft,B : X → C for all t ∈ R\ {0} and an atom-less
�nite measure λB on (B,BB), where BB = B (B).

Remark 3.2. For a given t ∈ R and B ∈ Bb, because of independence, the cumulant
transform de�nes a complex measure on (B,BB). If M (A) is zero with probability
one on all sets in BB with Lebesgue measure zero, then Lebesgue measure dominates
the complex measure generated by the cumulant transform for all t ∈ R and thus,
by Radon-Nikodym, condition (3.1) in the above lemma is ful�lled.
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Proof. Let B ∈ Bb be given. Since λB (B) is �nite using Lemma 12.2, p.268 in
Karlin and Studdun (1966) we can choose (Bs)0≤s≤1 such that B0 = ∅, Bs′ ⊆
Bs, s

′ ≤ s, B1 = B and λB (Bs) = s · λB (B) for s ∈ [0, 1]. It is clear the stochastic
process (Ms) = M (Bs∧1)s≥0 has independent increments and P-a.s. M (B0) = 0.
Furthermore (Ms) is stochastic continuous: Let 0 ≤ s < 1 be given, then for any
s′ ∈ (s, 1):

Ms′ −Ms = M (Bs′\Bs)

Since
λB (Bs′\Bs) = (s′ − s)λB (B)→ 0, s′ ↓ s,

we see
M (Bs′\Bs) →̃0.

Thus in probability M (Bs′\Bs) → 0 as s′ goes to s. Left continuity for 0 < s ≤ 1
is proved similar.

By de�nition 1.6 in Sato (2005) (Ms) is an additive process in law. Therefore
M1 = M (B) is in�nitely divisible, see Theorem 9.1 Sato (2005).

4 Completely random signed measures

De�nition 4.1. A completely random (signed) measure is a random (signed) mea-
sure M with independent values on disjoint sets, i.e. {M (An)} are independent, if
{An} is a family of disjoint sets.

Corollary 4.2. A completely random signed measure with cumulant transform sat-
isfying condition (1) in Lemma 3.1 has in�nitely divisible values.

In the sequel we use the de�nition of a Poisson point process found in Kingman
(1993).

De�nition 4.3. A Poisson point process Φ on Y , a Borel subset of Rl for some
l ≥ 1, is a random countable subset of Y , such that

• The number of points N (A) in a Borel subset A of Y is Poisson distributed
with mean value µ (A), where µ is a measure on B (Y) (µ may be in�nite on
bounded sets!).

• Given disjoint sets A1, . . . , An the random variables N (A1) , . . . , N (An) are
independent.

The theorem below is stated in Kingman (1993), which also provides a sketch of
a proof. We give a detailed proof, since we use important elements of the proof in
the sequel.

Theorem 4.4. Given a completely random measure M ful�lling condition (1) in
Lemma 4.2 there exists a Radon measure m, an at most countable set of �xed atoms
{xi}i∈I ⊂ X , independent positive random variables {Wi} and a Poisson point pro-
cess Φ on X × R+ , such for any B ∈ Bb

M (B) ∼ m (B) +
∑

i

Wi · 1B (xi) +
∑

(Xj ,Uj)∈Φ

Uj · 1B (Xj) . (2)
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Proof. Using Lemma 2.1 we note the set of �xed atoms is at most countable. In the
remaining part of the proof we assume M has no �xed atoms.

By Lemma 3.1 M (B) is in�nitely divisible for any B ∈ Bb.
For any B in Bb there exists a constant m (B) ∈ R+ and a measure νB on R+,

such that
∫

(|x| ∧ 1) νB (dx) is �nite and for any t ∈ R+:

λt (B) = logE
[
eitM(B)

]
= m (B) · it+

∫
(0,∞]

(eitz − 1)νB (dt) ,

see Exc. 11, Chap. 15 in Kallenberg (2002).
By the properties of λt, (A,B)→ νB (A) is a bi-measure. There exists a unique

σ-�nite measure ν on (X × R+,B ⊗B ([0,∞))) satisfying

ν (B × C) = νB (C)

for all B ∈ Bb and C ∈ B ((0,∞]), see (9.17) in Sato (2005). We see m de�nes a
Radon measure on B. Assume without loss of generality, that m ≡ 0.

Let Φ denote a Poisson point process on X × R+ with mean measure ν. Notice
the number of points from Φ in a bounded set need not be �nite. De�ne

M ′ (B) =
∑

(Xj ,Uj)∈Φ

Uj · 1B (Xj)

for any B ∈ Bb. Then for any B ∈ Bb, using ν is σ-�nite and applying Campbell's
Theorem Kingman (1993) we get

E [exp (itM ′ (B))] = exp

(∫
B×(0,∞]

(
eitz − 1

)
ν (dx× dz)

)
= exp

(∫
(0,∞]

(
eitz − 1

)
νB (dz)

)
Assuming without loss of generality, that M ′ is a random measure, M and M ′ are
equal in distribution.

We were not able to �nd a reference to the lemma below, concerning additive
processes, thus a short proof is provided.

Lemma 4.5. Given a continuous additive process (Xs), s ≥ 0 with paths of bounded
variation, X0 = 0 and with characteristic triplet on the form (As, 0, γ (s)) we have
As ≡ 0. i.e. the process has no Gaussian part and is deterministic, see Sato (2005)
for notation.

Proof. The total variation process
(
V X

s

)
of (Xs) is an increasing, continuous additive

process. Set

Ys =
e−V X

s

E
[
e−V X

s

] , s ≥ 0

Then Ys is a continuous martingale of bounded variation and thus constant, therefore
V X

s is deterministic, implying (Xs) is integrable and γ (s) is of bounded variation.
Xs − γ (s) therefore de�nes a continuous martingale of bounded variation, thus

Xs = γ (s)
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Lemma 4.6. Let M denote a completely random signed measure and suppose the
condition on the cumulant transform in Lemma 3.1 is ful�lled, then M has no Gaus-
sian part.

Proof. Let B ∈ Bb be given and let (Ms) denote the additive process in law con-
structed in the proof of Lemma 3.1 In the proof below, all references are to Sato
(2005).

By Theorem 11.5 we can choose a cadlag modi�cation of (Ms). Given a cadlag
modi�cation M̃ of M , n ≥ 1 and the partition 0 = s0 < s1 = 1/n < · · · < sn−1 =
(n− 1) /n < sn = 1 of the interval [0, 1] we have P-a.s.∑

i

∣∣∣M̃si
− M̃si−1

∣∣∣ =
∑

i

∣∣Msi
−Msi−1

∣∣ ≤ |M | (B) <∞,

since M is a random signed measure. Without loss of generality we assume M is an
additive process of bounded variation (see Lemma 21.8 (i)).

Using Theorem 9.8 the law ofM is uniquely determined by a characteristic triplet
(As, νs, γ (s)) each component satisfying some conditions given in the theorem. For
every s ≥ 0, νs is a Lévy measure on R. De�ne H = (0,∞)× R\ {0} and let B (H)
denote the Borel subsets of H.

By (19.1) we de�ne

J (D,ω) = # {s > 0| (s,Ms −Ms−) ∈ D ∈ B (H)}

Because of bounded variation we have (Lemma 21.8) for any s > 0∫
(0,s]×R\{0}

|x| J (d (t, x) , ω) <∞

as shown page 1413-1425
∫
{|x|≤1} |x| νs (dx) <∞ for all s > 0.

Using Theorem 19.3 and Lemma 21.8 there exist processes MJ and MG, such
that M = MJ + MG and MG is P-a.s. an additive process, continuous in s with
characteristic triplet

(
As, 0, γ (s)−

∫
{|x|≤1} xνs (dx)

)
and of bounded variation, thus

As ≡ 0 (see 4.5).

Theorem 4.7. Given a completely random signed measure M ful�lling condition
(1) in Lemma 3.1. Then for all B ∈ Bb:

M (B) ∼ µ+ (B)− µ− (B) +
k∑

i=1

Wi · 1B (xi) +
∑

(Xj ,Uj)∈Φ

Uj · 1B (Xj)

where Φ is a Poisson point process on X ×R, Wi are independent random variables,
the xi, i ∈ I is an at most countable set of points in X and µ+, µ− are Radon
measures.

Proof. Assume without loss of generality M has no �xed atoms. Applying Rajput
and Rosinski (1989) Proposition 2.1 (see this reference for notation) for everyB ∈ Bb:

C {M (B) ‡ t} = it ·
(
a (B)−

∫
{|z|≤1}

zUB (dz)

)
+

∫
R

(
eitz − 1

)
UB (dz)

5



From the proof of the previous lemma, we have that∫
{|z|≤1}

(|z|)UB (dz) <∞. (3)

Thus we can apply Campbell's Theorem Kingman (1993). In an argument, similar
to the one found in the proof of Theorem 4.4, we can construct a Poisson point
process Φ on X × R, such that

C
{ ∑

(Xj ,Uj)∈Φ

Uj · 1B (Xj) ‡ t
}

=

∫
R

(
eitz − 1

)
UB (dz)

(see Lemma 2.3 in Rajput and Rosinski (1989) for existence of a (mean) measure
on X × R with the acquired properties)

It remains to note that a (B)−
∫
{|z|≤1} zUB (dz) is �nite for all bounded setsB.

5 Lévy bases

De�nition 5.1. A stochastic process L indexed by Bb is called a Lévy basis, if L (B)
is in�nitely divisible for all B in Bb and L (Bn),n ≥ 1 are independent and

L (∪nBn) =
∑

n

L (Bn)

P-a.s. for any sequence of disjoint sets (Bn)n≥1 ⊆ Bb, ∪Bn ∈ Bb .

Remark 5.2. The condition of in�nite divisibility can be left out, if condition (1) in
Lemma 3.1 is ful�lled.

It is proved in Rajput and Rosinski (1989) Lemma 2.3 that the cumulant trans-
form of a Lévy basis L can be written as

C{L (dx) ‡ t} =
{
ita (x)− 1

2
t2b (x)

+

∫
R

(
eitz − 1− itz · 1[−1,1] (z)

)
ρ (x, dz)

}
λ (dx) (4)

λ is called the control measure and is σ-�nite, a is a Borel measurable mapping into
the real numbers and b is a density wrt. λ of a measure, ρ (x, ·) is a Lévy measure
for given x.

A Lévy basis such that a ≡ 0 and ρ ≡ 0 is called a purely Gaussian Lévy basis.

Theorem 5.3. Let L denote a Lévy basis. L has the same distribution as the sum
of a purely Gaussian Lévy basis and a completely random signed measure restricted
to Bb (all terms being independent) if and only if for any B ∈ Bb:∫

B

∫
{|z|≤1}

|z| ρ (x, dz)λ (dx) <∞
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Proof. From the proof of Lemma 4.6 we see the condition is necessary.
Assume the condition is ful�lled. Using the representation of the cumulant trans-

form of the Lévy we can make the following rearrangements:

C{dx ‡ t} =
{
it
(
a (x)−

∫
R

(
z · 1[−1,1] (z)

)
ρ (x, dz)

)
− 1

2
t2b (x) +

∫
R

(
eitz − 1

)
ρ (x, dz)

}
λ (dx) (5)

The non-Gaussian part of L has cumulant transform

{it
(
a (x)−

∫
R

(
z · 1[−1,1] (z)

)
ρ (x, dz)

)
+

∫
R

(
eitz − 1

)
ρ (x, dz)}λ (dx) (6)

Following the proof of Theorem 4.7 there is a completely random signed measure
with cumulant transform (6).

De�nition 5.4. Lévy random measures are Lévy bases with no Gaussian part.

Corollary 5.5. A Lévy random measure is a completely random signed measure if
and only if for any B ∈ Bb:∫

B

∫
{|z|≤1}

|z| ρ (x, dz)λ (dx) <∞.
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Abstract

We provide conditions for strong mixing of point processes on Rd, d ≥ 1
driven by shot-noise random fields. We discuss how the results provided can
be readily applied in estimation of spatio-temporal models.

Introduction

Mixing is often an essential prerequisite for establishing theoretical properties of
inference procedures for spatial processes. In this paper we establish results regard-
ing strong mixing of spatial point processes. We give particular attention to point
processes driven by shot-noise random fields.

For a particular class of estimating functions we discuss how the strong mixing
results can be applied to establish consistency and asymptotic normality for the
estimating function parameter estimates. This class of estimating functions e.g.
contains estimating functions obtained from certain composite likelihood functions
[Møller and Waagepetersen, 2007] which provide computationally easier alternatives
to maximum likelihood estimation for spatial point processes.

The discussion of mixing and estimating functions is focused on the spatial case.
Generalizations to spatio-temporal settings are however obvious.

So far, inference for point processes driven by random fields has mainly been
restricted to stationary or second-order re-weighted stationary processes [Diggle,
2002, Møller and Waagepetersen, 2007, Waagepetersen and Guan, 2008]. However,
our mixing results are applicable in a wider context of e.g. shot-noise processes with
an inhomogeneous cluster center process. Such processes are neither stationary nor
second-order re-weighted stationary. We conclude the paper by considering a specific
example of estimation in a non-second-order reweighted stationary model, motivated
by a point pattern dataset from the Yasuni tropical rain forest plot in Ecuador.
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1 Point processes driven by random fields

A point process driven by a random field X on a subset of Rd is defined in terms of
a random intensity function Λ, such that given Λ = λ, X is a Poisson point process
with intensity λ. Realizations of these point processes are most often clustered
point patterns. The intensity m and the second-order product density m2 for a
point process with random intensity Λ are given by

m(x) = E[Λ(x)] and m2(x, y) = E[Λ(x)Λ(y)], x, y ∈ Rd.

A sufficient condition for second-order re-weighted stationarity Baddeley et al. [2000]
is that the pair correlation function g(x, y) = m2(x, y)/(m(x)m(y)) is translation
invariant, i.e. g(x, y) only depends on x− y.

1.1 Mixing for point processes

For a point process X and given W0 ⊆ Rd, τ > 0 define

Wτ =
{
x ∈ Rd|∀y ∈ W0 : ‖x− y‖ ≥ τ

}
and

F0 = σ (X ∩W0) , Fτ = σ (X ∩Wτ ) .

The strong mixing coefficient between the σ-algebras F0 and Fτ is given as

α (τ) = sup {|P (Aτ ∩ A0)− P (Aτ )P (A0)| |Aτ ∈ Fτ , A0 ∈ F0} .

The following theorem states that the mixing coefficient of a point process driven
by a random field is bounded above by the mixing coefficient of the driving random
field Λ.

Theorem 1.1. For a given point process, let Λ denote the underlying random in-
tensity. Set

αΛ (τ) = sup {|P (Aτ ∩ A0)− P (Aτ )P (A0)| |Aτ ∈ Gτ , A0 ∈ G0} ,

where Gτ = σ(Λ (x) , x ∈ Wτ ), and G0 = σ(Λ (x) , x ∈ W0). Then

α (τ) ≤ αΛ (τ) .

Proof. Let Aτ ∈ Fτ , A0 ∈ F0 be given. Let Λ|Wτ and Λ|W0 denote the restrictions
of Λ to Wτ and W0. Then because X given Λ is a Poisson point process:

|P (Aτ ∩ A0)− P (Aτ )P (A0)| = |E [P (Aτ ∩ A0|Λ)]− E [P (Aτ |Λ)]E [P (A0|Λ)]|
= |E [P (Aτ |Λ)P (A0|Λ)]− E [P (Aτ |Λ)]E [P (A0|Λ)]| ≤ αΛ (τ) ,

using Doukhan [(1’) p. 3 1994], since P (Aτ |Λ) ≤ 1 is measurable wrt. Gτ , and
P (A0|Λ) ≤ 1 is measurable wrt. G0.
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Frequently used random fields are log-Gaussian random fields and shot-noise
random fields. Recently the literature on point processes with random intensity has
focused on second-order reweighted stationary point processes with random intensity
of the form

Λ(x) = exp(β · z(x))Ψ(x),

where z(x) denotes covariate information, β is a vector of parameters and Ψ is a
stationary random field. In the case of log-Gaussian random fields, popular choices of
log(Ψ) are Gaussian random fields with exponential or Gaussian covariance function.
In the case of the inhomogeneous Thomas point process [Waagepetersen, 2007]

Ψ(x) =
∑
c∈Φ

1

2πσ2
exp(−|x− c|

2

2σ2
),

where Φ is a homogeneous Poisson point process. The random field Ψ for an inho-
mogeneous Thomas point process has Gaussian covariance function.

According to [Belyaev, 1959] random fields with Gaussian covariance function
have smooth realizations and are not strong mixing: Using a simple power-series
expansion it can easily be seen that the σ-algebras generated by the restriction of
the random field to any open ball is identical to the σ-algebra generated by the field
restricted to any set containing an open ball. However, as shown in the sequel, in
the case of point processes driven by shot-noise random fields an analytic random
field does not rule out strong mixing of the resulting point process.

1.2 The Whittle-Matérn class

Guttorp and Gneiting [2006] and Stein [1999] discusses the widely used and very
flexible Whittle-Matérn class of isotropic covariance functions for random fields on
Rd, d ≥ 1. An often used parametrization of this family is

c(r) =
σ

2ν−1Γ(ν)
(
2ν1/2r

ρ
)νKν(

2ν1/2r

ρ
); ρ, σ, ν > 0,

where Kν denotes the second modified Bessel function of order ν. For fixed ρ and
σ the limiting covariance function of this family, as ν goes to infinity, is a Gaussian
covariance function of the form

c(r) = σ exp(−r
2

ρ2
),

For ν = 1
2

we obtain the exponential covariance function. In Matérn [1960] it is noted
(p.17) that the Whittle-Matérn covariance function with ν ≥ d

2
can be seen as the

correct generalization to d dimensions of type III distributions. Furthermore using
the results in Matérn [1960] we see that point processes on Rd driven by shot-noise
random fields on the form

Ψ(x) =
∑
c∈Φ

ϕγ(κ|x− c|)νKν(κ|x− c|);ϕ, ν, κ > 0,
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where
γ−1 = 2ν+dπd/2κ−1Γ(ν + d/2),

and Φ is a homogeneous Poisson point process, have covariance functions belonging
to the Whittle-Matérn family. The intensity function of these processes is equal to
ϕ · α, where α denotes the intensity of Φ. Furthermore for r = |x− y|

Cov(Ψ(x),Ψ(y))

ϕ2γ2α
=

21−2ν−d/2√π
Γ(2ν + (d+ 1)/2)κ2ν+d/2

r2ν+d/2K2ν+d/2(κr).

Since Kν is exponential decaying it is a consequence of Theorem 1.2 below that this
flexible class of shot-noise random fields can be used to generate point processes
that are strong mixing.

1.3 Cluster processes

In this section we consider cluster point processes X with cluster centers generated
from a Poisson process. Specifically we assume X is a point process with random
intensity function

x→
∑

(ξ,ζ)∈Φ

k (ξ, ζ, x) , (1.1)

where k is a positive function and Φ is a Poisson point process on Rd × Rl with
intensity function

χ : Rd × Rl → R+, l ≥ 1.

In order to have a well-defined point process it is necessary that the mean intensity
function exists and is locally integrable, i.e. for all x ∈ Rd

ˆ
Rd

ˆ
Rl
k (ξ, ζ, x)χ (ξ, ζ) dζdξ <∞,

and for all bounded Borel subsets B ⊂ Rd

ˆ
B

ˆ
Rd

ˆ
Rl
k (ξ, ζ, x)χ (ξ, ζ) dζdξdx <∞.

For introductions to cluster processes see [Daley and Vere-Jones, 2003, 2008, Møller,
2003, Møller and Torrisi, 2005]. The class of shot-noise Cox processes Møller [2003]
is obtained with l = 1 and k(ξ, ζ, x) of the form ζf(ξ, x). The generalized shot-noise
Cox processes in Møller and Torrisi [2005] also have random intensity functions of
the form (1.1) with l = 2 and k(ξ, ζ, x) = ζ1f(ξ/ζ2, x/ζ2)/ζd2 for some kernel f but
Φ is not restricted to be Poisson.

Recall the notation for mixing coefficients and define

Wc,τ =
{
x ∈ Rd|∀y ∈ W0 : ‖x− y‖ > τ

2

}
and

Wc,0 = Rd\Wc,τ .

The following theorem generalizes a result in Waagepetersen and Guan [2008]. A
proof is given in the Appendix.
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Theorem 1.2.

α (τ) ≤4

ˆ
W0

ˆ
Wc,τ×Rl

k (ξ, ζ, x)χ (ξ, ζ) d (ζ, ξ) dx

+ 4

ˆ
Wτ

ˆ
Wc,0×Rl

k (ξ, ζ, x)χ (ξ, ζ) d (ζ, ξ) dx.

In particular, if h(z) is O (e−γ·z) for some positive constant γ andˆ
Rl
k (ξ, ζ, x) · χ (ξ, ζ) dζ ≤ h (‖ξ − x‖) ,

then α (τ) is O (e−ν·τ ) for some positive constant ν if W0 is bounded.

The condition in the theorem trivially holds if k has compact support. Another
example is a shot-noise Cox process with k (ξ, ζ, x) = ζ · f (x) · fk (‖x− ξ‖) where
f is bounded, fk is a Laplace or Gaussian kernel and

´
ζ · χ (ξ, ζ) dζ <∞. Certain

strong mixing results [Guyon, 1995] only require that α(τ) ∈ O(τ−p).

2 Estimating functions

Maximum likelihood estimation is in general difficult for point processes with ran-
dom intensity due to intractable likelihood functions. Instead parameter estimates
are often obtained using minimum contrast estimation based on the K-function,
which is well-defined in the stationary or second-order re-weighted stationary case
[see Diggle, 2002, Møller and Waagepetersen, 2007, 2004, Waagepetersen and Guan,
2008]. In the case of cluster processes, which are not second-order re-weighted sta-
tionary, minimum contrast estimation based on the K-function is not possible and
instead one may use certain composite likelihood functions as discussed below. Fur-
thermore we discuss how strong mixing results become useful for establishing asymp-
totic results for a general class of estimating functions including those obtained by
differentiating log composite likelihood functions.

2.1 Composite likelihoods

We assume the distribution PX of X is defined in terms of a vector of parameters
θ ∈ Θ ⊆ Rq for some q ≥ 1. The intensity m and second-order product density m2

is related to probabilities of occurrence of points or pairs of points and this leads to
composite likelihoods of the form

` (θ) =
1

|W |

(∑
x∈W

lnm1 (x)−
ˆ
W

m1 (x) d (x)

)
. (2.1)

[Schoenberg, 2005, Waagepetersen, 2007] and

`pairwise (θ) =
1

|W |

 6=∑
x,y∈X∩W :
‖x−y‖<r

lnm2(x, y)− (

6=∑
x,y∈X∩W :
‖x−y‖<r

1) ln

ˆ
W×W :
‖x−y‖<r

m2(x, y)d(x, y)


(2.2)
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[Guan, 2006]. Guan [2006] considered the stationary case but (2.2) may be applied
in a much wider context of non stationary point processes. In (2.2), pairs of points
with large inter point distance tend to add more noise than information and that is
the reason for using only pairs of points whose inter point distance is less than the
user-specified parameter r.

In Waagepetersen [2007] the Bernoulli composite log likelihood was introduced,

`Bernoulli (θ) =
1

|W |

 6=∑
x,y∈W :
‖x−y‖<r

lnm2 (x, y)−
ˆ
W×W :
‖x−y‖<r

m2 (x, y) d (x, y)

 . (2.3)

Estimating functions are given by the gradients of the composite likelihoods. The
estimating functions ∇`pairwise and ∇`Bernouilli are closely related, since `Bernouilli
is obtained from ∇`pairwise by replacing the last random term in ∇`pairwise by its
expectation.

Consider a disjoint partioning of Rd into equally sized squares (d = 2) or boxes
(d ≥ 2) Sp, p ∈ Zd. The above composite log likelihood functions and many other
types of inference functions based e.g. on method of moments or on product densities
mk, k > 2, may be written as a sum

1

a

∑
p

`p (θ) , (2.4)

where `p (θ) only depends on X through X ∩ Cp for a bounded neighborhood Cp of
Sp (see figure (2.1)). The scaling factor a is often the size |W | of W or the number
of points p in W .

Figure 2.1: In a partition of Rd into squares, p marks the center of a cell Sp and Cp
marks a neighborhood.

Regarding (2.3) for example,

`p (θ) =

6=∑
x∈X∩Sp,y∈X:
‖x−y‖<r

lnm2 (x, y)−
ˆ
Sp∩W×W :
‖x−y‖<r

m2(x, y)d(x, y)
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and
Cp = {y ∈ R|∃x ∈ Sp : ‖x− y‖ ≤ r}.

2.2 Mixing and asymptotic results

In this section we present a set of theorems useful for establishing asymptotic proper-
ties of estimates obtained e.g. from composite likelihoods as discussed in the previous
section. Consider an increasing sequence of observation windows Wn and a sequence
of estimating functions u (n, θ) of the form

u (n, θ) =
1

an

∑
p

up (θ) (2.5)

using the notation of the previous section, where up (θ) only depends on X through
X ∩ Cp and Cp is a bounded neighborhood of Sp. The estimating function u (n, θ)
might for instance be given by the gradient of one of the composite likelihoods
defined in the previous section. An estimate θ̂n is obtained by solving u(n, θ) = 0.

The primary application of strong mixing is to obtain a central limit theorem
for a suitably scaled version of (2.5). Define the mixing coefficient

α2,∞ (m) = sup
A,B
{α (σ (up(θ), p ∈ A) , σ (up(θ), p ∈ B))} ,

where A,B ⊆ Zd, |A| ≤ 2, dist (A,B) ≥ m,

α (σ (up(θ), p ∈ A) , σ (up(θ), p ∈ B)) = sup
MA,MB

|P (MA ∩MB)− P (MA)P (MB)|

and
MA ∈ σ (up(θ), p ∈ A) ,MB ∈ σ (up(θ), p ∈ B) .

Assume for all ∃δ > 0∀θ ∈ Θ:

sup
p
E
[
‖up (θ)‖2+δ

]
<∞ (2.6)

and ∑
m≥1

md−1α2,∞ (m)δ/2+δ <∞. (2.7)

It then follows from Theorem 3.3.1 in Guyon [1995] that the variance of a
1/2
n u(n, θ) is

bounded and that a
1/2
n u(n, θ) is asymptotically normal, provided the variance matrix

of a
1/2
n u(n, θ) stays positive definite as n tends to infinity.
In applications up (θ) is a measurable mapping of X|Cp , thus

α (σ (up, p ∈ A) , σ (up, p ∈ B)) ≤ α
(
σ
(
X|∪Cp , p ∈ A

)
, σ
(
X|∪Cp , p ∈ B

))
,

where

α
(
σ
(
X|∪Cp , p ∈ A

)
, σ
(
X|∪Cp , p ∈ B

))
= sup

MX
A ,M

X
B

∣∣P (MX
A ∩MX

B

)
− P

(
MX

A

)
P
(
MX

B

)∣∣
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and
MX

A ∈ σ
(
X|∪Cp , p ∈ A

)
,MX

B ∈ σ
(
X|∪Cp , p ∈ B

)
.

Mixing results for the process X are therefore crucial for establishing mixing of
up(θ), p ∈ Zd.

The following theorem is an example of how mixing of up(θ), p ∈ Zd may be used

to establish consistency of roots θ̂n of un. Define

R =
{
θ ∈ Θ| lim

n→∞
‖Eθ0 [u (n, θ)]‖ = 0

}
and

Rε = {θ ∈ Θ|∃θR ∈ R : ‖θ − θR‖ < ε} ,

where ‖·‖ is the Euclidean norm. We will assume R = {θ0}, i.e. asymptotically
there is at most one root.

Theorem 2.1. Suppose u (n, θ) is continuous and Θ is compact, given (1)-(3) below,
θ̂n is consistent, i.e. in probability,

lim
n→∞

θ̂n = θ0.

if an ↑ ∞ as n ↑ ∞.

1. ∀ε > 0∃c > 0, N ≥ 1∀n ≥ N : infΘ\Rε ‖Eθ0 [u (n, θ)]‖ ≥ c

2. the conditions (2.6) and (2.7) are satisfied

3. ∃h : x ↓ 0⇒ h (x) ↓ 0 and ∃Bn = OP (1):

‖u (n, θ)− u (n, θ′)‖ ≤ Bn · h (‖θ − θ′‖) , P − a.s.,

where Bn = OP (1) means that Bn is a sequence of stochastic variables not
depending on θ and bounded in probability, i.e.

∀ε > 0∃δ > 0 : lim sup
n→∞

P (Bn ≥ δ) ≤ ε.

Proof. By Theorem 3.1 in Crowder [1986] it suffices to prove that

sup
Θ\Rε
‖u (n, θ)− Eθ0 [u (n, θ)]‖ →n→∞ 0. (2.8)

Note that

V ar (u (n, θ)i) = V ar

(
1

an

∑
p∈Wn

up (θ)i

)
=

1

a2
n

(∑
p

σ2
p + 2

6=∑
p1,p2

σp1p2

)
,

where i refers to the i′th estimating function and

σ2
p = V ar (up (θ)i) , σp1p2 = Cov (up1 (θ)i , up2 (θ)i) .
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Using condition (2) and the first part of Theorem 3.3.1 in [Guyon, 1995] and the
accompanying Remark (1) we obtain for all θ and n ≥ 1

anV ar (u (n, θ)i) <∞.

Thus in L2 and therefore in probability

‖u (n, θ)− Eθ0 [u (n, θ)]‖ → 0, n→∞. (2.9)

We therefore obtain (2.8) from condition (3), since this condition by Theorem 21.10
(i) in Davidson [1994] assures stochastic equicontinuity, which combined with (2.9)
and Theorem 21.9 in [Davidson, 1994] provides uniform convergence

Theorem 3.3 in [Crowder, 1986] provides conditions, for which

Vn (θ0)−1/2Mn (θ0)
(
θ̂n − θ0

)
has the same asymptotic distribution as

−Vn (θ0)−1/2 u (n, θ0) (2.10)

where

Vn (θ) = V arθ0 (u (n, θ))

Mn (θ) = Eθ0

[
∂

∂θT
u (n, θ)

]
.

Asymptotic normality of θ̂n then follows from asymptotic normality of u(n, θ).
Asymptotic existence of θ̂n is ensured by the following condition

∀ε > 0∃δ > 0, N ≥ 1∀n ≥ N : inf
‖θ−θ0‖=ε

(θ − θ0)T Eθ0 [u (n, θ)] > δ

[Theorem 3.2 Crowder, 1986]. A related route to existence of a consistent sequence
of roots is given by Theorem 2 in [Waagepetersen and Guan, 2008]. This approach

also relies on a central limit theorem for a
1/2
n u(n, θ).

2.3 Estimation in non-stationary cluster point processes

In this example we provide some details for estimation in shot-noise Cox point
processes X with random intensity on the form:

Λ(x) =
∑
c∈Φ

k(‖c− x‖),

where k is an Epanechnikov type kernel, i.e.

k(‖c− x‖) =

{
2δγ
π

(1− γ ‖c− x‖2), if ‖c− x‖ < 1√
γ
;

0, otherwise.
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where δ, γ > 0 and Φ is a Poisson point process on R2 with intensity function

λ(c) = exp(β0 + β · z(c)),

β0 ∈ R, β ∈ Rl and z(c) is a set of l covariate fields.
The intensity function is given as

m1(x) =
2δγ

π

ˆ
‖c−x‖< 1

γ

eβ0+β·z(c)(1− γ ‖c− x‖2)dc;x ∈ R2.

This cluster point process is neither stationary nor second-order re-weighted sta-
tionary. Strong mixing of the point process is trivial since the kernel has bounded
support, thus using a first order Bernoulli composite log likelihood (2.1) we can
estimate the parameters β, γ and the quantity δ · exp(β0).

We assume an enlarged observation window W contains covariate information.

2.3.1 Data

As a brief practical example we will look at positions of trees of the species Rinorea
lindeniana in the Yasuni tropical forest plot in the Ecuadorian rain forest, data are
kindly provided by professor Henrik Balslev, Department of Biology, University of
Aarhus, Denmark.

The distribution of species in the 500m× 500m plot in relation to habitat infor-
mation was discussed in Valencia et al. [2004]. Specifically the observation window
was divided into six different habitats as shown in figure 2.2. We will use an in-
dicator of each of the six different habitats as covariate information. Furthermore
since we need covariate information in an enlarged observation window, we will only
look at trees within the [60, 440] × [60, 440] sub window - see the right hand side
of figure 2.2. In this specific case β becomes a four-dimensional vector - the sixth
habitat is ignored, since it has only a minor effect due to it’s small size and loca-
tion outside W , and the fifth habitat is used as set off. The estimated values were:
β = (−3.98,−0.35,−0.05,−1.87), γ = exp(−6.27) and δ · exp(β0) = exp(−3.53).

Figure 2.2: Left: Habitats in the Yasuni tropical forest plot. Right: Positions of
Rinorea lindeniana in the [60, 440]× [60, 440] sub window.
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2.3.2 Simulation

We simulated 100 point patterns of the above type using habitat covariate infor-
mation from the Yasuni plot and parameters β = (−3.98,−0.35,−0.05,−1.87),
γ = exp(−6.27), δ = exp(6.5 − 3.53) and β0 = −6.5. See figure 2.3 for plots of
four simulated point patterns. For each point pattern we estimated the parame-
ters β and γ and the quantity δ · exp(β0). As expected estimates are well-behaved
(see figure 2.4). The empirical mean values obtained from these simulations were
β = (−4.04,−0.39,−0.08,−1.78), ln(γ) = −5.48, ln(δ · exp(β0)) = −3.54. Although
the estimates of γ seem to be significantly biased, they are within a reasonable dis-
tance from the true value.

Figure 2.3: Simulated point patterns, using parameters β =
(−3.98,−0.35,−0.05,−1.87), γ = exp(−6.27), δ = exp(6.5− 3.53) and β0 = −6.5.

11



Figure 2.4: QQ-plots of parameter estimates obtained using first order Bernoulli
composite likelihood. From above left: β the 4-dimensional covariate parameter
vector, ln(γ), ln(δ · exp(β0)).
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Discussion

We have derived useful conditions for strong mixing of cluster point processes.
A very important application of the mixing results was given in section 2, through

a discussion of asymptotic results for estimating functions for spatial data. The
results in section 2 may be further generalized and adapted to other dependence
structures using Guyon [1995] and Davidson [1994].

The asymptotic results found above gives a theoretically justification for method
of moments and composite likelihood estimation methods in (non-stationary) point
processes driven by random fields. The shot-noise random fields introduced in sec-
tion 1.2 may provide a flexible class for use in descriptive statistics based on observed
point patterns and covariate information, while models that are not second-order
re-weighted stationary may occur when trying to describe the dynamics behind some
clustered point patterns. Shot-noise random fields are fairly simple and very fast to
simulate. Fast estimation procedures and fast simulation routines provide evident
opportunities for simulation based inference. Subsampling methods as described in
Heagerty and Lumley [2000] can easily be adopted.

Throughout our discussion we focused on spatial estimating functions in order
to provide a clear presentation. However, the setup can obviously be generalized to
spatio-temporal settings if time is interpreted as one of the spatial dimensions.

Appendix

Proof of theorem 1.2: It is well known that X can be seen as a union of independent
Poisson point processes

X = ∪(ξ,ζ)∈ΦX(ξ,ζ),

where X(ξ,ζ) has intensity function k (ξ, ζ, x).
Let Xτ and X0 denote Poisson cluster processes, such that

Xτ = ∪(ξ,ζ)∈Φ|
Wc,τ×Rl

X(ξ,ζ)

and
X0 = ∪(ξ,ζ)∈Φ|

Wc,0×Rl
X(ξ,ζ).

Then X = Xτ ∪X0, furthermore Xτ and X0 are independent.
Let Gτ and G0 denote elements in the sigma-algebra Nlf , such for given Aτ ∈ Fτ

and A0 ∈ F0

Aτ = {X ∩Wτ ∈ Gτ}

and
A0 = {X ∩W0 ∈ G0} .

Where
Nlf = σ

{
M ⊂ Rd|∀B ∈ Bb

(
Rd
)
∃m ≥ 0 : # (M ∩B) = m

}
,

and Bb
(
Rd
)

are the bounded Borel subsets of Rd.
Define

A∗τ = {Xτ ∩Wτ ∈ Gτ} , A∗0 = {X0 ∩W0 ∈ G0}
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and
Bτ = {Xτ ∩W0 = ∅} , B0 = {X0 ∩Wτ = ∅}

Because of independence between Xτ and X0 we see, that

P (Aτ ∩ A0 ∩Bτ ∩B0) = P (A∗τ ∩Bτ )P (A∗0 ∩B0)

P (Aτ ∩Bτ ∩B0) = P (A∗τ ∩Bτ )P (B0)

P (A0 ∩B0 ∩Bτ ) = P (A∗0 ∩B0)P (Bτ ) .

Thus

|P (Aτ ∩ A0)− P (Aτ )P (A0)|
= |P (A∗τ ∩Bτ )P (A∗0 ∩B0) + P

(
Aτ ∩ A0 ∩

(
BC
τ ∪BC

0

))
− P (Aτ )P (A0) |

≤ P
(
BC
τ

)
+ P

(
BC

0

)
+ P (A∗τ ∩Bτ )P (A∗0 ∩B0) (1− P (B0)P (Bτ ))

+P
(
Aτ ∩

(
BC
τ ∪BC

0

))
+ P

(
A0 ∩

(
BC
τ ∪BC

0

))
≤ 4P

(
BC
τ

)
+ 4P

(
BC

0

)
,

since
1− P (B0)P (Bτ ) = P

(
BC

0 ∪BC
τ

)
.

Using Markov’s Inequality

P
(
BC
τ

)
= P (# (Xτ ∩W0) ≥ 1) ≤ E [# (Xτ ∩W0)]

=

ˆ
W0

ˆ
Wc,τ×Rl

k (ξ, ζ, x)χ (ξ, ζ) d (ζ, ξ, x)

and

P
(
BC

0

)
≤
ˆ
Wτ

ˆ
Wc,0×Rl

k (ξ, ζ, x)χ (ξ, ζ) d (ζ, ξ, x)
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