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Summary
Very recently, it has been suggested in the biomedical literature to combine comput-
erized image analysis with non-uniform sampling in order to increase the efficiency
of estimators of intensities of biological cell populations. We give this ingenious
idea of empirical importance sampling a stochastic formulation, using point process
theory and modern sampling theory. We develop statistical tools for assessing its
efficiency and construct optimal model-based estimators of intensities. Examples of
applications of empirical importance sampling in microscopy are provided.

Keywords: image analysis, importance sampling, probability proportional to size,
proportionator, stereology.

1 Introduction
Importance sampling is a general statistical technique for estimating properties of
a particular distribution, based on samples from a different distribution than the
one of interest, cf. [1] and references therein. Depending on the application, the
term may refer to the process of sampling from this alternative distribution, the
process of inference, or both. By choosing the alternative distribution appropriately,
importance sampling may result in a marked increase in estimator efficiency. The
basic idea is to choose an alternative sampling distribution in such a way that most
of the sampling is done in the part of the state space that contributes the most to
the parameter of interest.

This type of sampling technique has recently been introduced in computerized
analysis of microscopy images under the name of the proportionator, [7, 8], see
also the early paper [4]. This technique addresses the essential problem in the
biomedical sciences that cell populations often show pronounced inhomogeneity,
being present only in structured layers or showing marked gradients. Observing such
a cell population, using a systematic set of fields of view, will be highly inefficient
because most fields will contain no or very few cells.

An example of application of the technique suggested in [7, 8] is shown in Fig-
ure 1. The aim is here to estimate the total number of green GFP-expressing
neurons, see panel B. Under low magnification, the complete region (panel A) of
interest is delineated, and by automatic image analysis every field of view inside
this region is given a weight proportional to the amount of green colour observed
under fluorescence illumination. A field of view is automatically sampled with a
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Figure 1: Estimating total number of GFP-expressing neurons in transgenic mice brain.
Panels A and B show the same region of interest at 10× magnification in bright field
(panel A) and during colour identification, using fluorescence light (panel B). Counting is
performed by an expert using a 60× magnification, as shown in panels C and D. The small
inserts indicate the positions of the sampled windows. For more details, see [8].

probability proportional to its weight and the number of neurons seen in the sam-
pled field is determined under high magnification by an expert, see panels C and D.
Further examples of computer-assisted spatial sampling may be found in [5, 6, 9].

If the weight assigned to a field of view is positively correlated with the number
of cells seen in the field, the sampling is directed towards fields of view with high
number of cells and an increase in efficiency is expected. In [8], increase in efficiency
ranging from 8× to 25× was indeed observed in three biological examples with-
out increasing the workload. This finding was supported by extensive simulation
studies [7], demonstrating the beneficial effect of this type of empirical importance
sampling.

In this paper, we give this ingeneous idea of empirical importance sampling
a stochastic formulation. We derive statistical tools for assessing its efficiency and
construct optimal model-based estimators of intensities. It will be demonstrated that
even for homogeneous point processes there will be a gain in efficiency of intensity
estimators by utilizing the inhomogeneity of the realized point pattern.

The paper is organized as follows. In Section 2, we summarize the concepts
needed from sampling theory while Section 3 gives mild conditions under which
empirical importance sampling will result in a gain in efficiency. In Section 4, the
gain in efficiency is assessed for homogeneous point processes, including processes
from the flexible class of Lévy driven Cox processes. Systematic weighted sampling
is discussed in Section 5. Model-based inference for such data is developed and
exemplified by the estimation of granule cell number in Section 6. Section 7 contains
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concluding remarks. Technical details are deferred to three appendices.

2 The set-up
Throughout the paper, we will assume that a realization of a point process Φ is
available for observation in a bounded subset X of R2 of area A(X). In addition, a
non-negative random field

Z = {Z(u) : u ∈ X},
associated with Φ, is observed in X. In the applications we have in mind, the points
of Φ represent the positions of the objects in a digital or analog image. In the
example of Figure 1, X corresponds to the region delineated at low magnification.
Determination of the total number N(Φ∩X) of points inX can only be performed at
high magnification of the image and is impracticable. In contrast, the random field Z
is readily available, e.g. from observation of colour proportions at low magnification
by automatic image analysis.

Our aim is to predict N(Φ ∩ X) or equivalently NA = N(Φ ∩ X)/A(X) from
observation in a randomly placed window QU = U +Q, hitting X. Here, Q ⊂ R2 is
bounded and is assumed to contain the origin O, cf. Figure 2. The position of the
window is determined by the random vector U ∈ R2.

Figure 2: Illustration of the stochastic set-up.

In [7, 8], design-unbiased predictors N̂A ofNA are proposed, based on information
in windows QU with different types of distribution of U . A predictor N̂A of NA is
said to be design-unbiased if

E(N̂A|Φ, Z) = NA. (1)

The conditional mean value in (1) is calculated with respect to the conditional
distribution of U given Φ, Z. In particular, a design-unbiased predictor of NA is an
(unconditionally) unbiased estimator of E(NA). Likewise, a predictor σ̂2

Φ,Z of the
conditional variance

σ2
Φ,Z = V(N̂A|Φ, Z)

is said to be design-unbiased if

E(σ̂2
Φ,Z |Φ, Z) = σ2

Φ,Z .
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In most cases, it is of interest to make statements about the quality of a predictor
across different realizations of Φ and Z. For this purpose, we will consider the
prediction error E(N̂A − NA)2. A predictor N̂ (1)

A is said to be more efficient than
N̂

(2)
A if N̂ (1)

A has smaller prediction error than N̂ (2)
A . For a design-unbiased predictor,

the prediction error can be expressed as

E(N̂A −NA)2 = V(N̂A)− V(NA). (2)

If N̂A and σ̂2
Φ,Z are design-unbiased, then

E(N̂A −NA)2 = E(σ̂2
Φ,Z)

and σ̂2
Φ,Z or an average of such estimators for a set of realizations of Φ and Z can

be regarded as an unbiased estimator of the prediction error.

3 A simple condition for gain in efficiency
The weighted sampling suggested in [7, 8] will not always result in a gain in effi-
ciency. In this section, we will give a simple condition on Φ and Z under which the
predictor based on weighted sampling is more efficient than the one based on stan-
dard uniform random sampling. We first present the two different types of sampling
to be considered.

In traditional sampling, the position u of the window is selected uniform ran-
domly without any reference to the random field Z. In empirical importance sam-
pling, the position u of the window is selected with a probability proportional
to Z(u). The two types of random windows are denoted uniform random (UR)
and proportional random (PR) windows, respectively.

Below, we need the following versions of the principal kinematic formula, cf. e.g.
[2, (4.22)],

∫

R2

A(X ∩Qu) du = A(X)A(Q), (3)
∫

R2

N(Φ ∩X ∩Qu) du = N(Φ ∩X)A(Q). (4)

A UR window is distributed as QU = U +Q where U is independent of Φ, Z and
uniform in

{u ∈ R2|X ∩Qu 6= ∅} = X ⊕ Q̌.
Here, Q̌ = {v ∈ R2| − v ∈ Q} and ⊕ denotes vector (Minkowski) addition. Let

C =
A(X ⊕ Q̌)

A(X)A(Q)
.

It then follows from the principal kinematic formula that

N̂UR
A = C N(Φ ∩X ∩QU) (5)
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is a design-unbiased predictor of NA. In fact, using (4),

E[N̂UR
A |Φ, Z] = E[N̂UR

A |Φ] =
N(Φ ∩X)

A(X)
= NA.

We now consider PR windows QU . In order to avoid problems with edge-effects,
we assume that Z(u) is defined for all u withX∩Qu 6= ∅. A PR window is distributed
as QU where U is a stochastic vector with density p given by

p(u|Z) =





Z(u)∫

X⊕Q̌
Z(u) du

if X ∩Qu 6= ∅,

0 otherwise.

(6)

Here and in the following, we assume that
∫
X⊕Q̌ Z(u) du > 0 and that

Z(u) = 0⇒ N(Φ ∩X ∩Qu) = 0.

The predictor suggested in [7, 8] takes the form

N̂PR
A =

∫
X⊕Q̌ Z(u) du
A(X)A(Q)

N(Φ ∩X ∩QU)

Z(U)
(7)

and is design-unbiased for NA, as can easily be seen, using the principal kinematic
formula (4).

The predictor N̂PR
A is not in general more efficient than N̂UR

A . Using that N̂UR
A

and N̂PR
A are both design-unbiased and that (2) holds for any design-unbiased pre-

dictor, it is seen that N̂PR
A is more efficient than N̂UR

A if and only if

V(N̂PR
A ) ≤ V(N̂UR

A )

or, equivalently,

Cov

(
N(Φ ∩X ∩QU)2

Z(U)
, Z(U)

)
≥ 0 (8)

for U uniform in X ⊕ Q̌.
A simple pilot study can reveal whether (8) is likely to be satisfied.

4 Efficiency for homogeneous point processes
Since PR windows use the inhomogeneity of the realized point pattern, a gain in
efficiency may even be obtained for homogeneous point processes.

Throughout this section, Φ will be a homogeneous point process with intensity λ.
Then, EN(Φ∩X) = λA(X) and its pair correlation function is translation invariant.
For homogeneous Φ, we have, cf. [12, (4.5.3)],

V(N(Φ ∩X)) = λ2

∫

R2

γX(y)g(y) dy + λA(X)− λ2A2(X), (9)
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where g is the pair correlation function of Φ and

γX(y) = A(X ∩ (X + y))

is the set covariogram of X. In the following, we will, in particular, consider Cox
processes. Recall that Φ is a Cox process with driving field

Λ = {Λ(u) : u ∈ R2}

if, conditionally on Λ, Φ is a Poisson point process with intensity function Λ.
It can be shown, cf. Appendix A, that for a homogeneous process Φ, N̂PR

A will be
more efficient than N̂UR

A if the counts satisfy the following proportional regression
model

E(N(Φ ∩X ∩QU)|U,Z) = aZ(U), (10)
V(N(Φ ∩X ∩QU)|U,Z) = bZ(U)p, p ≥ 1. (11)

Note that in the particular case where Φ is a Cox process with driving field Λ =
{Λ(u) : u ∈ R2} and with Z(u) equal to the cumulated intensity in Qu,

Z(u) =

∫

X∩Qu
Λ(v)dv,

the relations (10) and (11) are satisfied with a = b = p = 1.
In order to assess the relative efficiency of N̂PR

A to N̂UR
A for specific point process

models, we need to express the variances in terms of second-order properties of the
point process. Using (3) and (9), we get

V(N̂UR
A ) = C2

(
V
(
E[N(Φ ∩X ∩QU)|U ]

)
+ E

(
V[N(Φ ∩X ∩QU)|U ]

))

= C2λ2

∫

R2

EγX∩QU (y)g(y)dy + λC − λ2

=
A(X ⊕ Q̌)

A(Q)2

λ2

A(X)2

∫

R2

γX(y)γQ(y)g(y)dy + λC − λ2. (12)

The last equality sign follows from (3) with X and Q replaced by X ∩ (X + y) and
Q ∩ (Q+ y), respectively. Since, cf. (9),

V(NA) =
λ2

A(X)2

∫

R2

γX(y)g(y)dy +
λ

A(X)
− λ2, (13)

the prediction error of N̂UR
A is easily obtained

E(N̂UR
A −NA)2 =

λ2

A(X)2

∫

R2

γX(y)g(y)

[
A(X ⊕ Q̌)

A(Q)2
γQ(y)− 1

]
dy

+
λ

A(X)

[
A(X ⊕ Q̌)

A(Q)
− 1

]
. (14)
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The variance of N̂PR
A depends on the random field Z and its interplay with Φ.

If Φ is a Cox process with driving field Λ such that Z is the cumulated intensity in
Qu,

Z(u) =

∫

X∩Qu
Λ(v)dv,

then, cf. Appendix B,

V(N̂PR
A ) =

λ2

A(X)2

∫

R2

γX(y)g(y)dy + λC − λ2. (15)

Combining with (13), we find

E(N̂PR
A −NA)2 =

λ

A(X)

[
A(X ⊕ Q̌)

A(Q)
− 1

]
. (16)

Note that in this case the prediction error of N̂PR
A only depends on λ.

We now compare the efficiency of N̂UR
A and N̂PR

A within the flexible class of
homogeneous Lévy driven Cox processes ([10]). Such Cox processes have driving
fields of the form

Λ(y) =

∫

R2

k(y − n)L(dn), y ∈ R2,

where L is a so-called non-negative homogeneous Lévy basis on R2 (an independently
scattered, infinitely divisible random measure) and k is a density.

It can be shown that Lévy driven Cox processes are, under mild regularity con-
ditions, shot noise Cox processes with additional random noise ([10]). One of the
advantages of this class of Cox processes is that the intensity and pair correlation
function can be calculated explicitly. By [10, Corollary 2], one can associate a ran-
dom variable L′, the so-called spot-variable, to the Cox process such that

λ = cEL′,

g(y) = 1 +
V(L′)

(EL′)2

Ik(y)

c
,

where Ik(y) =
∫

R2 k(y + n)k(n) dn and c > 0 is an explicitly known constant. For a
Gaussian kernel

k(y) =
1

2πσ2
exp

(
−‖y‖

2

2σ2

)
, y ∈ R2, (17)

we get

g(y) = 1 +
V(L′)

EL′
exp

(
−‖y‖2

4σ2

)

4πσ2λ
, y ∈ R2. (18)

In Figure 3, simulations of Lévy driven Cox processes are shown for a Poisson
Lévy basis (L′ ∼ EL′Po(1)), a compound gamma Lévy basis and a compound inverse
Gaussian Lévy basis, respectively, in a [0, 10] × [0, 10] window with c = 3, EL′ = 2
and σ = 0.4. The variance of L′ is equal to 4, 8 and 12, respectively. Notice the
increasing heterogeneity in the realized point patterns.

We have calculated the prediction error of N̂UR
A and N̂PR

A , using (14) and (16), for
the case whereQ is a square with unit side length whileX is a square with side length
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Figure 3: Examples of realizations of homogeneous Lévy driven Cox processes with Pois-
son (left), compound gamma (middle) and compound inverse Gaussian (right) Lévy bases.
For details, see the text.

D ≥ 1. Furthermore, we use the Gaussian kernel (17). For some technical details,
see Appendix C. In Figure 4, we have plotted the ratio E(N̂UR

A −NA)2/E(N̂PR
A −NA)2

as a function of D ∈ [1, 10] for Lévy driven Cox processes with Poisson, compound
gamma and compound inverse Gaussian Lévy bases and λ = 1, 10, 25. The value of
σ is 0.4 and V(L′)/E(L′) is 2, 4 and 6, respectively, for the three types of Lévy bases.
The gain in efficiency is largest for the most pronounced clustered point patterns.
The efficiency also increases with increasing intensity of the point process.

Figure 4: The ratio E(N̂UR
A −NA)2/E(N̂PR

A −NA)2 as a function of the side length D of
X for the Poisson (red), compound gamma (green) and compound inverse Gaussian (blue)
cases, respectively. The intensities are λ = 1 (full-drawn), λ = 10 (· · ·) and λ = 25 (– –
–), respectively.

5 Replication
Replicated generation of PR windows in a systematic set-up has in [7, 8] been
implemented for the analysis of microscopy sections as the one shown in Figure 1.
The sampling is denoted systematic proportional random sampling (SPRS). Below,
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we describe SPRS sampling and discuss the statistical analysis of data sampled in
this fashion.

The window Q = [0, l1) × [0, l2) is a rectangle. The region X is covered by
rectangles

G =
⋃

(s1,s2)∈S

{
Q+ (s1l1, s2l2)

}
,

where S ⊂ Z2. The windows in G are ordered lexicographically Q1, . . . , QN , where
N is the number of windows in G. The windows Q1, . . . , QN are translations of Q
by u1, . . . uN , say, see Figure 5. The weight Z(ui) is assigned to Qi, i = 1, . . . , N .

Figure 5: The set-up for systematic proportional random sampling (SPRS). The point
pattern Φ (red dots) is available for observation in X (delineated by blue lines). The set
X is covered by a family of lexicographically ordered non-overlapping rectangles. These
rectangles are translations of the given rectangle Q.

Sampling in a systematic Z−weighted fashion is performed as follows. Let Wj =∑j
i=1 Z(ui) denote the cumulated weight, with the convention that W0 = 0, and

let S =
∑N

i=1 Z(ui). A sample of n ∈ {1, . . . , N} windows is selected by choosing
V1 uniformly in [0, S

n
], independently of Φ and Z, and let Vj = V1 + (j − 1)S

n
for

j = 2, 3, . . . , n. The sampled windows are those with index in

J =
⋃

i:Vi∈[Wji−1,Wji
]

{ji},

see also Figure 6. A window may be sampled more than once. Notice that ordinary

Z1 Z2 Z3 ZN

W0 W1 W2W3 WN−−1 WN

Figure 6: Illustration of SPRS sampling. The 1st and 3rd window are not sampled, the
Nth window is sampled exactly once while the 2nd window is sampled twice. We use the
abbreviation Zj = Z(uj).

systematic uniform random sampling (SURS) is a special case of SPRS where Z is
a constant field.
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In [8], it is suggested to use the following predictor of NA

N̂SPRS
A =

S

nA(X)

N∑

j=1

#{i |Vi ∈ [Wj−1,Wj]}
N(Φ ∩X ∩Qj)

Z(uj)
.

This predictor is design-unbiased. In fact, since Vi ∼ U
(
[(i− 1)S

n
, iS
n

]
)
,

E
[
#{i |Vi ∈ [Wj−1,Wj]}|Φ, Z

]
=

n∑

i=1

P
(
Vi ∈ [Wj−1,Wj]|Φ, Z

)

=
n

S

n∑

i=1

∫ iS
n

(i−1)S
n

1[Wj−1,Wj ](v)dv

=
n

S
(Wj −Wj−1)

=
n

S
Z(uj),

which gives us

E
[
N̂SPRS
A |Φ, Z

]
=

1

A(X)

N∑

j=1

N(Φ ∩X ∩Qj) =
N(Φ ∩X)

A(X)
.

6 Model-based inference
In this section, we will discuss how to use the information available in the data

(Z(uj), N(Φ ∩X ∩Qj)), j ∈ J,

to construct optimal predictors of NA. For this purpose, we will take a model-based
approach, cf. e.g. [13, Section 2.7 and Chapter 8].

Under a proportional regression model

E(N(Φ ∩X ∩Qj)|J, Z) = aZ(uj), (19)
V(N(Φ ∩X ∩Qj)|J, Z) = bZ(uj)

p, (20)

j ∈ J , we can construct a model-unbiased predictor with minimal model-variance
among predictors of the form

N̂A =
S

A(X)

∑

j∈J
αj(J, Z)

N(Φ ∩X ∩Qj)

Z(uj)
, (21)

where αj(J, Z) ≥ 0 and
∑

j∈J αj(J, Z) = 1, provided that the counts

N(Φ ∩X ∩Qj), j ∈ J,

can be regarded as uncorrelated, given J and Z.
First, notice that for a predictor of the form (21)

E(N̂A|J) =
a

A(X)
E(S).
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Furthermore, because of (19),

E(NA) =
1

A(X)
EN(Φ ∩X)

=
1

A(X)

N∑

j=1

EN(Φ ∩X ∩Qj)

=
a

A(X)
E(S).

It follows that E(N̂A|J) = E(NA), so any predictor of the form (21) is indeed model-
unbiased. Using the assumption of uncorrelatedness, the model-variance becomes

V(N̂A|J) = E(V(N̂A|J, Z)) + V(E(N̂A|J, Z))

=
b

A(X)2
E(S2

∑

j∈J
αj(J, Z)2Z(uj)

p−2) +
a2

A(X)2
V(S).

Using Cauchy-Schwartz’ inequality it follows that V(N̂A|J) is minimized for

αj(J, Z) =
Z(uj)

2−p
∑

j∈J Z(uj)2−p .

The minimal variance becomes

V(N̂A|J) =
b

A(X)2
E

(
S2

∑
j∈J Z(uj)2−p

)
+

a2

A(X)2
V(S).

If p = 2 and the sampling is performed such that a window is only sampled once,
then the minimal model-variance predictor of the form (21) coincides with N̂SPRS

A .

6                                      Proportionator Sampling and Estimation 

 
Figure 3. Estimating total number of granule cells in rat cerebellum. The blue granule cell layer is clearly visible 

at 1.25X (upper left panel). The area of interest is delineated coarsely and partitioned into fields of view. The upper 

right panel shows the fields of view with their assigned weight on a grey-scale. Middle left panel shows the distribution 

of sampled fields (yellow rectangles) for the proportionator, the selected fields of view are almost surely in the granule 

cell layer. As shown in the middle right panel!sampling with the traditional SURS!such fields of view may or may not 

hit the blue region. The lower two panels are examples of counting at 100X magnification (oil lens).  

 

Total number of GFP orexin neurons in mice brain 

Two brains were studied from mature transgenic mice, where orexin neurons in lateral hypothalamus and 

adjacent perifornical area could be visualized in situ by expression of enhanced green fluorescent protein 

(Burdakov et al. 2006). Brains had been immersion fixed in 4% phosphate-buffered formaldehyde for a 

few hours, cryo-protected and frozen in liquid nitrogen. The brains were cut exhaustively using a 

Figure 7: Left: A systematic proportional random sample (SPRS) of the granule cell
layer (blue). The selected sampling windows are shown as small yellow rectangles. Right:
A systematic uniform random sample (SURS).

We have applied this type of model-based inference on data collected by SPRS
sampling for the estimation of the intensity of granule cells in rat cerebellum. SPRS
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Figure 8: Left: Mean counts as a function of weights together with the fitted relationship.
Right: Empirical variances of counts as a function of transformed weights Z̃. For details,
see text.

sampling of the granule cell layer (blue) is shown in Figure 7 (left) where almost
all selected sampling windows (small yellow rectangles) lie in the granule layer. For
comparison, Figure 7 (right) shows SURS sampling where many of the sampling
windows fall outside the blue region of interest. For more details, see [8].

A plot of the observed counts versus weights shows that a proportional regression
model is not appropriate. Mean counts are shown in Figure 8 as a function of
grouped weights. A relationship of the type

E(N(Φ ∩X ∩Qj)|J, Z) = a1 Z(uj)
a2

with a2 6= 1 is more appropriate. The fitted curve in Figure 8 (left) has parameters
a1 = 1 and a2 = 22/37. We therefore transform the weights

Z̃(uj) = Z(uj)
a2 ,

such that the proportional regression is fulfilled for the transformed weights. Figure 8
(right) shows the empirical variances of the counts as a function of the transformed
weigths. A relationship of the type (20) with p = 0 seems to be appropriate. Under
this type of model, the optimal predictor takes the form

N̂opt
A =

∑N
i=1 Z̃(ui)

A(X)

∑
j∈J Z̃(uj)N(Φ ∩X ∩Qj)∑

j∈J Z̃(uj)2
,

while the predictor suggested in [8] based on the transformed weights becomes (as-
suming no window is sampled more than once)

N̂SPRS
A =

∑N
i=1 Z̃(ui)

nA(X)

∑

j∈J
N(Φ ∩X ∩Qj)/Z̃(uj).

The ratio between the conditional variances is for p = 0

V(N̂SPRS
A |J, Z)

V(N̂opt
A |J, Z)

=
1

n

∑

j∈J
Z̃(uj)

2 · 1

n

∑

j∈J
Z̃(uj)

−2.

In the concrete example, this ratio takes the value 2.90 and the model-based ap-
proach represents an increase in efficiency of a factor 3 in terms of the conditional
variance.
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7 Concluding remarks
In this paper, we have studied how computerized image analysis can be combined
with non-uniform sampling in order to increase the efficiency of estimators of in-
tensities of biological cell populations. We have provided conditions under which
the proposed non-uniform sampling results in a gain in efficiency and constructed
optimal model-based estimators of intensities.

We believe that the principle of empirical importance sampling has a much wider
range of applications than in microscopy. It is likely to be useful in other areas of
spatial sampling where point patterns show realized inhomogeneity, e.g. in precision
farming and satellite image analysis. It might also be the solution to the problem
of low resolution in modern MR and PET scanners. An initial complete scan at low
resolution may be used to direct the sampling towards the region of interest which
is subsequently scanned at a high resolution.
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Appendix A
We suppose that the proportional regression model given by (10) and (11) is satisfied.
Since N̂UR

A and N̂PR
A are both design-unbiased, it suffices to show that

V(N̂PR
A ) ≤ V(N̂UR

A ). (22)

Throughout this appendix, U will denote a uniform random vector on X ⊕ Q̌
and W a random vector with density (6). We show (22) by showing the following
two relations

V(E(N̂PR
A |W,Z)) ≤ V(E(N̂UR

A |U,Z)) (23)

E(V(N̂PR
A |W,Z)) ≤ E(V(N̂UR

A |U,Z)). (24)

First we show (23). Since N̂UR
A and N̂PR

A are both design-unbiased, it suffices to
show that

E(E2(N̂PR
A |W,Z)) ≤ E(E2(N̂UR

A |U,Z)).

We find

E(N̂PR
A |W,Z) = Ca

∫

X⊕Q̌
Z(u)

du
A(X ⊕ Q̌)

= CaE(Z(U)|Z),

and
E(N̂UR

A |U,Z) = CaZ(U).

Since
E(E2(Z(U)|Z)) ≤ E(E(Z(U)2|Z))

(23) follows.
In order to show (24), we use (11) and find

V(N̂UR
A |U,Z) = C2bZ(U)p,

V(N̂PR
A |W,Z) =

(∫
X⊕Q̌ Z(u)du
A(X)A(Q)

)2

bZ(W )p−2.

Using that

E(Y p) ≥ E(Y )E(Y p−1), p ≥ 1, (25)
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we finally get

E(V(N̂PR
A |W,Z)) = E

((∫
X⊕Q̌ Z(u)du
A(X)A(Q)

)2

bE(Z(W )p−2|Z)

)

= C2bE

((∫

X⊕Q̌
Z(u)

du
A(X ⊕ Q̌)

)2 ∫

X⊕Q̌

Z(u)p−1

∫
X⊕Q̌ Z(u)du

du

)

= C2bE
(
E(Z(U)|Z)E(Z(U)p−1|Z)

)

≤ C2bE (E(Z(U)p|Z)) = E(V(N̂UR
A |U,Z)).

The relation (25) can be shown as follows. For p, q ≥ 0, we have

E(Y q)E(Y p) =
(

(E(Y q))
1
q

)q (
(E(Y p))

1
p

)p

≤ (E(Y p+q))
q
p+q (E(Y p+q))

p
p+q = E(Y p+q),

using that p 7→ (E(Y )p)1/p is increasing for p ≥ 0, due to Jensen’s inequality.
Replacing q and p by 1 and p− 1, respectively, we have shown (25).

Appendix B
In this appendix, we show (15). Note that, given U and Λ, N(Φ∩X∩QU) is Poisson
distributed with mean

Z(U) =

∫

X∩QU
Λ(v)dv.

It follows that

E(N̂PR
A |U,Λ) =

∫
X⊕Q̌ Z(u) du
A(X)A(Q)

=

∫

X

Λ(v)
dv

A(X)

and

V(N̂PR
A |U,Λ) =

(∫

X

Λ(v)
dv

A(X)

)2
1

Z(U)
.

Therefore,

E(V(N̂PR
A |U,Λ)) =

A(X ⊕ Q̌)

A(X)2A(Q)
E
(∫

X

Λ(v) dv
)

= Cλ. (26)

Furthermore,

V(E(N̂PR
A |U,Λ)) = E

(
1

A(X)2

∫

X

∫

X

Λ(v1)Λ(v2) dv1 dv2

)
− λ2

=
λ2

A(X)2

∫

X

∫

X−v
g(u) du dv − λ2

=
λ2

A(X)2

∫

R2

γX(u)g(u) du− λ2. (27)

Combining (26) and (27), we finally get (15).
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Appendix C
Throughout this appendix, D ≥ 1. For Q = [0, 1]2 and X = [0, D]2, we have

A(Q) = 1, A(X) = D2, A(X ⊕ Q̌) = (D + 1)2.

Furthermore,

γX(y1, y2) =

{
(D − |y1|)(D − |y2|) if (y1, y2) ∈ [−D,D]2

0 otherwise,

and
γQ(y1, y2) =

{
(1− |y1|)(1− |y2|) if (y1, y2) ∈ [−1, 1]2

0 otherwise.

For the calculation of the prediction error of N̂UR
A we use that

∫

R2

γX(y)γQ(y) dy =

(∫ 1

−1

(D − |y1|)(1− |y1|) dy1

)2

=

(
D − 1

3

)2

,

∫

R2

γX(y)γQ(y)e−
‖y‖2
4σ2 dy =

(∫ 1

−1

(D − |y1|)(1− |y1|)e−
y21
4σ2 dy1

)2

= 4

(
D
√
πσ2

[
2Φ

(
1√
2σ2

)
− 1

]

+ 2σ2(D + 1)
[
e
−1

4σ2 − 1
]

+

∫ 1

0

y2e
−y2
4σ2 dy

)2

.

Furthermore, ∫

R2

γX(y) dy =

(∫ D

−D
(D − |y1|) dy1

)2

= D4,

∫

R2

γX(y)e−
‖y‖2
4σ2 dy =

(∫ D

−D
(D − |y1|)e−

y21
4σ2 dy1

)2

= 4

(
D
√
πσ2

[
2Φ

(
D√
2σ2

)
− 1

]
+ 2σ2

[
e
−D2

4σ2 − 1

])2

.

Using (14) and (18), we finally get

E(N̂UR
A − N̂A)2 = λ(1 +

2

D
)− λ2 + λ2 (D + 1)2

(
D − 1

3

)2

D4

+ λ
(D + 1)2V(L′)

D4 π σ2 EL′

(
D
√
πσ2

[
2Φ

(
1√
2σ2

)
− 1

]

+ 2σ2(D + 1)
[
e−

1
4σ2 − 1

]
+

∫ 1

0

y2e−
y2

4σ2 dy
)2

− λ V(L′)

D4 π σ2 EL′

(
D
√
πσ2

[
2Φ

(
D√
2σ2

)
− 1

]

+ 2σ2

[
e−

D2

4σ2 − 1

])2

.
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