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Preface

his thesis is a contribution to an ongoing effort to understand the Witten

invariant of 3-manifolds and more generally topological quantum field theories.
It attacks this problem from two angles: from the general perspective where it
is proved that a modular functor defines a one-parameter family of topological
quantum field theories, and on a more particular level where we work towards an
explicit calculation of (what is conjecturally) the Witten invariant of finite order
mapping tori. Hence, the thesis is divided into two parts devoted to these two
subjects.

The manuscript is organized as follows: First, I give a general introduction to the
topic of topological quantum field theory and the associated 3-manifold invariants.
Then follows the two parts which are described in greater detail below. Finally is
given a list of references and a list of notation. To make looking up notation as
easy as possible, the list is compiled into two separate lists, one for each part. Both
lists are placed in the back for easy access. The entries were printed in order of
appearance. For the list of references, on the other hand, it was decided to make
only one single list of references due to the significant overlap between references of
the two parts and the general introduction.

In Part I 1 substitute the category of framed manifolds with the so called e-
category due to K. Walker, [69], where the manifolds are equipped with a more
convenient extra structure called the e-structure, which in the closed case is equiv-
alent to the framing. In this category I prove that any 2 dimensional modular
functor (with S;1 # 0) induces a one-parameter family of 2 + 1 dimensional topo-
logical quantum field theories. In fact I do this for two kinds of modular functors,
namely modular functors on the category of extended surfaces and a modular func-
tor on the category of extended surfaces with marked points and directions. Using
slicings of 3-manifolds the approach is very similar to that of [69], but unlike Walker
I work entirely with smooth manifolds and proofs left out in [69] are provided here.

In Part IT T embark on a journey towards an explicit calculation of the Witten
invariant of finite order mapping tori. The starting point is the rigorous definition of
an invariant of 3 dimensional finite order mapping tori, considered by J.E. Andersen
in [1], which is conjectured to be the Witten 3-manifold invariant. Knowing the
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fixed point set in the moduli space of flat connections under the action of the
surface diffeomorphism that defines the mapping torus, it is essential to calculate
the invariant. The main result of this part is a description of the fixed point set in
terms of certain parabolic bundles on the quotient surface. Still, too little is known
about these moduli spaces in general for me to arrive arrive at my destination: an
explicit expression for the invariant, but in special cases more can be said. Thus, I
look at the case of hyperelliptic involutions. This part is joint work with my advisor
J.E. Andersen.

The manuscript is written using basic AMS-TEX and a set of macros devised by
the author to take care of cross-referencing and automatic compilation of contents
and list of notation etc. Most of the diagrams are made with Xy-pic (though a
few were typed using the intrinsic macros of ApMS-TEX), and the drawings with

TEXdraw.
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University, UK, and the Mittag-Leffler Institute, Stockholm, Sweden for their hos-
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Lindblad Johansen who invested time in reading parts of the manuscript and for
our many fruitful discussions over the years. Moreover, I wish to thank my family
in general and my mother in particular for their support and for being there.
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Ellegaard Andersen, who suggested I worked on these problems, for his immense
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manuscript and the numerous suggestions for improvements that followed (all of
which I did not have the time to follow up). I very much appreciate his work on
my behalf.

There remains to be made but one more acknowledgement: to my dear wife,
Trine Grove for her loving support and encouragement, and for her careful help in
proofreading and implementing corrections.
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About the Revised Version. This is a slightly revised version of the submitted
dissertation. Some typos has been corrected and most notably the final proof of
appendix I1.B has been implemented in such a way that it now covers the general
case of ramified coverings as presented at the defense. This proves the result added
to Theorem I1.4.16 that EM is a morphism of varieties. The method of the proof
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the dissertation has also been slightly modified.
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General Introduction

In 1988 E. Witten considered the Chern-Simons action on 3-manifolds and defined
on the physical level of rigor some new invariants of 3-manifolds using generalized
Feynman path integrals

Z (M) d:ef/ e OS5y,
A

where k € Z is the so-called quantum level, A the space of G connections on M, G
being a reasonably nice Lie group, and CS: A — R the Chern-Simons functional

CS(4) d:ef/ (AAdA) + 2(AA[AN A))

with A interpreted as an element in the space of 1-forms with values in the Lie
algebra g of G, Q!(M;g) (see [72]). His inspiration came from theoretical physics
and in fact his intention was not only to get a 3-manifold invariant but to find
a 3 dimensional Yang-Mills interpretation of the Jones polynomial, [38]. This he
did. Not by using the Yang-Mills functional which depends on a choice of metric,
but using the Chern-Simons functional above “taking the expectation value” of
the “observable” Wy defined by any framed link L = ]_H:l L; in M colored by
representations Ry,...R; by

I
Wiz,my(4) < [T (Ri(Hola(Li))), A€ A
=1

In terms of path integrals this expectation value is written
Zu(M, L R) ™ [ SO, gy (4)DA
A

so the 3-manifold invariant is obtained by taking the empty link, and it is claimed
that the invariants of the Jones theory is captured by taking M = S3. Witten also
introduced the notion of a topological quantum field theory (TQFT) of which the
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invariants are part. This associates to each surface a Hilbert space and to each
manifold an element of the Hilbert space associated to the boundary. This was of
course also defined using path integrals, but soon after the theory was axiomatized
by M.F. Atiyah in [6] employing the axioms for a conformal field theory by G. Segal,
[61]. These axioms have later been written up more precisely by other people, one
of which is K. Walker (see [69]). It is his axioms that are used in the present
presentation.

Since the birth of TQFTs in 1988, a lot of work has been put into rigorizing the
theory. Most notorious is the construction of N. Reshetikhin and V.G. Turaev (cf.
[58]. For every root of unity ¢ they considered the braided tensor category defined by
the representation of the quantum group U, (512 (C)) Linking this up with earlier
results, [57], on invariants of ribbon graphs derived from quantum groups, they
achieved a rigorously defined TQFT for every such ¢. In fact, for framed links in S3
they got the (parameterized) Jones polynomial evaluated in ¢. Another invariant
was defined by V.G. Turaev and O.Y. Viro in [67] by the use of 6j-symbols; this
was later discovered to be the norm squared of the Reshetikhin-Turaev invariant.
Apart from the examples constructed by V.G. Turaev and H. Wenzl, [68], using
other classical Lie algebras, these two theories are so far the only TQFTs known
(to mathematics).

There are many other explorations of this field. To mention but a few: R. Kirby
and P. Melvin, [40], W.B.R. Lickorish, [45 and 46|, S.E. Cappell, R. Lee and
E.Y. Miller, [22], L. Crane, [23], M. Kontsevich, [43], T. Kohno, [42], M. Polyak,
[55], K. Walker, [69], C. Blanchet, N. Habagger, G. Masbaum and H. Vogel, [18],
H. Wenzl, [71], and more recently R. Gelca, [28 and 29] — any omissions are unin-
tentional, however, most likely unavoidable.

This work has been carried out in many ways and in varying generality. The
most common approach to the rigorization problem has been to construct an in-
variant by some other input, and then prove that it satisfies the axioms. The input
for these constructions has been gadgets like modular Hopf algebras as mentioned
above, conformal field theories, or modular functors, and the method has been to
represent the 3-manifolds combinatorially. Most commonly, the technique has been
to represent the 3-manifolds by links in S® using surgery (cf. [44]) and to construct
the theory so that it becomes invariant under Kirby moves (see [39]) as e.g. [58].
Another method is Heegaard splitting, where the theory is defined on handlebodies
as e.g. [22]. Finally, an approach relying on slicing up the manifolds using spe-
cial Morse functions was sketched by M. Kontsevich in [43] on manifolds without
framing, and was later extended to manifolds with framing by K. Walker in [69]
(actually, he considered manifolds with corners).

Unfortunately, the preprint [69] of K. Walker was never completed, and in its
latest version it still contains a few mistakes and some proofs are left out. Part I of
this thesis tries to remedy that. The invariant of Witten is in fact not an invariant
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of 3-manifolds but an invariant of framed 3-manifolds. A framing of a closed 3-
manifold is a choice of homotopy class of trivialization of the tangent bundle. It
is possible to define a framing also for manifolds with boundary but making sense
of gluing of framings becomes rather cumbersome. Therefore, we substitute the
framing for a more convenient extra structure, which we in accordance with Walker
call the e-structure. The e-structure is equivalent to the framing in the case of closed
manifolds. Our definition of the e-structure is the same as Walker’s except that we
are able to specify precisely which extra structures are relevant for our theory.

Actually, we follow the program of Walker quite closely. There is one fundamental
difference in the setup: Walker has carried out everything in a special PL-category
allowing corners, to be able to use Moore’s and Seiberg’s basic data to (re-)capture
the modular functor (see [49]). We, on the other, hand work entirely in the smooth
category. This difference raises some interesting questions about classification of
TQFTs which we will return to by the end of section L.5.

Another important difference of course is that we try to give detailed proofs of
the statements that now for long have been part of the folklore of the subject. Some
of the proofs are probably more detailed than some readers would like them to be
and they may seem to state the obvious, but we have tried to leave out as little as
possible in order that no stone should be left unturned. Though, admittedly, there
are exceptions.

A considerable part of Part I is devoted to defining the modular functors, stating
the axioms of a TQFT, and extracting the necessary data from that. As mentioned
earlier we use the method used by Kontsevich and Walker of cutting up the mani-
folds, using special Morse functions, into sufficiently simple pieces on which we are
able to define the theory Z. In our case these slicing functions need to be espe-
cially nice as they are not allowed to have level surfaces crossing the boundary since
that would create corners. These special Morse functions are closely related to the
so-called framed functions of K. Igusa, [35 and 36].

The main results of this part are Theorem 1.5.13, which is stated below, and the
analogous Theorem 1.6.10, where a family of TQFTs is constructed from a modular
functor on the category of extended surfaces and the extended surfaces with marked
points and direction respectively.

Theorem 1.5.13. A modular functor V on the category of e-surfaces satisfying
that S1,1 # 0, induces a complex one-parameter family of 241 dimensional TQFTs
defined by solutions )\0, )\1, )\2, A3 to Ao/\1 = 1, )\1)\25171 =1 and AQ)\,?, =1. Any two
members Z and Z' of this family corresponding to solutions \; and X, are related
by

Z'(M) = kXM Z(M),

for any e-3-manifold M, where k = i—é In particular, Z' and 7 agree on closed

maanifolds.
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Moreover, if V' is unitary we get a family of unitary TQFTs parameterized by
S with the extra condition that Ao = A3 and A\ = As. O

The proof of this theorem uses surprisingly little advanced technology. It is,
however, rather technical. The idea is simply to use the Morse flow to pass from
one slicing to another, thereby getting the relations needed to ensure that the con-
struction is independent of the slicing. This, however, does not suffice so one needs
to deform and extend the flow, and that is where it gets technical.

One should compare this result with the upcoming paper [4] by J.E. Andersen
and K. Ueno, where existence of a modular functor on e-surfaces with marked points
and directions is proved. Hence, together they prove that to any suitably nice Lie
group there is a family of TQFTs all giving the same 3-manifold invariant. The work
of Andersen and Ueno builds on the fundamental paper by A. Tsuchiya, K. Ueno
and Y. Yamada, [66].

The vector space V constructed in [4] is believed to be the same as the vec-
tor spaces devised by a number of other people: S. Axelrod, D. Della Pietra and
E. Witten, [12], G. Segal, [61], M.F. Atiyah, [6], N.J. Hitchin, [34], A.A. Beilin-
son and D. Kazhdan, [14], A.A. Beilinson and V.V. Schechtman, [15], S.E. Cappel,
R. Lee and E.Y. Miller, [22], and G. Faltings, [26]. We give a brief description
of that construction in the introduction to Part II; for a more detailed exposition
tailored for our purpose, see [1]. Here, we shall only say that it is the covariantly
constant sections with respect to a projectively flat connection in a vector bundle
Z over the Teichmiiller space, T, whose fibers are H° (M (XJ),[,’“), L being the
determinant line bundle over the moduli space M (X,) of semistable holomorphic
vector bundles, ¢ € T, and k is the so-called quantum level. This vector space
is conjectured to be a modular functor. Hence, by the result of Part I it should
give a TQFT, and, moreover, this TQFT is believed to be the Reshetikhin-Turaev
theory. It follows by the axioms of a TQFT that the partition function Z(X,) of
the mapping torus X, is Tr V(7).

In his paper, [1], J.E. Andersen considers the number Z(X,) for any orientation
preserving a diffeomorphism, 7, of finite order on a closed, compact, and oriented
surface, X. By the above, this number is conjecturally the Reshetikhin-Turaev
invariant of 3-manifolds. The key idea was that by looking at only finite order dif-
feomorphisms he was guaranteed that there would be fixed points in the Teichmiiller
space. Thus, one need not consider covariant constant sections but merely the fiber
H°(M(X,),L¥) over the 7-invariant complex structure o. In fact, things are a
little bit more complicated because there is also a framing correction, so the general
expression is

Z(X,) = Tr (r|H*(M(X,), L") - Tr (7| £ 52, 206 :

But the framing correction Tr (T|[,l_)’§0 °) was calculated in full detail in [1] so that is
a matter that we shall disregard completely in this exposition. The bold character
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symbolizes objects and morphisms in the extended category which is to be defined
in Part L

Using the Lefschetz-Riemann-Roch theorem for finite automorphisms of projec-
tive varieties, J.E. Andersen also derives formulae for the first factor of the trace
formula, [1, Theorems 9.2 and 9.3]. The invariant is expressed as a sum over the
components of the fixed point set in the moduli space, and each term is given by
a root of unity to the power of k£ times a polynomial in k, where each coefficient is
expressed as pairings of certain cohomology classes on the fixed point set in M (X, ).
On every smooth component Andersen is able to write these coefficients in terms
of known generators of the cohomology ring of that component, thereby getting an
explicit expression for the contribution to the sum of the smooth components. More
precisely, he gets an expression of the form

Zk(X’r) — det(T)—%cc Z eQﬂikCS(XT,c)dePc(k)’
ceC

where C parameterizes the connected components M (X;). of the moduli space
M(X,) of flat connections over X, d. is the dimension

1
d. = genericmax — (dim H'(X,,d4) — dim H*(X,,d4)),
AEM(X;)e

where “generic max” means the maximum obtained over Zariski open subsets,
det (T)_%CC is the framing correction, and P, is the perturbative contribution which
is a polynomial in % of degree d. calculated through the Lefschetz fixed point for-
mula. This compares well with the perturbative expansion of the Witten invariant
mentioned below.

Part IT deals with refining the calculations of J.E. Andersen in [1]. The mapping
tori of finite order diffeomorphisms are Seifert fibered 3-manifolds (see [1] and [54]),
and the ultimate aim of this project is to give explicit formulae for Z; (X, ) in terms
of the Seifert invariants of X,. Clearly, this is of little topological interest as these
manifolds are well-known and are classified by the Seifert invariants (at least when
X, is a “large Seifert manifold”). But it may give insight into the invariant Z.
For instance, one could speculate that it could give a hint on how to define finite
type invariants for manifolds which are not homology spheres. More concretely, it
will give us the opportunity to compare with calculations derived through other

means and using other definitions which are believed to give the same invariant (see
below).

To be able to apply algebraic geometry to the problems, we switch the picture
to that of semistable holomorphic vector bundles over a Riemann surface and the
action of an automorphism.
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The major part of Part II deals with determining the fixed point set in the
moduli space under the action of a finite order diffeomorphism. We first consider
the case where m: X — Y = X/(7) is unramified. In that setting we establish
an identification of the fixed point set |M(X)| with a certain quotient of a moduli
space Mry(Y) over Y (Proposition I1.3.6), and we establish in Proposition II.3.2
that 7*: M7y (Y) — |[M(X)| is a surjective morphism of varieties.

In order to generalize this to ramified coverings, we have to introduce parabolic
structures and use those to transform the pullbacks under w by elementary modifi-
cations. This way we get a partial (however, well-understood) identification of this
moduli space Ma(Y") of parabolic bundles to a space Lift(X, 7) of lifts of 7 defined
in section II.3:

Theorem 11.4.16. Let 7: X — X be an automorphism of the Riemann surface
X. There is an injective map

EM: Ma(Y) — Lift(X, 1)

between the moduli space of admissible, semistable, parabolic bundles over Y =
X /() and isomorphism classes of lifts (W, 7) of T to semistable holomorphic vector
bundles W. The map is one-to-one from the subset of stable points in Ma(Y'), not
fixed by the group L., onto the stable points in Lift(X, ), and from the subset of
semistable points onto the subset of semistable points represented by invariant line
bundles L, and L. The inverse of EM on this subset is the restriction of P.

Moreover, the surjective map
EM: Ma(Y) — |M(X)|
is a morphism of varieties. O

To prove that EM is morphism of varieties, it is necessary to set up the whole
construction on universal bundles over the Grothendieck scheme and use the GIT
construction of Mumford. That is done in appendix I1.B.

There is a well-defined equivalence relation ~ on Ma(Y’), and the main result of
Part II is:

Corollary 11.4.17. Under the assumptions of the previous theorem, we get an
identification

EM: Ma(Y)/~ — |[M(X)],
under which the stable locus of |M (X)| is identified with the stable points in Ma(Y")
which are not fixed by L.

Of course we will eventually have to prove that this identification is an isomor-
phism of varieties.
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To do the Lefschetz fixed point formula calculation over all components, we lift
the problem to certain moduli spaces of parabolic bundles, which are known to be
smooth Kahler manifolds. Then it is possible to carry out calculations similar to
those of [1], but this time leading to an explicit formula for the complete expression.
Currently however, this is far from done. The present text deals only with setting
up the machinery to do these calculations. We sketch how the Lefschetz fixed point
calculation comes into play. But it seems that we will have to derive a lot of the
necessary theory about the cohomology rings of the moduli spaces of parabolic
bundles we encounter, before we can go on and do the actual calculations. We also
briefly discuss the calculation of d. and C'S(X,c).

A different approach to the rigorization problem is pertubation theory, where
asymptotic behaviour as k& — oo is studied to find a way around the generalized
Feynman path integrals. This technique, originally invented by physicists to be
applied in quantum field theory, reduces the problem to studying finite dimensional
integrals represented by the so-called Feynman diagrams. Dror Bar-Natan has an
introduction to this method in [13]. It is expected that the coefficients to the
asymptotic series can be obtained as integrals over the components of the moduli
space of flat connections and that it will be of the form

Zp(N) ~ / e T M(Da) 2mikCS(A) 12 pde an(A)| — ) *
UED DY . AR | el )(7) (+)

ceC

(We shall abstain from introducing the terminology not already defined as it is
not directly relevant for this discussion.) The so-called finite type invariants are
expected to come into the picture as such coefficients and thereby connecting the
theory to the study of knots and links.

What might be considered a hybrid calculation is the work of Lev Rozansky ([59]
and [60]). He has for a large class of Seifert manifold transformed the Reshetikhin-
Turaev theory into a continuous theory where he can apply some heavy machinery
from analysis to study its asymptotic behaviour. This way he has apparently cal-
culated the invariant in these cases. However, his calculations use many physics

arguments but, recently, Rozansky’s calculations have been rigourized by Sgren
K. Hansen, [32].

It is our hope to compare our results with Rozansky’s and Sgren K. Hansen’s,
as this would be a good indication that the Reshetikhin-Turaev theory and the one
defined through geometric quantization are the same. And though our manifolds
satisfy the relation that h = 0 and b # 0 for the two Seifert invariants A and b, and
Rozansky’s methods do not apply directly under those conditions, it is claimed by
Rozansky that they can be stretched to apply. This is now confirmed through the
work of Sgren K. Hansen. Hence, the road should be cleared for the comparison of
results derived through completely different paths. At the moment, we can say little
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more than that both methods predict that the asymptotic expressions are actually
exact, i.e. we get polynomials and not power series.

Other people besides Lev Rozansky and ourselves have considered similar prob-
lems. Lisa Jeffrey has by using an approach similar to ours calculated the invariant
in the genus 1 case (and for lens spaces as well), [37]. Because the mapping class
group for the torus is so simple, this can be done very explicitly. However, in our
calculations we have to assume that genus(X) > 2, so her setup is disjoint from
ours. There is also work from the side of physics due to Matthias Blau, Ian Jermyn
and George Thompson, [19], also regarding torus bundles. All of the aforementioned
calculations confirm the form asymptotic expression () predicted by pertubation
theory.



PART 1

Constructing TQFTs

from
Modular Functors

1. INTRODUCTION

In this part of the thesis, we consider the problem of constructing a TQFT from
a modular functor. This is done for modular functors defined on two different
categories of surfaces: the e-category of surfaces and the e-category of surfaces with
marked points and directions.

Synopsis. This part of the thesis is organized as follows: Section 1 is this intro-
duction.

Section 2 motivates and defines the category of extended manifolds. Some prop-
erties of Lagrangian subspaces are needed which are defined in appendix A and
readers less familiar with this subject may want to consult appendix A first.

Section 3 defines the modular functors on the category of extended surfaces and
TQFTs, and derives fundamental observations that we will need in our later con-
struction of the TQFT.

Section 4 deals with the technique of slicing 3-manifolds. The most technical proofs
are put off to appendix B.

Section 5 contains the construction of the TQFT, the main result, Theorem 5.13,
and its proof.

Section 6 introduces the category of extended surfaces with marked points and
directions and modular functors there upon. We then go on and establish a corre-
spondence between these modular functors and those of section 3 and thereby prove
the main theorem in this context, Theorem 6.10.
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Appendiz A is devoted to Lagrangian subspaces and the Maslov index and provides
the results required about those in this paper.

Appendiz B gives the the proofs of some of the more technical propositions of
sections 4. They are quite elementary but are nevertheless included for the paper
to be self contained.

Notational remarks. Throughout the paper we use the convention that 3-mani-
folds have names like M and N, surfaces Y or ¥ and 4-manifolds X and W. All
homology groups have R-coefficients unless stated otherwise. And all diffeomor-
phisms are orientation preserving if it is not explicitly written otherwise.

2. THE CATEGORY OF EXTENDED MANIFOLDS

The invariant described by E. Witten in [72] is an invariant of a 3-manifold M
with framing, i.e. a choice of homotopy class of trivialization of the tangent bundle
T. Later Atiyah suggested in [7], that considering a 2-framing would be more
appropriate. A 2-framing is a homotopy class of Spin(6)-trivializations of T' & T'.1
This section will be devoted to the definition of a category which is more convenient
to work with, and which can replace the category of (2-)framed manifolds.

We start by motivating the definition of extended manifolds: To any closed 3-
manifold M there exists a 4-manifold W such that M = OW. It is proved in [69] and
[7] that any manifold M with 2-framing a is determined via the relative Pontrjagin
class by a pair (M, X), where X is a 4-manifold with boundary X = M. Two
4-manifolds X and X' determine the same framing if and only if they have the
same signature o(X) = o(X’). Thus, we may substitute the framing of a closed
3-manifold with an integer. Call this integer the framing number of M. How would
one make sense of this if M had a boundary OM?

A crucial point is the ability to glue together extended manifolds. Suppose
we want to glue together pairs (Mi,nq) and (Ms,ns) of manifolds with framing
numbers via a diffeomorphism f : 0M; — —0M>. To use the idea above we first
choose manifolds M;L, 1 = 1,2, such that M; U M;L are closed; and then we may
choose 4-manifolds X; such that 0X; = M; U M;L and o(X;) = n;. The gluing
M, Uy My is diffeomorphic to My U Iy U My, where Iy is the mapping cylinder? of
f. Choose a 4-manifold W with boundary W = (—M;") U I; U (—M,") and some
signature o(W). Our task is to assign an integer to the glued manifold M; Uy M in
a way that is consistent with the above. To this end we need C.T.C. Wall’s theorem
about non-additivity of the signature (see appendix A or [70]):

O'(Xl UWUXl) = O'(Xl |_|X2) -I-O'(W) —O'(Kl,Ko,Kg)
= O'(Xl) + O'(XQ) +0’(W) — O'(Kl,Ko,K2),

12T has a natural Spin(6)-structure arising via the lift of SO(3) £ SO(3) x SO(3) — SO(6).
2If = (OM1 x I) UOM>/ ~, where (z,1) ~ f(z).
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where o(K;, Ko, K3) is the Maslov index of
Ko = ker (H1(0My LU OM,) — Hy(M;™ U M,)),
Ky = ker (H1(0My LU OM,) — Hy(My U My)),
Ky = ker (Hy(0M; U OMy) — Hy(If)).

oM, OM,

FI1GURE 1. Constructing a 4-manifold with My Uy M5 as boundary.

It is well known that all subspaces K in Hq(Y) that can be written as
K = ker (Hy(0M) — Hy(M))

for some 3-manifold M with OM = Y, are Lagrangian subspace with respect to
the intersection pairing, and they are all spanned by their counterpart in H,(Y;Z).
We notice in the above that the only information needed to calculate the framing
number of the gluing was the framing numbers of the manifolds participating (in-
cluding the mapping cylinder) and some Lagrangian subspaces in first homology of
their boundaries. This motivates the following definition:

Definition 2.1. By an eztended 3-manifold (an e-3-manifold) M = (M, L,n) we
mean a compact, smooth and oriented 3-manifold M together with a choice of
Lagrangian subspace L C H;(0M) compatible with the integer lattice Hq(OM;Z)
and a framing number n € Z.

This definition differs from Walker’s as we only need to consider Lagrangian
subspaces compatible with the integer lattice. One can think of L as being the
kernel in first homology of the embedding of M into some closing-off manifold M+
(cf. Lemma 2.9) and n as the signature of some 4-manifold X with 0X = MUM™.
Throughout the paper we use the convention that elements of the e-category will
be written with bold characters and symbols or written as the whole tuple like
M = (M, L,n). From now on all maximal isotropic and Lagrangian subspaces are
compatible with the integer lattice unless we write otherwise.

To be able to define a modular functor on the e-category, we must allow for e-
surfaces with boundary (in which case the intersection pairing may be degenerate).
However, an extra choice is needed to make gluing well-defined namely parameter-
izations of the boundary — i.e. a choice of an orientation preserving map from S*
to each boundary component. Thus, we define:



4 ParT I. CoNnsTRUCTING TQFTSs FROM MODULAR FUNCTORS

Definition 2.2. An e-surface Y = (Y, L) is a compact, smooth and oriented surface
Y with parameterized boundary and a maximal isotropic subspace® L C H;(Y)

compatible with the integer lattice H1(Y;Z). If M = (M, L,n) is an e-3-manifold

we define the boundary to be OM df (OM,L). And we say that (Y, L) contains

(Yo, Lo), which we write (Yy, Lo) C (Y, L), ifi: Yy — Y, i.Ly C L, each component
of Yy N 3Y is a component of Yy and JY, and the parameterizations agree.

Notice that i, H,(0Yp) C L since H;(0Yy) is orthogonal to Hy(Y) with respect
to the intersection pairing and therefore Hq(0Yy) C L.

Definition 2.3. An e-morphism f:Y; — Y5 of esurfaces Y; = (Y;,L;) is an
isotopy class of orientation preserving diffeomorphisms f : Y7 — Y, that preserves
boundary parameterizations together with an integer n. Hence, we write f = (f,n).

The integer in an e-morphism gives a way of defining an e-mapping cylinder:

Definition 2.4. Let f = (f,n) : Y; — Y3 be a morphism of closed e-surfaces
Y, = (Y1,L1) and Yy = (Y2,L2). Then the e-mapping cylinder Iz of f is the

e-3-manifold Iy % (If, L, @ Ly, n).

Since we want Ig,of, = Ip, U Iz, Wall’s theorem tells us how to define the
composition of e-morphisms:

Definition 2.5. Let f1 = (f1,n1) : Y1 = Yo and fo = (f2,n2) : Y2 — Y3 be
morphisms of e-surfaces Y; = (Y;, L;). Then the composition* of f1 and f5 is

(f2,n2)(f1,M1) oo (faf1,n2 +n1 — o((faf1)«L1, f24L2, L3)).

Clearly, (Id,0) is the identity e-morphism and by using basic properties of the
signature correction term it is easily seen that (f,n)~! = (f~!, —n). The mapping
class groups I'(Y) of an e-surface Y = (Y, L) is the group of e-automorphisms of
Y. One can prove that I'(Y) is a central extension of the mapping class group
['(Y) of the base surface Y defined by the 2-cocycle ¢ : T(Y) — Z, c(f1, f2) =
—0(( f1f2)«L, f1«L, L) (see appendix A). Hence, we also call it the e-mapping class
group and write it as I'(Y). One can in fact prove that this cocycle is equivalent
to the Shale-Weil cocycle induced from the framing (see [7] and [1]). The set of

3The distinction between maximal isotropic and Lagrangian subspaces is only due to convention
(Lagrangian is used only for non-degenerate forms corresponding here to closed surfaces), since
maximal isotropic implies L+ = L.

4Please notice that there is a sign error in [69].
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e-morphisms of some collection of e-surfaces form the mapping class groupoid of
that set.

Notice also that for any e-morphism (f,n) : (Y1, L1) — (Y2, La), one can factor

(f7 n) = {(Ida k) : (}/2;112) - (Y2,L2)} © (f’n - k)
= (f,n — k) e} {(Id, k) : (YlaLl) — (YlyLl)}-
In particular, (Id,m):Y — Y is (Id, 1)™.

Definition 2.6. The disjoint union of e-3-manifolds is defined as (My, L1,n1) U

(My, Lo, n2) def (My U M, Ly & La,n; + ng). The disjoint union of e-surfaces

is (Y1, L1) U (Y, Lo) def (Y1 U Y2, L1 & Ly). E-morphisms on disjoint unions are

accordingly (f1,m1) U (f2,n9) % (f1 U fo, 1 + na).

Definition 2.7. Let Y = (Y, L) be an e-surface and g : C' — C’ a parameterization

reversing diffeomorphism of disjoint, closed, codimension 0 submanifolds C' and C’

of Y. Then we define the gluing of Y by gas Y, = (Y, L), def (Yy, Lg), where Yy

is Y glued with g and L, = ¢, L is the image under the quotient map g : ¥ — Y.

If f = (f,n) is an e-automorphism of Y such that f commutes with g we define the
def

induced e-morphism f,:Y, =Y, by f, = (f,n), = (¢fq 1, n).

In the beginning of this section we saw how to glue together two particularly
simple e-3-manifolds. Let us now consider the e-3-manifold M = (M, L, n). Assume
that the boundary decomposes as (O0M, L) = (Y1, L1) U (—Ya, Lo) U (Z, J). Assume
furthermore that there exist 3-manifolds M;", M, and M+ such that OM;" = —Y7,
OM; =Y, and OM* = —Z and such that

Li = ker (H1(Y;) — H1(M;")),
J =ker (Hy(Z) — Hi(M)).

Then there is a 4-manifold X with boundary X = M U M;" U M,y U M+ and
o(X) =n (see fig. 2).

D MY

FIGURE 2. The manifold X with boundary X = M U M;" U M,f UM+,
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Suppose that f = (f,m) : (Y1,L1) — (Y2, Lg) is an e-morphism. Then we can
glue M by f to get My = M Uy .y, Iy. From the definition of the e-mapping
cylinder, I has framing number m and there is a 4-manifold W such that OW =
(=M;")UI;U(—M;") and o(W) = m. This enables us to construct a 4-manifold X'
with boundary X’ = My U M™ and the framing number of M should be defined
to be o(X’). We construct X’ by gluing in W in X as illustrated in fig. 3.

M
; . @W
g - D
\\ If \\
\ \
| w X

M My

FIGURE 3. The manifold X’ with boundary 0X = Mjy.

Thus, put
Ko = ker (Hq(Y1 UYs) = Hy (M7 U M),
K = ker (Hl(Yl LI }/2) — Hl(MUM+)),
K2 = ker (Hl(Yl L Yrg) — Hl(If))

Then we have that Ko = L1 @ Lo, and Ky = A} def {(z, —fs«x) | x € H1(Y7)} is the
anti-diagonal under f. By Wall’s theorem

o(X")=0(X)+o(W)—0o(K,L1 & Lz, A%).

Since H;(Y1) and H;(Y2) project to 0 under the gluing, the subspace L; and Lo
vanishes and we have little choice but to define gluing of e-3-manifolds as follows:

Definition 2.8. Let M = (M, L, n) be an e-3-manifold with a decomposition of its

boundary (O0M, L) = (Y1,L1) U (—Y2,Ls) U (Z,J) and an e-morphism f = (f,m) :
(Y1, L1) — (Y3, Ls). Then we define the gluing of M by f as

My = (M, L) () % (Mg, Jyn+m— o (K, Ly & Ly, A7)).

Of course one notices that a priori this definition depends on the choice of MT;
however:
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Lemma 2.9. Let Z be a closed surface. To any Lagrangian subspace J of H(Z)
there is a 3-manifold M+ with boundary OM™+ = Z such that

J =ker (H1(Z) — Hi(M™)).

If Z furthermore is a closed codimension 0 submanifold of the boundary 0M of
some 3-manifold M, the Lagrangian subspace

K = ker (H1(8M —-7Z)— Hi(MU M"'))
is independent of the choice of M+. Hence, K only depends on J.°

Proof. To construct M ™ let as,...,a4 be a basis for Ly = L N H(Z;Z). By
Lemma A.4 every «; is represented by a simple closed curve ¢; in Z. That is
because we can extend o,...,a4 to a symplectic basis of Hy(Z;Z) which can be
hit by the standard basis under the action of Sp(2g,Z). On the other hand, it is a
classical result that the mapping class group I'(Z) maps surjectively onto Sp(2g,Z)
(see e.g. [21]). Hence, there is a diffeomorphism of Z that sends generating curves
for the a-cycles a1, ..., a4 of the standard basis to generating curves for aq, ..., ag4,
which can then consequently be chosen simple and closed.

Cut up Z along cy,...,cq4. Since non of the curves are separating, the resulting
surface is a 2g-punctured sphere. Now glue in disks D; and D} in every hole and let
the sphere be the boundary of a 3-ball. Gluing together D; and D} for all i gives a
topological 3-manifold M’. Up to diffeomorphism there is a unique smoothing M ™
of M'. This 3-manifold M has Z as boundary, and under the embedding j : Z —
M™ we have j,a; = 0. Thus, by dimension count, L = ker (H,(Z) — Hy(M)).

Suppose M;" and My are two 3-manifolds with OM,F = Z and L = ker (H1(Z) —
Hy(MT,)). Let M be a 3-manifold with boundary 9M =Y U Z and let i : Y < M,
j:Z—M,i,:Y < MUMS and j, : Z — M be inclusive maps. Consider the
diagram formed over the Mayer-Vietoris sequences

i* @OJ/ lil/*

— H\(Z) — 2 Hy(M) @ Hy (M) —— H (MU M) —

where I, = j.« @ ju« and J, = ks — ku«, k and k, being the embeddings of M
and M} into M U M} respectively. If z € keriy,, (i,2,0) € Hi(M) & Hi(M;")
is in the kernel ker J; = Im1I;. Let y € H1(Z) be such that I (y) = (i42,0) €
Hy(M) @ Hy(M;"). This means that y € L and therefore, Is(y) = (i.z,0) €
Hy(M) ® H,(M;). Consequently, z € keris,. Reversing the roles or counting
dimensions gives the required result that K = ker (H1(Y) — Hi(M U M,f)) for
v=1,2. U

5In section 5 another interpretation of K is introduced via the Morse flow. The Lagrangian
subspace K is then the “flow” ® of L as discussed in section 5 and appendix A for slices.
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3. MODULAR FuNncTORS AND TQFTSs

In this section we give the axioms for a 2 dimensional modular functor and a
2+ 1 dimensional topological quantum field theory and prove some very basic facts
derived from the axioms.

Definition 3.1. A label set L is a finite set furnished with an involution a — a
and some trivial element 1 such that 1 = 1.

For example the set £ could be a set of representations, the involution the op-
eration of taking the dual representation, and 1 corresponding to the trivial repre-
sentation.

Definition 3.2. Let £ be a label set. A labeling of an e-surface Y is an assignment
of elements x; of £ to each component 9Y; of Y (this may also be called a labeling
of 9Y). We denote the le-surface by (Y1), where | = (z1,...,2y,) is the tuple of as-
signed labels from £. The set of labelings of Y is denoted by £(Y) (or £(0Y)). The
category of L-labeled e-surfaces, le-surfaces, consists of le-surfaces and e-morphisms
preserving the labeling.

We notice that since a closed e-surface cannot carry any labeling it is simply an
e-surface.

Definition 3.3. A modular functor based on the label set £ is a functor V' from the
category of le-surfaces to the category of finite-dimensional complex vector spaces
and linear isomorphisms satisfying the axioms MF1 to MF6 below.

MF1. Disjoint union axiom: For the disjoint union of any pair of le-surfaces there
is the identification

V((Y1,0h)U (Yo, b)) = V(Y1 U Yy, b, ly) = V(Y1,1) @ V(Y ls).

The identification is associative and compatible with the action of the mapping class
groupoid in the sense that V(f1 U f2) = V(f1) @ V(f2).

MF2. Gluing aziom: Let Y = (Y, L) be an e-surface and assume we are given
the gluing data of Definition 2.7: Let g : C — C' be a parametrization reversing
diffeomorphism of disjoint, closed, codimension 0 submanifolds C' and C’ of 9Y,
and let Y, denote Y glued with g. If [ is a labeling of Y, and z a labeling of C
then (I,z, %) is correspondingly a labeling of Y. Then there is an identification

V(Ye,)= @ V(Y. (1 z,2),

z€L(C)

which is associative and compatible with the action of the mapping class groupoid.
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MF3. Duality axiom: For any le-surface (Y,l) we identify the associated vector
space
VY,l)=V(-Y,])*,

with the dual of the vector space associated to (Y, 1) with opposite orientation. This
identification is compatible with orientation reversal, the action of the mapping class
groupoid, MF1, and MF2 in the following manner:

e The identifications

are mutually adjoint.

e For an le-morphism f = (f,n) : (Y1,l1) = (Y2,l3) let f= = (f,—n) :
(=Y1,l1) = (—Y2,l5) be the induced le-morphism between the le-surfaces
with opposite orientation. Then

(., B) = (V(H)e, V(f7)B)

for all @ € V(Y1,0;) and B € V(- Yyl 1), i.e. V(f~) is the adjoint inverse
of V(f).

e For vectors

def

a1 ® ag € V(Yl L Yz) = V(Yl) ® V(Yg),
Bi®Pee V(=Y 1U-Y,)=V(-Y;)®V(-Y>)

associated to the disjoint union of e-surfaces we have

(01 ® ag, B1 ® B2)y,uy, = (a1, B1)y, (a2, B2)y,,

where the subscript on the brackets refers to the surface to whose vector
space the pairing is associated.
e When gluing

Braz € V(Y1) = EBV (I, 2, %))

®fe € V(=Y 1) = G}V Y,(l,4,x))

we get

(Do, Baba) (v, ) = D S(@) (s Be) (¥, 1,2,6))

where S(z) = S(z1) -...-S(zx), £ = (z1,...,2%),and S : L - C— {0} is a

certain function which is part of the data for V.
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MF4. Empty surface aziom: Let () denote the empty le-surface. Then
V(D) =C.

MF5. Disc axiom: Let D be an e-disk (there is only one possible choice of e-

structure). Then
C, fora=1,

V(D,a) =
(D;a) {0, for a # 1.

MF6. Annulus aziom: Let A be an e-annulus, A = S! x I. (Also here there is
only one e-structure.) Then

C, for a = 5,

V(A’ (a,b)) = { 0 for a # b.

A few remarks: The disjoint union axiom MF1 implies that V() = 0 or V() =
C, so MF14 is clearly a non-triviality axiom. MF1 also gives a canonical identification
of V() with C, namely the isomorphism that sends 1® 1 € V(0 U @) to 1 € V().
Hence, we may actually write V() = C.

By axiom MF2

V(4,(a,0)) 2 V(AU A, (a,0)) = PV (4, (a,2) @V (A, (&)

— see fig. 8. Hence, we must demand that V(A, (a,a:)) = 0 if z # a and either
V(A,(a,a)) = 0 or V(A,(a,a)) = C. If V(4,(a,a)) = 0, any le-surface (Y1)
with a boundary component labeled by a would have V(Y ,l) = 0, so MF6 is also a
non-triviality axiom.

In addition to the above axioms one may have an extra property namely unitarity:

MF-U. A unitary modular functor is a modular functor such that every associated
vector space V(Y) is furnished with a hermitian inner product

(——):VY)eV(Y)—C

so that each morphism is unitary. The hermitian structure must satisfy compati-
bility properties like the ones in the duality axiom MF3 and commutativity of:

V(Y) — V(-Y)*

lg gl (3.4)
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where the vertical identifications come from the hermitian structure and the hori-
zontal from the duality.

We notice here in particular that for a unitary modular functor $ (a) is real and
positive for all a € L, since (©aa, Dalba)(v,,1) = D_q S(@)(as Ba) (v ,(1,2,2))-

Observation 3.5. Before we go on and define a topological quantum field theory, we
make a trivial however important observation: The morphism (Id,1) : Y — Y of
any e-surface is just multiplication by a fixed complex number A # 0 given as part
of the data of V. To see this notice first that this certainly is the case when Y = D.
Following the argument in the proof of Lemma A.6 we see that any e-surface Y
allows a factorization Y = Y’ U D and using the definition of disjoint union of
e-morphisms and the gluing axiom, we may write

V(1d,1) =V(d,0)@V{1d,1): VY, 1)@V — V(Y1) ® V1.
We call A the framing factor for V.

Definition 3.6. A 2 + 1 dimensional topological quantum field theory (TQFT)
consists of a functor V from closed e-surfaces to complex vector spaces satisfying
that V(Y UY9) = V(Y1) ® V(Y2) and V(=Y ) = V(Y)* and an association of a
vector

M — Z(M) € V(OM)
to every e-3-manifold M, such that Z satisfies the axioms TQFT1 to TQFT4 below.

TQFT1. Multiplicativity axiom: For e-3-manifold M; and M5 we have

Z(MiUMs) =2Z(M1) ® Z(M>) € V(OM1) ® V(OM>).

TQFT2. Naturality axiom: Let M, = (My,L1,n) and My = (Ms, La,n) be e-
3-manifolds with boundary such that there is an orientation preserving diffeomor-
phism f: My — My with (f|aa, )« L1 = La. Then

Z(M3) = V(flaa,,0)Z(My).

For an e-3-manifold M with a decomposition of its boundary OM =Y 1L1-YsLIZ
as in Definition 2.8,

V(M) =V (Y1) V(Y2)" ®V(Z),
and we may write
Z(M) =305 ® B ®;,

for aj € V(Y1), B; € V(Y32)*, and v; € V(Z). Assume f : Y; — Y, is an
e-morphism and let My be M glued with f. Then OM; = Z and we require:
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TQFT3. Gluing axiom:
Z(Mg) =3 (V(f)ey, Bi)v; € V(OMy) = V(Z).
TQFT4. Mapping cylinder axiom: Let I;q be the mapping cylinder of Id =
(Id,0): Y - Y. Then V(019) = V(Y) ® V(Y)* and we require that
Z(ha) = V(Id) = Idy(y) .

When M is closed, the number Z (M) is called the partition function of M.

Again a few remarks are appropriate: Obviously,
Z(Ita)? = Z(Ita U Ia) = Z(Idora) = Z(I1a)

so if OM =Y we have Z(M) € Im Z(l1a). Thus, by restricting the theory to
the subspace of V(Y) spanned by Z(M) for all M with OM =Y, we loose no
information about e-3-manifolds. Hence, axiom TQFT4.

One notices that if M is a bordism from Y; to Y, and M5 is a bordism from
Y, to Y3, we get

Z(My) e V(Y1)*®V(Y2) = Hom (V(Y1),V(Y2)),
Z(M3) e V(Y32)* ® V(Y3) = Hom (V(Y2),V(Y3)),
and it directly follows from the gluing axiom TQFT3 that
Z(M1UMy) =Z(Mjy)o Z(M,).
Thus, if IM; = —OM3 (Y3 =Y 3 = ) in the above) M1 U M, is closed and
Z(M,UM,) = <Z(M1),Z(M2)>.

As with the modular functor we may have a unitary structure in addition:

TQFT-U. A unitary TQFT is a TQFT whose associated vector spaces V have
Hermitian structures compatible with the disjoint union relation and the orientation
reversal relation. Moreover, V satisfies the commutative diagram (3.4), and

Z(—M) = Z(M)

under the identification V(9(—M)) = V(0M). Another way of putting it is that
(Z(M),Z(—-My)) = (Z(M»), Z(M3)),
whenever M, and M, are e-3-manifolds with a common boundary.

Naturality, gluing and the mapping cylinder axiom combined strengthens the
naturality and mapping cylinder axioms to the following two results, which we
nevertheless choose to call axioms as they will take the place of TQFT2 and TQFT4:
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TQFT4’. Strong mapping cylinder axiom: Let f : Y1 — Y5 be an e-morphism.
Then
Z(1g) = V(f).

Proof. By the mapping cylinder axiom and the remark above Z(Iy) = Z(Iya, UlpU
I14,), where Id; = (Id,0) : Y; = Y, i = 1,2. But I1q, UIf U I14, is just the gluing
of Iyq, and I1q, via f, hence, if Id; = Zj a; ® of and Idp = >k B ® Bf we have
from TQFT3 that

Z(I5) = > (V(fay, Br) e} @ B = V(£)

3.k
U

TQFT2’. Strong naturality axiom: Let M, = (My, L1,n1) and Mo = (Mj, Lo, n2)
be e-3-manifolds with boundary and assume f : M; — M5 is an orientation pre-
serving diffeomorphism. Put K = ker(H,(0M32) — H1(M3)). Then

Z(M3) =V (flos,, n2 — n1+ o (K, (flos,)« L1, L2)) Z(My).

Proof. Naturality immediately gives that
Z(Mz, (floa, )« L1, m) = V(f,0)Z(M,).

Let g = (Id,m): (0Moa, (f|ors,)«L1) —
constructed as (Mo, (f|an,)«L1,n2) g
O'(K, (flon,) L17L2)a
(

of M is
so if we let m = ny — ny + O'(K, flony )« Ll,Lg) M can be identified with M.
Thus,

(0Ms, L) and consider the e-3-manifold M
lued with I along 0M,. The framing number

Z(M3) = Z((Ma, (floar,)«L1,n2) U Ig)
=V (9)Z(Ma, (floa,)sL1,m1) = V(9)V (flons,,0)Z (M),

where V(9)V (f|an,,0) = V(f|aM1,n2 —n1+0(K, (flom, )« L1, Lz))- O

We notice that if M4 is a bordism from Y; to Y5 then

V(f|aM1; ni + nz)Z(Ml) = V(f\YQ; n2) o Z(Ml) © V(f‘Yl,nl)_l-

Remark 3.7. If V is part of a modular functor, the strong naturality extends to
closed e-3-manifolds in the sense that if My = (M7, n1) and My = (M, ny) are two
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closed e-3-manifolds with an orientation preserving diffeomorphism f: M; — M,,
then

Z(M3) = A7 - Z (M),
where A is the framing factor for V.

To see this, cut up My into MY and M} and put ML = f(M!), u=0,1. Then
choose e-structures such that M, = (M2, LY, n9)u(M}, LL, nl). Out of convenience
we put L4 = ker (H1(0MY) — H1(M})), because then L = (f|pp).LY and
n, = n’ +nl. Now, strong naturality implies that

n® _nt
Z(My) = V(flomp,ny — nf)(Z(MY)) = A" 7" - V(flapp, 0)(Z(MY))
by Observation 3.5, and we get

Z(Ms) = (Z(M3), Z(M3))

= (X7 V (Flaaag, 0) (Z(MD), A58 - V(flonaz, 0) (Z(MD)) )
= X (Z(MY), Z(MY)) = A" Z (M),

Fundamental observations. Since any le-surface can be build out of the funda-
mental bricks disks, annuli and pair of pants, it is no surprise that these play a
special role. For the remaining part of the paper let D denote a fixed disk, A a
fixed annulus and P our favorite pair of pants.

Fix a numbering of the boundary components of P. When listing a labeling of
P we assume it to be listed in this order. To trace the morphisms of these surfaces
we introduce what K. Walker calls seams: Let 0 < € < w be fixed and choose three
disjoint properly embedded curves in P joining the point €’ on the j’th boundary
component with e~ on the j + 1’th — see fig. 4. Do likewise for D and A. Notice
that the surfaces P, A, and D have unique e-structures.

O D
1

FIGURE 4. Standard surfaces with numberings and seams.

5 0N\ 2

As an abbreviation, define

Vabc d:ef V(Pa (U,, b7 C))7

Var £V (4, (a,b)),

V, ©Vv(D,a),
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for all a,b,c € L.

Define the standard orientation reversing maps 1 as illustrated in fig. 5. Notice
that requiring that v fixes the seams, fixes the isotopy class of 9 (as it does with
any diffeomorphism). In fact 1 should be considered as an orientation preserving
map from the surface to the surface with the opposite orientation.

Notice that (¢, 0) is its own inverse and induces the identifications

*

Vabc = V&éé?
*

Vap = V})&’
Vo=V,

for all a,b,c € L. In this case we have that for any e-morphism f = (f,n) of D, A
or Pa .f_ = (¢f¢7—n)

3 2 2 St 3
_Y
1D 1 D
FIGURE 5. Standard orientation reversal.

Now consider the two self-gluings of P (fig. 6) and the map between them induc-
ing the important isomorphism

S P Vaws — B Vays-
z Y

®-

Ficure 6. Changing the gluing of a pair of pants.
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Similarly, we have the isomorphism induced from the two gluings of A (fig. 7)

S:@Vmi —>@Vyg
z Yy

‘
O — O

Ficure 7. Changing the gluing of an annulus.

Notice that S is what we get from the map S* when we glue in a disk in fig. 6.
The gluing of A with itself as depicted in fig. 8 gives an isomorphism

Vad — Va& X Vad-

7 7

1 1

1 24 = O}l 21 2

\ \

Ficurk 8. Diffeomorphic cylinders with numberings and seams.

This isomorphism is canonical after the seams have been chosen since they fix the
isotopy class of the product structure of A =2 S* x I. It is easily seen that there is
a unique non-zero element B,; € V4, such that

ﬁad = ﬂad & ﬂad

under this isomorphism.

In fact, the preferred elements (3,5 satisfy an even stronger property: Assume
that (Y,l) is an le-surface with a distinguished boundary component labeled by
a and let Y U A denote the gluing of this boundary component onto boundary
component number 2 of A. Then there is a diffeomorphism

f:Y—YUA,

such that f is isotopictoId : Y — Y C Y UA via the preferred product structure on
A. (By this we mean that there is a collar C' of this particular boundary component
of Y such that the isotopy f; is the identity on Y — C and fi|cua(A, s) = ()\, Kit(s))



3. MobpuLAR FuNcTORS AND TQFTSs 17

for A € S! and s €] — ¢, 1], where &, is some nice family of contractions of | — ¢, 1]
to ] —e,t].) This fixes the isotopy class of f. Put f = (f,0) and there is an induced
isomorphism

V(f):V(Y,l) = V(Y,]) ® V,a-
Clearly, there is an automorphism F' of V(Y1) such that V(f)(z) = F(z) ® Saa,
since 3,4 is a generator of V,;. By associativity of gluing we have that

F2($) ®ﬂad ® ﬂad = F(-T) ® /Ba& X ﬁada

since we can pull out one copy of A from the boundary of ¥ and then another
between them, or we can pull out one copy and then use the identification of fig. 8.
This means that F' is an idempotent. On the other hand, F' was an automorphism,
hence, we conclude that

V(f)(@) =2 & baa-
The isomorphism S : @, Vzz — @y Vg has a matrix with respect to the two bases
Bzz and By in V(T?) coming from the two annuli decompositions of T2:

Yy

We also get preferred generators of V; by using the standard orientation reversing
le-morphism on D to get a non-degenerate pairing

eV —C.

Now we can choose (3; € Vi such that

B1® B 1.

There are exactly two possibilities of which we choose one, but there will be no
ambiguities where we are going to use them, since they will occur in pairs at all
crucial places.

Gluing in a disk in the pair of pants P results in the isomorphism
Vlad ® V1 — Va&,-

This introduces generators (1,5 as being the unique elements mapped to B,5. As
noted before the isomorphism S* corresponds to S under the gluing of a disk. Hence,
we have that S! : D, Vies — @y Viyg has the matrix S;y = Sgy such that

Slﬂla::i: = Z Swyﬁly@-
Yy
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By allowing manifolds with corners (or PL structure), Walker easily proves in
[69], that if V is part of a TQFT with corners, then in fact

S(x) = Sia-

Thus, by proving that a modular functor induces a TQFT it is apparent that this
relation is an intrinsic part of the modular functor. Likewise for the isomorphism F'
associated to the changing of the gluing of the two pairs of pants in fig. 9, Walker
gets the relation

Idy,
F(Braa ® Brgy) =D 52
(ran ® i) = D )0
needed to be satisfied in order to get the TQFT. One could speculate that maybe
these relations are part of a difference between Walker’s theory with corners and
the smooth theory discussed here.

@3’@ — (&, ©

%

Ficure 9. Changing the glueing of two pairs of pants.

Now, let (S, z1,...,7,) = S2 be the n-punctured sphere with numbered, pa-
rametrized boundaries, where the z;’s represents the center of the deleted disks.
Let T; be the Dehn twist along the #’th boundary for + = 1,...,n and consider
the mapping classes w;, ¢ = 1,...,n — 1, generated by diffeomorphisms h;. We
define h; by choosing a twice-punctured disk D; covering a neighbourhood of z;
and z;41 in such a way that it does not meet z;, j ¢ {i,7+ 1}. We then let h; be a
diffeomorphism that is the identity on S?—{x1,...,z,}—D; and which interchanges
x; and x;41 preserving boundary parameterizations (cf. we : P — P in fig. 10).

Proposition 3.8. For n > 2 the mapping class group I'(S2) of the n-punctured
sphere (S%,x1,...,x,) is generated by Ti,...,T, and wy,...,w,_1. They satisfy
the properties:
(1) T)T; = 1;T;, for alli,j,
(2) Tw] =w;T;, fori#j,j+1,
(3) Tiw; = wiTiy1 and T;1qw; = szZ, for all 1,
(4) wiw; = wjw;, for|i—j|>2,
(5) wzwz_|_1wZ = wjp1wiwi+1, for alli,
(6) wi...wn 2w? Jwn_o...w1 € (Ty,...,Ty),
(7) (w1w2 wn_l)" € <T1, . Tn>
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Ifn=0o0rn=1,T(5%2,...,7,) = {1}.

Proof. For n = 0 or 1 the result follows directly from [17, Theorem 4.5], since the
Dehn twist is trivial. (Actually it also follows from the earlier proof of Smale in
[64], since his explicit retraction of the group of diffeomorphisms of S2 behaves well
with respect to one fixed point.)

For n > 2 Birman calculates the mapping class group of S2, consisting of diffeo-
morphisms not necessarily preserving boundary parameterizations. She arrives at
the result that this is generated by w1, ...,w,_1 satisfying the defining relations

(a) wiwj = wjw;, for |i —j| > 2,
(b) wiwit1w; = wirwiwiy1, for all 4,
(C) Wi .. .wn_ng_lwn_g LW = 1,

(d) (LU1W2 .. .wn_l)" =1.

Let T = (Ty,...,T,) be the subgroup of I'(S?) generated by the boundary Dehn
twist. To see that I'(S2) is generated by T and the w;’s, we must prove that two
diffeomorphisms that are isotopic in the sense of Birman, are isotopic in our sense
modulo T"

First we write up an explicit isotopy taking any smooth family of diffeomorphisms
fi: St — S* to the identity family. Choose a parameterization of S* and let 0 be the
initial point. If we visualize f as a diffeomorphism of I x S, the curve f;(0) fort € T
may spiral along the annulus, twisting several times. Let 7(¢) be the net amount of
twisting at ¢ and let py(f)s: S* — S be the diffeomorphism you get by first acting
with f; and then rotating backwards by s7(t). Then po(f): = fir and p1(f): is a
diffeomorphism that preserves the initial point for all ¢. Such diffeomorphisms can
be identified with the diffeomorphisms & of the unit interval that satisfy: h(0) =0,

h(1) = 1 and (gg—kk|wzoh = (gg—kk|$=1h, for all £ > 1. But they are linearly isotopic
to the identity by Ls(h)(z) = sz + (1 — s)h(x). It must be checked that L (h)
is a diffeomorphism satisfying the above properties, but that is elementary and is
left to the reader. Now, choose a smooth function ¢: I — I so that ¢ is 0 in a
neighbourhood of 0 and 1 in a neighbourhood of 1 and so that d%'gb > 0 for all s.

Then we define the smooth isotopy H: I x I x Diff(S) — I x Diff(S!) as

p¢2S(f)t, forogsgl’
HS(f)t:{ (22) 2

) (3.9)
Ly2s—1y(p1(f)e), for 5 <s<1.

Now, suppose f;: S2 — S2 is an isotopy not necessarily fixing the boundary
parameterization. Assume however that fy and f; do. Choose a closed collar
C = 052 x I (such that 0S2 corresponds to 852 x {1} C C) of the boundary small
enough so that we can isotope f; to act on B = 8S2 x {0}. Call it f; again. Put

: | fi(2), for z € S2 — C,
Jilz) = { H,(flz):(\), for (A s)€C.
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Then ft fixes S2 pointwise and fo = fo, but since there may have been twistings

going on along f; at the boundaries that were untwisted in f:, we only have that
fi=f1 modT.

This means that the kernel of the natural map I'(S2) — I'Birman(S2) is T, and
there are no other generators for I'(S2) besides T’ and wy,...,w,—1. We now start
calculating the relations. Of course all of Birman’s relations (a) to (d) apply modulo
T, which accounts for item (6) and item (7). But we can do better than that.
Clearly, the boundary Dehn twists commute, so item (1) is evident, and so is item (2)
and item (4), since w; is the identity outside a neighbourhood of the j’th and the
(7 + 1)’th boundary component. To verify item (3) and item (5) it is enough to
check them on S2 = P as we can cut out a pair of pants so the mapping classes act
trivially on the complement. This is left to the reader. ]

T NN ;
b —= o e

b —=

7
I

:; \:
7
I

:; \:

F1GURE 10. Mapping class group generators for A and P.

Of course it should be possible to specify which elements of T' you get in item (6)
and item (7), but we will refrain from doing so and only calculate it in the cases
that we need, n = 1,2 and 3. Thus, the e-mapping class group I'(D) = Z of
the disk is generated by (Id,1). The e-mapping class group I'(4) of the annulus
is generated by (Id, 1), the left-handed Dehn twist 7', and the rotation R taking
one end to the other (see fig. 10) clearly satisfying that RTR = T. Its action
in the associated vector spaces is easily computed (in fact we shall only need the
action on the vector spaces labeled by 1): The action of (Id,1) is determined in
Observation 3.5. Since V,; is one dimensional, T acts as multiplication by a non-
zero complex number, call it ¢,. Now that RTR = T and V(R) : Vo5 — Vaa
we have t; = V(R)t,V(R) = t,V(R)V(R) = t,. Most importantly we see that
t; = 1 because the Dehn twist is trivial on the disk, hence, also on the gluing
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V(IDUA,1) =V;® Vi1, Id®T = Tp ® Id = Id. Now, V(R)Baa = rfae for some
r € C — {0}, but under the gluing giving the isomorphism (3,5 — Baa ® Baa (fig. 8)
we have

Tﬂda &® Tﬁda = T(;Bda ® /Baa)-

Hence, V(R)Bas = Baa- In particular, V(R)fB11 = f11-

Notice that because we can factor out an annulus at every boundary component
of a surface Y, the action of a Dehn twist along a boundary component coloured
by a is given by t,.

The e-mapping class group I'(P) of the pair of pants is generated by (Id, 1), the
Dehn twists T;, i = 1,2,3, around each boundary component (as with A), and
wj, 7 = 1 and 2, as in the proposition above and illustrated in fig. 10. Using
Proposition 3.8 and one extra calculation or drawing we get that these generators
satisfy the relations

[(1d, 1), T3] = [(Id, 1), we] = [T}, ;] = (14,0), 4,5 =1,2,3, k=1,2,
Tiwy = wiTy, Towy =wiTy, T3w; = w73,
Thwe = woTy, Thws = woT3, T3wy = w1y,
wi=TTT;", wi=TTsT;",

WiWaoaW1 = WawWi1Wws9.

The twists act trivially on V711 and clearly w; must act as either Id or — Id. However,
consider wo and the gluing of a disk to boundary component number 1 of P: Then
V(we) ® V(Id) = V(T) = Idy,,, hence, V(ws) acts as Id on Vi11, and thus also
V(u}1) is Id on V111.

4. SLICINGS OF 3-MANIFOLDS

The purpose of this section is to provide the necessary technical background for
our construction of the TQFT, namely the slicings of 3-manifolds possibly with
boundary. For the proof of the main result of this section (Remark 4.13), we refer
to K. Igusa, [35] and [36]. Although most of what goes on here could easily be
generalized to other dimensions we specialize to dimension 3.

Definition 4.1. A slicing function f on a smooth compact 3-manifold M with
boundary OM is a smooth function f: M — R such that

(1) the restriction f|,, to the interior is a Morse function with distinct critical
values,

(2) f has no critical points on the boundary,

(3) f is locally constant on the boundary.
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We denote the set of slicing functions on M by S(M). Two slicing functions are
said to be unidirectional if their tangent vector fields points in the same direction
on every boundary component of M (either in- or outwards).

Often we will write a slicing function f together with a set of real numbers
to, ...tk as (fito,-...,tx), indicating a choice of regular values of f such that

e there are no critical values below %,
e there are no critical values above 1,
e there are at most one critical point between ¢; and ¢;1 for 0 <7 <k — 1.

Note that this implies that M = f=1([to, tx])-

We furnish the space of smooth functions on M with the Whitney C*° topology
(see e.g. [30]). As with ordinary Morse functions the slicing functions appear to
occupy most of the space of smooth functions that are constant and non-singular
on the boundary:

CL(M) ¥ { feCc™M)|d(flox) =0,dsf # 0 for all z € OM }.

Lemma 4.2. Let M be a compact manifold with boundary. The set S(M) of
slicing functions forms a dense open subset of Cg°(M).

Proof. There is an open inclusion i : C*° (M) < C°° (M) into the smooth functions
on the interior of M. For any slicing function f € S(M), i(f) is a Morse function
with distinct critical values and therefore there is an open neighbourhood W of
i(f) in C°°(M) containing only such functions. Now, i~*(W) N Cg° (M) is an open
neighbourhood of f in C§°(M) consisting of functions whose restriction to M are
Morse functions with distinct critical values. We need to make sure that they have
no critical points on the boundary.

For all z € OM, d, f # 0, so by compactness we can find an open neighbourhood
U around the section j!f in the 1-jet bundle J'(M) so that jlg(z) # (z,g(z),0)
for all z € OM and j'g € U. Hence, for a member M;(U) = {f € C®(M) |
JLf(M) C U} of the basis for the topology on C*® (M), i~ *(W)NCL(M)NM;(U)
is an open neighbourhood of f in C§°(M) consisting of slicing functions alone and
consequently S(M) is open in Cg°(M).

Now, let f € C§°(M) and let 2 be an open neighbourhood of f in Cg°(M).
There is an open neighbourhood Q of f in C°°(M) such that Q = QN Cg (M) and
then i(Q) is an open neighbourhood of i(f) in C°(M). This means that there is a
g € C°(M) such that g € Q and g/, are Morse functions and have distinct critical
values. Provided €2 is small enough d,g # 0 for all x € OM; in fact by choosing

Q) sufficiently small we can make sure that dg is directed outwards or inwards in
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accordance with df on OM (though d,(g|sar) may be different from zero). What is
left is to straighten g out to become constant on the boundary:

Assume that g is directed outwards on M — if not, use the following on each
component of M and change signs when needed. Choose a collar C' on M such
that ¢ has no critical points therein. Assume for simplicity that C = 0M x]0, 1]
on M. Then choose a smooth function ¢: ]0,1] — [0,1] such that ¢(]0,e[) = 0,
¢(]1—¢,1]) = 1 forsome 0 < e < 3 and ¢'(t) > 0 for all t. Define g: OM x]0,1] — R
by §(z,t) =t + gmax, Where gmax = SUDPsrrx]0,11{9(,?)} and then let

(@, t) = e(t)g(z,t) + (1 — o(t))g(z, 1)

on the collar and define it to be g elsewhere. Clearly, g is smooth, and on the collar
the derivative in the ¢-direction is
' dg
9 (1) (1 + gmax — 9(5,0)) + 0(0) + (1= 9(1)) 52 (,8) > 0,
since ¢(t) > 0 and (1—¢(t)) > 0 are never zero at the same time and the remaining
terms are always larger that zero. Thus, g has the same critical point structure as
g and the restriction to the boundary is constant. O

Definition 4.3. A slice is a compact 3-manifold N with a decomposition N =
OoN LI OyN LI 0,N LI 91N of the boundary into bottom-, lower-, upper- and top-
components (possibly empty) such that there exits a slicing function f : N — [0, 1]
with at most one critical point, with oN = f~1(0) and ;N = f~1(1), and with
the gradient field of f directed inwards on ;N and outwards on 0, N.

ON
3 OuN

Oo N

FIGURE 11. A slice in dimension 2.

Notice that the gradient vector field is directed inwards on dyN and outwards
on 01 N. When we do not care about direction of the gradient field on the lower
and upper boundary we may simply call them middle boundary and denote it by
Om NN (most of the time we will forget about 9,, N altogether). The slices come in 5
different types corresponding to the 4 possible indices of the critical point and the
case where there is no critical point. The last type we call a trivial slice, since it
is simply diffeomorphic to a cylinder by a well-known result, cf. [48]. Apart from
that the slices can of course be cataloged by the different combinations of boundary
surfaces.
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Definition 4.4. A slicing s of a compact 3-manifold M is a decomposition
M =N;U---UNg

of M into slices N; such that N; N N;41 = O1N; = OgN;yq for 1 < ¢ <k —1 and
N; N N; = 0 otherwise. Define the bottom, lower, upper and top boundary of M
with respect to the slicing s as 9y(M, s) = 9N, 0;(M, s) = UF_O,N;, 0, (M, s) =
Ur_,0,N; and 61(M, s) = 81 Ny. Two slicings Ny U---UNg and NjU---UN], k </,
are said to be equivalent if there exist i1 < .-+ < 4 € {1,...,l} such that N; is
diffeomorphic to Ni’j (preserving the boundary type) for all j € {1,...,k} and any
other N/ is trivial.

Often we shall view a slicing s as a sequence {Ni}le with the required gluing
data. Before we devote our attention to Morse theory we state a couple of seemingly
obvious facts about slicings.

Lemma 4.5. Let My and Ms be compact 3-manifolds with slicing functions (f1; to,
..., tg) and (fa2;t5,...,t;). Suppose fit(te) = f5 ' (th). Then we can glue My and
M, together along f;'(t) = f5 '(t}) to form M = M; U M,. Furthermore, f; and
f2 induces a slicing function f on M by smoothing the function

~ . fl(a:) for x € Ml,
f@) = { ty —ty + fa(x) for x € Mo

without introducing any new critical points.

Lemma 4.6. LetY be a surface and consider the trivial slice Y xI. If 0g(Y xI) =Y
then 01(Y x I) =Y, and there is a slicing function (f;to,...,tx) (for some k) on
Y x I with f~1(to) =Y UY and f~(tx) = 0.

The elementary however rather technical proofs of these lemmas can be found in
appendix B on technical trickery.

Proposition 4.7. Let M be a compact 3-manifold and let (f;t1,...,tx) be a slicing
function of M. Then

f—l([to, t])U---U f_l([tk—la tx])

is a slicing of M. In fact, every slicing of M up to equivalence is got from a
slicing function in this way. Furthermore, for any choice of decomposition OM =
Yo U Z; LU Z, Y7 of the boundary of M there is a slicing s such that 0y(M, s) = Y,
0(M,s) =2, 0u(M,s) =Z, and 0;(M, s) = Y1.

Proof. That f~([to,t1]) U+ U f~1([tx—1,tx]) is a slicing of M is obvious. On the
other hand, a slicing M = N; U - .- U Ni gives rise to a function

flz)=i-1+ fi(x), forze NN,



4. SLICINGS OF 3-MANIFOLDS 25

By Lemma 4.5 this induces a slicing function on M with the desired properties.

We need to prove that slicing functions exist. By Lemma 4.2 it is enough to show
that smooth functions on M that are constant on M but non-singular on oM
exist. This can be seen by choosing a collar C; 2 (OM); x [0, 1] on every boundary
component (OM);, any smooth function f on M, and a smooth bump function ¢
supported inside M — U;(OM); x [0, 5[ such that ¢ (M — U;(0M);x]0,1[) = 1. Let
t denote the function taking the value of the second coordinate on the collar when
defined. Then ¢(z)f(z) + (1 — ¢(z))t(z) is a function with the right properties.

From one slicing function we can get a slicing function with any other direction
of the gradient field on the boundary by attaching cylinders to the boundary com-
ponents and bending those where the opposite direction is wanted. We can do this
by Lemmas 4.5 and 4.6. Thus, by gluing on extra trivial slices if necessary we can
match any decomposition of OM with a slicing. O

Ficure 12. Changing direction of a slicing function.

The distinction between bottom and lower, and upper and top component is
only relevant when gluing together slicings, as it by convention does not involve
the middle boundary. In particular, we can pass from a slicing with non-empty
middle boundary to one with an empty middle boundary without changing the
critical point structure by “elongation”. Thus, we will usually refrain from that
cumbersome distinction.

To handle transition between different slicing function and slicings we introduce

the notion of a framed function. For a more detailed exposition see the papers [35]
and [36] of K. Igusa.

Definition 4.8. Let (M, g) be a Riemannian manifold. A framing of a singularity
xo of a function f € C°°(M) is defined to be an orthonormal framing £ of the
negative eigenspace of the Hessian of f at xz.
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Definition 4.9. A framed function on M is a pair (f,£) consisting of a smooth
function f on M having at most A2-singularities in the interior of M and no singular
points on the boundary 0M, and a framing & of each of the critical points of f. By
a family of framed functions on M parameterized by a manifold P we mean a pair
(ft, &), where f; is a framed function for each ¢ € P and & is a function giving a
framing &;(z) of each critical point x of f;. The family (f, &) is required to satisfy:

(1) f; is generic in the sense that its 3-jet j3f : M x P — J3(M, R) is transverse
to the set of degenerate singular 3-jets. Similarly, the restriction fi|ans to
the boundary must be generic.

(2) Denoting the individual basis vectors of the framing &;(x) by &} (z),...,
& (x), we require that each function &7 is smooth on the subset of M x P
where it is defined.

(3) Suppose that at each A2-point (z,t) we extend the framing & (z) = (&} (=),

.., &H(x)) to an (i + 1)-framing by defining & ™! (x) to be the unique unit
vector lying in the one dimensional null space of D?f;(z) which points in
the positive cubic direction (the x;-direction in our local picture). If & (z)
denotes this extended framing, then the extended functions & are smooth
in their domains.

FIGURE 13. A one dimensional A2-singularity.

Notice in item (1) that the requirement that f; must be generic means that each
A2-point is universally unfolded, i.e. it has the local description as

o3+ tey as £+ a2, (4.10)

as illustrated in fig. 13.

In particular, the A2-singularities are discrete in M x P. Notice also that when
an index i- and an index 7 + 1-singularity cancel at an A2-point, the last framing
vector of the index 7+ 1-point must converge to the unit vector in the positive cubic
direction of the A2-point (the z;-direction in the local description above).

Theorem 4.11. (Framed function theorem, [35]) Let M be a compact smooth
n-manifold with a smooth family of metrics parameterized by the k-ball D* and
let (fi,&:) be a smooth family of framed functions on M parameterized by S*~1,
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where k < n. Suppose also that V is a neighbourhood of the boundary OM and
that fi|y = g for allt € S*~! for some fixed function g on V. Then (f;,&;) extends
to a family of framed functions on M parameterized by D* so that f;|,y = g for all
t € Dk,

Given two slicing functions fy and f; it is of course possible to find a neighbour-
hood V of the boundary where they have no critical points, and an isotopy from
f1 to and fi such that fi|y = folv. Now, the framed function theorem almost
immediately gives the desired result. One thing the theorem doesn’t mention, how-
ever, is if the members of the family have distinct critical values. But this is also a
generic property and by making a C°° small deformation of f;, it can be arranged
that critical values meet only in isolated points.

Remark 4.12. Thus, any two unidirectional slicing functions can be connected by
a path with only finitely many non-slicing functions. At any of these non-slicing
functions it can happen that

(1) the ordering (by values) of two critical points is exchanged or
(2) two critical points whose indices differ by one cancel in an A2-singularity.

Hence, an obvious combinatorial corollary for slices is:

Remark 4.13. Let M be a smooth compact 3-manifold possibly with boundary.
Any slicing of M can be obtained from any other slicing corresponding to the same
decomposition of the boundary by a series of finitely many of the following three
moves or their inverses:

(1) Insertion of a trivial slice.

(2) Two adjacent slices whose indices differ by 1 corresponding to an A2-singu-
larity are substituted with a trivial slice.

(3) Two adjacent slices are transformed in accordance with item number 1 above
(see figure 14).

I A
[\

FiGure 14. Conversion of a pair of slices to reorder the critical points.

e-Slicings. Now that we understand the slicings of 3-manifolds we can start defin-
ing the analogies in the extended category. However, there are no surprises: By an
e-slice N we mean an e-3-manifold whose base manifold N is a slice. Thus, it can
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be written N = (N, Lo & L; & L, & L1,n). An e-slicing 8 of the e-3-manifold M is
a sequence {N;}*_, of e-slices with the required gluing data such that

M=N;U---UNy,

where U means gluing with some e-morphism. In particular, s = {N;}¥_, is a slicing
of M.

5. CONSTRUCTING THE TQFT

We have now reached the point where we can begin defining the TQFT Z from
a given modular functor V. The strategy applied here is to define Z on e-slices and
subsequently on e-slicings. By doing this in a way such that it is independent of
the choice of slicing of the e-manifold and so that it obeys the axioms TQFT1-4,
we get a TQFT.

When considering Z on a slice N it is of no significance whether a boundary
component belongs to the middle boundary 0,,N. What is important is if the
gradient field is directed inwards or outwards as on dyN and 0;N respectively.
Hence, until we start gluing slices together in general, we will refrain from this
cumbersome notation. Also, we only need to consider connected slices.

10 - &

{ =
fe

F1GURE 15. Local picture of level surfaces around the critical value f..
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As noted before, there are 5 different types of slices: 4 types corresponding to
the 4 different indices of the critical points, and one with no critical points (i.e. the
mapping cylinders). In a neighbourhood of the critical point, the level surfaces
develop as displayed in the movies in fig. 15; the shaded spheres, thin circles and
“fat points” illustrates points flowing to or from the critical points.

Before we go on, let us introduce some notation. For a given choice of a slicing
function f and a metric g on a slice N, let ¢ be the induced Morse flow. For a
given flow parameter value ¢ and point x € N we usually write it ¢(t,z) = ¢(t)(z).
Then we denote by ¢,, v = 0,1, the flow from 9, N to the critical level 3¢ (along
grad f and — grad f respectively). The union of flow-lines to the critical point we
call a critical system, and we often denote it € = &;.

Now consider 1- and 2-slices. Outside € the flow acts diffeomorphically and we
may choose tubular neighbourhoods U, in d,N of € N d,N (being either a pair
of disks on an annulus), such that the complements, ¥, of these neighbourhoods
satisfy that X1 = ¢|g,(X0), where ¢|n, means the diffeomorphic flow from the
bottom to the top. Let 7, : ¥, — 0, N be the natural embedding.

For the proofs and details of the following facts about Lagrangian subspaces,
see appendix A. For any z € H;(9pN), define the subset ®(z) = 7, (po«()) of
Hy,(01N).

Definition 5.1. A pair (Lg,L1) C H1(0gN) & H1(01N) of Lagrangian spaces is
called natural if
Ly = ®(Ly).

Furthermore, e-structures consisting of a natural pair and framing number 0 will
be named a natural e-structure.

On the other hand, we know that under the right circumstances ®(L) is La-
grangian when L is, and ®(L) is independent of the choice of both metric and
slicing function.

Given a Lagrangian subspace L, C H;(0,N), we define the subspace L| =
i1 (L,) which turns out to be maximal isotropic. When U, is glued back in, the
canonical Lagrangian subspace of Hy(U,) together with L! reproduces L,. In fact,
gluing the canonical Lagrangian subspace of H1(U;) together with (¢|s,)«(L.,) gives
®(Ly) (cf. Proposition A.8).

Now we can define Z on all connected slices with natural e-structures. The field
theory Z on trivial slices is simply defined to satisfy the mapping cylinder axiom.
A O-slice. Let N be a 0-slice. Having no choice of e-structure on neither D nor
52 clearly we must define Z on N as

Z(N,0,0) : C — V(5%
z = Aoz - 1 ® P,
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for some \g € C.

A 1-slice. Choose a metric g on an index 1-slice N and a slicing function f
with one critical point and with an associated Morse flow . Then ¥4 is 0pN
with the two small disks removed and X7 is 01/N with an annulus cut out, the
boundary parameterizations are chosen so the corresponds under ¢, and there
are identifications V(0oN,L) = V((Zo,L}),(1,1)) ® Vi ® V4, V (61N, ®(L)) =
@D,V ((£1,L}), (a, &) ® Vya. For z € V((Zo, Lp), (1,1)) we put

Z(N,L& ®(L),0;f,g): V(6oN,L) — V(.N,D(L))
TR PR P1Hr Ar- V((p|)]0,0)(.7)) ® P11,

where A\ € C.

A 2-slice. Likewise choose a metric g and a single critical point slicing func-
tion f on an index 2-slice N. Now, ¥, is 09N with the appropriate annulus re-
moved and ¥; is 01N with the two disks cut out as above. Then V(9yN,L) =
D, V((EO, Ly), (a, &)) ® Vas and V(81N, <I>(L)) = V((El, L), (1, 1)) ® Vi ® Vi, so
for z, € V((Xo, L), (a,a)) we define Z on N as

Z(N,L®®(L),0; f,g) : V(OoN,L) = V (01N, ®(L))
Zaxa 029 /Bad — )‘2 ) V(Q0|207 0)('7;1) 029 /81 ® /61

for some Ay € C.
A 3-slice. Finally, for the 3-slice N

Z(N,0,0): V(8% = C
T - 01 ® P — Asz,

for every z € C, where A3 € C is fixed.

However, the A;’s cannot be any complex numbers. As we shall see later (in
Lemma 5.8), Remark 4.13 forces relations on the A;’s.

Remark 5.2. Before we go on, we observe that Z is independent of the choice of
diffeomorphism from the disks we cut out to our standard disks and likewise for the
annuli. This follows from the fact that the action of the mapping class groups of
disks and annuli are trivial on vector spaces associated to surfaces labeled by the
trivial label. Consider for instance a 2-slice and suppose that we change the annuli
diffeomorphism by the Dehn twist 7. Then

Y uTa ® Baa = D, taZa ® Paa — A2V (@) (t121) @ B1 @ B = A2V (9)(21) ® 1 @ B,
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since t; = 1.

It is also clear that the definition does not depend on the choice of boundary
parameterizations as long as we use parameterizations that corresponds on the two
sides of the cut under the flow.

Before we go on, we also point out that no metric or slicing functions were used in
the definition of Z on 0- and 3-slices, so it is only necessary to prove independence
of these for 1- and 2-slices.

Lemma 5.3. Given a fixed slicing function f and a fixed metric g, the definition
of Z does not depend on the choice of factorization compatible with f and g.

Proof. Suppose the index is 1, and let DYDY be two choices of disk neighbourhoods
around the two isolated points dgN N € and let A” be the corresponding annuli
neighbourhoods of the contracting circle 9; NN€. As they are closed neighbourhoods
we may choose an € > 0 such that the closed disk neighbourhoods D,, . of radius
e around the points are contained in the interior of D, N D2, and such that the

corresponding annulus A, is contained in the interior of A N A2. Now the closure
of Dy — D, . is diffeomorphic to A and the closure of A” — A, to AU A.

Hence we can write z. € V((0oN — (D1 U D), L§),(1,1)) as z. = 2" ®
P11 ® P11 € V(((')ON — (DY u D¥), Ly), (1,1)) ® Vi1 ® Vi1 (where L§ a L are
the induced maximal isotropic subspaces). Then according to the definition of
Z(N,L® ®(L),0,; f,g) using the excition of the e-neighbourhoods

¢ ® 01 ® P+ AL VI(plogN—(Dy .uDs ), 0)(2°) ® Bra
= A1 - V(@lapn—(prupy), 0)(2”) ® 11 ® P11 ® Bi1
= A1 - V(¢la,n—(DruDy), 0)(z") ® P11,

where we used the fundamental property of 3,; and the fact that any diffeomor-
phism acts trivially on (31;. The last expression is the definition of Z(N,L &
®(L),0,; f,g) using the factorization by Dj and A”. The index 2 case can be
proved in the same way. ([

Lemma 5.4. The Z defined above is independent of the choice of metric.
Subsequently we will eliminate the metric in the notation.

Proof. For simplicity assume that N is a 1-slice; index 2 follows in the same way.

Let g and g be two metrics on the slice N and choose a slicing function f. A path

between g and g induces an isotopy ¢* between the Morse flows ¢ defined by g and ¢
defined by g. Now, let ¢, be the complement in 9, N of the points 9, N N€? flowing
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to the critical point via ¢f. Then define a family v%: 3% — 3t of embeddings into
OuN by 7, () = (#}) 7 o ()]s ().

We claim that by maybe perturbing +7 slightly in a neighbourhood of 8, N N ¢*
we can extend this to a family of homeomorphisms 4% : 8, N — 0, N that is smooth
on ¥,. To see this, first observe that the extension of «§ to all of dyN is obvious.
Then choose a 2-sided collar around d; N N €Y and consider the longitudinal curves
ag(s) = (x,8), z € N N € in the collar. For every o, there is exactly one curve
Bt (possibly not smooth in 0) such that ¢ o ap, = % o Bt. Define 4¢(x) = £L(0).
Now, 4% might be neither smooth nor injective on d; N N €°. But the singularities
in ;N N €t corresponding to these singularities look no worse than pictured in
fig. 16 and are easily dissolved, e.g. by applying a bump function to a family like
Yu: [-2,2]2 = [-2,2]%, where ¢4 (z,y) = (2, ((1 — t)|z| + t)y). Le. by deforming
4L slightly in a neighbourhood of 8, N N €° through a path 45 we can arrive at a
diffeomorphism 4>: 9,N — 9, N that takes 9,N N €° to §,N N ¢! in such a way
that the restriction 4. |so is an isotopy. On the other hand, results of among others
Earle and McMullen, [25]%, state that since 40 = Idg,ny is homotopic (through 47,
and %) to the diffeomorphism 7!, then they are in fact isotopic.

To summarize: the embeddings v9: X% — 9, N and v!l: ¥ — §,N are isotopic
through a path using the flows, v! is again isotopic to %\gg : 3% — 9,N through
another specific path, and 40 = Idg, y is abstractly isotopic to ¥.: 8,N — 9, N.

L) — (L)

FIGURE 16. A slight deformation of 4..

Choose a decomposition of the boundary components 9, N = ¥, UU,, with respect
to ; i.e. let U, be large enough so that they contain the collars and neighbourhoods
above. Then 4! induces a suitable decomposition with respect to ¢ and we are able
to compare the results of Z(N; f,g) and Z(N; f, g).

Recall that on Xy the flow of f from 9yN to 01N is ¢|x, = <p1_1 o @o|s, so for
z € V((Xo, L), (1,1)) and using Remark 5.2, we get

V(31,0) 0 Z(N; f,9)(2 ® b1 ® 1) = A1 - V (71, 0)V (97 '¢olxg, 0) () ® B
= A V(@1 197 T polsg, 0)(2) © B
= A1 - V(@7 polsg,0)(z) @ B,

6The author wishes to thank C. McMullen for bringing this reference to his attention.
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Z(N:£,9) 0 V(3,0)(z ® B ® B1) = A1 - V(1 ' Golsy, 0V (%, 0)(z) ® fua
= A1 - V(@7 @0@p T polsg, 0)(2) © B
= A1 - V(71 polxg; 0)(2) ® Bua,

Where we have used that f?,} 7,} gB; Lo ¢V|Eo. Thus, as 7. ~ Ids, ;v we get that

Partly out of convenience and partly out of necessity we postpone the remaining
parts of the proof of well-definedness of Z on slices till later. In the meantime
we extend Z to slices with any e-structure by forcing strong naturality. Next let
s = {N;} be an e-slicing of an e-manifold M with corresponding slicing function
f decomposing into f; on each slice N;. Define Z on the slicing by composing the
Z(N;; fi)’s using the gluing data for M in accordance with the gluing axiom of a
TQFT. We write this

Z(s; ) € [ 2(Ns; £),

where the product means composition according to the gluing data. That Z on
slicings is well defined will be proved through the following series of lemmas.

Lemma 5.5. If F: N — N is an orientation preserving diffeomorphism, then it
takes natural pairs to natural pairs, and choosing a slicing function f on N and the
induced one, f = f o F~!, on N, we get
Z(N, (Flon)«(L ® ®(L)),0; f)
=V(Flon,0)0 Z(N,L® ®(L),0; f) o V(Flo,n,0) ™"
=V (Flon,0)(Z(N, L& ®(L),0; f)).

Proof. Suppose F : N — N is an orientation preserving diffeomorphism. Given a
slicing function f and a metric g on N we choose the slicing function f=foF!
and the metric § = (F~1)*g on N. This implies that if ¢ is the Morse flow of f,
the flow of f is F o oo F~1. This means that I preserves natural pairs

(Flon)« (L ® ®(L)) = (Flaon)«L @ (Floy,n)«@(L) = (Fla,n)«L & ®((Flayn)«L)-

If we have a degomposition of N suitable for f, then its image under F'|sn will
be suitable for f. Now the identity for Z in the lemma follows immediately by the
fact that 9 = Flgyowo F \501]\,. We see for instance for a 1-slice that

V(F|a,n,0)0Z(N,L & ®(L),0; f) o V(F|o,n,0) " (2 ® 1 ® B1)
=X -V (Flg, o <,00F|§;70)(55) ® 11 = A1+ V(,0)(z) ® i1
_Z( s (Flan)« (L@q)(L))ao;f)(i:@)ﬂl@ﬁl)a
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for # € V((So, (Flso)«L"), (1,1)). O

As soon as the independence of slicing functions is established, this will prove
naturality. To prove that Z satisfies strong naturality it is now enough to see that

Z(N,L & ®(L),0) = \ELe*@).Le*(1) .y (1d) Z(N, L & (L), 0),

where Id = (1d,0): (ON,L @ ®(L)) — (IN,L @ ®(L)), K = ker (H;(ON) —
H;(N)), and X is the non-zero complex number defined by (Id,1): Y — Y. Strong
naturality follows because o (K, L & ®(L), L ® ®(L)) = 0 by Lemma A.9.

Lemma 5.6. If fy and f, are isotopic single-critical-point slicing functions on a
slice N, then Z(N; fo) = Z(N; f1) for any natural e-structure on N.

Proof. Assume that N is an index 1l-slice (index 2 is just the mirror image) and
consider an isotopy f; € S(N) of slicing functions with one critical point on the slice
N. Let €* denote the system of flow lines to the critical point z; of f;, €, = €tNJ, N,
and let X! =9, N — €', v =0, 1, as usual.

We can find an isotopy F¢: OgN — 0N of diffeomorphisms such that F§ = Idg, v
and F¢ takes €3 to €. Using the flows ¢*: XY — Xt from the bottom to the top, we
define an isotopy of embeddings Fi*: %9 — X§ C 01N as F{* = ¢ o F§ o (¢°[g) 7"
As the surface to the two sides of € may get twisted and distorted with respect to
each other for ¢ > 0, F|* does not necessarily extend to 9; N. Therefore we close the
boundaries of ¥{ to form X7, so that the boundary circles are included in 9; let
B; and B> denote the two boundary components, which can of course be naturally
identified with €9. Extend Fj¢ to F;? on X{. We can think of F|* as an immersion
with double points along €%, so it is possible to compare Fi*|p, and Fj*|p,; define
ge: €@ — € as gy(p) = (F{*|B,) "' o Fi*|p, (1), p € €]. Clearly, go = Idgo.

Choose small collars C; & By x I and Cy & By x I of By and By in_ E‘l) (_BZ
corresponding to B; x {1}). Recall the isotopy H from (3.9) and define G*: £ — 39
to be

Gt(x):{x’ for z € 9 — Oy,

Hi_s(9)¢(1), for z = (p, s) € Cs.
Then define F¥: £9 — 9N as F|* o G, and deform F} in a small neighbourhood
B, x]%, 1] of By in Cy to a new diffeomorphism which we also denote Ff, so that
Fi(p,s) = Fi(p,1) for all p € € and s €]1,1). Then Ff|p, and Ff|s, glue
together to form F}: 4N — 01 N. Clearly, FY = Idp, n, F} takes €9 to €}, and
Ff\alN—c = (pt o Fg o (@0‘28)_”31]\{_0, where C = C; U (.

Now choose a decomposition of N appropriate for fy with the annulus large
enough to contain C. Then F! takes that decomposition to a decomposition ap-

propriate for f; and a calculation like the one for independence of metrics ends the
proof. O
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Lemma 5.7. Let fy be a trivial slicing function on M and f, a slicing function
on M with two critical points of indices differing by 1. Suppose there is a path
with precisely one A2-singularity connecting them. Then there is a diffeomorphism
F: M — M and a disk Dy C 0pM such that the flow ¢ off = f1 0 F~! preserves
the tube { ©°(t)(0Dy) |0 < t} generated by the flow of fo and such that the two
critical points of f are inside that tube. Furthermore, F' can be chosen so that
F|on is isotopic to the identity.

Proof. First notice that it suffices to consider the case M = ¥ x I, since the trivial
slicing function fy gives a preferred diffeomorphism ¥ x I — M. By that simplifi-
cation, ©°(t)(z,s) = (z,s +t).

The point of the local description (4.10) is that we can choose a disk Dy in g M
such that the singular points of f; are inside the tube generated by the flow of f;
and 0Dy (for visualization try combining the local pictures in fig. 15). E.g. we see
that for a 0-slice followed by a 1-slice, what happens is that a sphere is born and
attached to the main surface to be “swallowed up”. A 2-slice followed by at 3-slice
is just that situation turned upside down. The 1-2 situation is displayed in fig. 17.

3PP DL DY

FIiGURE 17. A movie describing 1-2-cancellation.

Let F': (X — Do) x I < ¥ x I be the embedding defined by the flow of f;
and choose a small € > 0, closed e- and 2e-tubular neighbourhoods D, and Dj,
of Dy in ¥, and an embedding F: Dy, x I — ¥ x I onto the complement of
F'((X = Dye) x I) such that F'(8Dy x I) = F(8Dgy x I). (Such an embedding F
onto F'((X — Dy.) x I) exists by Schonflies Theorem,” as we may embed ¥ x I
into S3 as part of a handle body decomposition, and F can be made to fit F/ in
the desired way by scaling.) Now define G: S x [0,2¢] x I — S! x [0,2¢] x I as
G=F"loF |s1x[0,2¢]x1- Any orientation preserving diffeomorphism of the annulus
is isotopic to the identity. Using this isotopy for G|gixfoyxs we can extend G to
a homeomorphism G of Dje x I. Smoothing G on D, x I gives a diffeomorphism
G of Dy, x I. Now, F = F o G is a new embedding of Dy, x I which agrees with
F’ on (Dy. — D.) x I. Hence, it makes sense to glue together F' and F' to form a
diffeomorphism F': ¥ x I — ¥ x I with the required properties. To see that F'|a, s
is isotopic to F'|g,am, notice that F|((E—D2€)x{1}): (X — Dy.) — ¥ is isotopic as
embedding to F|5_p, yx(0): (X — Dy.) — . Then an argument similar to the

"We thank H. Murakami for making us aware of this theorem.
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one above extends this to an isotopy between F'|g, pr and F|g,pr. As any choice in
the construction of F' can be made so that F|s,ar = Idg,ar, we are done. Il

Lemma 5.8. Let fy be a trivial slicing function on M and f, a slicing function on
M with two critical points of indices differing by 1. If there is a disk Dy C 0gM
so that the flow ¢! of f preserves the tube { ¢°(t)(0Dy) |0 <t} generated by the
flow of fo and so that the critical points of f, are inside the tube, then Z(M; fo) =
Z(M; f1) for any natural e-structure on N provided that Ao, A1, A2, A3 satisfy the
equations

Aor1 =1,
A1A2S11 =1, (5.9)
A2z = 1.
Proof. Again we can assume M = X x I. Under the given circumstances fy

and f; allow the same partition of the boundary surfaces and by assumption
Z(M,L & L,0; fo) = Idy(s,1). Let f¥ denote the restriction of f; to the index
i-slice. Remember that everything acts trivially on ;. Thus, in the case 0-1 we get
the equation

T®p1 =2 (N, ®L&0)a L,0; fi)
o (Z(ExI,L@®L,0; f)) ® Z(N°,0,0)) (z ® 1)
= XoA1- V (1, 0) 0 Vg, 0)(2) ® P11 ® B
= MoA1 - V(91 0)(z) ® B11 ® B1 = AoA1 - V(p',0)(z) @ B

where ¢} are the restrictions to the index i-slice N* of the flow ¢! of f; on (X —
Dy) x I. If the genus of X is 0, then ¢! is clearly isotopic to the identity and we
end up with the equation \gA; = 1. Otherwise we have a homotopy relative to the
boundary from ¢! to Ids,_p, via hs(z) = pry o' (t(z, s), (z, s)), where t(z, s) is the
time from (z,s) € ¥ x I to the top via ¢! and pr; is the projection on the first
factor. Since the genus of ¥ is 1 or greater, the result from [25] states that ¢! is
isotopic to Idg_p,. Thus, V(p!,0) = Idy (s—p,,z) and we end up with the equation
AoA1 = 1 again.

A 1-2 cancellation occurs when we glue together the two slices via the diffeo-
morphism which is S from fig. 6 on the handle, H, generated in the 1-slice, and
the identity on the complement, ¥’ — see fig. 17 for a local picture and compare
with fig. 6. We also notice that the flow acts trivially on (117 as does every dif-
feomorphism of P (cf. page 21). Thus, arguing along the same lines as above, we
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get

T® P111 Q@ P1® B
=Z ((N2’(I)(L) ® L,0) Us (Nl,L®©(L),O);f1) (z® P111 ® b1 ® 1)
=M Z(N*®L)aL,0; f7)o
S (V(ptlsr, 0)(z) ® V(eilm; 0)(fr11) ® Pu1)
=\ - Z(N%,®(L)® L,0; f£) o S*(V(pi]sr, 0) () ® Br11)
=M - Z(N%,®(L) @ L,0; f7) (V(p1ls, 0)(2) © 32451 65105)
=X - Z(N?, ®(L) & L, 0; 1) (V(#1]5, 0) (2) ® 323 S1,68145 ® Bys)
= AMA2S11- V(e s, 0)(z) ® Bi11 ® B ® Pu,

implying that A;A2S11 = 1 by the previous argument. The slicing function f?
above is of course the restriction of f; to the 2-slice N2.

The 2-3-cancellation is actually the reverse of 0-1-cancellation:

.’E®,611®,61 = (Z(ZXI,L@L,O)@Z(N?),0,0))
OZ(N2’L@(I)(L)30;JC12) (z® P11 @ 1)
= X3 V(p',0)(z) ® B1 = Aad3 - 7 ® P11 ® B,

so that A3 = 1. O

The set of equations (5.9) has solutions when ever S1 1 # 0. Let in the following
Xiy i =0,1,2,3, be a fixed solution to (5.9). Later on we will study the relation
between theories defined by different solutions.

Proposition 5.10. The function Z on slices is independent of slicing functions and
it satisfies strong naturality. In particular, the assignment to slicings is well-defined.

As a consequence of this we no longer include the slicing function in the notation.

Proof. From Remark 4.12 we know that any two unidirectional slicing functions fj
and f; can be joined by a path containing at most A2-singularities and changings
of the order of the critical points. As we saw in Lemma 5.6, isotopy does not change
Z. So let us verify that Z is also unchanged when passing through a singularity.

Suppose that fo is a trivial slicing function and f; a slicing function with two
critical points of indices differing by 1, such that they are connected by a path with
a single A2-singularity. Then by Lemma 5.7 there is a diffeomorphism F': M — M,
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such that fo and f = f; o F~! fits into Lemma 5.8 so that Z(M; fo) = Z(M; f).
But from Lemma 5.5 we have

Z(M; f) = V(F|a,m,0) 0 Z(M; f1) o V(F|aoar, 0) ™ = Z(M; fr),

where we have used the property of F' from Lemma, 5.7. Thus, Z on slices is invariant
under the passing through an A2-singularity as in move number (2) of Remark 4.12.

This leaves only move number (1) in Remark 4.12 to be checked. This is a
question of Z being invariant when two adjacent slices are changed to reorder the
critical values: Such reordering can occur when no flow lines to the first critical
point intersects flow lines to the second. Obviously, the definition of Z on natural
slices generalizes to the case with a function that is a slicing function except for
having two critical points with the same value, as long as the respective flow lines
are disjoint in the sense of the above. Then one can construct an isotopy of the two
slices taking the first slicing function to the second passing through functions no
more singular than the one described above (and having only that one singularity).

O

Proposition 5.11. Let M be an e-manifold and let 8 and 8’ be any two e-slicings
of M. Then Z(s) = Z(s').

Proof. 1t suffices to show that the statement is true

e when the base slicings {V;} = { N/} agree, but the e-structure is changed,
e when using natural e-structures (which also means gluing with the identity),
Z is unchanged by the moves of Remark 4.13.

To see the latter we first notice that Z(M, L,n) = A™- Z(M, L,0) no matter what
slicing is used because of Remark 3.7. Now, let s and 8’ have natural e-structures.
By the mapping cylinder axiom, move number (1) in Remark 4.13, i.e. insertion
of a trivial slice, does obviously not change Z(s). Step number (2) and (3) of
Remark 4.13 follows from Proposition 5.10.

Now, let s be an e-slicing of the e-manifold M. We must check that changing the
e-structure of the slicing without changing the e-structure of M does not effect Z.
Instead we check the equivalent statement that Z (M, s) changes according to strong
naturality when the e-structure of the slicing s is changed. It suffices to check this
when the e-structure of one slice is changed. Clearly, changing the e-structure of a
slice is equivalent to gluing on trivial slices on each end, and hence, it is sufficient
to check the effect of inserting a trivial slice (with some odd e-structure).

Let M = U;?:lN j, where gluing may be via non-identity maps like g = (Id, 0) :
(01N, L1) — (0oNit1,Lo). Suppose that we want to insert the trivial slice I
between N; and N;1, where

f = (Id, m) : (81NZ~, Lll) — (aoNH_l, Li))
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Let N = U3-=1Nj and N' = U;?:H_le. Then because gluing is associative M =
N U IgUN', where U here means gluing with the real identity. If N and N’ has
framing number n and n’ respectively, then according to the gluing law the framing
number of M is

n+n/ — O'(K,Ll,Lo) — O'(K, L(),Kl),

where K = ker (H(0,N) — Hl(N)) and K' = ker (Hy(0oN') — Hl(N’)) are
the Lagrangian subspaces got by flowing through N (resp. N') of the Lagrangian
subspace associated to the complementary boundary of N (resp. N'), i.e. N and N’
are the capped off manifolds provided by Lemma 2.9.

When inserting Iy we must glue via g’ = (Id,0) : (01N, L) — (01N, L) and
9" = (1d,0) : (0oN', L) — (0N, Ly), and then M’ = NU Iy UIfUIgn UN'. The
framing number of M’ is

n+n +m—o(K,L,L}) —o(K, L, Ly) — o(K, Ly, Ly) — o(K, Lo, K')
and therefore the changing A of the framing number is

A=m—o(K,L,L}) — o(K, L, L\) — o(K, L}, Lo) + (K, L1, Lo)
=m — O'(Ll, Lllﬂ Li)) — O'(K, Ll, Li)) — O'(L(), Lo, Ll) — O'(K, Li), Ll)
=m — O'(Ll, Lllﬂ L6) — O'(Lg, Lo, Ll)
by Lemma A.5. So if strong naturality applies we should get that Z(M',s') =
A2 Z(M,s).

But using the given slicing of M', Z(M',8") = Z(N) o Z(1g Ul U Ign) o Z(N').
Now, Ig Ulf U lgn = Ignopoq and we notice that g” o f o g’ = (Id,m’) o g for
(Id,m") : (01N', Lg) — (01N', Ly), where m’ can be calculated by the composition
law to be m' =m — o(Ly, LY, L) — 0(L§, Lo, L1) = A. This means that

Z(M',8")=Z(N)oV(g"ofog')oZ(N')
=Z(N)oV(Id,A)oV(g) o Z(N')
=\2.Z(M,s),

which was exactly what we wanted. U
Finally we are able to define the TQFT:

Definition 5.12. The TQFT Z induced by the modular functor V is defined for
every e-3-manifold M as

Z(M) ¥ z(M, s),
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where s is any e-slicing of M.

It is left to the reader to check that Z satisfies the axioms TQFT1-4.

Also observe that if V' is a unitary modular functor, then Z becomes a unitary
TQFT provided the A;’s satisfy the extra condition that Ag = A3 and Ay = As. This
implies that solution’s look like

1 1
_ Q2 ,V—1p Q2 ,—V—1p
AO —_— Sl’le ) )\]_ —_— Sl,l e )
1 1
— Q 2,v-1 — Q2 ,—Vv-1

for some p € R. Thus, there is now a real one parameter family of solutions whereas
there were a compler one-parameter family when we did not require the theory to
be unitary. This ends the definition and consistency check of the TQFT.

Finally let us investigate how TQFTs from different solutions to (5.9) relate. Let
AL, i =0,1,2,3 be another solution to (5.9) and denote the associated field theory

by Z'. Putting k Lf 0 we have

Ao
!/ .
X _ k(D" for i =0,1,2,3.
Ai
Choose a slicing {N;} for the e-3-manifold M. Then on each slice, Z and Z' give a
homomorphism differing only by a scaling by (1", i being the index of the slice.
Hence,

3
Z'(M) = [[ sV 2(M) = xZi=oD'e z(M) = iX3D (M),
1=0

where ¢; is the number of critical points of index 7 and x(M) is the Euler char-
acteristic of M. In particular, if M is closed, the Euler characteristic x(M) of M
is zero, and the partition function invariant for 3-manifolds, that we get, will be
independent of which solution to (5.9) we choose.

We may conclude:

Theorem 5.13. A modular functor V on the category of e-surfaces satisfying that
S1,1 # 0, induces a complex one-parameter family of 2 + 1 dimensional TQFTs
defined by solutions AO,)\]_,AQ,)\?, to )\0A1 = 1, A]_)\QSL]_ =1 and )\2A3 = 1. Any
two members Z and Z' of this family corresponding to solutions \; and X, are
related by

Z'(M) = XM z(M),

for any e-3-manifold M, where k = A—g In particular, Z' and Z agree on closed

A
manifolds.

Moreover, if V' is unitary we get a family of unitary TQFTs parameterized by
S', with the extra condition that Ay = A3 and A1 = Aa. O
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Example 5.14. As an example we do the easy calculations of the invariant of S3
and S! x S2:

Z(S3,0) = Z(N3,0,0) 0 Z(N°,0,0) = A3ho = AzA2A; " Ao = A1S1.100 = S11,
Z(S' x 82,0) = Z(N®,0,0) 0 Z(N',0,0) 0 Z(N?,0,0) 0 Z(N°,0,0)
= A3A1 A2 = 1,

so we notice that the theory is normalized as Witten’s in [72].

An interesting and to the author’s knowledge unsolved problem is the classifi-
cation of 2 + 1 dimensional TQFTs. If one were to consider TQFTs with corners
as Walker does in [69], one can cut up any slice into a trivial mapping torus part
and a part containing the critical point, the latter part being the basic blocks with
boundary for instance AL (DL D) as illustrated in fig. 18. Hence, any TQFT would
therefore be constructed by assigning a complex number to each of the four blocks
corresponding to the four Morse indices in a way similar to the one described in this
section. It is conjectured that using Moore’s and Seiberg’s basic data, one should
be able to define a modular functor from every TQFT. Proving Theorem 5.13 in
this context would then tell us that every TQFT is constructed as described in this
section.

1 2

D D
FicUrE 18. Decomposing a PL-slice of index 1.

It is, however, not possible to argue in the same way in our smooth case, since we
are not allowed to decompose the slice in that way. So it is an open question whether
there are any TQFTs that do not arise in the way described in this section. Given
that we can get a modular functor for any TQFT (using Moore’s and Seiberg’s basic
data), this is of course equivalent to the question if TQFTs on our smooth category
are the same as TQFTs on Walker’s manifolds with corners. The indications from
physics are that the two theories should be the same.

In Walker’s setup it is easy to prove that if V gives a TQFT then S; , = S’(a:),
and he speculates that this may be true for any modular functor. One might add
that any modular functor with $(1) = 0 would be completely trivial since any
factorization by a disk would yield a trivial pairing, (—,—) : V(Y) — V(Y)*,
meaning that V(Y')* = 0 = V(Y). So far we have failed to reproduce the relation



42 Parr I. ConsTRUCTING TQFTs FROM MODULAR FUNCTORS

S11= S (1), and the author knows of no reason a priori why there could not be a
modular functor with S;; = 0. This lack of an S-relation is not the only thing in
our setup that is seemingly different to Walker’s; as mentioned before in section 3,
Walker also finds a relation for the map F' in fig. 9.

6. SURFACES WITH MARKED POINTS AND DIRECTIONS

Up till now we have considered modular functors from the category of e-surfaces
possibly with boundary. In this section we will define another category, the category
of (e-)surfaces with marked points and directions, and we will show that a modular
functor on this category defines a TQFT as well.

Marked point and directions. For a vector space V we denote by PV the space
of directions (V — {0})/Rsg.

Definition 6.1. A pointed e-surface (or simply pe-surface) Y = (Y, L; (Q1,v1),
ey (@Nyv N)) is a closed, compact, smooth and oriented surface Y with N marked
points ); and tangent directions v; € PTp,;Y and a Lagrangian subspace L C
H,(Y') compatible with the integer lattice Hy(Y;Z).

Notice that the Lagrangian subspaces in H;(Y) are in one to one correspon-
dence with the maximal isotropic subspaces of Hy(Y — {Q1,...,Qn}). Hence, we
may think of the marked points as corresponding to the boundary components in
our previous definition. In particular, when considering boundary surfaces of e-3-
manifolds there will be no marked points. To compactify the notation we write

((Ql;vl)a R (QN,'UN)) = (Qaﬂ)'

Definition 6.2. We say the e-surface Y = (Y, L, (@, v)) contains Yo = (Yo, Lo,
(QO,QO)), denoted Yo C Y, if¢: Yy — Y, i,Lg C L, the marked points of Y, are
marked points of Y, Qo C @, and the corresponding directions agree.

Definition 6.3. A pe-morphism f :' Y1 — Y, is an isotopy class of orientation-
preserving diffeomorphisms f : Y7 — Y5 holding the set of marked points invariant
and mapping directions to directions. We write f = (f,n).

Definition 6.4. Let fl = (fl,nl) : Y1 — Y2 and fg = (f2,n2) : Y2 — Y3 be
morphisms of pe-surfaces Y; = (YZ-, L;, (_Z., yz)) Then the composition of f1 and
f2 is defined by

(f2,n2)(f1,n1) & (f2f1,n2 + n1 — o((faf1)«L1, fauL2, L3)),

where o is the Maslow index described in appendix A.
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Definition 6.5. The disjoint union of pe-surfaces is

(Y1, L1; (Q1,v) U (Ya, Lo; (Q%,0%) & (Y1 U Yo, L1 @ Ly; (Q1, 1Y), (Q%,07)).

Now, let Y = (Y, L; (Q, Q)) and Y, = (Y;,,Lp; (P, wy), (P2, ws), (Q, y)) be pe-
surfaces. Let Y’ be the singular surface with double point (P, v) obtained from Y,
by identifying P; with P, and Tp, Y, with Tp, Y, while reversing the orientation such
that the image of w; and wq is v (see fig. 19). Let v : Y, — Y’ be the normalization
map. Suppose that there is a simple, closed curve ¢ with base point Py in Y such
that Y’ can be obtained from Y by contracting c.

FIGURE 19. Pinching Y along (c, Py).

Definition 6.6. Under the just mentioned conditions we say that Y, is got from
Y by pinching along (c, Py) if there is a smooth map ¢ : Y — Y’ such that

(1) ¢ '(P) =,

(2) if z € PTp,Y and the orientation of ¢ at Py induces the orientation of Y at

Py, then g4(z) = v,

(3) @«(L) = vu(Lyp).
If f1 = (f1,n) is a pe-automorphism of Y such that f preserves (c, Py), we define
the induced pe-automorphism f,, = (fp,n) on Y, by f, def v=lqfq .

Notice that (3) implies that the homology class [c] of ¢ is in L (look for instance at
at the dimension), so with respect to the Lagrangian subspaces it is just like surfaces
with boundaries. The definitions of the category of e-3-manifolds are unchanged.

Modular functors and TQFTs. Let £ be at label set as defined in section 2.
The definition of a modular functor on the pe-surfaces is completely analogous to
the definition given in section 3, but for clarity and for the benefit of the reader it
is provided here also.

Definition 6.7. Let £ be a label set. The category of L-labeled pe-surfaces (Ipe-
surfaces) consists of pe-surfaces with an element of £ assigned to each marked point
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and morphisms being pe-morphisms preserving the labeling. Such an assignment
of elements of £ to the marked points of Y is called a labeling of Y and we denote
the lpe-surface by (Y,1), where [ is the tuple of elements of £. We denote the set
of labelings of Y by L(Y) (or £L(C) if C is the set of marked points).

Definition 6.8. A modular functor from the labeled pe-category of surfaces with
marked points and directions based on the label set £ is a functor V from the
category of lpe-surfaces to the category of finite-dimensional complex vector spaces
and linear isomorphisms satisfying the axioms MF1’ to MF6’ below.

MF1’. Disjoint union azxiom: For the disjoint union of any pair of Ipe-surfaces
there is the identification

V(Y 1,h) U (Yo,lo) = V(Y 1LYl Ul) =V(Y1,0) @ V(Y2,1p).

The identification is associative and compatible with the action of the mapping class
groupoid in the sense that V(f1 U f2) = V(f1) @ V(f2)-

MF2’. Factorization aziom: Let Y and Y, be pe-surfaces. Assume that Y, is
obtained from Y by a series of pinchings along (c1,P1),. .., (ck, Px), ¢; Nc; = 0,
whenever i # j, and denote by C' the set of basepoints Pi, ..., Py. Then there is an

identification . _
VY, )= @ V(Y (12 2),
z€L(C)

which is associative and compatible with the action of the mapping class groupoid.

MF3’. Duality ariom: For any lpe-surface (Y1) we identify the associated vector
space

VY,l)=V(-Y,])*
with the dual of the vector space associated to (Y, 1) with opposite orientation. This
identification is compatible with orientation reversal, the action of the mapping class

groupoid, MF1’, and MF2’ in the following manner:
e The identifications

are mutually adjoint.

e For an lpe-morphism f = (f,n) : (Y1,l1) = (Yo,l3) let f~ def (f,—n) :
(=Y1,l1) = (=Y, 1) be the induced one between the surfaces with opposite
orientation. Then

(@,y) = (V(Hz,V(f)y)
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for all z € V(Y1,l;) and y € V(=Y 1,11), i.e. V(f~) is the adjoint inverse of
f

e For vectors
1 ®ay e V(Y1UY,) =V (Y1) @ V(Yy),
@B € V(-Y1U-Yy) =V (-Y1)@V(-Y>)
associated to the the disjoint union of pe-surfaces we have
(01 ®@ ag, B1 ® B2)y,uy, = (a1, B1)y, (a2, B2)y,-

e When factoring
o0 € V(Y1) = PV (Y,, (1,7, 1)),
eBe €V(-Y, D) =PV (-Y,, (,2,2))

we get

(B0, ),y = D S(@) {0, Ba) (¥, (1,8))

where §(z) = S(z1) .. g(xk),x = (21,...,21), is a function S : £ — C—{0}
given as part of the data for V.

MF4’. Empty surface axiom: Let () denote the empty lpe-surface. Then

V(0) = C.

MF5°. Once punctured sphere axziom: Let 82 = (52, 0; (@, 'u)) be a pe-sphere with
one marked point and the only possible choice of e-structure. Then
C, fora=1,

e o\
V(Sia) = { 0, for a # 1.

MF6°’. Twice punctured sphere aziom: Let 8% = (52,R; (Q1,v1), (Qg,vg)) be a
pe-sphere with two marked points and the one possible pe-structure. Then
C, for a = I;,

Vs ={ o0

As in section 3 one may have the additional property of unitarity:
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MF-U’. A unitary modular functor is a modular functor such that every associated
vector space V(Y') is furnished with a hermitian inner product

(— ) :V(Y)eV(Y) —C

so that each morphism is unitary. The hermitian structure must satisfy compati-
bility properties like the ones in the duality axiom MF3’ and commutativity of:

V(YY) — V(-Y)*

L

V(Y —— V(-Y),

where the vertical identifications come from the hermitian structure and the hori-
zontal from the duality.

It is a modular functor like this that is constructed in [4].

It is possible to do an analysis analogous to the one in the last part of section 3. In
particular, we get the matrix S, corresponding to switching between two pinchings
of the torus.

Correspondence with e-surfaces. It is a tempting idea that one should be able
to construct a TQFT from this modular functor by using the apparent similarity be-
tween what happens when passing through a slice of index 2 and pinching. However,
it turns out somewhat more complicated and not at all as natural a construction
as one might think. On the other hand as we shall see in this section a modular
functor V on Ipe-surfaces induces a modular functor V on le-surfaces. Hence, by
Theorem 5.13 we get our TQFT anyway (Theorem 6.10).

Proposition 6.9. A modular functor V on the category of Ipe-surfaces induces a
modular functor V' on the category of le-surfaces.

Proof. In order to prove this we must show that to any e-surface Y, we can associate
a pe-surface Y in such a way that by associating the vector space V(Y) to Y a
modular functor on the e-surfaces is formed.

Let D be the unit disk with the center marked with a point Pp and let §: I —
D be the radial curve §(t) = (t,1), 1 € S'. A direction in PTp,D is thereby
defined. From any surface Y with parameterized boundary, we associate the pointed
surface Y constructed by gluing on D on all the boundary components using the
parameterization. This construction extends to the e-category simply by letting
Y = (Y, L) for Y = (Y, L) and by extending e-morphisms to act as the identity on
the glued-on disks. Clearly, — is a functor that is the identity functor on closed
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surfaces sending them to non-pointed surfaces and that preserves the properties of
being a subsurface as well as being a disjoint union.

One should check that gluing of boundaries correspond to pinching: Under the
conditions of Definition 2.7 let ¢; be the parameterized boundary curves in C, and
let g: Y — Y, be the identification map. Then what should be checked is that Y is

got from Y, by pinching along (g o ¢;, g o ¢;(0)). But that is left to the reader.
Now we simply define V for all le-surfaces as V(Y1) = V(Y1) and for all e-

morphisms as V(f) = V(f). It is easy to see that the axioms of a modular functor
on the category of le-surfaces are satisfied. O

Now, using Theorem 5.13 we get the main theorem of this section:

Theorem 6.10. A modular functor V from the category of pe-surfaces with marked
points and directions satisfying that S; 1 # 0, induces a complex 1-parameter fam-
ily of 2 + 1 dimensional TQFTs defined by solutions Ao, A1, Ao, A3 to AgA1 = 1,
A1A2811 =1 and AgA3 = 1. Any two members Z and Z' of this family correspond-
ing to solutions A\; and X} are related by

Z'(M) = kXM z(M),

Ao

for any e-3-manifold M, where k = - In particular, Z' and 7 agrees on closed

manifolds.

Moreover, if V is unitary we get a family of unitary TQFTs parameterized by
S, with the extra condition that A\g = A3 and A1 = Aa. O

APPENDIX A. ABOUT LAGRANGIAN SUBSPACES

This appendix gives a brief overview of C.T.C. Wall’s theorem about the non-
additivity of the signature along with the definition and some properties of the
correction term (the Maslow index) in the theorem. Moreover, we state and prove
a series of auxiliary results for Lagrangian subspaces in the first homology of the
boundary of a 3-manifold.

The situation is as follows: Suppose X is a compact 4-manifold decomposed along
an embedded 3-manifold M, into X; and X5 as depicted with artistic freedom in
fig. 20 such that

8X1 == (_Ml) U Mo,
8X2 = (—M()) U MQ,
8M0 = 8M1 = 8M2 =Y.

The problem is to calculate the signature of X in terms of the signature of X;
and X5. It appears that:
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Theorem A.1l. [70] If X is a 4-manifold as described above then
O'(X) = O'(Xl) + O'(Xz) — O'(Kl,KO,Kg),

where I{z = ker (Hl(Y) — H1(M7,)) for 1 = 0,1,2 and O'(Kl,Ko,Kg) is defined
below. 0

FIGURE 20. Decomposing the 4-manifold X = X; U Xs.

It calls for a little digression to explain the signature correction: Let A, B,C
be subspaces of a finite-dimensional real vector space V and consider the additive
relation between A and B

a=b, if there exists a c € C with a + b+ c = 0.

The domain is the set of a € A that can be written as —b—c¢, b € B, ¢ € C, thus it
is AN (B + C). We also see that a = 0 if and only if a € AN C. This of course is
symmetric in A and B and we get an isomorphism between

AN(B+C) d BN (C+A)
ANC a BNC

This isomorphism preserves A N B, which we can then factor out. Now, there is
symmetry also with respect to C so in fact we have identifications
AN(B+C) BN (C+A) CnN(A+ B)

W= lanB+An0) ~ BNO)+(BnA)  CnA)+(CNB)

Let w be a skew-symmetric bilinear form on V and denote by A+ the orthogonal
complement of A with respect to w. One may verify that for subspaces A and B,
At D BLif ACB, (ANt =4, (A+B)t = AtNnB+ and (ANB)t = A+ + B+,
We say that A is isotropic if A C A1. A subspace A is maximal isotropic if the
existence of a subspace B, such that B O A, implies that B = A. One can prove
that if A is maximal isotropic then in fact A+ = A. If w is non-degenerate, spaces
for which A+ = A are called Lagrangian.

Assume that A, B,C are isotropic with respect to w. Suppose a + b+ ¢ =
a +b + ¢ = 0 so that a and o' represent elements [a] and [a] in W. Define a
symmetric bilinear form on W by

¥([a], [a']) = w(a,b).
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This is well-defined by isotropicity of the subspaces. We check symmetry:

U(la], [a]) — ¥([a'], [a]) = w(a,}) — w(a',b) = w(a, V) + w(b, a’)
=w(a+b,a +b)—w(a,a)—wbb)=w(c)=0.

Now we define the signature correction term — also called the Maslov index —
as the signature of this bilinear form on W

(A, B,C) e sign ().

Lemma A.2. [70] Permuting A, B and C changes o(A, B,C) by the sign of the
permutation. In particular, o(A, B,C) = 0 if two of the subspaces are identical.
Moreover, if w is replaced by —w the sign of o(A, B, C) changes as well.

Lemma A.3. Let A;, B; and C; be isotropic subspaces of (V;,w;), i = 1,2. Then
A1 @ Az, By ® B2 and Cy & Cy are isotropic subspaces of (V1 & V3, w1 @ wy) and

(A1 ® Az, B1 ® By, C1 @ C2) = 0(A1, B1,C1) + 0(Asz, By, Co).

Proof. The proofs of these lemmas are easy and are left to the reader. O

Consider a surface Y and a maximal isotropic subspace L C Hy(Y') with respect
to the intersection pairing. Define

c(f1, f2) = =0 ((f1f2)+ L, f1+L, L),

where f; and fo are elements of the mapping class group I'(Y). If we let T'(Y) act
trivially on R, ¢ becomes a 2-cocycle (see e.g. [20]):

(da2c)(f1, f2, f3) = c(f2, f3) — c(f1f2, f3) + c(f1, f2f3) — c(f1, f2) = 0.

This means that ¢ determines a central extension of the mapping class group. This
central extension is of course identical to the extended mapping class group I'(Y)
defined in section 2, and it can be proved that it corresponds to Atiyah’s extension
of the mapping class group in [7] (see [1]).
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Lemma A.4. Let Y be a smooth, compact, closed, oriented surface and let Ly C
H,(Y;Z) be a Lagrangian submodule. Assume that o,...,a4 is a basis for Ly,
Then there exist 1,...,3q € Hi(Y;Z) such that a1, f1,..., 04,8y is a symplectic
basis for H,(Y; Z).

Strictly speaking a,..., 3, cannot be a basis of H1(Y,Z) as H1(Y,Z) is only a
Z-module and not a vector space. However, since there is no torsion and H;(Y,Z)
spans all of the vector space H;(Y,R) this abuse of terminology can be justified.

It appears to be common knowledge that the mapping class group I'(Y) maps
surjectively onto the symplectic group Sp(2g,7Z) (cf. e.g. [21]). Hence, the above
lemma has the immediate result that I'(Y') acts transitively on the set of Lagrangian
subspaces of Hi(Y) compatible with the integer lattice H,(Y;Z) C H1(Y), since
Sp(2g,7Z) acts transitively on the space of symplectic bases. This together with the
fact that c is a 2-cocycle proves the following:

Lemma A.5. Let Ly, Ly, L3 and L4 be Lagrangian subspaces. Then
o(L1, Ly, L3)+0(L1, L3, Ls) = 0(La, L3, Ls) + (L1, Lo, Ly).
O

Proof of Lemma A.4. First notice that because w is unimodular (i.e. every functional
H,(Y;Z) — Z can be represented by w and if w(a, —) = 0 then o = 0) we can always
find (; such that w(ay, 5;) = 1, since «; is a generator. Thus, we proceed as follows:

Choose (1 € (Spang{as,...,a,})t such that w(ay,B1) = 1, and put V; =
Spany{f:1}. Assume by induction that we have (31,..., §; such that

B € (Spang{ai,...,4;,. ..,ozg})J‘,
BieViEn- NVt
w(ej,B) =1, forj=1,...,1i,

where V; = Spany{3;}. While we always have that w(8;,5;) = 0 we see that
w(B;j, Br) = 0 for all j, k <4, j # k. Notice also that V; N V;, =0 for all j,k <4 and
Vi®---®V;)N Ly =0.

We want to find
Bi+1 € (Spang{ay, ..., &t1,. .., ag})L NVin---nvt

so that w(w;t1,Piv1) = 1. Le. let ¢: H(Y,Z) — Z be a homomorphism with
o(aj) =0 for j #i+1, ¢(B;) =0 for j <iand ¢(ajt1) = —1 and choose B;41 so
that ¢(—) = w(Bi+1, —). The induction ends at B,. Notice that ay,f1,..., o, fy
generate all of H;(Y,Z) and not only a sublattice, since w(a;,3;) = 1 for all ¢ =
1,...,9. ]

As already defined in section 2, we say that an (isotropic or Lagrangian) subspace
of H1(X) respects the integer lattice if it is generated by a subspace of Hy(X;Z).
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Lemma A.6. Let > be a genus g surface, let ¥y be ¥ with two small disks cut
out, and let X1 be ¥ with a small annulus cut out. Assume L is a Lagrangian
subspace of Hi(X) respecting the integer lattice. If i,: Y, < X is the natural
inclusion, L, = i;1(L) is a maximal isotropic subspace of Hi(¥,) respecting the
integer lattice.

Proof. We can assume that the genus is greater than 0. Suppose first that ¥ is
connected. Following Lemma A.4 we can choose a symplectic basis aq, f1, ..., g, B
such that L is spanned by a1, ..., ay. Choose curves c¢;, d; in ¥y C X so that o; = [¢4]
and §; = [d;]. Then H;(Xy) has a basis [c1], [d1], ..., [cg], [dg], 7, where 7 is coming
from one of the boundary components. Writing up Lo and Lg in this basis gives
the result.

Similarly for ¥, if the annulus is non-separating, we chose the basis such that
the surface is cut along a curve, say c;, representing ;. Then oy, as, Ba, ..., 04,8y
constitute a basis for H1(31), and thus we get the result for L;.

If we are cutting the disks out of two different components or cutting out a
separating annulus, Hy(Xg) = Hy(X) and H1(X;) = Hq(X) respectively and it is
easily seen that L, = L. O

We notice that any index 2-slice is an index 1-slice turned upside down (i.e. taking
the slicing function f to 1 — f) and obviously pairs of Lagrangian subspaces that
we get in the above procedure agree under that correspondence. Notice also that
all subspaces considered in homology are compatible with the integer lattice. We
have proved:

Proposition A.7. For any index 1-slice N and any Lagrangian subspace L €
H1(0gN) there is a naturally induced maximal isotropic subspace L' C H, (80N —
(DU D)) & Hy(01N — A) and a naturally induced Lagrangian subspace L" C
H1,(01N), such that L and L" are the images of L' under the respective gluings.
Symmetrically for an index 2-slice and a Lagrangian subspace containing the sub-
space generated by the collapsing curve. These constructions obviously agree when
an index 1-slice is turned into an index 2-slice or visa versa by sending the slicing
function f to1— f.

Denote by 3¢ the level surface of the critical value for a slicing function on N. Let
o : OpN — 3¢ be the gradient flow of the slicing function and let ¢1 : 01N — ¢
be the flow backwards along the gradient field. This induces maps in homology and

for x € H1(0pN) defines the subset ®(x) €of ©7. (pox(2)) of H1(01N). Let therefore

D(L) = 1, (vox(L))
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be the subspace obtained by flowing the Lagrangian L through N. Below we shall
see that ®(L) is in fact also Lagrangian. As it was introduced in Definition 5.1 such
a pair of Lagrangian subspaces (L, <I>(L)) is called natural.

We will see in the next proposition, that (L, L") is a natural pair of Lagrangian
subspaces. It is of course also possible to talk of natural pairs of Lagrangians for
general 3-manifolds with a slicing, by using the construction successively. From the
proposition below it follows that the natural e-structure of a 3-manifold in general
is independent of slicing.

Proposition A.8. Let N be a slice and L a Lagrangian subspace of H1(0gN); if N
is of index 2 assume also that L contains the subspace generated by the collapsing
curve. Then ®(L) is a Lagrangian subspace in Hy(0;N) and ®(L) agrees with L"
obtained by the cutting- and pasting-construction above.

Moreover, if L = ker (H1(8oN) — H1(NV)) for some 3-manifold N+ with bound-
ary ONtT = 9yN, then ®(L) = ker (H1(01N) — H1(N U N™)). In particular, ®(L)
is independent of both metric and slicing function.

Proof. We prove that ®(L) agrees with spaces we get by cutting and pasting and
thereby we get that it is in fact a Lagrangian subspace.

Notice now that for ¥’ being dy N with the appropriate bits cut out we have the
commutative diagram®

S s goN
T
N —2 5 3
since ¢;i; is the natural embedding in both cases. Therefore, in first homology we
have that @g4«to+ = @141« and

§01_*1(‘00* (Im 7:0* N L) = 901_*1900* (’0*35*1L) = 21*25*1L + ker P1x%-

However, in all cases considered L C Imig,, il*ia*lL D ker ¢, and il*ia*lL =L".

To prove that ®(L) = ker (H1(0:N) — Hi(N U NT)) look at the retraction
r : N — ¥¢ induced by the Morse flow. This gives a homotopy equivalence R =
rUId : NUNT — NI to a singular manifold N. Let ¢ denote the composition
of it : 9gN — Nt and It : Nt — N UNT and let i] and i¢ be the embeddings

81n fact the diffeomorphism that identifies ¥/ C 9N and ¥/ C 01N is <p1_1<p0, S0 i1 = (pl_l(poio.
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01N < NUNT and X¢ < NJ. Then there is a commutative diagram

H1(0oN) —2— Hj(NUNT)

‘PO*l ElR*

H(S,) ——  Hy(N})

SOl*T %TR*

i+
Hi(:N) —— H{(NUN™),

which implies that ®(L) = @1, wo«(L) = (if,) 7 (I}iF (L)) = kerif,. All La-
grangian subspaces are kernels like this by Lemma 2.9, thus independence of the
extra choices follows immediately. O

Lemma A.9. Let N be a slice, let L and L be Lagrangian subspaces of Hy(9yN),
and let K = ker (H1(ON) — Hy(N)). Then

o(K,Le®(L),Le ®(L)) = 0.

Proof. 1t suffices to show this for a connected slice. Let F* C H1(ON) = H1(0oN) @
H,(01N) be defined as
F={(z,~y) | z € Hi(oN), y € ®(z) C Hi1(O1N)}
= {(x,y) | T e Hl(aON)v Yy € Hl(alN)a PoxT = —<P1*?J}-
Had N been a mapping cylinder of some mapping class f, K = F would be the

anti-diagonal under the map f. We will prove that in fact ' = K in general for
slices.

Notice that ¢ is a retract of N; actually this retraction r : N — ¢ can be
realized by the Morse flow from each side of ¥¢. Thus, if i : IN — N, ri|ls,n = ¢u
and o« + @14 18 the composition

H1(9oN) @ H1(01N) = H{(ON) —=— Hy(N) —*— H;(S°).

IR

Therefore,
K = keri, = ker(po« + ¢14) = F.

Now, recall that ¢ on three maximal isotropic subspaces L1, Lo, L3 is defined as
the signature of the bilinear form on

Ly N (Ly + Lj)
(L1 N Lg) 4+ (L1 N L)

U =
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induced from the form on W. Hence, we have to look at

_ KEn(Le®l)+Ledl))
(ENLedl)+ (KNLed(L))

) ® ®(L + L) so from the above we have

—y) |z € L, y € ®(z)} and thus U =
L+l = KL + K; and therefore U = 0 and
(L)) = 0

But L@ ®(L)+ L& &) = (L +
that K & K n (L& ®(L)) = {(=

K. ;/(KL + Kg). Now, clearly K
subsequently J(K , L& P(L l~} I~J

(L

APPENDIX B. TECHNICAL TRICKERY
In this appendix we will prove the technical Lemmas 4.5 and 4.6.

Proof of Lemma 4.5. The problem is to smooth the function

| fil=) for z € My,
flo) = { ty — ty + fa(x) for x € Mo

without introducing any further critical points or changing the original ones.

There is a tubular neighbourhood of dM; where there are no critical points of
f1. Through the (backwards) gradient flow of f; we construct a collar of M; at
the boundary component f;'(tx) on which f; has the form fi(z,t) = fi(t) for
(z,t) € fil(tr)x]e,0], € > 0 and fi(-) is some smooth function without critical
points. Do similarly for Ms and thus the problem is reduced to a one dimensional
problem.

Assume therefore that we have two smooth functions f; and f; defined on |—1, 0]
and [0, 1] resp. Assume furthermore that 0 < f/(z) everywhere for i = 1,2 and that
we have Taylor expansions around 0, f1(z) = ag + a1z + R1(z) defined on all of
| —1,0] and fa(x) = ap + alz + Ra(z) on [0, 1], where R;(x) at least is of order 2.
We want to join them to a smooth function f:]—1,1[— R with f’(z) > 0 for all .

First step is to reduce to a piecewise linear problem. We wish to choose € > 0
and ¢: ] —¢,0] — [0, 1] such that ¢(] — £,0]) =0, (] —¢,—%[) =1 and ¢'(z) <0
everywhere, and such that

fi(x) = ap + a1z + ¢(z)R1 (),

is a perturbation of f; near 0 with fi(z) > 0. Now, fi(z) = a; + ¢'(z)Ri(z) +
@(z)R}(z). We can choose ¢ such that |Rj(z)] < % for z €] —¢,0]. Let k& > 2

be some constant and decrease € until |Rqi(x)| < ag',fl for x €] — €,0]; this is
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possible since R; is of order 2. Then choose ¢ with the additional properties that
¢’ ()] < 2%, Then

and on ] — £,0], fi(z) = ag + ayz. Similarly, we can construct fz(z) = ap + ajz +
Y(x)Ry(x) such that fo(z) = ag + a}z on [0, %’[ for ¢’ > 0 and % chosen similar to
®.

To simplify the notation we now assume that f1(z) = ag + a1z on | — K, 0] and
fa(z) = ap+ajz on [0, K| for K > 1. Without loss of generality we can also assume
that a; < @) and a; < ag. Then choose a partition of unity ¢; such that ¢;(z) =1
on ] — K,—1], pa(z) = 1 on [-1, 2] and p3(z) = 1 on [1, K[ and such that ¢, is
supported on | — K, —1[, 2 on ] —1,1[, @3 on |3, K[, and ¢} () + ¢4 (z) +¢5(z) = 0.
Put ap = ap + all;al, ay = % and g(z) = ap + aq; then g(—1) = f1(—1) and
g(1) = f2(1). Furthermore, let

f(@) = e1(x)(a0 + a12) + pa(2)g(x) + p3(x)(ao + aiz).

Clearly, f is smooth and agrees with f; and f2 outside | — 1, 1] and

f'(x) = a1p1(2) + @1 () (a1 + ao) + ()
+ ¢y (2) (a0 + 1) + ayp3(x) + 3(x) (a0 + a11).

Observe that

>0 fora:<—%,
a1<,01(3:){ =0 fora:Z—%,
alwg(x){>0 for—%<x<1,
=0 forx<—-1,2>1,
. =0 forz <3,
ale(x){ >0 forzxz> %,
1
o1 (z)(a1z + ao){ : g Zi . Sl ff;z _27%,
>0 for—1<a:<—%,
o5 () (ap +a1x){ <0 fori<z<l,
=0 forxg—l,—%<a:<%,x21,
1
L S
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hence, f'(z) > 0 for z < —1, —1 <z < 1andz>1. Alittle more work is required
for -1 <z < —%:

f(x) = a1p1(2) + @1 () (a1 + ao) + c1p2(x)py(z) (2o + 1)
=3 (a1 +e1(®) + a1 (1 = 1(2)) + (a1 — a}) (= + 1)pi (z)) > 0.

The interval % < x < 1 follows in the same way. This ends the proof of lemma 4.5.
d

Proof of Lemma 4.6. Choose an embedding of Y into R3 such that the first coordi-
nate is a Morse function. We have a map ® of the ambient space R3 x R, defined
as

D(z1, 9, 23,t) = (21 cOs 7L, To, T3, 1 Sin7t),

that restricts to a diffeomorphism

Q.Y xI— @Y x1I).

(= D
t imil /
-] R3 ¢

Ficure 21. Bending diffeomorphism.

Let
f:YxI—R

be the first coordinate of ®, f(z,t) = zysinwt. By construction f~1(0) =Y UY
and f~1(tx) = 0, for t; large enough. Now, given the (inverse of) local coordinates
¢ :U —Y CR3 we calculate the differential

du,v,t) (f o (p x IdI)) = <% sin 7t, % sin 7, 7 cos 7Tt> .
u v

Thus, (u,v,t) is a critical point provided ¢ = 1 and 86“;1 (u,v) = 68“;1 (u,v) =0
meaning that the critical points are the critical points of the first coordinate function
r1 embedded in the top meridian as we would expect. The determinant of the
Hessian is —7r2d%u’v)g01 sin® 7t hence, d%u’v,t) (f o (p x IdI)) is invertible if and only
if d%u’v)
Morse function. Thus, f is a slicing function with the required properties. O

(1 is invertible. But that is the case since the first coordinate of ¢ was a



PART 11

Towards a Calculation
of the Witten Invariant of
Finite Order Mapping Tori

1. INTRODUCTION

Let f: X — X be an orientation preserving diffeomorphism of a closed, smooth,
and oriented surface. Then we define the mapping torus X as the compact, smooth,
oriented 3-manifold obtained by gluing the ends of the cylinder X x I by f; i.e.
Xy =X x1I/~, where (z,0) ~ (f(z),1). If f =(f,m): X — X is an e-morphism
of an e-surface X = (X, L) (see section 1.2 for definitions), we see by the gluing
rule Definition 1.2.8 that (in the notation of Part I) the e-mapping torus is X =
(X, m—0(Ag, L® L,Ay)). We assume that the genus g of X is greater than 1.

Suppose first that we have a TQFT, Z, as the one defined in section 1.3. Then
it follows from the gluing axiom that the invariant of the e-mapping torus Xy is

Z(Xz)=TrV(f).

There is on the other hand a geometric construction of a vector space V(X)) to each
e-surface X which is conjectured to give a modular functor and therefore through
Theorem 1.5.13, a TQFT. We do however not need to know if this constitute a
TQFT in order to associate a number to each mapping torus; we may merely define
it as
Z(Xg) € TV (),

where V(f) denotes the natural action of f on the vector space V(X)) (which exists
by construction of V(X)). This definition was considered by J.E. Andersen in [1].
As there may be several e-surfaces X and e-morphisms f giving the same mapping
torus X y we have a priori no way of telling that this is an invariant of mapping tori.
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But it is definitely an invariant of pairs (X, f) of e-surfaces and e-morphisms. That
the construction of V' leads to a modular functor is a widely accepted conjecture; in
fact as mentioned in Part I, a proof may be close at hand (see [4]). In that case, V'
is part of a TQFT and Z(Xs) becomes an invariant of the e-mapping torus. (That
is why we dare abuse the notation writing Z(X ) for something which is strictly
speaking not an invariant of Xy.)

We only give a brief description of V(X)) here; for a more detailed exposition tai-
lored for our purpose, see [1]. Let X be a smooth, closed, oriented surface of genus
g > 2 and let G be a simple, simply connected Lie group (in our case it will be
SU(2)). The vector space V(X)) associated to X is defined as the covariant constant
sections of a certain bundle Z over the Teichmiiller space T'x with respect to a cer-
tain flat connection. As we are interested here only in finite order diffeomorphisms
7 of X, we may assume that 7 has a fixed point ¢ in T'x, and since 7 (or rather
its extended counterparts T = (7, m)) preserves this vector bundle over Tx and its
flat connection we need only to concern ourselves with the action of 7 on the fiber
Zy. Thus, let X, denote the Riemann surface X with holomorphic structure o and
let M(X,) be the moduli space of semistable G¢ bundles over X,. Then there is
a determinant line bundle £ over M (X,) whose first Chern class is represented by
the Kéhler form on M(X,). In fact £ is the ample generator of Pic (M (X,)) & Z,
and because 7 preserves the ample cone, 7*£ =2 L. Hence, the action of 7 lifts to £
in the manner described in section 3. There is also a determinant line bundle Lp
over T'x with a specified action of T on every real power L%, o € R. The space Z,
at level kK > 1 is defined as

Z, = HO(M(X,), L) ® L2,
where ¢, is the central charge given by
_ 1Gls
k4R

C

and A is the dual Coxeter number of G.

Hence, we may write

Z(X,) = Tr (1| H*(M(X,), £%)) - Tx (r|£52), (1.1)

where we employ the notation Tr(7|H) of e.g. [9] for the trace of the (natural) action
of 7 on the space H.

According to [7] there is a natural choice of 2-framing for a closed 3-manifold; the
corresponding e-structure, we will call the Atiyah e-structure, and in [1] it is proved
that using this e-structure the second factor in the above expression for Z(X,)
simplifies to an expression containing only local data for 7’s action on X, namely
the Seifert invariants of X ;. We will employ the notation Z(X,) for Z(X,), where
the Atiyah e-structure is chosen. Of course if Z and V are part of a TQFT, then
for any e-structure, the naturality axiom determines Z(X,) in terms of Z(X,); so
does (1.1).
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Synopsis. This part of the thesis is organized as follows: This section 1 is the
introduction.

Section 2 contains the computation of ker{n*: Pic(X /(7)) — Pic(X)} and related
results on pushforward of Ox and character line bundles.

Section 3 introduces the fixed point problem by considering the unramified case.
The concept of lifts is defined.

Section 4 considers the general case and establishes the main results Theorem 4.16
and Corollary 4.17.

Section 5 sketches in which directions we plan for further developments.

Section 6 deals with the example where 7 = J is the hyperelliptic involution on a
hyperelliptic surface X. We compute the space C of components of the fixed point
set in the moduli space, the dimension d, and e€5(X=:9).

Appendiz A gives proofs of results used in section 4.

Appendiz B gives a brief introduction to geometric invariant theory and proves that
EM: Ma(Y) — |[M(X)] is a morphism of varieties.

Some notes on notation. We are going to encounter several kinds of moduli
spaces so it might be worth taking a little time to introduce a strategy for giving
names to these spaces:

M(X) Denotes the moduli space of semistable holomorphic rank 2 vector
bundles over X with trivial determinant unless a determinant condition
is specified by a subscript (see below).

M (X;*) Is the moduli space of parabolic bundles, where the % indicates parabolic
data; the x could mean one of the following:

(x,a, P) where P is the set of parabolic points, x the multiplicities, and
a the weights. We may omit P and write only (x,a). Specify-
ing only (a, P) or (a) means we are considering all multiplici-
ties conforming to the dimension restriction dictated by a.

1 if P ={x,...,zn} and the weights a are specified for all
points in P. Then this indicates bundles with parabolic points
{zo,...,xi_1} and parabolic structure a|(z,,... z;_}-

Ma(x)  Denotes the admissible bundles for (X, 7) (see page 79); x can be either
Y or (X, 7) depending on whether (X, 7) is implicit or not.

These moduli spaces may further be decorated with sub- and superscripts. Let M
be any of the moduli spaces above.

M* can indicate stability conditions or the standard notation for fixed
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points, depending on whether

* =S5 which denotes the stable locus,
* = ss which is the complement of the stable locus,
* =G  when G is a group acting on M, means the fixed points.

M, indicates conditions on the determinant of the bundles:
*=d where d € 7Z, means bundles with degree d,
* =1L  where L is a line bundle, means bundles with determinant L,
* =G  where G C Pic, denotes the bundles with determinant in G.

2. THE KERNEL OF 7* : Pic(Y) — Pic(X)

For a compact Riemann surface X, an automorphism 7: X — X of order n
gives a possibly ramified covering 7: X — Y = X/(r) of Riemann surfaces. In
this section we calculate the kernel ker{ 7*: Pic(Y) — Pic(X) }; from this point
on referred to as ker 7*. Finally, we compute the push forward 7,Ox of the trivial
bundle.

There is a map (see [5]) Nm = Nm, : M(X) — M(Y) called the norm map and
defined by

Nm(f)(y) € [[ f@)"®,

zem—1(y)

where v(x) is the multiplicity of z and y € Y. There is a corresponding map
Nm, = m,: Div(X) — Div(Y’) which is

Nm(Zai-wi) dZGfZai'W(xi),

and which satisfies that Nm ((f)) = (Nm(f)). The norm map Nm, is related to
pullback 7* through Nm, on*(D) = degx - D for any D € Div(Y).

Assume that D € Div(Y) is a divisor for which the associated line bundle pulls
back to the trivial bundle, Ox, on X, i.e. 7*D = (f) for some meromorphic function
f € M(X). Then using the relation between pullback and norm map,

n-D= Nmow*(D) = Nm ((f)) = (Nm(f)),

we se that every element of the kernel has order at most n; hence, the kernel is
a subgroup of the n-torsion points Picgn)(Y) in Pic(Y). The analysis of which
subgroup, is divided into several cases.

Before we proceed we shall need to prove the following general statement:
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Lemma 2.1. Let 7: X — X be an automorphism of order n of a Riemann surface
X. Then for any n’th root of unity, \, there exists a meromorphic function h €
M(X) such that

horT=M\-h.

Proof. Let D' € Div(Y) and put L' = [D'] € Pic(Y), D = n*D’, and L = n*L’ =
[D]. We will produce a function with the required properties by studying the action
of 7 on the vector space

LD)E{feMX)|(f)+D>0}.

Recall that there is an element s; € M(L') so that D" = (sg); let s = m*s;. Then
D = (sp), and this induces an isomorphism

L(D) — H°(X, L)

defined by sending f to f - sg.

The automorphism 7 acts on the finite dimensional vector space H°(X, L) by
pullback. Since sg is 7-invariant, the action by pullback: (fo7)-so = (fo7)-(spo7)
on L(D) is natural with respect to this identification.

This means that if there is an s = f - sy € H%(X, L) such that 7%s = en s,

271

then for =e™» - f which is what we are seeking.

Therefore consider the action on H°(X, L). Here A" — 1 is an annihilating poly-
nomial for 7, so the minimal polynomial for 7 is a divisor in A — 1. Hence, the
minimal polynomial looks like

D) = A= A1) - (A= Aw),

where A1, ..., A\ are k different roots of unity. Therefore 7 can be diagonalized to
the form
T =Diag(A1, ..oy A1y ooy Akye ey Ak)-

Let d) = dim E) be the dimension of the eigenspace associated to the eigenvalue
A, and let dy = 0 if the root of unity, A, is not an eigenvalue. Notice that F; =
7*HO(Y, L), so from Riemann-Roch we get that

di = d — v+ 1,
where d’ = deg(L’), and + is the genus of Y.
Now, the trace of powers of 7 is given by Tr(77) = Zle dx,X. We claim that

n—1
1 . .
dy= =Y Tr(r)A.
A nj:O r(77)
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27

The verification of this is a straightforward calculation: let € = e™
A=¢e"™, 0<m<n. Then

and assume

S+
N
=

ﬂQ.

>

o

|
SRS
M|

(Edmg)xﬂ
( Zol dszslj> g=im

<
I
o
Q.
o

3
—

I
:MH

§=0
1 n—1
= (dsm + Z delga(l—m)>
7=0 l#m
=dem + — Zdlz lmJ_dem:dA,
l;ém 7=0

since Y7, o (eF-™)7 = 0 for | # m.

To calculate Tr(77) we use the Lefschetz fixed point formula, [8, Theorem 4.12],
which states that if ¢: (77)*L — L is a bundle isomorphism then

) . Tro
TrH (o) - T H (r,0) = > L
U2 (7, ¢) x50, dete(l—dg7)’

for j #0 mod n. We are free to choose L’ such that the degree of L is high enough
to guarantee H'(X,L) = 0, and since L is invariant, we may take ¢ = Id. Let
T1,4,---, 7,5 be the fixed points for 77 in X. Then around every x; j there are local
coordinates z; ; such that

7 (2i3) = Mg~ %,
where 7; ; = e*n'imi for some 0 < mij < %,
divide n we notice that 77 can only have fixed points which are fixed points for 7%
for some k|n and orbit length. In that case m; ; = j'm;j where j'k = j. (Notice
(though we will not use this) that there are relations among the m; ;’s: if j = I’
then we can choose z; j1 = z; ; and 79 (z; ;) = (77)!(zi ;) = nﬁ,j, - 2;,5.) This reduces
the Lefschetz fixed point formula to

(mij, ?) =1 when j|n. If j does not

l

Tr(r) =) < L (2.2)

i=1 = i,j
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for j #0 mod n. Now we get

n—1 1j _ 4
]_ . 0 A]
dA:E(dlmcH X, L)+ T )

Jj=11=1

:d’—'y—i-l—l—A(T,)\),

where A(7, ) only depends on X and local data for 7’s action on X.! Therefore,
we can choose L’ with a degree high enough so that

dy > 0, for all n’th roots of unity A.

Now we calculate the kernel in the unramified case:
Lemma 2.3. Let 7: X — X be an automorphism of order n without any special
orbits, so that the covering projection m: X — Y = X/(r) is unramified. Then
there is a line bundle L, € Pic(Y') of order n such that

ker m* = (L,).

Proof. Let h € M(X) be the function from Lemma 2.1 such that hor = e - h.
Then the norm map of A is given by

27 n—1

Nm(h)(y) = H h(TZ(:L‘)) — e n 2i=o Zh(x)n

= X5 gy = (1) (o),
for any x € 7~(y). We see that the divisor (Nm(h)) is divisible by n. Notice also
that the pullback is given by 7* Nm(h)(z) = Nm(h)(n(z)) = (=1)""'h(z)™. Let
D € Div(Y) be such that nD = (Nm(h)), then
nr*D = (r*Nm(h)) = ((-1)""'h") = (") = n(h),
and thus 7*D is a principal divisor with 7*D = (h); i.e. [D] € ker n*.

1Of course if 7 has no special orbits, we have A(T,\) = 0, as we would expect.



64 PArT II. CALCULATION OF THE WITTEN INVARIANT OF MAPPING TORI

Suppose that F € Div(Y) with [E] € kerm*. Then n*E = (f) for some f €
M(X), and

(D - B)= () - ()= (4)-

As 7 FE is T-invariant, there is a root of unity ¢ = e%j, 0<j<n-1,so that

for=c- f. Consider 7*(jD — E) = (%)

so there must be a g € M(Y) with 7*g = %, and in that case
iD — E = (g).

This means that ker 7* = ([D]).

We know that [D] has order at most n since nD = (Nm(h)), so suppose that
jD = (g) for some g € M(Y). Then (7*g) = (h’) in which case there must exist a
c € O*(X) = C* such that 7*g = c-h’/. But n*g is 7-invariant while hior = e nt i hd,
so m*g = c¢- h? if and only if j = 0 mod n. This means L, = [D] is indeed of order
n. O

Notice that the meromorphic function h in the proof is not unique, since we can
modify it by the pullback of any meromorphic function on Y. Hence, neither D is
unique, but there is a unique class of linearly equivalent divisors, and thus as we
proved, L, is in fact unique.

Notice also that if ¢: U — X is a local section of 7, then ¢ identifies D|y with
(Mlp@)-

As a final remark to this we observe that if n = ni - ny then 7 factors through
m: X — X; = X/(r™) and the induced m2: X; — Y, and there is a divisor D
in X; defined via h € M(X) so that ([D1]) = kern}. As (Nm,, oNmg, (h)) =
(Nm,(h)) = nin2D we get na(Nmy, (h)) = (73 o Nm,, o Nmy, (h)) = ninemiD and
we get 75D = D;. In particular, D; is m-invariant. Similarly, we see that there is
a divisor Ds of Y defined by h™ so that ([Ds]) = ker 74 and Dy = nqD.

Now we continue our quest for the kernel ker 7* by describing the ramified case.

Lemma 2.4. Let 7: X — X be an automorphism of prime order p such that the
projection m: X — Y = X/(r) is a ramified covering. Then the pullback

m*: Pic(Y) — Pic(X)
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is injective.

Proof. The proof of this statement is essentially due to Mumford in [52]. Let ¢: L —
Y be a line bundle in the kernel of 7*, and define the Riemann surface

X, ¥ {seL|sP=1€c0y 2LP}

and the unramified covering

7TL:XL —Y.

Notice that a global non-zero section s of L, if it exits, can be scaled to satisfy
sP =1, so that it gives a global section of X . On the other hand, a global section
of X is a global section of L. Hence, L is a trivial bundle if and only if X is a
trivial covering. Since

X ={(z,%) € X x X | m(z) = 7(Z)
={(z,s) e X x L |w(zx)=q(s),s" =1}
={sen*L|"=1}= X,

it follows by the same argument that 7#*L is a trivial line bundle if and only if 7* X,
is a trivial covering of X.

—

Suppose now that L € ker 7* so that n* X, is trivial and ¢: X x {1,...p} —
7* Xy, is a trivialization. That gives rise to a commutative diagram

X x[p] 22— X 225 Xg

o

Prl Prll WLl
X — X I v

where [p] = {1,...,p}. The projection pr has obvious sections o: X — X x [p],
and the composition ¢ = pr, op o ¢ is a morphism of coverings

In fact, 7* X7, = X X [p] if and only if there exists a morphism ¢: X — X making
the above triangle commutative, because we may produce a section o: X — 7* X,
by letting o(z) = (z, ¥ (z)).

Assuming that 7*L = Ox, we get 7* X, = X X [p], and from the existence of v
we have that

p = degm = deg(mL|tmy) - deg .

So if L 22 Oy, my, must be of full degree, deg7wy = p, and consequently degy =1
in which case 9 is an isomorphism contradicting that = is ramified and 7z, is not.[J
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Lemma 2.5. Let 7: X — X be an automorphism of order n with a fixed point
such that the projection m: X — Y = X/(r) is a ramified covering with a one-point
fiber. Then the pullback

m*: Pic(Y) — Pic(X)

is injective.
Proof. Let n = p;...p; be the prime factorization of n and let x € X be a point
fixed by 7. Then 7P2--Pt has order p; and keeps x fixed. Hence, for

T X — X4 def X/(sz...pt>

it follows from Lemma 2.4 that 7] is injective. Let 7 be the automorphism on X;
induced by 7. Then ord(m1) = p2...p and 71(x1) = 21 for x1 = 71 ().

Thus, the process continues by defining the pg-fold covering with

Tk - Xk—l — Xk d:ef Xk_1/<7',fi§1mpt>.

Obviously, 7y, has the 1-point fiber zx_1 = mg_2(zx—2) and the induced automor-
phism 7, has order ord(7x) = pg41...p: and keeps xx = mg(zg—1) fixed. The
process ends with the p;-fold covering

T¢: Xt—l — Xt =Y.

Now, m = m 0+ --omy so the pullback is a composition 7* = 7] o---om; of injective
homomorphisms and is therefore itself injective. U

Finally, we have arrived at the concluding statement on the kernel of the pullback
of covering projections:

Proposition 2.6. Let 7: X — X be an automorphism of order n with possible
special orbits of lengths ny,...,ny and let 7: X — Y = X/(r) be the induced
covering. Then there is a line bundle L, over Y such that

ker m* = (L),

and the order of L, is the greatest common divisor, gcd(n,...,ny,n), of the orbit
lengths.

Proof. If T has no special orbits, we are done by Lemma, 2.3. Assume therefore that

there are ramefication points. Let k& = min{ni,...,ny} so that there exits a point
x € X with 7% (z) = z, and define the --fold covering

mX—x % X/(rk).
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By Lemma 2.5 the pullback 7] is injective.
There is an induced automorphism 7, : X; — X3 of order ord(7;) = k; and whose
special orbits have lengths

n1,; = ged(ky,ng), i=1,...,N.

Let k3 = min{ni1,...,n1,n}. If k2 = k1, 71 has no special orbits and my: X; —
Xo/(m1) =Y is an unramified covering. Otherwise continue the process with the
’Iz—;—fold covering

T X1 — X2 d:ele/<T{€2>.

(This case also covers the special case where ko = 1 so that 79 has a 1-point fiber
and Xy =Y.) In general, define

def .
nji = ged(kj,nj—1,:), i=1,...,N,
def .
kjy1 = min{n;1,...,nj N}
and as long as k; # k1 we get a k}'c_,l-fold covering
J

def k;
mi: Xjo1 — X = X /()

which has a 1-point orbit. The process ends when either k; = 1 and X; =Y, or
when k; = kj_; and we can define an unramified covering 7;: X;_; — Y. Let s
denote the final step. In both cases m = w4 0 --- 0wy, so in the former case all the
pullbacks 77 are injective, as is 7*, and in the latter case all but 77 are injective
and ker 7} = (L, ), where L, is the line bundle of order k, defined in Lemma 2.3.
Hence, put L, = L., . Then

ker m* = (L).

Denote by m = ged(ny,...,ny,n) the greatest common divisor of the orbit
lengths. Then it is easily seen by induction that m|n;; for all i =1,..., N and all
J < s. In particular, m|k;. If ks = 1, then m = 1, which corresponds to the fact
that ker 7* = {Oy } is of order 1. If on the other hand ks = ks_;1 then

ks—l = ks = Iniin{ns—l,i} < Ns_1,; = ng(ks—lans—2,i) < ks—la

50 ks = ks_1 = ns_1,; for all 4. But since n;;|n, for all j and ¢, then ks|n; for all 4,
and therefore ks|m. Hence, we have proved that ks = m = ged(ny,...,ny,n). O

Remark 2.7. Notice that this shows that any such ramified cover coming from the
action of a single automorphism 7 of X factors into a ramified part 7,.: X — X/(7™)
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for which the fiber lengths are co-prime, and an unramified part m,: X/{(7™) —
Y whose degree is the greatest common divisor m of the orbits lengths of 7.
Clearly, if h € M(X/(r™)) is the meromorphic function from Lemma 2.3, such
that (Nmy,, (h)) = mD and [D] generates ker 7}, then h, = m h € M(X) satisfies
that (Nm,(h,;)) = nD and h, is invariant under 7™; in fact h, o 7 = X - h,, where

27

A=em .

Observation 2.8. We observe that if ¢ is an m’th root of unity (m the common
divisor of the orbit lengths), then there is a lift ¢ of 7,: X — X, X = X/(7™), to
Ox defined as ¢(g) = c™!-gor, , and there is a line bundle L. over Y defined as

the line bundle associated to the locally free invertible sheaf (’)g—? of the ¢-invariant

sections. Now, (’)é? is locally trivial as we may choose U small enough that there
exists a holomorphic function f with f o7 = ¢- f (this can be done using local
coordinates), such that f generates Of,—;)(U )= Ox(r~HU)){® as an Oy (U)-module.
Take 0 < j < m — 1 such that e = ¢, and h € M(X) from Lemma 2.1 such that
hor =em -h. We may identify the global meromorphic sections M(L.) of L.
with M(X){®. Let s, correspond to hJ under this identification; that is if U, is a
suitable covering of Y with generators f,, for Og(7=2(U))(®, then hi|y, = 754" fa,
where s, € M(U,), so s. has the local presentation s, (where s, = gapg - 53
on Uy NUp, mgap = (fpluanvs)/(falvanu,))- Then (sc)|u, = (sa), but clearly
($a) = jDx,|u,, s0 in fact (s.) = jD,, and thus L. = [(s.)] = L. As in the last
remark, this generalizes to the ramified case also, where the meromorphic function
h. will be the pullback under m, of A.

Notice also that the characters x of the induced automorphism, 7,, on X/(7™)
are exactly lifts like the ones just described, so for any such character there is a j
so that L, = LJ, and the orders agree.

Suppose E' is a holomorphic vector bundle with a lift 7, and assume that %g’f @ _

Idg, for every z € X, where k(z) denotes the length of the orbit through z. Then
the quotient £ = E/(7) is a well-defined holomorphic vector bundle. Also 7, = ¢- 7
acts on E, and it gives a vector bundle E, = E/(7.). If we identify E with Ox ® E,
7. can be realized in the following way: The local section e’ is in the orbit of 7
through e if there is a ¢ so that 74(e) = ¢’ o 7. Hence, if s is a local section of L.,
then s may be interpreted as an s € Ox such that soT = ¢- s, so that s-¢’ is a local
section of E for which (s-€') 077 = ¢?-7%(e) = 72(e). This gives an isomorphism

L.® E —s Ec
of holomorphic vector bundles over Y. Alternatively, this may be done in the

two steps m, and m,, and in that case the induced bundles E = E/(7) and
E.=E/(7]) over X = X/(r™) are the same, since 7,7, = 7,".
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Proposition 2.9. Let 7: X — X be an automorphism of the compact Riemann
surface X, and denote by m: X — Y = X/(7) the canonical projection. Then the
pushforward of the trivial bundle Ox over X is given by

n—1 n m—1
T.0x = @L; = @ L,
1=0 1=0
where m is the greatest common divisor of the lengths of orbits as in Proposition 2.6.

Proof. Consider first the ramified part m.: X — X = X/(t™). We may identify
T Ox =2 (Ox @@ (r(m~YU™)*Ox ) /(r™). On the other hand, there is a splitting
(Ox @& (rm= V™) Ox) (7 (U) = Eo(U) & - @ Ex_1(U) into eigenspaces
for the action of 7™ each of which is a Ox (U)-module, and obviously 7 is diagonal
with respect to this splitting. Hence, there is a splitting 7,.,Ox = L1 & --- D Lx,
and as m;m.«Ox = ~Ox we have by Krull-Schmidt-Atiyah that L; € kerny; so
from Proposition 2.6 it follows that L; = Ox.

The pushforward 7,.Ox is Ox interpreted as a sheaf of Oy-modules. The
action of 7, on Ox(m;1(U)) splits Ox (7, 1(U)) into a sum Eg(U) B -+ ® Ey_1(U)

of eigenspaces, where E;(U) is the eigenspace belonging to the eigenvalue emd.

Clearly, the sheaf E; is the sheaf Og) from Observation 2.8, so m,,Ox = Oy &
L, ®---® L™ 1 which gives the desired result. [l

3. Fixep PoOINTS IN THE MODULI SPACE, THE UNRAMIFIED CASE

Let X be a compact Riemann surface with an automorphism 7 of order n. We will
consider the action of 7 in the moduli space M (X)) of semistable rank 2 holomorphic
vector bundles with trivial determinant line bundle?. Denote the fixed point set for
T by |[M(X)|. In this section we will expose the unramified case.

Assume that there are no special orbits for 7 in X. In that case
m: X —Y =X/(r)

is an unramified n-fold cover. Now, the kernel of 7*: Pic(Y) — Pic(X) is as we saw
in Lemma 2.3 a cyclic group of order n generated by a bundle L = L. If M ( L)(Y)
denotes the moduli space of semistable holomorphic rank 2 vector bundles over Y
with determinant in the group (L), it turns out that there is a map

7 My (V) — [M(X)].

We shall see in the following that |M(X)| can be identified with a certain quotient
of My, (Y).

2Recall that this means strong equivalence classes of such bundles, where E and E’ are strongly
equivalent (written E = E') if the graded objects Gr E = Gr E’ are isomorphic.
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Lemma 3.1. There Is a well-defined map 7*: M, (Y) — [M(X)|. The pre-image
under 7* is generated by the groups (L) and (L) x (L) in the following way:

(") (*E) = {E,E®L,... EQ L"'} = E- (L),
for all stable bundles E — Y with det E € (L), and

() Hn* (L1 @ Ly)) ={Li® LM @ Ly ® L* | L* € (L) }
= (L1 & Ly) - ((L) x (L)),

for all line bundles L, — Y satisfying the determinant relation that L, ® Lo € (L).

Proof. We start by looking at the pre-image (7*)~!(7*E). Suppose E and F are
bundles over Y so that 7*E = n*F. Then of course m,(7*E) & m,(7*F), but
T (m*E) 2 1, (m*EQ Ox) 2 E@n,0x 2 EQ® @Z;é LF by the projection formula,
and likewise for F.

Now, if E is stable, the Krull-Schmidt-Atiyah theorem gives us that so is F and
there is a k € {0,...,n — 1} such that

F2E®Lk.

If E is not stable, the graded object is Gr(E) = L1 ® L, and again by Krull-Schmidt-
Atiyah, Gr(F) = L} & L}, where

L' ~L,® L

for some kq,ke € {0,...,n—1}.

Finally we prove that the map is well-defined; i.e. we check that the pull back 7*FE
of a semistable bundle E is actually again semistable. Let E; be the unique maximal
semistable subbundle of F = 7*F and assume FE, # E. Now, 7™*F, C 7*F = FE is
also maximal semistable so by uniqueness 7*FE; = F; and the canonical action of 7
on FE restricts to E7. Hence, we get bundles F, /(1) C E/(T) over Y satisfying that
7 (E1 /(7)) = F1 and 7*(E/(r)) = E. As E/{r) = E ® L* for some k, E/(r) is
semistable, so the slopes are related as u(E1/(r)) < u(E/{r)) which gives us that
w(Er) =n-u(Er/{T)) <n-u(E/{T)) = n(E) thereby proving that E is semistable.

d

Proposition 3.2. The map n*: M<L>(Y) — |M(X)| is a surjective morphism of
varieties.

Proof. Consider first the case where £ — X is a stable bundle. It is fixed by 7
so there exists an isomorphism ¢: 7*FE — E enabling us by the diagram below to
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construct a bundle map 7 covering 7:

E Y g P, F

pl prll pJ{ (3.3)

Since E is stable, it is simple and we can choose 7 so that 7 = Idg. Hence, there is
an induced vector bundle p: E — Y, with E = E/(7) and the canonical projection
#: E — E. Clearly, the vector bundle homomorphism ¢: E — 7*E defined by
o(e) = (p(e),7(e)) € ™E = {(2,8) € X x E | 7(z) = p(é) } is an isomorphism.
Now, deg(n*F) = n - deg(F) for all bundles F over Y, so the slopes are related by

p(m*F) = n - u(F), hence, if F C E is a proper subbundle, u(F) = £ - u(7*F) <
1 -u(m*E) = p(E). Le. E is stable.

Now, suppose £ — X is semistable but not stable. Then the graded object of
E can be written Gr(E) = Ly & Ly, where L, is a degree 0 line bundle over X for
v = 1,2. That E is a fixed point means that 7* Gr(E) = Gr(7*E) = Gr(E£), i.e.
L1 ® 17*Ly =& L1 & Ly. Any non-zero homomorphism between stable bundles of
the same degree is an isomorphism, so considering ¢, ,+: 7*L, — L1 @ Ly — Ly,
we see that either 7L, = L, or 7*L; = Ly and vice versa, since %, , cannot be
zero for both /.

That means that the isomorphism %, in diagram (3.3) with L @& Ly substituted
for F, can be chosen to preserve the splitting. If L; 2 Lo, the bundle isomorphism
7™ has to be diagonal with respect to the splitting, since HY(End(L;® Ly)) = CaC.
Thus in particular, we see that in cases of 7* L, = Lo 2 L1, n has to be even. And
in both the case of 7L, = L, and 7*L; = L,, it is easy to find a diagonal matrix
A so that (A7)™ = Idp,gr,. If L1 & Ly = Lo, apply diagram (3.3) to L thereby
getting a lift 7y to Ly which in turn gives a diagonal lift 7 to Lo & Lo, and by the
above argument there is a A so that (A7)" = Idr, gL, -

Hence, assume 7: L1 @ Lo — L1 @ Lo covers 7 and 7" = Idz,gr,- Then there
is a well-defined bundle E = (L; @ Ly)/(7) over Y. This bundle satisfies that
mE = L, ® Ly = Gr(E), and with the same argument as before we get that E is
at least semistable.

That 7* is a morphism is a a consequence of lemma B.14 in the case when there

is no parabolic structure, but it is seen directly also on page 120. O

Remark 3.4. Notice that an upshot of this proof is that any fixed point [E] (not
only for the unramified case) has a representative E’, Gr E' = Gr E, for its strong
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equivalence class such that E’ has a lift

F

E —— F'

a al
X —— 5 X

and that this can always be chosen so that 7 = Idg. A lift makes E’ into a
()-bundle. For future reference:

Definition 3.5. A [ift to a fixed point of 7 is choice of representative E', Gr E' =
Gr E, and a lift 7 to E’ satisfying that 7 = Idg. We denote by Lift(X, 7) be the
space of isomorphism classes of lifts.

Recall that M*(X), M<SL>(Y) and M*%(X), M(SLS)(Y) denote the subsets in the
moduli spaces consisting of stable points and the complement of the stable points
respectively.

From Lemma 3.1 and Proposition 3.2 we conclude that there is a 1-1 corre-
spondence between the quotients MfL)(Y)/(L) I_IM(“"LS)(Y)/((L> x (L)) and |M(X)].

Since det(E ® L) = det E ® L? = L*t? if det E = L*, we see that tensoring with
L cycles through the components M7, (Y) of M (SL)(Y) in steps of 2.3 Thus, if n is
odd, M<SL>(Y)/(L> = M3 (Y). If n is even, tensoring with L only identifies M7, (Y)
for odd powers and for even powers of k respectively, but L% acts internally in
each M7,(Y) so we have that M(SL)(Y)/(L) > M&(Y)/(L2)u Mi(Y)/(L%). In
the unstable case we notice that det(L; ® L¥* @& Ly ® L*?) = L1 ® Ly ® L¥11*2 50
all the strata M7 (Y) of M7, (Y) are identified under the action of (L) x (L). But
there is also an internal action of (L) acting anti-diagonally as (L*, L"~F), hence,
M (Y)/((L) x (L)) = M5 (Y)/{L).

There may however be stable bundles over Y that pulls back to form a semistable
but not stable bundle: Let Gr(E) = L1® L. If 7*L,, = L,,, 7 can be chosen so that
the action is diagonal. That means that we can define bundles L, = L, /(7) = Y
with the property that 7*L, = L,, so we end up with a non-stable bundle over Y.
This goes whether or not Ly 2 Ls. If on the other hand 7*L; =2 Ly 2 Ly, we don’t
have this splitting, at least not a priori. More precisely:

We know that in this case n is even, say n = 2m, and we see that (7*)2L, = L,.
Therefore we can chose the map 7 covering 7 such that 72 acts diagonally. Then
of course 72 covers 72 and (72)™ = 1. Define a new Riemann surface X = X/(72)

31t is a direct consequence of the GIT construction that My, (Y) is connected for any line bundle
L (except for genus 0 and 1).
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and consider the line bundles L, = L,/{#?). The automorphism on X induced by
7, we denote by 7 with 72 = 1. Since Ly = 7*L; we have that Ly 2 (7*L1)/(7?) =
7*(L1/{7?)) = 7*Ly and, if #: X — X is the canonical projection, 7*L, & L,,
hence in particular, L; and Ly cannot be isomorphic.

Let 7: X — Y be the 2-fold cover. There is an isomorphism 7,L; = (L, @
7*L1)/(7) and since L; % Lo, [53, Proposition 3.1] tells us that 7,L; is stable.
According to [53, Lemma 2.1] any such direct image satisfies that there is a canon-
ical 1somorphlsm L, ® #.L1 — 7Ly for all characters x of the group (7). Now,
n*w Ly = 7 ((L1 @® 7*L1)/(7)) & 7*(L1 ® 7*L1) = L1 ® 7*L1 = Gr(E). By
Lemma 3.1 any bundle E — Y for which m*E = *7. L1 satisfies that there exist a
k=0,...,n—1 such that E~#L,®LF. In particular, any such E is stable and
has a canonical isomorphism L, ® E — E for both characters x of (7). Clearly,
these characters are in 1-1 correspondence with the characters x of (7) satisfying
that 2 = 1.

If on the other hand E satisfies that L, ® E = E then there is a line bundle
Li — X such that E = w,L; & (L1 ®7* Ly )/<T> by [53, Proposition 2.6]. Hence, we
conclude that a stable bundle l} over Y pulls back to a semistable bundle over X if
and only if n is even and L, ® E = E for all order 2-characters of (7). Furthermore,
a semistable bundle Li & Lo over X is the pullback of a stable bundle over Y if and
only if n is even and 7Ly = Ly 2 Lq.

This justifies the further division of the moduli spaces: Let £, denote the order
2 subgroup of ker 7w generated by L, = L,% and denote by M (S Lf (Y) the subset of
M\ (Y) consisting of bundles invariant under the multiplication by L, € Ly (i.e.
the bundles that are non-stable under 7*) and let M <’ L>(Y) M, Y)-M fL"; (Y).
If n > 2 and even, the action of L on M, L>( ) is fixed point free, since no bundle

is fixed by L?%; then certainly no bundle is fixed by L. We have proved:

Proposition 3.6. Let X be a compact Riemann surface and 7 € Aut(X) of order
n and with no special orbits. Then w: X — Y is an unramified cyclic covering and
there are 1-1 correspondences

My (V) /(L) = [MP(X)],

M Ly U Mg, () /(L) x (L) = [M*3(X),

where

M4H(Y), for n odd,

R R
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or. N 0, for n odd,
M<L§ (Y)/L) = { Mg’ﬁ’f (Y)Uu Mz’ﬁ"(Y), for n even,
M2y (V)/(L) x (L)) = M (V)/{L).

and the action of L in the last line on the right is anti-diagonal as (L¥, L"~%) on
(L17 LZ)

As the moduli spaces My (Y) are irreducible for any line bundle L', the smooth
part M;,(Y) is connected. Hence, the proposition gives us right away a descrip-
tion of the set of connected components of the smooth part of the fixed point set
which we can compare to the description of J.E. Andersen in [1]. This namely has
one component in the case of n odd and two when n is even. This agrees with
J.E. Andersens calculation in [1] and the varieties are the same.

In this section we have only considered the case of fixed points with trivial deter-
minant. The arguments also covers any other determinant. However, it is obvious
that in order to get a non-empty fixed point set there are the constraints that the
determinant should be invariant under 7 and have a degree divisible by n.

4. F1XeED POINTS IN THE MODULI SPACE, THE GENERAL CASE

This section is devoted to finding the correspondence between fixed points in
the moduli space of semistable rank 2 holomorphic bundles over X and the moduli
space of certain parabolic bundles over Y. In order not to interrupt the line of
thought, some of the longer proofs of results related to elementary modifications
are postponed until appendix A.

In the sequel we employ the convention that the set of special points for 7 is
denoted P C X and the branch points for 7 by P = 7(P). For every point y € P and
w € m~(y) C P we denote the length of the orbit through w by k = k(w) = k(y), so
the ramification number is 7. There exists a neighbourhood U = U,, of w in which
there are local coordinates z centered around w such that 7% can be expressed as
%(2) = e*n"%i . 2, for a unique j = j(w) = j(y) with ged(j, #) = 1. (In particular,
there are no other special points in U,,.)

If 7 is a lift of 7 to the holomorphic vector bundle W of rank 2 and s1, s5 is a
holomorphic frame for Wy, then 7%: W|y — Wy can be represented by a matrix
A of holomorphic functions

such that we may write
%k(sl(z)) =ay1(2) - s10 Tk(Z) + ag1(2) - 890 Tk(Z),

7R (59(2)) = a12(2) - 510 TF(2) + aga(2) - 52 0 TF(2).
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The corresponding morphism of the sheaf of sections is s — 7 o s o 77! which
translates to

*(fi-51)(2) = from " (2) - 78(s1) (2)
= fio7 "(2) - (a11 0 77F(2) - 51(2) + @21 0 TF(2) - 52(2)),
T*(fa - $2)(2) = fao 7 F(2) - T8(s2) (2)
= fao77F(2) - (@120 77F(2) - 51(2) + aza 0 TF(2) - 52(2)),
where we abuse the notation and write 7 for both the bundle map and the map of

sheaves. We can pass back to a bundle map from the sheaf map by expressing each
v € W as v = s(z) which is sent to 7(s) o 7(z).

Since 7" = Idy we have a relation

n

A((T*) ¥ 1(2)) 0+ 0 A(TF(2)) 0 A(z) = Idy, .

In particular, for z = 0 corresponding to w the relation reads A(0)%* = Idw, .
Hence, from general theory (see page 61) A(0) is diagonalizable. Let us therefore
choose the frame sq, so so that

0, 0
20=(% 4)
where 9,,% = 1, v = 1,2. Pulling back a bundle E from Y yields only lifts with
A(0) = Id, so stronger measures need to be applied. The answer is elementary
modifications.

Write 0, = e*n ¥ for 0 < k, < ® and let 0 < k, < ™ so that k, = j~' -k,
mod 2. Then order the frame s1, 55 such that k7 < k5, and define m; = m;(w) =
k}. Hence, e k(k2=im1) — 1 Now, if o(z) = z, o™ generates the restriction
[—m1 - w]|y of the sheaf [— Zi%::f my - 7(w)]. On any subset U’ not intersecting
the orbit through w we choose the constant frame for [—m; - w]|y». Then the
induced action 7 on W ® [— Ei%;)l my - 7(w)] has the same presentation as 7 on

W yr. Around w (and any other member of the orbit through w) 7% on the sheaf
is calculated as

G CAE sv)(2) = (o0 T7E)™(2) - (a1 0 TR (2)  51(2) + az 0 T (2) - 52(2))

= e n kil=m). (a1, 0 775 (2) - (6™ - 51)(2) + agy 0 T F(2) - (6™ - ) (2)).

Thus, in every point of the orbit through w 7% is represented by
2;:Zk(k1—k2) O
A(0)=( ° .
o=(T )

We define a divisor D; on X as Dq|y, = —m1(w)-w for every w € P and D;|y =0
for U # w. Notice that D, is T-invariant. Now, put V = W ® [D;]. The induced
action 7 on V has in every special point the simple diagonal form defined by A(0)
above.
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Lemma 4.1. Let X be a Riemann surface and 7: X — X an order n automor-
phism. Suppose there is a lift 7 of the action of T to a holomorphic rank 2 vector
bundle V. Let y € Y be a branch point for 7 and w € 7 (y) a special point
of ramification number k, and assume that there exists a local holomorphic frame
$1, S92 in which ﬂfj: Vw — Vi can be represented by the matrix

(0 1)

Then there is a unique locally free rank 2 sheaf E of O x-modules and a commutative
diagram of short exact sequences and lifts

L A

0—V E Cr-1(y) — 0
0—V——F A Crigy) — 0

27

where C,-1(,) is the skyscraper sheaf with support 7~ (y) and O = e ki 0, for

271

j part of the local data for T: 7F(z) = e ¥ . z, ged(j, &) = 1. Locally around w,
E|y is generated by a frame (81, 82) such that v(s1) = o - §; and i(s2) = §a. The
induced lift 7 is unique and ﬂ’f, is represented by a holomorphic matrix function,
A(z), with respect to (31, 8,), such that

A(0) = (g 2)

Moreover, the determinant line bundles are related as det E = det V @ [~ (y)].
In particular, deg E = degV + k.

Let us call this process (first order) inverse elementary modification of V.

Clearly, our 7 and V fit into this lemma. For w € 7~ !(y), define the non-negative
integer my = ma(w) = ma(y) = kb — k7, and denote by Py the subset of P where
ma(w) # 0. Putting (V, 7) through the process of this lemma mg(y) times for every
branch point y € P results in a bundle £ — X with a lift 7: E — E such that

%ﬁ(w) =1Idg, for every w € P, and we define a divisor D5 in X with the restrictions
Dy |y, = ma(w) - w, so that det E = det V ® [D2] and deg E = deg V + deg D». Let
us emphasize what we mean by putting (V, 7) through this process mq times: Step
one is a regular first order inverse elementary modification which gives a bundle E}
equipped with a preferred frame (e, el) around the special point w such that the

surjection A; takes el to zero. Step two is another inverse elementary modification
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along the first basis vector el(w) which gives a bundle Fy with a frame (e?,e3)

satisfying that Ay(e3) = 0, and so on.

Now, as explained in Observation 2.8 there is a well defined holomorphic vector
bundle

pE=E/(#) —Y

with a natural identification of 7*E = E. Let #: E — E be the canonical projection.
We want to give E a parabolic structure thereby encoding the data necessary to
recapture 7: W — W.

Recall that a non-trivial parabolic structure of a rank 2 holomorphic vector bun-
dle F in the point y € P is a filtration

Ey:ﬁl,yDF?,yDF&y:{O}

and a pair of weights a,:
0< azlJ < af/ < 1.

A trivial parabolic point y € P is a point with the filtration
Ey:ﬁl,y 3F2,y:{0}

and a weight 0 < azll < 1. The number of weights is denoted n,, and the multiplici-
ties of the filtration is defined to be

k; = dim(ﬁi,y/ﬁiﬂ,y)
for 1 <4 < n,. For further details and a general definition see [47] or [62].
First define the filtrations by setting

Fy,, = 7(ker Ay,)

for some w € 77!(y) and every y € P. We notice that y is a non-trivial parabolic
point if and only if y € m(F). Therefore, let P, denote the non-trivial parabolic
points, Py = w(P). Then define the weights

kk! kk!
= ’I'L1: n2’ fOI'yEP—PO, (42)
kk! kk! )
= =1 afl:—z for y € Py.

n ’ n
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Definition 4.3. We say that the parabolic bundle (E, F', a) is obtained from (W, 7)
through (higher order) inverse elementary modifications and we write

(E,F,a)=P(W,7)
(P(W) if 7 is implicit).

This is in fact abuse of language as elementary modifications strictly speaking is
only the process of taking the bundle through the short exact sequences, whereas
here we also throw in a pullback and a tensor product by a line bundle specified by
the given data.

Let us see how we (re-)construct the bundle W with a lift 7 covering 7. Le. we
are given the parabolic bundle (E, F', a) as above; meaning that the weights are n’th
roots of unity (other relations on both the parabolic structure and the determinant
of E will have to be imposed in order for this to give a fixed point upstairs). Define
E = 7*E and for every w € 77 1(y), y € Py, let F, = (1*F),,

Lemma 4.4. Let y € Py, and let E be a rank 2 holomorphic vector bundle over X
equipped with a 1 dimensional subspace F,, C E,, for every w € m—'(y). Assume
that there is a lift 7 covering T and a local frame $1, §5 for E|y,, such that §a(w) € F,
and 7% has the matrix representation A(z) with

A0) = (g 2)

Then there exist a surjective sheaf homomorphism A\: E — C, -1, to the skyscraper
sheaf supported over m~1(y), such that ker \,, = F,, for w € 7~ (y). Furthermore,
there is a unique locally free sheaf V' of O x-modules that completes the rows in the
diagram

0— V - E A (Cﬂ'—l(y) —0
0—V—E—2 " Croi(y) — 0

of short exact sequence and lifts, so that V|y, is generated by local frames s, so
with t(s1) = o - §1 and 1(s2) = $2. And there is a unique induced lift 7: V — V
whose k’th power 7% has the representation A(z) with respect to si, ss such that

eZk(=1) .9
A(O)z( 0 1).
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Again, the determinant line bundles are related as det E = det V ® [ ~!(y)] and
deg ' =degV + k.

This is usually meant by saying that V is got through elementary modifications
of E by A

Now return to our parabolic bundle (E, F', a) and let my(w) = ma(y) = %(ai(w) -

U ) for w € 771 (y) and y € Py, and define the divisor D; € Div(X) with Dy, =
ma(w) - w for w € Py. Let Dy be the divisor which locally is D1|y, = —m1(w) - w

for w € P, where my(w) = %ai(w). Then the natural lift 7: F — FE is simply
defined by pullback and thus 7% : E,, — E,, is the identity. Therefore, we can send
(E, F,7) through the elementary modifications of the above lemma ms(y) times for
each y € FPy: at each stage the induced lift splits V,, into two distinct eigenspaces
(when ma(y) # 0); choose the flag as the eigenspace which is not annihilated by
¢ and continue the process using this flag. This way we get a holomorphic vector
bundle V and a lift 7: V' — V whose representatives over w are

e27rij(a3r(w)—ai(w)) 0
0 1

Define the holomorphic vector bundle W =V ® [—D;]. Then the induced lift 7 of
7 to W satisfies that ﬂ’f}: W, — W,, can be represented by

e27rija}r(w) 0
0 e27rija727(w) ’

and again det E = det V ® [D5] so that deg F = deg V + deg Ds.

Definition 4.5. Correspondingly we say that (W,7) was obtained from (E, F,a)
through (higher order) elementary modifications which we write

(W,7) = EM(E, F,a)

or simply EM(E).

Furthermore, we say that a parabolic bundle, that allows such elementary mod-
ifications, and gives a well-defined bundle W with trivial determinant and a lift 7,
is admissible. We write Ma(Y’) for the moduli space of all semistable admissible
parabolic bundles (if we want to specify (X, 7), we write Ma(X,7) for the same
space).

The admissible parabolic bundles E for (W, 7) is precisely those satisfying that
m*det £ = [2D; + D3] and the weights are given by (4.2) for some lift.
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Remark 4.6. Notice that the canonical action 7 on the pullback ™ E is always
diagonal around the special points (it is simply 7(z,é) = (7(z),€), which makes
the isomorphism ¢ on page 71 equivariant). Thus, also 7: W — W is diagonal in
this sense. Hence, an upshot of this is that lifts 7 of 7 with 7" = Idy, are always
diagonalizable locally around every point in X.

Remark 4.7. Remember from Remark 2.7 that we can factor 7: X — Y into a
ramified part
T X — X = X/(7™),

which is a composition of coverings containing a one-point fiber, and an unramified
part
Ty: X — Y.

There is an induced automorphism 7,: X — X. In the case (E, F,a) = P(W,7™),
we claim that there is an induced lift 7, : (E,F,a) — (E,F,a), and that (E, F,a) =
(E,F,a)/{%,), where (E,F,a) = P(W,7). Conversely, we claim that the identity

EM(r*(E, F,a)) = (W,7) holds.

To see this notice first that the special orbits for 7™ have lengths k(w) = %

27

and that the action in local coordinates still look like (7™)w () = e*5 % - z. Now
the rest of the data is easily calculated: If 7 is represented by A then so is (%m)%
and consequently k, = k,. Hence, for 0 < k], < 2 /% = 2 defined by kl, = j=! - k,
mod 7 we have that k! = k!, and thus ms = my. Now, as the basic exact sequence
(of Lemma 4.1) is the same as before, clearly the vector bundle constructed is F,
and the induced lift 7: E — E is #™. It follows that (E,F,a) = (E, F,a)/(%,),

where 7, is the lift induced by 7. The converse is proved using similar arguments.

Stability. Let us contemplate the stability relations: Recall that stability respec-
tively semistability is preserved under tensoring with line bundles, so W is stable
(resp. semistable) if and only if V' is stable (resp. semistable). Hence, we seek to
relate the stability relations of the holomorphic bundle V' and the parabolic bundle
E

Lemma 4.8. Suppose L is a T-invariant subbundle of V.. Then there is a parabolic
subbundle L of E induced through the inverse elementary modifications, and

par u(E) — par (L) = - (u(V) ~ (D).

Moreover, a parabolic subbundle L of E induces through elementary modifications
an invariant subbundle L of V', and the same equality holds.
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Corollary 4.9. Under the conditions of the above lemma

p(L) < pu(V)
(resp. p(L) < (V) if and only if
par u(L) < par u(E)
(resp. par u(L) < par p(E)). O

Proof of Lemma 4.8. Let L C V be a 7-invariant subbundle. Using Lemma A.2 and

Observation A.3 we get a 7-invariant line bundle L c E. This gives a subbundle
L=L/(#;) CE

For any subbundle L of E the weights assigned, that makes it a parabolic sub-
bundle, are as follows

a;(f/) = azl} = af/, for y € P — P,

a, for L, # F, and y € P,
2
y’

a for f)y = Fy and y € Fp.

For a parabolic subbundle L of E, put
P(E):{?JEPME@/?AF@;}-
Then P(£) & 7-1P(£) = P(r*L) of Lemma A.2, and there is a subbundle L C V
whose sheaf of sections fits into

L ~ Alﬂ_*"
0— I — 1 ef “ F.z —0.

Now we calculate the parabolic slopes of E and its subbundles: par deg(E) =

deg E + doyep S k;ay, where deg E = Ldeg E = L(2deg Dy + deg D,), so

7y = | 1 ay + ay
par u(E) = %(2degD1+degD2)+ Z al + Z 2y,
yeP-Fy yeP,

Recall that Ds|y, = ma(w) - w, and ma(w) = ma(y) = k) — k] = (—(a2 —a}),
SO we may write

—degDz—FZu:Z( ()mz(y)—i-ay;a)

yeP yeP

:Z(a@%;a;_{_a -I—a) Za

yeP

\J
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and hence, the parabolic slope of Eis

~ 1
par u(E) = — deg D, + Z a; + Z az. (4.10)
" veP-P,  ycho

From Lemma A.2 and Remark A.4 it follows that det 7*L = det L ® [Dy| B(D)]
and subsequently ndeg L = deg L + deg(D2\P(E)). Hence,

1
par u(L) = E(deg L+deg(D2|p(i))) + Z agll-l- Z azll-l— Z az. (4.11)
yeP—Fy yeP(L) yEPy—P(L)

1

y and arguments similar to the ones

Using the relation between mo and afj —a
leading to formula (4.10), this implies

~ ~ 1
par u(E) — par pu(L) = ﬁ(deg D, —degl).

On the other hand, V. = W ® [D4] so degV = deg W + 2deg D1 = 2deg Dy and,
thus, we get that

par () — par p(E) =~ (u(V) — u(1)).

O

Suppose (E, F ,a) is parabolic semistable and let V; be the unique maximal
semistable subbundle of V. As 7(V}) is a bundle with the same properties, 7(V7) =
V1 by uniqueness. Assume that Vi # V so that V' is not semistable. Then V; is an
invariant line bundle in V" and employing the previous lemma we get: p(Vy) < u(V)
by semistability of E, thus contradicting the assumption on V. Hence, we have
proved that W = EM(E) is semistable when E is parabolic semistable.

If on the other hand W is stable (resp. semistable), then so is V', and using Co-
rollary 4.9 it is evident that if E = P(W), par u(L) < par u(E) (resp. par u(L) <
par ,u(E’)) for every parabolic subbundle L C E, i.e. E is parabolically stable (resp.
semistable).

It is obvious by construction that P is a well-defined map from Lift(X,7) to
Ma(Y'), and the only thing to check in order to make sure EM is a well-defined map
the other way, is that if Gr(E, F,a) = (L1,a1) ® (L3, a3) then GrEM(E, F,a) =
5M((I~/1, a1) @ (Lo, as)). This amounts to the following: suppose that

0— (L1,a1) — (E, F,a) ——— (L2,a2) — 0.



4. F1XED POINTS IN THE MODULI SPACE, THE GENERAL CASE 83

Then the subbundle L, gives an invariant destabilizing subbundle L; of W =
EM (E , F,a). Another line bundle L, is induced over X by the subbundle (ig, as) C
(I:l, ay) ® (i2, as), and the claim is proved if Ly & W/L;. This can be seen by a
chase round the commutative diagram

0 0

1 1

0—>L1—>7T*L1—>F‘p(L1)—>O

;

— O

0 / m*E F 0
W/Ll f 7T*L2%F‘P(L2)%O
L2/ 0 0

short exact sequences of sheaves, which gives a non-zero homomorphism f between
line bundles of the same degree.

Let us record our progress so far in the following lemma:

Lemma 4.12. Let 7: X — X be an automorphism of a Riemann surface and
denote by m the covering X — Y = X/(r). There are well-defined maps

EM: Ma(Y) — Lift(X, 1),
P Lift(X,7) — Ma(Y).
Forgetting the lifts, EM gives a surjective map EM onto the fixed points set | M (X)|.
Notice that parabolic bundles in Ma(Y’) coming from non-stable bundles on X
have flags respecting the splitting W = L1 & Ls.
As in the unramified case there may be stable parabolic bundles that yield only

semi-stable bundles (i.e. not stable).

Lemma 4.13. Let E be a stable parabolic bundle over Y. Then the underlying
bundle W of EM(E) is a semistable but not stable vector bundle over X if and only
if the order of the group (L) is even, say 2, and L' @ E = E. O

Again we denote by £, the order 2 subgroup (L) and by Ma“~(Y) the moduli
space of admissible parabolic bundles fixed by L.
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Proof. Suppose that V is semistable and not stable, and let L1y C V be a desta-
bilizing line bundle, u(L;) = p(V). Following Lemma A.2 there is a line bun-
dle I, C E such that (L) C ﬁl, and if Lq is 7-invariant, we may construct a
line bundle I ¢ E with par u(L) = par u(E) contradicting the assumption on E.
Hence, assume 7*L; 2 Lq, and let Ly be the quotient of V' by L;. Notice that

u(Lz) = (L) = p(V).

If V is a semistable, fixed point and Gr(V') = L1®Lg, then 7*L1®7* Ly = L1® Ls.
As L, and 7*L,, all have the same degree, we conclude that either 7*L, 2 L, (which
we excluded above) or 7L, = Lo and vice versa.

Recall from Remark 2.7 that the covering 7 factors through a ramified covering
7, and an unramified covering 7,. The ramified covering , is obtained by dividing
out by the action of 7™, where m is the greatest common divisor of the orbit lengths
for 7. Consider therefore first the case of a ramified covering for which the greatest
common divisor of the lengths of the special orbits is 1. That means that there is
at least one fiber of odd length.

Let m-1(Z) be a fiber of odd length k and consider a neighbourhood U,, around
w € m, }(z). Since any lift, 7 of F, is locally diagonalizable (Remark 4.6) we may
without loss of generality assume that the matrix representation of 7% is A = Id
over U,.

Let f)u C F be the line bundle constructed in Lemma A.2 from L,. Clearly,
%I:l = ig and vice versa, and f)l and fa spans E away from w (where they collapse
to a line) by Observation A.3. The induced automorphism 7% interchanges these
two bundles, R = fzg, which contradicts the fact that 7% is represented by A = Id
over U,. Thus, no stable parabolic bundle E over the target surface in a ramified
covering with an orbit of odd length, can give rise to an only semistable bundle V'
upstairs.

If #: X — Y is an unramified covering, we know the result from section 3, so
consider the unramified part 7,: X — Y of a ramified covering 7: X — Y, and let
us generalize the result of section 3 to parabolic bundles. Let (E, F,a) = % (E’ F, a)
be a semistable (not stable) parabolic pullback of a stable parabolic bundle. Now,
(E, F, a) = (E,F,a)/{7,) by Remark 4.7, so any invariant parabolic line bundle
L C E of parabolic slope par u(L) = par u(E) gives a parabolic subbundle L=
L/{#,|L) of E with par (L) = par u(E), thus contradicting stability of E.

Hence, assume GrE = L; @ Ly as a parabolic subbundle so that 7,L; % L
and par (L, ) = par u(E). Then the order of 7, is even, m = 2[, and the covering
factors through 7: X — X = X/(72) and the double cover 7: X — Y, the latter
having the deck transformation ¥: X — X induced from 7,.

Now, L, is 72-invariant and we get line bundles L, = L,/(#2) over X. As in
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section 3, 7*L,, = L, Ll * Lg, and 7L, = L. Therefore, there is the identity

of holomorphic bundles, and we recall that the vector bundles E that come about as
a push forward in this way are specified precisely as those invariant under the action
of the group of characters of (7); i.e. there is a canonical isomorphism L, ® E — E
for every character x of (7).

We check that E is parabolically stable. Assume conversely that LCEisa
parabolic subbundle of parabolic slope par u(L) = par ,u(E) Then par pu(7*L) =
2par (L) = 2paru(E) = par p(7 *E) and 7*E = L1 @ Ly so by Jordan-Holder
([62, 3.1V.12]), #*L = L, or #*L = Ly. But #*L is invariant and neither of L, are,
so E has to be parabolically stable.

The group of character line bundles L, for (7) is exactly the order 2 subgroup
(LYY C (L) (see Observation 2.8). The parabolic bundle (E,F,a) is invariant
under (Lﬁr) if and only if the vector bundle E is. O

Lemma 4.14. The map P is injective on the subset of Lift(X, T) consisting of the
stable points and points whose underlying bundle can be represented by L1 & Lo,
where L, and Ly are invariant of equal degree and Ly 2 Ls. In fact on this subset
N

5M0P|N=IdN.

On the part of the complement of N where 7L, = Lo 2% Li, the pre-image
P~'(P(W,7)) can be identified with C*

However, if W = L & L and m is even the situation is even more degenerate
and there are lots of lifts that do not come up using our construction. But we may
exclude those extra lifts for out definition of Lift(X,7) and in that case it turns
out that as maps between semistable bundles with diagonal lifts and the semistable
parabolic bundles of Ma(Y'), P and EM are each others inverse.

Proof. Assume that P(Wy,71) = P(Wa,7s) = (E, F,a). Right away we see that
the exact sequence defined by #*F, #*F, and a is unique, so we must have that
W1 = W, and in every special orbit 7F = 7% is determined by a.

Suppose first that W = Wy = W,y is stable and 7 is a lift. Then there are n
other lifts 7. parameterized by ¢ € C, ¢® = 1 such that 7. = ¢- 7. In every w € P,
~k(w) = 7(®) 50 ¢ has to satisfy that ¢**) = 1 for every w € P. This means
exactly that ¢™ = 1 where m is the greatest common divisor ged(ny,...,ny,n) of
the lengths of the orbits.



86 PArT II. CALCULATION OF THE WITTEN INVARIANT OF MAPPING TORI

Then induced lift 7 is scaled in the same way as 7. If E = E/(%), then using
Observation 2.8 we identify

E,=E/(?#)=EQL.=EQLJ.

for a unique 0 < j < m — 1 corresponding to ¢ (actually ¢ = i ). The canonical
lift in E' that makes the isomorphism ¢.: F — ©*E, of page 71 equivariant is 7,
so up to isomorphism we recapture (W, 7) exactly by applying EM.

Similarly, if W is semistable but not stable, it is strongly equivalent to a direct
sum L1 @ Ly of two line bundles L, with p(L,) = u(W). First assume that 7*L, =
L, and L1 2 Ls. Then with respect to this splitting any lift is diagonal and can be
written in terms of a fixed lift 7 as

~ . C1 (X1 0 for = — a1 0
7—(01,02) o 0 Co * (9 ’ T= 0 Qa9

where, by the same arguments as in the stable case, c]' = 1.

Given (W, 7), then (E,7), A\: E — F, and a are uniquely determined. Scaling
7 as described results in a similar scahng of 7, where we notice that the induced
bundles L C FE are invariant and F = L1 @ L2, as noted in Observation A.3.

In that case we get E(c1 ) = E/{Te1,00)) = (L, ®L71)@(L2®L32) for ¢, = e'm v
and E = L1 ® Lo. Arguing as before We see that these m? parabolic bundles corre-
spond uniquely (by pullback) to the m? lifts upstairs having the matrix presenta-
tions in the special points as determined by a.

Now, if W = L, & L, is semistable but 7L; = Ly 2 L1, then m = 2[ is even and
T(c1,c,) May be represented as

~ . 0 C1 Q9 ~ 0 (5]
T(C]_,CQ)_ (C2'a2 0 )7 fOI‘T— (a2 O )_

Therefore, as 7~'(k (w)
C1,C2

Tlerea) = ((0102)léa1a2)l (C1Cz)l((]0zzoz1)l) - ((0‘1842)1 (Olzgvl)l) ’

s0 (c1c2)! = 1. Hence, ¢y = e”T'9 - ¢7* and there is a solution for every 0 < j <1 —1
and c; € C*.

)= 7k(w) for every w € P, we have

The line bundles L, = L, /(7™ Tlersca) 2,0 — X are unaltered when changing c;, and
the lift 7, (¢, c,) of 7y tO L1 @ L, induced by 7 T(c1,c0) ACHS as

C1Co - X109 0
0 C1C9 * C¥a(X1 )
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Therefore, we get line bundles Iv/,,7(cl7c2) =L,® LC1027 where Lc1C2 = LZ;T is the line
bundle over X defined in Observation 2.8 and j is uniquely defined by ¢1co = e’ T,
In the last step, 7#: X — Y, there is no ambiguity, as (7*)"1(#*E) = {E, E ® Lz},
but E > F® L;. Hence, the [ different parabolic bundles E® L7 correspond to [
different families of lifts each of which is parameterized by C*. O

We now prove that the inverse elementary modifications constitute a left inverse
for the elementary modifications.

Lemma 4.15. The map EM is injective; in fact, for any admissible parabolic
bundle (E, F,a) o o
PoEM(E,F,a)=(E,F,a).

Proof. Suppose EM(E1, Fy,a1) = EM(Es, Fy,a5) = (W, 7). As 7 determines the
exact sequence and the weights uniquely, a1 = a3 and the only possible ambiguity
can be in the pullback Hence, assume that 7r*E1 >~ r*F,. Then as m, (m* E,,) =

T (T *E,,®(’)X) E,m.0Ox = E,,®®" ! LI, we have that if the parabolic bundle

E'1 is stable, then by Krull-Schmidt-Atiyah so is Eg and thereisa 0 <g<m-1
so that
E~E® Ll

as holomorphic bundles. But in order to give the same exact sequence the parabolic
flag has to agree under this isomorphism as well.

When E; is not fixed by L., the m different bundles Ei® L7 correspond by the
proof of the previous lemma precisely to the m different lifts with the given data
in the special points, and P and EM are each others inverse as maps between the
stable stratum in Lift(X, 7) and the stratum in Ma(Y") consisting of stable parabolic
bundles which are not fixed by L.

When E; is stable but fixed by £, then the m bundles are pair wise isomorphic
so there are [ distinct bundles, and they correspond modulo C* to the [ different
lifts upstairs.

If E’l is semistable we may look at the graded object l~}1,1 @El,% and we get from
Krull-Schmidt-Atiyah that also Fso is semistable and the line bundles in the graded
object have to satisfy that

fzz’,} = ffl,l ® L;Ir” or fq’z X Lgr”

for some 0 < ¢, < g—1 (i.e. fzz,z o I~/1’2 ® L2 if I~/2,1 o I~/1,1 ® LI and vice versa).
We conclude as above that the m? different parabolic bundles correspond to the m?
different lifts of this type. So P is in fact left inverse to EM. O

Since P is surjective, there is a well-defined action of Z/n respectively Z/n x Z/n
on Ma(Y) defined by its action on Lift(X, 7). We shall study this action in the next
subsection. Before that we collect the last series of results an more in:
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Theorem 4.16. Let 7: X — X be an automorphism of the Riemann surface X.
The map
EM: Ma(Y) — Lift(X, 1)

between the moduli space of admissible, semistable, parabolic bundles over Y =
X/(r) and isomorphism classes of lifts (W, T) of T to semistable holomorphic vector
bundles W is injective. The map is one-to-one from the subset of stable points in
Ma(Y), not fixed by L., onto the stable points in Lift(X, ), and from the subset
of semistable points onto the subset of semistable points represented by invariant
line bundles L, and Ly.*The inverse of EM on this subset is the restriction of P.

Moreover, the surjective map
EM: Ma(Y) — [M(X))|

is a morphism of varieties.

Proof. The only thing there remains to be proved is that €M is a morphism. That
is the exact statement of lemma B.14. O

Recall from the way that Lift(X, 7) was defined that there is an action by Z/n x
Z/n and Z/n on semistable respectively stable lifts which exactly determines the
fixed points. Define an equivalence relation ~ on Ma(Y') by the action of Z/n x Z/n
and Z/n: Ey ~ Es for E, € Ma(Y) if

(1) 1:7,’1 and L:E‘2 are both stable and E- EZ/n . Ey, or 3
(2) E; and FE; are both semistable and Fy € (Z/n x Z/n) - Ej.

Corollary 4.17. Under the assumptions of the previous theorem, we get an iden-
tification
EM: Ma(Y)/~ — |[M(X)],

under which the stable locus of |M (X)| is identified with the stable points in Ma(Y")
which are not fixed by L.

Of course we still need to prove that this is in fact an isomorphism of varieties,
which is something we have scheduled for the next stage of the project. But given
that this gives a complete description of |[M (X)|. Notice in particular that we have
good control over connected components of Ma(Y'), since at least for higher genera
fixing a determinant and a weight configuration gives a connected component of
Ma(Y). If the genus of Y is less than 2, other measures must be applied (see
section 6).

4This is of course assuming that we limit lifts of L @ L to diagonal lifts.
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The action of Z/nxZ/n and Z/n. Now, consider the action of Z/nxZ/nand Z/n
induced on Ma(Y) by P and the action on Lift(X, 7). In fact, the discussion above
dealt with the action of the normal subgroup Z/m X Z/m respectively Z/m which is
particularly important as it is this that determines which stable parabolic bundles
are sent to stable bundles upstairs. We cannot give a nice unified presentation of
this action. Instead we describe in detail what happens during the action of Z/n
on a stable parabolic bundle giving a stable fixed point. The semistable case can
be analyzed in the same way. In section 6 we explain also the action on semistable
points in the case of a hyperelliptic involution.

The action on Ma(Y) is defined through the action on lifts which is simply the
multiplication by an n’th root of unity. Therefore, let W be a fixed point, 7 = 7
a lift, and k.o = ko, L,o = k,,, myo = m, and j the data from before. And
let (EO, Fy,ap) = (E, F, a) be the parabolic vector bundle corresponding to (W, 7).
Notice that tensoring by a locally free, invertible sheaf is an exact functor so if we
define E’ to be the vector bundle that extends C,-1(,) by W, i.e. E' is obtained by
elementary modifications on W,

0— W E' Cr1() — 0.
Therefore, for any line bundle L, we get a short exact sequence
0—WQL—FEQL——Cr1(p)—0.

Hence, by uniqueness of the extension, the bundle obtained by elementary modifi-
cationon W® Lis E'® L.

For every w € m~(y) define j' = j'(y) = j'(w) = j(y)~" mod % so that 0 < j’ <
2. Define e, and eZ, to be the two eigendirections in W, corresponding to k1o and
kg o respectively. The action on 7 is simply (I, 7) — e*n' 7 so put k, )=k, +5-1
mod %, 0 < k,(I) < % and define

k
1, = min{ky (1), ka(1)},
K, = max{ks (1), k2(0)}.

Set mq; = k’2’l and let D;; be the divisor defined by m; in the same way that m,
defined D;. Likewise, let mg; = klz,z — kll,l and D ; be the resulting divisor.

Notice that my; = klZ,l _kll,l can at most take on two different values as a function
of . To see this, assume that kfj,l has been “flipped” with respect to k,, 5, such that
ki, = kyo+ 4 -1 mod 7 and vice versa, so ky o — ky o+ ky; — k7, = 0 mod .
Thus, mo; assumes the values mao and 7 — ma . When these “flips” occur and
how many, is determined by msy o and j. Such a flip also changes the direction in
which we do the elementary modifications from first €2 to el and later back again.
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On the other hand, m;; will change for every step, and locally around w it will
have a cycle going through 1,..., % as well. For the divisors D,; we may observe
also, that there is a global cycle coming from the fact that the greatest common
divisor of the orbit lengths m divides k. That means that 7> =0 mod %, so that

D, x4+ = DVl'

Similarly, we see that if ¢ = e’ then Tn = 7., where 7. is the lift from the
discussion of the action of Z / m above. Hence for every multiple of -, an instance

of L, is multiplied to the parabolic bundle Ej.
Let us study in detail what happens in each step. These considerations are local
in the sense that we consider one special orbit at a time (the global picture is

somewhat more complicated). Denote by em?” (FE) the r times iterated elementary
modification of F in direction e,:

0—F—2 em!(E) _ Cr-1(y) — 0

meaning that for the preferred frame (e, e3), ¢y (ey)(w) = 0. There is a well-defined
inverse em’; ! which fits the short exact sequence

Ly

0— em;l(E) E A Cw—l(y) —0.

When we need to keep track of the induced lifts, we shall write em?, (W, 7).

n

Consider first the case where 2 —k; ; | < j or & —k,; ; > j' so that no flip
occurs in the next step. Then mq; = mq ;-1 + j' and mg; = mg;_1, so

(Bi_y,7im1) = em ™ (W, d 7 F) @ ([—mau—1 - W, Flmmy i yow))s

(Ela Tl) = em, 2J(W Cl : 7:) ® ([_ml,l : w]’ 7~-[—m1,1—1'w])

7I'Z

around w, where ¢ = e’» , and 7[_,.,,) means (as allways) the canonical lift to
[—s-w] defined on sheaves as the one that locally around w € m=1(y) is 7' ( ) =
0% o 77k where o(z) = z is the usual local generator of [—w]. We emphasme that
the multiplication by ¢ does not influence the elementary modifications, since we
no longer use the eigenvalues of 7 to specify the directions. Hence, (W,c! - 7) =
em; > (Ej_1, 71-1) ® ([=D1,-1],¢ - T=p, ,_,]) and we see that

(B, 71) = (Bim1, f1-1) @ ([—5 - 7 ()], ¢ Flmjrm—1(y))

around 7~ (y) Now, notice that (¢ 7_ji 10 *(07) = % - (0o T7%)i" =
ek (em %k . g)i' = g3 so we get a line bundle Lj=[- >yepd T Y/

T[— Y yer jl.ﬂ—1(y)]> over Y, and therefore the above identity descends to an identity

of parabolic bundles over Y, ) . )
E, =E_1®Lj.

To handle the flip, we need the following two lemmas:
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Lemma 4.18. In the above notation
-1 — ~ ~ — ~
em, oem I(Ea T) = (E7 T) ® ([_ﬂ- 1(y)]7 T[—w—l(y)])a

where em is any inverse elementary modification and em is inverse elementary
modification in any other direction than the one that continues em (see below).

The condition for this lemma to work is that if .: em™'(E) — E is the sheaf
injection from the extension defining em™!(FE) and F,, = kery,, for every w €
7=1(y), then 11 : em ' oem™(E) — em~!(E) from the extension defining em7'
must have F' in its image.

Proof. Tt is enough to consider the exact sequences around a point w € 7~ 1(y). In
that case we observe that there is a commutative diagram of three exact sequences

]
C
A2
o0
0—>0®OMO@OLC—>O
(o) i
’ (55)
080
0

where )\, is evaluation in w = 0 of the v’'th coordinate. As the sequence along the
hypotenuse defines E' ® [—w], and it is clear that the lifts transform as described by
the arguments of Lemma A.1, we are done. O

Lemma 4.19. When considering elementary modifications in the fiber 7=1(y) of
length k, we have

7 eml(E) = em} (m*E, 1),

where 7 is the natural lift induced by the pullback (the one making the isomorphism
of page 71 equivariant).

Proof. Notice first that it makes sense to talk of em, upstairs and downstairs along
corresponding directions, since a frame (e, e2) around y with preferred directions
e1(w) and ez (w) lifts to a frame around w € m~!(y) giving preferred directions there.
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As with the previous lemma, it is enough to do a local examination. Consider a
disk neighbourhood V of w € m~1(y) such that the image under the projection is
a biholomorphic disk U and the projection takes the local coordinates z in V to
w = z%. Then we get a commutative diagram with short exact rows

0— 080 —"—-0602—ct—0

0—0a0— 00— -Cy—0

where 7*: C — C% takes v to (v,0,...,0), ty(f,g9) = (o f,9), \v(f,g) = f(0),
%

vx(f,9) = (0% - f,9), and Ax(f,9) = (£(0), f'(0),..., fE1(0)). This proves the
statement. I

Consider now the case where 7 — ki,_,>j and T - k ,_, < j' so that a flip
occurs in the next step. Then &k}, = ky; | +j' — ¢ and ky; = k7, ; + ', and
we get that mg; = 2 —mag -1 and my; =my ;1 —ma ;1 + 4'. Now, by the first
lemma

(Ey, 1) = emg "' (Woch - 7) @ ([=mag - 77 ()], oo yom—1 (9)])

n__

— em2’° ma -1 eml—mz,l—l (El—la 7A—l—1)
® (mag—1- 7 (W) Ty ym1y) ® (=5 -7 @) ¢ Trmjrm—1(yy))
= emy (Bi-1,71-1) ® ([=5' - 77 ()], ¢ F—jrn1(4])
From the second lemma we have that emf (El_l)/(emf (71-1)) = emy(E;_1) so also

this descends to Y as ~ ~ .
El = em2(El_1) ® Lj,

where we notice that the flag in El,w is the first direction whereas the elementary
modifications are done in the second. So in a sense the flag is flipped with respect
to Fi_1 C Ej_1 4.

We observe that this makes sense also globally:

2

Proposition 4.20. Let E; = P(W,e el 7). There is a line bundle L, over Y
and a well-defined series of elementary modifications em;y defined above for every
special orbit, so that

E = em,) (E)-1) ® L.
O

The action of Z/n X Z/n in the semistable case may be analyzed in a similar
fashion. In the case of semistable parabolic bundles, the analysis is in some ways
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simpler as the elementary modifications are done in the directions of the line bundles
Ly & Lo, in which case the elementary modifications at a point w are done by
tensoring [w] onto the line bundles. We shall not bore the reader with yet another
long description like the one above (nor consume the precious time of the author).
Instead we refer to the calculation of the action in the hyperelliptic case of section 6.

Remark 4.21. If we added parabolic points to W outside Py, then they would be
transferred to V = W ® [D;] and the output E of elementary modifications on V.
If these parabolic structures were 7 invariant, then they would give extra parabolic
structures in E on Y, and it is an easy exercise to see that every calculation and
statement in this section carries over to this setting.

Remark 4.22. As in the unramified case this construction generalizes right away to
bundles with other determinants than the trivial one. The relations determining
the admissible bundles of course change, and one may actually observe that there
will be cases (as for unramified coverings) where these equations have no solutions.

5. TOWARDS A CALCULATION OF THE WITTEN INVARIANT

We have finally arrived at the point where we can begin explaining how to
calculate Tr {r: H°(M(X),L") — H°(M(X),L")} and its companions d. and
CS(X;,c). This section is meant to give a flavour of the work lying ahead.

Let £ € Pic (M(X)) be the ample generator of the cyclic group Pic (M (X)) (cf.
[56] or [24]). We will adapt the notation from [9] and write Tr (T‘H 1(M(X), L))
for Tr {7: H1(M(X), L") — HY(M(X), L") }. As the moduli space M (X) is not in
general smooth, we introduce a space over it which is smooth and in which we may
do our calculations. Let z € X be outside the set Py for every lift> and consider the
moduli spaces M (X;i), 0 < i < k(z), of parabolic bundles with parabolic points
z,...,7"1(x) and parabolic weights al; gy = tv, for v € {1,n;}, 0 <ty <y, <1,
n; € {1,2}. Notice that had we introduced different weights ¢/ on z,...78"(z), 7
could not act in M (X;k, (¢4, ...,t5F"1)).

If F is a bundle over X and L is a subbundle then

par u(E) — par p(L) = (u(E) — p(L)) + (P(L)tZ;h _ (i—P(L))hgtl) .

The summand in the first parenthesis is half-integer so if we make sure that the
second parenthesis belongs to ] —1,0[ U ]0, 1] semistability of E will imply stability.
That condition can be guaranteed by demanding o — #; < % and ¢ odd. In that
case M (X;1) is smooth.

5In general this will imply that z is a generic point.
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Similarly we see that if the to —t; < %, there are well-defined maps
it M(X;i) — M(X;i—1)

got by forgetting the parabolic structure over 7°~!(z) (of course stable points may
degenerate to non-stable but semistable points). This makes M (X;14) into a gener-
ically projective bundle over M (X;i —1). Let ®; = @1 0---0¢;: M(X;i) —
M(X;0) = M(X). Then clearly there is an injective homomorphism

®F: HO(M(X), L") — H°(M(X; 1), ®;LF).
On the other hand, since M (X;1) is normal for all 7 (see [62, 3.IV.31]), then by [65,

5.12] 0ixOnm(xyi) = Om(x;i—1)- Inductively this leads to @ Opr(x;i) = On(x) 80
by the projection formula (see eg. [33])

Qi@ LY = P (Opr(xi) @ PFLT) = @4 Opg(x3i) @ LT = L7,
and consequently we get an injective homomorphism
P HY(M(X;4), @7 L") — H(M(X), L").

Hence, ®}: H°(M(X), L") — H°(M(X;1), ;L") is an isomorphism.

Now we make a small digression into the realm of derived functors. Recall that
if F'is a left exact functor from an abelian category A with enough injectives, we
may define the ¢’th right derived functor R1F of F' by taking for each object A of
A an injective resolution

0-A—=1"—TI" — ...
and defining RYF(A) = H?(F(I*)). There is an easy lemma:

Lemma 5.1. If F: A — B and G: B — C are left exact functors from abelian
categories and R1F(A) =0 for ¢ > 0, then

RIY(GF)(A) = R'G(F(4)).
Proof. Under the assumption in the lemma, F(I*) is an injective resolution for
F(A), so RIG(F(A)) = HI(GF(I*)) = RY(GF)(A). O

It follows from [33, Proposition 8.1] that for any sheaf E over a topological space
M, HI(M,E) = RIpp«(F), where pprs is the pushdown functor coming from
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the constant map ppr: M — * to a point x. Hence, if f: M — N satisfies that
Rif,(E) =0 for ¢ > 0, it follows from the obvious commutative triangle

M—>N

N

and the above lemma that there is an identity
Hq(Ma E) = quM*(E) = Rq(pN*f*)(E) = quN*(f*E) = Hq(N7 f*E)

In particular, it is proved in [41]° that if M is smooth, then RYf,(Op) = 0 for
q > 0. Thus, we have that for i odd, R1®;,Ops(x,;) = 0 for ¢ > 0. Hence, by the
generalized projection formula, R1®;, (®*L") = 0 for ¢ > 0 and from the statement
above, we have
HY(M(X;1),®; L") = HI(M(X), L"),
when ¢ is odd. According to [56], the canonical bundle K ;(x) of M (X) is Kp(x) =
L72,50 LF ® Kyrx) = L2 is ample. Thus,

HY(M(X), L") = HY(M(X), Knx) ® L™ ® Kypx)) =0
for all ¢ > 0 and k > 0 by [63, Theorem 7.80].

If £ = k(x) is odd we have the equivariant map ¢ = &5: M(X; k) - M(X)
giving the equivariant isomorphism *: HO(M(X;k),o*L") — HO(M(X),L").
Hence, Tr ( T‘HO (M(X),L")) = ‘HO (X; k), 9*L")), which, since

(7|H° (M (X; k), *E”)):Z( 1) Tr (7| HY(M(X; k), 9*L")),

can be calculated using the Atiyah-Segal Lefschetz fixed point theorem, [9, Theorem
3.3],

q a , « pRYY o @ L) ey (7)
> (=1 Tx (r|HY (M (X; k), 9*LF)) = X <|M(X,k)\, V) )

q
where N is the complex normal bundle to |M(X;k)| in M(X; k) and where “(7)”
means evaluation in 7 of the elements in the localized K-rings. Alternatively, one
can use the Atiyah-Singer version, [10, (4.4)],

D (—1)ITr (7| HY(M(X; k), 9* L))

_ e (0¥ £5) | xiny ) (7) Td (|M (X K))) ,
- { AL (V) 7) } MG

6The author is thankful to T.R. Ramadas and V.B. Mehta for pointing out this reference.
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Another method which may be used instead of the extra parabolic points in the
situation where 7 has a 1-point orbit, x, is the Hecke correspondence. This is closely
related to the £ = 1 case in the above. No weights are used but the flag is used to
construct a morphism p: M,)(X;1) — M(X) via elementary modifications. This
gives the Hecke diagram

Mg (X) M(X)

which by our construction is equivariant. It turns out as above that H(M (X), L")
& HI(Mz(X), p«p* L") and all cohomology vanishes for ¢ > 1. This means we can
use this for a Lefschetz fixed point calculation as above. For further details see [16].

Recall that the fundamental group of a mapping torus X, is the semi-direct
product
m(X:) = {(a,n) € mX X Z | (x,1)(a,n)(*,—1) = (e, n)).

If we identify the moduli space M (Z) with the representations of m1(Z) modulo
conjugation, Hom (71(Z), SU(2))/SU(2), this gives a natural surjective map

r: M(X,) — |M(X))|

given by restriction. It turns out that the fiber 7~ (p) can be identified with Z,-p/Z,
where Z, is the stabilizer of p which acts on Z, - p by conjugation. In particular,
r is a 2-sheeted cover over the irreducible representations. The map r also gives a
map from the connected components C, of M(X,) to the connected components
C of [M(X)|, and one can show that for SU(2), the fiber has at most 2 points (see

[1])-

Denote by M(X,). the space r~}(|M(X)|.). J.E. Andersen derives through a
Mayer-Vietoris argument that the dimension

1
d. = genericmax = (dim H'(X,,ds) — dim H*(X,,d4))
AEM(X;)e

is given by the dimension of the component in the fixed point set:”
d. = dim¢ | M (X)|.

7This argument uses the interpretation of M(X,) as the moduli space of flat connections.
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As noted before, generic max, means the maximum obtained on Zariski open sub-
sets.

He also shows that the Chern-Simons invariant (mod Z) on M (X,) is constant
on r~1(|M(X)|.) and that it is given by

27ikCS(X ;- ,c) — Tr (

e T ,C'[“E] — E’[“E])

for any class [E] € |M(X)|. Now, the determinant line bundle can be written in E
as

Lig =det H'(X,E) ® det H*(X, E)*,

so given our presentation of the fixed point set we should be equipped with the tools
to calculate the exponent of the Chern-Simons:

First observe that H°(X, E) = 0 when FE is stable and of degree 0. To see this,
assume conversely that s € H°(X, E) — {0} and consider the divisor Z(s) of zeros
for s. Now, O(Z(s)) ={f e M(X) | Z(s)+ (f) > 0} and one sees that there is an
injection of bundles [Z(s)] < E induced by the homomorphism O(Z(s)) — E which
sends f to f-s. But the number of zeros for s is |Z(s)| = deg[Z(s)] < u(F) = 0,
which is a contradiction.

Therefore, the Lefschetz fixed point formula, [8, Theorem 4.12], gives

Tr 7
rI\rHl I ~1 - _ T
(%) 2 dete(1 — dyrl)’

zeX, 1l (z)=x

which can be used to calculate det H'(7,7). Now, det H(7,c-7) = ?¢9~1 .
det H'(7,7), where ¢c® = 1 is a change of lift and 2(g — 1) = dim H*(X, E) by
Riemann-Roch. Hence, we cannot expect this to be independent of the lift! — We
have ideas how one may solve this by making a globally consistent choice of lift,
but time does not permit us to explore that presently. See section 6 for a simple
example.

These numbers are calculated for all Seifert 3-manifolds by D.R. Auckly, [11],
so they are known. But Auckly’s formulae relies on a list of representations of the
fundamental group which satisfies that there will be at least one member of the list
in every component of the moduli space. From our perspective however, it is not
clear which; so it will not only be the most beautiful construction but it will also be
the most convenient if we can find an intrinsic way of calculating the Chern-Simons
invariant.

6. THE HYPERELLIPTIC INVOLUTION

Let X be a compact, hyperelliptic Riemann surface of genus g > 2 with a hy-
perelliptic involution J. Then 7: X — X/(J) = P! and the set P of fixed points
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of J in X are the Weierstrass points wy, ... wa442. We wish to compute the fixed
point set in the moduli space M (X) of semistable holomorphic bundles of trivial
determinant under the action of J.

Our first step will be to calculate the admissible parabolic bundles for (X, J);

Theorem 4.16 and Corollary 4.9 will do the rest. Every holomorphic bundle E
over P! splits into a sum of line bundles L, each of which are isomorphic to some
O(r,) for some r, € Z. Let H be the hyperelliptic bundle over X defined as
H = [z + J(z)] for any = € X; in particular H = [2w;] for every w; € P, and
™0(1) = n*[n(z)] = [x + J(x)] = H for some z € X. Also, every fixed point
w; has a neighbourhood U, with local coordinates z in which J(z) = —z. In
particular, we notice that for every special orbit, £k = j = 1.

Let (E, F, a) be a parabolic bundle over P!, and define the subsets

151:{10615|a71r(w)7é0},
Py={w€ P|agy) # azw) }-
Characterizing the admissible parabolic bundles E means determining which subsets

P, and P, of P yield a holomorphic bundle W with lift J, whose matrix in P has
the values

A(w):<1 0) for we P— (PyUPy),
A(w):(o _1) for w € Py,

A(w) = <(1) _01> for w € Py.

Put £, (w) = 20} (1)) mi(w) = ko(w) and ma(w) = ko(w) — ki (w). Then if such

a lift (W, J) exists, the bundle is W = V ® [P;] where V is a bundle that fits into

an exact sequence

0—V—+—E—2 F—0

from section 4, where E = 7*E. Now, m*F = n* (O(r1) ®O(rs)) = H™ @ H™ and
det 7*E = det E = det V ® [Py] s0

det W = det V ® [2P,] = H 12 HP @ [~ Py).

On the other hand, det W = Ox, hence, we get a numerical criterion that degW =
2(ry + 72 + |P1|) — | Po| = 0. In particular, the numerical criterion forces that ||
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. . = . Py - .
is even. We must now determine the Py for which H =l [—Py] = Ox. Since
H = [wp]? for any wy € P, we may write

H @ =Py = [wo]? ' @ X [~w] = &) [wo — w].

wEPR ’wepo

Notice that this line bundle L = @), cp,[wo — w] is of order 2 so that L is in the
2-torsion points J3(X) of the Jacobian J(X).

According to [5], the line bundles [w; — w;] correspond, under the isomorphism
J2(X) =2 Hq1(X,Z/2), to the homology class 7;; constructed by connecting m(w;)
and 7(w;) by a curve \;; which does not intersect any other ramification points,
and lifting it to form a closed curve +;; through w; and w; (see fig. 1 below).

V29,2941

FIGURE 1. Weierstrass points and lifted curves 7;; on X.

Let a1,b1,...,a4,by be the symplectic standard basis for Hq(X,Z/2) displayed
in fig. 2 below. To compactify the notation in the subsequent calculations define
ap = bo =0g4+1 = bg+1 =0.

FIGURE 2. The standard basis for H,(X,Z/2).

We observe the following formulae for intersection pairing

0 mod 2, for k # i and k # 7,

.u.a:
12,25 " Ok {1m0d2 for k=i or k= j,
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where 72,25 - Gk = 7M2i+1,2j - Ok = 72,2j+1 * Ok = 72i+1,2j+1 * Ok, and

0 mod 2, for k <7 and k > j,
7721‘,2j'bk:{ . .
1 mod 2 for 1 < k < j,

) 0 mod 2, for k <ior k> j,
"“_{1mod2 for i < k < j.

0 mod 2, for k <ior k> j,
{1 mod 2 fori <k <.

0 mod 2, for k <ior k> j,
‘bk_{l mod 2 fore < k <.

N2i+1,25

m2i,2j+1 * b

N2i+1,25+1

Now, for 1 < 5 < 29 + 2 define the integer

] def { % for j even,
] _
5= for j odd.

Then if ¢ is the Krohnecker delta, we see from the intersection pairing formulea
that
[k]—1
M = bpi) + by + Gaiy - oy + ) @i+ Sappyern - oy
i=[j]+1

We are looking for a characterization of the sets Py of even length such that for
any given k, ®wj€Po [wr, — wj] = Ox or equivalently, that ijeﬁo Nk,j = 0. Using
the above expression for 7 ;, we see that the b-part of ije B, Mk,j 18

Prb( 3 %j) =2N b+ D b= Y, b

w; ep, wjePo wjePo

where 2N = P,. Now, since this has to be zero, each bjj) in the sum has to occur
an even number of times, i.e. twice, which means that the j’s have to occur in pairs
24, 21+ 1, or in the case of j = 1 (or j = 2g + 2 respectively) a;] = b;) = 0 so they
too are allowed as a pair. Thus, with respect to the b-part admissible sets are of
the forms

Py = { waiy, W2iy 41, Waigs -+« s Woin s Woin+1 }s

Po = { w1, w2, , Wi, 41, Waigs - - -, Wiy _1 s Win_y+1, Wag+2 }-
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Notice that for such pairs we have that

i1
Mk,2i + M, 2641 = 2 (b[k] + b; + O2k)k - k) + Z aj) + 02i41,2i41 - a5 = ag,
Jj=[k]+1
[k]—1 g g
N,k + NMk,2g+2 = 20 + Z a; + Ok +1,k * O[k] T O2(k],k * Ok Z Z
=1 i=[k]+ =1

so the a-part of the sum ijeﬁ’o Ni,j 18

Z.‘?: a;, if wy, wa +2€P0,
ra(an,g‘)ZZ%ﬁ{O” 9

‘ ‘ otherwise.
w; EPy w; EPy

J even

Hence, as the a;’s constitute half of a symplectic basis, the only possibilities for =)
is to be all of P or the empty set.

Now, if Py = 0, W®[—151] =V = L1®Ly where L, are invariant bundles (as there
are one-point orbits and therefore no ramified part) with deg L, = u(V) = —|Py|.
If O(r,) are the line bundles over P! such that n*O(r,) = L, then we see that
|Py| = —2 -7, is even. Let us record our findings in the following proposition.

Proposition 6.1. Let X be a hyperelliptic Riemann surface of genus g > 2 and let
J be a hyperelliptic involution. Then the admissible parabolic bundles for (X, J)
over P! consist of

(1) holomorphic vector bundles with trivial parabolic structures in every image
y € P of a Weierstrass point with an even number of each of the weights 0
and 3 and degree 2r = —|{ay | a, = }}| (i.e. pardeg = 0), and

(2) the parabolic bundles with the pair of weights (0,1) in every y € P and
degree d = g + 1 (and pardeg = 2d), where non-stable bundles have flags
respecting the splitting into line bundles of the base vector bundle. O

We denote the latter weight configuration a = {(0, 3),--.,(0,1)} by (0, 3).

Without too much effort, we can extract information about these moduli spaces
of parabolic bundles: First notice that if @ is a trivial, parabolic structure then
the stability condition is preserved when forgetting the parabolic structure; thus
My(Y,a) = My(Y). Hence, for each of the 22911 trivial parabolic structures a of
the proposition, we have

My(P;a) = My(P') = {[O(r) ® O(r)]},

as r = —z|{ay | ay = 3}| is even.
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Then consider the moduli space corresponding to the weight configuration a =
(0, 3). This is a bit harder, and we will settle for the components, their dimension,

and the associated Chern-Simons invariant.

Let W be a fixed point for J and J a lift of J. Let E be a bundle over X
got through the elementary modifications dictated by J. Then deg Bl = 29 + 2
and the orbit bundle E has degree d = degE = ¢ + 1 and paru(E) =g+ 1.
Now, because we are over P! there is an integer 7 such that E = O(r) ® O(d —r).
As we are only considering bundles up to isomorphism (and strong equlvalence)
we may assume that r > 1d >d—r. fLisa parabolic subbundle of E then

pardeg(L) = deg(L) +d — §|P(L)|, so the semi-stability relation becomes

[P(L)
2

w(L) <

with “<” substituted for “<” if we want stability. In particular, we notice that
u(L) < 2| P(L L)| < g+ 1=d, so as O(r) is a subbundle we must have 2d<r<d.

Say we want to prove that for each %d < r < d, there exist stable parabolic
vector bundles whose underlying vector bundle is O(r) @ O(d — r). Then we need
to prove that it is possible to choose a flag F in (P')2¢ corresponding to the 2d
parabolic points, such that s < 1|P(¢(O(s)))| for every s < r and every embedding
¢ of O(s).

The bundle L may be written as O(s) for some integer s. As there are no
homomorphism from a bundle into a bundle with lower degree, we see that s < r,
and we notice that for s < 0 the relation is trivially fulfilled. We also notice that
if d—r < s <r,s has to be r. Otherwise, the morphism O(s) — O(r) @ {0}
will have zero-points and will not be an embedding. Hence, we need only consider
0 < s <d—r. Under these circumstances we have

Hom (O(s), O(t)) = HO(O(t — 5)) = Ct=+1,

fort =d—rort=r. For any t € Z, we can take O(t) to be the meromor-
phic functions f on P! which have a pole of order at most ¢ in co and which are
holomorphic elsewhere. In this picture H°(O(t)) consists of polynomials p(z) =
a(z—z1)...(z— z), t' <t, and any homomorphism ¢ € Hom (O(s), O(t)) can be
written as ¢(f) = p - f for some polynomial p of the mentioned type. This means
there are d + 1 — 2s degrees of freedom to choose a degree s line bundle inside
Or)e O(d—r).

Given a flag F in O(r) ® O(d — r) over the 2d points P, we ask ourselves if it
is unstable, i.e. if there is a degree s line bundle (for some s) that hits this flag in
at least 2(d — s) + 1 points. This is a question of solving finitely many (actually
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(2( dff) +1) many) systems of 2(d — s) + 1 equations with d 4+ 1 — 2s unknowns. This
is over-determined by d equations, so as d > 3 there will generically be no solutions
to this problem. Since we are considering only finitely many s’s this implies that a
generic flag F' will be a stable flag, and the set of stable flags is connected.

Hence, for each %d < r < d there is a non-empty moduli space of parabolic
bundles whose underlying holomorphic bundle is O(r) ® O(d —r), and these moduli
spaces contain stable points. Notice that, as the codimension of the critical variety
is at least 3, these moduli spaces are connected (for each fixed r). The dimension
of these components is k?(y — 1) + 1 + dim F, where k is the rank, v the genus
of the base surface, and dim F is the dimension of the underlying flag-manifold
([47, Theorem 5.3]). Thus, in our case the dimension is 2g — 1. Denote the com-
ponent of M (X; (0, 3)) with underlying bundle isomorphic to O(r) & O(d — r) by

M(X;(0,3)),. There are (37) non-stable points in M (X;(0,3)), corresponding to
the flags with 2r flags in O(d—r) and 2(d—r) in O(r) (though only 1 (%) non-stable
flags when r = d — r).

Now, let us consider the action of Z/2 x Z/2 and of Z/2 which determine the
fixed point set. Here 7 = 5/ = 1 for all points P.

Consider first the action of (—1, —1) respectively —1. Clearly the isolated semi-
stable points O(—r) ® O(—r), r = 3|Py], are sent to O(r — d) & (r — d).

For the components containing stable points, all the weights are (0, %), SO we
have that

b=k, =0, ky=k,=1,

always and in every special point w € P, but we have a flip in every step. From
Proposition 4.20 it is known that the two elements E1 and E2 of a Z/2-orbit are
related by ) ~ )

by = emz,P(E1) ® L,

where the elementary modifications are done in every point of P and in the opposite
direction than those that are specified by the flag of £y, and L, = O(—d), d=g+1
is the line bundle of degree —d.

The parabolic moduli space with the given weight configuration and underlying
bundle O(r) ® O(d — r), 1d < r < d, is connected, so by tracing the action on
semistable points we gain information on how Z /2 treats the component. Let E; be
such a bundle, i.e. the flag sits with 2(d — ) lines in O(r) and 2r lines in O(d — r).
The elementary modifications em; have the flag sitting as the image of the injection
of the short exact sequence, so under ems it must be killed. Thus,

Ey=(0(r+2(d=r)®0(d-7r+2r)®0(=d) = O0(d—r)® O(r)
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with the flag flipped. Hence under the canonical isomorphism E, = E,, the flags
agree, so the semistable points of these components are fixed by (—1,—1) € Z/2 x
Z/2.% Therefore, Z/2 acts within the same component of the moduli space (when
the component contains stable points), and the action is free on stable points.

10
01
with a bundle E; with trivial parabolic structure corresponding to the lift (W, J)
on X with the following data: over the points P — Py, kf o = kb, = 0 and over
Py, Ky g=kyo=1,s0 Dyg=—P and Dy = 0. Under the action by ¢, the data
over points in P; are sent to kj ; = 0 and kb, = 1 with respect to first and second
direction, and to k} ; = 0 and k, = 1 over P — P, but with respect to second and
first direction. Thus, D;; = and Dy, = P. This gives

We now investigate the action of { = ( ) on non-stable points. Let us start

(E17 7/\—1) = (W7 7:) ® ([_Pl]’%[—lsﬂ)?
(Eq,72) = em; p_p oemy p (W,(o7)

=em; p_p oem, p (E1,(071) ® ([P1], 7ip,)
= emg,pl oem; p(FE1,(o71).

By the arguments of section 4 this descends to the holomorphic vector bundle
Ey = em, p, (em, p(E1)/emy p(¢ o 71)) over P'. However, the underlying bundle
for By is O(—r)® O(—r) so E; = H™" @& H~". The directions stated above tells us
how to do the elementary modifications on E; so em, p(E1) = (H"® [P])@ H™"
and

emy p(E1)/ emy p(Co 1) = O(d — 1) & O(=r).

Hence,

¢-(O(=r)®O(-r)) = O0(d—r) & O(r),

where d = g + 1 and the last bundle has a flag F with F,, C O(r) when w €
P — P, and F, C O(d —r) when w € P;. Having described the action by the two
generators (—1,—1) and ¢ for Z/2 x Z/2, we have a description for the complete
action. We observe that all the one-point components of Ma(P') get identified with
the semistable points in the larger components under the equivalence relation ~.
Hence, the connected components of Ma(PP!)/ ~ are precisely parameterized by
ld<r<d.

2@ ST <

Following the recipe on page 14 in [1], we see that X is a Seifert 3-manifold
with Seifert invariants:

(b,g', (alaﬂ1)7 KRR (as;ﬂs)) = (_ (g + 1)707 (2a 1)) RS (27 1))

8This corresponds to the two lifts (W, 7) = (L, 71 )® (L, —71) and (W, —7) = (L, —71)® (L, 7)
being equivalent.
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and s = 2¢g + 2.

Then, in order to calculate the Chern-Simons invariant, we only need to look
at those of Auckly’s representations w(e,n1,...n2g+2)[g1,...,g2g+2]: m1(Xy) —
Sp(1), where n; = 0 or 1, and ¢ = 0 or 3 (see [11]). Because of a relation in
m1(X),

(627ri5)—(g+1)67ri E?i—ii?(nj—}-s) -1

s0 e XTI = (e27%€)9+1 and by the theorem page 232 in [11], we have

p2miCS(w) _ ,—2mi 20t (n2+2ne) _ 1

for all [w] € M(X ).

If on the other hand we use the formula e2™*C5(X7:0) = Tr(J|Lig)), where Lig) =
detHl(X,E)~® det HO(X, E)*, we get a different result: Let E € |[M?*(X)| and
choose a lift J of J to E. Then by the Lefschetz fixed point formula, [8, Theorem
4.12]

~ ~ Tr J,
TrH°(J,J) — TrHY(J,J) = N = 0.
(a ) (7 ) ;det@(l—de)

w

And Riemann-Roch tells us that
dim H*(X, E) —dim H (X, E) = 2(1 — g) + deg E = 2(1 — g).

Now, since E is stable, H°(X, E) = 0, so we have that dim H'(X, E) = 2(g — 1).
Clearly, H'(J, J) has order 2 on H(X, E) so we can assume it is diagonal with +1
on the diagonal. As Tr H(J,J) = 0, there must be equally many +1’s as —1’s.
Hence

Tr(J|Lim) = det HY(J, J) = (=1)97L.

Notice since the order of the automorphism divides dim H'(X, E), then Tr(J|L{g))

is independent of the choice of lift J. That makes it even more puzzling that what
seems like a natural lift to £ does not give the right answer.

We conclude:
Proposition 6.2. Let X be a hyperelliptic Riemann surface of genus g > 1 and

let J be a hyperelliptic involution. The fixed point set |M(X)| is decomposed into
connected components

M(X)| =Ma(X, )/ 1= ][] (M(X;@)T/ﬂ).
d<r<d



106 PArT II. CALCULATION OF THE WITTEN INVARIANT OF MAPPING TORI

Each component M(X; (0, %))T has dimension

d, = 2g — 1.

There are (gf) non-stable points corresponding to the flags with 2r flags in O(d—r)
and 2(d — r) in O(r) when r > d —r, and (%)) non-stable flags when r = d — r.
Moreover, on every component the exponent of the Chern-Simons functional is

eZﬂ'iK,CS(XJ,T‘) = 1.

APPENDIX A. PROOFS OF ELEMENTARY MODIFICATION RESULTS

In the present section we give the proofs of results regarding elementary modifi-
cations and inverse elementary modification. We prove the fundamental Lemma, 4.1
and Lemma 4.4. First we consider the matter locally:

Lemma A.1. Let U C C be a disk around 0 € C furnished with an automorphism
27

7(z) = e 7 - z, for some j prime to n. Then there exists a short exact sequence
as rows in the diagram below, and if 7: O?(U) — O?(U) is a lift represented by A

with
A(@:(aﬂ(z) “12(z)> and A(O):(g 2)

021(2) agg(Z)

in some frame ey, es, then it induces another lift T represented by

A(z):<&11(z) &12(z)> with A(o):(é 0),

&21(2) &22(2]) 0 1

such that there is a commutative diagram

0— OXU) —— O2(U) ———C — 0
o
0— OX(U) —— O?(U) ——— C — 0,

~ 27
where 0 = e 7 - 0.

If on the other hand we have the lift 7, then it gives a lift T making the diagram
commutative.

Proof. Let ey, ez be a holomorphic frame of O%(U), and let o(z) = 2.
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Look at the O-module O(-1)(U) = {f € O(U) | f(0) = 0} and notice that
there is an O-isomorphism
o-1)U)eC— O(U)
(f,v) — f+wv
with obvious inverse h +— (h-h(0), h(0)). (The module structure on O(—1) @ C that

makes this work is h - (f,v) = (h- f + (h — h(0) - v), h(0) - v).) Using this we easily
construct the short exact sequence in the lemma by first choosing the frame e, ey

in which o (o) s 0 0
(z)—(a21(z) (m(z)) with  A(0) = (0 1)

and then letting

i(f,9) = ((c- f,0),9) € (O(-1)(U) & C) & O(U) = O*(U),
p((f,v),9)=veC

Now, 7 acts as shown on page 75 and commutativity, 7 o7 = ¢ o 7, forces

#oi(er)(z) = i(a11 071 (2) - e1(2) + az o T71(2) - e2(2))

=0(2)-a11 07 H2) - e1(2) + ag 0 T7H(2) - ex(2)

so we define 7 by

27

en?-anor (2) e1(z) + (‘7 © T_l(z))_l ~ag1 0771 (2) - e2(2),
7(e2)(2) = T oi(e2)(2) =10 7(e2)(2)

=0(2) a1207 1 (2) - e1(2) + agz 0 77 1(2) - ea(2).

Thus, the induced 7 has the representation

A(z) = <&11(Z) CAl12(2)) _ ( 6(25”3' a11(2) GOT(z)-alg(z)) .

&21<Z) &22(2) z 1 agl() GQQ(Z)

As a31(0) = 0, A is well-defined also in z = 0,°

27i
- ~ ’
a91 (0) 1
9This is precisely the reason why we make these elementary modifications one at a time and
not to higher order in one step.
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therefore we only need to check a21(0) = 0 in order to get the diagonal form we
wish for. But since 7 is an O-morphism (though 7-twisted) and 7"|1m; = Idims,
then 7" = Idp2(y). Hence, also for A we have the relation

A(T"_l(z)) 0.+ 0 A(T(z)) 0o A(z) =1d.

Thus, as A(0)" = Id linear algebra (see page 61) tells us that A(0) is diagonalizable.
However, as it is already triangular, it must be diagonal; i.e. d21(0) = 0.

To verify that the right square commutes, notice first that p(e;) = 1 and p(eq) =
0. Then A
0, v=1,

0, v=2.

pot(e,) = an(0) = {

The other way round is proved in the same way using the same calculations. [

Proof of Lemma 4.1. Choose a covering {U,} of X so that no U, contains more
than one special point, and so that those that do contain a special point are disks
with local coordinates z with 7%(2) = e’n'dk . 2 as before, and so that there are
trivializations ¢4 : V|y, — O?(Uy,). Let s§,s§ be the special frame if U, contains
a special point and any frame if not. Then e = ¢, (s%) is a frame for O?(U,).

The cocycles gog = @q © gogl define V:
V=[[0*Ua)/ ~,

where so ~ sg for s, € O?(Uy) and sg € O*(Up) it Uy NUg # O and sq|u,nu, =
9as(88lU.nU,). From now on let the restriction to U, N Ug be implicit when we
compare sections like s, and sg.

Inspired by Lemma A.1, define for every 8 with Us N7~ !(y) = w the homomor-
phisms ig as ¢ in Lemma A.1, and for a with U, N7~ (y) = 0, let iy = Ido>(u,,)-
Our goal is to define cocycles gop: O? (U, NUg) — O?(U, N Up) and isomorphisms
To: O (Uy) = O?(Uy), Uy = 7(Uy,), such that we get commutative cubes

02(Up) —2— O2(Up)

AR

02(Ug) L 02(Ug) ga’ﬂ’

ga’ﬁ’

Jap . gapg

O (Ua) | — O*(Uw)
e e

O (Uy) —2— O*(U.,)
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for all intersections U, N Ug. Then define the bundle E as

E = HO2(U(1)/ ~,

where s, ~ sgif so = Jap(sg) on U,NUg, and put tq = iq0¢@,. They glue together
to form the injective sheaf homomorphism

t:V — E,|

and together with the induced lift 7, this would give existence and commutativity
of the left square of the diagram in the lemma.

So for U, N7~ (y) =0 and Us N7~ (y) = w, we want §ag ©ig = ia © gaps = Jap-
Hence,
Jap(el) = 07" Gap(oel) = 071 - Gag oig(e]) = 07" - gap(€r),
Gap(€3) = gap(€s)

. o7l 0
gaﬂ = 0 1 ga,@

with respect to the chosen frames (remember that w corresponds to z = 0 which is
not in U, NUpg, so o~ is holomorphic and §ag is well-defined). The g, p’s constitute
a a cocycle provided gog is diagonal when ever Ug > w € 77! (y) and U, NUs # 0
(and w ¢ U, as the covering is chosen). This can be arranged by choosing the
covering fine enough around w, say by subdividing Ug.

which forces

Then define 7, = @q o (F|y,) o @, ! for any «, and let 7, = 7, for every a with
Uy N7~ (y) = 0. To define 75 when Uz N~ (y) = w, we introduce the notation of
cyclically indexed coordinate patches, Ug,, for j € Z/k, such that Ug,,, = 7(Ug;)

and By = B. Let ef°,e§° be the frame for V|Uﬁ0 from Lemma A.1, and define
frames e,’ = %go (efo) for V|Uﬂj when 0 < j < k. Let é2 be the induced frames
from Lemma A.1, and define 75, by 7, (égj) = ég“l, for 0 < j < k — 2. Then the
relations ’fﬂj O’L'Igj = iﬂj+1 O7~'ﬂj and gaj+1,@j+1 @) ’fﬁj = ’7A'aj Ogajﬂj’ for 0 S] S k— 2,
are clearly satisfied; we only need to check that it behaves correctly with respect to
the k’th power which is constructed using Lemma A.1.

First notice that by Lemma A.1, %g oig = z',gO%g. As it makes no difference in the
following calculation we may as well assume that g,g(e) = e2 as it simplifies the

notation. The left face of the cube commutes, since 7 is globally defined, therefore
we conclude from
Gop © Th(eD)(2) = ally o T7F(2) - 5 (2) + aly 0 T7F(2) - €5(2),

Ta © Jap(e))(2) = agy 077 (2) - €2 (2) + agy 0 T7F(2) - €5 (2),
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that A, = Ag on U, NUg.

Hence, as Aq = Ao, fap © 74 is represented by

<(U°Tk)_1 0) ) (&?1 &[132> _ ((UOTk)ﬁ_l'd?l (UOTk)ﬂ_l ‘d[fz>

B AP A A
0 1 g1 Qg9 Qg1 D)
27 .
kj . ky—1_ .8 B -1, ,« a
_ (e n (O'OTﬁ) ai; a}f) _ (0 X afy a12)
—1 -1, ja e
o *A9q A99 g ag1 Q33

_ afy afy\ ol 0
a9, a9, 0o 1)’
which again represents ﬁ’j °gap. Thus, §opo7s = T4 °Jap, and existence of 7: £ — E
and commutativity of the first square in our diagram is in place.

Commutativity of the second square of the diagram in the lemma follows directly
from the construction of 7 and Lemma A.1.

We must check that £ and 7 are independent of the choice of local trivializations
¢Yq- But that is a straightforward calculation yielding that if (after a possible
subdivision of the open cover) ¢! = hg o ¢4, then the new cocycles for V are
g;ﬁ = haogagOhgl and one gets that the new cocycles for E are g;m = haogaﬂohgl,
so that they define the same vector bundle. A similar calculation gives independence
for the induced maps. Independence of the chosen frames follows from independence
of local trivializations.

To prove that E is unique given a flag in V' taking on the role as kernel for the
bundle homomorphism V' — E, assume that we have two extensions

Ly Au

0—V E, Cr-1(y) — 0,

v =1,2. We are going to construct a homomorphism ¥: E; — Ej and the 5-lemma
will give the desired result.

Assume that F; is given as above with ¢; having the local form ¢, o = IdOQ(Ua)

and 7; g taking e? = o - ef , eg — eg (where we use the convention as above that

UsNm~y) = {w} and w ¢ U, for all @ # ). Locally ¢, is represented by

P 11 o

B C31  Cho
for all «. Notice that the condition that ker¢;,, = kerts,, implies that we may
write 2, =0 - &P, B =0 -, for # 8 € O(Up).

Clearly there is a well defined homomorphism ¥: Im¢; — Im¢y by sending
e € Im; to 12 047" (e). Notice that for any e € Ey(Ug), 0 - e € ker Ay g = Imy g.
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Suppose e = f - e? +g- e, then Ll_,b(O' e)=f-€e’ +og-ef and L2, © Ll_,é(O' -e) =
a((féfl +gd?) -l + (féb, + gal,) - eg). Therefore define

B 3 a a
Uy = (fkl C?) and U, = <611 612) =13, for all other o

o a
Co1  Coo Ca1  Ca2

One checks that with transition functions g5 for E, chosen as above with g;ﬂ
diagonal for Uy NUpg # 0, we have ¥, 0g.5 = g25 0 Vg so the ¥,’s patch together
nicely to form a homomorphism V: F; — Fs.

Finally we compute the determinants. The determinant of Cr-1(, is defined
using the exact sequence

0— O(—1"(y)) — Ox —2— Cror(y) — 0.

Le. det Cy-1(,) = det O(n~'(y)) = [x~*(y)], and it follows that det E = detV ®
[771(y)] and that deg E = degdet E = degdet V + deg[r~!(y)] = degV + k. O

Proof of Lemma 4.4. With respect to the lift and the determinant line bundles,
this proof is very similar to the previous one. To kick things off however choose
the canonical projection \y: E, — E,/F, = C for a fixed w € 77 (y) so that
we have ker \,, = F,,. Extend this invariantly to all of 7=1(y) and then to a sheaf
homomorphism A: E — C,-1(y) as A(Uy)(s) = Ay(s(w)) for all s € E(U,) and
w € m1(y). As such a A is uniquely determined by its action on straws, it only
depends on the initial choice of A,, which is unique up to scaling which in turn does
not change the kernel. Defining the action on C;-1(,) as multiplication by é, yields
commutativity of the second square in the diagram.

Define the locally free sheaf
V =ker A

of O-modules; this only depends on F,, for w € 7~ 1(y), and not on the actual choice
of A\

Again we need to consider it locally to verify that the lift 7 is represented as
desired. Let {U,} be a covering as before, and let §¥, 3 be local frames for E|y,
such that 7% has the stated matrix representation if U, N7~ 1(y) = w. Then choose
frames s¢, s$ for V|y, so that the inclusion is ¢(s¢) = o - 8¢ if w = U,Nw™1(y) and
t(s¢) = 8¢ otherwise, and ¢(s3) = §3 always. A calculation similarly to the one in
the proof of Lemma 4.1 gives the required result about 7.

The relations for the determinant and degrees are a trivial consequence of the
exact sequences as before. O
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Lemma A.2. Consider the short exact sequence

L

0—V E A Cﬂ—l(y) —0

from Lemma 4.1 and Lemma 4.4 with lifts 7 and 7 of T to V and E respectively.

Let L C V be a line bundle and let P(L) be the subset of P where 1(L) fails to
be a vector bundle, P(L) = {w € P | (¢|5)w = 0}.1° Then L gives a line bundle

LcE fitting into a short exact sequence

tlr - Alg,

00— L L FL—>0,

where F, is the skyscraper sheaf which is F(U) = C-1(,(U) = C for UNP(L) # 0
and Fr,(U) = 0 otherwise.

If on the other hand L C E is a line bundle and P(L) = {w € P | L, # F, =
ker Ay, }, then there is a line bundle L C V fitting into the above exact sequence
with an F; having support P(L) in the place of Fr,.

If I was constructed from I in this way or vice versa, P(L) = P(L) and in fact
the two constructions are each others inverse.

Proof. Let L be a subbundle of V' and assume that it is trivializable over {Ua}.
Then for every o we may write a frame for L|y, as e* = f - e + o™ f5 -
where f{* € O(U,), f$* € O*(Uy) (when {U,} is fine enough), m® € Zs, and
e is the usual frame for O%(U,). When Us N7~ 1(y) = w, the image t5(e®) =
o-(fF.é° +0mﬁ_1f2ﬁ-eg) if m# > 0, and 15(ef) = aff-ef + 1P B itmf =o.
Hence, let the induced local frame be

B _ fl A’G +0m _1f2 62, for m? > 0,
é
O'fl +f2 62, for m? = 0,

when Ug N7~ (y) = w, and é* = e* when Uy, N7~ (y) = 0. The case mP > 0
corresponds to when w € P(L). Locally around a point w € P(L), the sequence is
described as

0— O(-1)(U) ——— 0oU) —2—cCc—0

and the cocycles h,g for L is changed to ﬁag = 0~ hag when ever w € Ug and
w ¢ U,. The inclusions jo: O(U,) — O?(Uy,), defined as j,(g) = g - e®, make
L into a subbundle of V' (i.e. gap © jg = ja © hap). Similarly, with 7,(g) = g - €*

10This may seem like a bombastic notation for something which is one point or the empty set,
but it is in keeping with the notation in the general case of higher order elementary modifications.
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we get that Jap 0 jg = ju © lAza,g so the engineered line bundle L = I, 0W.)/ ~,
where s, ~ sg if so|v,nu; = izag(Sg\UanUﬁ) becomes a subbundle of E and is an
extension by L of the skyscraper sheaf Fr, supported over P(L) (Fr(U) = F(U) if
UNP(L)# 0 and Fr(U) = 0 otherwise):

L N Al

0—L L Fr, —0.

If on the other hand L is a subbundle of E, define F'; to be the skyscraper sheaf
supported over P(f/) as before and look at the restriction of A to L: it is a surjection

Aj: L — F; —0.

Define the sheaf L = ker \|;. Since Ay (Ly,) = 0 for w ¢ P(L), L Cker A=V, s0 L
is in fact a subbundle of V.

— A

Clearly, if L comes from L using the above construction, P(L) = P(L), and the
bundle induced by L is L since L = ker A|;. If on the other hand L is induced by L

and L is generated locally by sections 3, then L is generated by either 3, or o - 5,
depending on whether P(L) N U, = () or not. O

Observation A.3. We observe that if one of the two line bundles L or L is invariant
(with respect to 7 and 7 respectively), then so is the other. In general we have in
the language of the lemma above, that 7L = ﬁ}; i.e. the image under 7 of a bundle
L induced from L is the bundle induced from the image 7L of L under 7.

Notice also from the proof that if L; and Ls are invariant line bundles with
w(Ly,) = u(V) so that V.= Ly & Ly, then F = L, ® L. To see this we may choose
the local frames (e, e2) so that L, is spanned by either e; or es depending on
whether w € P(L,) or not. So if L, is spanned locally around w € P, by e, then
L, is spanned by é,, so clearly Lo Ly, =E.

If L, were not invariant the induced line bundles L, in E would collapse in w to
a single line (and in any other special point). But clearly L, and Lo span E away
from the special points.

Remark A.4. One may of course iterate the elementary modification and inverse
elementary modification processes both supported over the same y € Py and over
other points in Py. In that case we call it higher order elementary modifications
respectively higher order inverse elementary modifications. The conclusions of the
previous lemma and observation is also true for these iterations. However, the
subset P(L) may vary through the iterations: say L; = L, Ly = L; etc., then
P(L;) need not be the same as P(L;y1). This is of course true when changing the
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fiber 7~1(y) over which we do the elementary modifications, but it may also be the
case when we iterate over a fixed 7~1(y). Now if L is invariant, then the P(L;)’s are
the same. To see this it is enough to consider ms(y) consecutive modifications over
71 (y). Recall from Remark 4.6 that an upshot of Lemma 4.1 and Lemma 4.4 is
that we can chose local eigenframes (e, e5) for 7. As L is invariant, this frame can
be chosen so that L is spanned around w by either e; or e; depending on whether
w € P(L) or not. Then during successive elementary modifications,

L Aq

0— E; 1 E; Cr1(y) — 0,

where Ey = V, it is clear that w € P(L;) if and only if w € P(L;_1), where
Li=L;_1.

This means that if E is derived from V through elementary modifications de-
termined by the effective divisor Do, and L C V and L c E are corresponding
invariant line bundles, then the divisor 0 < Dy < D for which L = L ® [Dy]
is exactly Ds|p(r). Because clearly Supp Dy = P(L), but on the other hand if
w € P(L), then also w € P(L;) through the my(w) iterations and vice versa.

APPENDIX B. GEOMETRIC INVARIANT THEORY

In this section we will give a cursory exposition of the tools necessary to prove
that EM: Ma(Y) — |M(X)]| is a morphism of varieties; namely geometric invariant
theory (GIT). For further details the reader is referred to [47], [62], [51], and the
more courageous reader to [31]. Many results are stated here without proofs; the
proofs can be found in the listed references. Some passages of this appendix on
more general theory is borrowed from [2] thereby saving the author the labor of
translating the text from French. It is regrettably necessary to make the transition
from the language of Riemann surfaces to that of schemes.

The Hilbert polynomial Pg(T) of a coherent sheaf E over X is defined by
Pg(n) = x(E(n)) = dim H°(X, E(n)) — dim H" (X, E(n)).

When F is locally free, Riemann-Roch implies that Pg is a polynomial of degree
less than or equal to 1. In fact if E' is a rank 7 bundle of degree d > r(2g — 1), then

Pp(T) =p+rT,
where p = dim H°(X, E) = d — r(g — 1). This is due to the fact:
Lemma B.1. [62, Lemma 1.IT1.20] Let (r,d) be a pair of integers satisfying that

r > 2and d > r(2g — 1) and let E be a semistable holomorphic vector bundle of
rank r and degree d. Then

(1) the bundle E is generated by its global sections, and
(2) HY(X,E)=0.
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In the sequel F will be a coherent sheaf with Hilbert polynomial Pg = py of
degree at most 1.

Definition B.2. A family of qoutients (S, G) of the coherent sheaf E with Hilbert
polynomial pg is a C-scheme S together with a flat coherent sheaf G on S x¢ X and
a surjection

pxE — G,

such that the Hilbert polynomial of the restriction G5 of G to X; = {s} x¢ X is
equal to pp for all closed points s € S, where p%: S x¢ X — X is the projection.

Two families (S,G) and (S,G’) of quotients of E are equivalent if there is an
isomorphism ¢: G — G’ of sheaves over S x¢ X such that

commutes.

A morphism of families (S,G) and (S’,G’) of quotients of E is a pair (f, )
where f: S — S’ is a morphism of schemes and ¢: G — f*G’ is an equivalence of
families (S, G) and (S, f*G'). Here f % f xIdx: S xc X — S’ x¢ X is the induced

morphism of schemes.

Theorem B.3. (Grothendieck [31], [62]) There is a functor from C-schemes to
sets which associates to any scheme S the set of isomorphism classes of families
of quotients of E with Hilbert polynomial py. This functor is represented by a

projective C-scheme Qx = Quot’g)/ x/C (Grothendieck’s quot scheme). Le. there is

a coherent sheaf Ux on Qx X¢ X such that (Qx,Ux) is a family of quotients of
FE with Hilbert polynomial py satisfying the universal property, that for any other
such family (S, G), there exists a unique morphism ®: S — Qx so that ®*Ux is
equivalent to G.

Suppose that E is the trivial bundle of rank p = d—r(g—1) and po(T) = p+rT,
and assume that d > 7(2g — 1). Then there is an open sub-scheme Rx of Qx =
Quotféﬁ x/c characterized by the property that Rx is exactly the points ¢ € Q) x for

which Ux , is locally free over X, = {¢q} x¢ X and the homomorphism H°(X,, E) —

H°(X,,Ux ) given by the quotient morphism is an isomorphism. Then Ug, et

Ux |rx xcx 18 locally free. The sub-scheme Rx satisfies local universality:
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Proposition B.4. [62, Proposition 1.I11.21] Given a C-scheme S and a locally free
sheaf F' of rank r on S xX¢ X such that

(1) Fs has degree d as a vector bundle on X,
(2) Fs is generated by its global sections, and
(3) HY(X,, Fy) = 0.
Then for all sg € S there is a neighbourhood Sy C S of sg and a morphism f: Sy —

Rx so that F|gyxex = f*Ury -

Hence, if F' is a rank r bundle of degree d > r(2g — 1) and S = {s¢}, then
(1), (2), and (3) in the proposition are satisfied, and local universality gives an
f:{so} = Rx so that F = f*Ug,. Therefore, we may think of Rx as having a
point g over which Ugr, = F.

Denote by GL(p) the group Aut(E). We define an action of GL(p) on Qx in the
following manner: Let A € GL(p) and let

a: pxE — Ux

be the surjection from the definition of a family of quotients. Then there is an
automorphism A~ = p% (A~1): p%E — p%E, and this gives a surjection

def <
as = ao A7l phE — Uy,

making (Qx,E) into a new family of quotients. By the universality of Theo-
rem B.3 there is a unique morphism o 4: () x — () x and an isomorphism of sheaves
YA O Zu X — U X

Clearly, if A = Id, then 04 = Id, and a short calculation shows that o p =
caoop for A, B € GL(p), so this is really an action. Notice also that if A € C* - Id
then 04 = Id by uniqueness and ¢4 is multiplication by a non-zero scalar, so in
fact we have an action of PGL(p) = GL(p)/C* on Qx.

Proposition B.5. [62, Proposition 1.I11.22]

(1) The open sub-scheme Rx of Qx is PGL(p)-invariant.

(2) For every pair (g1, q2) of points in Rx, the vector bundles Ur 4, and Ur 4,
are isomorphic if and only if ¢1 and gy are in the same orbit of PGL(p).

(3) For any q € Rx, the stabilizer of the action of PGL(p) is Aut(Ur, 4)/C*.

The next essential definition requires the notion of some more algebro geometric
properties:

Definition B.6. A morphism f: Z — S of schemes is affine if there exits an affine
covering {V;} of S so that f=(V;) is affine.
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The affine morphism f is of finite type if there exists a finite affine covering {V;}
of S, where V; = Spec A; for some ring A;, such that f~1(V;) = Spec B;, where B;
is a finitely generated algebra over A;.

A scheme S over a ring A is of finite type if there exists a finite, affine covering
{V;} of S with V; = Spec A;, such that A; is a finitely generated algebra over A.

Definition B.7. An algebraic group G is geometrically reducible if for all repre-
sentations p: G — GL(n), the following holds: for all v € C* — {0}, there exits a
homogeneous non-constant G-invariant polynomial f so that f(v) # 0.

From now on the groups acting will be geometrically reducible.

Definition B.8. A good quotient of S with geometrically reducible group G is a
pair (M, f), where f: S — M is a morphism of C-schemes such that
(1) f is affine, G-invariant and surjective,
(2) there is an induced isomorphism f*: H°(U,0) — H°(f~Y(U), (’))G for all
open subsets U of M,
(3) if S’ is a G-invariant, closed subvariety of S, then f(S’) is a closed subvariety

of M,
(4) and if S; and Ss are closed subvarieties so that S; NSy = (), then f(S1) N
f(S2) = 0.

Good quotients possess a universal property too:

Theorem B.9. Let (M, f) be a good quotient of S with G. If M' is a C-scheme of
finite type over C, and f': S — M' is a G-invariant morphism of finite type, then
there exists a unique morphism g: M — M' making the diagram

S
| N
M ............ > MI

commutative. Consequently good quotients are unique when they exist.
We write S//G for the good quotient of S with G.

Definition B.10. A linerization of the action of G on S is a line bundle L on Y
equipped with an action of G that covers the action of G on Y.
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Definition B.11. A point s € S is said to be semistable if there exists a positive
integer m and a section g in L™ such that g(s) # 0 and such that the complement
S, of the zero-set of g, is an affine open subset of S. A point s is stable if it is
semistable, dim(G - s) = dim G, and the orbits of the closed points in S are closed
subvarieties.

Proposition B.12. [62, p.34] The moduli space M4(X) of semistable rank r and
degree d vector bundles is a good quotient of the semistable part, R5, of Rx.

Notice that 7*Ux 4 def ((Id XCT)*Z/{X)q = Ux ;(q) 80 Ux 4 is a fixed point if and
only if 7(¢q) € PGL(p)-q. Denote by |R5¢| the closed sub-scheme of R5 consisting of
such points. This is clearly PGL(p) invariant. The restriction of the good quotient
(My4(X), f) of R with PGL(p) to |R%| is a good quotient. To see this, simply use
the definition; the only thing we need to check is that

firse): H(U N f(|RX)), 0) — HO(f@%(Uﬂf(\R}S ))’O)PGL(p)

is an isomorphism for every open subset U of My(X). But this is true because the
local ring of a subvariety Z of another variety S is the equivalence classes (U, f),
where U C S is open, UNZ # 0 and f € O(U). We say (U, f) is equivalent to
(V,g)if f=gonUNYV ([33,1.3.13]). Thereby we conclude that the good quotient
|R%|// PGL(p) = |M4(X)| is the fixed point set in the moduli space of semistable
holomorphic vector bundles.

In the parabolic case one can choose a dp so that any parabolic bundle E over Y
of degree d > dy and having fixed parabolic weights a and multiplicities x = {k, |
y € P,1 <i<ny} over P, satisfies that

(1) the underlying vector bundle E is generated by its global sections, and

(2) HY(Y,E) = 0.
Such bundles all have the same dim H°(Y, E) which we denote by p, and their
Hilbert polynomial will be equal.

Now, let E be the trivial holomorphic vector bundle of rank p and let po(T") =

p+rT be a fixed Hilbert polynomial. Then let Qy = Quot]g(}y /C be the Grothendieck

quot scheme representing families of quotients of E over Y with Hilbert polynomial

po, Uy its universal sheaf, and Ry the open sub-scheme defined in the same way as
Rx.

Let F(x) denote the flag-variety over Ry x¢ P defined as all possible flags with
multiplicities x. Let Ry be the closed subvariety of F(x) whose points {F,} satisfy
that for any pair of points (y,y’) in Y, the two projections to Ry from F(x)|ry xc{y}
respectively F(x)|ry xc{y'} agree. This is precisely what ensures that we get a
(canonical) projection

II: Ry — Ry.
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Notice that a q € Ry defines a parabolic structure on vector bundle Ug,, 11(q) over
Y. We shall write U Ry .q for this parabolic bundle and I/ &, for the canonical bundle
over Ry Xc Y.

There are completely analogous statements for Ry as there were for Ry, in
particular: it has the local universal property, it is invariant under the action of
PGL(5), ([62, p.83]) and the moduli space of parabolic bundles of degree d, weights

a and multiplicities x is a good quotient of Ri? (x, a) the subset consisting of points
that are semistable with respect to (x,a) ([62, p.84)).

As a corollary of the last statement, we have that fixing the weight configuration
a, the multiplicities and the determinant for the underlying bundle, the moduli space
M; (Y5 x,a) of parabolic bundles of multiplicities x, weights a and determinant L
is irreducible when the genus of Y is bigger than or equal to 2. This is because it
is the good quotient of R;:f E(X’ a) which is an open subset of an irreducible variety

([62, p.84]). For low genus other considerations must be made.

Proving that £M is a morphism. We start out with a rather general state-
ment. Let Z be a compact Riemann surface and let A 1 (x, a) be the subvariety of

semistable points of Rz with respect to the weight @ and multiplicity configuration
x and with determinant L. Let p’ = dim H°(Z,,U £ q). Needles to say, we are

assuming that d’ = deg U 4.4 18 large enough that we are in the domain of GIT (we
will be more precise about this later).

Lemma B.13. Given a map
f: RSZS,L(X7 CL) — M(X’ X? a/)7

where (x,a) is the parabolic structure dictated by f. Suppose that f is presented
by a locally free sheaf V over ~3Z‘f 1(x,a) xc X (possibly with parabolic structure);
i.e. that f(q) = [Vg] for all g € ~SZS,L(X,G); where || means the strong equivalence
class. If'V satisfies items (1) to (3) in local universality then f is a morphism.

Moreover, if f is GL(p')-invariant it induces a morphism

fi My(Z;x,a) — M(X; X, ).

Proof. By assumption, V conforms to the requirements of local universality so for
every ¢ € R} (x, a) there is a neighbourhood V; of ¢ in R%’; (x, a) and a morphism

fq: Vg — Rx so that Vv, xex & f*Z:{RX. Clearly Im f, C R_SXS()Z,&).

Let gx: R;f()z, a) — M(X;x,a) be the good quotient. Then fl|y, = gx o
fq: Vg = M(X;x,a) is a composition of morphisms. That means that f is a
morphism locally around every point ¢ € R¥(x, a), hence, it is a morphism.
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Now if the morphism f: R‘}S’ 1 (x,a) = M(X;x,a) is GL(p)-invariant, it gives

by universality of good quotients a morphism f so that

R (x.a)

o

Mr(Z;x,a) ;---->M(X;>‘<,F1)

cominutes. O

By choosing Z = X and V = Ux| R, Qp’% L' we verify that tensoring with a line

bundle L’ of high enough degree is a morphlsm11 My (X;x,a) = Mpgr: (X, X a)

as this is clearly a GL(p)-invariant operation, since L{Aq = L{ for A € GL(p).
Similarly we see that pullback along 7: X — Y is a morphism of varieties.

Now we specialize to rank r = 2 to study our elementary modification construc-
tion. Here the data xy becomes obsolete as the weights determine the multiplicities.

It is enough to consider the construction of EM when we fix a determinant L’ €
Im{det: Ma(Y) — Pic(Y)} and a weight configuration a in Ma(Y") and consider the
restriction of EM to M;,(Y;a) C Ma(Y) (i.e. when the genus of Y is greater than
1, we restrict to a single component of Ma(Y'), otherwise to several components).

In order to use GIT, we first need to bring ourselves into a situation where it
is valid. Therefore, choose a generic fiber 77 !(y) in X and an integer N so that
2Nn > 2(2g—1) (recall that deg(W®[r~1(y)]V) = deg W+2N deg[n~1(y)] = 2Nn).
Let d = 2Nn and Ly = [7~1(y)]V.

Given a lift 7 which in turn gives the divisors D; and Dj, the degree of the
corresponding parabolic vector bundle is d = d(7) = L(d+2deg Dy + deg Dy) =
2N + L(2deg Dy + deg D). The absolute value |2deg Dy + deg D| for any lift is
bounded by n times the number of special points. By increasing N we can make
sure that for any lift 7, d(7) is bigger than the threshold dy that ensures that

(1) the underlying vector bundle E is generated by its global sections, and
(2) H'(Y,E) =0.
This puts us in the realm of GIT.
Put L = L% and L = L' ® L. Since Ly is 7-invariant and 7~(y) does not

intersect the special orbits, the constructions P and EM still apply, in fact they
commute with tensoring by Ly: P(W®Ly,7) = P(W,7)® Ly and EM((E, F,a)®

11T his verifies that there is a well defined variety structure on the moduli space.
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EN) = 5M(Ea F,a) ® Ly, where Ly = [y]¥. In fact the vertical maps in the
commutative diagram

M, (Via) 2245 | M(X)|

®ENJ' ®LNJ
M;(Via) =25 1My (X)|

are variety isomorphisms by definition (that is how the variety structure is defined at
low degree). Hence we must show that EM: M;(Y;a) — |[Mp(X)| is a morphism.

The map EM: M;(Y;a) — |Mr(X)| is actually defined on the level of bundles
so there is a natural lift to EM : R;S (@) = [Mr(X)|. To use the lemma we need to

construct a locally free sheaf V representing this EM. Choose skyscraper sheaves
Co,...,Cp of “rank” 1 such that dim ((@f\io Ci)w) = ma(w) everywhere. Let
F be the sheaf over R;? 5 (a) xc¢ Y defined inside Z;{Ryi(a) by the flag variety, let

Fo=7"F, Vy = ﬁ*dﬁyi(a) and define the sheaf Go = (Vo/Fo) ® p%Co. This is a
universal version of the skyscraper sheaf in the exact sequence giving the elementary
modifications. There is a natural surjection

)\02V0—>g0—)0.

Let V1 = ker \g, and ¢g: V1 — V), the canonical sheaf inclusion. As in section 4 the
natural lift 7 to Vp induces a lift 7 to V; and as before, this gives a sheaf ;3 C V;
defined as the eigenspaces for 7,,, w € P, that are not annihilated by to,w- Then
define G = (V1/F1) @ pxCi, A1: Vi — Gy, and V, = ker A\;. Continue the process
through to Gy = (Vm/Fum) @ p Car and define

V= VM+1 = ker)\M.

We need to prove that V is locally free, then the constraints on the degree of V, for
every ¢ € RY’;(a) ensures that (1) through (3) of local universality is satisfied.

It is enough to prove that each step of the above construction yields a locally free
sheaf. So assume that V; is free. Let V' be an open subset of R+ (a) and U an open

subset of X so that the restriction V;|yx v is trivial and F;|y«.v is either O(V)
or 0 depending on whether U intersects P or not. If the parabolic points P C X
do not intersect U, then Gilvx.v = 0 80 Vit1lvxer = Vilvxer =2 O*(V xc¢ U).
So assume PN U = w, then Gilvxer = C. As in appendix A we may choose
local frames e; and ey for O?(V x¢ U) that ex(v,w) € F;|yx.v for all v € V and
i (v,w)(€2(v,w)) = 1. Then ker A;j|y x.v is spanned as an O(V x¢ U)-module by
o - ey and eg, where &(v, z) = z. We see that V;;1 is locally free.
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Like we did previously, we see that the morphism represented by V is GL(p)-
1 v1(a)a = Z]RY,Z,(G‘)’A'Q for all A € GL(p). Therefore there is
an induced morphism from the moduli space M;(Y;a) to |Mr(X)| represented by
V. But clearly this morphism is EM. Hence we have proved EM: M;(Y;a) —
|Mp(X)| is a morphism of varieties. Thus from the above diagram we see that
EM: M;,(Y;a) — |[M(X)| is a morphism, and ultimately we conclude:

invariant because Up

Lemma B.14. For any automorphism T of a compact Riemann surface X, the
map
EM: Ma(X, 1) — |M(X)]

is a morphism of varieties. ]
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