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Error bounds for surface area estimators based on
Crofton’s formula

Markus Kiderlen∗and Daniel Meschenmoser†

Abstract

According to Crofton’s formula, the surface area S(A) of a sufficiently
regular compact set A in Rd is proportional to the mean of all total projections
pA (u) on a linear hyperplane with normal u, uniformly averaged over all unit
vectors u. In applications, pA (u) is only measured in k directions and the
mean is approximated by a finite weighted sum Ŝ (A) of the total projections in
these directions. The choice of the weights depends on the selected quadrature
rule. We define an associated zonotope Z (depending only on the projection
directions and the weights), and show that the relative error Ŝ (A) /S (A) is
bounded from below by the inradius of Z and from above by the circumradius
of Z. Applying a strengthened isoperimetric inequality due to Bonnesen,
we show that the rectangular quadrature rule does not give the best possible
error bounds for d = 2. In addition, we derive asymptotic behavior of the error
(with increasing k) in the planer case. The paper concludes with applications
to surface area estimation in design-based digital stereology where we show
that the weights due to Bonnesen’s inequality are better than the usual weights
based on the rectangular rule and almost optimal in the sense that the relative
error of the surface area estimator is very close to the minimal error.

Key words: surface area, perimeter, Crofton formula, minimal annulus,
isoperimetric inequality, associated zonotope, digitization.

1 Introduction

One common approach to approximate the surface area S (A) of an unknown set
A ⊂ Rd from its digitization is based on a discretization of Crofton’s formula. We
discuss the worst case error introduced by the discretization of the rotational integral
in dependence of the quadrature rule chosen. As the methods apply generally to
surface area estimators based on Crofton’s formula, we describe them in a general
framework and return to its application to digital images in Section 3.

For a vector v in the unit sphere Sd−1 in Rd, let v⊥ be the linear hyperplane
with normal v and let er,v be the straight line with direction v through r ∈ v⊥. Let
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A ⊂ Rd be a compact set in the class UPR (defined in the next section). A special
case of Crofton’s formula (Rother and Zähle, 1990) expresses the surface area S (A)
of A in terms of the Euler characteristic χ of linear sections

S (A) =
2

γd

∫

Sd−1

∫

v⊥
χ (A ∩ er,v) dr µ (dv) . (1)

Here γd = (2κd−1) / (dκd), where κd is the volume of the d-dimensional unit ball,
and µ is the normalized Haar measure on the unit sphere Sd−1 (see e.g. Schneider
and Weil (1992, p. 18), but note the different normalization). The inner integral
of (1)

pv =

∫

v⊥
χ (A ∩ er,v) dr (2)

is called total projection of A in direction v, as it is obtained by measuring the
(d− 1)-volume of the orthogonal projection of A on v⊥ with multiplicities. If total
projections can be determined exactly for finitely many directions v1, . . . , vk ∈ Sd−1,
say, a k-point quadrature rule can be used to discretize the outer integral in (1) and
one obtains the approximation

Ŝdk (A) =
2

γd

k∑

i=1

cipvi
, (3)

which depends on the choice of weights c1, . . . , ck ≥ 0. To assure that the quadrature
rule is exact whenever A is a ball, we assume throughout that the weights sum up
to 1. If, for example, the rectangular rule is chosen in the planar case, then the
weights are proportional to the arc-lengths of the corresponding spherical Voronoi
cells generated by {v1, . . . , vk} on S1. This geometric interpretation generalizes read-
ily to higher dimensions. If {P1, . . . , Pk} is the spherical Voronoi tessellation of Sd−1

generated by the set of projection directions {v1, . . . , vk} with vi ∈ Pi then the
weights

cVi = µ (Pi) , i = 1, . . . , k,

will be called Voronoi weights associated to {v1, . . . , vk}. These weights are com-
monly used in applications for d = 2, 3.

The discretization of the spherical integral introduces a bias, which typically
depends on the set A. We are interested in the worst case behavior. Already
Steinhaus (1930) treated the special case where d = 2, k is even, and {v1, . . . , vk}
forms an equidistant set of points in S1. For Ŝ2

k (A), given by (3) with Voronoi
weights cV1 , . . . , c

V
k , he derived sharp bounds for the relative error:

π

k

cos(π/k)

sin(π/k)
≤ Ŝ2

k (A)

S (A)
≤ π

k

1

sin(π/k)
. (4)

The left hand side and the right hand side of (4) are the endpoints of the interval of
all possible relative errors, as A varies. Such an interval can be established without
the assumption of equidistant directions and in all dimensions. We refer to this
interval as error interval in the following.
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Using a translative Crofton formula in Section 2, we will define an origin-symme-
tric convex body Z ⊂ Rd associated to the discretization, only depending on the
projection directions and the quadrature rule. We will show in Lemma 1 that the
relative error Ŝdk (A) /S (A) is in a sharp way bounded from below by (a multiple
of) the inradius of Z and from above by (a multiple of) the outer radius of Z.
Thus, the thickness of the minimal annulus of Z equals the length of the error
interval and describes the quality of the estimator. Given k projection directions, the
quadrature rule (in other words, the values of the associated weights) that minimizes
the minimal thickness of Z can typically only be determined numerically. In the
planar case, we suggest to bound the thickness of the minimal annulus of Z from
above by an isoperimetric deficit using a strengthened isoperimetric inequality due to
Bonnesen. This isoperimetric deficit can be minimized with respect to all quadrature
rules in closed form. The weights minimizing the isoperimetric deficit will be called
Bonnesen weights and are proportional to the edges of a polygon circumscribing
the unit disk and touching it exactly at the points v1, . . . , vk. We will show that
Voronoi weights are not minimizing the length of the error interval by giving an
example where the Bonnesen weights yield better error bounds. We will determine
the asymptotic behavior (as k →∞) of the relative error for the Bonnesen weights
in Theorem 4. At the end of Section 2 we will consider the case where the directions
v1, . . . , vk ∈ S1 are chosen by systematic random sampling. We will show that the
coefficient of error of Ŝ2

k (A) can be bounded from above by a geometric quantity
involving Z (a multiple of the L2-distance between Z and its Steiner ball), and use
this to give an upper bound for the coefficient of error that only involves the area
of Z.

In Section 3 the digitization of A on a randomly translated, rectangular grid
will be considered. Asymptotic bounds for the expected value of the estimator
for S (A) in the grid will be established. ”Asymptotic” relates here to increasing
resolution of the grid. The vectors v1, . . . , vk are chosen as grid directions, i.e. vectors
which connect two grid points. We will consider the vectors of the 4-, 8- and 16-
neighborhood in 2D and the 6- and 26-neighborhood in 3D. For all these settings the
Voronoi and Bonnesen weights together with the corresponding in- and circumradii
r and R, respectively, will be computed analytically, except for the 26 directions
in 3D where numerical methods will be used. We will compare the relative errors
with the minimal error achieved by numerically optimizing the weights and show
that the Bonnesen weights lead, at least in 2D, to smaller errors than the widely
used Voronoi weights. Restricting to a quadratic grid in the plane and a perimeter
estimator based on pairs of lattice points with lattice distance at most n ≥ 2, will
show in Theorem 7 that the asymptotic mean relative error of Ŝdk (A) for Bonnesen
weights decreases as n−2.

The application of Bonnesen’s improved isoperimetric inequality restricts many
of the above arguments to the two-dimensional case. In the last section we discuss
the possibility of extensions to higher dimensions.
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2 Error bounds for Ŝd
k (A)

Throughout the following we assume that A ∈ UPR is compact, where UPR is the fam-
ily of all sets in Rd which can be written as a finite union of compact sets A1, . . . , Am
with positive reach such that any intersection

⋂
i∈I Ai with I ⊂ {1, . . . ,m} is either

empty or a set of positive reach, as well. A set A ⊂ Rd has positive reach if there
is a ε > 0 such that each point in the ε-neighborhood of A has a unique closest
point in A. In particular, convex bodies (nonempty compact convex subsets of Rd)
and polyconvex sets (finite unions of convex bodies) are elements of UPR. In view of
the applications in digital stereology, it is convenient to extend the total projection
mapping v 7→ pv to Rd \ {o} by positive homogeneity of degree 0. The translative
Crofton formula

pv =
1

2 ‖v‖

∫

Sd−1

|〈u, v〉|S (A, du) (5)

holds for almost all v ∈ Rd (see Rataj (2002, Theorem 2.1 and Theorem 2.3)), where
S (A, ·) is the surface area measure of order d− 1 of A and 〈u, v〉 is the usual inner
product of u and v. If A is polyconvex, (5) holds for all v ∈ Rd \ {o}. If A is in
addition topologically regular (A is the closure of its interior), then S

(
A, Sd−1

)
=

S (A). Without this assumption the surface area of lower dimensional parts of A
contribute twice to the total mass of S(A, ·).

If v1, . . . , vk ∈ Rd \ {o} are such that (5) holds with v = vi for all i = 1, . . . , k,

then the definition of Ŝdk (A) in combination with (5) yields

Ŝdk (A) =
1

γd

∫

Sd−1

h (u)S (A, du) , (6)

with

h :=
k∑

i=1

ci
‖vi‖

|〈vi, ·〉| . (7)

The key observation is that the integrand h is the support function of a convex body.
We refer the reader to Schneider (1993) for relevant notions and concepts in convex
geometry and only recall the most important facts here. The support function hK
of a convex body K is given by

hK (u) = max{〈x, u〉 : x ∈ K}, u ∈ Sd−1.

Here and in the following, we consider the support function as a function on the
unit sphere. For convex bodies K and M and scalars α, β ≥ 0, we have

αhK + βhM = hαK⊕βM , (8)

where the Minkowski addition ⊕ of sets and the multiplication of a set with a scalar
are understood pointwise. We will repeatedly use the monotonicity property

K ⊂M ⇐⇒ hK ≤ hM (9)
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and the fact that the support function hBd of the Euclidean unit ball Bd in Rd is
the constant 1. Equation (9) implies in particular that any convex body is uniquely
determined by its support function. Consequently, the definition

δ2 (K,M)2 :=

∫

Sd−1

(hK (u)− hM (u))2 du

for convex bodies K and M , gives rise to the so-called L2-metric δ2 (·, ·) on the family
of convex bodies. The support function of the line segment [−x, x] with endpoints
−x and x ∈ Rd is |〈x, ·〉|. Due to (8), the function h in (7) is the support function of
a finite sum Z of line segments. Such sets are called zonotopes and play a prominent
role in functional analysis, convex and stochastic geometry; see e.g. Goodey and
Weil (1993) and the references therein. Explicitly, we have

Z = c1 [−u1, u1]⊕ · · · ⊕ ck [−uk, uk] (10)

with the unit vectors ui = vi/ ‖vi‖ for i = 1, . . . , k. In view of (6) the approximation

Ŝdk (A) can be expressed in terms of the associated zonotope Z, as

Ŝdk (A) =
1

γd

∫

Sd−1

hZ (u)S (A, du) . (11)

To obtain lower and upper bounds of Ŝdk (A), we have to find maxima and minima
of hZ . Due to (9), r ≥ 0 is the minimum of hZ on Sd−1 if and only if rBd is the
largest ball contained in Z. Similarly, R ≥ 0 is the maximum of hZ , if and only if
RBd is the smallest ball containing Z. With these optimal values of 0 ≤ r ≤ R,
the set RBd \ rBd is called the minimal annulus of Z. The difference R − r is
called the width of the minimal annulus and denoted by T (Z). For later reference
we summarize this geometric interpretation for polyconvex sets (for which (5) holds
for arbitrary v 6= o). As formulations for UPR-sets are obtained in a straightforward
manner, we will restrict to polyconvex sets from now on. In addition, topological
regularity is assumed throughout, as we want to use that the total mass of S(A, ·)
is the surface area of A.

Lemma 1. Let A ⊂ Rd be a topologically regular polyconvex set with positive surface
area, and fix k ≥ 2 and v1, . . . , vk ⊂ Rd \ {o}. Let γd = (2κd−1) / (dκd). If Ŝdk (A) is
given by (3), then the sharp bounds

r

γd
≤
∣∣∣∣
Ŝdk (A)

S (A)

∣∣∣∣ ≤
R

γd
(12)

for the relative estimation error hold, where r is the smaller and R is larger radius
of the minimal annulus of the zonotope Z given by (10).

That the bounds in the above Lemma are sharp follows from the next example.

Example 2. Fix k ≥ 2, u1, . . . , uk ∈ Sd−1 and weights c1, . . . , ck ≥ 0 for a quadra-
ture rule. Define Z according to (10). Due to symmetry, the ball rBd touches the
boundary of Z in at least two antipodal points rw and −rw, w ∈ Sd−1. Let A be a
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ball of (d− 1)-volume 1/2 in the hyperplane w⊥. (As A is lower dimensional, the
proper interpretation of S (A) is twice its (d− 1)-dimensional Hausdorff measure,
so S (A) = 1.) The surface area measure of A is concentrated on the points w and
−w, and hZ coincides in both of these directions with r, so (11) implies

Ŝdk (A) =
1

γd

∫

Sd−1

rS (A, du) =
r

γd
S (A) ,

and equality holds on the left hand side of (12).

Figure 1: Visualisation for Example 2.

Figure 1 illustrates this for d = 2, k = 2, u1 = (1, 0)>, u2 = (0, 1)> and
c1 = c2 = 1/2. Obviously A is not topologically regular, but it can be approxi-
mated by a sequence of topologically regular convex bodies (Am) in such a way that

limm→∞ Ŝdk (Am) /S (Am) = Ŝdk (A) /S (A). This implies that the left hand side of
(12) cannot be improved, even if we restrict considerations to topologically regular
sets. To show that the second inequality in (12) is sharp, a similar argument can be
used, if ±w are directions for which hZ becomes maximal, and thus coincides with
R.

In the following, we will restrict to the case d = 2, although some of the concepts
can be transferred to higher dimensions. In order that the length of the error interval
of Ŝdk (A) in (6) is as small as possible, the difference R − r should be as small as
possible. This can be achieved by an appropriate choice of the weights c1, . . . , ck. To
obtain an exact value for the integral in (6) in the case where A is a disk, we must
assume that the weights sum up to one. It is not difficult to show (see e.g. Schneider
(1993)), that c1 + · · · + ck = 1 is equivalent to the condition that the zonotope Z
given by (10) has perimeter 4. Let Z be the family of all zonotopes that can be
written as sum of line-segments parallel to given unit vectors u1, . . . , uk. Let Z4 be
the family of those Z ∈ Z that have perimeter 4. We are therefore faced with the
problem of finding a zonotope Z∗ ∈ Z4 that satisfies

T (Z∗) = min {T (Z) : Z ∈ Z4} . (13)

If
Z∗ = c∗1 [−u1, u1]⊕ · · · ⊕ c∗k [−uk, uk] ,
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then c∗1, . . . , c
∗
k ≥ 0 are the best weights in (6), in the sense that among all weights

summing up to one they yield the shortest interval of possible relative errors. A
solution Z∗ of the optimization problem (13) always exists due to a compactness
argument based on the Blaschke selection theorem.

For asymptotic results, it is enough to replace the objective function in (13) by a
simpler one. Bonnesen (1929) improved the isoperimetric inequality for an arbitrary
planar convex body K, stating that

S2 (K)

4π
− V (K) ≥ π

4
T 2 (K) , (14)

where S (K) and V (K) are perimeter and area of K, respectively. For K = Z ∈ Z4

we have S (Z) = 4 and the left hand side of (14) is minimal for the zonotope Z̃ ∈ Z4

that has the greatest area. According to a classical result of Lindelöf (1869), Z̃ is
characterized among all zonotopes in Z4 by the fact that it circumscribes a circle.
Due to origin-symmetry, this circle is the incircle of Z̃, centered at the origin, and
with radius r̃k. This allows an explicit construction of Z̃. Up to scaling with the
factor 1/r̃k the zonotope Z̃ coincides with the polytope

P̃ :=
k⋂

i=1

{
x ∈ R2 : |〈ui, x〉| ≤ 1

}
(15)

obtained by intersecting all supporting half-planes of the unit disk with outer normal
in {±u1, . . . ,±uk}. We now assume without loss of generality that the vectors
u1, . . . , uk all are located on the positive half-sphere {(cosϕ, sinϕ) : 0 ≤ ϕ < π} and
are ordered according to increasing angles with respect to the x-axis. We write
<) (u, v) ∈ [0, π] for the (smaller) angle between the unit vectors u and v. Let αi be
the outer angle of the vertex between the ith and the (i+ 1)st edge (i.e. αi is the
angle of the normal cone at this vertex, in other words π − αi is the usual inner
angle, see Figure 2). Explicitly, we have

αi =

{
<) (ui, ui+1) , i = 1, . . . , k − 1

αk = π −<) (u1, uk)
(16)

as the normal of the (k + 1)st edge is −u1. As the length of the ith edge of P̃ is

tan(αi/2) + tan(αi−1/2) and S(Z̃) = 4, we obtain

Z̃ = c̃1 [−u1, u1]⊕ · · · ⊕ c̃k [−uk, uk]

with

c̃i = r̃k
tan(αi/2) + tan(αi−1/2)

2
, (17)

and

r̃k =

( k∑

i=1

tan(αi/2)

)−1

, (18)

where we have put α0 = αk. This and V (Z̃) = 2r̃k was also derived by Knebelman
(1941). The weights c̃i are based on the application of Bonnesen’s inequality (14)
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Figure 2: Construction of the angles αi and the polytope P̃ with k = 4.

and will be called Bonnesen weights in the following. The ith weight c̃i is the relative
length of the ith edge of the polygon with facet normals ±ui which circumscribes a
circle of radius r̃k. The outer radius R̃k of Z̃ is the largest distance of a vertex of Z̃
from the origin, and this is

R̃k = r̃k
k

max
i=1

1

cos (αi/2)
. (19)

Summarizing, we have shown the following. If Ŝdk (A) is an estimator of S (A) > 0
given by (6) with the Bonnesen weights ci = c̃i, i = 1, . . . , k, from (17), then the
relative errors obey

π

2
r̃k ≤

Ŝdk (A)

S (A)
≤ π

2
R̃k. (20)

These error bounds are sharp; see Example 2.
It should be noted that (14) is always a strict inequality unless K is a disk.

As (14) is used for zonotopes here, this approach will not necessarily lead to the
optimal choice of the weights. However, the choice may be better than choices for
the weights motivated by usual quadrature rules.

Example 3. We consider the integrand in (6) with k = 3 and the directions ui =(
cos(ϕi), sin(ϕi)

)
, i = 1, 2, 3, where

ϕ1 = 0, ϕ2 =
π

16
, ϕ3 =

π

8
.

As mentioned before, the rectangular quadrature rule leads to the Voronoi weights
cVi : The ith weight is the normalized length of the Voronoi arc corresponding to ui
(arc in S1 of all points closer to ui than to any other point in {±u1,±u2,±u3}).
This gives

cVi =
ϕi+1 − ϕi−1

2π
,

where we assumed π-periodicity. For the present example, we obtain

cV =

(
15

32
,

1

16
,
15

32

)
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Figure 3: The zonoid associated to Voronoi weights with its minimal annulus.

and the corresponding zonotope ZV has inradius rV ≈ 0.18290 and circumradius
RV ≈ 0.98199; see Figure 3. Thus, the width of the minimal annulus is approxi-
mately 0.79909. Using instead the Bonnesen weights yields approximately

c̃ = (0.49057, 0.01885, 0.49057) ,

leading to the inradius r̃ ≈ 0.191412 and circumradius R̃ ≈ 0.981147, respectively.
The width of the minimal annulus is now approximately 0.789735, which is an im-
provement of about 1%.

To formulate an asymptotic result, we have to specify how close the set of the
directions u1, . . . , uk is to a set of equidistant directions. Following Gardner et al.
(2006), we introduce the symmetrized spread ∆∗k of u1, . . . , uk by

∆∗k = max
u∈S1

min
1≤i≤k

min {‖u− ui‖ , ‖u− (−ui)‖} .

Geometrically, ∆∗k is the maximal distance of a unit vector from the set {±u1, . . . ,±uk}.
In particular, {±u1, . . . ,±uk} is a ∆∗k-net in S1. For αi defined by (16), we have

2 sin
αi
4
≤ ∆∗k, i = 1, . . . , k. (21)

The following theorem shows that the choice ci = c̃i leads to a relative error
of Ŝdk (A) that depends quadratically on ∆∗k. Here we only consider sampling sets
{u1, . . . , uk} such that every closed sub-arc of S1 of length π/2 contains at least one

point of {±u1, . . . ,±uk}. Equivalently, ∆∗k ≤
√

2−
√

2.

Theorem 4. Let A ⊂ R2 be a polyconvex set with positive perimeter. Let k ≥ 2 and
{v1, . . . , vk} ⊂ R2\{0} such that the symmetrized spread of the vectors ui = vi/ ‖vi‖,
i = 1, . . . , k, is ∆∗k ≤

√
2−
√

2. If Ŝdk (A) in (3) is calculated using the Bonnesen
weights ci = c̃i, i = 1, . . . , k, from (17), then the relative error obeys

∣∣∣∣
Ŝdk (A)− S (A)

S (A)

∣∣∣∣ ≤
π2

3
(∆∗k)

2 . (22)
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Proof. From (20) we get

πr̃k − 2 ≤ 2

(
Ŝdk (A)− S (A)

S (A)

)
≤ πR̃k − 2. (23)

We estimate the left hand side of (23). In view of (21), we have

αi/2 ≤ 2 arcsin(∆∗k/2) ≤ π/4 for all i = 1, . . . , k.

Taylor’s theorem implies

tan (αi/2) ≤ αi/2 + c′ (αi/2)3 , for all i = 1, . . . , k,

where c′ = 8
3

is the third derivative of tan (x) /3! evaluated at π/4. Relations (18),
(21) and arcsin (x) ≤ π

2
x, 0 ≤ x ≤ 1, imply that

πr̃k ≥
π

k∑

i=1

(
αi
2

(
1 + c′

(αi
2

)2
)) ≥

2

1 +
c′π2

4
(∆∗k)

2

,

and this gives

πr̃k − 2 ≥ −2π2

3
(∆∗k)

2 .

The right hand side of (23) can be estimated in an even easier way using the fact

that the perimeter of the incircle of Z̃ is bounded by S(Z̃) = 4 and hence r̃k ≤ 2/π.
Together with (19) this gives

πR̃k − 2 ≤ 2

1− (∆∗k)
2 (∆∗k)

2 ≤ 2√
2− 1

(∆∗k)
2 ,

as ∆∗k ≤
√

2−
√

2. Putting things together we arrive at

∣∣∣∣
Ŝdk (A)− S (A)

S (A)

∣∣∣∣ ≤ c (∆∗k)
2

with c = max{π2

3
, 1√

2−1
} = π2

3
.

The example of equidistant sampling shows that quadratic behavior is the best
possible.

Example 5. Consider the special case where u1, . . . , uk are equidistant on the upper
half circle, meaning that ui = (cos (iπ/k) , sin (iπ/k)), i = 1, . . . , k. Hence

∆∗k = 2 sin
π

4k
∼ π

2k
, k →∞.

By symmetry arguments, the weights leading to the minimal width of the correspond-
ing minimal annulus must all be equal and thus c1 = · · · = ck = 1/k and ci = c̃i for
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i = 1, . . . , k. According to (18) and (19), the inner and outer radii of the associated
zonotope are

r̃k =
(
k tan

( π
2k

))−1

,

and

R̃k = r̃k

(
cos
( π

2k

))−1

=
(
k sin

( π
2k

))−1

;

cf. (4). Therefore, the width of the minimal annulus is

R̃k − r̃k =
π

4
k−2 +O

(
k−4
)
, k →∞.

This shows that R̃k − r̃k, and thus the relative worst case error, are of order (∆∗k)
2.

Instead of using the above geometric arguments to obtain asymptotics for the
worst case error, one might also use methods from optimum quantization; see Gru-
ber (2004). Among other important applications, this theory yields asymptotic
minimum errors of numerical integration for classes of Hölder continuous functions.
As the function gu : v 7→ |〈v, u〉|, and hence the function pv in (5) are Lipschitz
continuous, optimum quantization gives an upper bound for the worst case error
depending linearly on ∆k. This suboptimal rate is due to the fact that the class of
Hölder continuous functions with Hölder exponent 1 is considerably larger than its
subspace spanned by {gu : u ∈ S1}.

The associated zonotope for quadrature rules can also be used in the context of a
semi-randomized approach, which generalizes systematic random sampling designs.
The idea of this design based approach is to evaluate the total projections of the
randomly rotated set ϑA in k directions. In other words, given k vectors v1, . . . , vk ∈
Sd−1 and weights c1, . . . , ck, the estimator for S (A) is defined by

Ŝdk (ϑA) =
2

γd

k∑

i=1

cipϑ−1vi
, (24)

where ϑ is a random rotation whose distribution is the normalized Haar measure on
the compact group SOd of proper rotations. Clearly, (24) defines a random variable
and Crofton’s formula implies that this variable is an unbiased estimator for S (A).
In particular, if d = 2 and the set {±v1, . . . ,±vk} is equidistant in S1, the estimator

Ŝdk (ϑA) in (24) is the one obtained from systematic random sampling. Moran (1966)

considered this special case and gave worst case bounds for the variance of Ŝdk (ϑA).
His approach allows a geometric interpretation which is not restricted to the planar
setting: Let Z be, again, the zonotope associated to a fixed quadrature rule. From
(11) and the unbiasedness of the estimator, we get

Var
(
Ŝdk (ϑA)

)
= Eϑ

(
Ŝdk (ϑA)− S (A)

)2

= γ−2
d Eϑ

(∫

Sd−1

(hZ (ϑu)− γd)S(A, du)

)2

= γ−2
d

∫

Sd−1

∫

Sd−1

Eϑ ((hZ (ϑu)− γd) (hZ (ϑv)− γd))S(A, du)S(A, dv).

11



Hölder’s inequality implies that

Eϑ ((hZ (ϑu)− γd) (hZ (ϑv)− γd))
≤
(
Eϑ (hZ (ϑu)− γd)2)1/2 (Eϑ (hZ (ϑv)− γd)2)1/2

=

∫

Sd−1

(hZ (u)− γd)2 du

$d

,

where $d = dκd is the surface area of Sd−1. Hence

Var
(
Ŝdk (ϑA)

)
≤ S (A)2

γ2
d$d

δ2
2

(
Z, γdB

d
)
, (25)

where δ2 (·, ·) denotes the L2-metric defined earlier. This inequality is sharp, as
equality holds here for example whenever A is a circular disk of dimension d − 1.
The quadrature rule is exact when A = Bd and thus Ŝdk

(
Bd
)

= $d, which implies
that 2γd is the mean width w (Z) of Z and γdB

d is the Steiner ball of Z; see Schneider

(1993, p. 353). Hence, the coefficient of variation

√
Var(Ŝdk (ϑA))/S(A) is bounded

from above by a multiple of the L2-distance of Z to its Steiner ball. Restricting
to the two-dimensional case, an easily computable upper bound of the right hand
side of (25) is again given by a strengthened isoperimetric inequality. Using Fourier
analysis, Groemer (1990) showed that

S2 (Z)

4π
− V (Z) ≥ 3

2
δ2
2

(
Z, γ2B

2
)
, (26)

and discussed the close relation of this result to Bonnesen’s inequality (14). This
can be used to estimate the right hand side of (25). As S (Z) = 4 and γ2 = 2/π, we
obtain √

Var
(
Ŝ2
k (ϑA)

)

S (A)
≤
√

1

3
− π

12
V (Z).

As before, the area of Z is easily calculated yielding an upper bound for the coef-
ficient of variation. This bound is not sharp any more, but becomes better with
increasing k.

3 Error bounds for digital surface area

estimators

In this section we consider digitizations of a topological polyconvex set A ⊂ Rd on
rectangular grids and assume that the directions vi are given by difference vectors
of grid points. For example, we consider the usual 4- and 8-neighborhoods in the
plane. We compute Voronoi- and Bonnesen-weights together with the associated in-
and circumradii explicitly and give asymptotic error bounds for Ŝ (A) for increasing
resolution of the digitization.

To digitize A we consider the rectangular point grid G = δ1Z × δ2Z × · · · ×
δd−1Z × Z, where δ1, . . . , δd−1 > 0 are the lattice distances in the directions of the

12



axes, and we used the lattice distance in the last coordinate direction as unit. A grid
cell is any d-dimensional cuboid z+ [0, δ1]×· · ·× [0, δd−1]× [0, 1] , z ∈ G. Motivated
by design based stereology, we consider digitizations of A by a randomly translated
grid. With the random variable ξ, uniformly distributed in an arbitrarily chosen
grid cell, the random grid ξ + G is a stationary random closed set and is called a
stationary grid in Kiderlen and Rataj (2005).

In order to increase resolution, we scale the grid by a factor t > 0 and denote
the digitization of A in the scaled grid t (ξ + G) by ∆t (A). Let Q be a non-empty
compact set, called the sampling element. We assume that each grid point x ∈
t(ξ + G) is the center of a small sampling window x+ tQ, which can be thought of
as a pixel or voxel. The pixel digitization consists of all grid points x for which this
sampling window x+ tQ hits the set A. Hence ∆t (A) =

(
A⊕ tQ̌

)
∩ t (ξ + G), where

Q̌ is the reflection of Q at the origin. For Q = {o} the pixel digitization reduces
to the Gauss digitization (sometimes called hit-or-miss digitization) containing all
points of the scaled grid in A. All results on error bounds in this section will be
stated for the pixel digitization and therefore also hold for the Gauss digitization.

We fix a set A and estimate its surface area S (A) from the information available
in its digitization ∆t (A) using a discretized Crofton formula, cf. Ohser and Mücklich
(2000). We will focus on the asymptotic error of this estimator when the grid spacing
gets finer, i.e. when the digitized set ∆t (A) becomes a better approximation of the
original set A. The function pv given by (2) can easily be estimated from the digitized
set ∆t (A) by comparing the values of neighboring points, if v is a grid direction.
For any vector v ∈ G \ {o} such an estimator is given by

p̂v (t) =
td−1

‖v‖# {x ∈ t (ξ + G) : x ∈ ∆t (A) , x+ tv ∈ t (ξ + G) \∆t (A)} .

This estimator counts the number of points x in the digitized set ∆t (A) such that
x+tv does not lie in the digitization of A. From Kiderlen and Rataj (2005, Theorem
5) it follows that this estimator is asymptotically unbiased, i.e.

lim
t↘0

Ep̂v (t) = pv. (27)

Having chosen k vectors v1, . . . , vk ∈ G and scalars c1, . . . , ck ≥ 0, one can define

Ŝdk (A; t) =
2

γd

k∑

i=1

cip̂vi
(t) , (28)

and it follows from (27) that Ŝdk (A; t) is an asymptotically unbiased estimator for

Ŝdk (A), as t↘ 0. Note that the estimator given by (28) can be calculated from the

knowledge of the digitization ∆t (A) of A alone. Ŝdk (A; t) behaves approximately
like a discretized Crofton integral, when t is small. Thus, the methods and results
in Section 2 can be applied to obtain asymptotic error bounds.

To illustrate this approach we discretize the Crofton integral using only directions
parallel to the coordinate axes: in Rd we choose 2d directions vi = −vd+i = δiei,
i = 1, . . . , d − 1 and vd = −v2d = ed where ei denotes the ith unit vector. Due
to symmetry, the weights leading to a minimal error interval are all equal, ci =

13



1/ (2d) , i = 1, . . . , 2d, and coincide with the Voronoi weights. The zonotope Z

defined in (10) is given by Z =
[
−1
d
, 1
d

]d
and it has inradius r = 1/d and circumradius

R = 1/
√
d. Lemma 1 and the asymptotic unbiasedness of Ŝd2d (A; t) imply

1

dγd
≤ lim

t↘0

EŜd2d (A; t)

S (A)
≤ 1√

dγd
.

In the planar case we have γ2 = 2/π and

0.785 ≈ π

4
≤ lim

t↘0

EŜ2
4 (A; t)

S (A)
≤ π

4

√
2 ≈ 1.111,

which means the asymptotic relative error is 21.5 % in the worst case. In three
dimensions, the asymptotic relative error is at most 33.3 % as γ3 = 1/2 and

0.667 ≈ 2

3
≤ lim

t↘0

EŜ3
6 (A; t)

S (A)
≤ 2

3

√
3 ≈ 1.155.

Due to Stirling’s formula we have
√
dγd →

√
2/π as d→∞. As

√
dγd is decreasing

in d, we have

0 ≤ lim
t↘0

EŜd2d (A; t)

S (A)
≤
√
π

2
≈ 1.253.

for all d, where
√
π/2 is the best upper bound that holds uniformly in d. We do

not obtain a non-trivial uniform lower bound, as there are d ∈ N and sets A in
Rd with S (A) = 1, but such that Ŝd2d (A) is arbitrarily close to 0. Due to the
large worst case error even in low dimensions, the above choice of directions is not
recommended for practical applications. Instead, a larger number of grid directions
should be used. On the other hand, the estimator of S (A) in (28) is based on
asymptotic considerations and becomes less reliable when the lengths of the vectors
vi are large. One would therefore restrict to vectors with bounded length, i.e. vectors
contained in a small circle around the origin. The vectors v1, . . . , vk are elements of
the grid G, so for computational reasons it is easier to choose them as directions in
the cuboid Γdn (δ) = [0, δ1 (n− 1)]× · · · × [0, δd−1 (n− 1)]× [0, n− 1]∩G, where n is
a fixed positive integer. To be specific, we choose {v1, . . . , vk} to be the set

V(d)
n :=

{
x− y : x, y ∈ Γdn (δ)

}
\ {o} .

For n = 2, the most common choice in applications, we have

V(d)
2 = {−δ1, 0, δ1} × · · · × {−δd−1, 0, δd−1} × {−1, 0, 1} \ {o}

and k = #V(d)
2 = 3d − 1. We determine asymptotic worst case errors for n = 2 and

n = 3 in the planar case and for n = 2 in dimension d = 3.
In the planar case for n = 2, the k = 32 − 1 = 8 directions are the vertices and

diagonals of the cuboid Γ2
2 (δ) = [0, δ1]×[0, 1]∩G. They connect a given central pixel

with all pixels in its 8-neighborhood. Both the Voronoi weights and the Bonnesen
weights can be computed analytically. It turns out that the Voronoi weights and
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the Bonnesen weights do not coincide, and therefore also the corresponding in- and
circumradii are different. In the following let β = arccos(δ1/

√
δ2
1 + 1). For the

Voronoi case, the inradius rVor (δ1) and the circumradius RVor (δ1) are given by

rVor (δ1) =





1
π
β + δ1

2
√
δ21+1

, if δ1 ≤ 1,

1
2
− 1

π
β + 1

2
√
δ21+1

, otherwise,

and

RVor (δ1) =





1
π

[
β2 +

(
π
2
− β + π

2
√
δ21+1

)2
]1/2

, if δ1 ≤ 1,

1
π

[(
β + π

2
δ1√
δ21+1

)2

+
(
π
2
− β

)2
]1/2

, otherwise,

respectively. In the Bonnesen case the inradius rBon (δ1) is given by

rBon (δ1) = δ1

(
2
√
δ2
1 + 1 (δ1 + 1)− 2

(
δ2
1 + 1

))−1

and the circumradius RBon (δ1) is given by

RBon (δ1) =





rBon (δ1)
√

2

(
1 +

(
1
δ21

+ 1
)−1/2

)−1/2

, if δ1 ≤ 1

rBon (δ1)
√

2
(

1 + (δ2
1 + 1)

−1/2
)−1/2

, otherwise.

Neither the Voronoi nor the Bonnesen weights are optimal in the sense that they
minimize the length of the asymptotic error interval. The optimal weights were
found by numerically solving a constrained minimization problem using Matlab.
It turns out that the Bonnesen weights are very close to the optimum as can be
seen from Figure 4 which shows the thickness of the minimal annulus for Voronoi,
Bonnesen, and optimized weights, respectively, depending on δ1 ∈ [0, 1]. For δ1 > 1
the thickness of the minimal annulus equals the thickness of the minimal annulus
for 1/δ1. This corresponds to a rotation of the grid by 90◦.

It is easy to see that in the case of a square grid (δ1 = 1) the width R − r of
the minimal annulus is minimal if and only if all weights are equal, c1 = · · · =
c8 = 1/8, a choice which coincides with the Voronoi and the Bonnesen weights.
The corresponding zonotope Z is a regular octagon with side length 1/2 and facets

parallel to the vectors v1, . . . , v8. Z has circumradius R =
√

4 + 2
√

2/4 and inradius
r =

(
1 +
√

2
)
/4. With γ2 = 2/π we get

0.948 ≈ π

8

(
1 +
√

2
)
≤ lim

t↘0

EŜ2
8 (A; t)

S (A)
≤ π

8

√
4 + 2

√
2 ≈ 1.026.

This was also obtained in Kiderlen and Jensen (2003).
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Figure 4: Thickness of the minimal annulus for eight directional vectors on a rect-
angular grid in 2D depending on δ1 for Voronoi, Bonnesen, and optimized weights,
respectively (see the text for details).

We consider also the case n = 3 in the plane, i.e. we use all 16 directions in
the cuboid Γ2

3 (δ) = [0, 2δ1] × [0, 2] ∩ G. Now even in the special case when δ1 = 1
the 16 weights leading to a shortest asymptotic error interval are not equal. We
refrain from explicitly stating the formulas for the in- and circumradii because of
their complexity. The results are qualitatively similar to the case n = 2. The use
of the Bonnesen weights yields a smaller thickness of the minimal annulus than the
use of the Voronoi weights. The minimal thickness achieved with optimized weights
is only slightly better than for Bonnesen weights; see Figure 5.

Figure 5: Thickness of the minimal annulus for 16 directional vectors on a rectan-
gular grid in 2D depending on δ1 for Voronoi, Bonnesen, and optimized weights,
respectively (see the text for details).

In three dimensions, we restrict considerations to cubic grids (δ1 = δ2 = 1) and
n = 2. The k = 33 − 1 = 26 directional vectors vi consist of the 6 directions along
the edges (i = 1, . . . , 6), 12 diagonals of the faces (i = 7, . . . , 18) and 8 spatial
diagonals (i = 19, . . . , 26) of the unit cube [0, 1]3. Hence, the surface area estimator
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is based on comparison of pixels with neighbors in the so-called 26-neighborhood.
The Voronoi weights can be calculated as the relative sizes of the Voronoi cells on
the unit sphere generated by {v1/ ‖v1‖ , . . . , vk/ ‖vk‖} . They are given by

ci =





1
2
− 2

π
arccos

( √
2+
√

3√
2
√

3−
√

3
sin
(
π
8

))
≈ 0.0457779, if i = 1, . . . , 6,

1
2
− 1

π
arccos

( √
6−2

2
√

3−
√

6
sin
(
π
8

))
≈ 0.0369806, if i = 7, . . . , 18,

1
2
− 3

2π
arccos

(
(2−
√

3)(2−
√

6)+2

4
√

3−
√

3
√

3−
√

6

)
≈ 0.0351956, if i = 19, . . . , 26.

The zonotope Z is the convex hull of all points of the form
∑26

i=1 εivi/ ‖vi‖, where
(ε1, . . . , ε26) runs through all vectors in {−1, 0, 1}26. The quickhull -algorithm (Bar-
ber et al., 1996) was used to find this convex hull. Z has 96 vertices, inradius
rVor ≈ 0.463312, circumradius RVor ≈ 0.511386, and thickness of minimal annulus
TVor ≈ 0.0480748. As γ3 = 1/2 we obtain the rounded bounds

0.927 ≤ lim
t↘0

EŜ3
26 (A; t)

S (A)
≤ 1.023.

Although the definition of the Bonnesen weights was restricted to the planar case,
it can naturally be generalized to higher dimensions. We will do so for comparison
with the established Voronoi weights. Recall the construction for the Bonnesen
weights in the plane for given directions v1, . . . , vk ∈ R2 \ {o}. We defined ui =

vi/ ‖vi‖, i = 1, . . . , k, and constructed the polygon P̃ in (15) with outer unit vectors
±u1, . . . ,±uk circumscribing the unit ball. We then chose c̃i proportional to the
length of the edge of P̃ with outer unit normal ui. In higher dimensions, for given
v1, . . . , vk ∈ Rd \ {o}, we set ui = vi/ ‖vi‖, i = 1, . . . , k, and

P̃ :=
k⋂

i=1

{
x ∈ Rd : |〈ui, x〉| ≤ 1

}

in complete analogy to (15). Hence P̃ is the polytope circumscribing the unit ball
with facet normals in {±u1, . . . ,±uk}. We then choose c̃i proportional to the (d− 1)-

dimensional volume of the facet of P̃ which has outer unit normal ui. In the present
three-dimensional example (with δ1 = δ2 = 1 and all directions in Γ3

2) the Bonnesen
weights were computed with quickhull and are given by

c̃i ≈





0.0465894, if i = 1, . . . , 6,

0.0367439, if i = 7, . . . , 18,

0.0349421, if i = 19, . . . 26.

The associated inradius is rBon ≈ 0.462424, the circumradius is RBon ≈ 0.511243,
and thickness of minimal annulus is TBon ≈ 0.0488187. This shows that Bonnesen
weights are not better than Voronoi weights for 3d−1 directions in dimension d = 3.
But this is not surprising because they are based on Bonnesen’s inequality (14)
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which is valid only for two-dimensional convex bodies. In Section 4 we discuss how
the approach from Section 2 could be extended to higher dimensions.

Finally, we show how the asymptotic relative error bounds in the case of a
quadratic (δ1 = 1) planar grid depend on the choice of n. To do so, the symmetrized

spread of the normalized vectors of V(2)
n must be determined.

Lemma 6. For n ≥ 2 the symmetrized spread of
{
x/ ‖x‖ : x ∈ V(2)

n

}
is equal to

dn =

√√√√√√2−

√√√√√2


1 +

n− 1√
1 + (n− 1)2


 ≤ 1

2 (n− 1)
. (29)

Proof. Let ∆ be the symmetrized spread of D := {x/ ‖x‖ : x ∈ V(2)
n } and set

m := n − 1. Clearly, the arc C ⊂ S1 in the first quadrant with endpoints (1, 0)>,

(m2 + 1)
−1/2

(m, 1)> ∈ D does not contain any other points in D and thus the spread
∆ is at least the distance of the midpoint of C to one of its endpoints. Hence

∆ ≥
√

2
(

1− cos
ϕ

2

)
=

√√√√2

(
1−

√
1 + cosϕ

2

)
= dn,

where ϕ = arccos
(
m/
√

1 +m2
)

is the length of C. This interpretation of dn also

shows the inequality in (29), as dn cannot be larger then half the distance of (1, 0)>

from (1, 1/m)>. To show that ∆ ≤ dn, let v, v′ ∈ D two points such that the sub-arc
of S1 connecting them does not contain any other points of D. Using reflections and
translations leaving Z2 invariant, we may assume that v = x/ ‖x‖ and v′ = x′/ ‖x′‖
where x, x′ ∈ V(2)

n and the angles they form with the x-axis are at most π/4. We
refer to Figure 6 for a sketch of the situation. The cone between the rays spanned
by x and x′ cannot contain any other points of V(2)

n in its interior. Let y (y′) denote

the point in V(2)
n ∩ {(m, t) : t ≥ 0} with largest (smallest) second coordinate below

(above) this cone. Then the length of the arc in S1 with endpoints v and v′ is at
most the length of the arc C ′ ⊂ S1 with endpoints y/ ‖y‖ and y′/ ‖y′‖. The segment

[y, y′] does not contain any points of V(2)
n , so y and y′ are distance one apart, and

the length of C ′ is bounded from above by the length of C. Here we use the fact
that among all unit intervals in {(m, t)> : t ≥ 0}, the interval [(m, 0)>, (m, 1)>] has
the largest gnomonic projection. This gives ∆ ≤ dn, as v and v′ where arbitrary
in D.

In view of Theorem 4, Lemma 6 yields an estimate for the asymptotic relative
error using the Bonnesen-weights ci = c̃i whenever n ≥ 2.

Theorem 7. Let A ⊂ R2 be a topologically regular, polyconvex set with positive
perimeter, n ≥ 2, and δ1 = 1. Let Ŝdk (A; t) be defined by (28), where {v1, . . . , vk} =

V(2)
n and ci = c̃i, i = 1, . . . , k, are the Bonnesen weights. Then the asymptotic

relative mean error obeys

lim
t↘0

∣∣∣∣∣
EŜdk (A; t)− S (A)

S (A)

∣∣∣∣∣ ≤
π2

12
(n− 1)−2 .
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Figure 6: Construction to determine the symmetrized spread in Lemma 6: the points
x and x′ in V(2)

n are contained in the cube [0, n− 1]2 and their normalizations v, v′

in S1.

4 Extension to higher dimensions

Large parts of the present worst case analysis for quadrature rules, including the
use of an associated zonotope Z, is not restricted to the two-dimensional setting. In
order to find an easily accessible upper bound for the width of the minimal annulus,
an extension of Bonnesen’s and Groemer’s refined isoperimetric inequalities (14) and
(26) to higher dimensions (which is known) is not suitable, as it involves the surface
area of Z. Instead, a strengthened version of Uhrysohn’s inequality is appropriate.
It reads

(
w (Z)

w (Bd)

)d
− Vd (Z)

Vd (Bd)
≥ cd (Z) δ2

(
Z, γdB

d
)2
. (30)

Here cd is an explicitly known constant, depending on d, the mean width w (Z) of
Z, and the second intrinsic volume of Z. This inequality is a special case of a whole
family of geometric inequalities derived by Groemer and Schneider (1991), who also
showed that it implies the Bonnesen type inequality

(
w (Z)

w (Bd)

)d
− Vd (Z)

Vd (Bd)
≥ c′d (Z) (R− r)(d+3)/2 . (31)

The constant c′d, again, depends on d, w (Z) and the second intrinsic volume of Z.
For d = 2 inequality (30) coincides with (26), and (31) is of the same form as (14),
but with a weaker exponent. However, these inequalities seem to be of limited value
for applications, as it appears that (31) does not exhibit the optimal exponent, and
it is not easy to determine the zonotope with given mean width which minimizes
the left hand side of (30) or (31) when d > 2.
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