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Abstract

We study integrability and equivalence of Lp-norms of polynomial chaos
elements. Relying on known results for Banach space valued polynomials, a
simple technique is presented to obtain integrability results for random el-
ements that are not necessarily limits of Banach space valued polynomials.
This enables us to prove integrability results for a large class of seminorms of
stochastic processes and to answer, partially, a question raised by C. Borell
(1979, Séminaire de Probabilités, XIII, 1–3).
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1 Introduction
Let T denote a countable set, X = (Xt)t∈T a stochastic process and N a seminorm
on RT . This paper focuses on integrability and equivalence of Lp-norms of N(X).
Of particular interest is the supremum and the p-th variation norm given by

N(f) = sup
t∈T
|f(t)| and N(f) = sup

n≥1

( kn∑

i=1

|f(tni )− f(tni−1)|p
)1/p

, p ≥ 1, (1.1)

for f ∈ RT . In the p-th variation case we assume moreover T = [0, 1] ∩ Q and
πn = {0 = tn0 < · · · < tnkn

= 1} are nested subdivisions of T satisfying ∪∞n=1πn = T .
Note that if N is given by (1.1), B = {x ∈ RT : N(x) < ∞} and ‖x‖ = N(x) for
x ∈ B, then (B, ‖ · ‖) is a non-separable Banach space when T is infinite.

1.1 Set-up

Let (Ω,F , P ) denote a probability space. For each p > 0 and real random variable
X we let ‖X‖p := E[|X|p]1/p, which defines a norm when p ≥ 1; moreover, let
‖X‖∞ := inf{t ≥ 0 : P (|X| ≤ t) = 1}. When B is a Banach space, Lp(P ;B) denotes
the space of all strongly measurable random elements, X, satisfying ‖X‖Lp(P ;B) =
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E[‖X‖p]1/p < ∞. Throughout the paper I denotes a set, H = {Zt : t ∈ I} a
family of real-valued independent random variables, d ≥ 1 a natural number and F
a locally convex Hausdorff topological vector space (l.c.TVS) with dual space F ∗.
Following Fernique [9], a map N from F into [0,∞] is called a pseudo-seminorm if
for all x, y ∈ F and λ ∈ R, we have

N(λx) = |λ|N(x) and N(x+ y) ≤ N(x) +N(y).

An F -valued random element X is called a tetrahedral polynomial of order d if it is
of the form

X = x0 +
d∑

k=1

∑

1≤i1<···<ik≤n
xi1,...,ik

k∏

j=1

Ztij ,

for some n ≥ 1, x0, xi1,...,ik ∈ F and t1, . . . , tn different elements in I. PdH denotes
the set of all real-valued d-order tetrahedral polynomials and PdH its closure in
probability. Inspired by Ledoux and Talagrand [17], and similar to Arcones and
Giné [1] in the Gaussian case, we introduce the following definition:

Definition 1.1. An F -valued random element X is said to be a weak chaos element
of order d if for all n ≥ 1 and all (x∗i )

n
i=1 ⊆ F ∗ there exists (Yi)

n
i=1 ⊆ P

d

H such that
(x∗1(X), . . . , x∗n(X)) equals (Y1, . . . , Yn) in distribution. The space of all F -valued
weak polynomial chaos elements of order d is denoted weak-PdH(F ). Similarly, a
real-valued stochastic process (Xt)t∈T is said to be a weak chaos process of order d
if for all n ≥ 1 and (ti)

n
i=1 ⊆ T there exists (Yi)

n
i=1 ⊆ P

d

H such that (Xt1 , . . . , Xtn)
equals (Y1, . . . , Yn) in distribution.

Weak chaos processes appear in the context of multiple integral processes, see
e.g. Krakowiak and Szulga [15] for the α-stable case. Rademacher chaos processes
are applied repeatedly when studying U -statistics, see de la Peña and Giné [8]. They
are also used to study infinitely divisible chaos processes, see Marcus and Rosiński
[18], Rosiński and Samorodnitsky [23], Basse and Pedersen [2] and others. Using the
results of the present paper, A. Basse and S.-E. Graversen (2009, Chaos processes
and semimartingales, work in progress) extend some well-known results on Gaussian
semimartingales (see Jain and Monrad [12] and Stricker [26]) to a large class of chaos
processes.

We shall need the following condition on H, denoted Cq.

• For q ∈ (0,∞), Cq is said to be satisfied if there exists β = (β1, β2, β3, β4) ∈
(0,∞)4 such that for all s ≥ β1 and t ∈ I we have

P (|Zt| > β3) ≥ β4 and E[|Zt|q, |Zt| > s] ≤ β2s
qP (|Zt| > s).

• C∞ is said to be satisfied if H ⊆ L1 and

β := sup
t∈I

(‖Zt − E[Zt]‖∞
‖Zt − E[Zt]‖2

)
<∞.
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Often the Zt’s will be identically distributed. Then H satisfies Cq for all q ∈ (0, α)
for α > 0 if x 7→ P (|Zt| > x) is regulary varying with index −α or Zt follows a
Pareto-like distribution with index α (see Rosiński and Woyczyński [24]), that is

0 < lim inf
x→∞

xαP (|Zt| > x) ≤ lim sup
x→∞

xαP (|Zt| > x) <∞.

The regulary varying case follows by Karamata’s Theorem (see [3, Theorem 1.5.11]).
In particular, if the common distribution is symmetric α-stable for some α ∈ (0, 2)
H satisfies Cq for all q ∈ (0, α). If the common distribution is Poisson, exponential,
Gamma or Gaussian then Cq is satisfied for all q > 0. Finally H satisfies C∞ if and
only if the common distribution has compact support.

1.2 Integrability of seminorms

Let T denote a countable set, X = (Xt)t∈T a real-valued stochastic process and N
a measurable pseudo-seminorm on RT such that N(X) < ∞ a.s. For X Gaussian
Fernique [9, Thèoréme 1.2.3] shows that eεN(X)2 is integrable for some ε > 0. This
result is extended to Gaussian chaos processes by Borell [4, Theorem 4.1]. When X
is infinitely divisible Rosiński and Samorodnitsky [22, Lemma 2.2] provide conditions
on the Lévy measure ensuring integrability of eεN(X) for some ε > 0. Moreover, if
X is α-stable for some α ∈ (0, 2), de Acosta [7, Theorem 3.2] shows that N(X)p is
integrable for all p < α. See also Hoffmann-Jørgensen [10] for further results.

Let X be a Rademacher process of the form Xt =
∑∞

n=1 xn(t)Zn, where xn ∈ RT

satisfies
∑∞

n=1 xn(t)2 < ∞ for all t ∈ T and (Zn)n≥1 is a Rademacher sequence,
that is, a sequence of independent variables such that P (Zn = ±1) = 1/2 for all
n ≥ 1. For some class of pseudo-seminorms N , including the supremum and the
p-th variation norm, Ledoux and Talagrand [17, Theorem 4.8] shows that eεN(X)2

is integrable for all ε > 0 if N(xn) < ∞ for all n ≥ 1. However, a symmetrization
argument shows that the last assumption is always satisfied. Ledoux and Talagrand
[17] also obtain a similar result for second-order Rademacher chaos processes. To the
best of our knowledge, the literature does not contain general results on integrability
of N(X) for Rademacher chaos processes of order d > 2. However, this will be a
special case of the results presented below.

Let X = (Xt)t∈T be a weak chaos process of order d as in Definition 1.1 and
assume H satisfies Cq for some q ∈ (0,∞]. Let N be a lower semicontinuous pseudo-
seminorm on RT satisfying N(X) < ∞ a.s. Examples are the supremum and the
p-th variation norm. In this paper we show p-integrability and equivalence of Lp-
norms of N(X) for all finite p ≤ q and in the case q =∞ that eεN(X)2/d is integrable
for some ε > 0. In particular, we show integrability of eεN(X)2/d if X is a Rademacher
chaos process of any order d ≥ 1.

Borell [6] studies, under the condition

sup
t∈I

‖Zt − E[Zt]‖q
‖Zt − E[Zt]‖2

<∞, q ∈ (2,∞], (1.2)

integrability of Banach space valued random elements which are limits in probability
of tetrahedral polynomials. For q = ∞, (1.2) is C∞ but when q < ∞ (1.2) is
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weaker than Cq, at least when H consists of centered random variables. As shown in
Borell [6], (1.2) implies equivalence of Lp-norms for Hilbert space valued tetrahedral
polynomials for p ≤ q, but not for Banach space valued tetrahedral polynomials
except in the case q = ∞. Contrary to Borell [6] and others, we consider random
elements which are not necessarily limits of tetrahedral polynomials. This enables
us to obtain the above mentioned integrability results.

1.3 Preliminary results

The following lemma is for q = ∞ a consequence of Borell [6, Theorem 4.1]. For
q ∈ (1,∞) it is taken from the proof of Kwapień andWoyczyński [16, Theorem 6.6.2].
Finally, using Kwapień and Woyczyński [16, Remark 6.9.1] the result is seen to hold
also for q ∈ (0, 1].

Lemma 1.2. Let B denote a Banach space and assume H satisfies Cq for q ∈
(0,∞] and if q <∞ that H consists of symmetric variables. Then for all B-valued
tetrahedral polynomials X of order d and all 0 < p < r ≤ q with r <∞, we have

‖X‖Lr(P ;B) ≤ kp,r,d,β‖X‖Lp(P ;B),

where kp,r,d,β depends only on p, q, d and β. If q = ∞ and p ≥ 2 we may choose
kp,r,d,β = Adβ

2drd/2, where Ad only depends on d.

Remark 1.3. By applying Lemma 3.1 (see Appendix) in the proof of Borell [6,
Theorem 4.1] it follows that we may choose Ad = 2d

2/2+2d.
For q = ∞, Lemma 1.2 is only stated for 2 ≤ p < r in Borell [6]. However, a

standard application of Hölder’s inequality shows that it is valid for all 0 < p < r
(see e.g. Pisier [19, Lemme 1.1]). In the case q < ∞, Lemma 1.2 is an extension
of Hoffmann-Jørgensen [11, Section 6]. The following consequence of the Paley-
Zygmund inequality can be found in Krakowiak and Szulga [14, Corollary 1.4].

Lemma 1.4. Let (Xn)n≥1 be random variables for which there exist C > 0 and
0 < p < q such that ‖Xn‖q ≤ C‖Xn‖p < ∞ for all n ≥ 1. If (Xn)n≥1 converges
in probability (respectively, is tight) then (Xn)n≥1 converges in Lp (respectively, is
bounded in Lq).

2 Main results
The main results of the paper are Theorem 2.1 and Theorem 2.5. An F -valued
random element X is said to be a.s. separably valued if P (X ∈ A) = 1 for some
separable closed subset A of F .

Theorem 2.1. Let F denote a metrizable l.c.TVS, X ∈ weak-PdH(F ) an a.s. sepa-
rably valued random element and N a lower semicontinuous pseudo-seminorm on F
such that N(X) <∞ a.s. Assume H satisfies Cq for some q ∈ (0,∞] and if q <∞
that H consists of symmetric variables. Let kp,r,d,β be given as in Lemma 1.2. Then
for all finite 0 < p < r ≤ q we have

‖N(X)‖r ≤ kp,r,d,β‖N(X)‖p <∞,
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and in the case q =∞ that E[eεN(X)2/d
] <∞ for all ε < d/(e2d+5β4‖N(X)‖2/d

2 ).

For q =∞, Theorem 2.1 answers in the case where the pseudo-seminorm is lower
semicontinuous a question raised by Borell [5] concerning integrability of pseudo-
seminorms of Rademacher chaos elements. This additional assumption is satisfied
in most examples, in particular in the examples in (1.1). By Lemma 1.4 we have
the following corollary to Theorem 2.1.

Corollary 2.2. Let F and H be as in Theorem 2.1 and N a continuous semi-
norm on F . Then given (Xn)n≥1 ⊆ weak-PdH(F ) all a.s. separably valued such that
limnXn = 0 in probability we have ‖N(Xn)‖p → 0 for all finite p ∈ (0, q].

Theorem 2.1 relies on the following two lemmas together with an application of
Lemma 1.2 on the Banach space ln∞ that is Rn equipped with the sup norm. First,
arguing as in Fernique [9, Lemme 1.2.2] we have.

Lemma 2.3. Assume F is a strongly Lindelöf l.c.TVS. Then a pseudo-seminorm
N on F is a lower semicontinuous if and only if there exists (x∗n)n≥1 ⊆ F ∗ such that
N(x) = supn≥1|x∗n(x)| for all x ∈ F .

Proof. The if -implication is trivial. To show the only if -implication let A :=
{x ∈ F : N(x) ≤ 1}. Then A is convex and balanced since N is a pseudo-seminorm
and closed since N is lower semicontinuous. Thus by the Hahn-Banach theorem, see
Rudin [25, Theorem 3.7], for all x /∈ A there exists x∗ ∈ F ∗ such that |x∗(y)| ≤ 1
for all y ∈ A and x∗(y) > 1, showing that

Ac =
⋃

x∈Ac

{y ∈ F : |x∗(y)| > 1}.

Since F is strongly Lindelöf, there exists (xn)n≥1 ⊆ Ac such that

Ac =
∞⋃

n=1

{y ∈ F : |x∗n(y)| > 1},

implying that A = {y ∈ F : supn≥1|x∗n(y)| ≤ 1}. Thus by homogeneity we have
N(y) = supn≥1|x∗n(y)| for all y ∈ F .

Lemma 2.4. Let n ≥ 1, 0 < p < q and C > 0 be given such that

‖X‖Lq(P ;ln∞) ≤ C‖X‖Lp(P ;ln∞) <∞, (2.1)

for all ln∞-valued tetrahedral polynomials X of order d. Then for all (Xk)
n
k=1 ⊆ P

d

H
we have

∥∥ max
1≤k≤n

|Xk|
∥∥
q
≤ C

∥∥ max
1≤k≤n

|Xk|
∥∥
p
<∞.

Proof. For each k ∈ {1, . . . , n} choose (Xk,m)m≥1 ⊆ PdH such that limmXk,m = Xk in
probability. Set Um = sup1≤k≤n|Xk,m|, U = sup1≤k≤n|Xk| and Ym = (X1,m, . . . , Xn,m).
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Then for each m ≥ 1 Ym is an ln∞-valued tetrahedral polynomial of order d and since
‖Ym‖∞ = sup1≤k≤n|Xk,m| we have by (2.1)

‖Um‖q ≤ C‖Um‖p <∞, for all m ≥ 1. (2.2)

Since limm Um = U in probability, (2.2) shows together with Lemma 1.4 that
limm Um = U in Lp and hence

‖U‖q ≤ lim inf
m→∞

‖Um‖q ≤ C lim inf
m→∞

‖Um‖p = C‖U‖p <∞.

Proof of Theorem 2.1. Since X is a.s. separably valued we may and will assume that
F is separable. Hence according to Lemma 2.3 there exists (x∗n)n≥1 ⊆ F ∗ such that
N(x) = supn≥1|x∗n(x)| for all x ∈ F . For n ≥ 1, let Xn := x∗n(X). By assumption
we may choose (Yk,n)nk=1 ⊆ P

d

H such that (Yk,n)nk=1 equals (Xn)nk=1 in distribution
for all n ≥ 1. In particular with

Un := sup
1≤k≤n

|Yk,n|, n ≥ 1,

we have that (Un)n≥1 converges in distribution to N(X). For finite 0 < p < r ≤ q
let c = kp,r,d,β. Combining Lemma 1.2 and 2.4 shows ‖Un‖q ≤ c‖Un‖p < ∞ for all
n ≥ 1, and hence by Lemma 1.4, {Up

n : n ≥ 1} is uniformly integrable, implying
that

‖N(X)‖r ≤ lim inf
n→∞

‖Un‖r ≤ c lim inf
n→∞

‖Un‖p = c‖N(X)‖p <∞.

Finally, the exponential integrability under C∞ follows by Remark 1.3 since

E[eεN(X)2/d

] ≤ 1 +
d∑

k=1

‖N(X)‖2k/d
2k/d +

∞∑

k=d+1

(
ε2d+5β4‖N(X)‖2/d

2 /d
)k kk
k!
.

This completes the proof.

Let T denote a countable set and let F = RT equipped with the product topology.
F is then a separable and locally convex Fréchet space and all x∗ ∈ F ∗ are of the
form x 7→ ∑n

i=1 αix(ti), for some n ≥ 1, t1, . . . , tn ∈ T and α1, . . . , αn ∈ R. Thus
X· ∈ weak-PdH(F ) if and only if (Xt)t∈T is a weak chaos process of order d. Rewriting
Theorem 2.1 in the case F = RT we obtain the following result.

Theorem 2.5. Assume H satisfies Cq for some q ∈ (0,∞] and if q < ∞ that H
consists of symmetric variables. Let T denote a countable set, (Xt)t∈T a weak chaos
process and N a lower semicontinuous pseudo-seminorm on RT (equipped with the
product topology) such that N(X) < ∞ a.s. Then for all finite 0 < p < r ≤ q we
have

‖N(X)‖r ≤ kp,r,d,β‖N(X)‖p <∞,

and in the case q =∞ that E[eεN(X)2/d
] <∞ for all ε < d/(e2d+5β4‖N(X)‖2/d

2 ).
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Theorem 2.1 and 2.5 can be improved considerably in the Gaussian case. Let G
denote a vector space of Gaussian random variables and Π

d

G the closure in probability
of the random variables of the form p(Z1, . . . , Zn), where n ≥ 1, Z1, . . . , Zn ∈ G and
p : Rn → R is a polynomial of degree at most d. For each Banach space B, the
inequality (2.1) in Borell [5] for Rademacher variables, Lemma 3.1 (see Appendix)
and a central limit theorem argument show

‖X‖Lr(P ;B) ≤ 2d
2/2+d

(r − 1

p− 1

)d/2
‖X‖Lp(P ;B), 1 < p < r <∞, (2.3)

for all B-valued polynomials X in G of order at most d (not necessarily tetrahedral).
For details on the central limit theorem argument see e.g. Kwapień and Woyczyński
[16, page 163]. Using (2.3), the proofs of Theorem 2.1 and 2.5 show also:

Proposition 2.6. Let T denote a countable set and X = (Xt)t∈T a process sat-
isfying that for all n ≥ 1 and (ti)

n
i=1 ⊆ T there exists (Yi)

n
i=1 ⊆ Π

d

G such that
(Xt1 , . . . , Xtn) equals (Y1, . . . , Yn) in distribution. Then for all lower semicontinuous
pseudo-seminorms N on RT satisfying N(X) < ∞ a.s. we have E[eεN(X)2/d

] < ∞
for all ε < d/(e2d+3‖N(X)‖2/d

2 ). Moreover, for all 0 < p < r <∞ we have

‖N(X)‖r ≤ kp,r,d‖N(X)‖p <∞,

where kp,r,d only depends on p, r and d, and for p > 1 we may choose kp,r,d =
2d

2/2+d[(r − 1)/(p− 1)]d/2.

The integrability of eεN(X)2/d for some ε > 0 is a consequence of the seminal
work Borell [4, Theorem 4.1]. However, the above presented proof is very simple
and provides also explicit constants for integrability of eεN(X)2/d . The next result is
known from Arcones and Giné [1, Theorem 3.1] for general Gaussian polynomials.

Proposition 2.7. Assume H consists of symmetric random variables satisfying
Cq for some q ∈ [2,∞]. Let F denote a Banach space and X an F -valued tight
element with x∗(X) ∈ PdH for all x∗ ∈ F ∗. Then there exists x0, xi1,...,ik ∈ F and
{tn : n ≥ 1} ⊆ I such that

X = lim
n→∞

(
x0 +

d∑

k=1

∑

1≤i1<···<ik≤n
xi1,...,ik

k∏

j=1

Ztij

)
a.s. and in Lp(P ;F ),

for all finite p ≤ q.

Proof. We follow Arcones and Giné [1, Lemma 3.4]. Since X is tight we may and do
assume F is separable, which implies that F ∗1 := {x∗ ∈ F ∗ : ‖x∗‖ ≤ 1} is metrizable
and compact in the weak*-topology by the Banach-Alaoglu theorem (see Rudin [25,
Theorem 3.15+3.16]). Moreover, the map x∗ 7→ x∗(X) from F ∗1 into L0 is trivially
weak*-continuous and thus a weak*-continuous map into L2 by Corollary 2.2. This
shows that {x∗(X) : x∗ ∈ F ∗1 } is compact in L2 and hence separable. By definition
of PdH, this implies that there exists a countable set {tn : n ≥ 1} ⊆ I such that

x∗(X) =
∑

A∈Nd

a(A, x∗)ZA, in L2,
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for some a(A, x∗) ∈ R, where Nd = {A ⊆ N : |A| ≤ d} and ZA =
∏

i∈A Zti for
A ∈ Nd. For A ∈ Nd, the map x∗ 7→ a(A, x∗) from F ∗ into R is linear and weak*-
continuous and hence there exists xA ∈ F such that a(A, x∗) = x∗(xA), showing
that

x∗(X) = lim
n→∞

x∗
( ∑

A∈Nn
d

xAZA

)
, in L2, (2.4)

where Nn
d = {A ∈ Nd : A ⊆ {1, . . . , n}}. Since F is separable, (2.4) and Kwapień

and Woyczyński [16, Theorem 6.6.1] show that

lim
n→∞

∑

A∈Nn
d

xAZA = X a.s.

By Corollary 2.2 the convergence also takes place in Lp(P ;F ) for all finite p ≤ q,
which completes the proof.

The above proposition gives rise to the following corollary.
Corollary 2.8. Assume H consists of symmetric random variables satisfying Cq for
some q ∈ [2,∞]. Let T denote a set, V (T ) ⊆ RT a separable Banach space where
the map f 7→ f(t) from V (T ) into R is continuous for all t ∈ T and X = (Xt)t∈T
a stochastic process with sample paths in V (T ) satisfying Xt ∈ PdH for all t ∈ T .
Then there exists x0, xi1,...,ik ∈ V (T ) and {tn : n ≥ 1} ⊆ I such that

X = lim
n→∞

(
x0 +

d∑

k=1

∑

1≤i1<···<ik≤n
xi1,...,ik

k∏

j=1

Ztij

)
(2.5)

a.s. in V (T ) and in Lp(P ;V (T )) for all finite p ≤ q.
Proof. For t ∈ T , let δt : V (T ) → R denote the map f 7→ f(t). Since V (T ) is a
separable Banach space and {δt : t ∈ T} ⊆ V (T )∗ separate points in V (T ) we have
(i) the Borel σ-field on V (T ) equals the cylindrical σ-field σ(δt : t ∈ T ),

(ii) {∑n
i=1 αiδti : αi ∈ R, ti ∈ T, n ≥ 1} is sequentially weak*-dense in V (T )∗,

see e.g. Rosiński [21, page 287]. By (i) we may regard X as a random element in
V (T ) and by (ii) it follows that x∗(X) ∈ PdH for all x∗ ∈ V (T )∗. Hence the result is
a consequence of Proposition 2.7.

Borell [6, Theorem 5.1] shows Corollary 2.8 assuming (1.2), T is a compact
metric space, V (T ) = C(T ) and X ∈ Lq(P ;V (T )). By assuming Cq instead of the
weaker condition (1.2) we can omit the assumption X ∈ Lq(P ;V (T )). Note also
that by Theorem 2.5 the last assumption is satisfied under Cq. When H consists
of symmetric α-stable random variables and d = 1 Corollary 2.8 is known from
Rosiński [21, Corollary 5.2]. The separability assumption on V (T ) in Corollary 2.8
is crucial. Indeed, for all p > 1, Jain and Monrad [13, Proposition 4.5] construct a
separable centered Gaussian process X = (Xt)t∈[0,1] with sample paths in the non-
separable Banach space Bp of functions of finite p-th variation on [0, 1] such that the
support of PX is a non-separable subset of Bp. This shows that X can not be given
by (2.5). Since Gaussian measures on Banach spaces are concentrated on closed
separable subsets (see Borell [4, Theorem 8.2]), PX is not even a Gaussian measure
on Bp.
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3 Appendix
The next lemma is a very useful tool when studying chaos elements. The explicit
constants in Remark 1.3 and (2.3) are a consequence of this result.

Lemma 3.1. Let V denote a vector space, N a seminorm on V , ε ∈ (0, 1) and
x0, . . . , xd ∈ V .

If N
( d∑

k=0

λkxk

)
≤ 1 for all λ ∈ [−ε, ε] then N

( d∑

k=0

xk

)
≤ 2d

2/2+dε−d. (3.1)

Proof. Assume first that x0, . . . , xd ∈ R. By induction in d, let us show:

If
∣∣∣

d∑

k=0

λkxk

∣∣∣ ≤ 1 for all λ ∈ [−ε, ε] then
∣∣∣

d∑

k=0

xk

∣∣∣ ≤ 2d
2/2+dε−d. (3.2)

For d = 1, 2 (3.2) follows by a straightforward argument, so assume d ≥ 3, (3.2)
holds for d− 1 and that the left-hand side of (3.2) holds for d. We have

∣∣∣
d∑

k=0

λk(εkxk)
∣∣∣ ≤ 1, for all λ ∈ [−1, 1],

which by Pólya and Szegö [20, Aufgabe 77] shows that |xdεd| ≤ 2d and hence
|xd| ≤ 2dε−d. For λ ∈ [−ε, ε], the triangle inequality yields

∣∣∣
d−1∑

k=0

λkxk

∣∣∣ ≤ 1 + 2d, and hence
∣∣∣
d−1∑

k=0

λk
xk

1 + 2d

∣∣∣ ≤ 1.

The induction hypothesis implies

∣∣∣
d−1∑

k=0

xk

∣∣∣ ≤ ε−(d−1)2(d−1)2+(d−1)(1 + 2d),

and hence another application of the triangle inequality shows that

∣∣∣
d∑

k=0

xk

∣∣∣ ≤ ε−d2d + ε−(d−1)2(d−1)2/2+(d−1)(1 + 2d)

≤ ε−d2d
2/2+d

(
2−d

2/2 + 2−1/2−d + 2−1/2
)
,

which is less than or equal to ε−d2d
2/2+d since d ≥ 3. This completes the proof

of (3.2).
Now let x0, . . . , xd ∈ V . Since N is a seminorm, Hahn-Banach theorem (see

Rudin [25, Theorem 3.2]) shows that there exists a family Λ of linear functionals on
V such that

N(x) = sup
F∈Λ
|F (x)|, for all x ∈ V.
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Assuming that the left-hand side of (3.1) is satisfied we have

∣∣∣
d∑

k=0

λkF (xk)
∣∣∣ ≤ 1, for all λ ∈ [−ε, ε] and all F ∈ Λ,

which by (3.2) shows

∣∣∣F
( d∑

k=0

xk

)∣∣∣ =
∣∣∣

d∑

k=0

F (xk)
∣∣∣ ≤ 2d(d−1)ε−d, for all F ∈ Λ.

This completes the proof.
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